Long-Range and Periodic Solutions of
Parabolic Problems
by
Eckart Gekeler
Nr. 33
(1973)

Long-Range and Periodic Solutions of Parabolic Problems

Eckart Gekeler

1. Introduction

The existence of periodic solutions of parabolic problems has been proved by Šmulev[26], Kružkov[19], and Koleṣov [17]. Friedman $[8-12]$ and others $[6,13,18,21,24,28]$ studied the asymptotic behaviour of solutions of parabolic initial boundary value problems and showed that these functions $u:(x, t) \longmapsto u(x, t)$ frequently converge in time to a steady state $u^{*}: x \longmapsto u^{*}(x)$ which may be gained as solution of a boundary value problem. The present paper concerns the numerical solution of such problems.

For the practical computation the knowledge of the steady state u^{*} has been used first by Greenspan [15] and later by Carasso-Parter [4] and Carasso [5] in two important papers. They put in this 'boundary value technique' $u(\cdot, T)=$ u^{*} for sufficiently large T and approximate by this way the original initial boundary value problem by a boundary value problem. In solving the latter the characteristic difficulties of stability of initial boundary problems appear in some milder form while the computational effort depends on the speed with which $u(\cdot, t)$ converges to u^{*}. The approximating boundary problem is solved by finite difference methods as in elliptic problems. We drop in this paper some restricting assumptions [5,p. 307] by choosing a norm more adequate to the given problem. Further, the proof of convergence in [5]
is simplified by means of the monotonicity principle of Minty $[22,23]$. Moreover, parabolic problems with degenerating differential equation are handled also.

First suggestions for the practical treatment of parabolic problems with periodic solutions have.been made by Tee [27] and Osborne [25]. But they confined themself on the equation $u_{t}=u_{x x}$ and substituted u_{t} by a finite difference approximation of order one (compare also [14]). We start out from more general equations and study three approximations of order two. It results that in the most usual case of these finite difference approximations the periodic problems are numerically rather related to the approximating boundary value problem in the mentioned boundary value method.

Proving the stability of the approximations we can no longer work in this paper with the notions 'positive definite' and 'M-matrix'; we must use instead the monotonicity in the meaning of Minty and a result of [2, 4] which we call the principle of Carasso-Parter.

2. Mildly Nonlinear Problems

Let \mathbb{R} be the set of real numbers, $\mathbb{N}=\{1,2, \ldots\}$, $G=\{x \in \mathbb{R}, 0<x<1\}, Z^{+}=G \times(0, \infty)$, and let $\overline{Z^{+}}$be the closure of Z^{+}. The derivative of a function $f: \mathbb{R} \exists x \longmapsto f(x)$ $\boldsymbol{\varepsilon} \mathbb{R}$ is denoted by f_{x}. We consider first the initial boundary value problem

$$
\begin{align*}
& a(x) u_{t}-\left[b(x, t) u_{x}\right]_{x}+c(x, t) u_{x}+f(x, t, u)=0,(x, t) \in Z^{+}, \tag{1}\\
& u(x, 0)=r(x), x \in G, u(0, t)=s^{-}(t), u(1, t)=s^{+}(t), 0 \leq t,
\end{align*}
$$ satisfying the following conditions:

Assumption I. Suppose there exists a unique classical solution $u:(x, t) \mapsto u(x, t)$ of (1) which converges to a known steady state u^{*}. Let be known an increasing positivè function $t: \mathbb{R}^{+} \ni \varepsilon \longmapsto t(\varepsilon) \in \mathbb{R}^{+}$with

$$
\left|u(\cdot, t(\varepsilon))-u^{*}\right|_{\infty}:=\sup _{x \in G}\left|u(x, t(\varepsilon))-u^{*}(x)\right| \leq \varepsilon .
$$

Assumption II. (i) Let a, b, c, r, s^{-}, s^{+}be continuous and bounded in $\overline{Z^{+}}$; let f be continuous in $\mathrm{Z}^{+} \times \mathbb{R}$ and bounded in $\overline{\mathrm{Z}^{+}}$ for bounded $u \in \mathbb{R}$.
(ii) Let c be continuously differentiable in Z^{+}, and let $\begin{array}{lr}0<\beta \leq b(x, t),\left|c_{x}(x, t)\right| \leq \gamma, & (x, t) \in Z^{+}, \\ (f(x, t, v)-f(x, t, w))(v-w) \geqslant 0, & (x, t) \in Z^{+}, v, w \in \mathbb{R} .\end{array}$ (iii) Let $u_{t . t t}, u_{x x x x} \% b_{x x x}$ as well as all lower derivatives of u and b be continuous and bounded in $\overline{z^{+}}$.

Further, let Δt and $\Delta x=1 /(M+1), M \in \mathbb{N}$, be small increments of the variables x, t, and let $N: \Delta t \mapsto N(\Delta t) \in \mathbb{N}$ be a function which we shall define more exactly later. Put
(2)

$$
\begin{aligned}
& v_{k}^{n}=v(k \Delta x, n \Delta t), V^{n}=\left(v_{1}^{n}, \ldots, v_{M}^{n}\right)^{T}, V=\left(V^{1}, \ldots, v^{N(\Delta t)}\right)^{T}, \\
& (V, W)=\frac{\Delta x}{N(\Delta t)} \sum_{n=1}^{N(\Delta t)}\left(V^{n}\right)^{T} W^{n}, \quad|v|_{2}^{2}=(v, V) .
\end{aligned}
$$

Followịng Greenspan [15], Carasso-Parter [4], and Carasso [5] we approximate the problem (1).by
(3)

$$
a_{k} \frac{v_{k}^{n+1}-v_{k}^{n-1}}{2 \Delta t}-\frac{b_{k+1 / 2}^{n}\left(v_{k+1}^{n}-v_{k}^{n}\right)-b_{k-1 / 2}^{n}\left(v_{k}^{n}-v_{k-1}^{n}\right)}{\Delta x^{2}}
$$

$$
+c_{k}^{n} \frac{v_{k+1}^{n}-v_{k-1}^{n}}{2 \Delta x}+f_{k}^{n}\left(v_{k}^{n}\right)=0
$$

$$
\begin{aligned}
& \mathrm{k}=1, \ldots, M, \\
& \mathrm{n}=1, \ldots, N(t),
\end{aligned}
$$

with the boundary conditions

$$
v_{k}^{o}=r(k \Delta x), v_{k}^{N}(\Delta t)+1=u^{*}(k \Delta x), k=0, \ldots, M+1,
$$

$$
\begin{equation*}
v_{o}^{n}=s^{-}(n \Delta t), V_{M+1}^{n}=s^{+}(n \Delta t), n=1, \ldots, N(\Delta t) . \tag{4}
\end{equation*}
$$

We collect the $M \times N(\Delta t)$ equations (3) in the usual way, i.e. keeping first $\mathrm{n}=1$ fixed and going from $\mathrm{k}=1$ to $\mathrm{k}=\mathrm{M}$ then keeping $n=2$ fixed and going from $k=1$ to $k=M$ and so on. So we obtain the following system of equations.

$$
\begin{equation*}
P_{1}(V):=\left(A S_{1}+B+C\right) V+F(V)=H_{1} . \tag{5}
\end{equation*}
$$

Here, H_{1} and $F(V)$ are vectors of the form of V in (2), H_{1} contains only known quantities and $F(V)$ contains the elements $f_{k}^{n}\left(v_{k}^{n}\right)=f\left(k \Delta x, n \Delta t, v_{k}^{n}\right) . A, B, C$ are block diagonal matrices

$$
A=\left(A^{1}, \ldots, A^{N(\Delta t)}\right)
$$

with the submatrices $A_{o}^{n}=\left(a_{i k}^{n}\right)_{i, k=1, \ldots, M}$ etc., and

$$
a_{i k}^{n}=a_{k} \delta_{i k} / 2 \Delta t=a(k \Delta x) \delta_{i k} / 2 \Delta t \quad\left(\delta_{i k}\right. \text { Kroneckers symbol), }
$$

$$
\begin{aligned}
& b_{i k}^{n}= \begin{cases}+\left(b_{k+1 / 2}^{n}+b_{k-1 / 2}^{n}\right) / \Delta x^{2} & i=k \\
-b_{k+1 / 2}^{n} / \Delta x^{2} & i=k+1 \\
-b_{i+1 / 2}^{n} / \Delta x^{2} & k=i+1 \\
0 & \text { otherwise, }\end{cases} \\
& c_{i k}^{n}= \begin{cases}c_{i}^{n} / 2 \Delta x & k=i+1 \\
-c_{i}^{n} / 2 \Delta x & i=k+1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
S_{1}=\left(\begin{array}{cccc}
0 & I & & \\
-I & 0 & \ddots & 0 \\
& \ddots & \ddots & \ddots \\
- & \ddots & I \\
& & & -I \\
& 0
\end{array}\right)
$$

(I identity matrix of dimension M).
In the following theorems U denotes the blockvector (2) of the solution of the analytic problem at the mesh points (k $\Delta x, n \Delta t$) and const is a generic positive constant independent of Δx and Δt.

Theorem 1. Suppose
the initial boundary value problem (1)
satisfies Assumptions I and II and assume \because there exists a $\varepsilon>0$ with $\beta \pi^{2}-(\gamma / 2)-\varepsilon>0$. Choose N such that

$$
\begin{equation*}
\left|u(\cdot,(N(\Delta t)+1) \Delta t)-u^{*}\right|_{\infty} \leq \text { const } \Delta t^{5 / 2}, \tag{6}
\end{equation*}
$$

$N(\Delta t) \geqslant \Delta t^{-1}$. If $0<\Delta x \leqslant\left(12 \varepsilon / \beta \pi^{4}\right)^{1 / 2}$ and $\Delta t / \Delta x=$ const then there exists a unique solution V_{Δ} of (5) and

$$
\begin{equation*}
\left|v_{\Delta}-U\right|_{2} \leq \text { const } \Delta t^{2} . \tag{7}
\end{equation*}
$$

Proof. The matrix $A S_{1}$ is skew-symmetric and by Carasso [3,5] we

$$
\left(P_{1}(Y)-P_{1}(Z), Y-Z\right) \geq \alpha_{\varepsilon}|Y-Z|_{2}^{2} \quad Y, Z \in \mathbb{R}^{\mathbb{M} \times N(\Delta t)}
$$

where $\alpha_{\varepsilon}=\beta \pi^{2}-(\gamma / 2)-\varepsilon>0$ independent of Δx and Δt. Therefore, by Browder [1] and Minty $[22,23] \mathrm{P}_{1}^{-1}: \mathbb{R}^{\mathrm{M} \times \mathrm{N}(\Delta t)}$ $\rightarrow \mathbb{R}^{M \times N(\Delta t)}$ exists and is continuous; furthermore $\left|V_{\Delta}-U\right|_{2}=\left|P_{1}^{-1}\left(P_{1}\left(V_{\Delta}\right)\right)-P_{1}^{-1}\left(P_{1}(U)\right)\right|_{2} \leq \alpha_{\varepsilon}^{-1}\left|P_{1}(U)-H_{1}\right|_{2}$. The block vector $\theta=P_{1}(U)-H_{1}$ consists of the local truncation error $\theta_{t, k}^{n}, k=1, \ldots, M ; n=1, \ldots, N(\Delta t)$, and the boundary error
(8) $\left.\quad \theta_{b}^{N}, k t\right)=\frac{u(k \Delta x,(N(\Delta t)+1) \Delta t)-u^{*}(k \Delta x)}{2 \Delta t}, k=1, \ldots, M$.
$\theta_{t, k}^{n}$ is a linear combination of $\Delta t^{2} u_{t t t}, \Delta x^{2} u_{x x x x}$, and $\Delta x^{2} b_{x x x}$, the derivatives being evaluated at points of z^{+} intermediate to successivemesh points, therefore $\left|\theta_{t, k}^{n}\right| \leq$ const Δt^{2}. Putting $\left|\theta^{n}\right|_{2}^{2}=\Delta x\left(\theta^{n}\right)^{T} \theta^{n}$ and appraising (8) by means of (6) we obtain

$$
\begin{aligned}
& |\theta|_{2}^{2}=\frac{1}{N(\Delta t)} \sum_{n=1}^{N(\Delta t)}\left|\theta^{n}\right|_{2}^{2}=\frac{1}{N(\Delta t)} \sum_{n=1}^{N(\Delta t)-1}\left|\theta_{t}^{n}\right|_{2}^{2}+\frac{1}{N(\Delta t)}\left|\theta_{t}^{N(\Delta t)}+\theta_{b}^{N(\Delta t)}\right|_{2}^{2} \\
& \leq \frac{1}{N(\Delta t)} \sum_{n=1}^{N(\Delta t)}\left|\theta_{t}^{n}\right|_{2}^{2}+2 \Delta t\left|\theta_{t}^{N(\Delta t)}\right|_{2}\left|\theta_{b}^{N(\Delta t)}\right|_{2}+\Delta t\left|\theta_{b}^{N(\Delta t)}\right|_{2}^{2} \leq \text { const } \Delta t^{4}
\end{aligned}
$$ which proves the theorem.

Remark 1. If the solution u of (1) satisfies $u(x, t)=u^{*}(x)$ $+t^{-r} k(x, t)$ with $|k(\cdot, t)|_{\infty} \leq$ const as $t \rightarrow \infty$ then (6) means

$$
N(\Delta t) \geq(\Delta t)^{-(1+5 / 2 r)}-1
$$

If $\left|u(\cdot, t)-u^{*}\right|_{\infty} \leq$ const $e^{-\alpha t}(\alpha>0)$ then we must have

$$
N(\Delta t) \geq-\frac{5}{2 \alpha \Delta t}(\log \Delta t)-1
$$

Let now $Z=G \times(-\infty, \infty)$ and consider the parabolic problem

$$
\begin{align*}
& a(x) u_{t}-\left[b(x, t) u_{x}\right] x^{+}+c(x, t) u_{x}+f(x, t, u)=0,(x, t) \varepsilon Z, \tag{9}\\
& u(0, t)=s^{-}(t), u(1, t)=s^{+}(t), \quad-\infty<t<\infty,
\end{align*}
$$

satisfying Assumption II and
Assumption III. Suppose the functions a, b, c, f, s^{-}, s^{+} are periodic in t with period τ and assume there exists a unique classical solution u of the problem (9) periodic in t with period τ.

Because of the periodicity it suffices to approximate the solution u at the mesh points of $G \times(0, \tau]$. We choose Δx as above and $\Delta t=\tau / N, N \in \mathbb{N}$. Collecting the $M \times N$ finite difference approximations (3) of the differential equation in (9) in the same way as before we obtain the system

$$
\begin{equation*}
P_{2}(V):=\left(A S_{2}+B+C\right) V+F(V)=H_{2} . \tag{10}
\end{equation*}
$$

Observe that now no boundary values are given on the lines $\mathrm{n}=0$ and $\mathrm{n}=\mathrm{N}$, instead we must put $\mathrm{V}^{\mathrm{O}}=\mathrm{V}^{\mathrm{N}}$. Thus, in comparison with (5) nothing changes but S_{2} and $\mathrm{H}_{2} \cdot \mathrm{H}_{2}$ contains again only known values and S_{2} is the skew-symmetric block matrix

$$
S_{2}=\left(\begin{array}{cccc}
0 & I & \ddots & O \\
-I & 0 & \ddots & O \\
O & \ddots & \ddots & \ddots \\
I & O & \ddots & I \\
I & & 0
\end{array}\right)
$$

Therefore, if we take into account the periodicity of U in the appraisal of $\left|P_{2}(U)-H_{2}\right|_{2}$ then it results just as before

Theorem 2. Suppose the boundary value problem (9) satisfies Assumptions II and III and assume there exists a $\varepsilon=0$ with $\beta \pi^{2}-(\gamma / 2)-\varepsilon>0$. If $0<\Delta x \leq\left(12 \varepsilon / \beta \pi^{4}\right)^{1 / 2}$ then a unique solution V_{Δ} of (10) exists and

$$
\left|V_{\Delta}-U\right|_{2} \leq \text { const }\left(\Delta x^{2}+\Delta t^{2}\right)
$$

Remark 2. Let

$$
\left|v_{x}^{n}\right|_{2}^{2}=\Delta x \sum_{k=1}^{M} \frac{\left|v_{k+1}^{n}-v_{k}^{n}\right|^{2}}{\Delta x^{2}},\left|v_{x}\right|_{2}^{2}=\frac{1}{N(\Delta t)} \sum_{n=1}^{N(\Delta t)}\left|v_{x}^{n}\right|_{2}^{2}
$$

where $v_{0}^{n}=v_{M+1}^{n}=0$. Carasso [5, p.311, 312] deduces from (7) that $\left|V_{\Delta, x}-U_{x}\right|_{2} \leq$ canst $\Delta t^{2}, \sup _{n}\left|V_{\Delta, x}^{n}-U^{n}\right|_{2} \leq$ constr $\Delta t^{3 / 2}$, and
(11) $\quad \operatorname{Max}_{k, n}\left\{\left|v_{k}^{n}-u_{k}^{n}\right|\right\} \leq$ const $\Delta t t^{3 / 2}$
in case $\Delta t / \Delta x=$ const. The same results are naturally valid for Theorem 2.

3. The Principle of Carasso-Parter

Let be given the problem

$$
\begin{align*}
& u_{t}-\left[b(x) u_{x}\right] x+c(x) u_{x}+g(x) u+e(x, t)=0,(x, t) \in Z^{+} \tag{12}\\
& u(x, 0)=r(x), x \in G, u(0, t)=s^{-}(t), u(1, t)=s^{+}(t), 0 \leqslant t,
\end{align*}
$$

satisfying Assumptions I and $I I(f(x, t, u)=g(x) u+e(x, t))$; but instead of $\left|c_{x}\right|_{\infty} \leq \gamma$ we assume here c continuous and $|c|_{\infty} \leqslant \mu . \quad$ In place of (5) we have now

$$
\begin{equation*}
P_{1} V:=\left(\frac{1}{2 \Delta t} S_{1}+B+C+G\right) V=H_{3} \tag{13}
\end{equation*}
$$

The block diagonal matrices B and C as well as G, which is now independent of V, consist of identical submatrices \widetilde{B}, \tilde{C}, and \tilde{G} respectively because the functions b, c, ard g in (12) are independent of t. We use the norms

$$
|V|_{\infty}=\max _{1 \leqslant k \leq s}\left\{\left|v_{k}\right|\right\} ; V \in \mathbb{R}^{s},|Q|_{\infty}=\max _{1 \leqslant i \leqslant s}\left\{\sum_{k=1}^{s}\left|q_{i k}\right|\right\}, Q \text { sxs-matrix. }
$$

Carasso [2, Lemma 1] has shown that for $0<\Delta x \leq \beta / \mu$ there exists a diagonal matrix \tilde{D} with the properties:
$\tilde{D}^{-1}(\widetilde{B}+\tilde{C}) \tilde{D}$ symmetric, $|\tilde{D}|_{\infty} \leq$ const, $\left|\tilde{D}^{-1}\right|_{\infty} \leq$ const.
Thus the $M \times M$-matrix $\tilde{D}^{-1}(\tilde{B}+\tilde{C}) \tilde{D}$ has a complete set of orthonormal eigenvalues W_{k} corresponding to the eigenvalues λ_{k}. Let $\tilde{\Lambda}$ be the diagonal matrix of the λ_{k},

$$
\tilde{W}=\left(W_{1}, \ldots, W_{M}\right)
$$

and let Λ, D, and W be the block diagonal matrices with the submatrices $\tilde{\Lambda}, \widetilde{D}$, and \widetilde{W} respectively. Then we may expand

$$
D^{-1}\left(P_{1} U-H_{3}\right)=W \Psi, \quad D^{-1} P_{1} D=W T_{1} W^{-1}
$$

where Ψ is a block vector because the eigenvectors W_{k} are
orthonormal and T_{1} is a certain block matrix. Consequently, we have in case T_{1}^{-1} exists and all λ_{k} are positive

$$
\begin{align*}
\left|V_{\Delta}-U\right|_{\infty} & =\mid D D^{-1} P_{1}^{-1}\left(P_{1} U-\left.H_{3}\right|_{\infty} \leq|D|_{\infty}\left|W \Lambda^{-1} \Lambda T_{1}^{-1} \Psi\right|_{\infty}\right. \\
(14) & \leq|D|_{\infty} \sum_{k=1}^{M} \frac{\left|W_{k}\right|_{\infty}}{\lambda_{k}}\left|\hat{T}_{1, N}^{-1}\left(\lambda_{k}\right) \Psi_{k}\right|_{\infty} \tag{14}
\end{align*}
$$

where $\psi_{k}={ }^{0}\left(\psi_{k}^{1}, \ldots, \psi_{k}^{N}\right)^{T} \cdot \hat{T}_{1, N}(\lambda)$ is a certain $N \times N$-matrix which results from T_{1} and may be gained easy. On the other side T_{1}^{-1} and P_{1}^{-1} exist if all λ_{k} are positive and $\hat{\mathrm{T}}_{1, N}^{-1}\left(\lambda_{k}\right)$ exists. Now, Carasso [2] has proved the important result that under the above conditions $\sum_{k=1}^{M}\left(\left|w_{k}\right|_{\infty} / \lambda_{k}\right)$ remains bounded for $\Delta x \rightarrow 0$ if the W_{k} are normalized by $\left|W_{k}\right|_{2}=1$. But then

$$
\begin{align*}
\left|\Psi_{k}^{n}\right| & =\left|\left(D^{-1}\left(P_{1} U-H_{3}\right)^{n}\right)^{T} W_{k} / W_{k}^{T} W_{k}\right| \tag{15}\\
& \leq\left|D^{-1}\right|_{\infty}\left|\left(P_{1} U-H_{3}\right)^{n}\right|_{2} .
\end{align*}
$$

We formulate the result in the already established notations as

Principle of Carasso-Parter. Let $0<\Delta x=1 /(M+1) \leq \beta / \mu$. If $\left|\hat{\mathrm{T}}_{1, N}^{-1}(\lambda)\right|_{\infty} \leq$ const for $\lambda \perp \lambda_{0}>0, \Delta t \geqslant 0, N \in \mathbb{N}$, and if $\left|\left(P_{1} U-H_{3}\right)^{n}\right|_{2} \leq \operatorname{const}\left(\Delta x^{2}+\Delta t^{2}\right), n=1, \ldots, N$, then $\left|V_{\Delta}-U\right|_{\infty} \leq$ const $\left(\Delta x^{2}+\Delta t^{2}\right)$.

Theorem 3 (Carasso-Parter [4]). Suppose the initial boundary value problem (12) satisfies Assumptions I and II but. let $|c|_{\infty} \leq \mu_{0}$ instead of $\left|c_{x}\right|_{\infty} \leq \gamma$. Choose N such that
(16) $\left|u(\cdot,(N(\Delta t)+1) \Delta t)-u^{*}\right|_{\infty} \leq$ const Δt^{3}, $N(\Delta t) \geq \Delta t^{-1}$. If $0<\Delta x \leq \beta / \mu$ and $\Delta t / \Delta x=$ const then there
exists a unique solution V_{Δ} of (13) and

$$
\left|V_{\Delta}-U\right|_{\infty} \leq \text { const } \Delta t^{2}
$$

Proof. Appraising (14) by (15) and Assumption II we obtain $\left|\psi_{\mathrm{k}}^{\mathrm{n}}\right| \leq$ const $\Delta t^{2} \cdot \hat{\mathrm{~T}}_{1, N}(\lambda)$ has the form

$$
\hat{\mathrm{T}}_{1, N}(\lambda)=\left(I+\frac{1}{2 \lambda \Delta t} S_{1, N}\right), \quad S_{1, N}=\left(\begin{array}{cccc}
0 & 1 & & 0 \\
-1 & 0 & \ddots & \\
0 & \ddots & \ddots & 1 \\
0 & & -1 & 0
\end{array}\right)
$$

and it is to be shown that $\left|\hat{\mathrm{T}}_{1, \mathrm{~N}}^{-1}(\lambda)\right|_{\infty}$ remains bounded. This is a result of Carasso-Parter [4, Lemma 2.1].

Just so we obtain

Theorem 4. Suppose the boundary value problem (9) with the differential equation of (12) satisfies Assumptions II and III but let $|c|_{\infty} \leq \mu$ instead of $\left|c_{x}\right|_{\infty} \leq \gamma$. If $0<\Delta x \leq \beta / \mu$ then a unique solution V_{Δ} of the corresponding system (10) exists and

$$
\left|V_{\Delta}-U\right|_{\infty} \leqslant \operatorname{const}\left(\Delta x^{2}+\Delta t^{2}\right) .
$$

Proof. The corresponding matrix $\hat{\mathrm{T}}_{2, N}(\lambda)$ has the form $\hat{T}_{2, N}(\lambda)=\left(I+\frac{1}{2 \lambda \Delta t} S_{0, N}\right), \quad S_{2, N}=\left(\begin{array}{cccc}0 & 1 & \ddots & 0 \\ -1 \\ -1 & 0 & \ddots & \ddots \\ 0 & \ddots & \ddots \\ 1 & 0 & \ddots & \ddots\end{array}\right)$.
$\left|\hat{\mathrm{T}}_{2, N}^{-1}(\lambda)\right|_{\infty} \leq$ const is proved in a similar way as [4, Lemma 2.1]. computing $\hat{\mathrm{T}}_{2, \mathrm{~N}}^{-1}(\lambda)$ explicitly.

Remark 3. By the transformation

$$
u(x, t)=\left[\exp \left(\frac{1}{2} \int_{0}^{x} \frac{c(s)}{b(s)} d s\right)\right] v(x, t)
$$

we obtain from the boundary value problem (9) with the differential equation (12) the equally periodic boundary value problem

$$
\begin{aligned}
& v_{t}-\left[b(x) v_{x}\right]{ }_{x}+\left[g(x)-\frac{1}{2} c{ }_{x}(x)+\frac{c^{2}(x)}{4 b(x)}\right] v \\
& +\left[\exp \left(-\frac{1}{2} \int_{0}^{x} \frac{c(s)}{b(s)} d s\right)\right] e(x, t)=0,(x, t) \in Z, \\
& v(0, t)=s^{-}(t), v(1, t)=s^{+}(t)\left[\exp \left(-\frac{1}{2} \int_{0}^{1} \frac{c(s)}{b(s)} d s\right)\right],-\infty<t<\infty
\end{aligned}
$$

We may apply Theorem 2 to this problem if

$$
g(x)-\frac{1}{2} c_{x}(x)+\frac{c^{2}(x)}{4 b(x)} \geq 0, \quad x \in G
$$

But observe that (11) is slightly weaker than Theorem 4.

4. Further Applications of the Principle of Carasso-Parter

Suppose once more that the periodic boundary value problem

$$
\begin{align*}
& u_{t}-\left[b(x) u_{x}\right] x+c(x) u_{x}+g(x) u+e(x, t)=0,(x, t) \in Z, \tag{17}\\
& u(0, t)=s^{-}(t), u(1, t)=s^{+}(t),-\infty<t<\infty
\end{align*}
$$

satisfies Assumptions II and III. As in the method of CrankNicolson (compare Lees [20]) we approximate (17) in G (O, ז] by

$$
\begin{align*}
& \frac{v_{k}^{n}-v_{k}^{n-1}}{\Delta t} \\
& -\frac{1}{2}\left[\frac{b_{k+1 / 2}\left(v_{k+1}^{n}-v_{k}^{n}\right)-b_{k-1 / 2}\left(v_{k}^{n}-v_{k-1}^{n}\right)}{\Delta x^{2}}\right. \\
& \left.\vdots \quad+\frac{b_{k+1 / 2}\left(v_{k+1}^{n-1}-v_{k}^{n-1}\right)-b_{k-1 / 2}\left(v_{k}^{n-1}-v_{k-1}^{n-1}\right)}{\Delta x^{2}}\right] \\
& -\frac{1}{2} c_{k}\left[\frac{v_{k+1}^{n}-v_{k-1}^{n}}{2 \Delta x}+\frac{v_{k+1}^{n-1}-v_{k-1}^{n-1}}{2 \Delta x}\right]+\frac{1}{2^{\delta}}{ }_{k}\left[v_{k}^{n}+v_{k}^{n-1}\right]+e_{k}^{n-1 / 2}=0, \tag{18}\\
& k=1, \ldots, M, n=1, \ldots, N,
\end{align*}
$$

with the boundary values $v_{o}^{n}=s^{-}(n \Delta t), v_{M+1}^{n}(n \Delta t), n=1, \ldots, N$, and $\mathrm{V}^{\mathrm{O}}=\mathrm{V}^{\mathrm{N}}$. Again we may write (18) in matrix-vector notation as

$$
\begin{equation*}
P_{3} V:=\frac{1}{\Delta t}\left(I-S_{3}\right) V+\frac{1}{2}(B+C+G)\left(I+S_{3}\right) V=H_{4} \tag{19}
\end{equation*}
$$

Here, the block diagonal matrices B, C, and G are already known, and S_{3} is the N-cyclic matrix

$$
S_{3}=\left(\begin{array}{ccccc}
0 & \ddots & & & I \\
I & & I & & \\
& 0 & & \\
& \ddots & \ddots & \ddots & \\
& & & I & \ddots
\end{array}\right)
$$

(compare Varga [29, p. 35], I identity matrix of dimension M) with the eigenvalues

$$
\lambda_{n}\left(S_{3}\right)=\exp (2 \pi i n / N), \quad n=0, \ldots, N-1
$$

Theorem 5. Suppose the boundary value problem (17) satisfies Assumptions II and III but let $|c|_{\infty} \leq \mu$ instead of $\left|c_{x}\right|_{\infty} \leq \gamma$. If $0 \leq \Delta x \leq \beta / \mu$ then a unique solution V_{Δ} of (19) exists and (20)

$$
\left|V_{\Delta}-U\right|_{\infty} \leq \operatorname{const}\left(1+\frac{\Delta t}{\Delta x^{2}}\right)\left(\Delta x^{2}+\Delta t^{2}\right)
$$

Proof. The block diagonal matrix $Q=B+C+G$ consists of identical submatrices \tilde{Q} and, as already shown, the eigenvalues $\lambda_{k}(\tilde{Q}), k=1, \ldots, M$, are positive in case $0<\Delta x \leq \beta / \mu$. Therefore, the eigenvalues of $(I+\Delta t Q / 2)^{-1}(I-\Delta t Q / 2) S_{3}$ are less than one in absolute value and

$$
P_{3}^{-1}=\left[I-\left\{\left(\frac{1}{\Delta t} I+\frac{1}{2} Q\right)^{-1}\left(\frac{1}{\Delta t} I-\frac{1}{2} Q\right) S_{3}\right\}\right]^{-1}\left[\frac{1}{\Delta t} I+\frac{1}{2} Q\right]^{-1}
$$

exists. Let

$$
S_{3, N}=\left(\begin{array}{cccc}
0 & & & 0 \\
1 & 0 & & 1 \\
& \ddots & \ddots & \\
0 & & \cdot & \ddots \\
& & \ddots & 0
\end{array}\right)
$$

and

$$
\hat{\mathrm{T}}_{3, N}(\lambda)=\frac{1}{\lambda \Delta t}\left(I-S_{3, N}\right)+\frac{1}{2}\left(I+S_{3, N}\right)
$$

be matrices of dimension N. According to the Principle of Carasso-Parter we have to show that $\left|\hat{\mathrm{T}}_{3, N}^{-1}(\lambda)\right|_{\infty}$ remains bounded for the eigenvalues $\lambda=\lambda(\widetilde{Q})$ and $\tau / \Delta t=N \in \mathbb{N}$. Put $\sigma=2 / \lambda \Delta t$ then

$$
\hat{\mathrm{T}}_{3, N}^{-1}(\lambda)=\frac{2}{1+\sigma}\left(I+\frac{1-\sigma}{1+\sigma} S_{3, N}\right)^{-1}
$$

Using $\left|S_{3, N}^{m}\right|_{\infty}=1, m \in \mathbb{N}$, we obtain
(21) $\quad\left|\hat{\mathrm{T}}_{3, N}^{-1}(\lambda)\right|_{\infty} \leq \frac{2}{1+\sigma} \frac{1}{1-\left|\frac{1-\sigma}{1+\sigma}\right|} \leq 1+\frac{\lambda \Delta t}{2}$.

Now, a result of Carasso [2, Lemma 3] says that $0<\lambda_{k}(\tilde{Q})$ \leq const M^{2} is true for the eigenvalues of \tilde{Q} if Δx is sufficiently small. Inserting $\lambda=\lambda_{k}(\tilde{Q})$ in (21) we obtain

$$
\left|\hat{\mathrm{T}}_{3, N}^{-1}\left(\lambda_{k}\right)\right|_{\infty} \leq 1+k_{1} \frac{\Delta t}{\Delta x^{2}} \leq k_{2}\left(1+\frac{\Delta t}{\Delta x^{2}}\right)
$$

$\left(k_{2}=\max \left\{1, \kappa_{1}\right\}\right)$. Finally, we obtain $\left|P_{3} U-H_{4}\right|_{\infty} \leq$ const $\left(\Delta x^{2}+\Delta t^{2}\right)$ as Lees [20] taking into account $U^{O}=U^{N}$ again; this completes the proof.

Remark 4. The normalized eigenfunctions of the Sturm-Liouville eigenvalue problem

$$
-\left[b(x) u_{x}\right]_{x}+c(x) u_{x}+g(x) u=\lambda u, 0<x<1,
$$

$$
\begin{equation*}
u(0)=u(1)=0 \tag{22}
\end{equation*}
$$

where $b(x) \geq \beta \geq 0, g(x) \geq 0$ and b, c, g are all smooth functions, are uniformly bounded in the supremum norm (see Courant-Hilbert [7]). The same is true for the discrete eigenvalue problem

$$
\begin{aligned}
& -\frac{v_{k+1}-2 v_{k}+v_{k-1}}{\Delta x^{2}}+g_{k} v_{k}=\lambda v_{k}, \quad k=1, \ldots, M \\
& v_{0}=v_{M+1}=0,
\end{aligned}
$$

corresponding to (22) with the equation $u_{x x}+g(x) u=\lambda u$ (see for instance Isaacson-Keller [16]). Let us suppose for
the moment that the normalized eigenvectors $\tilde{D} W_{k}$ of the matrix $(\tilde{B}+\widetilde{C})$ as defined in $§ 3$ remain equally bounded in the supremum norm independent of $M:\left|W_{k}\right|_{\infty} \leq k, k=1, \ldots ; M$. Then we obtain by (14) and (21)

$$
\begin{aligned}
\left|V_{\Delta}-U\right|_{\infty} & \leq|D|_{\infty} k \sum_{k=1}^{M}\left[\frac{1}{\lambda_{k}}\left(1+k_{1} \frac{\Delta t \lambda_{k}}{2}\right)\left|\Psi_{k}\right|_{\infty}\right] \\
& \leq \operatorname{const}\left(1+\frac{\Delta t}{\Delta x}\right)\left(\Delta x^{2}+\Delta t^{2}\right),
\end{aligned}
$$

thus

$$
\left|V_{\Delta}-U\right|_{\infty} \leq \operatorname{const}\left(\Delta x^{2}+\Delta t^{2}\right)
$$

instead of (20) provided that $\Delta t / \Delta x=$ const.

Hitherto we have $u_{t}(x, t)$ replaced by the finite difference approximation $(u(x, t+\delta)-u(x, t-\delta)) / 2 \delta(\delta>0)$. We consider as before the periodic problem (17) and approximate the differential equation as in (3) but for u_{t} we choose finally the well known approximation

$$
u_{t}(x, t)=\frac{3 u(x, t)-4 u(x, t-\Delta t)+u(x, t-\Delta t)}{2 \Delta t}+\sigma\left(\Delta t^{2}\right) .
$$

Collecting the $M \times N$ differene equations in the described way we obtain instead of (10) the following system
(23) $\quad P_{4} V:=\left(\frac{1}{2 \Delta t} S_{4}+B+C+G\right) V=H_{5}$
where S_{4} is the N/2-cyclic matrix

$$
S_{4}=\left(\begin{array}{rrrrrr}
3 I & & & & I-4 I \\
-4 I & \cdot & & & & I \\
I & \ddots & \cdot & \cdot & & 0 \\
& \cdot & \cdot & \cdot & & \\
& 0 & & \cdot & \cdot & \cdot \\
& & & & I & -4 I \\
& 3 I
\end{array}\right)
$$

(I identity matrix of dimension M).

Theorem 6. Suppose the boundary value problem (17) satisfies Assumptions II and III but let $|c|_{\infty} \leq \mu$ instead of $\left|c_{x}\right|_{\infty} \leq \gamma$. If $0<\Delta x \leq \beta / \mu$ and $(\tau / \Delta t \Rightarrow N \in \mathbb{N}$ even then a unique solution V_{Δ} of (23) exists and

$$
\cdot \quad\left|V_{\Delta}-U\right|_{\infty} \leq \operatorname{const}\left(\Delta x^{2}+\Delta t^{2}\right) .
$$

Proof. Let $S_{4, N}$ be the matrix of dimension N corresponding to S_{4} but with units, instead of the matrices I. By the Principle of Carasso-Parter we have to show that the inverse of

$$
\hat{T}_{4, N}(\lambda)=I+\frac{1}{2 \lambda \Delta t} S_{4, N}
$$

is bounded in the supremum norm independent of $\lambda \rightarrow 0$ and $\Delta t=\tau / N>0$.

First, we show that $\hat{\mathrm{T}}_{4, N}^{-1}(\lambda)$ exists. Let $\sigma=1 / 2 \lambda \Delta t$ and

$$
\tilde{L}=\left(\begin{array}{cc}
1+3 \sigma & 0 \\
-4 \sigma & 1+3 \sigma
\end{array}\right), \quad \tilde{R}=\left(\begin{array}{cc}
\sigma & -4 \sigma \\
0 & \sigma
\end{array}\right), \quad \tilde{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

and let

$$
Z=\left(\begin{array}{cccc}
0 & & & \tilde{I} \\
\tilde{I} \cdot & & & \\
& \therefore & & 0 \\
& \ddots & \ddots & \vdots \\
& \cdot & & \tilde{I} \\
& 0
\end{array}\right)
$$

be of dimension N. Then $\hat{T}_{4, N}(\lambda)=L+R Z$ where L and R are block diagonal matrices of dimension N with the identical submatrices \tilde{L} and \tilde{R} respectively. For the eigenvalues of $L^{-1} R Z$ we obtain

$$
\lambda\left(L^{-1} R Z\right)=\lambda\left(\tilde{L}^{-1} \tilde{R}\right) \exp (4 \pi i n / N), \quad n=0, \ldots, N-1 ;
$$

and the eigenvalues

$$
\lambda_{1,2}\left(\tilde{L}^{-1} \tilde{R}\right)=(1+3 \sigma)^{-2}\left(-5 \sigma^{2}+\sigma \pm 4 \sigma\left(\sigma^{2}-\sigma\right)^{1 / 2}\right)
$$

- of $\tilde{L}^{-1} \tilde{R}$ are less than one in absolute value for $\sigma \geqslant 0$. Thus $\hat{\mathrm{T}}_{4, N}^{-1}(\lambda)=\left(I+L^{-1} R Z\right)^{-1} L^{-1}$ exists for all $\sigma \geq 0$.
Secondly, we show that $\left|\hat{T}_{4, N}^{-1}(\lambda)\right|_{\infty} \leq \operatorname{const}_{\varepsilon}$ if $0<\sigma<1-\varepsilon$ or $1+\varepsilon<\sigma\left(\varepsilon^{\circ}>0\right)$. Let $\alpha=\lambda_{1}\left(L^{-1} R\right), \beta=\lambda_{2}\left(L^{-1} R\right)$,

$$
\tilde{\Lambda}=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

and

$$
\tilde{X}=\left(\begin{array}{cc}
\frac{2 \sigma+\left(\sigma^{2}-\sigma\right)^{\frac{1}{2}}}{\sigma} & \frac{2 \sigma-\left(\sigma^{2}-\sigma\right)^{\frac{1}{2}}}{\sigma} \\
1 & 1
\end{array}\right)=2\left(\sigma^{2}-\sigma\right)^{\frac{1}{2}}\left(\begin{array}{cc}
\sigma & -2 \sigma+\left(\sigma^{2}-\sigma\right)^{\frac{1}{2}} \\
-\sigma & 2 \sigma+\left(\sigma^{2}-\sigma\right)^{\frac{1}{2}}
\end{array}\right)^{-1}
$$

the matrix of the eigenvectors of $\tilde{L}^{-1} \tilde{R}$, and let X, Λ be the corresponding block diagonal matrices of dimension N. Then

$$
\hat{\mathrm{T}}_{4, N}(\lambda)=L X(I+\Lambda Z) X^{-1}
$$

Now recall that the element in the ith row and kth column of a matrix A^{-1} in case of existence consists of the cofactor of the element in the kth row and ith column of A divided by the determinant of A. Using this fact we can construct $(I+\Lambda Z)^{-1}$ explicitly for general dimerision N; by further computation it results then that $\left|(I+\Lambda Z)^{-1}\right|_{\infty}$ remains bounded independent of $\sigma \geqslant 0$ and $\mathbb{N} \in \mathbb{N}$. This is however a very tedious work and it shall be suppressed here. L^{-1} and X are bounded in the supremum norm independent of $\sigma \geq 0$. So the proof would be
complete if X^{-1} would have the same property; but X^{-1} is bounded in the supremum norm only if σ remains bounded away from one.

Thirdly, we show that $\left|\hat{\mathrm{T}}_{4, N}^{-1}(\lambda)\right|_{\infty} \leqslant$ const for $\sigma=1$ independent of N . In this case

$$
\tilde{L}^{-1} \tilde{R}=\tilde{Y} \tilde{\Omega}^{\tilde{Y}^{-1}}=\left(\begin{array}{ll}
4 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{rrr}
-\frac{1}{4} & & 0 \\
1 & -\frac{1}{4}
\end{array}\right)\left(\begin{array}{rr}
\frac{1}{4} & -\frac{1}{2} \\
0 & 1
\end{array}\right) \therefore \therefore
$$

and

$$
\hat{\mathrm{T}}_{4, N}(\lambda)=L Y(I+\Omega Z) Y^{-1}
$$

where Y and Ω are the corresponding block matrices again.
In an equally tedious computation as above we can obtain $(I+\Omega Z)^{-1}$ explicitly and it can then be shown that the appraisal $\left|(I+\Omega Z)^{-1}\right|_{\infty} \leq$ const is true independent of the dimension N. The exact proof is omitted here also.

Combining the three parts of the proof we obtain the boundedness of $\hat{T}_{4, N}^{-1}(\lambda)$ in the supremum norm since $\hat{T}_{4, N}^{-1}(\lambda)$ exists and depends continuously on $\sigma \perp 0$. The rest of the proof follows in the known way.

References

1. Browder, F. E.: The solvability of non-linear functional equations. Duke Math. J. 30, 557-566 (1963).
2. Carasso, A.: Finite-difference methods and the eigenvalue problem for nonselfadjoint Sturm-Liouville operators. Mathem. Computation 23, 717-729 (1969).
3. --- : A posteriori bounds in the numerical solution of mildly nonlinear parabolic equations. Mathem. Computation 24, 785-792 (1970).
4. Carasso, A., and Parter, S. V.: An analysis of 'boun-dary-value techniques' for parabolic problems. Mathem. Computation 24, 315-340 (1970).
5. Carasso, A.: Long-range numerical solution of mildy non-linear parabolic equations. Numer. Math. 16, 304-321 (1971).
6. Ceremnyh, Ju. N.: Estimate of a solution of the first boundary problem for parabolic equations of second order. SovietMath. Doklady 9, 551-555 (1968).
7. Courant, R., and Hilbert, D.: Methoden der Mathematischen Physik, Vol. 1. Interscience New York 1953.
8. Friedman, A.: Convergence of solutions of parabolic equations to a steady state. J. Math. Mech. 8, 57-76 (1959).
9. --- : Asymptotic behaviour of solutions of parabolic equations. J. Math. Mech. 8, 387-392 (1959).
10. --- : Asymptotic behaviour of solutions of parabolic equations of any order. Acta Math. 106 1-43 (1961).
11. --- : Partial Differential Equations of Parabolic Type. Prentice-Hall Englewood Cliffs N. J. 1964.
12. --- : Remarks on nonlinear parabolic equations. AMS Proc. of Symp. in Applied Math. 17, 3-23 (1965).
13. Fujita, H.: On the nonlinear equations $\Delta u+e^{u}=0$ and $\partial v / \partial t=\Delta v+e^{v}$: Bull. AMS 75, 132-135 (1969).
14. Gekeler, E.: Zur Berechnung periodischer Lösungen bei parabolischen Randwertproblemen. To appear in 'Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen', Lecture Notes in Math . SpringerVerlag Berlin.
15. Greenspan, D.: Lectures on the Numerical Solution of Linear, Singular, and Nonlinear Differential Equations. Prentice-Hall Englewood Cliffs N.J. 1968.
16. Isaacson, E., and Keller, H. B.: Analysis of Numerical Methods. John Wiley New York 1966.
17. Kolesov, Ju. S.: Periodic solutions of quasilinear parabolic equations of second order. Transact. Moscow Math. Soc. 21, 114-146 (1970).
18. Kolodner, I. I., and Pederson, R. N.: Pointwise bounds for solutions of semilinear parabolic equations. J. Differential Equations 2, 353-364 (1966).
19. Kružkov, S. N.: Periodic solutions of nonlinear second order parabolic equations (russian). Differencial'nye Uravnenija 6, 731-740 (1970).
20. Lees, M.: Approximate solution of parabolic equations. J. Soc. Industr. Appl. Math. 7, 167-183 (1959).
21. Mikhailov, V. P.: The Dirichlet problem and the first mixed problem for a parabolic equation. Soviet Math. Doklady 2, 1204-1207 (1961).
22. Minty, G. J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341-346 (1962).
23.

> -- : On a 'monotonicity' method for the solution of nonlinear equations in Banach spaces. Proc. Nat. Acad. Sci. USA $50,1038-1041$ (1963).
24. Oddson, J. K.: On the rate of decay of solutions of parabolic differential equations. Pacific J. Math. 29, 389-396 (1969).
25. Osborne, M. R.: A note on the numerical solution of a periodic parabolic problem. Numer. Math. 7, 155-158 (1965).
26. Šmulev, I. I.: Periodic solutions of the first boundary p problem for parabolic equations. AMS Translations (2) 79, 215-229 (1969).
27. Tee, G. J.: An application of p-cyclic matrices. Numer. Math. 6, 143-158 (1964).
28. Ton, B. A.: Mixed initial boundary-value problems for semi-linear parabolic equations. Duke Math. J. 34, 481-491 (1967).
29. Varga, R. S.: Matrix Iterative Analysis. Prentice-Hall Englewood Cliffs N. J. 1962.

