
Reihe Informatik
16/2000

YAXQL:
A powerful and web-aware query language supporting

query reuse and data integration
Guido Moerkotte Thorsten Fiebig

YAXQL:

A powerful and web-aware query language supporting query reuse and

data integration

Guido Moerkotte and Thorsten Fiebig

Fakultät für Mathematik und Informatik

University of Mannheim

68131 Mannheim

Germany

(moerkotte I fiebig)@informatik.uni-mannheim.de

August 7, 2000

Abstract

Since XML seems to be the next great wave on the web, several query languages for XML have been proposed.

Unfortunately, none of these proposals comes even elose to meet the requirements for such a query language. We

review the requirements for a query language for XML and propose a new query language, YAXQL, which meet

them.

1 Introduction

XML [6] is the first semistructured data model of practical relevance and soon there will be a need for a query

language for querying XML documents. Research offers query languages from two areas: query languages for the

web (like W3QL [22]' WebSQL [27, 28] and WebOQL [4] that build on SQL and OQL or logic-based languages like

WebLog [23] and FLORID [20)), and query languages for semistructured data (like Lorel [3jl, OQL-doc [2]' StruQL

[17]' UnQL [7] and YATL [10, 11)). Query languages for the web concentrate on extracting information from web

pages, typically written in HTML. Since HTML tags do not carry document or application specific semantics but

specify some document structure and mostly layout instead, these query languages concentrate on extracting data

from documents by pattern and structure matching. While these capabilities remain useful for XML, these query

languages cannot deal with the specific features of XML documents. Query languages for semistructured data build

lwhich was later adapted to XML[19]

1

mailto:fiebig@informatik.uni-mannheim.de

on their own data model. This data model often does not incorporate order-an essential feature of XML documents.

Further, they neglect the details of XML and therefore do not support its essential features. However, some of these

query languages have been extended to deal better with XML documents [19]. The query languages proposed so far

have not meet the requirements stated in the next section yet.

Lately, several proposals for query languages for XML were presented at 01W3C workshop [26] on query languages

for XML. Even the most promising proposals (like XQL [30]' XQuery [15, 14]' <unnamed> [5]) do not extend XPath

[9]-01 language recommended by W3C for addressing parts in XML documents-to 01fu11fledged pattern matching

language. These extensions also fail to meet our requirements. Whereas the above mentioned query languages

have their roots in document processing, the database community so far proposed three query languages to deal

with XML documents. XML-QL [16] derived from StruQL [17]-together with Lorel [3]-is one of the first query

languages proposed. Both lack essential XML support like dealing with IDREFS lists. Further, they do not meet the

requirements discussed in the next section. A newer proposal is YATL [10, 11]. It has the same deficiencies as the

other two languages. Furthermore, as shown in [18]' these query languages are mainly syntactic variations of each

other. Whereas these query languages fo11owthe traditional select-from-where paradigm-although with syntactic

variations-UnQL [7] goes its own way by applying structural recursion to query documents. UnQL does not have

special support for XML and its underlying data model, an edge labeled graph, is different from the underlying data

model for XML (see the XPath documentation which discusses XML's data model [9]).

One of the most important outcomes of the W3C query language workshop [26] is 01list of requirements [12].

Unfortunately, this list contains requirements that are not central and some important requirements are missing.

Hence, we compiled 01list of requirements that are in our opinion core requirements for 01query language for XML.

This list is discussed in the next section. Section 3 gives an informal introdcution to YAXQL by describing its basic

features. Section 4 demonstrates the query reuse and data integration capabilities of YAXQL by means of example

queries. Since-due to space limitations-not 0111features of YAXQL can be presented by examples, section 6 briefly

discusses some more features. One of the unique features of YAXQL is its possibility to have parameters that may

be unbound at query evaluation time.. To support this feature, 014-valued logic is sketched in section 5. Section 7

concludes the paper. Appendix A contains sampie DTDs and documents underlying the example queries. Appendix B

contains most of YAXQL's DTD. The latter appendix is included far reviewing purpases only.

2 Hypothesis and Requirements

We start by giving four hypotheses that drove the development of the requirements and YAXQL. The first hypothesis

is that (H 1) query languages are good in processing variable bindings. This is in our opinion the most prominent

feature of existing query languages. A feature we want to keep. The second hypothesis (H 2) states that 01query

should consist of four parts. The responsibilities of these parts are

1. to produce variable bindings,

2

The query language must ...

1. ... be web-aware;

2. . .. provide for maximal reuse of queries;

3. . .. allow explicit type conversionsj

4. . .. be sufficiently expressive;

5 be able to construct XML documents;

6 allow queries to return not only values but also references (e.g. XPointers);

7 build upon other standards: XPath [9]' XPointer [25]' and XSLT [8].

Figure 1: Classes of Core Requirements

2. to restrict the collection of produced variable bindings,

3. to project the relevant variable bindings, and

4. to construct the result.

Note that the third and fourth part coincide in traditional query languages like SQL and OQL. However, we want to

keep these parts separate (by providing different syntactic constructs) in order to be able to reuse parts of a query.

More specifically, we want to reuse the part of the query that pro duces variable bindings and separate it from the result

construction. This ability will be one of our core requirements. Reuse of queries implies that queries are identifiable

entities. All query languages mentioned in the introduction fail to support query identification and query reuse. To

compensate this deficiency, some proposals exist for view mechanisms [1].

Hypothesis 3 (H 3) concerns the first part of a query. It states that tree matching is the preferred way to produce

variable bindings from a (set of) XML document(s). The requirement directly following from this hypothesis is that

any query language for XML should provide a full-fledged support for tree pattern matching. All query languages

proposed so far fail to do this. (For a good overview of different tree-matching classes and their complexity see [21]).

Hypothesis 4 (H 4) states that a query language for XML must be web-aware. This has several implications. First,

it must allow to query documents that are not only contained in a given repository for semistructured data, but also

any document contained anywhere in the Web. Further, if data services are provided by a forms-based interface, the

query language must support querying these interfaces. The query languages for semistructured data proposed so far

fail to meet these requirements.

Fig.1 contains some classes of core requirements for any query language for XML. Every class contains a whole

bunch of requirements. The most important ones will be discussed below. Some of the requirements are contained

in [12, 29, 24]. The first requirement directly turns our fourth hypothesis into a requirement. We also touched the

second requirement. It is partially a consequence of web-awareness but has several implications. Identification and

referenciability of queries to maximize possible reuse of queries are two core implications. In order to find interesting

queries which can be reused, the syntax of the query language should be XML in order to allow for querying queries

3

homogeneously. This requirement can be motivated as follows. It is very likely that data providers do not provide

unlimited access to static data collections but instead provide access to the data collections via services. These services

can easily be specified by a query language. A value-added service could combine several of these sources by joining

data from different sources. (This feature will be highlighted by some of our example queries.) In order to do so,

queries must be identifiable, reusable units that can be referenced within other queries. Note that view mechanisms

fail at this point. If only views and not queries can be used within a query definition, the service providers are forced

to specify any service twice: once as a query and once as a reusable view.

There are more implications to be drawn from the requirement to maximize reuse. Consider a service that is

provided by a forms-based interface. Not necessarily all the entries in the forms have to be filled in by the user.

Nevertheless, we want the service provider to be able to specify only a single query instead of one query far every

possible combination of filled entries2. This kind of reuse requires the query to contain several free variables (param-

eters/arguments) and only some of them are bound prior to query evaluation. This implies to modify the underlying

logic of query languages seen so far. W-etackle this problem in section 5 where we introduce a four-valued logic specif-

ically tailored to deal with the semantics of queries containing free variables. None of the query languages proposed

so far considers this point.

Requirement 3 is motivated easily by the observation that both "10" < "3" and 3 < 10 are valid. Requirement 4

is partially obvious and will partially be motivated by our example application in the next section. It implies support

of joins, nested queries, recursive queries, full-text search, and the like. It also includes query support for all XML

features. Consider a simple example of the latter. XML provides an attribute type IDREFS. Such an attribute contains

a blank separated list of element identifiers. None of the query languages proposed so far (not even XQL [30]' XQuery

[15, 14]' <unnamed> [5]' XML-Query [16]) provides a mechanism to access these identifiers separately, e.g. by iterating

through them.

A closure requirement is not necessarily a feature of a query language for XML (see also the discussion in [24]).

Instead, the query language can be restricted to produce variable bindings. The part then converting a query result

into a representation (e.g. an XML document (see Requirement 5)) can also be implemented by using a style sheet

language. This is essentially the approach taken by YAXQL. However, we need to provide some glue mechanisms to

group variable bindings3 and to iterate through them. In all current query languages, variables are bound to (copied)

XML-fragments (including Rat text), which makes it impossible to return a list of X-Pointers to XML-fragments. We

think that it is absolutely necessary for a query language to allow variables to be bound to X-Pointers to provide a

reference mechanism and avoid copy semantics in cases where this is not desired. Requirement 6 suggests to use the

X-Pointer [25] mechanism.

Obviously, other work that is related to a query language for XML should be incorporated. This point is stressed

by requirement 7.

2For n parameters there are 2n possible bound/unbound combinations. Stating all these explicitly is rather tedious
3Some query languages express grouping with Skolem functions.

4

Queries on the web will be used by millions of users but these users will comparatively seldom pose ad-hoc queries4.

Hence, terseness is no requirement.

2.1 Scenario

A variety of databases für biological applications exists on the Web. The servers that we are interested in are the Expasy

server (http://www.expasy.ch), the EBI server (http:/ /srs.ebi.ac.uk), and the Genome server (http://www.genome.ad.jp).

The Expasy server contains the standardized enzyme classification. The EBI server contains detailed enzyme infor-

mation and the genome server contains detailed information ab out reactions catalyzed by enzymes. None of these

servers provide their data in XML. To illustrate our example queries, we extracted the essence of these servers and

designed our own DTDs. Together with sample documents, these DTDs are listed in appendix A. We assume that all

these servers provide some services. Currently, these servers provide these services as a form-based query interface.

We will mimic these services by casting the underlying queries into YAXQL queries. For the service provider, using a

declarative language to specify the services has the usual advantages.

Since any of these servers provides only a limited view of the data around enzymes, we will further open a new

server that provides value-added services by integrating the data. We will call this server NEW. For the other servers

we use the following names:

EC hierarchical enzyme classification

EDB detailed enzyme information data base

RDB reaction database

For every server we assume that alllocal queries are contained in a file queries.xml managed at the server site.

3 YAXQL Basics

This section gives an informal introduction to YAXQL. As a YAXQL query is a combination of XML elements it is

valid XML data. Hence, we do not use the usual terms like clause or operator for the introduction of a query language,

but the term element.

For the structuring cif queries YAXQL comes along with several top-level elements. Members of the top level

elements are xql: query, xql: construct and xql: query-construct. The xql: query element includes the first three

parts of H 2. The xql: construct element describes the result construction. To combine the two elements YAXQL

provides the xql: query-construct element.

The remainder of the section is structured as follows. First, the generation of variable bin ding is described.

Therefore, we introduce several variable binding elements. Next, we introduce the processing of variable bindings in

YAXQL. Finally we sketch the result construction in YAXQL. The query reuse capabilities of YAXQL are described

in the following section.
4This situation is similar to the situation in the relational context where end-users rarely pose SQL queries.

5

http://www.expasy.ch,
http://www.genome.ad.jp.

3.1 Basic Variable Binding Elements

In YAXQL a binding of a variable is a mapping of a variable name to its associated value. So, it is represented as a

pair containing the variable name and the bounded value. Bindings of different variables are combined to a variable

binding set. There are three different value types: nodes, strings and X-Pointers. Thus, we define the three different

binding types source, string and X-Pointer. In the first case, the XML fragment is copied and assigned to the

variable. In the second case, the XML fragment is extracted and all the markup is eliminated according to the rules

specified for the stringO function in XPath. In the third case, the variable is bound to an X-Pointer [25]' that points

to the specified data.

YAXQL features the basic variable binding elements xql:match and xql:bind. A variable binding element de-

clares a single variable and creates bindings for the variable by matching an extended X-Path expressions. As these

expressions are already described in [9] we do not give a detailed description here. The result of the bin ding process

described by the elements is a collection of variable binding sets.

The variable binding elements provide the attributes var, data-type, select, href and bind-to. The var

attribute specifies the name of the variable. The optional attribute data-type defines adefault data type of the

variable binding. This defines adefault data conversion that is applied each time the value of a binding is accessed.

The content of the select attribute is the extended X-Path expression that references the relevant nodes in the XML

document. The X-Path expression references nodes relative to a given start node. In a variable binding element there

are two possibilities for the specification of astart node. First, a URI of an XML document can be specified in the

href attribute. Then the root node of this document becomes the start node of the X-Path expression. Second, a

value of a given variable binding can be used. But only the value of variable bin dings with the binding type source

or X-Pointer can be used as astart node. In order to use the value of a source binding the X-Path expression has to

be preceded by the variable name. The X-Path concatenation "I" glues the variable name and the X-Path expression.

If the binding has the type X-Pointer the operator "I" concatenates the variable name and the X-Path expression.

The bind-to attribute determines the binding type discussed above.

The following query gives an example for the application of the variable binding elements. It queries the EDB

server mentioned in our scenario. It pro duces a collection of variable binding sets, by application of a combination of

a xql: match and a xql: bind element. Each set contains the bin dings for the variables enzyme and ph-opt. Thus,

the collection lists enzymes together with their optimal ph value:

<xql:query name="example-query">

<xql:match var="enzyme"

href="edb.xml"

select="/edb: enzymes/edb: enzyme"

bind-to="source"l>

<xql:bind var="ph-opt"

data-type="number"

6

select="$enzyme/edb:ph-opt"

bind-to="string"/>

</xql:query>

The xql :match element binds the variable enzyme to the enzyme nodes found in the document edb. xml by the X-Path

expression / edb: enzymes/ edb: enzyme. The result is a bag of sets whose elements represent the bindings of the enzyme

variable.

In contrast to xql: match- the xql: bind element only creates a single binding for its variable. Therefore it takes

the first according to the document order of the node set described by the X-Path expression. Thus, the result is a set

that contains a single variable binding set. In our example query the xql: bind creates for each binding of the enzyme

variable astring binding for the ph-opt variable. Hence, the xql: bind contains a simple X-Path expression that is

preceded by the variable enzyme.

The result of the combined variable binding element is constructed as follows. For each variable binding set of the

xql :match element we create a set that has the variable binding set as its only element. Next, we build the union

of this set and the variable binding set that is returned by the xql: bind element. All union sets together form our

result.

In order to retreive the value of variable bin dings YAXQL provides the elements xql: value and xql: deref. The

xql: value returns the value of a binding. 1£the binding type is source or string and adefault data type is given,

xql: value converts the value accordingly. In contrast to xql: value the xql: deref element can only be applied to

X-Pointer bindings. The element dereferences the given X-Pointer and returns the result. 1£adefault data type is

given, the result is converted accordingly. Both elements have the optional attribute data-type. if there is no given

default data type, it can be used for the explicit specification of a data type.

Moreover, the xql: source can be used to access the value of a variable binding. Like xql: bind it selects a single

node by applying an extended X-Path expression, but without creating variable bindings.

For the expression of tree patterns we use nested xql :match elements. A nested xql :match element has a parent

element. Its content consists of several child elements. The semantic oI the nesting is that the child nodes of the

variable binding of the parent element are the start nodes of the X-Path expressions of the child elements. To achieve

a greater flexibility for the expression of tree patterns the xql :match provides the attributes ordered and max-gap. 1£

the order of the child elements should coineide with the order of their matching in the document, the order attribute

of the parent element is set to YE8. The max-gap attribute defines the maximal distance between the start nodes of

two neighbor child elements.

3.2 Variable Binding Processing

By the Processing of variable bindings we mean filtering and projection. Consider the following extension of our

example query:

<xql:query name="example-query">

7

<xql:match var="enzyme"

href="edb.xml"

select="/edb: enzymes/edb: enzyme"

bind-to="source"/>

<xql:bind var="ph-opt"

data-type="number"

select="$enzyme/edb:ph-opt"

bind-to="string"/>

<xql:predicate>

<xql: lt>

<xql:value var="ph-opt">

<xql:constant data-type="number"> 7 </xql:constant>

</xql:lt>

</xql:predicate>

<xql:project>

<xql:bind var="enzyme-class"

select="$enzyme/edb:ec-class"

bind-to="string"/>

</xql:project>

</xql:query>

The query generates a bag of variable binding sets that consist of a single element representing the binding of the

enzyme-class variable. The value of the binding is astring containing the dass name of an enzyme that has an

optimal ph-value that is less then seven.

In YAXQL the filtering of variable binding is performed by the application of boolean expressions. The expressions

are embedded in the content ofaxql :predicate element. The elements xql: and, xql: or and xql: not represent

the boolean operators and, or and not. The content of the xql: and and the xql: or element is a list of boolean

expressions, which are based on the usual boolean functions. As in Lisp the YAXQL comparison operators can be

applied on a list of operands. Moreover, there are elements to express all and exist quantifiers. The evaluation of a

boolean expression is based on four-valued logic, which is needed for the evaluation of express ions with unbound free

variables. Further details are discussed in seetion 5.

In our example query we access the binding of the ph-opt variable by the application ofaxql :value element.

The filtering predicate is a less-then comparison between the value of the ph-opt binding and the constant expression

7.

For the utilization of constant expressions in YAXQL we introduce the xql: constant element. In order to reuse

a constant expression the element has the const attribute. Its value contains a unique identifier for the expressions.

Additionally the element has a data-type attribute, which specifies a data type of the constant expression.

8

The final part of the variable processing is the projection which determines the structure of the query result. For

the projection we introduce an xql: pro j ect element that contains several xql: bind elements. These elements are

applied to every filtered variable binding set. The union of the resulting variable binding sets forms an element of the

query result.

In our example query the filtered variable binding sets are projected to the bindings of the variable enzyme-c1ass.

which is bound to the dass name of the enzymes referenced by the variable enzyme.

3.3 Result Construction

Result construction transforms a given collection of sets of variable bindings into some textual form. This will mostly

be an XML document but can also be something else like an HTML document. The construct element specifies a

result. If the output of the construct element is known to conform to some DTD, this DTD can be specified. Any

style sheet language like XSL will be very helpful to construct XML documents. Given such a style sheet language,

we only need some glue mechanisms to transform our variable bindings into text.

Consider the following example of a result construction. It is based on the variable bindings of our example query.

The result consists of a single enzymes element which contains an enzyme element for each enzyme dass. The content

of the enzyme element is the string representation of the name of the dass the enzyme is belonging to.

<xql:construct name="example-construct">

<enzymes>

<xql:for-each vars="enzyme-class">

<enzyme> <xql:value var="enzyme-class"/></enzyme>

</xql:for-each>

</enzymes>

</xql:construct>

For the result construction all non- YAXQL elements are placed in the result. In order to indude elements based on

the input variable bindings we introduce the xql: for-each element. The element describes a grouping of the input

variable bin dings according to the variables referenced by the vars attribute. For each group the element content is

embedded into the result. For the embedding of variable bindings into the query result we use the elements xql: value,

xql: deref and xql: source.

4 Query Reuse and Data Integration in YAXQL

In this section we demonstrate the query reuse and data integration capabilities of YAXQL. These capabilities are

based on the modularization of YAXQL. To achieve this we separate the generation and the processing of variable

bindings from the result construction. The prerequisite for the reuse are unique identifiers for the different query

parts. Therefore the YAXQL top elements are featured with a name attribute that contains a unique identifier.

9

Another important point is the possibility to define free variables in an xql: query or in an xql: construct element.

A free variable is declared by the xql: declare element. The element attributes var and data-type determine the

name and the data-type. The maybe-unbound attribute determines whether the query part can be evaluated without

binding the free variable.

A xql: query element is referenced by an xql: query-reference element. The referenced element is specified by

the value of the href attribute. The content consists of several xql: bind elements that bind the free variables of the

referenced query. Moreover, the content may contain an xql: predicate element to filter the variable bin dings of the

referenced query and an xql: proj ect to customize their structure.

For the referencing of an xql: construct element a xql: construct-reference element is used. Like xql: query-refe

the referenced element is specified by the value of the href attribute. Not only xql: query and xql: construct ele-

ments can be referenced, but also a combination can be referenced by a xql: query-construct element.

In the remainder of this section we give some examples for the reuse of YAXQL queries. First, we show how free

variables are declared in xql: query-elements. Second, we describe the referencing of xql: query element and show

how arguments are passed and how even queries can be used as arguments. Finally, we give an example query that

demonstrates the data integration capabilities of YAXQL.

4.1 Declaration of Free Variables in YAXQL

The EC server provides a service to look up an enzyme class given the classification number. This service can be

implemented by a query with one free variable (parameter/argument) that will be bound to the classification number

at query evaluation time. The query is

<xql:query name="ec:ql">

<xql:declare var="ec-class" maybe-unbound="NO"/>

<xql:project>

<xql:bind var="result"

href="ec.xml"

select="/ec:classes/*[@name=$ec-class]"

bind-to="X-Pointer"/>

</xql:project>

</xql:query>

Another example query with free variables queries the EDB serverthat contains detailed information about enzymes.

Among the data recorded for every enzyme is its systematic name, its recommended name and alternative names. A

specific service allows to look up enzymes by any of these names. The following query uses disjunction ("1"5) in the

selector predicate to search for any name given as a parameter to the query.

<xql:query name="edb:q2">

5see XPath [9]

10

<xql:declare var="ec-name" maybe-unbound=INO"/>

<xql:project>

<xql:bind var="result"

href="edb.xml"

select="/edb:enzymes/edb:enzyme/[@sysname=$ec-name

@recname=$ec-name

@name=$ec-name]"

bind-to=IX-Pointer"/>

</xql:project>

</xql:query>

4.2 Reuse of YAXQL Queries

After the introduction of queries with free variables we are ready to give an example for query reuse. In order to

uniquely access a variable v bound by a query q, we use the notation $(q)v. Hence, $(ec:ql)result references the

result variable of query q1. The following query retrieves all enzymes belonging to a given dass. Since the enzyme

classification is hierarchical and no level is specified, one must descend arbitrarily deep. We use the Kleene operator

,,**,,6 in conjunction with the dereference operator to follow an arbitrary path of ec: links. To determine the starting

point, we reuse query ec: ql which retrieves the ec-class we are interested in.

<xql:query name=lec:q3">

<xql:declare var="ec-class-name" maybe-unbound=INO"/>

<xql:query-reference href="ec:ql">

<xql:bind var="ec-class" select="$ec-class-name"/>

</xql:query-reference>

<xql:match var= 11 enzyme 11

select=I$(ec:q1)result->/(ec:link/@href-»**/ec:enzyme"

bind-to=IX-Pointer"/>

<xql:project>

<xql:bind var="result" select="$enzyme"/>

</xql:project>

</xql:query>

The following query against the RDB server gives a more sophisticated example of query reuse. Given a set of enzymes,

specified by a query and its result variable name, the enzymes and their ph-values are retrieved and ordered by the

ph-value. The parameter query must be evaluable without specifying any argument.

<xql:query name=lrdb:q2">
6 "*,, denotes a wild card in XSL- T. Hence, we use "**,, to denote' the Kleene operator.

11

<xql:declare var="query"/>

<xql:declare var="result-variable"/>

<xql:query-reference href="$query"/>

<xql:match var="ph" select="$($attr)/edb:ph-opt/" bind-to="string"/>

<xql:project order-by="ph-value ASC">

<xql:bind var="enzyme" select="$($query) . ($result-variable)"/>

<xql:bind var="ph-value" select="$ph"/>

</xql:project>

</xql:query>

4.3 Data Integration

For the demonstration of the data integration capabilities of YAXQL we introduce a example query of oUf value adding

NEW server. The query retrieves all enzyme data sheets of a class of enzymes contained in EDB by first accessing all

enzyme names of the class via query ec: q3 and then evaluating edb: q2 for every retrieved enzyme name.

<xql:query name="new:ql">

<xql:declare var="ec-class-name" maybe-unbound="NO"/>

<xql:query-reference href=''http://www.ec.bio/queries.xml/id(ec:q3)''>

<xql:bind var="ec-class" select="$ec-class-name"/>

</xql:query-reference>

<xql:query-reference href=''http://www.edb.bio/queries.xml/id(edb:q2)''>

<xql :bind var="ec-name" select="$(ec: q3)result->/ec :name/text 0" />

</xql:query-reference>

<xql:project>

<xql:bind var="result" select="$(edb:q2)result"/>

</xql:project>

</xql:query>

5 4-Valued Logic for unbound variables

A YAXQL query can have several free variables. Prior to query evaluation, some of them can be bound, others may

be left unbound, if the query allows so. The semantics of a query with unbound variables is given by the truth tables

for a 4-valued logic. The values are T for true, F for false, U for unknown , I for ignore. Any boolean term with an

unbound variable will evaluate to 1. Boolean terms having variables bound to NULL will evaluate to U. Variables may

be NULL due to option al matches in case there is no match. This case must clearly be distinguished from a variable

being unbound. The truth tables are:

12

1\ T F U I v T F U I

T T F U T T T T T T

~
F F F F F F T F U F

F T U I
U U F U U U T U U U

I T F U I I T F U I

For a predicate in a query: a set of variable bindings qualifies whether the predicate evaluates to either I or T. Note

that the boolean connectors are commutative and associative. Further, DeMorgan's Law holds. Distributivity does

not hold, if one of the inner arguments is I. For example, x 1\ (y V z) == (x V y) 1\ (x V z) does not hold if y or z is I

and x is not I.

6 Advanced concepts in YAXQL

After we have seen several examples of queries in YAXQL, we now describe some more concepts of YAXQL not

illustrated by examples. Among these concepts are more possibilities to produce variable bin dings (among them

one for accessing legacy relational database systems), accessing web-sites exhibiting a form-based interface, defining

user defined functions and predicates, conditional expressions, glue for defining documents with form-based interfaces

with a YAXQL query as the evaluation mechanism, a grouping-clause and a having-clause, existential and universal

quantifiers, and several set and join operations including outer-joins.

YAXQL provides several variable binding mechanisms. The most important one is xql: match which can be

nested to build arbitrary tree patterns. Attributes allow to specify the relevance of order among child matches and

can limit gaps between matching children.

Another useful bin ding mechanism is provided by the xql: iterate element that iterates through lists of strings.

The strings must be separated by an arbitrary separator which can be specified in the separator attribute whose

default is blank. The prevailing application is to successively bind variables to identifiers occurring in attributes of

type IDREFS. It is surprising that none of the XML query languages proposed so far has such a capability. The

last possibility to produce variable bindings by matching is to match a regular expression against a given text with

the element xql: string-match. The regular expression is enhanced by variables that indicate which parts of the

matched expressions ought to be bound to which variables.

YAXQL provides an element that allows to state a SQL query against a relational database server. This element,

xql: sql-query , produces variable bindings. For every attribute in the result relation, a variable with the same name

is bound to the according attribute value. For that, we require that the result attributes in the SQL query are named

explicitly. This is the only restriction; otherwise arbitrary SQL queries are allowed.

A special element xql:fill-form allows to query Web sites with a form-based interface. User defined functions

(UDFs) and user defined predicates (UDPs) can be declared using the xql: fun-decl and xql: pred-decl elements.

The generic function and predicate call elements xql: fun-call and xql: pred-call allow their usage within

YAXQL queries.

13

YAXQL has several built-in functions. Among these are set-operations, join-operations (especially outer joins),

conditional expressions (if and switch), and simple tree manipulation functions for including/excluding parts of

a document. The conditional expressions are useful not only in queries but also in result construction. The tree

manipulation functions support several kinds of conditional exclusion of subtrees, restriction by indexed child ranges,

and subtree replacement.

As (almost) common in query languages, YAXQL supports universal and existential quantifiers as weIl as grouping

with an additional optional having.

A more unique feature of YAXQL is its ability to define form-based interfaces with attached queries. This part of

XQL is the second possibility (besides xql: evaluate) to integrate queries into XML documents. This is a topic that

has been neglected by prior XML query designers. Given an XQL document, the xql: ask-for-variable-binding

element allows to specify a field that can be filled by the user. The user's input is then bound to a variable specified

in the xql: ask-for-variable-binding element. Another attribute allows to specify a title for the form. All

the variables bound explicitly or by filling in forms constitute the global environment for queries contained in the

XML document. Query evaluation can be triggered by clicking on panels defined by xql: eval-qc-on-click which

references a query-construct-pair.

7 Conclusion

We presented a list of classes of requirements and discussed the requirements contained in these classes. We further

noted en passant that all the existing query languages for XML fail on almost every single requirement in this list. We

then presented the XML query language YAXQL that meets the requirements. YAXQL exhibits such unique features

as free variables with a semantics based on a 4-valued logic, full tree matching capabilities, full-text search facilities,

an interface to relational databases, user defined functions and predicates. It allows not only to query values (as all

other query languages) but also to query references to XML fragments. Reuse of queries and construct clauses is

built-in. Last not least, YAXQL covers full XML. We further demonstrated how YAXQL queries can be embedded

into documents, a necessity not mentioned in other proposals for XML query languages.

Acknowledgment The authors thank Peter Fankhauser and Carl-Christian Kanne for many fruitful discussions

and comments on YAXQL.

A DTDs and SampIe Documents

A.l The EC-Server
DTD
<!ELEMENT ec:classes «ec:class I ec:enzyrne)*»
<!ELEMENT ec:class (ec:link*»
<!ATTLIST ec:class

name ID #REQUIRED
level CDATA #REQUIRED>

14

<!ELEMENT ec:link
<!ATTLIST ec:link

xml:link
href

(#PCDATA)>

CDATA #FIXED "simple"
CDATA #REQUIRED>

<!ELEMENT ec:enzyme (ec:name, ec:reaction, ec:comment*»
<!ATTLIST ec:enzyme

name ID #REQUIRED>
<!ELEMENT ec:name (#PCDATA)>
<!ELEMENT ec:reaction (#PCDATA»
<!ELEMENT ec:comment (#PCDATA»

Sampie Document

<?xml version="1.0"?>
<!DOCTYPE ec:classes SYSTEM "ec.dtd">
<!-- This document contains the internal nodes of the EC-Classification -->

<ec:classes>
<ec:class name="-.-.-._11 level=1I01l)
<ec:link xml-link="SIMPLE" href="id(1.-.-.-)">1.-.-.- Oxidoreductase</ec:link>
<ec:link xml-link="SIMPLE" href="id(2.-.-.-)">2.-.-.- Transferase</ec:link>
<ec:link xml-link="SIMPLE" href="id(3.-.-.-)">3.-.-.- Hydrolase</ec:link>
<ec:link xml-link="SIMPLE" href="id(4.-.-.-)">4.-.-.- Glycosidase</ec:link>
<ec:link xml-link="SIMPLE" href="id(5.-.-.-)">5.-.-.- Lyase</ec:link>
<ec:link xml-link="SIMPLE" href="id(6.-.-.-)">6.-.-.- Isomerase</ec:link>

</ec:class>

<ec:class name=lll.-.-.-11 level="!")
<ec:link xml-links="SIMPLE href="id(1.1.-.-)">

1.1.-.- Acting with the CH-OH group of donors
</ec:link ...>

</ec:class>

<ec:enzyme name=1l1.1.4.1" level="4")
<ec:name>Vitamin-K-epoxide reductase</ec:name>
<ec:reaction>

2-methyl-3-phytyl-1,4-naphtoquinone
+ oxidized dithiothreitol
+ H(2)O

2,3-epoxy-2,3-dihydro-2methyl-1,4-naphtoquinone
+ 1,4-dithiothreitol

</ec:reaction>
<ec:comment>

In the reverse reaction, vitamin K 2,3-epoxide is reduced to
vitamin K and possibly to vitamin K hydroquinone by
1,4-dithioerythritol, wich is oxidized to a disulfide;
some other dithiols and butane-4-thiol can also act.

</ec:comment>
<ec:comment>

Inhibited strongly by warfarin (cf EC 1.1.4.2)
</ec:comment>

</ec:enzyme>

</ec:classes>

A.2
DTD

The EDB-Server

<!ELEMENT edb:enzymes (edb:enzyme*»
<!ELEMENT edb:enzyme (edb:ec-class, edb:sysname, edb:recname, edb:name*, edb:ph-opt,

edb:temp-opt, edb:inhibitor*»

15

<!ELEMENT edb:ec-c1ass
<!ELEMENT edb:sysname
<!ELEMENT edb:recname
<!ELEMENT edb:name
<!ELEMENT edb:ph-opt
<!ELEMENT edb:temp-opt
<!ELEMENT edb:inhibitor

Sampie Document

(#PCDATA)>
(#PCDATA)>
(#PCDATA)>
(#PCDATA)>
(#PCDATA)>
(#PCDATA)>
(#PCDATA)>

<?xm1 version="1.0"?>
<!DOCTYPE edb:enzymes SYSTEM "edb.dtd">
<edb:enzymes>
<edb:enzyme>
<edb:ec-c1ass>1.1.4.1</edb:ec-c1ass>
<edb:sysname>1-Methyl-3-phyty1-l,4-naphthoquinone:oxidized-dithiothreito1

oxidoreductase</edb:sysname>
<edb:recname>Vitamin-K-epoxide reductase</edb:recname>
<edb:name>phy11oquinone expoxide reductase</edb:name>
<edb:name>Vitamin K epoxide reductase</edb:name>
<edb:name>Vitamin Kl epoxide reductase</edb:name>
<edb:ph-opt>9.0</edb:ph-opt>
<edb:temp-opt>25</edb:temp-opt>
<edb:inhibitor>Warfarin</edb:inhibitor>
<edb:inhibitor>Cho1ate</edb:inhibitor>
<edb:inhibitor>Coumarin anticoagu1ants</edb:inhibitor>
.<edb:inhibitor>Deriphat 160</edb:inhibitor>
<edb:inhibitor>DTT</edb:inhibitor>
<edb:inhibitor>Lapacho1</edb:inhibitor>
<edb:inhibitor>1midazopyridine</edb:inhibitor>
<edb:inhibitor>Difenacoum</edb:inhibitor>

</edb:enzyme>
</edb:enzymes>

A.3 The RDB-Server
DTD and Sampie Document

<?xml version="1.011?>
<!DOCTYPE rdb:pathways [

<!ELEMENT rdb:pathways (rdb:substrate*, rdb:reaction*, rdb:pathway*»
<!ELEMENT rdb:substrate EMPTY>
<!ATTL1ST rdb:substrate

sid 1D #REQU1RED
name CDATA #REQU1RED>

<!ELEMENT rdb:reaction EMPTY>
<!ATTL1ST rdb:reaction

name 1D #REQU1RED
input 1DREFS #REQU1RED
enzyme CDATA #REQU1RED
output 1DREFS #REQU1RED>

<!ELEMENT rdb:pathway EMPTY>
<!ATTL1ST rdb:pathway

name 1D #REQU1RED
reactions 1DREFS #REQU1RED>

]>

<rdb:pathways>
<rdb:substrate sid="sl" name="2-methyl-3-phyty1-l,4-naphtoquinone"/>
<rdb:substrate sid="s2" name="oxidized dithiothreito1"/>
<rdb:substrate sid="s3" name="H(2)O"/>
<rdb:substrate sid="s4" name="2,3-epoxy-2,3-dihydro-2methy1-l,4-naphtoquinone"/>
<rdb:substrate sid="s5" name="1,4-dithiothreito1"/>

<rdb:reaction name=llrlll
input=lIs111

16

enzyme="Vitamin-K-epoxide reductase"
output="s2 s3"/>

<rdb:pathway name="pl" reactions="rl r2 r3 r4 r5"/>

</rdb:pathways>

B DTD für YAXQL
<?xm1 version="1.0"?>

<!-- XQL DTD -->

<,-- Attribute groups -->

<!ENTITY % XQL:SRC 'href CDATA #IMPLIED
se1ect CDATA #IMPLIED'>

<!ENTITY % XQL:DATA-TYPE , data-type CDATA #IMPLIED'>

< !ENTITY % XQL:VAR 'var CDATA #REQUIRED'>
<!ENTITY % XQL:TVAR , %XQL:VAR; %XQL:DATA-TYPE; ,>
<!ENTITY % XQL:NULL ' maybe-nu11 (YESINO) IINO"')
<!ENTITY % XQL:NTVAR , %XQL:TVAR; %XQL:NULL; ,>
<!ENTITY % XQL:UNBOUND ' maybe-unbound (YESINO) "NO 11 ,>
<!ENTITY % XQL:SRC-NTVAR , %XQL:SRC; %XQL:NTVAR; ,>

<!ENTITY % XQL:CO 'cardina1ity-on1y
card-var

(YESINO)
CDATA #IMPLIED'>

% XQL:DIST
% XQL:BIND-TO
% XQL:ORDERED
% XQL:ORDER-BY

<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY

'distinct (YESINO) "YES" '>
'bind-to CDATA #IMPLIED ,>
'ordered (YESINO) "NO" ,>
'order-by CDATA #IMPLIED'>

<!ENTITY % XQL:FT 'from CDATA #REQUIRED
to CDATA #REQUIRED'>

<!ENTITY % XQL:PATTERN-ATTRS '%XQL:NTVAR; %XQL:BIND-TO; %XQL:ORDERED;
deep-match (YESINO) "NO"
preserve-order (YESINO) "NO"
optiona1-match (YES INO) "NO'">

<!ENTITY % XQL:REGEXPR 'regexpr CDATA #IMPLIED'>

<!-- All Entities -->

<!ENTITY % XQL:CMP '(xq1:eq I xql:neq I xql:geq I xql:1eq I xql:less I xql:greater
xql:is-bound I xq1:is-unbound I xql:is-nul1 I xq1:is-not-nu1l
xql:contains I xql:pred-call)'>

<!ENTITY % XQL:BCON '(xql:implies I xql:and I xql:or I xql:not)'>
<!ENTITY % XQL:QUANT '(xql:for-all I xql:exists)'>
<!ENTITY % XQL:BXP '(%XQL:CMP; I %XQL:BCON; I %XQL:QUANT;)'>

xql:string-match)'>

'(xql:union xql:intersect I xq1:set-minus)'>
'(xq1:join (%XQL:SET-OP;))'>
'(xq1:query I xql:query-reference I
xql:recursive-query I (%XQL:ALG-OP;))'>

<!ENTITY % XQL:MATCHER '(xql:match I xql:string-match I xq1:iterate)'>
<!ENTITY % XQL:BINDER '(xq1:bind I xql:bindings-list I xq1:sq1-query I

(%XQL:QUERY;) I (%XQL:MATCHER;))'>
<!ENTITY % XQL:PRED '(%XQL:BXP;)'>
<!ENTITY % XQL:MATCH-EXPR '(xq1:match

<!ENTITY % XQL:SET-OP
<!ENTITY % XQL:ALG-OP
<!ENTITY % XQL:QUERY

<!ENTITY % XQL:AGGR '(xql:min I xql:max I xql:count I xq1:sum I xql:avg)'>

17

<!ENTITY % XQL:VAR-STMT '(xql:declare I xql:bind I xql:unbind)'>

<!ENTITY % XQL:EXPR '(xql:value I xql:deref I xql:value-of I xql:get-tag I xql:get-attribute
xql:source I xql:element I xql:attribute I xql:add I xql:substract I
xql:multiply I xql:divide I xql:modulo I xql:conc I xql:range I
xql:fun-call I %XQL:AGGR; I %XQL:PRED;)'>

<!ENTITY % XQL:STMT ,(%XQL:EXPR; I %XQL:VAR-STMT; I xql:if I xql:switch I xql:for I
xql:for-each-match I xql:evaluate)'>

<!-- XQL top level elements -->

<!ENTITY % XQL:XQL-TOP ,(%XQL:QUERY; I %XQL:MATCHER; I
xql:query-construct I xql:query-construct-reference
xql:sql-query I %XQL:STMT;)'>

<!ELEMENT xql:stmts «%XQL:XQL-TOP;)*»
<!ELEMENT xql:stmt (%XQL:XQL-TOP;»

<!-- Very simple query -->

<!ELEMENT xql:for-each-match ANY>
<!ATTLIST xql:for-each-match %XQL:SRC-NTVAR; %XQL:DIST; %XQL:ORDER-BY;

preserve-order (YESINO) #IMPLIED>

<!-- Query Construct Elements -->

<!ELEMENT xql:query-construct
«%XQL:QUERY;)*. (xql:construct I xql:construct-reference))>

<!ATTLIST xql:query-construct name ID #REQUIRED>

<!ELEMENT xql:query-construct-reference EMPTY>
<!ATTLIST xql:query-construct-reference href CDATA #REQUIRED>

<!ELEMENT xql:query (xql:declare*. (%XQL:BINDER;)*, (%XQL:PRED;)?,
(xql:group-by, (xql:having)?)?, xql:project?»

<!ATTLIST xql:query name ID #REQUIRED>

<!ELEMENT xql:query-reference (xql:bind*, (%XQL:PRED;)?, xql:project?»
<!ATTLIST xql:query-reference href CDATA #REQUIRED>

<!ELEMENT xql:group-by (%XQL:EXPR;)*>
<!ELEMENT xql:having (%XQL:PRED;»

<!ELEMENT xql:project (xql:bind*»
<!ATTLIST xql:project %XQL:CO; %XQL:DIST; %XQL:ORDER-BY;

group-by CDATA #IMPLIED>

<!ELEMENT xql:construct ANY>
<!ATTLIST xql:construct out-dtd CDATA #IMPLIED>

<!ELEMENT xql:construct-reference EMPTY>
<!ATTLIST xql:construct-reference href CDATA #REQUIRED>

<!ELEMENT xql:evaluate «(xql:bind I xql:unbind)*,
(%XQL:QUERY;, %XQL:PRED;?, xql:project?),
«xql:construct I xql:construct-reference)))
xql:query-construct-reference»

<!ATTLIST xql:evaluate %XQL:CO;
name 10
top-element CDATA
bottom-element CDATA

%XQL:ORDER-BY;
#REQUIRED
#IMPLIED
#IMPLIED>

<!ELEMENT xql:join «%XQL:QUERY;), (%XQL:QUERY;), (%XQL:PRED;))>
<!ATTLIST xql:join outer (NOILEFTIRIGHTIFULL) "NO">

18

<!ELEMENT xql:union «%XQL:QUERY;)*»
<!ELEMENT xql:intersect «%XQL:QUERY;)*»
<!ELEMENT xql:set-minus «%XQL:QUERY;)*»

<!-- Recursive queries -->

<!ELEMENT xql:recursive-query (xql:declare*. xql:union, (%XQL:PREO;)?, xql:project»
<!ATTL1ST xql:recursive-query name 10 #REQU1RED>

<!-- embedding SQL queries -->
<!ELEMENT xql:sql-query (xql:declare*,
<!ELEMENT xql:sql-text (#PCOATA)>
<!ATTL1ST xql:sql-query name 10

server COATA
database COATA

xql:xql-text»

#REQU1REO
#REQU1REO
#REQU1REO>

<!-- Grouping in construct clauses -->

<!ELEMENT xql:for-each ANY>
<!ATTL1ST xql:for-each vars COATA #REQU1REO %XQL:OROER-BY;>

<!-- Explicit grouped bindings -->

<!ELEMENT xql:bindings-list (xql:bindings*»
<!ELEMENT xql:bindings (xql:bind)*>

<!-- Binding by tree matching -->

«%XQL:MATCH-EXPR;)*»
%XQL:SRC; %XQL:PATTERN-ATTRS;

CDATA #1MPLIED
COATA #1MPLIED
CDATA #1MPL1ED>

xql:match
xql:match
max-gap
max-level-diff
near

<!ELEMENT
<!ATTL1ST

<!-- Binding by string matching -->

<!ELEMENT xql:string-match EMPTY>
<!ATTL1ST xql:string-match %XQL:SRC; %XQL:REGEXPR;>

<!-- Binding by iteration through lists -->

<!ELEMENT xql:iterate EMPTY>
<!ATTL1ST xql:iterate %XQL:TVAR; %XQL:SRC; %XQL:REGEXPR;

separator CDATA #1MPL1ED>

<!-- Variable declaration. binding. dereferenciation etc. -->

<!ELEMENT xql:declare EMPTY>
<!ATTL1ST xql:declare %XQL:NTVAR; %XQL:UNBOUNO;

default CDATA #1MPL1ED>

<!ELEMENT xql:bind ANY>
<!ATTL1ST xql:bind %XQL:NTVAR; %XQL:UNBOUND; %XQL:SRC; %XQL:B1ND-TO;>

<!ELEMENT xql:value EMPTY>
<!ATTL1ST xql:value %XQL:VAR;>

<!ELEMENT xql:deref EMPTY>
<!ATTL1ST xql:deref var CDATA #REQU1RED>

<!ELEMENT xql:unbind EMPTY>
<!ATTL1ST xql:unbind var CDATA #REQU1RED>

<!ELEMENT xql:constant ANY>
<!ATTL1ST xql:constant %XQL:SRC; %XQL:B1ND-TO;

19

const
data-type

CDATA
CDATA

#REQUIRED
#IMPLIED>

<!-- Boolean express ions -->

<!ELEMENT xql:eq «%XQL:EXPR;)+» <!ELEMENT xql:neq «%XQL:EXPR;)+»
<!ELEMENT xql:geq «%XQL :EXPR;)+» <!ELEMENT xql:leq «%XQL:EXPR;)+»
<!ELEMENT xql:less «%XQL:EXPR;)+» <!ELEMENT xql:greater «%XQL:EXPR;)+»

<!ATTLIST xql:eq %XQL:DATA-TYPE;> <!ATTLIST xql:neq %XQL:DATA-TYPE;>
<!ATTLIST xql:geq %XQL:DATA-TYPE;> <!ATTLIST xql:leq %XQL:DATA-TYPE;>
<!ATTLIST xql:less %XQL:DATA-TYPE;> <!ATTLIST xql:greater %XQL:DATA-TYPE;>

<!ELEMENT xql:is-bound EMPTY>
<!ELEMENT xql:is-unbound EMPTY>

<!ATTLIST xql:is-bound var CDATA #REQUIRED>
<!ATTLIST xql:is-unbound var CDATA #REQUIRED>

<!ELEMENT xql:is-null EMPTY>
<!ATTLIST xql:is-null var CDATA #REQUIRED>
<!ELEMENT xql:is-not-null EMPTY>
<!ATTLIST xql:is-not-null var CDATA #REQUIRED>

<!ELEMENT xql:contains ANY>
<!ATTLIST xql:contains %XQL:SRC; %XQL:REGEXPR;>

<!ELEMENT xql:implies
<!ELEMENT xql:and
<!ELEMENT xql:or
<!ELEMENT xql:not

«%XQL:BXP;), (%XQL:BXP;))>
«%XQL:BXP;)*»
«%XQL:BXP;)*»
«%XQL:BXP;))>

<!ELEMENT xql:for-all «%XQL:QUERY;), (%XQL:PRED;))>
<!ELEMENT xql:exists «%XQL:QUERY;), (%XQL:PRED;))>

<!-- Expressions -->

<!ELEMENT xql:source EMPTY>
<!ATTLIST xql:source %XQL:SRC; >

<!ELEMENT xql:attach ANY>
<!ATTLIST xql:attach %XQL:SRC;>

<!ELEMENT xql:replace ANY>
<!ATTLIST xql:replace %XQL:SRC;>

<!-- Todo: arguments for the following two beasts -->
<!ELEMENT xql:exclude-if «%XQL:PRED;) I (%XQL:MATCH-EXPR;))>
<!ATTLIST xql:exclude-if %XQL:SRC;>
<!ELEMENT xql:exclude-if-not «%XQL:PRED;) I (%XQL:MATCH-EXPR;))>
<!ATTLIST xql:exclude-if-not %XQL:SRC;>

<!ELEMENT xql:conc «%XQL:EXPR;)*»
<!ATTLIST xql:conc separator CDATA #IMPLIED>

<!ELEMENT xql:fun-call «%XQL:EXPR;)*»
<!ATTLIST xql:fun-call

fun-name CDATA #REQUIRED
fanced (YESINo) "YES">

<!ELEMENT xql:pred-call «%XQL:EXPR;)*»
<!ATTLIST xql:pred-call

pred-name CDATA #REQUIRED
fanced (YES INO) "YES">

<!ELEMENT xql:range (%XQL:EXPR;»
<!ATTLIST xql:range %XQL:SRC; %XQL:FT;>

<!ELEMENT xql:if «%XQL:PRED;), (%XQL:EXPR;), (%XQL:EXPR;)?»
<!ELEMENT xql:switch «%XQL:EXPR;), xql:case*»

20

<!ELEMENT xql:case ((%XQL:STMT;)*»
<!ELEMENT xql:for ((%XQL:STMT;)*»
<!ATTLIST xql:for var CDATA #REQUIRED

start CDATA #REQUIRED
step CDATA #REQUIRED
stop CDATA #REQUIRED>

<!ELEMENT xql:min (%XQL:EXPR;»
<!ELEMENT xql:count (%XQL:EXPR;»
<!ELEMENT xql:avg (%XQL:EXPR;»

<!ELEMENT xql:max
<!ELEMENT xql:sum

(%XQL:EXPR;)>
(%XQL:EXPR;)>

<!-- Function declaration (UDFs and UDPs) -->

<!ENTITY % XQL:FUN-ATTRS ' fun-name
language
source
binary

CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED'>

<!ELEMENT xql:fun-arg EMPTY>
<!ATTLIST xql:fun-arg arg-name

data-type
CDATA #REQUIRED
CDATA #REQUIRED>

<!ELEMENT xql:fun-decl (#PCDATA)>
<!ATTLIST xql:fun-decl %XQL:FUN-ATTRS;

return-type CDATA #REQUIRED>

<!ELEMENT xql:pred-decl (#PCDATA»
<!ATTLIST xql:pred-decl %XQL:FUN-ATTRS;>

<!-- Form filling -->

<!ELEMENT xql:fill-form (xql:form-entry)*>
<!ATTLIST xql:fill-form %XQL:SRC; var CDATA #REQUIRED >

<!ELEMENT xql:form-entry ANY>
<!ATTLIST xql:form-entry name CDATA #REQUIRED>

<!-- User interaction -->
<!ELEMENT xql:ask-for-variable-binding EMPTY>
<!ATTLIST xql:ask-for-variable-binding %XQL:NTVAR;

title CDATA #REQUIRED>

<!ELEMENT xql:eval-qc-on-click EMPTY>
<!ATTLIST xql:eval-qc-on-click name IDREF

href CDATA
title CDATA

<!-- END OF XQL DTD -->

#REQUIRED
#IMPLIED
#REQUIRED>

21

References

[1] S. Abiteboul. On Views and XML. In Proc. ACM

SIGMOD/SIGACT Conf. on Princ. of Database

Syst. (PODS), pages 1-9, 1999.

[2J S. Abiteboul, S. Cluet, V. Christophides, T. Milo,

G. Moerkotte, and J. Simeon. Querying documents

in object databases. International Journal on Digital

Libraries, 1(1) :5-19, April 1997.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and

J. Wiener. The lorel query language for semistruc-

tured data. International Journal on Digital Li-

braries, 1(1):68-88, April 1997.

[4] G. Arocena and A. Mendelzon. WebOQL: restructur-

ing documents, databases and webs. In Proc. IEEE

Conference on Data Engineering, pages 24-33, 1998.

[5] A. Bosworth, A. Levy, J. Widom, R. Gold-

man, J. McHugh, A. Layman, A. Ardelwanu, and

D. Schach. Position paper for the W3C query lan-

guage workshop december 3, 1998. In {26J, 1998.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Ex-

tensible markup language (xml) 1.0. Technical report,

World Wide Web Consortium, 1998. W3C Recom-

mendation 10-Feb-98.

[7] P. Buneman, S. Davidson, G. Hillebrand, and D. Su-

ciu. A query language and optimization techniques

for unstructured data. In Proc. of the ACM SIG-

MOD Gonf. on Management of Data, pages 505-516,

1996.

[8] J. Clark. XSL transformations (XSLT) version

1.0. Technical report, World Wide Web Consortium,

1999. W3C Recommendation 16 Nov. 1999.

[9] J. Clark and S. DeRose. XML path language (XPath)

version 1.0. Technical report, World Wide Web Con-

sortium, 1999. W3C Recommendation 16 Nov. 1999.

[10] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your

mediators need data conversion! In Proc. of the ACM

SIGMOD Conf. on Management of Data, pages 177~

188, Seattle, WA, 1998.

[11] S. Cluet, S. Jacqumin, and J. Simeon. The new

YATL. Technical report, INRIA, 1999.

[12] P. Cotton and A. Malhotra. Candidate requirements

for xml query. In {26J, 1998.

[13] S. Deach. Extensible stylesheet language (XSL) spec-

ification. Technical report, World Wide Web Consor-

tium, 1999. W3C Working Draft 21 Apr 1999.

[14J S. DeRose. XQuery: a unified syntax for linking and

querying general XML documents. In {26J, 1998.

[15] S. DeRose, C. Sperberg-McQueey, and B. Smith.

Queries on links and hierarchies. In {26J, 1998.

[16J A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and

D. Suciu. XML-QL: a query language for XML. Tech-

nical report, World Wide Web Consortium, 1989.

http://www.w3.org/TR/NOTE-xml-ql.

[17J M. Fernandez, D. Florescu, J. Kang, A. Levy, and

D. Suciu. Catching the boat with strudel: Experi-

ences with a web-site management system. In Proc.

ofthe ACM SIGMOD Conf. on Management of Data,

pages 414-425, 1998.

[18JM. Fernandez, J. Simeon, P. WadIer; S. Ciuet,

A. Deutsch, D. Florescu, A. Levy, D. Maier,

J. McHugh, J. Robie, D. Suciu, and J. Widon.

XML query languages: Expericences and

exemplars. http://www-db.research.bell-

labs.com/user /simeon/xquery.html, 1999.

22

http://www.w3.org/TR/NOTE-xml-ql.

[19] R. Goldman, J. McHugh, and J. Widom. From

semistructured data to XML: Migrating the Lore data

model and query language. In AGM SIGMOD Work-

shop on the Web and Databases (WebDB), 1999.

[20] R. Himmeröder, G. Lausen, B. Ludäscher, and

C. Schlepphorst. Querying the web with FLORID.

In Proc. der GI-Fachtagung Datenbanksysteme für

Büro, Technik und Wissenschaft (BTW), pages 47-

51, 1995.

[21] P. Kilpeläinen. Tree Matching Problems with Ap-

plications to Structured Text Databases. PhD the-

sis, Department of Computer Science, University of

Helsinki, 1992.

[22] D. Konopnicki and O. Shmueli. W3QS: a query sys-

tem for the world-wide web. In Proc. Int. Gonf.

on Very Large Data Bases (VLDB), pages 54-65,

Dublin, Ireland, 1995.

[23] L. Lakshmanan, F. Sadri, and V. Subramanian. A

declarative language for querying and restructuring

the web. In Int. Workshop on Research Issues in

Data Engineering (RIDE), pages 12-21, 1996.

[24] D. Maier. Database desiderata for an XML query

language. In [26J, 1995.

[25] E. Maler and S. DeRose. Xml pointer language

(xpointer). Technical report, World Wide Web Con-

sortium, 1995. World Wide Web Consortium Working

Draft 03-March-199S.

[26] M. Marchiori. QI'9S - the query languages

workshop. Technical report, W3C, Dec. 1995.

http://www.w3.org/TandS/QL/QL9S.

[27] A. Mendelzon, G. Mihaila, and T. Milo. Querying

the world wide web. In Int. Gonf. on Parallel and

Distributed Information Systems (PDIS), pages SO-

91, 1996.

[2S] A. Mendelzon, G. Mihaila, and T. Milo. Querying

the world wide web. International Journal on Digital

Libraries, 1(1):54-67, April 1997.

[29] D. Quass. Ten features necessary for an XML query

language. In [26J, 1995.

[30] J. Robie, J. Lapp, and D. Schach. XML query lan-

guage (XQL). In [26J, 1995.

23

http://www.w3.org/TandS/QL/QL9S.

