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Long-Range and Periodic Solutions of Parabolic Problems

Eckart Gekeler

1. Introduction
The existence of periodic solutions of parabolic problems

has been proved by Smulev[26], Kruzko~[19], and Kolesov [17].
o

Friedman [8 - 12J and others [6, 13, 18, 21, 24,28J studied

the asymptotic behaviour of solutions of parabolic initial

boundary valueproblems and showed that these 'functions

u: (x,t) ~ u(x,t) frequently converge in time ~ tq a steady

state u*: x >-:- u*(x) which may be gained as solution ofa

boundary value problem. The present paper concerns the

--numerical solution of such problems.

For the practical computation the knowledge of the steady

state u* has been used first by Greenspan [15] and later

by Carasso-Parter [4] and Carasso [5] in two important

papers. They put in this 'boundary value technique' u(.,T) =
u* forsufficiently large T and approximate by this way the

original initial boundary value problem by a boundary value

problem. In solving the latter the characteristic difficulties

of stability of initial boundary problems appear in some

milder form while the computational effort depends on the
o * ..speed with which u(. ,t) converges to u . The approxlmatlng

bounda~y problem is solved by finite difference methods as
"in elliptic problems. We drop in this paper some restricting

assumptions [5,p. 307] by choosing a norm more adequate to

the given problem. Furthe~, the proof of convergence in[5]
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is simplified by means of the monotonicity principle of
Minty [22, 23]. Moreover, parabolic problems with degene-
rating differential equation are handled also.

First suggestions for the practical treatment of parabolic
problems with periodic solutions have.been made by Tee [27J
and Osborne [25]. But they confined themself on the equation
ut = uxx and substituted ut by a finite difference approxi-
mation of order one (compare also [14J).Westart out from

, . - ~

more general equations and study three approximations of
order two. It results that in the most usual case of these
finite difference approximations th~ periodic problems
are numerically rather related to the approximating boundary
value problem in the mentioned boundary value method.

Proving the stability of the approximations we can no longer
work in this paper with the notions 'positive definite' and
'M-matrix'; we must use instead the monotonicity in the
meaning of Minty and -a result of [2, 4} which we call the.

,"4- ••principle of Carasso-Parter.

()

"
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€ R is denoted by f . We consider first the initial boundaryx

value problem.,

(1)
a(x)ut - [b(X,t)Ux]x + c(x,t)ux + f(x,t,u) =
u(x,O) = rex), x € G,u(O,t) = s (t), u(l,t)

+0, (x,t) € Z"
. += s.(t), 0 ~ t,

satisfying the following conditions:

Assumption I. Suppose there exists a unique classical solution
u: (x,t) -- u(x,t) of (1) which converges to a known steady
state u. Let be known an increasing positiv~ function
t: IR:\- 3~ e:: ......,.. t Ce::) € IR+ wi th

lu ( ., t (e::) ) .- sup lu(x,t (e::)) •.. u* (x) I ~ e::.
X€G

+Assumption II. (i) Let a, b, c, r, ..s , s be continuous and
. + f b t. . Z+ IR . Z+bounded 1n Z ; let e con 1nuous 1n x and bounded 1n

for bounded u & IR.
(ii) Let c be continuously differentiable in Z+, and let

o ~ ß ~ b(x,t), Icx(x,t}\ ~ y,

(f(x,t,v) - f(x,t,w))(v ...w) ~ 0,
(x,t) € Z+,

(x,t) t Z+, V,W € R.
(iii) Let Uttt' u 'ob as weIl as all lower derivatives. xxxx xxx
of u and b be continuous and bounded in Z+.

"Further, let i1tand t:.x = 1/(M + 1), M € IN, be small in-
crements of the variables x, t, and let N: t:.t~ N(t:.t) € IN

be a function which we shall define more exactly later. Put
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n' (k!1 !1t) Vn (n .. n)T...V=(V1, ... ,VN(.!1t»T,vk=v x,n., = v1"",voo '
N(!1t)

(V,W) = !1xL (Vn)TWl1, IV I ~ = (V,V).
N(!1t) n=l .'

Follow~ng GreenBpan [15), Carasso-P~rter [4], and Carasso
[5J we approximate

n+l n-lv - vk kak ". 2!1t.

the problem {l).by.
n (n n) n (n n)bk+1/2 vk+1 - vk - bk-1/2 vk - vk-1

!1x2

k = 1, .•• ,00,
n = 1, ..• ,N( t),

We collect the OOxN(!1t)equations (3) in the usual way, i.e.
keeping first n = 1 fixed and going from k =lto k =00
then keeping n =2 fixed and going from k =1 to k = 00and
so on. So we obtain the following system of equations
( 5 ) P1(V) : = (AS1 + B + C)V + F (V) = H

1
.

'"Here, H~and F(V) are vectors of the form of V in (2), H1
contains only known quantities and F(V) contains the elements
n( n nfk vk) = f(k!1x,n!1t,Vk). A, B, C are block diagonal matrices

A = (Al, , AN(!1t»

with the submatrices An = (a1!k)' k-1' oo' etc.,' and
G l l,- , •.• , .

(Oik Kroneckers symbol),
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n n . 2 i+ (bk+1/2 + bk_1/2)/ßX = k
n 2 i k+1bk+1/2/ßX =nbik = 2n i+1- bi+1/2/ßX k =

0 otherwise,

n i+1c./2ßx k =1
n n ic'k = ci/2ßX = k+11

0 otherwise,

0 I 0
-1. 0

S1 .- "I~O .
-0-:1

(I identity matrix of dimension M).

In the following theorems U denotes the blockvector (2) of

the solution of the analytic problem at the mesh points

(kßx,nßt) and const is:a generic positive constant inde-
"

pendent of ßX and ßt.

Theorem 1. Suppose the initial boundary value problem (1)

satisfies Assumptions land 11 and assume " there exists
a E ~ 0 with ß~2 - (y/2) - E ~ O. Choose N such that

(6) IU(',(N(ßt)+1)ßt) - u*loo ~ const ßt5/2,
N(ßt) ~ßt-1.If 0 L ßx f (12E/ßrr4)1/2 and ßt/6x = const

then there exists a unique solution Vß of (5) and

(7) IVA - u12 ~ const ßt2.

Proof. The matrix AS1 is skew-symmetric anelby Carasso [3,5]

we
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(P1(Y) - P1(Z), Y - Z~ .~ aEIY - zl~ Y)Z E (RMKN(6t)

where a =' ß1T
2 - (y/2) - E ~ 0 independent of 6x and 6t.

E

Therefore, by Browder [1] andMinty [22, 23] p~l: lRMxN(6t)
lRM><'N(6t ). d .' t' f .th-- eXlS ts an . lS con lnuous; ur ermore

~IV6 - ul2 = IP~1(P1(V6» - p;1(P1(U»12.~ a:1!P1(U) - H112.

The block vector e = P1(U) - H1 consists of the local
truncation error S~ k' k = 1, ...,M: n = 1, ... ,N(6t), and the,

.boundary error'

(8) SN(6t)
b,k

= u(k6x,(N(6t)+1)6t) - u*(k6x)
26t , k = 1, ••• ,IVI.

. n. ., .. 2' AX2U'St,k lS a llnear comblnatlon of 6t Uttt' u xxxx' and
6X2b ,the derivatives being evaluated at points of Z+xxx . . , .
intermediate to successivemesh points,therefore IS~,kl ~
const 6t2. Putting lenl~ = 6x(en)Ten and appr~ising (8) by
means of (6) we obtain

N(6t)

lel2 = 1 L lenl22 N(6t) n=1 2
N(6t)

~ 1 Lien I 2 + 26t I eN
t(6t ) I 2 I eN

b(6t) I 2 + 6tleN
b(6t ) I ~ ~con st 6t4

N(6t) n=1 t 2
which proves the theorem.

If lu ( . , t) - u~1 ~ const e-at (a ~ 0)
00

N(6t) ~ - ---5_(log~t)
2a~t

then we must have
- 1.
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Let now Z = GX(-oo,oo)and consider the parabolic problem
a(x)ut - [b(x,t)u J+ c(x,t)u + f(x,t,u) = 0, (x,t) E Z,x X x
u(O,t) = s-(t), u(l,t) = s+(t), - 00 ~ t ~ 00,

satisfying Assumption 11 and.
Assumption 111, Suppose the functions a, b, c, f, +s , s

are periodic in t with period T and assume there exists a
unique classical solution u of the problem (9) periodic in
t with period T,

Because of the periodicity it suffices to approxim~te the
~oluti6n u at the'mesh points of G~(O,T], We choose 6x as
above and 6t = T/N,N E N. Collecting the MxNfinite diffe-
rence approximations (3) of the differential equation in (9)
in the sam~ way asbefore we obtain the system

.(10) P2(V) := (AS2 + B + C)V + F(V) = H2,

Observe that now no boundary values are given on the lines
n ~ D and n = N, instead we must put Vo =vN, Thus, in com-
parison with (5) nothing chaDges but 82 and H2, H2 contains
again ohly known values and 82 is the skew-symmetric block
matrix

o 10-1
-I 0 0
0' .. ' ". ", I

"', .
I 0 '-1 . 0

Therefore, if we take into account the periodicity of U in
o

the appraisal of 1P2(U) - H2'2 then it results just as before
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Theorem 2. Suppose the bqundary value problem (9) ~atisfies
Assumptions 11 and 111 and assume there exists a £ ~ Owith
ßn2 - (y/2) - £ ~ O. If 0 L ßX f (12£/ßn4)1/2 then a unique
solution Vß of (10) exists and

IVß - ul2 ~ const (ßx2 + ßt2).

Remark 2. Let

where v~ =

that Ivß,x
and

Ivnl2x 2
M In nl2~ vk+1 - vk 2= ßX L- ----- Iv 'I - =k=l ßx2.' x2

v~+l =-0. Carasso [5, p.311, 312] deauces from (7)
-uxl2 ~ const ßt2, sup IV~,x - unl2 ~ constßt3/2,

n

(11) Max' { Iv~
k,n

lncase ßt/ßX = const
for Theorem 2.

The same results are naturally valid
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3. The Principle of Carasso-Parter
Let be given the problem

ut - [b(x)uxlx + c(x)ux + g(x)u + e(x,t) = 0, (x,t) E Z+,
u(x,O) = rex), x E G., u(O,t) = s-(t), u(1,t) = s+(t), 0 ~ t,

satisfying Assumptions I and 11 (f(x,t,u) = g(x)u + e(x,t));
but instead of
Icl'~ 11.ex>

Icxlex>~ y we assume here c continuous and
In place of (5) we have now

(__1_ Si + B + C + G)V = H .
3 .2bt .

The block diagonal matrices Band C as weIl as g, which is
. N Nnow independent of V, consist of identical submatrices B, C,

Nand G Fespectively because the functions b, c, and g in (12)
are independent of t. We use the norms

Iv I = max { IVk I}, VERs, IQ Iex> 1.L L ' <Xl-k-s

s
= max JL Iqikl}, Q S" s-matrix.

1~i~s k=1
Carasso [2 , Lemma 1] has shown that for 0 L bx L ß/11 there
exists a diagonal matrix D with the properties:
N-1 N ~ N, NID (B + C)D symmetrie, ID ex>t:.' . 1"'-1,' L- eonst, D - eonst .

co

/V-i'" IV IVThus the MxM-matrix D (B + C)D has a eomplete set cf ortho-
normal eigenvalues Wk eorresponding to the eigenvalues h

k
•

Let X be the diagonal matrix of the hk,
N

W = (W1, ••• ,WM),

and let A, D, and W be the block diagonal matriees with the
submatrices X, ~, and ~ respeetively. Then we may expand

where ~ is a block vector because the eigenvectors Wk are
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orthDnormal and T1 is a certain block matrix. Consequently,
we have in case T~1exists and all Ak are positive

"'-1 NT /\where 'l'k= (tjJk'...,tjJk). T1,N(A) is a certain NxN-matrix
which results from T1 and may be gained easy. On the other
side T~1 and p~1 exist if all Ak are positive and ~~~N~Ak)
exists. Now~ Carasso [2} has proved the importa~t result that

M
under the above conditions ~ (Iwk!oo/Ak) remains bounded for

. ___ k-1 ..
.f,x- ~_if the Wk are normaliz.:d by Iwkl2 =1. But then

1i¥~1 = I (D-1(P1U- H3)n)TWk/W~Wkl

I -1, I nlf D 00 (P1U - H3) 2'

We formulate the result in the already established notations
as

Principle of Carasso-Parter. Let 0 L f,x = 1/(M+1) ~ ß/~ .

Ifl~~~N(A)loo L const for A ~ AO ~ 0, f,t ~.0, ~ E N~ and if
Kp1u -H3)nI2 ~ const (f,X2 + ~t2), n =1, ...,N, then

1
22Ivf,- U 00 ~ const (f,x + f,t ).

c

Theorem 3 (Carasso-Parter [4]). Suppose the initial boundary
value problem (12) satCisfies Assumptions I and 11 but let

I cl L ~ instead of I Cx 100

L y. Choose N such that
00

0

(16) lu(., (N(f,t)+1)f,t)- lfl L const f,t3,
00

N(f,t) ~ f,t-l. If 0 , f,x~ ß/~ and f,t/f,x - const then there

"
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exists a unique solution VA of (13) and

IVA - uloo ~ const At2.

Proof ..Appraising (14) by (15) and Assumption 11 we obtain

I$~I! const At2• ~1,N(~) has theform

o o
-1

o
1

o
o

'1
-1 . 0

1"'-1 Iand it is to be shown that T1,N(~) 00 remains bounded. This

is a result of Carasso-Parter [4, Lemma 2.1].

Just so we obtain

Theorem 4. Suppose the boundary value problem (9) with the

differential equation of (12) satisfies Assumptions 11 and
..

111 but let Ic I ~]1 instead of I elf. y. If 0 L Ax ~ 8/]1
00 . x 00

then a unique solution VA of the corresponding system (10)

exists and

AProof. The corresponding matrix T2,N(~) has the form

.- I

1
(I + 2 ~At ~2, N ) ,

o !L..• 0 -1

-1 O. '. 0o . '1

1 0 '=-1 '. 0

A-1 I ]IT2 N(~)JoO ~ const is proved in a similar way as 4, Lemma 2.1 .,
computing T;~N(~) explicitIy.
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Remark 3. By the transformation

x
u(x,t) = [exp(~ { ~~:~ ds)]v(x,t)

we obtain from theboundary value problem (9) with the .
differential equation (12) the equally periodic boundary

value problem

. [ ( 1fx c(s) ]+. exp - '2 0 b('S) ds) e(x,t) =0, (x-,t)'~ Z,

+ - [".. ( 1 lf c ( s ) ] .
,,\r(O,t) =,s.-~;~),:(l,t) = ~ (t) exp - '2 0 b(S) ds) , -00 L t L. 00

We may apply Theorem 2 to this problem if

x e: G.

But observe that (11) is slightly weaker than Theorem 4.

-~



- 13 -

4. Further Applications of the Principle of Carasso-Parter

8uppose once more that the periodic boundary value problem

ut - [b(X)U ]x + c(x)u + g(x)u + e(x,t) = 0, (x,t) £ z,
(17) _x .. x - +

u(O,t) = s (t), u(l,t) = s (t), - 00 L t L 00,

satisfies Assumptions 11 and 111. As in the method of Crank-

Nicolson (compare Lees [20}) ~e approximate(17) in G (O,TJ by

(18)

k = 1, ...,M, n = 1, ... ,N,
n nwith the boundary values Vo = s (nbt), vM+1(nbt), n = 1, ... ,N,

.0 Nand V = V . Again we may write (18) in matrix-vector

notation as

Here, the block diagonal matrices B, C, and Gare already

known, and 83 is the N-cyclic matrix

o
I

o I

.0 0
0'", '".~'".0

(compare Varga [29, p. 35J, I identity matrix of dimension M)

with the eigenvalues
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n = O, ••• ,N-1.

Theorem 5. Suppose the boundary value problem (17) satisfies
Assumptions 11 and 111 but let Icl~ ~ ~ instead of Icx'oo ~ y.

If 0 ~ ßx ~ ß/~ then a unique solution Vß of. (19)'exists and

(20)

Proof. The block diagonal matrix Q = ß + C + G consists of
• IVidentical submat~ices Q and, as already shown, the eigen-'

values ~k(~)' k = 1, ...,M, are positive in case O'~ ßx ~ ß/~.
Therefore, the eigenvalues of (I + ßtQ/2)-1(I - ßtQ/2)S3
'are less than onein absolute value and

P-31,= [ I -' {(-.!I + lQ) -1 (-.!I _ lQ) S }]-1 '[ 1I + 1Q]-1ßt 2 ßt 2 3 ßt '2,

exists. Let

and

o
1 0

o
o
1

1

o
o

be matrices of dimension N. According to the Principle of
Carasso-Parter we have to'show that I~;:N(A) 100 remains

. I'V ,bounded far the eigenvalues ~ = A(Q) Snd T/ßt = N E N. Put
0' = 2/Aßt then

A-12 '1-0' -1
T 3 ,N ( A) = - (I + -' S )1+0' 1+0' 3,N



- 15 -

Using

(21) 2
1+a

1 -

1.

1
1-al1+a

~ 1+ Af.,t-2-

Now, a result of Carasso [2, Lemma 3] says that 0 ~ Ak(Q)
~ corist M2 is true for the eigenvalues of ~ if f.,xis suffi-
ciently small. Inserting A = Ak(~) in (21) we obtain

(K2 = max{1,K1}) ..Finally, we obtain 1P3U - H~I~ ~
const(bx2 + f.,t2) as Lees [20] taking into a9count UO = UN

again; this completes the proof.

Remark 4. The normalized eigenfunctions of the Sturm-Liouville
eigenvalue problem

(22)
u(O) = u(1) = 0,

where b(x) ~ ß ~ 0, g(x) ~O and b, c, g are all smooth
.functions, are uniformly bounded in the supremum norm

(see Courant-Hilbert [7J ). The same is true for the discrete
eigenvalue problem

k = 1, ... ,M,

Vo = vM+1 = 0,

corresponding to (22) with the equation uxx + g(x)u =AU
(see for instance Isaacson-Keller [16]). Let us suppose for

f----.------ ....~.-__ ~ ~_J
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IVthe moment that the norm~lized eigenvectors D Wk.of the

L const(1 + llt)(ll 2 + llt2),llx x
thus

Iv II uL/ const(llx2 + llt2)-
instead of (20) provided that llt/llx= const.

..

.Bi therto we have Ut~X, t) replaced by the finite difference
~~proximation (u(x, t +8) ~u(x, ~ -~»/28 (8 ~ 0).

.We consider as before the periodic problem (17) and
approximate the differential equation as in (3) but for ut
we choose finally the well"known approximation

u (x,t) = 3u(x,t) - 4u(x,t-llt) + u(x,t-llt) + d(llt2).
t 2llt

Collecting the MxN differene equations in the described way
we obtain instead of (10) the following system

1(23) P4V:= (2llt84 + B + C + G)V = H5

where 84 is the N/2-cyclic matrix
31

-41
1 '

o 1 -41
1

o
o 1 -41 31
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(I idehtity matrix of dimension M).

Theorem 6. 8uppose the boundary value problem (17) satisfies
Assumptions 11 and 111 but let Iclco~ l.linstead of Icxlco ~ y.

If 0 ~.:6.x ~ S/l.land (T:16.t =) N E: IN even then a unique
solution V6. of

Proof. Let 84,Nbe the matrix of dimension N corresponding
to 84 but with ~nits,1nstead of the matrices I. By the

"

Principle of Carasso-Parter we have to show that the inverse
of

is bounded in the supremum norm independent of A ~ 0 and
6.t = T IN '~ O.

First, we show that T4~N(A) exists. Let a = 1/2A6.t and

~ [ 1+3a
L =

-4a

and let

o ] N ra, R =
1+ 3a O'

,

r-J

0 0 I
N

I 0Z = 0 ' '"I 0
<;

/\be of dimension N. ThenT4 N(A) = L +R Z where Land R,
areb loc.k diagonal matrices of dimension N wi th the identical
submatrices r and ~ respectively. For the eigenvalues of
L-1RZ we obtain
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-1 ",-1",A(L RZ) = A(L R)exp(4~in/N), n = 0, ... ,N-1;

and the eigenvalues
"'-1~ -2 2 + 2 1/2A1,2(L R) = (1 + 30) (- 50 + 0 40(0 -0) )

"'-1'"of L Rare less than one ln absolute value for 0 ~ O. Thus

Secondly, we show

or 1 + £ L 0 (£" ~

"';..1that IT4,N(A)loo f const£ if 0 L 0 L 1 ~ £
-1 -10). Let a = A1(L R), ß = A2(L R),

-1

..

.. '. -::1

-20+(02_0)2
1

2 220-(0 -0)
o

1

...._ 1....

20+('0-2-0)2
o

and

-vX =

N-1Nthe matrix o~ the eigenvectors of L R, and let X, A be

the .corresponding block diagonal matrices of dimension N.

Then

Now recall that the element in the ith row and kth column

of a matrix A-1 in case of existence consists of the cofactor

of the element in the kth row and ith column of A divided

by the determinant 6f A. Using this fact we can construct
(I + AZ)-1 explicitly for general dimerision N; by further
computation it results then thatl(I +.AZ)-11 remains bounded

00

independent of 0- ~ 0 and N £ N. This is however a very tedious
work and it shall be_suppressed here. ~~and X are bounded in
the supremum norm independent of 0 = o. So the proof
would be
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A-1norm since T4,N(A) exists

o. The rest of the proof
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complete if X-1 would have the same property; but X-1 is
bounded in the supremum norm only if a remains bounded
away from one.

Thirdly, we show that I~~~N(A)I~ ~ const for a = 1 'inde-
pendent of N. In this case

,and

where Y and n are the corresponding block matrices again.
In an equally tedious computation as abOvewe'-;an 'obtai~

_"'_,. "k_ .< •••.••••.• , ~ .• _~

: -1 ' .. (I + nZ) .explicitly and it can then be shOwn that the-
":.- :~""'"~,".. '- -" i - .-1 -,
-appraisal I (I + nZ) I ~ ~ const is true independent of the
dimension N. The exact proof is omitted here also.

Combining the three parts of the
, A-1ness of T4 N(A) in the supremum

- - ,
and depends continuously on a ~

follows in the khown way.



- 20 -

References

1: Browder, F. E.: The solvability of non-linear func-

tional equations. Duke M~th.J. 30, 557-566 (1963).
2. Carasso, A.: Finite-difference methods and the eigen-

value problem for nonselfadjoint Sturm-Liouville
operators. Mathem. Computation 23, 717-729 (1969) .

. '3. : Aposteriori bounds in the numericalsclution
of mildly nonlinear parabolic equations. Mathem.
Computation 24, 785-792 (1970t.

4. Carasso, A., and Parter, S. V.: An analys~s of 'boun-
dary-value techniques' for parabolic problems. Mathem.
Computation 24, 315-340 (1970).

5. Carasso, A.: Long-range numerical solution of mildly
non-linear parabolic equations. Numer. Math. 16,
304-321(1971).

6. Ceremnyh, Ju. N.: Estimate of a soiution of the first
boundary problem for parabolic equations of second
order. SovietMath. Doklady 9, 551-555 (1968).

7. 'Courant, R., and Hilbert, D.: Methoden der Mathematischen
Physik, Vol. 1. Interscience New York 1953.

8. Friedman, A .• Convergence of solutions cf parabolic
equations to a steady state. J. Math. Mech. 8, 57-76
(1959).

9. : Asymptotic behaviour of solutions of para-
bolic equations. J. Math. Meeh. 8, 387-392 (1959).

10. : Asymptotie behaviour of solutions of para-
bolie equations of any order. Acta Math. 106 1-43 (1961).

11. : Partial Differential Equations of Parabolie
Type. Prentiee-Hall Englewood Cliffs N. J. 1964.

12. Remarks on nonlinear parabolie equations.
AMS Proe. of Symp. in Applied Math. 17, 3-23 (1965).



- 21 -

13. Fujita, H.: On the nonlinear equatiohs Au + eU = 0
v .and av/at = Av + e : Bull. AMS 75, 132-135 (1969).

14. Gekeler, E.: Zur Berechnung periodischerL6sungen bei
parabolischen Randwertproblemen. To appear in 'Numerische,
insbesondere approximatipnstheoretische Behandlung von
Funktionalgleichungen', Lecture Notes in Math . Springer-
Verlag Berlin.

15. Greenspan, D.: Lectures on the Numerical Solution of
Linear, Singular, and Nonline~r Differential Equations.
Prentice-Hall Englewood Cliffs N.J. 1968.

16. Isaacson, E., and Keller, H. B.: Analysis of Numerical
Methods. John Wiley New York 1966.

17. ~olesov, Ju. S.: Periodic solutions of quasilinear
parabolic equations of second order. Transact. Moscow
Math. Soc. 21, 114-146 (1970).

18. Kolodner, I. I., and Pederson, R. N.: Pointwise bounds
for solutions of semilinear parabolic equations.

, .

J. Differential Equations 2, 353-364 (1966).
19. Kruzkov, S. N.: Periodic solutions of nonlinear

second order parabolic equations (russian). Differencial'nye
Uravnenija 6, 731-740 (1970).

20. Lees, M.: Approximate solution of parabolic equations.
J. Soc. Industr. Appl. Math. 7, 167-183 (1959).

21. Mikhailov, V. P.: The Dirichlet problem and the first
mixed problem for a parabolic equation. Soviet Math.
Doklady 2, 1204-1207 (1961).

22. Minty, G.J.: Monotone (nonlinear) operators in Hilbert
space. Duke Math. J. 29, 34~-346 (1962).

23.
: On a 'monotonicity' method for the solution

of nonlinear equations in Banach spaces. Proc. Nat.
~.

Acad. Sei. USA 50, 1038-1041 (1963).



- 22 -

24. Oddson, J. K.: On the rate of decay of solutions of
parabdlic differential equations. Pacific J. Math.
29, 389-396 (1969).

25. Osborne, M. R.: A note on the numerical solution of a
p~riodic parabolic problem. Numer. Math. 7, 155-158
(1965).
v26. Smulev, I. I.: Periodic solutions of the first boun-.
dary problem for'parabolic equations. AMS Trans-
lations (2) 79, 215-229 (1969).

27. Tee, G. J.: An application of p-cyclic matrices.
Numer. Math. 6, 143-158 (1964).

28. Ton, B. A.: Mixed initial boundary-value problems for
semi-linear parabolic equation? Duke Math. J.34,
481-491 (1967) .

.29.Varga, R. S.: Matrix Iterative Analysis. Prentice-Hall
Englewood Cliffs N. J ..1962.

o

c


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023

