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On Equationally Compact SeniiTatt:ices

I , by

Sydney Bulman-Fleming

Although equationally compact semilattices have been
completely characterized [4], the question of J. Mycielski
"ls every equationally compact semilattice the retract of
a compact topological semilattice?" (first stated in [5]

for general algebras, and posed anew in [7J for scmilattices)
has heretofore remained unanswered. The main purpose of
the present paper is to provide an affirmative answer to
this question.

Further, a new notion of "algebraic" compactness is
introduced which among all semilattices singles out exactly
those in which every chain is finite. Such semilattices
are in turn compact topological ones in view of the more
general result that the class of compact" topological
semilattices includes all join-complete semilattices in
which every chain hasaleast element.

Throughout this paper the term "semilattice" shall
mean "join semilattice".

The results presented here form apart of the author's
doctoral thesis. For inspiration and guidance during the
course of this investigation the author expresses gratitude
to G.H. WenzeL

11. Preliminaries

An algebra CJt = <A;F> (see [3]) is called equationally
compact if the existence of a simultaneous solution of
every finite subset ~"of 81!JsetL.. of polynomial equations
with constants in S implies the existence of a simultaneous
solution of~. (Detailed discussions of equational com-
pactness canbe found, for example, in [9], [10] and [11].)
The equationallycompact semilattices T = (S;V) were
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characterized in [4] as those which satisfy the following
three conditions:

(Ci) The supremum of any non-empty subset XC; S
exists; i.e. l' is j oin- complete.

(C2) The infimum of any downward-directed subset
D~S exists.

(C3) If a ES, and if D ~ S is a downward-directed
subset of S, then aV(!\D) = l\(aVd\dED).

Defini tion 1.1
The interval topology of a pa~tially ordered set ~

= (p; ~) is defined by taking as a sub-basis of closed
sets the collection of all intervals (-oo,aJ = t p " pi p ~ a}
and [a, OQ) = Ip ~ pi p ~ a} as a ranges over P.

A fundamental result of O. Frink [2} statesthat a
lattice is compact in its interval topology iff it is
complete. Application of Frink's methods yields that a
semilattice 'l' = <S; V> is compact in its interval topology
iff conditions (Cl) and (C2) above are satisfied. Thus,
every equationally compact semilattice is compact in its
interval topology (although the topology is not, in general,
Hausdorff) .

An algebra 0{ = < A;F > is called a (compact) 'J -topological
algebra if Jis a (compact) Hausdorff topology on A such
that if fE Fand f:An---+A, then f is a continuous mapping
if An is endowed with the product topology. An algebra
which is known to support a (compac~) Hausdorff topology
with respect to which all its fundamental operations are
continuous is called simply a (compact) topological algebra
if no particular topology ~ is specified.

A subalgebra Ot of an algebra ;L is called a retract of ~
if there exists a homomorphism p from ~ onto Cl. which acts
as the identity function onOr. Such a homomorphism p is
called a retraction of ~ onto O{.----- - - ---. -



Defini tion 1.2

Let t.. = (L; V ,1\> be a complete lattice, and let

(xc() G(, E. D be a net in L. The net (x•.)a(. '- D is said to
order converge to x <:L iff V(/\(xo(,loe.~")I'(E.D).= x =
A(V(xo(,\o(.?;.l')lyE. D). The ordertopology oft..is defined

as foliows: F S L is closed in the order topology of t... iff

whenever a net (xae) ol. E. D in F order converges to x E. L, then.
x G F.

It is well-known that, in general, order convergence

does not coincide with convergence in the order topology.
However, should.~ be a complete and completely distributive1

lattice, then in fact the following three statements are

equi valent, where (xQl.)a(. E: D is a net in Land x E: L:

(01) (xe(.).c..f: D converges to x ln the interval
topology.

(02) (x-')c(,,~.D converges to x in the order
topology.

(03) (xol.)oe.("D order converges to x.

Moreover, if:t.. is a complete and completely distributive
lattice, then the interval topology (which coincides ~ith
the order topology) is compact, Hausdorff, and makes both
lattice operations continuous. Most of the observations
of this paragraph are well-kn~ n and can be found, for
example, in [6J. They will always in this paper be applied
to the Boolean lattice < 28; U, () > of all subsets of a
set 8.

--------------------------------------------------------
lA complete lattice t is called completely distributive

iff the following condition holds: for every doubly-indexed
set f x. .1 i E I, j ~ J .} of elements of L, the equationl,J l
V(!\(xi,jljiJi)liE I) = 1\ (V(xi,<\>(i)/iE:.I)ICf'=Tf(Jil
i E.I)) and its dual are satisfied.
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This section concludes with an embedding lemma which
will play a crucial r8le in the remainder of this paper.

Lemma 1.3
Let '0 = < S ;V) be a semilattice. For each element

s ~ S let e(s) = f t ~ si s,"tj E. 2S. Then e is an embedding
ofO into 2T = <2S;U> such that if X~S and Vx = s,
then e (s) = U (e(x)I x EX) •
Proof:

Only the fact that e preserves suprema will be proven.
If Vx = s, then for any element tE; S, tEe(s) iff t~s.
But this is equi valent to t ~ x holding for some x EX, or
in other words to t belonging to U(e(x)1 XEX).

I
g. Mycielski's Question for Semilattices

J. Mycielski observed [5] that every retract of a
compact topological algebra is equationally compact. To
his question "Is every equationally compact algebra retract
of a compact topological algebra?" affirmative answers
were given in a large number of specific equational classes
(for a summary of these res:ults see [11]) but that the
question in its general setting has a negative answer was
shown by.W. Taylor (8J, who by a graph-theoretical method
exhibi ted an equationally compact algebra of type< 1; 1 )

which is retract of no. compact topological algebra. As
mentioned in the introduction, the problem is attacked
fer the class of semilattices in the present paper.

At the outset, it should be remarked thatthe topology
of a compact topological semilattice is O'-compatible in
the sense of E.E. Floyd [1J. Since Floyd was able to find
a compiete Boolean algebra (which can in particular be
considered an equationally compact semilattice) with.££
Hausdorff and ~-compatible topology, the problem of
Mycielski cannot admit the solution that every equationally
compact semilattice is itself a compact topological one .

.,.~. -c-."....... .. ,...,.. "..: ..+ .,....~--------
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A solution for Mycielsj,ci's problem for the class of
semilattices is now given.

Lemma 2.1

Let P and Q be partially ordered sets and let f:P~

be a mapping which satisfies P1~ P2 iff f(Pl)~ f(P2)'
for all Pl,P2 'P. Let X and Y be subsets of P such that
I\x, 1\Y, Af(X) and A f(Y) all exist.

Then 1\ f(X) = A f( Y) implies /\ X = 1\ Y•
. Proof:

Suppose the hypotheses are all satisfied. Let w =
I\x and z = I\Y. If w~y for some y E. Y, then f(w) ~o 0
f(y ).' But f(w) ~ f\f(X) since w is a lower bound for Xo
and fpreserves order. Therefore A f(X)~ f(yo)' which
gives the contradiction /\ f(Y) ~f(y ).o

Consequently, w is a lowe:t:' bound for Y, so w~ z.
Similarly z' wand the proof is completed.

I
Corollary 2.2

Let 1f = <S;V> be a semilattice, let 2"5'= <2S;U> and
let e be the embeddi'ng of 1. 3. Let Xand Y be subsets of
. S such that 1\ X and A Y both exist. Then (\ (e(x)1 x ~ X)

= n (e (y )I y €. Y) i mp1i es A X = 1\ Y•

Theorem 2.3

Let T = <S ;V> be a semilattice. Then T is equationally
. compaet iff T is retract of a eompact topologieal semi-
lattiee.
Proo.f:

It was remarked at thebeginning of this section that
retraets of eompaet topologieal algebras are equationally
compaet.

Assumetherefore that T is equationally compact. Let
R = e(S) where e is the embedding of1.3, let ~ = (R;U)be
theeorresponding subsemilattice of 2'6' (which is of course

isomorphie to '7j) and let eR = <: R; U >, where R denotes the
elosure of R in the interval topology (= order topology =

Tychonoff topology) of 2'lf'. Thus 6t is a compact topological
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semilattice when given the relative topology. The theorem

wi 11 be proven i f a homomorphism p: R -+1' can be given
s at i s fy i ng p (e ( s )) = sf 0r all sES.

To accomplish this task, observe that for any x f: R
there exists a downward-directed. subset MS S such that

x = n (e(m)1 m E. M). For, x is the order limit of some net

(e(xg(.))o(, E. D in R (by the equivalence of statements (01)-

(03) above). For each" E: D define my = V (xc(.lo(~r). Then
the set M = f mr1'( E.DJ is downward-directed and because e
preserves suprema one finds that x = n (e (m)! mE M).

Should x 4: R admi t two representations x = n (e (m)1m~ M)
and x = n (e(n)1 ne: N) where M and N are downward-directed
subsets of S, then /\ M = 1\ N by 2.2. Thus p(x) can be
unambiguously defined as A M, where M is any downward-
directed subset of S for which x = n (e(m)1 mE.M).

It is clear that p (e (s)) = s for any ses. That p

is a homomorphism, finally, is seen as follows. Let x,
y € Rand suppose M and N are downward-directed subsets
of S such that x = n (e(m)1 mc:M) and y = n (e(n)\ n( N).

Then p(x)Vp(y) = (I\.M)V<I\N) = A (mVnlmE::M, nE N) by

condition (C3). On the other hand, x Uy = n (e(mVn)1 m£ M,
nE N), and since {m V nl m", M',n (: NI is a downward-directed
subset of S affording a representation of x U y as prescribed
in the definition of p, the desired result p(xU y) =
1\ (mV nl mE M, nE N) is obt ained. •
12.. Further Results

To begin this section, a new form of algebraic
cornpactness is defined which will be studied in detail
for the class of semilattices.

Definition 3.1
Let K be a class of algebras of the same type and

let ctbe an algebra in K. Then oe is 'calledK-compact
iff for every algebra ~ in K such that Ol is a subalgebra
of ~ the following condition is satisfied: the e'xistence
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of a simultaneous solution in oe of every finite subset
~'of ~set ~ of polynomial equations with constants in
B implies the existence of a simultaneous solution of ~
in ~.

One observes that if K2 is a class of algebras of
the same type, if K1£ K2, and if 0{ is an algebra in K1,
then K2-compactness of oe implies K1-compactness. Also,
0( is equationally compact iff 01 is tOC1-compact, so if ~
is K-compact for 'any class K, .then it is equationally
compact.

It is well-known that all compact topological algebras, .
so in particular all finite ones, are equationally compact.
The follöwing proposition shows that a finite algebra
is in fact K-compact for any class K to which it belongs.
Although the proof is topological in nature, it becomes
apparentin light of the characterization theorem of K-
compact semilattices which follows that in general compact
topological algebras may fail to be K-compact.

Proposition 3.2
Let K be a class of algebras of the same type and let

"'= <A;F) be a finite algebra in K. Then () is K-compact.
Proof:

. Let t, = <B;F> € K be any extension of a. Then any
polynomial p in the variables (xr )r<o< wi th constants in

co(B can be consi~ered a continuous rnapping from A into B,
where B is given the discrete topology and A~ is endowed
with the relative topology ~ induced from the product
topology of Bo( • j' is in fact a compact topology since
it is simply the 0(. -fold product of the discrete topology
on A. Thus (because B is Hausdorff) any polynomial equation
p = q with constants in B has a closed solution set in
A~ and so the compactness of 1assures that any set of
polynomial equations with constants in B finitely solvable
in ar is in fact solvable in O{. •To initiate the study of K~compact semilattices (for
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K to be specified later) the following sequence of lemmas
i5 given. It is notedthat Lemmas 3.4, 3.5 and one part
of the proof of Theorem 3.6 are modelIed after similar
arguments in [41.

LemmaU
Let 0( = < A;V> be a semilattice in which every chain

has a largest element. If ~ * X<; Athen there exists a
fini te subset BS X such that V X = VB.

Proof:

Let T = t V B I ~4: B S X and B is finite} .
lS directed and so contains a greatest element
Clearly VB = VX.

Then T
VB.

I
Lemma 3.4

Let'D = <. S ;V> be a semilattice in which every chain

has a largest element, suppose 'D is a subsemilattice of
the semilattice oe = <A;V>, and let K~ S«' be a set of

solutions of the equation a V x. V ..• V x. = b V x. V ...
10 1n-i Jo

Vx. where a,bEA~ Cl(. is an ordinal, and io, ... ,in_i,Jm-i
j 0' ... ,j rn-i are elements of the set l¥lr< O(}. Then t =

\lK (the supremum being taken in the semilattice 1r~) is
a solution cf the equation aVx. V ... Vx. -.bVx. V

10 1n-i Jo

Proof:
Let kO, .•. ,kr_1 be the distinctmembers of the set

fiO, ... ,in_i,jO, ••. ,jm_11and let J = {ko,~ •• ,kr_i}'
Define Ki<; SJ as folIows: fE Ki iff there exists gE K

such that g(k.) = f(k.) for all k. ~ J. .
111

The semilattice ~ has the property that every chain
has a largest element. Hence by 3.3 there exist bO"'"
bs-i€ K1 suchthatu = VKi = bOV ... Vbs_1' Clearly
u(ki) = t(ki) for all kiE J. Thus, aVt(io)V ••• Vt(in_i)

= a VU(io)V .•. Vu(in_1) = aVbo(iö)V ••• Vbs_i (io)V •.•
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VbO(i 1)V •.• Vb 1(i 1) = bVbO(iO)V ••• Vb 1(i .. 1)n- s- n- s- n-
= bVt(iO)V ... Vt(in_1), so t is a solution of the' equation •

•Lerruna3.5
Let T = <'S;V> be a semilattice in which every chain

has a smallest element, suppose T is a ßubsemilattice of
the semilattice <5{ = <'A;V), and let K~ sot.. be a downward-

directed set of solutions of the equation aV x. V ... V X.
10 ln-1

set f~ Ir<.o<} ... Then t
0(

the semilattice T ) is
.•. Vx. = bVx. V •.•
. 1n-1 . Ja

= b Vx. V ... Vx. where a,b E'A, (/...is an ordinal, and iO'JO Jm-1
... ,i 1,jo, •.. ,j 1 belong to then- m-
= A K (the infimum being taken in
a solution of the equation a Vx. V

10Vx. '.
Jm-1

Proof:
Let J and K1 be defined as in the proof of 3.4. Let

v be theleast element of K1. Then v(k.) = t(k.) for
1 1

each ki E J and t satisfies the required equation since
there exists g~ K such that g(k.) = v(k.) for all k. ~.J.111

I
In the subsequent discussion, $' denotes the class

of all semilattices and lLs denotes the class of all
semilattices which are join-semilattices of lattices.

In other words, IL S consists of those semilattices t..
=;(LjV>such that the corresponding partial order is a
lattice order. Clearly IL. S So $'.

Theorem 3.6
Let ?f = (S ;V) be a semilat ti ce • Then the following

conditions are equivalent:

(K1) T isJ'-compact.

(K2) T is l S-compact.

(K3) T contains no infinite chains.
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Proof:

The equivalence of (Kl) and (K2) is an easy consequence
of the fact that any partially ordered set can be embedded
ln a lattice with preservation of all existing suprerna and
infima (for example, via the Dedekind-McNeille embedding) •

. To show (K3) implies (K1) let Ol = (A;V)be any semi-

lattice extension of rand let ~ = tO" i li E: I} be a set
of polynomial equations with constants in A, involving

the variables 1xy I~<o(),such that each finite subset of

L: has a solution in 7'. For each finite sub set ~' cf Z;
let K( ~') ~ so(. be the set of solutions of ~'. By 3.4,

t (~) = V K(~') is also a solution of ~'.For each i E:. I
let Ji = l t(~')IL:'is a finite subset of~. and <S'i~~'}'
Then J. is a doW'nward-directed set of solutions of ()'.

1 1
and so AJ. by 3.5 is also a solution of ~ .• Since J.

111
and J. are mutually co-initial for all i,j tI the infimum

J
of any Ji is a solution of 4.

Finally to show (Kl) implies (K3) suppose T is $' -
compact (and hence equationally compact) but contains an
infini te chain. Then ei ther (a) T contains a chain C1

wi th no ~argest element, or (b) T contains a chain C2
with no smallest element. In case (a) let z = V'l' let
A1 = sO rw} and extend the partial order on T to a partial
order on Al by defining x ~w iff x = w or x ~ z, and x, w iff
x = w or x~ c for some c ~ b1• Embed< A1; ~) into a lattice
t = <L;" , 1\ ') in such a way that suprema and infima are
preserved, and let a be the semilattice < L; V>. Then the

set of equations i: = 1: xV c = x \ c E: Cl) u 1xV w = w} is
fini tely solvable in 1f, but not solvable in r. ease (b)
is treated entirely similarly. In either case the Jr-
compactness of 1r is contradicted. I

In conclusion, a large class of compact topological
semilattices will be delineated, a subc'lass of which is
the class of Jr-compact semilattices characterized above.

Theorem 3.7

.Let 1" be. a j oin-complete semilattice (Le. Tsatisfies
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condition (Cl) previously stated) in which every chain

has a least element. Then ~ is a compact topological
semilattice.
Proof:

Let 11'"be embedded in 2'r' = < 2S; U) via the embedding

e of 1.3. If j is the topology e (S) inheri ts as. a subspace
of 2S, where the latter as usualis given its interval
topology, then clearly e(1r) is a j -topological semi-

lattice. Under the present hypotheses, moreover, ~ is
compact.

To verify the latter statement it suffices by the
Sub-base Theorem of Alexander to show that any family
3- of sub-basic j-closed subsets of e(S) with the finite
intersection property has a non-empty intersection.

Accordingly let -g = f [Xi' Yi)()e (S) \ i E:I} be such a family,
where for each i (ä I X. and Y. are subsets of S with X. S Y.,1 1 1 1
and [X., Y.] = S- C ~ S \ X. So CS Y.}.1 1 { 1 1

Let (P = iPSI \ P is finite}, for each i E.I and P ~ lP
define Ai,p = fs~sl Xi,=e(s)S n(Yj\jE:P)}, and for each
PE. t9 let Ap = U (A. pi i E: I). Observe that each A. P is1, 1,
non-empty. Finally, for each PE:@ let sp = VAp' and let
J = {sp IP~W}.

Ir P €~, it is clear that U (Xi\ i E:I) <; e(sp)' since
for eaeh i E: I there exists an element s. p E: A. P and so

1, \ 1,x. £. e (s. p) i mp1i es U (x.\ i E: I) S U(e (s. p) i E: I) c; e (sp ) •1 1, 1 1, .
Since J is a downward-directed subset of S it has a

least element sQ' ~here Q E: @. The considerations of the
preceding paragraph yield at oncethe inclusion U(Xil i E: I)
~ e(sQ)' On the other hand, for each iE;I let P. = {i}

. 1
~ 6>. Since sQ~ sp. for all i E: I it follows that e (sQ)
£ {)(Yi\ i E;I), and So e(sQ) E. n1', which completes the
proof of the theorem.

I
Corollary 3.8

Every Jr-compact semilattice is a compact topological
semilattice.

The procedure of 3.7 cannot in general be applied
to semilattices with chains without smallest elements, as
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the following example shows.

Example 3.9
Let C denote the set of negative integers, let w

denote a new element, and let 1f be the semilattice <S;V),
where S = CO{w~, the elements of C "~retaintheir usual order,
and w is smaller than any element of C. Then the topology
on e (S) inheri ted from 2T is not compact, since {w} belongs
to the set e(S)' e(S). The situation is illustrated in
the following diagram, where closed dots denote elements
of e(S) and open ones elements of 2S, e(S).

S

.e(-1) = [w,-21

e(-2) = [w,-31

e(-3) = (w, -4 ]

r e(w) = /J

Figure 1

Observe that, while the method of Theorem 3.7 fails
to equip the semilattice 1rof Example 3.9 with a compact
topology, 1ris nevertheless a compact topological semilattice
in its own interval topology.
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