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1. Intrdduction

.The existence of periodic solutions of parabolic problems
‘has been proved by'§mu1ev{26];vKruEko§[19}, and Kolesovv[17].
Friedman [% - 12] and others [6,'13, 18, 21, 24 28] studied
‘the asymptotic behaviour of solutlons of parabolic initial
boundary value problems and showed that these ‘functions
-u:'kx,t) — u(x,t) frequently converge in time t to-a steady
: stateru*: X — u*(x) which may be ggihed as solution of a
bounhdary value problem. The present paper;concerns the

~pumerical solution of such problems.

'v'For thé‘pfécfical éomputation the knowledge of the steady

state u* has been used first by Greenspan [15] and later

by Carasso-Parter [U4] and Carasso [5] in ﬁwo important

papérs. They put in this 'boundary value technique' u(+,T) =

u* for sufficiehtly large T and approximate‘by this way the
Aoriginéi initial boundary value problem by a boundary value
-pfoblem In solving the 1after the characteristic difficulties
of stablllty of initial boundary problems appear in some

mllder form while the computational effort depends on the e
speed with which u(~,t) converges to u*. The approximating
boundary problem is solved by finite difference methods as

in elliptié problems. We drop in this‘paper some restricting
assumptions [S,p. 307] by choosing a norm mofe adeguate to

‘the given problem. Further,, the proof of convergence in([5]




is simplified by means of the monotonicity principle of
Minty [22, 23]. Moreover, parabolic problems with degene-

rating differential equation are handled also.

First suggestions for the practical treatment of parabolic

.problems with periodic solutions have.been made by Tee [27]
‘and Osborne [25]. But they confined themself on the equation'

& by ‘a finite difference approxi-

mation of order one (compare also [14]). We:start out from

U = uxx‘and substituted u

more general equations and study three‘appfoximations of
forder two. It results that in the mosp usual case of these .
finite_difference approximations the periodic problems

are numericallyrratherjreiated»tovthe approximating boundary
value problem‘in the mentioned boundary value method.

.'Proving'the stability of the approximatioﬁs we can no‘longer |
work in this paper With the notions 'positive definite"and
'M-matrix'; we must use instead the monotonicity in the
meaning of Minty and ‘a resultbof [2, 4] which we call the

&

principle of Carasso-Parter. -



-2, Mildly Nonlinear Problems
Let R be the set of real numbers, N = {1,2,

+

.1,
G ={x eR, 0¢x <1}, 2" = Gx(0,=), and let 2"

be the
closure of Z+. The.derivatlve of a function f: R 3 x — f(x)
'e‘E is denotéd by fX. We consider first the initiél boundary
value prob%em _ v

. Catoug - [ploou ]+ ety + S0t = 0, (x,8) € 2%,

Y W(x,0) = v(x), x € 6, u(0,t) = s (£), u(1,t) = s4t), o ¢ t,

‘satisfying the fbllOwing conditions:

Assumption I.'Suppoée there exists a unique claésical séiﬂéiohi
u: (x;t) — u(x,t) Qf (1) which con&ergesvto a known sﬁeady
state u*. Let be known anlincreasing positi&é function

£: R* 3 e — t(e) e R with - o |

Ju(-,t(e)) - u*|_ := sup lu(x t(e)) - u (x)]
- _ . - xXel

. ' . : + .
Assumption II. (i) Let a, b, ¢, r,.s , s be continuous and

bounded in Z+; let £ be continuous in Z+XB and bounded in z*

- for bounded u e R.
(ii) Let ¢ be continuously diffefentiable in Z+, and let
0 ¢ B £ b(x,t), |e (x,6)] £ v, | (x,t) e z
C(f(x,t,v) - f(x,t w))(v = w) 20, (K t) ¢ 7* v,w e R.

(111) Let u b as well as all 1ower derivatives

u
tEtt? Txxxx’e Txxx

. N . . +
of u and b be continuous and bounded in Z .

©

- Further, let At and Ax = 1/(M + 1), M € N, be small in-

crements of the variables X, t, and let N: At e N(At) € N

be a function which we shall define more exactly later. Put




Vﬁ;v(kAx;nAt) “:(v?,.;;,vﬁ)T;,vz(vl,;..,VN(At))T,
(2) . '
O N(At) : o
SRS E <vn>T YIS s L.
: N(At) n= - o

Following Greenspan [15], Carasso—Parter [4], and Carasso

'j[5] we approx1mate the problem (1). by

n+1 n-1 n n n

akvk , - Vi _vbk+1/2(vk+1 ) k) - Zk—l/Z(Vﬁ = Vi-1)
S o288 _ - Ax
.(3) | Aoy . o
+ el k1l k-1, (v = 0, ko= 1,...,M,

1,...,N( t),

o]
"

“with the boundary conditions ]

i VE = r(kAX),'vg(At)+1 = u*(kAX), k = 0,...,M+1,
N |
. v =ls (nAt), VM+1 = ; (nAt), n =.1,.f.,N(Aﬁ).

‘Wé_collect the MXN(At).equations (3) in the usual way, i.e.

'keéping first n = 1 fixed and going from k = 1 to k = M
then keeping n = 2 fixéd and going from k = 1 to k = M and
so on. So we obtain the follow1ng system of equatlons

(5) P (V) = (AS, + B+ C)V + F(V) = H.
Héfe,rHland F(V) are vectors of the form of V in (2); H1
Lcohﬁains only‘known Quantities and F(V) cdntains the elements

”fg(vﬁ) = f(kAX,nAt, VE). A, B, C are block dlagonal matrlces

' 1 (At)) ©

’etc.,“and

. . n _ n :
with the submgtrlces A~ = (aik)i,kzi,;,.,M

a., = a §ik/2A§ = a(kAx)Gik/ZAt - (dik Kroneckers symbol),
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. '

n J-‘ n ) 2 | N . ‘. _,
t (Byyg/p Py p)/x 3k
L, n 2 o o
S I Pre1/2/ 0% | 1=kl
Sik T n 2 ’ o ,
: —_bi+1/2/AX e _ k = i+1
| O : o - - otherwise,
rc?/zAx o ko= i+t
n _ . n ' L
ey T ] . c;/2ax : . i-= k+;
|0 S o otherwise,

-and

1 oL T

O “1 0.
(I identity matrix of dimension M).

In the following theorems U denotes the blockvector (2) of
the solution of the analytic problem at the mesh points

(kax,nat) and const is-a generic positive constant inde-

fl

‘pendent of Ax and At.

Theorem 1. Suppose ~ the initial boundary value problem (1)

satisfies Assumptions I and II and assume " there exists

a € > 0 with Bﬂ2 - (y/2) - € > 0. Choose N such that
(6) lu(-, (N(8£)+1)88) - u*|_ ¢ const 8t°/2,
1

N(At) 2 At 5, If O ¢ Ax 4 (126/8ﬁu)1/2-and At/Ax = const

~ then there exists a unique solution VA of (5) and

(7) fVA - UI2 £ const Atgﬂ

Proof. The matrix AS, is Skew—symmetricvand by Carasso [3,5]

1

we




MxN(At)

(P, (¥) ~ P (2), Y -2) 2o |¥-2]5  Y,2¢R

where a ='Bﬂ2 - (v/2) - € > 0 independent of Ax and At.

, } . - A
Therefore, by Browder [1] and Minty [22, 23] Pilz g N(AE)

MxN(At)

— R exists and is continuous; furthermore

vy - uly s IP11<P1(VA)> - Pil(P N, * a_llP () - 5|,

The block vector 0 = Pl(U) - H1 cons1sts of the local

truncation error 62 K? k=1,...,M, n = 1,... N(At), and the
_ s o

-boundary error -

c

N(At) - u(kAx;(N(At)+1)At) - u*(kAX)

(8) %,k 200 s ko= 1,.0.0,M
o is a linear comblnatlon of At2u szu‘ .and

t,k ttt’ XXXX’? -
Ax?bxxx’the derlvatlves being evaluated at points of Z

intermediate to successivemesh points, therefore let kl <
H]

const At2. Putting IOnlg = Ax(en)Ten and’appreising (8) by
-means of (6) we obtain
- N(At) - ~ N(at)-1
' 2 1 n;2 1 n2,; N(AtT N(AtG
o5 = 0713 = |et|2+,———|e< Vil (8|2
N(At) h=1 N(At) n=1 N(At)
N(At) -
- leﬁl2 + 2At!oN(At)[2|@N(At)|2 + Atleg<At)lgfconst at”
N(At) n=1 _ , _ .

which proves the theorem.

Remark 1. If the solution u of (1) satisfies u(x,t) = u*(x)

{'t_rk(x,t) with |k(+,t)|_ £ const as t > « then (6) means

N(at) > (agy (L F 5/Er)_
If ju(-,t) - u*|wv5’const e_at (¢ > 0) then we must have
N(at) & - —2 (loght)

20At




Let now Z = Gx(-~,») and consider the parabolic Problem

: 9) a(x)ut~- [b(x,t)uX]X'+ c(x,t)ux-+ f(x,t,u) = 0, (x,t) € 7,
- (9) - - .
ST u(o,) = sT(s), u(, t)=s+(t), - w2 Lo

satlsfylng Assumptlon IT and

’Assumptlon III. Suppose the functions a, b, ¢, T, s_, s+

are periodic in_t with period 1. and assume there exists a
unique classical solution u of the problem (9) periodic in

"t with period T.

_Because of the per10d1c1ty it sufflces to épprox1mate the
;solutlon u at the mesh points of Gx(O r] We choose AxX as
~above and At = /N, N e N. Collectlng the MxN finite diffe-
rencé approximations (3)‘of the differenfial equation in (9)

in the same. way as,before we obtain the system

F(ld) :'P2(V) Ef (AS, + B + C)V + F(V) = H,.

Observe that now no boundarybvalues are given on the.lines

n=.0and n = N, instead we must pﬁt V? = VN. Thus, in com-

“parison with (5) nothiﬁg changes but S, and H,. H, contains

again ohly.known values and S, is the skew-symmetric block

2

- matrix

Therefofg, if we take into account the beriodioity of U in

the appraisal of le(U) - H

2|2 then it results just as before
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Theorem 2. Suppose the boundary Value probiem (9)fsétisfies'”
Assumptions II and III and assume there exists a e >0 with
Bﬁ2 - (y/2) - € > 0. If 0 ¢ Ax 5 (1257Bnu)1/2 then a unique
solﬁtion VA of (10) exists and | | |

| v, - Ul2 ¢ const (AX2 + At2).

Remark 2. Let

M lV _ an2 N(At)
' 2 k+1 k 2
VD12 = ax ) v 15 = E
X2 k=1 Ax° - x'2 N(At) n=
where vg = vﬁ+1'='0. Carasso- [5, p.311, 312] deduces from (7)
, ) 2 . n /2
that |V, . - U, ¢ const at sup [VA . - UM, £ const At3 ,
and
(11) Max.{lvﬁ -nuﬁll < const At3/2

k n
5 ﬁ1n case At/Ax = const . The same resulté are naturally valid

for Theorem 2.
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"3, The Principle of Carasso-Parter

Let be given the problem

T AL L MO LM ICOl +e(x,8) = 0, (x,8) e 2",
12 o -
u(x,0) = r(x), x € G, u(o,t) = s (t), u(i1,t) = s+(t)} 0O ¢ t,

satisfying Assumptions I and II (f(x,t,u) = g(x)u + e(x,t));

but instead of |ec £ vy we assume here c¢ continuous and

xla

[clw’é u. B N In place'of (5) we have now
(13) PlV-:z (—1~ Si'+ B+ C+ G)V =H, .
’ o 2at co SR A

The block diagonal matrices B and C as well as G, which is

now independent of V, consist of identical submatrices ﬁ,»ﬁ,

and E<respectively because the functions b, ¢, and g in (12)‘

are independent of t. We use the norms

vl = max {|Vk]}5 V e RS, Q] = max'{§ qukl}, Q sxs-matrix.
, - 14kés 14i4s k=1~

Carasso [2 , Lemma 1] has shown that for O ¢ Ax £ g/u there

exists a diagonal matrix D with the propeftiesf

..1| z

5 1B + &) symmetric, Iﬁ|°° ¢ const, |D _ £ const

Thus the MxM-matrix ﬁ—l(ﬁ + C)D has a complete set of ortho-

normal eigenvalues wk corresponding to the eigenvalues Ak.
Let A be the diagonal matrix of the A ‘

nJ

W = (Wl?..s,wM),

k’

and let A, D, and W be the block diagonal matrices with the
-submatrices X, 5, and W respectively. Then we may expand’

D™U(P,U - Hy) = WY, D P,D = WIW

where ¥ 1s a block vector because the eigenvectors W, are

k

A

.



(15)

5 ' n
PRI

orthonormal and T 1s a certaln block matrix. Consequently,

1
we have in case Tzl exists and all_xk are positive
1 ]
v, - Ul A 1Y

(14)

Il lw AT

. = |DD” P1 (P, U - H

3.'

. M !WI
DI N

k=1

N

R | N.T 24 . . — :
where ka- (wk, ...,wk) . Tl’N(A) is a certain NxN matrlx..

which results from T, and may be gained easy. On the other

1
. -1 -1 . . -1 7.
31d§ T1 and P1 exist if all Ak are positive and Tl,N(xk)
-exists. Now, Carasso [2] has proved the important result that
: M
under the above conditions 5 ([wkl /A ) remains bounded for
‘Ax — 0 if the Wk are normall ed by [wklz = 1. But then
- n v _ -1 . n\ T a
Iwkl ’AI(D (P1U HB) ) wk/wkwkl

N

-1 o \n
jD |1 (P U - Hy) |

2
We formulate the result in the already established notations
as

Principle of Carasso-Parter. Let O £ Ax = 1/(M+1) £ B/u

N

const for A ™ 16 >0, At >0, N e N, and if

]2 const (Ax2 + Atz), n=1,...,N, then
2 o '

vV, - U £ const (Ax™ + Atz).
A ©

1oaps
e [871,001,

IN

Theorem 3 (Carasso-Parter [M]). Suppose the initial boundary

value problem (12) satisfies Assumptions I and IT but . let

le]_ ¢ u instead of IcXI°o £ y. Choose N such that

(16) [u(~,(N(At)+1)At)'— dﬂm £ cohst At3,

!

N(At) * at”'. If O < Ax £ 8/u and At/bx = const then there




..11....

exists a unique solution VA of (13) and

IVA - ul, ¢ const At°

Proof. Appraising (14) by (15) and Assumption II we obtain

o] ¢ const At T (A) has the form o
k' * “1,N 1 '

../\ _ . 1 . . 3 .\
Ty ) = (T + 555 Siw)e S 7| -0 1
‘and it is to be shown that |%£1N(A)lm remains bounded. This
. . Py .
"~ is a result of Carasso-Parter [4, Lemma 2.1].

Just so we obtailn

‘Theorem 4. Suppose the boundary value problem (9) with the
 differential equation of (12) satisfies Assumptions II and

IIT but let le|_ ¢ u instead of le 1. £y, If 0 £ ax £ B/u

[~

then a unique solution V, of the corresponding system (10)

exists and

IVA.--UI°° é.cohst(sz + At2).

Proof. The corresponding matrix @2 N(k) has the form
s ;

O m

~ 1 : L R
T2,N(*) - (; * 2AAL %2,N)’ S2,N'_' O v o1

Y
O
1
Y
z
’

L _
|T21N(A)J_ £ const is proved in a similar way as [4, Lemma 2.1].
) Rl

. A , . i
computing_Tle(x) explicitly.
3 .
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Remark 3. By the transformation
u(x,t) -.[exp(l ? c(S).ds)]v(x £)
3 - 5 s

2 o b(s)

we obtain from the boundary value problem (9) with the
differential equation (12) the equally periodic boundary

value problem - - _ o

Ve - [P(x)vx]i‘+ (g(x) f'%éx(x) * T50x)

0,0 = $7(0,(1,8) = 5* (6 [exp (-

- DR

« . We may apply Theorem 2 to this.problem if
| (x) - Lo(x) + c?(x) s 0, X e G.
& 27°x T In(x)y T 7 s

But observe that (11) is slightly weaker than Theorem 4.
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4, Further Applications of the Principle of Carasso-Parter

Suppose once more that the periodic boundary value problem

a7 Ue ~ [b(x)?x]x»+ c(x)u  + %(x)u + e(x,t) = o"(x,t) e 7,
_ u(0,t) = s (t), u(d,t) = s (), - @ ¢ t £ =,

satisfies Assumptions II and III. As in the method of Crank—

Nicolson (compare Lees [20]) we approximate (17) in G (O,T] by

n n
k41 Vi) "Pyo1/0
2 .

Ax

n
(v k—l)'

n
k+1/2 (v -v

1
2

n-1 _n-1

(18) .
| Pys1/00Vies1 Vi )by

+

Vo 4=V vy L=V :
ktl "k-1 . "k+l "k-1}- 1, [v§+vﬁ—1]+ o
2Ax - 2Ax

' n n o n-1 _n-1

© ko= 1,...,M, n = 1,...,N,

with the boundary values vl o= s (nAt), v§+1(nAt), n=121,...,N,

o
and vO = VN. Again we may write (18) in matrix-vector

notation as

(19) P3V 1=

>
i

1 _
(I - SB)V + §(B.+.C + G)(I + SB)V = HM{

Here, the block diagonal matrices B, C, and G are already
is the N-cyclic matrix
o () T
I. 0O (}
S3 = e
: O "I 0

(compare Varga [29, p. 35], I identity matrix of dimension M)

known, and S

3

with the eigenvalues
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'An(SB) ; exp(2win/N), ' n = O%...,N—l.

Theorem 5. Suppose the boundary value problem (17) satisfies
Assumptions II and III but let |cl|_ £ u instead of chlm ¢ y.

If 0 ¢ Ax 5'B/u then a unique solution Va of (19) exists éhd‘

(20) [V, - Ul, £ const(1 + —25)(ax® + at2).

, T ' AX ,
ggggg,_Thé block diégohal matrix Q ; B + C + G consists of
-idehtical submatrices 5 and, as already shown, thé eigen--
_-ValueS_lk(a), k = 1;..;;M,Aare positive in'caée 0 < Ax £ B/u;
‘Therefore, the eigénvalues of (i +.AtQ/2)_1(I - AtQ/2)S3 |
‘are less than one in absolute value‘and |

-1

P

i R P R P T A A S
= [; v{(AtI + 59 (gt 58517 [T +

exists. Let

and

3,N)

63;N(A) ='7%f(1 - SS,N) + %(I f S
be matrices of diménsion N. According to the Principle of
Carasso-Parter we have to show that |%giﬁ(3)!w remains
bounded for the eigenvalues A = A(Q) and t/At = N e N. Put

o = 2/AAt then

CA-1 — e
T )\ - .O'.
5, = g (T o+ 355 S5 y)
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. m .
Using ISB,Nlm =1, m e N, we obtain

a-1 2 1 Y
1) Tl * 153 1 l1—o| Tl

Now, a result of Carasso [2, Lemma 3] says that O < Ak(a)
£ const M2 is true for the eigenvalues of é if Ax is suffi-

ciently small. Inserting A = Ak(a) in (21) we obtain

Al . At .
I-TB,N'(A_I{)'W = 1 + Kl 'A_X'z" = ‘K2(1 +

‘ At
-5 )
: Ax _

'(K2 = maX{l;Ki}).zFinally, we obtain lPBU - Hu}m £

2 N

const (Ax"~ + At2) as Lees [20] taking into account U° = U

again; this completes the proof.

Remark 4. The normalized eigenfunctions of the Sturm-Liouville
eigenvalue problem

-[o(xdu, ], + e(x)u, + g(x)u = au, 04 x < 1,

(22).
‘ u(0) = u(1) = 0,

where b(x) *> g > 0, g(x) * 0 and b, c, g are all smooth
_Tunctions, are uniformly bounded in the supremum normn
(see Courant-Hilbert [7] ). The same is true for the discrete

eigenvalue problem

+ 8,V :_kyk, ko= 1,...,M,

corresponding to (22) with the equation u ., t g(x)u = Au

(see for instance Isaacson-Keller [16]). Let us suppose for




©

the moment that the normglized eigenvectors D wk_of the i

matrix (% + 5) as defined in §3 remain equally bounded in the

supremum norm independent of M: |W £ x, k= 1,...,;M. Then

ke
we obtain by (14) and (21)

M 1 At
v, - ul, ¢ Ipl« ;:;‘[7; (1 + c—s% )Iw 1]

IN

const (1l + %E)(Akz + At2),
, . X T
thus |

IVA - Ul ¢ cohst(Ax2 + Atz)

instead of (20) provided that At/Ax = const.

'hHltherto we have Uy (X t) replaced by the flnlte dlfference'

' approx1matlon (u(x t + 6) —_u(x, . - 6))/26 (6 2 O)

iWe con51der as before the periodic problem (17) and

approximate the differential equation as in (3) but for u

we choose finally the well'khown approximation

u, (x,t) = Ju(x,t) - bu(x,t-4t) + ulx,t-at) | 6(A£2).
t 24t -

'Collecting the MxN differene equations in the described way
we obtain instead of (10) the following system

(23)  PyV:= (2At y * B+ C+ GV = H

where Su is the N/2-cyclic matrix

31 I -41

-4 O I
I, i L | C)_
O ‘_I'—ui' 3T
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(I identity matrix of dimension M).

Theorem 6. Suppose the boundary value problem (17) satisfies

Assumptions II and III but let |e|_ ¢ u instead of chlw < vy,

If O ¢ ax € B8/u-and (t/At =) N € N even then a unique

solution VA of (23) exists and

2

° : v, - U £ const(Ax™ + At2).
. T A bt

Proof. Let SM,N‘be the matrix of dimension N corresponding
‘to S, but with ynitéf#néteéd bfﬁﬁhe haﬁrices I{'By the
Principle of Carasso-Parter we have.to show tﬁa% the inverse
- of

1
2 AL SLI,N

Ty (2) T
= +
N
is bounded in the supremum norm independent of A > O and
At = /N N O,
. | A-1 _ |
First, we show that TM N(A) exists. Let o = 1/2xAt and
3
(o —Uo\

~ 1+3g 0 ~ ~
L = s R = , I =
O o

—uq 1+ 3¢

-énd‘let
O T
Z = O c
| O " o0

<

HZ O

_ . 3
be of dimension N. Then TM N(x) = L + R Z where L and R
b

are block diagonal matrices of dimension N with the identical

~N - ~

submatrices L and R respectively. For the eigenvalues of

1RZ we obtailn

L
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A RZ) =A@ M) exp(Unin/N), n=0,...,N-1;
and the eigenvalues |
Ay 2(1_1ﬁ) = (1 + 30)7%( = 50° + 0 ¥ ho(e® -0)1/?)
, . . &

of 171K are less than one in absolute value for o » 0. Thus

%iiN(A) = (I + L—lRZ)—anl_exists for all o 2 O,
> . ‘

Secondly, we show that I%ZlN(X)lw £ conste if 0 4 0 <1 - ¢
>

or 1+ ¢ o (30). Let a = 4, (L'R), 8 = A,(L7'R),

~ |a 0
N - A : ,
26+ (5°=0)2 20-(0°-0)2" S IR
G . o 1 .
X = = 2(02—0)2 1
1 ‘ 1 ; -0 20 +(02—0)2

the matrix of. the eigenvectbrs of %ﬁlﬁ, and let X, A be

the corresponding block‘diagonal mgtricés of dimension N.
Then

A _ -1
Tu’N(A) = ILX(I + A Z)X .

‘Now recall that the element in the ith row and kth column
. of a matrix A_1 in case of existence consists of the cofactor
of.the element in the kth row and ith column of A divided

by the determinant of A. Using this fact we can construct

(I + AZ)_1 explicitly for.general dimgnsién'N; by further
computation it results then that|(I + AZ)—ll°° remains bounded
independent of ¢ > 0 and N € N. This is howe?er a very tedious
work and it shall beuéuppressed here. L'and X are bounded in
the supremum norm independent of ¢ = 0. So the proof

would be
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complete if x"1 would have the same property; but x" 1 s

bounded‘in the supremum norm only if ¢ remains bounded

away from one.

A o
Thirdly, we show that ]TulN(k)l°° ¢ const for o = 1 ‘'inde-
) . L
pendent of N. In this case .

_ 1 1 -1

Nl_lN" ~~~_1 4 2 E O E 2
L R=YQY "~ = . .

o 1 1 "llI 0 1

and
% -A : . -1 -
g n() = L YT+ 0z)Y ;

~where Y and Q are the corresponding block'matrices again.

: In an equally tedious computatlon as above we can obtaln

. i ~

{ (I + QZ) exp11c1t1y and 1t can then be shown that the

?appraisal I(I + QZ) 1|°° ¢ const is true independent of the

dimension N. The exact proof is omitted here also.

2~

o emnT

WCombining the three parts of the proof We*obtain the bounded-

ness of %alN(x) in the supremum norm since T (A) exists
. . ) )

N

xend depends continuously on o > O. The rest of the proof

follows in the known way.
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