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1. Introduetion
The.present eontribution is eoneerned with the hyperbolie
initial boundary problem

Utt - [a(x)uxJx + b(X)ux + e(x)u = d(x,t), (x,t) E (O,1)x(O,oo),

(1) u(x,9) = f(x),ut(x,O) = g(x),

u(O,t) = h-(t), u(1,t) = h+(t),

o L xLi,

O L t ,
where 0 L a L a(x) and e(x) ~ O. For an arbitrary buto
fixed T let bt = TIN and bx = 1/(M+1), M,N E N, be small
inerements of the variables t and x, and let

nvk = v(kbx,nbt),
o 1 N TV = (V ,V, ..•,V ) .

We eonsider thewell-known implieit finite-differenee
approximation of (1) devised by von Neumann (cf. O'Brien

+

(2)

k = .1, ... ,M, n = .2,3, ...

with the initial and boundary values

, .
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(3) 0 fk, k 1, ... ,M, vn (h-)n, n (h+)n, = 0,1, ... ,vk = = = vM+1 = n0

(4 ) 1 fit2
bk(fx)k .0,vk = fk + fltgk + -2- [ak(fXx)k - - ckfk + QkJ,

k = 1, ... ,M,

where 16 denotes the finite-difference operator corresponding
to the elliptical part of the differential equation in (1),
1.e.

/

and w is a relaxation factor. Further, we denote ty
,Un (n n )T . f .= u1s ... ,uM the vector obtalned rom the solutlon u
of the non-discrete problem (1) by mesh-point evaluation
on the line t = n6t, and we usethe following norms

Ivnl." = max { Iv~1 }, lvi = max { IVn I },
." o~n~N ."1~k~M -

M
lai = sup la(x) I, Ivnl~ = 6xL Iv~12.."

~\.., .:- oLxLl k=l.
...•" \,

"

Lees [7J applies slight modifications of von Neumann's
method to the problem (1) with the differential equation

Utt - [a(x,t)uxJx + b(x,t)ux + c(x,t)u + e(x,t)ut = d(x,t).

By means of discrete energy inequalities he obtains the
estimation

(5)

(VN denoting the solution of the discrete problem on the
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line t = T ) in case fu ~ 1/4 and At/Ax arbitrary but fixed

as Ax -- O. Friberg [4] applies von Neumann's method to
./

the problem (1) with the differential equation

Utt - a2u = d(x,t)
xx .

and derives by similar methods as in [7J the estimation (5)

in case 0 ~.w ~ 1/4 and Ax2/At2 ~ (1 - 4w)a2. Since
N N 2 N N 2Axlu - V lco ~ lu - V 12 we deduce from (5) immediately

that

/

Thus the estimation luN vNI = o'(At) of Friberg [4J is
(X)

to coarse. On the other hand , as consequence of his

estimation (5) Lees [7, Theorem 3] states without proof

that luN - vNI(X) = ~(At2 + A~2). However, the author of the

present paper was not able to verifythisassertion via

discrete energy inequalities.

Here w~~do not use discrete ~nergy inequalities as Lees [7,8]

and Friberg [4J nor we study the behaviour of the discrete

solution in transition from the line ~ = nAt to the line
..

t = (n+1)At. Instead we consider the appr9ximative solution

on the lines t = nAt, n = O,l, ... ,N, together and expand

the error in the eigerivalues of the elliptical part of

the hyperbolic differential equation as Carasso-Parter [2]

did in proving the convergence of the "boundary value

technique" for parabolic initial boundary problems (see
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also [5J). By this way we establish
M

L,
p=1 '

- (1+ E)p

(E ~~O). So the eonvergenee on the line t = T reveals to
be proportional to T itself.

The method of estimation applied in this paper is by no
me ans limited to hyperbolie marehing proeedures (see
Carasso-Parter [2J, Carasso [3J, and [6). In a sub-
sequent paper A-stability of finite-differenee approxi-
mations to parabolie initial boundary problems is studied

.by this way.

.' ,
_!""



- 5 -

2. Stability and Convergence

We suppose that the non-discrete problem (1) satisfies the

following assumption

Assumption. (i) Let 0 L- 0.0
L." a(x) , 0 L c(x).

(ii) Let a, ... , axxx' b, bx' c, f, fx' f g be continuousxx'
and bounded in G = {x, 0 L. x L.i}, say a(x) L

0.1' Ib(x) I L ß,

Ibx(X) I L. c(x) ~y. - h+ continuous inl.I , Let d, h , be

GX(O,~) and d bounded in Gx(O,T) for every T ~ o.
(iii) Let f(O) = h-(O), f(l) = h+(O), g(O) h~(O),

g(1) = h~~O). Let all coefficients of the problem (1) be

sufficiently smooth that a solution u: (x,t) ~ u(x,t)

"exists in the classical sense having in Gx(O,oo) four

continuous time derivatives and four continuous space

derivatives.

~e insert the known quantities (3) as far as possible in
': .

the eq~~tions (2) and collect the equations (2), (3),
and (4). The result is

"0
H ,

vl = H1

where the components of the vector H1 are the values on the

(6)

right side of equation (4), and

n =2, ... ,N,

/
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i = k

i = k+1
,

k = i+1

otherwise

etc. ,

b./2Ax
1..

o

o

- b./2Ax
1

=, .b ..1k

o.

~ = A + B + C, A = (a.k). k-1. M. 11, - ,...,
2

(ak+1/2+ak-1/2)/AX
2

ak+1/2/AX
2- ai+1/2/AX

where

n Dn-1. ~ 'n-1 -(Oik denotes the Kronecker symbol),and H = + T V ,
.
'" 'nT V

~-------'y-- '-
M components

Collecting the N+1 (partly trivial) systems of equations

(6) and (7) we obtain forthe block vector V the

folJowing system

(8) p V := (r S + T n)v = H
-2 -2 ~ Nwhere r = (I,I,At I, ...,At I) and T = (T, ...,T) are

block diagonal matrices,
I 0 0-0 I 0 0 0

S = I -21 I , n = wI (1-2w)I wI. , ,

0
.. , ., , 0.. I :"21'I .wI (1-2w)I'wI

(I identity matrix of dimension M). The finite-dimensional

eigenvalue problem ~ Y = A Y is a discrete analog to a

nonselfadjoint Strrm-Liouville eigenvalue problem. Sub-

<. ,.
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sequently we need some facts on the eigenvalues and eigen-
veetors of the matrix ~ whieh shall nöw be stated. Assuming
o L. !J.xL. 2ao/ß Carasso [1, Lemma 1] eonstrueted areal

N,diagonal matrix D with the properties

ND-1T'" "'D symmetrie, ~ K5

where K4' KS are eonstants not depending on M. Following
N -1"" fVthis result D T D has a eomplete system of orthonormal

eigenveetors Wp = (W~p), •..,w~P»T, p = 1, ...,M, and the
eorrespon.slingeigenvalues Ap are real. Furthermore , we
obtain Ap ~ 0, P = 1, ...,M, by means of Varga [10,
Theorem 1.S]. Thus, as the eigenvalues A eonverge top

the (positive) eigenvalues of the eorresponding analytieal
problem (cf. Carasso [1, Theorem lJ), the eigenvalues Ap
are bounded below by a positive eonstant if 0 L !J.xf ao/ß.

Lemma ',1- (Carasso [1, Lemma 3J, Gekeler [6J). Suppose that
'-

the problem (1) satisfies the Assumption and let 0 L !J.x
~-ao/ß.

IVLet A be the eigenvalues of T and let W be thep p
eigenveetors N -1'" N normalized IWpl2of D T D so that = 1,

P = 1, ••• ,M. Then there exists a positive integer Po
independent of M such that

p2 2 f A ~ p2 2 ~ L. M'K6 7T K7 7T Po PP , ,

furthermore

I W I f KS'P 00

where K6' K7, KS are positive eonstants independent of M.
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As a consequence af Lemma 1 we have for E ~ 0

M
L ~ p-(1+E) .

K9 ~

IVLet now A be the diagonal matrix of the eigenvalues 1 ,
,P

rv

let W = (W1, ...,WM) be the matrix of eigenvectors of
"'-1'" fVD T D, let D, W be the block diagonal matrices with the

IV Nsubmatrices D, W respectively, and denote by A the block
diagonal matrix A = (I, I, Ä, ... , A). Then we may write

'which implies

(10) ,.

Here ~ is a block vector (and not a block matrix because
the eigenvectors Wp are orthonormal; this is the reason

IVwhy the diagonal matrix D must be introduced). More exactly,
\

'.' .~ = (oN T ,n n n T
.~ , ••• ,~ ) , cI> = (<I>1, ••• ,<I>M)'

Thus

I <P~,I = 0,

(11) 1<p11
L 3K,fiK1(fit)flt ,P

(12) I <pn I L 2 2K10(K2(T,flt)flt + K3 (T,flX)flx), p = 1, ... ,M,
P ,w

n = 2 ,3,...

/
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+Since we have not supposed that h , h , and the solution
u remain bounded in the cylinder GX(O,m) the bounds K1,
K2, K3 are the following quantities

Iax (.)uxxx (.,t ) Im
6

lux(.,t)lmlaxxxlm
24

Iaxx (.)uxx (•,t ) Im
+ ~-------- +

8

!:J.x21 a I lu (. t)"xx m xxxx ' m+ ------------ +
96

12
!:J.xIa ,I lu (. t) Ix m xxxx ' m

24

!:J.xIaxxx Im Iuxx (.,t) Im}
+ --------- (2w + 11~2wl).

48

The block matrix Q consists of diagonal submatrices
only, i.e.

0

0 0 0
Q = r S + A wI (1:"'2w) wI

0
,,

~I (1~'2w)I wI

Our aim is now to derive abound for the right side of
inequality (10) using the estimation (9). Hereto we put

-1. 0 0 1 ' 1', 3for the moment'!' = A Q 4>, l.e. 'I' =4> = 0, 'I' = 4> = d(!:J.t ),

.. c.
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Then, of course,

Consequently

p = 1, ... ,M.

(13)
max. { I'wX-1'¥n I . }}
LL. . ""2-n-N

. 1"'1\J-1 nlmax{ WA '¥ ""}},
o~n~N

/

M

=Lp=l

But '¥ = ~(T )-1~ wherep p p

(14)

1\and peT) is the (N+l)x(N+l)-matrix

(15)
.:~
, 1\peT) = e

1

o 1 0
1 T 1

0' , .
, 1',' '. 1

T .

e denoting the diagonal matrix e -1 . -1= (1, 1,(2+T) ,...,(2+T) ).
Surnrnarizing the above results we find that

1 ~(.T ) -1 I ~ I
A(1-E)/2 PP""
P ""

.•Therefo're, since by (11)

(17)
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we have shown th~t under the above assumptions an esti-
mation of lu - vl~ depends essentiallyon a suitable

I" -1,bound for peT) ~.

"Lemma 2. Let - 2 ~ T L. 2 and let peT) be the (N+1)x(N+1)-
matrix (15) with N odd. Then

(18)

where K11 is a constant independent of M.
/,

Proof. Set

IV

- L =

and let

Z =

N '(1' Tl NR = I =
-0 1 '

o
I 0 0
0'. -1.'0

(~:l,

be a matrix of dimension N+1. Then ~(T) = 8L(L-1RZ +1)
where L = . IVN f'U IV N( I,L, ..~, L), R = ( R, ...,R) ,are block
diagonal matrices of dimension (N+1}/2~ The eigenvalues

N-1Nof L Rare
"1 2 = (2 - T2f T(T

2 - 4)1/2)/2,
"

and the matrix of its eigenvectors reads

/
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~ '1r2_4' '~

-1- . - - • - • • -l~ - •-1
N 2 2

'~ 2X = = • -4
/r2_4'l' 1 l' + •

2

Define IV IVU as the diagonal,matrix U = (nl' n2 ) and denote by

IUN - vN
100 L K15A:E:(maX{Kl(At),K2(T,A~) }At2 + K3,w(T,Ax)AX2)X

MxL
p=l

'.- .•

X andU the block diagonal matrices with the identical
~ N ' A -1submatrices X and U respectively. Then, we have P(.) =

X(UZ + 1)-lx-1L-le-l. But for - 2 ? • L 2

~ . ' •. ' ,f\J '.:.. ,"." ",."

Thus, since, lul
oo

=,lfor "":2 ~ • L 2, an explicit

compfitationof-(UZ + 1)-1 combined with the bounds (19)

Theorem. Suppose that the hyperbolicinitial boundary

(19)

pro~lem (1) satisfies the Assumption. Let 0 L Ax =l!(M+l)

L .0.01 ß.,,;' At = TIN, N odd. Let UN be the vector of dimens ion

M obtained from the solution of the problem (1) bymesh-

mesh-point evaluation on the line t = NAt = T. Let vn,

n = 1, ...,N, be the solution of the system (8). Then

provides the estimation (18).

( E:~ 0, K15 constant independent of T, Ax, and At) for
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w ~ 1/4 if b.t/b.xis kept arbitrary but fixed as.b.x - 0
(unconditional stability), and for 0 ~ ~ L 1/4 if

(0 ~ 0) as b.x- 0 (conditional stability).

Proof. By Varga [10, p. 219] and Carasso [3, p. 310J we
find that 1~12 ~ 4a1/Ax2 + p/2 + y. Hence, aslAI ~ 1~12

{Vis true for every eigenvalue A of T, we have - 2 L • L

2.- 40 in" case 0 ~ W L 1/4 if max{ IA b.t21} L. 4 - 40.
1~p~M P

Moreover, we have - 2L .L 2 - 00 for a certain 00 ~ 0
independent of Ab.t2 in case w ~ 1/4 and b.t/b.Xfixed as
b.x--- 0 since Ab.x2bounded independent ly of M by Lemma 1 ..
Consequently the assumption of Lemma2.is satisfied in
both cases. However by Lemma 2 and (14)

1

This result tagether with theestimations (9), (10),
(12), (13), (16), and (17) proves the Theorem.
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