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1. Introduction

The present contribution is concerned with the parabolic'

initial boundary problem

ut - L(X3t3u) = d(X,t), (Xat) € (Osl)f(oam):
(1) u(x,0) = f(x), 0 4 x 4 1,
u(0,t) = g (), u(i,t) = g'(t), 0% t.

where L is @ linear or weakly nonlinear strongly elliptic
differentialioperator which is more exactly defined below.
For an arbitrary but fixed real T let At = T/N and AX =
1/(M+1), M,N € N, be small increments of the variablés t

and x, and let

n
Vi © v(kAax, nAt), V = (qu...

- CNLT
v o= ve,. .., vHT,

- We consider two well-known finite-difference approximations

of (1), the first one is the Crank-Nicolson method

v

(2) n;1/2

~ 3

kK = 1,.;,,M, n = 2,3,... ,
where 1A denotes the finite-difference operator corre-

. sponding to - L. The other method will be

n n-1- n-2
(5) 3vk - uvk + Vk

RGN =dp, K o= 1,...,M,

240t




This'latter approximation constitutes an implicit method
- as well. By lack of better historical knowledge we call

it in the following the Richtmyer-Morton method [13,
n,T
v

obtained from the solution u of the non-discrete problem

p. 86, p. 190]. We denote by U" = (u,...u the vector
: : 1 ,

(1) by mesh-point evaluation on the line t = nAt and Vz,’
n=1,2,...,will be the solution of the discrete problem

in consideration.

In this note estimations of the form

. A’

(4) luN - vﬂl ¢ £ (882 + 8x9)

with ¢ = 0 or o = 1/2 are deduced by means of an expansion
in the eigenvectors of the elliptical part of the corre-
sponding finite—diffefence system and by the monotonicity
principle of Minty [11, 12] . S0, as the constant « in

(4) doeé not depend oan = NAt, A-convergence of the

above indicated methods is established. This means that
the solution of the discrete'analogues préserve'the

asymptotic behaviour of the solution of the analytical

problem (1) (see Gustafsson [10]).

For some other, more sophisticated A-convergent difference

approximations to parabolic problems we refer to Carasso [6].
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2. Estimations by Means of Eigenvector Expansions

- In this section we follow strictly the pattern of [7, 9],
Thus the presentation is allowed to be rafher concised.
Here we study the initial boundary problem (1) with the
differential'equation

(5) ug - [a(x)ux]x + b(x)uX + c(x)u = d(x,t)

under the follo&ing assumption

AssumptionI.(i) Let O ¢4 a = a(x), 0 £ c(x).

(ii) Let 8yeisa s Toveny £ by b, D c, ¢

1d(+,0), a,(*,0), 4

X2 Uxx? x? “xx°

X(-,O) be continuous and bounded in
G = {x, 0¢x <1}, say |b(x)] ¢ 8. Let g , g+, d be
continuous in'GX(O,m)‘and d bounded in Gx(0,T) for every
T > 0, | o

(iii) Let £(0) = g (0), £(1) = g'(0). Let all coefficients
of the problem (1) be sufficiently smooth that a solution
u: (x,t) — u(x,t) exists in the classical sense having

in Gx(0,*) three continuous time derivatives and four

continuous space derivatives.

. The following norms are used

la]_ = sup |a(x)] 1v%l, = max {|V§l},
0éx41 S 1£k<4M
M ’ '
v - AX‘; W02, V], = max (v},
. = £né

. N
2
VI2 s ae ) VP2
: : n=2



At first we consider the Crank-Nicolson approximation to
the pfoblém (1) with the differential equation (5); i.e.

the finite difference equation (2) where

[1,v] =

(v (v

V)78 0 (V) k1 V-1
sz K 2Ax

qps1/2 Vst

The discrete boundary conditions are

- n +\n -
(6) vo = (8 vy, = (8D, n=o0,1,...,

cand as initdal conditions we choose

VE = fk’
(7
1

: At ¢}
Vi = fo¢ At{[(af ) ]k k[f ]k ckfk+dk} + —==lug Iy

- where for [utt]i the following quantity is to be inserted

lugely = e tltar) - Tor ) Ty -Teen) T +la 193
+ {la ) o YlCar ) 1 -Tkor ) T, -[(ef) ], +[a 123
- ¢, {[(af ) ] -, [f ], - R dg}
" (then ut - vl - G(At )). Thus, computing at first Vo_and vl

by means of (7) then inserting the quantities (6) and (7)

as far as possible in the equations (2) we can obtain the
vectors Vn, n=2,%,... , by an implicit difference
approximation which is consistent of order two. Equivalently
we may write the conditional equations.(z) for the com-

ponents VE of the vector V in matrix-vector notation



A

R i 1 B
(8) P1V 1= At(I Sl)V + 5 T(I + Sl)V = le

" "Here Sl.is the block matrix

0

0. U
O g"o

(I denoting in S, the identity matrix of dimension M, in

(9) S, =

TR

equation (8) the identity matrix of dimension Mx(N-1)).
As the coefficients of the differential equation (5) do
vnot deﬁend on t the block diagonal matrix T consists of
identical submatrices

(10) | T = (T,...,T).

The right side Hifof (8) cqnpains only known quantities;
the exact notation may be suppressed here. Instead the
‘MxM-matrix T may.be'disblayed in detail, since some facts

on its eigenvalues and eigenvectors are needed below

T=A+B+C, A = (aik)i,kzig...,M ete.,

[ 2 ( : L
(B yq/0%ay.q/p) /0% 0 1=K
. 2 , s
. i - ak+1/2/Ax N —J bi/2Ax 1 = k+1
ik ) ., > Pik T
- ai+1/2/Ax —bi/2Ax k = 1+1
L 0 L O otherwise
Cix T S04y

(Gik denoting the Kronecker symbol).

Now, for O 4 Ax € a,/8 the matrix T has real. positive

eigenvaluesAxp which are bounded away from zero (see




) Dl

Carasso [2] and [9]). Moreover, following [2, Lemma 1]
there exists a real diagonal matrix_ﬁ,which is together

with its inverse bounded in the maximum norm independently

~

of M,such that ﬁ_1% D is a symmetric matrix. Consequently

5—1% D nhas a complete system of orthogonal eigen&ectors

wp, p = 1,...,M. By a result of [8] these eigenvectors

are bounded in the maximum norm independently of Mvif
they are normalized so that prlg = 1. Thus, by a result
of Carasso [2, Lemma 3], it can be ‘shown that

M '! | M

W
p z E ~(1+¢)/2
(1+e)/2 ~ *1 P

p=1 2 p=1
P

for O ¢« Ax £ aO/B where Ky denotes a constant indepeﬁdent

of M (see also [9]). Let D, A, and W be the block

~diagonal matrices of order N-1 with the diagonal sub-

matrices 5, A= (Ai,...,xM),respectively with the matrix

W o= (W .>W,.). Further, define the block vector &

12
and the block matrix Ql.by the relations

1.

“1¢ “1p p - wg wl.

= We D 1 ey

b 1

Then, following the pattern of [9] (see also Carasso-

Parter [4] and [7]) we may write

N

. -1,-1 -1, -1
e = IDDTTRIT(RIU - B4 D], lwaTaQ] e

N .
!U -V 1’00

(12)

M
[w_|
. ple 1 B -1
) lDl“g;; NEEOTE 'A<1_€>/2 P Op00) Tlaleg ol

2 N,T A . .
where @p = (¢p,...,¢p) and Pl(ApAt) is the (N—l)X(N—i)—

matrix




'(14) .

A g . 1 .
(13) Pi_(.‘lpAt) —_W (I = bl) + E(I + Sl)

Here I denotes the identity matrix of dimension N-1 and

S; is a matrix of the form (9) but w1th unities in place

of the matrices I (see [7]) We remark that prxa has

a bound 1ndependently of M (see [2, Lemma 3]), i.e.

8/2
P

consistence of the Crank-Nicolson method, i.e. |¢

< K2AX 8. Hence, observing inequality (11) and the

lw =

1,p
= d(At2 + Axg), we find that an estimation of

lUN - Vﬂlm_depends on a bound for the values
..1}

l 1/2
P

P1<prt> o R ='1;-..,M-

But, as a consequence of [7, proof of Theorem 5 and.

Remark 4] and of the uniform boundedness of the values

'|w |_ [8] it is easily deduced that the quantities (14)

are unlformly bounded 1ndependent of AAL > O and N. Summa-

‘fr1z1ng the above estlmatlons we obtaln the follow1ng theorem

Theorem 1. Suppose that the parabolic initial boundary
problem (1) with the differential equation (5) satisfies
Assumption I. Let O 4 Ax = 1/(M+15 £ ao/B,'At = T/N,

M,N ¢ N, and let At/Ax be arbitrary but fixed as Ax — 0.
Denote by UN the vector of dimension M dbtained from the
solution. of the prdblem (1), (5) by mesh-point evaluation
on the line t = NAt = T, Let V?, n=1,...,N, be the

solution of the system (8) with the initial values (7).

Then




, M
. K
N - INIRE 3 (Kl(T>At2'+ KB(T)AXZ)'E p~(1+e)
. ) AX : p=1

where‘K3 is a constant independent of T, At; and Ax.

The constants Kl’ K3 are uniformly bounded quantities
independent of T if the solution u of the problem (1),
(5) together with ité derivatives up to order four is

bounded in (0,1)x(0,=).

Remark 1. Note that

. T = 2 -,t .
o KT OfizT{§E|uttt( SR PR

an estimation for KB(T) is given in [9].

Next we apply the Richtmyer-Morton method to the problem
(1) witﬁ the equation (5). Again we start with (7) and
insert the quantities (6),.(7) in the conditional equations
(3). We follow the above considerations exactly and obtain

again an inequality of the form (12):

W 1., | 4y
(15) o - v, e Ipl, 2 —R2IR 0 e e
p=1 p\

2,plw ’
p ,

where now the components of V, are computed by (7) and (3).

ﬁz(xAt) is the following (N-1)x(N-1)-matrix (see [7])




(16) P,(aat) = T v

Accordingly, in order to establish the result of Theorem 1
with € = O for the Richtmyer-Morton method we have to show
that lﬁé(xAt)"llw has a bound independent of XAt > 0 and

N. This result is a consequence of.the proof of Theorem 6
in [7]}. But in the present case it can be proved in a

- much simplier way using some of the ideas in_[?]. Fof

simplicity let o = 1/2XAt then O € ¢ ¢ = as X denotes an

arbitrary eigenvalue of T. Further assume that

~ 1430 O ~ o Lo
-4o 1430 0 o
Then
A _ : * e
Pg(lAt) = L + RS1 = L(I f L RSl)

where L and R are block diagonal matrices with the identical

n nJ

submatrices L and R, and S, is the matrix of equation (13),

Nl

However, the eigenvalues of the matrix L 1R are

st (14 300720502 + o ¥ lo(a? - 12,

i.e. ln1;2| £ 1 for 5.2 0. The corresponding matrix X of

the eigenvectors reads in case ¢ $ 1
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2 1/2

. ., 2 1/2
20+(0"=g) 20=(c"-0) 6 -20+(c%-0)
o o
§_= = 2(02-0)1/?
1 1 ‘\-o 20+(02—0)1/2
(see [7]). In case o = 1 we obtain the following Jordan

canonical form

N"lN B N‘/\)N—1 u 2 (_1/)4 O 1/}"‘ '1/2
o 1 1 ~1/4 0 1

Therefore, denoting by X, Y, @, and 0 the block diagonal

~ A

matrices with the submatrices %, Y, @, and 8 =’(n1, n2)

respectively, we have to show that

~ . _ _._._’.'
|P,(1/2) 1|°° = |Y(I + es)) vl 1[w
has a‘bound independent of N, and that
~ . . .
P 0172007 ] = %I+ osT) XTI

has a bound independent of N if ¢ > O remains bounded away
from one. Then the proof is finished since @2(AAt) hés an
inverse for ¢ = 1/2XAt > 0 and depends continuously on

c X 0.

In the case o = 1 it suffices to show that |(I + QS’;)—il°°

has a bound independent of N. This is true since
N (-1/4)" 0
n(-1/1H)" 1 (c1/mn

and therefore

(1 + o)7L, ¢ }Z; [/ + n(1/1)™ 1] 2w
n=

1/2 -1



4

If 0 £ ¢ €1 -8 (8§ >0) we find in the same way that
1r

|§2(1/26)_ , has a bound which depends only on &

estimating each of the values |L 7| , x|, ]X—llm?for

'

its own and observing that

o0

- =1 B -
(T + 057 ) | ¢ (1 - max{lnll, |n2|}) 1

.(1+30)2

N

K

' Z
(1+30)2—[(0-502)2+1602(d—02)]1/2 5
In case 1 + 6 ¢ ¢ (8 > 0) we deduce easily that [X]|_,
[X—llw, and | (1 + 30)L~1|w have bounds depending only on 8.

Moreover

1+30¢

IS

](1+30);1(I+OS*)_1l
_ 1 (1+36)2—(502—0+Hc(02—0)1/2)

1+3%0

£ k..
1+402+70—M0(02—0)1/2 6

Theorem 2.'SuppOSe that the assumptions of Theorem 1
- are satisfied. Let Vj, n = 1,...,N, be the solution of the

equations (3) with the initial values (7). Then

U - VL 4k (Ry(T)0E2 Ky () 0x7)

where Ko is a constant independent of T, At, and Ax.
The constants K2, K3 are uniformly bounded quantities
independent of T if the solution u of the problem (15,

(5) together with its derivatives up to order four is

bounded in (O,l)X(O,W),
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Remark 2. To be completely we note that

K, (T) = max {|u, ., (-,t)| }
2 ot Mt -

while KB(T) is the same quantity as in Theorem 1.
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3..The Richtmyer-Morton Method and Weakly Nonlinear Problems

In this section we apply the Richtmyer-Morton method to

the problem (1) with the following differential equation
(17)  u, - [a(x,t)ux]x'+ b(x,t)u, + c(x,t,u) = O.

Then, of course, the initial values (8) must be modified:

le) .
Vi = o
- (18) v . 2
1 _ : - o _ ,0 .0 ' At
v = £+ at{(ar) 10 - o (e ], - e (0 + ——[u, ]

where now

]g - [c(x,t,f(x))xx]i}

[utt]i. :>a§{[(an)XXX]lC{) - [(be)XX
+(la ]y - bptl(ar ) 1o - [(or ) ]) - [e(x,t,0(x) 10}

- : . &
+ [axtfx +af o -b. T —‘ct(X,t,f(X))]k

is to be inserted. In the same way as above we obtain thé_

following system of equations

o1 o
(19) | P5(V) iz 5yp S,V + T(V) = Hy
where
3T
-4T 3T C)
s, = T -41‘ X

O T -4T 3T
(I identity matrix of dimension M),

T(v) = (02(v3), ..., T)T, PRy = (AP

<

n

At = ("

2514 ,k=1,...,1 €¥C>

o)
k

5

+ BV 4+ ey,




r(a2+1/2+ag—1/2)/“2 E 1=k
all = < ) aﬁ+l/2/4X2 : pl o ) b?/gAX et .
ik~ ). a§+1/2/Ax2 Tk »—b?/2Ax ko= iel
0] L O otherwise
and
Cn(Vn) = (c?(v?),...,cﬁ(vﬁ))T, n=2,3,...,N.

Assumption II. Let 0 < o £ a(x,t) and
(c(x,t,v) - c(x,t,w))(v - w) > O, (x,t) € G x (0,®);v,w € R.

(ii) Let a,...,a___,f,. b

.., I i b
XXX ? Xxxx’b’

x? XX’C’CX’CXX’Ct’

¢, »C,y, b€ continuous and bounded in G x {0}, Let @,...,a.___»

u XXX

b, g_,g+ be continuous in G x‘(O,m) and bounded in G x (0,T)
for every T 0. Let [bX(X,t)I £ 4 and ¢ be continuous in
"GX(O,w). o |

(iii) as Assumption I (iii).

Théorem'j. Suppose that the parabolic initial boundary
broblem (1) with the differentiél equation (17) satisfies
Assumption II. Assume that there exists an .e > O such
that a_n? - u/2 - € > 0. Let &x = 1/(M+1), bt = T/N,
M,N e N, and let Vi, n = 1,...,N be the solution of the
isystem (19) with the initial values (18). If O ? Ax

£ (12e/a;ﬁu)1/2 and At/AX arbitrary but fiked as Ax — O

“then




._15..

”lUf4 VAlz < K8(K2(T)At2‘+ KB(T)AX2)

where~K8 denotes a constant indepeﬁdent-of T, At, and bx,

and K2,-K3 are the values of Theorem 2.

Proof. The (N-1)x(N-1)-matrix

3 .
-4 3 ()
* 1. -4 3
S, = SN

is monotone, i.e.
L .

vy v Dy o, Vyerl,
since )
N-1

) NG A SPLL) -uyn+1 Ypao) z (y -2y Vst

n=1

)2

'(y_1 = Vg = Yy :'yN+1v: 0). Consequently. u31ng a result

of Carasso [5, p.310, 3, p. 789}, we find that'PBIis
strictly mon0tonef

(P,(Y) - P5(2), ¥ - 2) 2o Y - 215,V V.2 ¢ gM* (N-1)

where a_ = aoﬂ2 - u/2 - € > O independent of T, At, and Ax.

'_Hence Pglz.RMX(N—1> — RMX(N_l)

(see Browder [1] and Minty [11, 12] ); moreover

exists and it is continuous

| . B ]
U= v, l, = IP3T (R4 = PPV )|, £ et [Po(0) - Hyl,

Now the assertion follows since the Richtmyer-Morton method

with the initial values (18) is consistent of second order.
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As a consequence of the inequélity

N

|12
A

N
AtIU -V 5

‘g £ U - v,
we obtain from Theorem 3 immediately the following
Corbliary

Corollary. Under the assumptions of Theorem 3 we have

N, _, "8

N : 2 2
o™ - VAIZv_ Z;T7§ (K, (T)at”" + KB(T)AX ).
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