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1. Introduction
The prese~t contribution is

nonselfadjoint problem
concerned with the

(1)

-[a(x)u ] . - b(x)u + c(x)u = Au,
.X x x

u(0)= u(1) = 0

o L X ~ 1,

where a(x) ~.~ ~ O,c(x) ~ 0, and a, b,c are all bounded
andsmooth functions. This problemhas an infinite sequence
of positive and distinct eigenvalues

o ~ A .~ A .~ A L123
and a corresponding sequence of smooth eigenfunctions
u1,'u2, u3, ... (see for instance'Protter-Weinberger [10,
p. 37]\~nd Coddirtgton~Levinson [4, p. 212]). Following

.'
Courant-Hilbert [5, p. 334J the eigenfunctions uP are
uniformly bounded in the supremum norm if they are norma-

.lized so that
1 . 2
fl~P(x) I dx = 1,
o

Of course, by the well-known transformation

p = 1,2,3,. ....

(2)

" .

1x'b(t)u(x) = exp( - 2'l a(t) dt)w(x)

(i) may be put in the selfadjoint förm
-[a(x,)wxJx + c(x)w =

,':W ( 0)= w (1) = 0

/ ,/

.~.

Aw, o ~ X .L 1,
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where
1.

c(x) = c(x) + 2 bx(X) 1 2+ "4 b (x)/a(x).

\

Here, in order to obtain 5(x) ~ 0 we have to make a

restricting assumption on b . Therefore we choose thex

direct approximation of (1) by means of the finite-diffe-

rence equations

k = 1, .•. ,M,

Vo = vM+1 = 0

.. where M £ ~, 6x =1/(~+1), and vk = v(k6x). Equivalently,

we may write (3) in matrix-vector notation
(3 I ) LV = AV

,I • ~ ••

where V T= (v1, ... ,vM) and thematrix L may be easily

derived from (3).
:"..

Let Ibt~)1 ~ ß and 0 ~ 6x L 2a/S. Then the matrix L is

equivalent to a real symmetrie matrix (see Carasso [2J).

Using this fact and Theorem 1.8 öf Varga [11} it can be

shown that all eigenvalues A of (3) are Peal and positive,p

O L A ~ A ~ ALL A1 2 3 - ... - M'

and there exists a complete sequence of corresponding

eigenvectors vP . A result of Carass~ [2, Corollary 1J says

that there exist a constant K and an integer p , both inde-o

pendent of M, such that
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IvPIO) max IVkl L K 1/2 ~ L M,= P Po P
1~k~M

if M
IvPI~ = LixL IvPI2= 1.

k=1 . k

In the selfadjoint ease this result goes baek to Büekner [1].

In this paper we. prove the following theorem:

Theorem. Let a(x) ~ a ~ 0 and e(x) ~ 0, 0 L X L 1. Assume

that a, b, and e are differentiable bounded functions

with bounded derivatives';. say Ib (x) I ~ ß. Let

p = 1, ... ,M,.

o L Lix f a/ß

normalized so

. P Mand let {V }P=1 be the eigenveetors of (3)
that IvPl2 = 1. Then

IvP I ~ K,
0)

for some eonstant Kindependent of M.

Remark 1. In the ease of the equation u = AU this resultxx
may be:proved by explieit computation of the eigenveetors

vP (see'Isaacson-Keller [9, 9.1.1J).

Applieations of the Theorem to the theory of finite-diffe-

renee approximations to parabolie and hyperbolie

partial differential equations are given in [6,7].

/
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2. Proor of the Theore~
Instead of L we consider, as in [2], the eigenvectors D-1VP or
the similar matrix D-1LD defined below. But in contrast
to Carasso [2] ,who uses a discrete maximum principle for his
estimation,we transpose then the proof of Courant-Hilbert
[5, p. 334] to the resulting discrete p.roblem.

Thefollowing b~sic results are needed.

Lemma 1 (Carasso [2, Lemma 1, 3, Lemma 3.1J). Let
D = (d1, ~ .., dM) be the diagonal matrix with

d. = +
1 [

i-1 ak+1/2 - bk+1 b,x/2..] 1/2 , l' =TI --------- 2, ... ,lVI •
k=l ak+1/2 + bkb,x/2 .

For 0 ~ 6x L 2a/ß we have di ~ 0 and

IDloo
~ ID-11 LK1, 00 - K2

fore constants K1, K2 independent of M. Furthermore

where P = (p )ik i,k=1, ...,M

(Pk+1/2 + Pk-1/2)
Pk+1/2

- Pi+1/2
o

i = k
1 = k+1

,
k = i+1
otherwise

and Q = (Q1J ••• ,QM) is the diagonal m~trix with
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Remark 2. The change ofvariables V = OW ~0 a discrete

analog to (2) [2).

Lemma 2 (Carasso [2, Theorem 1]). Let A , vP be thep

characteristic pairs of the matrix L with IVPl2 =1; Let

uP be an eigenfunction of (1) corresponding to A and let
p

uP be the vector or dimension M obtained from uP by

mesh-point evaluation. Assume uP normalized so that

IO-lUPI2 = lo-lVPl2 then as 6x -.. 0, we have

/

(4 )

where K3, K4 are positive constants depending only on p.

In the selfadjoint case Lemma 2 was proved by Gary [6].

Remark 3. The estimation (4) implies

Lemma 3. Let
1

Cl(W) =L [Pk+1/2(wk-wk+1) - Pk_1/2(wk-wk_1)]QkWk/6X2k=l

Then, under the assumptions of the Theorem ,

where d(1) denotes a function whichhas a bou~d.independent of M.

Proof. We ~how at first that IQk/6X21~ K5 independently of M.
To this end it suffices to consider ak+1r2- Pk+lr2 .

../ . /.
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By means of the bjnomial theorem we obtain

bk+16X= ak+112 - ak+112 (1----
4ak+112

Inserting bk+1= bk + cr(6x) we find that

(5) . 2
ak+1/2 - Pk+1/2 = d(6x ).

N since wP = 0.,ow, 0

, -.~
But by the mean value theorem we have

2Pk+1 - Pk = e(6x) and (qk+1 _- Qk)/6X =d(6x). Hence,

using Schwarz's inequality and IwPI2 L K6 we obtain the

desired result.

Now according to Lemma 1 it suffices toprove the Theorem

for th'e\eigenvectors wP = D-1Vp of the matrix (P:t:~)/6x2which

.by

and obtain by adding all rows from k =1 until k =1

(6)
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where (k-1/2)~x ~ ~k L (k+1/2)~x. In order to eliminate

the term on the right side of (6) we sum up the equations

(6) for 1 = 1 to 1 - M, add (P1/2(wi - w~) 1~x ).2to both

sides, and divide by M+1 = 1/~x. Then

[P1/2(Wj'~:w~r
(7)

But
/

.M
+ A ~x~ P P PL- 1+1/2wl+1wl-P 1=1

M

+ ~xLCl(WP)
1=1

M 1
A ~x2~~p (~k)w~wf
P 1=1 k=1 x (

(8) 0 L 12~. La Pl+1/2 K7
if 0 L ~x L a/ß. Thus, using the fundamental relation

and Schwarz's inequality we derive

"since Iq~j6x21 ~ K5 ~ndependently of M. Hence, applying
...• ~~ «

Schwarz's inequality once more we find from (7) by means of

the Assumption and Lemma 3 that

From this estimation, equation (6), and Lemma 3 we deduce that
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Consequently, ob~erving (8) we obtain, in case A ~ K5, thatfl

1 = 1, ... ,M,

for some constant K12 independent of M. F6r,~p ~K5 the
-'.-~~..:,~"'~:;':: ..:'.-;.- . ..

assertion of the Theorem follows by Lemma 2.

Finally, we return oncemore to equation (6). The above

estimations yield

[
Pl+112 (wi+1

t:,.x

or, usi ng, (9) ,

1; ... ,M,

1~~~M{Wi+1' wi} ~ t:,.X
2(K15Ap + K16) +K17 L

because t:,.x2A is bounded inpependently of M.p
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(Germany)
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