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Abstract

For strongly directed anisotropie processes such as coherence-enhancing diffu-
sion filtering it is crucial to use numerical schemes with highly accurate directional
behavior. We show that this is not possible in a satisfactory way when discretiza-
tions are limited to 3 x 3 stencils. As a consequence, we investigate a novel
algorithm based on 5 x 5 stencils. It utilizes recently discovered differentiation
filters with optimized rotation invariance. By juxtaposing it with several com-
mon algorithms we demonstrate its superior behavior with respect to the follow-
ing properties: rotation invariance, avoidance of blurring artifacts (dissipativity),
and accuracy. The latter one is evaluated by deriving an analytical solution for
coherence-enhancing diffusion filtering of images with circular symmetry. Further-
more, we show that the new scheme is 3 to 4 times more efficient than explicit
schemes on 3 x 3 stencils. It does not require to solve linear systems of equations,
and it can be easily implemented in any dimension.

Keywords: image proeessing, anisotropie diffusion, seale-spaees, rotation
invarianee, filter design, finite differenees, analytieal solutions, performance
evaluation

1 Introduction
In this paper we present and evaluate a novel algorithm for eoherenee-enhaneing aniso-
tropie diffusion filtering. This seale-spaee and image restoration teehnique has been
introdueed in [40] for the enhaneement of flow-like textures with line-like struetures. It
eombines ideas of nonlinear diffusion filtering [31, 11, 39] with orientation analysis by
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means of the so-called structure tensor (second-rinoment matrix, scatter matrix) [9, 16,
23, 26, 3~. .
The basic idea is to smooth a degraded origidal image by applying a nonlinear diffu-

sion process whose diffusion tensor allows anisot~oPic smoothing by acting mainly along
the preferred structure direction. This so-called coherence orientation is determined by
the eigenvector of the structure tensor with the ~mallest eigenvalue.
Such structure tensor driven nonlinear diffuJion methods have demonstrated their

usefulness for enhancing fingerprint images [40]' [or restoring old copper plates [14]' for
computer-aided quality control [40] and medical ihlaging [6, 45]. They have been applied
to three-dimensional microscopy images [18], td the enhancement of corners [35, 39],
ridges and valleys [38], and they have even been u~ed for designing novel shock-capturing

I

algorithms for hyperbolic conservation laws [19]) They create image-simplifying scale-
space transformations in any dimension [44]' andi they can be extended to colour images
[4,3,28]. I

Since coherence-enhancing anisotropic diffus~on filtering is essentially a one-dimen-
sional smoothing strategy in a multidimensionall image, it is of outmost importance to
have a precise realization of the desired smoot~ing direction. When the goal consists

I

e.g. of closing gaps in an interrupted line-like structure, it is clear that slight deviations
from the correct smoothing direction will destro~ any desired filter effect and result in
a deterioration of the line by introducing blurring artifacts.
This direction sensitivity constitutes an additional problem for the design of appro-

priate algorithms for diffusion filtering that has not been addressed in the computer
vision literature so far. In this paper we introduce a novel scheme that is especially
designed to handle this difficulty. Its main ingredient is the consequent use of specific
first-order derivative filters that have been optimized with respect to rotation invariance
[37, 25]. We use these filters in an explicit (Euler forward) finite difference scheme.
Since they come down to applying 3 x 3 convolution masks twice, they lead to a scheme
which performs local averaging over a 5 x 5 mask. We shall see that such an algorithm
does not only reveal visibly better performance with respect to rotation invariance, but
also creates less blurring artifacts, is more accurate, and has a three to four times higher
efficiency than other explicit schemes for coherence-enhancing diffusion. Another im-
portant feature of the algorithm is its simplicity: it can be easily extended to higher
dimensional data sets and it does not require to solve linear systems of equations as is
common for semi-implicit techniques.
The paper is organized as follows. In SectiOIl 2 we sketch the concept of coherence-

enhancing diffusion filtering, we review two finit~ difference schemes that are often used
for this purpose, and we discuss the optimality ~f one of them with respect to nonneg-
ativity and rotation invariance, if the support is Irestricted to 3 x 3 pixels. In Section 3
we present our novel algorithm and give a short ~escription of our optimized derivative
filters. In Section 4 we compare its performange with other algorithms. We evaluate
rotation invariance, dissipative effects resulting ih blurring artifacts, quantitative errors
compared to an analytical solution, and efficienc~. Finally we conclude with a summary
in Section 5.
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Related work. Although there is a rieh literature on partial differential methods for
image proeessing and computer vision (see e.g. [8, 10, 20, 30, 41] for reeent overviews)
the design of effieient algorithms for nonlinear diffusion filtering has been addressed to
a mueh sm aller extend. For isotropie diffusion filtering with a sealar-valued diffusivity,
one ean find several alternatives to the eonventional two-level explieit finite-differenee
scheme, for instanee three-level methods [17), semi-implieit approaehes [11] and their
additive operator splitting variants [46), multigrid methods [1), adaptive finite element
teehniques [7], numerieal sehemes with wavelets as trial funetions [17], speetral methods
[17] and stoehastie simulations [33]. Numerieal teehniques for anisotropie diffusion fil-
ters with a diffusion tensor inc1ude finite elements with grid adaptation [32] or multigrid
acceleration [14), as weIl as lattiee Boltzmann teehniques [22]. Explieit finite differenee
sehemes [12, 13, 42] have been applied for simplieity reasons, and semi-implieit stabi-
lizations have been introdueed to permit larger step sizes [44,45]. For effieieney reasons
they have been realized as multiplieative [45] or additive operator splittings [44]. A spa-
tial diseretization that allows to preserve nonnegativity for small eondition numbers of
the diffusion tensor has been derived in [41]. In this ease absolutely stable semi-implieit
sehemes are possible. To the best of our knowledge there is, however, not a single pub-
lieation that addresses the important problem of designing algorithms for anisotropie
diffusion filtering with an optimized direetional behavior. Although there are some pub-
lieations on optimized filter design for anisotropie equations of mean eurvature type
[4, 5, 15), their results, however, eannot be transferred direet1y to eoherenee-enhaneing
anisotropie diffusion filtering.

2 Coherenee-Enhaneing Anisotropie Diffusion

2.1 General filter structure

Anisotropie diffusion filtering with a diffusion tensor evolves the initial image under an
evolution equation of type

Bu
- = \7 . (D\7u)Bt (1)

(ab cb) l'Swhere u(x, t) is the evolving image, t denotes the diffusion time, and D =

the diffusion tensor, a positive definite symmetrie matrix that may be adapted to the
loeal image strueture.

This loeal image strueture is measured by the so-ealled strueture tensor (seatter
matrix, seeond-moment matrix, Förstner interest operator) [9, 16, 23, 26, 34] whieh is
given by

The function Gp denotes a Gaussian with standard deviation p, and U(J" := Gp * U

is a regularized version of U that is obtained by eonvolution with a Gaussian G(J"' The
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eigenveetors of Jp give the preferred loeal orientations, and the eorresponding eigenvalues
denote the loeal eontrast along these direetions.1 The strueture tensor is highly robust
under isotropie additive Gaussian noise [24]' and it ean be implemented effieiently [21].

(
J11 J12) !The eigenvalues of Jp = are I

J12 J22
i

/-LI ~ (J11 + J22 + V(J+ - h2)2 + 4J[2) ,

1'2 = ~ (111 + 122 - J (J1i1 - 122)2 + 41[2 )

and the first eigenveetor (eos 0:, sin 0:) T satisfies

The diffusion tensor D of eoherenee-enhaneing anisotropie diffusion uses the same eigen-
veetors as the strueture tensor, and its eigenvalues are assembled via

Al .- Cl (2)

A2 { Cl if /-LI = /-L2,
(3).-

Cl + (1 - Cl) exp( ( -c2)2) else,
/-L'j-/-L2

where Cl E (0,1), C2 > O. The eondition number of D is thus bounded by 1/Cl, and the
entries of D are

b (4)

(5)

For more details on eoherence-enhancing anisotropie diffusion we refer to [44].

2.2 Existing schemes

Equation (1) ean be solved numerieally using finite differenees. Spatial derivatives are
usually replaeed by eentral differenees, while the; easiest way to diseretize ~~ eonsists of
using a forward differenee approximation. The n~su1ting so-ealled explicit scheme allows
to ealculate all values at a new time level direeÜy from the ones in the previous level
without solving linear or non linear systems of Jquations. An explicit seheme has the

I

basic structure I

uk+1 _ uk.
t,J t,J Ak k----= 'I'*U ..T t,J t,J
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where T is the time step size and uL denotes the approximation of u(x, t) in the pixel
(i, j) at time kT. The expression AL * uf,j is a discretization of \7 . (D\7 u). It comes
down to the convolution of the image with a spatially and temporally varying mask Atj'
Hence, we may calculate u at level k + 1 directly from u at level k via

The stencil notation oftwo common discretizations for Af,j are shown in Figure 1. We as-
sume that the pixels have length 1 in both directions. The so-called standard discretiza-
tion [42] from Fig. l(a) is the simplest way to discretize (1). The more complicated
nonnegativity discretization from Fig. 1(b) offers one advantage [41]: all non-central
weights remain nonnegative as long as the condition number of the diffusion tensor does
not exceed 3 + 2V2 ~ 5.828. In this case the corresponding explicit scheme satisfies
a very strict stability property which prevents blow-ups of the numerical solution: for
a sufficiently small step size T, the global minimum cannot decrease and the global
maximum cannot increase.

Using models with restricted condition numbers of the diffusion tensor, however,
means also to limit the anisotropy of the filter and is therefore not always desirable.
In those cases where one is interested in strongly anisotropie behavior, the condition
number may exceed 3 + 2V2. Then the nonnegativity discretization has not necessarily
advantages over the standard discretization.

A typical shortcoming of explicit schemes is that they usually require fairly small time
steps in order to be stable. A common way to get better stability properties is to use some
or all values from the unknown level k + 1 in the approximation of the spatial derivatives
as weIl. The resulting semi-implicit or fully implicit techniques require the solution of
linear or nonlinear equations, which can become costly or complicated. An efficient semi-
implicit strategy that leads to simple linear systems of equations stabilizes the explicit
standard discretization by means of an additive operator splitting (AOS); see [44] for
more details. The mixed derivative terms in this scherne, however, are still discretized
explicitly. Such an AOS-stabilized standard discretization has a larger stability range
than the explicit standard discretization, but it does not enjoy the absolute stability of
pure AOS schemes like the ones in [46].

A pure AOS scheme based on the nonnegativity discretization is proposed in [41].
It is absolutely stable, if the condition number of the diffusion tensor remains below
3 + 2V2, but cannot be applied beyond this limit. It is therefore not considered in our
evaluations in Section 4, where condition numbers up to 1000 may appear.

2.3 Aremark on optimization of 3 x 3-kernels

The existing schemes have been introduced for simplicity or stability reasons, but no
attention has been paid to optimizing their directional behavior. Indeed, in Section 4
we shall see that their rotation invariance is not very good in certain situations.

In order to address this problem, we have used the optimization framework from
[37] and [25] for optimizing 3 x 3-kernels for strongly directed anisotropie diffusion with
respect to rotation invariance. For this task the good behavior of the kerneis along
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+ Ibi,; I+bi,j 2 2 + Ibi,jl-bi,i
4 4

Figure 1: (a) Top: standard diseretization [42]. (h) Bottom: nonnegativity diseretiza-
tion [41]

the axes is required for all orientations. A point symmetrie, zero mean 3 x 3-kernel
has 4 degrees of freedom. As one ean show, if eonsisteney is required, 3 degrees of
freedom are fixed. Surprisingly, optimizing the remaining parameter resulted in the
nonnegativity diseretization. For this reason, we refrain from presenting more details
about the optimization. This result also shows that, if one is interested in better rotation
invarianee, one has to use larger steneil sizes than 3 x 3. This shall be done next.

3 A Novel Algorithm with Optimized Rotation In-.varlance
In order to explain our novel seheme whieh works on a 5 x 5 steneil, we rewrite the
divergenee operator in (1) as

(6)

This expression is now evaluated in an explieit way, i.e. using only known values form
the old time level k.
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The key point is that we use first derivative operators with the stencil notations

-3 0 3
1

Fx = - -10 0 1032

3
1

and Fy = - 032

10
o

3

o (7)

-3 0 3 -3 -10 -3

They have been derived recently in [37, 25]' where it has been shown that they approxi-
mate rotation invariance significantly better than related popular stencils like the Sobel
filters.

In order to motivate these derivative filters, it is useful to recaIl that the transfer
function of an ideal first-order 1D derivative filter is given by i7fk, where k denotes the
normalized wave number. The transfer function of the commonly used central derivative
operator [-~, O,~], however, is i7fk sinc(7fk). Multiplication with the sinc-f~nction in the
Fourier domain is equivalent to smoothing with a box filter. Indeed, if k -+ :i:1, the
transfer function approaches O. This means that high frequencies that are dose to the
Nyquist frequency are unaffected by this central difference operator, if they are in the
direction of differentiation. In order to maintain rotation invariance, one should apply a
similar smoothing operator perpendicular to the direction of the derivative. A weighted
L2-optimization in the Fourier domain showed that this effect is weIl approximated by
the smoothing stencil

3
1
16 10

3

The convolution between this smoothing stencil and the standard central derivative
operator in x direction immediately gives the preceding convolution operator Fx. This
filter design is illustrated in Figure 2. Since Fx and Fy contain only two different
numbers, convolutions of this type are fairly inexpensive (2 multiplications, 4 additions,
1 subtraction per pixel). For more details about the optimization of the first order
derivative filter, we refer to [37, 25].

Now we can turn our attention to the diffusion approximation again. We proceed in
five steps:

1. Calculate the structure tensor using the optimized derivative filters from (7).

2. Assemble the diffusion tensor as a function of the structure tensor.

3. Calculate the £lux components j1 := aoxu + boyu and j2 := boxu + coyu with the
optimized filters.

4. Calculate \7 . (D\7u) = oxj1 + Oyj2 by means of the optimized derivative filters.

5. Update in an explicit way.
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a b c

3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 -1
-2 -2 -2
-3 .3 -3

I 1
0.5
I

i

I
I

i

Figure 2: Trausfer fuuctious of derivatives. a Id~al operator. b Usual [-~, 0, ~lfilter
without smoothing in cross direction. Note the inherent smoothing in the direction of
derivation. c Sobel-like 3 x 3-filter mask (7) with bptimized smoothing in cross direction.

I

Since the resulting scheme makes consequent use of the derivative filters with opti-
mized rotation invariance, we may expect good directional behavior. It should be noted
that the total stencil of this scheme has size 5 x ?, since we are approaching the second
order derivatives by consecutively applying first order derivatives of size 3 x 3. However,
there is no need to write down a complicated 5 ~ 5 stencil, since it is nowhere required
in the entire algorithm.

4 Performance Evaluation
In this section we shall juxtapose our method with existing ones in order to evaluate its
performance. We focus on investigating rotation invariance, dissipative effects creating
blurring artifacts, quantitative errors, and efficiency.

4.1 Rotation invariance and dissipativity
Test computations were performed on a ring image with varying frequencies (see Figure
3(a)). The maximum wave number is 0.5. We apply three different explicit schemes for
coherence-enhancing diffusion: the standard scheme, the nonnegativity scheme, and our
novel one. As parameters we use Cl := 0.001, C2 := 1, (j = 0.5, p = 10, T = 0.2, and we
apply 100 iterations.

Applying coherence enhancing anisotropie diffusion to this ring image should not
deteriorate the rotation invariance, and it should hardly alter this image (only by some

I

small isotropie diffusion caused by the parameter Cl; see Seetion 4.2).
Figure 4 shows the results for the upper rigHt quadrant. The other quadrants look

the same. One observes that the standard didcretization intro duces severe blurring
artifacts for all directions except for the diredions of the coordinate axes. This is

I

caused by incorrect directional behavior and undesired damping of high frequencies, as
can be seen if the transfer function for specific bhoices of Al, A2 and aare examined.
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a

original

b

with Gaussian noise

Figure 3: Test image: a Original, b with Gaussian noise

If the diffusion does not exactly follow the circ1es, it immediately blurs them. Similar
dissipative effects can be observed for the nonnegativity discretization. However, it also
performs well along the grid diagonals. As explained in Section 2.3 this is the optimal
behavior for a 3 x 3-stencil. For the new scheme dissipative effects or deviations from
rotational invariance cannot be observed, the result is visually indistinguishable from
the original image. A quantitative analysis of these deviations is presented in the next
section.

To demonstrate the importance of rotation invariance, we use our three implemen-
tations for reducing Gaussian noise that has been added to the test image (cf. Figure
3(b)). The Gaussian noise has zero mean, and the standard deviation has the same
magnitude as the signal amplitude. Figure 5 shows the upper right quadrant using the
same filter parameters as before. Only the new discretization reconstructs the signal
satisfactory for all orient at ions and frequencies. For the other methods the signal in-
formation is so weak that the directional errors of the discretization dominate for high
frequencies.

Smoothing effects result in loss of fine structures in the depicted ring images (Figure
4). For orientations parallel to the coordinate axes, all discretizations preserve the
signal. Blurring artifacts therefore might be a directional failure only, with less effect
for real data. In order to demonstrate that this error should not be neglected we applied
the three algorithms to van Goghs "Road with Cypress and Star" (Auvers-sur-Oise,
1890; Otterlo, Rijksmuseum Kröller-Müller). This test image has been used in [44] for
evaluating coherence-enhancing diffusion filtering. The general impression from Figure
6 is that the new scheme pro duces the sharpest and most detailed results. For all images
processed with the new discretization one observes slight checkerboard-like structures.
An explanation for this in terms of transfer functions has been given in Section 3: the
derivative operators become less sensitive the more the frequencies approach the Nyquist
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a

c

original

nonnegativity schelle

b

d

standard schelle

new schelle

Figure 4: Rotation invariance and dissipativit~ test: Upper right quadrant of origi-
nal ring image after applying three explicit sch~mes far coherence-enhancing diffusion
filtering. I

I

I
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a

c

original

nonnegativity scheme

b

cl

standard scheme

new scheme

Figure 5: Reconstruction properties far the upper right quadrant of the noisy ring image
from Figure 3(b).
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a

c

original

nonnegativity scheme

b

cl

standard scheme

new scheme

Figure 6: Dissipativity illustrated by means of van Goghs "Road with Cypress and
Star". The filter parameters are Cl = 0.001, C2 = 1, (Y = 0.7, p = 4, T = 0.2. In order to
make the differences better visible, 100 itell.¥ions have been applied.



(8)

rate. Thus higher frequeneies are smoothed to a smaller amount. A further analysis of
this phenomenon is presented in Seetion 4.3. More detailed experiments showed t4at
these struetures remain bounded and deerease over time.

4.2 Quantitative analysis
Interestingly, eoherenee enhaneing anisotropie diffusion ean be simplified in speeifie sit-
uations such that even an analytieal solution ean be given. In fact, if we have images
with linear symmetry (planar waves) or eireular symmetry, then the eigenveetors of the
strueture tensor do not depend on the smoothing seales () and p, and they are parallel or
perpendieular to \7u. Sinee the diffusion tensor has the same eigenvalues as the strue-
ture tensor, it follows that, far these images, eoherenee-enhaneing diffusion degenerates
to the isotropie linear diffusion equation

ouot = Cl 6u.

This equation has analytieal solutions. For eireular symmetrie initial images, they ean
be expressed in terms of the Bessel functions Jo and the Weber functions Yo of order
zero:

00

u(r, t) = J (A(k) Jo(klrl) + B(k) Yo(klrl)) e-k2)\1 t dk.
-00

(9)

We may use these analytical solutions for evaluating the accuracy of our algorithms. We
start with equation (9) with A(k) = 6(k - ko) and B(k) 0 as initial image (t=O) and
perform one iteration of our algorithms. The deviations from the analytical solution are
plotted in Figure 7 for varying wave numbers ko and different explieit schemes.

As expected one observes that the errors of all methods increase with increasing
frequencies. In most eases the nonnegativity discretization performs better than the
standard discretization, while the novel scheme clearly outperforms both for all frequen-
eies. Over a wide range of frequencies, the error of the new approach is smaller by 1.5
to 2.5 orders of magnitude than errors of the other discretizations. This shows that
blurring artifacts resulting from violations of rotational invariance are severe sources for
numerical errors. The fact that the novel seheme is also superior for high frequencies
shows that its checkerboard-like structures are far less problematic than the blurring
artifacts of other schemes.

4.3 Efficiency
Let us now evaluate the efficiency of our method in comparison with the explicit scheme
with standard discretization, the explicit nonnegativity discretization, and an AOS-
stabilized semi-implicit standard discretization [42]. We did not display results for the
latter scheme in the previous experiments, because they were visually identical with
those from the underlying explieit standard discretization. There are, however, clear
efficiency differences, as we shall see now.
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Figure 7: Quantitative error analysis: Mean square root of deviations per pixel between
the numerical solution and the analytical solu~ion (9). The parameters are (J = 0,
Cl = 0.001, P = 1, and T = 0.24. The error !is normalized such that an error of 1
describes the deviation between the the analytibal solution and a flat image with the
same average grey value.

The total efficiency of a scheme is the product of the computational cost for one
iteration and the number of iterations that are Irequired for reaching a fixed diffusion
time T. The latter depends on the largest time step size under which the scheme is
stable. I

Unfortunately, is is not possible to derive theoretical stability bounds for these meth-
ods. The reason is that the von Neumann stab~lity using the Fourier transform is not

I

applicable to our nonlinear equations, and stability reasonings based on maximum-
minimum principles cannot be applied either, Isince the discretization of the mixed
derivatives do in general create some negative ,eights. The only exception is the non-
negativity discretization provided that the confition number of the diffusion tensor
remains below 3 + 2V2 ~ 5.828. In our case with Cl = 0.001, however, condition num-
bers up to 1000 are possible, and in this case nekative weights may also appear for the
nonnegativity discretization. I

Owing to the lack of strict theoretical resu[ts, we have to perform experimental
stability measurements. As astability criterionj we use the temporal evolution of the
variance of the filtered image. From theory one Knows that the variance has to decrease
monotonously for diffusion filters [41]. Thus, ifl a numerical scheme does increase the
variance from one step to the next, it is a clear sign of instabilities. As an upper estimate
for an experimentally stable behavior we have therefore searched for the largest time
step size for which the variance decreases monotionously for the first 100 iterations.

I
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Table 1: Efficiency of the different methods on a PC (Pentium II MMX, 440 MHz). All
algorithms were implemented in a comparable way using ANSI C, and we used the same
image and filter parameters as in Figure 6.

discretization CPU time per iteration stability bound

explicit, standard 0.2860 s 0.5

explicit, nonnegativity 0.2951 s 0.5

AOS-stabilized, standard 0.3068 s 2.1

our scheme 0.3415 s 2.1

The results of our efficiency analysis are depicted in Table 1. It should be observed
that our stability criterion tends to overestimate the stability bounds: instabilities may
also arise before the monotony of the variance is violated. In order to be on the safe side
we recommend to use the time step size 0.25 for the explicit standard or nonnegativity
discretizations, and to use the step size 1 for the AOS-stabilized standard discretization
and our novel scheme. In this case the total CPU times for diffusing the van Gogh
image until T = 10 on a PC (Pentium II MMX, 440 MHz) are as follows: 11.44 s for
the explicit standard discretization, 11.80 s for the explicit nonnegativity discretization,
3.07 s for the AOS-stabilized standard discretization, and 3.42 s for the scheme proposed
in this paper. This shows that our novel scheme is also very efficient. In spite of being
explicit, it is almost as fast as the semi-implicit AOS-stabilized scheme. It is 3-4 times
more efficient than the other explicit techniques.

This is caused by the fact that our scheme allows four times larger time step sizes
than the other explicit techniques. An intuitive explanation for this can be given by con-
sidering an extremely simplified example: when discretizing the linear diffusion equation
OtU = oxxu in an explicit way we end up with the scheme

where the upper indices denote the time discretization, the lower ones are the space
discretization, T is the time step size, and h is the spatial step size. From standard
literature on numerical methods for PDEs [29] it is well-known that such a scheme is
stable for T ~ h2/2. A corresponding 1D version of our scheme would be

k+l k T (k 2 k k)ui = ui + (2h)2 Ui+2 - ui + Ui-2 .

This method performs averaging over pixels that have the distance 2h instead of h as in
the previous case. It is thus stable for step sizes T ~ (2h)2/2, which is just four times
the stability bound of the explicit scheme. These considerations suggest that it is the
averaging over a 5 x 5 mask that is responsible to the increased stability bound of our
method compared to classical explicit schemes which average over a 3 x 3 mask.
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As already mentioned, this 1D example is ~xtremely simplified. In particular it
should be observed that the novel 2D scheme islmuch more than a traditional scheme
on a subsampled grid: while such a simple subsampling would increase dissipative effects,
the experiments in this section have shown that the opposite is the case for our scheme.
Moreover, in the 2D case with optimized spatiallderivative operators one obtains 5 x 5
masks that do in general contain no zero entries. Exceptions are those cases where the
structure orientation coincides with the principkl grid directions. But even here the
stencil does not decouple into two subgrids. THis explains the experimental fact that

I

checkerboard-like structures decrease for larger times.
If checkerboard structures appear unpleasantl, there are several ways to modify the

scheme in order to shorten their lifetime. For instince, one can split the isotropic fraction
cll of the diffusion tensor from the remainder, arid discretize clb.u by means of a classic
3 x 3 stencil. It is also possible to alternate thk novel scheme with one of the others
that require a3 x 3 stencil, since all schemes are bonsistent discretizations of coherence-
enhancing diffusion filtering. It should, howev~r, be noted that these modifications
complicate the scheme, and that they may intro:duce additional dissipative effects and
deviations from rotation invariance. In order to ishow the extremes, we focused in this
paper on a pure 5 x 5 scheme without any blendings with existing 3 x 3 schemes.

Last but not least, it should be mentioned thJt it is possible to consider also implicit
schemes that are based on the 5 x 5 stencil of thJ scheme in this paper. One can expect

I

that they have an increased stability range. There is of coarse no free lunch: the price
that one has to pay for this is the solution of a linear system of equations with up to 25
nonvanishing entries in each row.

5 Summary and Conclusions
In the present paper we have introduced an explicit discretization for coherence-enhancing
anisotropic diffusion filtering which uses first-order derivative approximations that have
been optimized for rotational invariance. In a detailed evaluation with existing schemes
we have shown that the novel scheme has superior directional performance. This point
is very important for anisotropic diffusion techniques, since directional errors introduce
visible smoothing artifacts (dissipative effects) and large numerical errors. We have also
shown that our scheme, which comes down to averaging over 5 x 5 masks, allows to use
three to four times larger time step sizes than conventional explicit schemes that perform
3 x 3 averaging. With this efficiency gain it is almost as efficient as an AOS-stabilized
semi-implicit technique. These performance cha~acteristics render it the first choice in
all situations where a simple algorithm for coherence-enhancing diffusion is needed that
combines good quality with high efficiency. I

It is our hope that the basic idea of using optimized first-order derivative operators
in order to create good directional behavior of anisotropic filters can also be successfully
applied to other important anisotropic PDEs subh as mean curvature motion [3, 27] or
the affine invariant morphological scale-space [2, 36].

16



References
[1] S.T. Acton, Multigrid anisotropie diffusion, IEEE Trans. Image Proc., Vol. 7, 280-

291, 1998.

[2] L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel, Axioms and fundamental equa-
tions in image processing, Arch. Rational Mech. AnaL, Vol. 123, 199-257, 1993.

[3] L. Alvarez, P.-L. Lions, J.-M. Morel, Image selective smoothing and edge detection
by nonlinear diffusion. II, SIAM J. Numer. AnaL, Vol. 29, 845-866, 1992.

[4] L. Alvarez, F. Morales, Affine morphological multiscale analysis of corners and
multiple junctions, Int. J. Comput. Vision., Vol. 25, 95-107, 1997.

[5] L. Alvarez, J.-M. Morel, Formalization and computational aspects of image analysis,
Acta Numerica, 1-59, 1994.

[6] 1. Bajla, 1. Holländer, Nonlinear filtering of magnetic resonance tomograms by
geometry-driven diffusion, Machine Vision and Applications, Vol. 10, 243-255, 1998.

[7] E. Bänsch, K. Mikula, A coarsening finite element strategy in image selective
smoothing, Computation and Visualization in Science, Vol. 1, 53-61, 1997.

[8] M.-O. Berger, R. Deriche, 1. Herlin, J. Jaffre, J.-M. Morel (Eds.), leADS '96:
Images, wavelets and PDEs, Lecture Notes in Control and Information Sciences,
Vol. 219, Springer, London, 1996.

[9] J. Bigün, G.H. Granlund, Optimal orientation detection of linear symmetry, Proc.
First Int. Conf. on Computer Vision (ICCV '87, London, June 8-11, 1987), IEEE
Computer Society Press, Washington, 433-438, 1987.

[10] V. Caselles, J.M. Morel, G. Sapiro, A. Tannenbaum (Eds.), Special issue on par-
tial differential equations and geometry-driven diffusion in image processing and
analysis, IEEE Trans. Image Proc, Vol. 7, No. 3, March 1998.

[11] F. Catte, P.-L. Lions, J.-M. Morel, T. Coll, Image selective smoothing and edge
detection by nonlinear diffusion, SIAM J. Numer. AnaL, Vol. 29, 182-193, 1992.

[12] G.-H. Cottet, M. EI Ayyadi, A Volterra type model for image processing, IEEE
Trans. Image Proc., Vol. 7, 292-303, 1998.

[13] G.-H. Cottet, L. Germain, Image processing through reaction combined with non-
linear diffusion, Math. Comp., Vol. 61, 659-673, 1993.

[14] A. Dressei, Die nichtlineare Diffusion in der Bildverarbeitung, M.Sc. thesis, Faculty
of Mathematics, University of Heidelberg, Germany, 1999.

17



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

i

1. Lucido, R. Deriche, L. Alvarez, V. Rigaudl, Sur quelques schemas numeriques de
resolution d' equations aux derivees partiell~s pour le traitement d 'images, Report
No. 3192, ROBOTVIS, INRIA, 2004 routJ des Lucioles, BP 93, 06902 Sophia-
Antipolis Cedex, France, 1997. I

,

W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct
points, corners and centres of circular featu)es, Proc. ISPRS Intercommission Con£.
on Fast Processing ofPhotogrammetric DatJ (Interlaken, June 2-4,1987),281-305,

I1987. I

J. Fröhlich, J. Weickert, Image processing using a wavelet algorithm for nonlinear
diffusion, Report No. 104, Laboratory of Tedhnomathematics, University of Kaiser-
slautern, P.O. Box 3049, 67653 KaiserslautJrn, Germany, 1994.

A.S. Frangakis, R. Hegerl, Nonlinear anisotrlPic diffusion in three-dimensional elec-
tron microscopy, M. Nielsen, P. Johansen, jb.F. Olsen, J. Weickert (Eds.), Scale-
space theories in computer vision, Lecture Notes in Computer Science, Vol. 1682,
Springer, Berlin, 386-397, 1999. I

T. Grahs, A. Meister, T. Sonar, Image procksSing for numerical approximations of
conservation laws: nonlinear anisotropic art~ficial dissipation. Technical Report F8,
Institute for Applied Mathematics, Univers1ity of Hamburg, Bundesstr. 55, 20146
Hamburg, Germany, 1998. I

B. ter Haar Romeny, L. Florack, J. KoendJrink, M. Viergever (Eds.), Scale-space
I

theory in computer vision, Lecture Notes in pomputer Science, Vol. 1252, Springer,
Berlin, 1997. I

H. Haußecker, B. Jähne, A tensor approacA for precise computation of dense dis-
I

placement vector fields, E. Paulus, F.M. Wahl (Eds.), Mustererkennung 1997, 199-
208, Braunschweig, Springer, September, 19i97.

B. Jawerth, P. Lin, E. Sinzinger, Lattice Boltzmann models for anisotropic diffusion
of images, M. Nielsen, P. Johansen, O.F. Ols:en, J. Weickert (Eds.), Scale-space the-
ories in computer vision, Lecture Notes in <Domputer Science, Vol. 1682, Springer,
Berlin, 283-293, 1999. I

I

B. Jähne, Spatio-temporal image processing, Lecture Notes in Computer Science,
Vol. 751, Springer, Berlin, 1993. !

B. Jähne, Performance characteristics of loL-level motion estimators in spatiotem-
I

poral images, W. Förstner (Ed.), DAGM-'jV0rkshop Performance Characteristics
and Quality of Computer Vision Algorithms, Braunschweig, September 18, 1997.

B. Jähne, H. Scharr, S. Körkel, Principles o} filter design, B. Jähne, H. Haußecker,
P. Geißler (Eds.), Handbook on Computer Vision and Applications, Vol. 2: Signal
Processing and Pattern Recognition, Acadebic Press, San Diego, 125-152, 1999.

I

18



[26] M. Kass, A. Witkin, Analyzing oriented patterns, Computer Vision, Graphics, and
Image Processing, Vol. 37, 362-385, 1987.

[27] B.B. Kimia, A. Tannenbaum, S.W. Zucker, On the evolution of eurves via afunetion
of eurvature. 1.' The classieal ease, J. Math. Anal. Appl., Vol. 163, 438-458, 1992.

[28] R. Kimmel, R. Malladi, N. Sochen, Images as embedded maps and minimal surfaees:
movzes, color, texture, and volumetrie medieal images, Int. J. Comput. Vision, to
appear.

[29] K.W. Morton, D.F. Mayers, Numerieal solution of partial differential equations,
Cambridge Vniversity Press, Cambridge, 1994.

[30] M. Nielsen, P. Johansen, O.F. Olsen, J. Weickert (Eds.), Beale-spaee theories in
computer vision, Lecture Notes in Computer Science, Springer, Berlin, Vol. 1682,
1999.

[31] P. Perona, J. Malik, Beale spaee and edge detection using anisotropie diffusion,
IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, 629-639, 1990.

[32] T. Preußer, M. Rumpf, An adaptive finite element method for large seale image pro-
eessing, M. Nielsen, P. Johansen, O.F. Olsen, J. Weickert (Eds.), Scale-space the-
ories in computer vision, Lecture Notes in Computer Science, Vol. 1682, Springer,
Berlin, 223-234, 1999.

[33] V.S. Ranjan, K.R. Ramakrishnan, A stoehastie seale spaee for multiseale image
representation, M. Nielsen, P. Johansen, O.F. Olsen, J. Weickert (Eds.), Scale-
space theories in computer vision, Lecture Notes in Computer Science, Vol. 1682,
Springer, Berlin, 441-446, 1999.

[34] A.R. Rao, B.G. Schunck, Computing oriented texture fields, CVGIP: Graphical
Models and Image Processing, Vol. 53, 157-185, 1991.

[35] K.O. Riedel, Corner-preserving anisotropie diffusion and junetion deteetion using
the strueture tensor, W. Förstner, J.M. Buhmann, A. Faber, P. Faber (Eds.), Mus-
tererkennung 1999, Springer, Berlin, 164-171,1999.

[36] G. Sapiro, A. Tannenbaum, Affine invariant seale-spaee, Int. J. Comput. Vision,
Vol. 11, 25-44, 1993.

[37] H. Scharr, S. Körkel, B. Jähne, Numerische Isotropieoptimierung von FIR-Filtern
mittels Querglättung, E. Paulus, F.M. Wahl (Eds.), Mustererkennung 97, 367-374,
Braunschweig, Springer, September, 1997.

[38] A.F. Sole, A. L6pez, C. Caiiero, P. Radeva, J. Saludes, Crease enhaneement dif-
fusion, M.1. Torres, A. Sanfeliu (Eds.), Pattern Recognition and Image Analysis
(VIII NSPRIA, Bilbao, 1999), Vol. 1, 279-286, 1997.

19



[39] J. Weickert, Seale-spaee properties of nonli'near diffusion jiltering with a diffusion
tensor, Report No. 110, Laboratory of Technomathematics, University of Kaiser-
slautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994.

[40] J. Weickert, Multiseale texture enhaneement, V. Hlavac, R. Sara (Eds.), Computer
analysis of images and patterns, Lecture Notes in Computer Science, Vol. 970,
Springer, Berlin, 230-237, 1995.

[41] J. Weickert, Anisotropie diffusion in imageproeessing, Teubner, Stuttgart, 1998.

[42] J. Weickert, Nonlinear diffusionfiltering, B. Jähne, H. Haußecker, P. Geißler (Eds.),
Handbook on Computer Vision and Applications, Vol. 2: Signal Processing and
Pattern Recognition, Academic Press, San Diego, 423-450, 1999.

[43] J. Weickert, Coherenee-enhaneing diffusion of eolour images, A. Sanfeliu, J.J. Vil-
lanueva, J. Vitria (Eds.), Pattern Recognition and Image Analysis (VII NSPRIA,
Barcelona, April 21-25, 1997), Vol. 1, 239~244, 1997. Extended version in Image
and Vision Computing, Vol. 17, 199-210, 1999.

[44] J. Weickert, Coherenee-enhaneing diffusion filtering, Int. J. Comput. Vision, Vol.
31,111-127,1999.

[45] J. Weickert, B.M. ter Haar Romeny, A. Lopez, W.J. van Enk, Orientation analysis
by eoherenee-enhaneing diffusion, Proc. Symp. Real World Computing (RWC '97,
Tokyo, Jan. 29-31, 1997),96-103, 1997.

[46] J. Weickert, B.M. ter Haar Romeny, M.A. Viergever, Effieient and reliable sehemes
for nonlinear diffusion filtering, IEEE Trans. Image Proc., Vol. 7, 398-410, 1998.

20


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022



