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1. Introduction

The present contribution lS concerned with the parabolic

initial boundary problem

ut - L(x,t;u) = d(x,t), (x,t) E (O,l)x(O,ro),

o L. X L. 1,(1) u(x,O) = fex),

u(O,t) = g-{t), u(1,t) +=g (t), o ~ t.
where L is ~ linear or weakly nonlinear strongly elliptic

differential operator which is more exactly defined below.

For an arbitrary but fixed real T let 6t = TIN and 6x =
1/(M+1), M,N E N, be small increments of the variables t
and x, and let

v~ = v(k6X, n6t),

2 N TV = (V ,...,V ) .

We consider two well-known finite-difference approximations

of (1), the first one is the Crank-Nicolson method
n n-ivk - vk(2) ----
26t

dn-1/2
k '

k = 1,...,M, n = 2,3,... ,
where 16 denotes the finite-difference operator corre-
sponding to - L. The other method will be

n n-1 n-23vk - 4vk + vk .(3) + [16v
n] k = dn26t k' k = 1, ... ,M,

n =2,3, ...
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This latter approximation constitutes an jmplicit method

as weIl. By lack of better historical knowledge we call

it in the following the Richtmyer-Morton method [13,

] n n n Tp. 86, p. 190 . We denote by U = (u1' ...uM) the vector

obtained from the solutionu of the non-discrete problem
n(1) by me sn-point evaluation on the line t = nöt and Vö'

n =1;2, ...,will be the solution of the discrete problem

in consideration.

In this note estimations of the form

(4)

witha = 0 or a = 1/2 are deduced by means of an expansion

in the eigenvectors of the elliptical part of the corre-

sponding finite-difference system and by the monotonicity

principle of Minty [11, 12J . So, as the constant K in

(4) does not depend on T = Nöt, A~convergence of the

above indicated methods is established. This means that

the solution of the discrete analogues preserve the

asymptotic behaviour of the solution of the analytical

problem (1) (see Gustafsson [10]).

For some other, more sophisticated A-convergent differehce

approximations to parabolic problems we refer to Carasso [6].
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2. Estimations by fIleansof Eigenveetor Expansions
In this seetion we follow strietly the pattern of [7, 91.
Thus the presentation is allowed to be rather eoneised.
Here we study the initial boundary problem (1) with the
differential equation
(5) ut - [a(x)u ] + b(x)u + e(x)u = D(X,t)x x x
under the following assumption

AssumptionI.(i) Let 0 ~ a ~ a(x), 0 ~ e(x).. 0

(ii) Let a, ...,a , f, ..., f ., b, bx' bxx' c,.e , c ,xxx xxxx x xx
.d(' ,0), dx( ,0), d (.,0) be eontinuous and bounded inxx
G =.{x, 0 t.. xLi}, say Ib(x)1 ~ ß. Let g, g+, d be
eontinuous in GX(O,oo) and d bounded in Gx(O,T) for every
T ~ O.
(iii) Let f(O) = g (0), f(l) = g+(O). Let all eoefficients
of the problem (1) be suffieiently smooth that a solution
u: (x,t) ~ u(x,t) exists in the elassieal sense having
in Gx(O,oo) three eontinuous time derivatives and four
eontinuous spaee derivatives.

The following norms are used

supla(x) I
oLxLl

max .{ 1Vn I },
.. 00

2~n~N

N

I .12 ~ Ivnl22 .V 2 = i'lt L..
n=2
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At first we consider the Crank-Nicolson approximation to

the problem (lr with the differential equation (5), i.e.
the finite difference equation (2) where

ak+1/2(vk+l-vk)-ak-l12 (vk-vk-1) .vk+1"",vk-1
---------2---~---- + bk + ckvk'ßX 2ßx

k = .1,. . . ,]\1.

The discrete boundary conditions are

(6) n - n n + n
Vo = (g ) , v]\1+1= (g ) , n = 0,.1,... ,

and as init~al conditions we choose
ovk = fk,

1 St2 0vk = fk + ßt{[(afx)X]k-bk[fx]k-Ckfk+d~} + -2--[utt]k

.where for [Utt]~ the following quantity is to be inserted

+ {[a]k-bkH[(af) ]k-[(bf) Jk-[(cf) ]k+[d Jk
o}x x xx x x x x

- ck{[(afx)XJk - bk[fx]k - ckfk + d~}

(then U
1 _V1 = ö(ßt3)). Thus, computing at first VO and V1

by means of (7) then inserting the quantities (6) and (7)
as far as possible in the equations (2) we can obtain the

vectorsVn, n = 2,3,... , by an impli,cit difference

approximation which is consistent of order two. Equivalently

we may write the conditional equations (2) for the com-

ponents v~ of the vector V in matrix-vector notation
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.. 1(8) P1V .- tI~ (I - Sl)V + 2T(I + S )V = H1.1

Here Sl is the block matrix

0

I 0 0(9) Sl =
0 I 0

(I denoting in ~1 the identity matrix of dimension M~ in

equation (8) the identitymatrix of dimension Mx(N-l)).

As the coefficients of the differential equation (5) do

not depend on t the block diagonal matrix T consists of

identical submatrices,

(10) T = (T, ... ,T).

The right side H1 of (8) contains only known quantities;

the exact notation may be suppressed here. Instead the
IV

MxM-matrix T may be displayed in detail, since some facts

on its eigenvalues and eigenvectors are needed below

i = k

i = k+l
,

k = i+l

otherwise

b./2t1x
1.

o

-b./2t1x
1

o

N

T = A + B + C, A = (a.k). k 1 M etc.,11, = ,...,
2

(ak+1/2+ak_1/2)/tlx 0
2- ak+1/2/t1x

2- ai+1/2/t1x

(8ik denoting the Kronecker symbol).
NNow, for 0 L tlx~ ao/ß the matrix T has real. positive

eigenvalues A which are bounded away from zero (seep
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Carasso [2J and [9J). Moreover, following [2, Lemma lJ

there exists a real diagonal matrix ~,whichis together

with its inverse bounded in the maximum norm independently
N-l""' rvof M,such that D T D is a symmetrie matrix. Consequently

N-1"-' IVD T D has a complete system of orthogonal eigenvectors

Wp' P = 1, ...,M. By a result of [8J these eigenvectors

are bounded in the maximum norm independently of M if

they are normalized so that IWpl~ = 1. Thus, by a result

of Carasso [2, Lemma 3J, it can be shown that

(11)
M Iw IL p 00

, p=l A(1+E:)/2
p

for 0 ~ 6x ~ ao/S where K1 denotes a constant independent

of M (see also (9J). Let D, A, and W be the block

diagonal matrices of order N-l with the diagonal sub-

matrices 5, X = (A1, ...,AM),respectively with the matrix
N

W = (W1, ...,WM). Further, define the block vector ~1

and the block matrix Q1 by the relations
1 ~1D- P1D = WQ1W .

Then, following thepattern of [9] (see also Carasso-
Parter (4) and [7J) we may write

(12)
IWploo

/-(1+£)/2
p

I. 1 P1.0 6t )-1 I I ~1 I/-(1-£)/2 P oo,P 00

P

where ~p

matrix
the (N-l)x(N-l)-
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(13) 1
A fit
P

(I - S~) ~ ~(I +S~)

Here I denotes the identity matrix of dimension N-1 and
*S1 is a matrix of the form (9) but with unities in place

of the matrices I (see [7]). We remark that A fix2has
p

abound independently of 00 (see [2, Lemma 3)), i.e.
,E/2'L A -E ... ( )
Ap - K2uX • Hence, observlng lnequallty 11' and the

consistence of the Crank-Nicolson method, i.e. I <I> I -1,p 00 -

= d(fit2 + liX
2), we find that an estimation of

vNI depends on abound for the valuesfi 00

'(14) P =1, ... ,00.

But, as a consequence of [7, proof of Theorem 5 and

Remark 4] and of the uniform boundedness of the values

Iw I [8] it iseasily deduced that the quantities (14)p 00

are uniformly bounded independent.of Afit~ 0 and N. Summa-
..

rizing the above estimations we ob~ain the following theorem

Theorem 1. Suppose that the parabolic initial boundary

problem (1) with the differential equation (5) satisfies

Assumption I. Let 0 L fix = 1/(00+1) ~ ao/S, fit = ~/N,

OO,N € fN, and let fit/fix, be arbitrary but fixed as fix- O.

Denote by UN the vector of dimension 00 obtained from the

solutio~ of the problem (1), (5) by mesh-point evaluation

on the line t = Nfit = T. Let v~, n = 1, ...,N, be the

solution of the system (8) with the initial values (7).
Then
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"JVl
N N ~ 2 2 ~ -(1+E)Iu - vt,.100 ~ AX

E
(K1(T)t,.t + K3(T)f.l.X)"L- p

u p=1

wher~ K3 is a constant independent of T, t,.t,and f.l.x.
The constants K1, K3 are uniformly bounded quantities
independen~ of T if the solution u of the problem (1),
(5) together with its derivatives up to order four is
bounded in (O,1)X(O,oo).

Remark 1. Note that

an estimation for K3(T) is given ln [9].

Next we apply the Richtmyer-Mortön method to the problem
(1) with the equation (5). Again we start with (7) and
insert the quantities (6), (7) inthe conditional equations
(3). We follow the above considerations exactly and obtain
again an inequality of the form (12):

(15)
M

IDI", Lp=1

where now the components of Vt,.are computed by (7) and (3).
/\P2(At,.t)is the following (N-1)x(N-1}-matrix (see [7])
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/\(16) P2(Abt)

3
-4 3

I + 1 1 -4= 2Abt

o
1 s*

-. I + 2Aßt 2

Accordingly, in order to establish the result of Theorem 1

with E = 0 for the Richtmyer-Morton method we have to show

that 1~2(Abt)-1100 has abound independent of Abt ~ 0 and

N. This result is a consequence of the proof of Theorem 6
in [7J. But in the present caseit can be proved in a

much simpli~er way using some of the ideas in [7]. For

simplicity let 0 = 1/2Abt then 0 ~ 0 ~ 00as Adenotes an

arbitrary eigenvalue of T. Further assurne that

N (1+30 0 ) ~L = R
-40 1+30'

Then

~2(Abt) = L + RS~ = L(I + L-1RS~)

where Land R are block diagonal matrices with the identical
IV IV

submatrices Land R, and Sl is the matrix of equation (13).
N -1rVHowever, the eigenvalues of the matrix L Rare

(1 30)-2( -50 2 + 40(0'2 0)1/2) ,nl,2 = + + 0 - -

Inl,21
Ni.e. L- 1 for 0,~ O. The corresponding matrix X of

the eigenvectors reads in case 0 t 1



NX =
2 ,( 2 )1/2cr+cr-cr

cr

1 '
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2cr-(o2_cr)1/2
cr

1 2 1/22cr+(cr-cr)
(see [7]). In case cr = 1 we obtain the following Jordan
canonical form

o ) (1/4
:"1/4 0

-1/2 )
1 '

Therefore, denoting by X, Y, n, and e the block diagonal
matrices with the submatrices X, Y, Q, and 0 = (n1, n2)
respectively, we have to show that

has abound independent of N, and that

has abound independent of N if cr~ 0 remains bounded away
Afrom one. Then the proof is finished since P2(>"llt)has an

inverse for cr = 1/2>"llt~ 0 and depends continuously on
cr '~ o.

In the case cr= 1 it suffices to show that 1(1 + ns~)-1Ioo
has abound independent of N. This lS true since

(

(-1/4)n

- n(-1/4)n-1

andtherefore

L
n=1

K4.
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If 0 L 0 L 1 - 8 (8 ~ 0) we find in the same way that

IA -1P2 (1/20) Lx> has abound which depends only on 0

estimating each of the values IL-1
100' Ixloo' Ix-lloofor

its own and observing that

1(1 + 03;)-1\00 ~ (1 - max{ln11, In21n-
1

(1+30)2

(1+30)2_[(0-502)2+1602(0-02)Jl/2

In case 1 + 0 L 0(0 ~ 0) we deduce easily that Ixloo'

Ix-1100' \ -1\and (1 + 30)Loo have bounds depending only on O.
MOreover

1+30
2 2. 2 1/2(1+30) -(50 -0+40(0 -0) )

=
1+30

. 2. 2 . 1/21+40 +70-40(0 -0)

Th~orem 2. Suppose that the assumptions of Theorem 1

are satisfied. Let v~, n = 1, ...,N, be the solution of the

equations (3) with the initial values (7). Then

where K7 is a constant independent of T, At, and Ax.
The constants K2, K3 are uniformly bounded quantities

independent of T if the solution u of the problem (1),

(5) together with its derivatives up to order four is
bounded in (O,l)X(O,oo).
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Remark 2. Ta be completely we note that

K2CT) = max{!utttC',t) loo}o~t£T
while K3CT) is the same quantity as in Theorem 1.
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}.The Richtmyer-Morton Method and Weakly Nonlinear Problems

In this section we apply the Richtmyer-Morton method to

the problem (1} with thefollowing differential equation

(17) ut - [a(x,t)u ] +b(x,t)u + c(x,t,u) = o.x x . x

Then, o~ cpurse, the initial values (8) must be modified:

(18)

where now

[UttJ~ = a~{ [(afx)xxxJ~ - [(bfx)xJ~ - [c(x,t,f(X»xxJ~},

'+{[ax]~ - b~}{[(afx)xx]~ - [(bfx)xJ~ - [c(x,t,f(x»)~}

+ [axtfx + atfxx - btfx -_Ct(x,t,f(x»J~

is to be inserted. In the same way as above we obtain the

following system of equations

where
31 0-41 31

82 = I -41

0 ,

I -41 31
(I identity matrix of'dimension M),

n nA = (a.k)..k-1 Mete.,l_l, - , •• "
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n n 2 0 i(ak+1/2+ak_1/2)/6X = k

n 2 n i k+1ak+1/ 216x b./2öx =ln naik = 2 , bik =n n ,
- ai+1/2/öx -b./2öx k = i+1l

0 0 otherwise

and

n = 2,3, ... ,N.

Assumption 11. Let 0 'a ~ a(x,t) ando

(c(x,t,v) - c(x,t,w))(v - w) ~ 0, (x,t) E: G x (O,ro);v,w E: IR.

(ii) Let a, ...,a ,f, ...,f ..,b, bx,bxx,c,cx,cxx,Ct'xxx xxxx
c ,c be continuous and bounded in G x {O}. Let a, ... ,a ,u uu xxx
b, g-,g+ be continuous in G X-(O,oo)and bounded in Gx (O,T)

for every T ~ O. Let Ib (x,t)1 ~ p and c be continuous ln. x
Gx(O,oo).

(iii) as Assumption I (iii).

Theorem ~. Suppose that theparabolic initial boundary

problem (1) with the differential equation (17) satisfies

Assumption 11. Assume that there exists an £ ~ 0 such

that a n2 - p/2 -£ ~ O. Let öx = 1/(M+1), öt = TIN,. 0
nM,N E: N, and let Vö' n = 1, ...,N be the solution of the

system (19) with the initial values (18). If 0 ' 6x
~ (12£/a'n4)1/2 and 6t/6x arbitrary but fixed as 6X - 0o

then
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where K8 denotes a constant independent of T, ~t, and ~x,

and K2~K3 are the values of Theorem 2.

Proof. The (N-1)x(N-1)-matrix

3
-4 3 0

~ 1 -4 3S2 =

0 '-4 ,1 ,

3

lS monotone, i.e.,

yT (S¥ + (S*)T)y ~ 0 , -. 2 2
since

(Y-1 = Yo = YN = YN+1 = 0). Consequently. using a result

of Carasso [5, p.310, 3, p. 789], we find that P3 is

strictly monotone:

(P3(Y) - P3(Z), y - Z) ~ CI. E: Iy - Z I ~ ' V y ,Z E: IRM
x (N-1) ,

where CI. = CI. TI2 - ~/2 - E: ~ 0 independent of T, ~t, and ~x.
E: 0

Hence p;1: IRMx(N-1) _ IRM>«N-1) exists and it is continuous

(see Browder [1] and Minty [11, 12] ); moreover

Now the assertion follows since the Richtmyer-Morton method

with the initial values (18) is consistent of second order.
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As a consequence of the inequality

we obtain from Theorem 3 immediately the following

Corollary. Under the assumptions of Theorem 3 we have

,
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