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SOLVING WICK-STOCHASTIC BOUNDARY VALUE PROBLEMS
USING A FINITE ELEMENT METHOD

THOMAS GORM THETING

ABSTRACT. A dass of linear elliptic Wick-stochastic boundary value problems is considered.
The problems are formulated in a variational (or weak) form and existence and uniqueness
of a solution to this variational formulation is proved under general assumptions on the data.
Furthermore, a Galerkin type of finite element method is formulated and presented in an al-
gorithmic form. As an illustration the algorithm is then applied to the Wick-stochastic pressure

equation in one and two dimensions.

1. INTRODUCTION

(1.3 )

(1.2)

(1.1)

d d

LOu = - I: Di(aijoDju) +I:bioDiU + COU,

i,j=l i=l

with all eoefficients allowed to be generalized stoehastie variables. We assume that the generalized
expeetation of the differential operator give a eontinuous, eoereive and bilinear form. Note, as
argued in [14]' that even if we rest riet the eoeffieients to be ordinary stoehastie variables, a solution
to an equation like (1.1) exists in many eases only as a generalized stoehastie variable. The Wiek
produet 0 is introdueed as way to handle multiplieation of sueh generalized variables. This produet
ean be understood as a renormalisation proeedure of the produet of generalized variables A detailed
diseussion on the modeling properties of the Wiek produet is beyond the seope of this paper and
we refer theinterested reader to e.g. [3, 14, 15]. It should however be noted that the Wiek product
makes (1.1) well-defined for very general data. We define and give some properties of the Wiek

produet in Seetion 3.
One example of an equation like (1.1) is the Wiek-stoehastie pressure equation

-'\l(Ko'\lp) = f on D,
p=Oon3D,

In this paper we study of Wick-stoehastie boundary value problems of the type
LOu = fon D,

u = 0 on 3D,

where D C JRd is some bounded domain with Lipsehitz boundary 3D and the linear Wiek-stoehastic

differential operator given as

where p denotes the pressure, K the permeability and the right hand side f denotes the sour ce rate
of the fluid. The stochastieity of the equation is usually a result of letting the permeability be some
given (positive) random field. The equation has been studied extensively, see e.g. [3,8,17,15,24].
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It was introduced by Holden et al. [17] as a stochastic model describing the pressure in a fluid
that flow through a porouS medium. The authors proved existence and uniqueness of a solution
in the Kondratiev space (5)-1 (see [14, 18] or [19] for adefinition) and gave an explicit formula
for the solution. Other examples for Wick-type stochastic partial differential equations include
[5, 8, 9, 16, 18]' see also [14] where the theory of Wick-stochastic (both ordinary and partial)

differential equations is treated.
One important background for the work in this paper is [24] (see also [25]). Here the author
formulates a variational interpretation of (1.3) on a family of Hilbert spaces (defined belo

w
), and

he gives conditions securing the existence of a unique solution on a sub set of these spaces. The
motivation for the present paper was to extend the results from [24] to equations on the form
in (1.1). Furthermore, inspired by [1, 2, 13], we wanted to provide a numerical approximation
method based on the finite element method for this class of equations.

A numerical solution is interesting because it provides an approximation which can be used to get
information about the true solution, even in the cases where the true solution is not known. We
can e.g. use the approximation to do stochastic simulation and investigate the statistical properties
of the solution. It seems to be better to apply a finite element method approach (see [4, 23] for
the deterministic case) to this kind of equations, rather than a finite difference approach, because
we avoid dealing with discretisation of the Wick product, see [13] for an example where the finite
difference approach is used. It is also an advantage that our approach enables us to obtain apriori
error bounds from general theory and these results are independent of the actual shape of the
domain (as long as the domain is regular enough). Furthermore, there is already a wide range of
software available for solving deterministic equations with the finite element method (e.g. [22]),
and as we will see, the method we present in this papermakes it possible to take advantage of
such software. This makes it straightforward to start experimenting with stochastic simulations
and investigations of a problem once a deterministic finite element method has been developed,
something we believe can be useful when a practical problem is to be investigated.

We extend the results from [24] to boundary value problems on the general form given in (1.1). We
present a variational formulation of (1.1) on the same family of spaces as in [24]. In order to give
insight in the numerical method used later, we reformulate this (stochastic) variational problem to
an infinite set of deterministic variational problems, using the properties of the Wick product. Each
of these variational problems will give one of the coefficients in the Wiener-It6 chaos expansion of
the solution of (1.1). We then give conditions on the data to secure existence of a unique solution
to this (infinite) set of problems. This will again imply uniqueness for the original stochastic
variational problem, but not existence. For this existence we also need to control the growth in
the chaos coefficients. We proceed to prove this existence of a solution to the original (stochastic)
variational problem, thus localising the formal Wiener-It6 chaos expansion of the solution to some
specific family of spaces. This proof applies the Lax-Milgram Theorem and is based on the same
ideas as in [24]. We include the proof since we have formulated it differently and more general
than what was given in [24]. Next, with background in the ideas from Benth and Gjerde [2, I]
we show how one can apply a finite element method to solve the variation al problem numerically.
This reduces to solving a finite series of deterministic linear systems where each equation gives the
classical finite element approximation [4, 23] of one coefficient in the Wiener-It6 chaos expansion
of the solution. Finally, we present this numerical solution method in the form of an algorithm

and we apply this to the model problem given in (1.3).
We give an outline of the paper: In Section 2 we introduce notation and a few necessary preliminary
results. Then in Section 3 we present the family of Hilbert spaces we use to form the variation al
equation. We also define the Wick product and give some basic properties. In Section 4 we give a
variational formulation of (1.1) on this family of Hilbert spaces. We reformulate this (stochastic)
variational problem to an infinite set of deterministic variational problems, and we consider the
uniqueness of a solution to this set of problems. Next, in Section 5 we present a proof of the
existence (and uniqueness) of a solution of the original variation al formulation using the Lax-
Milgram Theorem. In Section 6 we show how to apply a Galerkin finite element method to solve

2
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the variational problem numerically, and we present convergence results securing that the method
converges in the norm of the underlying Hilbert space. In Section 7 we formulate the resulting fully
discrete problem as a finite set of deterministic variational problems and we give an algorithm that
describe how to solve this discrete problem. Finally, in Section 8 we apply the given algarithm to
the model problem (1.3) for a special choice of data and present results from simulations in one

and two dimensions.

2. PRELIMINARIES

W I-> ((w, 4>1),'" ,(w, 4>n))

is standard Gaussian (or Normal) distributed on ]Rn .

We present the definitions and results needed for this paper. For the interested reader we recom-
mend the introduction to white noise analysis given in Hida et al. [12]' other references include
[11, 14, 19, 20, 21]. The application of white noise analysis to Wick-stochastic partial differential
equations is treated in Holden et al. [14]. For an introduction to the finite element method see e.g.

Brenner and Scott [4] or Quarteroni and Valli [23].
Let S denote the Schwarz space S(JRd) of rapidly decreasing Coo functions on JRd. The dual space
S' equipped with the weak-star topology is the space of tempered distributions. By Bochner-
Minlos theorem there exists a unique probability measure Jl, on the members of the family B(S')

of Borel subsets of S' such that
E[ei(',4»]:= r ei(w,4»dJl,(w) = e-II4>116/2 (2.1)

JSI
where 114>\10= (4),4>)0 = JlRd4>(x?dx. The triplet (S',B,Jl,) forms our basic probability space.

Lemma 2.1. Let 4>1,'" ,4>n be n funetions in S(JRd) that are orthonormal in L
2
(JR

d
). Then the

stochastic variable

(2.2)00

Hcx(w):= IIhCXj((w,7)j)),
j=l

The Lemma follows from (2.1) and a proof is presented [14].
We will use the following multi-index notation. Let I = (I%')c denote the set of all multi-indices
a = (al, a2, ... ) where all ai E No and only finitely many ai i= O. For each a, ß E I we define the
usual operations a + ß = (al + ß1, a2 + ß2, ... ), al = a1 la2! .. " lal:= 2:j aj. Furthermore,
we use Ei to denote the multi-index with one in the ith positions and zero in all the others and
we write 0 for the multi-index containing only zeros. For each a" E I we say a :::;, if and only
if ai :S ,i for all i E N. Clearly:::; is a partial ordering of I. Let the relation -< on I be defined
in the analogue way using strict inequality term-wise. It follows from the definition that a :::;,
(a -< ,) if and only if there exists ß E I such that a + ß =, (a + ß = , and ß i= 0).
For each a EIdefine the stochastic variable

where hn denote the Hermite polynomial
hn(x) = (_l)nex2/2 ::n (e-X2 /2) (n E No), (2.3)

and the family {7)}~1 forms an orthonormal basis far £2 (]Rd). This orthonormal family is con':"

structed from the Hermite functions
~n(x) = 71'-1/4((n _1)l)-1/2e-X2/2hn_1(v'2X) (x E]R, nE N) (2.4)

in the following way: Let 0 = .(01, ... ,Od) E Ng be the d-dimensional multi-indices and let {o( i)}
(i E N) be some fixed ordering of these multi-indices such that i < j ::} \o(i) 1 :S \o(j) I. Then we
defien 7)j as the tensor product

7)j := ~8(j) := ~8(j) 18> ... 18> ~8(j) (j E N). (2.5)
1 ,1
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(2.6)
J(w) = I:caHa(w) where Ca E Jll

aEI
In addition, the Jamily {Ha /H}aEI constitutes an orthonormal basis Jor L

2
(J.L) and we have

\\J\\l2(l"l = I: c;a! (2.7)
aEI

see also [14, p. 19]. Note that the family {~n}~=l is a subset of S(JR), and it and forms an
orthonormal basis for L2(JR). Thus, {7J}f=,1 is a subset of S(JRd) and forms an orthonormal basis

for L2 (JRd
).

The following Theorem is one of the corner-stones for our finite element approximation. A proof

is given in e.g. [14].
Theorem 2.2 (Wiener-Itö chaos expansion theorem). Every J E L

2
(J.L) has a unique Wiener-It6

chaos expansion

Definition 2.3. Let V be areal Hilbert space and let B : V x V f--+ JR be some given bilinear
form. Then B is said to be coercive on V if there exits a constant () > 0 such that

B( v, v) ~ ()I\vl\tr
for all v in V. Here \I . \I V denotes the norm on V.
Theorem 2.4 (Lax-Milgram). Let V be areal Hilbert space, let F be in V', and let B : V x V f--+ lR
be some given continuous, coercive and bilinear form. Then there exists a unique u E V such that

B(u, v) = F(v)

For completeness we also include adefinition of coercivity of abilinear form and the Lax-Milgram

theorem.

Jor every J E L2(J.L).

A proof based on the contraction mapping principle can be found in e.g. [4]. The theorem can be
generalized to the complex case [26]' but this will not be needed in this paper.

Jor all v in V.

3. A FAMILY OF STOCHASTIC HILBERT SPACES

To be able to apply the Lax-Milgram Theorem [4] and use the finite element method, we want to
study stochastic equations in a Hilbert space structure which captures properties in the physical
space. This is the reason for introducing the following family of Hilbert spaces (Sy,k,v.

Definition 3.1. Let (V, (', .) v) be any real separable Hilbert space and choose p E [-1, 1],k E R
Then the stochastic Hilbert space (S)p,k,v is defined as the set of all (formal) sums

j = 2: jaHa, where Ja E V for all a E I,
aEI

such that the norm
IIjllp,k,V := (2: \\Ja\\tr(a!)l+P(2N)ka )1/2

aEI

(3.1)

is finite. The weights are defined as (2N)ka := rr;:l (2j)kaj

•

Note that the norm 1\ . I\p,k,v isinduced by the inner product (-, ')p,k,v defined as

(f,g)p,k,v := 2:(fa,ga)v(al)l+P(2N)ka
aEI

(3.2)
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for f == I:", f",H", and 9 == I:", g",H", given in (S)p,k,v. This inner product is well defined because

f"" g", E V for all a E 'Land V is a Hilbert space.
It is clear from the definition of the norm in (3.1) that given k1, k2 E JRsuch that if k1

::; k
2
, then

Ilf\lp,kl,v ::; \\f\lp,k2,v. It follows that
(Sy,k2,v c (Sy,k1,v.

Furthermore, for any k E JRand p E [0,1] we clearly have
(S)l,k,v c (Sy,k,v c (S)O,k,v c (S)-p,k,V c (S)-l,k,v.

(3.3)
((F,f)) :== l)F", , f",)va!

",EI

For given k 2: 0 and pE [0,1] the space (S)-p,-k,v is dual to (S)p,k,V under the pairing defined

by

The proof by Vage is presented for the spaces V == Hm and V == HO', but it is easily adapted to

fit any separable Hilbert space.
Remark 3.3. The weights (2N) used in our definition of (S)p,k,v are different from those used

by Vage in [24]. He lise the weights

for any F E (S)_p,-k,v and f E (Sy,k,V.
1£V is the Sobolev space Hm(D) we denote (S)p,k,v by (S)p,k,m,D, suppressing D when it is clear
from the context. Likewise, for V == HO'(D) or V == JRwe use the notation (S)~,k,m,D and (S)p,k,
respectively. Furthermore, for the Hilbert spaces L2(D) and Hm(D) we denote the corresponding
inner products by C, ')O,D and C, ')m,D, respectively. We write 11. \Im,D for the norm induced by
the inner product on Hm(D) (or HO'(D)), suppressing D when the set we integrate over is clear

from the context.
From (2.7) it is clear that (S)O,o == L2(p,). To give some relation to the Kondratiev spaces used
by Holden et al. [17]' note that for given p E [0,1] the Kondratiev test function spaces are defined
as (S)P :== nk>O(S)p,k equipped with the projective limit topology [7]' and the Kondratiev distri-
bution spaces -;'re defined as (S)-P :== Uk~O(S)-p,k equipped with the inductive limit topology.

We have the following result due to Vage [24].
Proposition 3.2. The spaee (S)p,k,v forms a separable Hilbert spaee, and it is isomorphie to

V @ (Sy,k.

00

6,k'" :== TI (2d8ij) .. , 8~))k",;
j=l

for all a EI and with our ordering of the multi-indices 8 used in (2.5). See also page 34 in [14].
The results from [241 that are used in this paper are not affected by this difference in the weights.
Definition 3.4. Let f(x,w) == I:", f",(x)H",(w) E (S)p,k,m,D, where D is a open sub set of JRd and
m is a non-negative integer, and define the derivative Dß f to be

in the corresponding definition. The resulting spaces are only slightly different in the sense that

(2N) '" / d ::; 6,'" ::; (2N) d",

for any multi-index (3E Ng and with \(3\ ::; m. Here Dß f", denotes the derivative in the usual weak
(or distributive) sense.

._._"".~,~ •.•..,...--:-. ..,-r.
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The definition makes sense beeause for a given f in (s)p,k,m,D, all eoeffieients fa are in Hm(D) by
assumption, and thus all weak derivatives Dß fa exist for IßI ::; m and are in Hm-IßI(D) C L

2
(JR

d
).

It follows that the operator

is linear and eontinuous.
Example 3.5. Let <PE S, D bounded, and define <P'J)Y) = <p(y - x). The smoothed white noise

proeess is defined by
00

(x E D)
i=l

and ean be shown to belong to (S)l,k,m,D for any k ::; 0 and any m E No. The singular white
noise proeess is defined by the formal expansion

00

W(x) :=2: 'TIi(x)H<i (x E D)
i=l

and ean be shown to belong to (S)l,k,l,D for k < -2/3.
Definition 3.6. The Wiek produet fog of two elements

f = 2: faHa E (S)-l,k,O and 9 =2: gaHa E (S)-l,k,O

is defined as
fog:= 2: fagßHa+ß.

a,ßEI

(3.4)

(3.5)

This produet is assoeiative, eommutative and distributive. Note that if one of the terms are
deterministic, then the Wiek produet eoincide with the ordinary point-wise produet. Also note
that we multiply funetions in L2(D) here. Therefore, eaeh term fagß is integrable, but in general
the produet is not square integrable. Thus, to make sure that the operator 9 ~ fog is bounded
and eontinuous on (S)-l,k,O we intro du ce the Banach spaees Fz(D):

Fz(D) := {f(x) = 2:fa(x)Ha : fa(x) measurable,

Ilfllz,* := sup(2: Ifa(x)j(2N/a) < co}.
xED a

(3.6)IIfogll-l,k,o :::;Ilfllk/2,*llglI-1,k,0 :::;IIflll,*lIgll-1,k,0,

These spaees where first given in [24]. The following proposition sec ures the eontinuity of the

Wiek produet for k :::;2l.
Proposition 3.7. Let D C IRd be open and choose I E IR. Then f E Fl defines a continuous
linear operator on (S)-l,k,O by 9 ~ fog as long as k ::;2l. Furthermore, we have

for all gE (S)-l,k,O.

(3.7)E[j] := fo

That is, E[j] equals the zeroth Wiener-Itö chaos eoeffieient of f.

A proof ean be found in [24] and is based on a simple applieation of Young's Inequality for

eonvolutions [6].
Definition 3.8. Für any element f = 2:a faHa E (s)p,k,m we define the generalized expeetation

as

Note that this definition coincides with ordinary expeetation if f E L2(p,). Also note that from
the orthogonality of Ha we have E[jog] = E[j]E[g] for any given pair of (generalized) stoehastie
variables fand 9 in (s)p,k,m. This property is a eonsequenee of the definition of the Wiek produet.
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4. A VARIATIONAL FORMULATION OF THE PROBLEM

(4.1)

We give a variational (or weak) formulation of the Wick-stochastic boundary value problem (1.1)
and show that a solution is unique. In the following Section 5 we will provide sufficient conditions

on the data to secure existence of a solution.

Formally, assuming enough regularity on the data and the solution, we may take the inner product

of (1.1) with any v in (S)~,k,l. This gives

Now, consider the left-hand side in (4.1) term vise; using the definition of the inner product the

first term results in
dL: L: (-Di(aijoDju)" v,)0,D(I)l+P(2N)k,

, i,j=l

for each v E (S)~,k,l and where C, ')O,D denotes the usual inner product on L2(D). By convention
the expression (aijoDju), denote the -yth chaos coefficient of aijoDju. Integrating each coefficient

by parts gives
dL: L: (((aijoDju)" Div,)O,D - ((aijoDju),ni, V,)O,BDJ (I)l+P(2N)k,

, i,j=l
where n = (ni) is the unit normal vector pointing out of D. Note that the integral over the
boundary vanishes because by assumption each v, E HJ(D). Summing the contributions from
the second and third term in (1.2) gives the bilinear form

d d

Ap,k(U,V) := L: (aijoDju,Div)p,k,O + L:WoDiu,v)p,k,O + (coU,V)p,k,O (4.2)
i,j=l i=l

defined for any u, v E (S)~,k,l. Here we only assurne enough regularity on aij, bi, c (i, j = 1, .. , , n)
to secure that (4.2) defines a eontinuous bilinear form. Lemma 5.1 below give sufficient eonditions
for this continuity. We define the variation al formulation of (1.1).

Definition 4.1. For a given pair (p,k) with p E [-1,1] and k E IR the variational (or weak)

formulation of (1.1) is
Find U E (S)~,k,l such that Ap,du,v) = (f,V)p,k,O for all v E (S)~,k,l. (4.3)

and a solution of (4.3) is ealled a variational (or weak) solution of (1.1).

Before we proceed to eonsider the existence of a unique solution to (4.3) we take a closer look
at the problem we are trying to solve. Let u be a solution to (4.3) for some pair (p, k). By the
definition of the Wiek product we have (formally)

d d

Ap,k(U, v) =2: [2: ((aijoDju)" Div,)o + 2:(WODiU)" v,)o +
, i,j=l i=l

((cou)" v,)o J (ll)l+P(2N)k,
d d

=2: 2: [2:(a~DjUa,DiV,)O+ 2:(bßDiUa,V,)O+
, ...a.+ß=, i,j=l i=l

(eßua; v,)o J (I!)l+P(2N)k,
=2: 2: B,_a(ua,v,)(I!)l+P(2N)k,

, aj,
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d d

Bß(g, h) := 2: (a~ Djg, Dih)o + L:(b~Dig, h)o + (cßg, h)o
i,j=l i=l

(4.4)

defines abilinear form on H6(D) for each ß E I and we use the partial ordering ~ given in
Section 2. 1£we choose v = wH, with w in H6(D) it follows that the sequence {u, },EI of chaos
coeflicients of the solution satisfy the following (infinite) set of variational problems

For each, E I find u, E HJ(D) such that

Bo(u"w) = (j"w)o - 2: B,_,,,(ua,w) for all w in HJ(D). (4.5)
a-<,

Theorem 4.2. Let a~, b~, Ca be in LOO(D) for i,j = 1, ... ,d and all a E I. Let f, be in L
2
(D)

for all, E I and let Bo (defined in (4.4)) be a coercive, bilinear form on H6( D). Then there exist
a unique set of functions {u, E HJ(D) : , EI} solving the variational problems (4.5).

Proof. First note that by assumption Bo is a continuous, coercive and bilinear form on HJ(D)
and for each fixed , EI the right hand side in (4.5) is a continuous linear operator on HJ(D),
provided the set {ua : a -< ,} is known and a subset of H6(D). The main idea in the proof is
that we mayorder the set of multi-indices in such a way that when we reach the ,th variational
problem in (4.5) we have already solved the variational problems corresponding to all multi-indices
a such that a -< ,. The proof follows by induction on , and repeated use of the Lax-Milgram

Theorem. 0

Remark 4.3. It should be noted that Theorem 4.2 does not imply existence of a solution to the
variational problem given in (4.3). For this we also need that the growth condition

2: Ilu,llh!l+P(2N)'k < 00

,EI
is satisfied far the pair (p, k) given for (4.3). The theorem does however imply uniqueness of
a solution to (4.3), as the following Corollary 4.4 shows. In Section 5 below we will prove the
existence of a solution to (4.3). This will then localise of our formal expansion of the solution to

some space (S)~,k,l.

Corollary 4.4. Given the assumptions in Theorem 4.2. Then any solution to (4.3) has the
(formal) chaos expansion

u = 2: uaHa,
aEI

where {u, : , E I} is the set of functions solving (4.5). This expansion is independent of (p, k).

Proof. The corollary follows directly from the calculations that lead us to (4.5) and the uniqueness
of {u, :"(E I} from Theorem 4.2. 0

We want to remark that the bilinear form Bo given in (4.4) is the variation al form corresponding
to the (generalized) expectation of (1.1). This follows since

d d

E[LouJ = - L E[Di(aijoDju)] +L E[bioDiuJ + E[couJ
i,j=l i=l

d d

= - 2: Di(a~ Djuo) +L boDiUo + CoUo.
.' i",j=l i=l

There is a range of well-known conditions on the coeflicients a~, bü and Co securing that Bo is
coercive on HJ (D). See for example [4, 23] and the references therein. Furthermore, note that
from a modeling point of view, where we think of the stochasticity as a small perturbation of some
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original deterministic model, it is natural to assurne that Bo is coercive. Thus seeuring existence
of a unique (variational) solution to the averaged equation.

5. EXISTENCE OF A SOLUTION

We show that we may choose p and k so that the bilinear form Ap,k(-,') is both continuous and
coercive on the space (S)g,k,l. From this the existence (and uniqueness) of a solution of follows
directly using the Lax-Milgram Theorem. As was noted in Remark 4.3 we already lmow that a
solution is unique. The proof presented here is a generalisation of the proof given in [24].

First, we consider the quest ion of continuity.

Lemma 5.1. If aij, b\ c E FI(D) for i, j = 1, ... , d and some l such that k :::; 21. Then the
bilinear form A-I,k given in (4.2) is continuous and there exists a constant CL < 00 such that

A-I,k(U,V):::; CLllull-l,k,lllvll-l,k,1
for alt u, v E (S)-l,k,l.

Proof. It suffices to show that A-I,k is bounded. Let u, v E (S)-l,k,l and k :::;2l, then
d d

IA_I,k(U, v)1:::;L lIaijoDjull_l,k,oIIDivll_l,k,o + L IWoDiull-l,k,ollvll-l,k,O
i,j=l i=l
+ Ilcoull-l,k,ollvll-l,k,O

d d

:::; L Ilaijlll,.IIDjull-l,k,oIIDivll-l,k,o + L Ilbilll,.IIDiull-l,k,ollvll-l,k,O
i,j=l i=l
+ Ilclll,.lIull-l,k,ollvll-l,k,O

:::;CLllull-l,k,lllvll-l,k,l,
using Cauchy-Schwarz, Proposition 3.7 and the definition of II.II-I,k,l' By our assumption on the
data CL := Lt,J=1 Ilaijlll,. + Li IWIII,. + IIclll,.<00. 0

Next, we give an intermediate lemma before we state the result about the coercivity of A-I,k'
Recall that we use fo to denote the zeroth order term in the Wiener-It6 chaos expansion of a
stochastic variable fand that this equals the (generalized) expected value of f.
Lemma 5.2. Let fE FI(D) for same reall and let v, W E (S)-I,k,O. Then

(fOV,W)-I,k,O 2:

L(fOV1',W1')0(2N/1' - ~2kj2-lllflll,.(llvll~l,k,0 + IIwll~l,k,o) (5.1)
7

Praof. The prooffollows the ideas in the proof of Proposition 6 in [24]. First note that if f E Fl(D)
for some real l then

sup L IfO'(x)I(2N)kO'j2 = sup L IfO'(x)I(2N)lO'(2N)(kj2-l)0' :::;2kj2-lllflll,. (5.2)
xED 10'1>0 xED 10'1>0

Next, choose v, W E (S)-I,k,O and consider the left-hand side of (5.1). Using the definition in (3.2)
we get

(fov, W)-I,k,O =--L j (foV)1'W1'dx (2N)k1'
7 D

= L j ( L fO'vß)w1'dx (2N)k1'
7 D 0'+ß=1'
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~LJ (jov,w, - L Ifallvßllw,l)dx (2N)k,
, D a+ß=,

lal>O

=L J fov,w,dx (2N)k, - L J ( L aa,baß)dx (5.3)
, D , D a+ß=,

lal>O

where aa, = (lfal(2N)ka/2)1/2Iw,I(2N)k,/2 and baß = (lfal(2N)ka/2)1/2IvßI(2N)kß/2. Applying .
the inequality ab ::; a2/2 + b2/2 in the last term of (5.3) give

L J ( L aa,baß)dx::; ~ L J (L a;,)dx + ~L J (Lb;ß)dx,
, D a+ß=, , D lal>O ß D a

lal>O
after some reordering and adding of positive terms on the right-hand side. Consider this bound
term-wise. From (5.2) and the definition of aa, we have

~L(L a;,)dx::; ~ L J sup( L Ifa(x)I(2N)ka/2)lw,12dx(2N)k,
, lal>O , D xED lal>O

::; ~2k/2-lllflll,* L r Iw,12dx (2N)k, (5.4), JD
::; ~2k/2-lllflil.*"wll~1,k,0'

A similar argument gives

1 ~ J (~ 2 ) 1 k/2 I 22'L... L..baß dx::; 2'2 - Ilflll,*lIvll-1,k,0'
ß D a

Summing (5.4) and (5.5) and using this estimate in (5.3) proves the lemma.

(5.5)

o

(5.7)

Now we state the result about the coercivity of A-1,k'

Lemma 5.3. 1f Bo is coercive on HJ (D), then there are constants ko ::; 21 and B > 0 such that
the bilinear form A-1,k given in (4.2) satisfies

2A-1,k(V, v) ~ Bllvll-1,k,1 (5.6)

fOT alt v in (S)o 1,k,l and alt k < ko.

Proof. The proof is easy. First, use (5.1) repeatedly and obtain

A-1,k(g, g) ~ L Bo(g" g,)(2N)k, - 2k/2-ICLilgll~1,k,1,
where CL = L:i,j Ilaijlll,* + L:i Ilbilll,* + Ilclll,* < 00. Next, since we assumed Bo to be coercive,
there is a constant Bo > 0 such that Bo(h, h) ~ Bollhlli for all hin HJ(D). Thus

A-1,k(g, g) ~ L Bollg,lli(2N)k, - 2k/2-ICLilgll=-1,k,1 = Bllgll=-l,k,l,
for all 9 in (S)Ol,k,l. The constant B := Bo - 2k/2-ICL can be made positive if we choose k small
enough. It suffices to have

2 ( Bo )k<ko:=21+1n2ln CL ::;21.

o
Theorem 5.4. Under the assumptions in Lemma 5.1 and 5.3, and with p = -1 and ko chosen
smalt enough, the variational problem (4.3) has a unique solution for each k < ko.
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Proof. The continuity of A-1,k follows from Lemma 5.1, and the coercivity from Lemma 5.3.
Thus, by the Lax-Milgram Theorem we have existence and uniqueness of the solution to (4.3). 0

Remark 5.5. From Corollary 4.4 We know that the solution (when it exist) is independent of our
choice of (p, k).

Example 5.6. Consider the press ure equation (1.3) with the singular permeability given by the
Wick exponential

00 W(x)on
K(x,w) := expO(W(x)) :=L I

n.n=O
where W(x) is the singular white noise defined in Example 3.5. A straightforward calculation
shows that

00 a 00

K(x,w) =L ~Ha(w) where rt(x) := II'TJf'(x).
n=O a. i=1

It follows that Bß from (4.4) can be written as

( 'TJß(x)
Bß(g,h) = lD /f!Y'g(x)Y'h(x)dx.

The domain D is a bounded domain with Lipschitz boundary aD by assumption. Thus, by the
Poincare inequality it follows that Bo is coercive on HJ (D). By Theorem 5.4 there exists a unique
solution to the variational form of the pressure equation.

Remark 5.7. The approach to finding the variation al formulation and showing continuity and
coercivity of the bilinear form described in this paper can be adapted to other type of boundary
conditions such as Neumann or mixed conditions. The variational formulation and the space
(S)Ö1,k,1 changes to account for the difference in boundary conditions. Apart from this the
approach is similar to what we described above.

6. A FINITE ELEMENT APPROXIMATION

From the previous section we know that the variation al problem (4.3) has a unique solution in
(S)Ö1,j,,1 as long as we choose k small enough. We want to investigate this solution, and do so by
solving the variational problem numerically using a finite element method.

The finite element method is based on a finite dimensional approximation of the space (S)Ö1,k,1.
By constructing a basis for this finite space, and using the linearity of the equations, we can
express the approximated problem as a set of linear equations that give the coefficients of the
finite basis expansion of the solution. We show how a finite dimensional space can be constructed,
give an appropriate basis for this space, present the resulting finite dimensional problem, and give

. . . (S)-1 k 1an error estlmate secunng convergence m 0".

A natural approach to construct a finite dimensional subspace of (S)Ö1,k,1 is indicated by Propos-
ition 3.2. We have the isometry

(S)Ü1,k,1 3': HJ(D) @ (S)-1,k.

Thus, we may construct our subspace by using a finite dimensional subspace of the space (S)-1,k
and some classical finite element approximation of HJ(D) [4, 23].

First, any J E (S)-1,k may be written as a formal sum J = I:aEI JaHa. where I = (Ngl)c and all
the coefficients Ja E III Following the ideas in [1] a finite dimensional subspace is then constructed
by restricting the allowed multi-indices to a finite set. Define the cutting IN,K cI as

N K
IN,K := {O} U U U {a E N~ ilal = n and ak f O}. (6.1)

n=1k=1
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(SN,K )p,k := { J = L JcxHcx: Jcx E ~,IIJllp,k < oo}
cxETN.K

(6.2)

(6.5)

is clearly a subset of (S)p,k for any choice of N, K and can be shown to have dimension (NtK).

Now far the construction of a subspace of HJ(D). This problem has been studied extensively, and
here we follow the approach described in [4]. First we give some basic notation and definitions.
For given n E No and some domain T C ~d define the function spaces

IP'n(T) := { L cßxß : cß E ~,x E T},
ßENd,IßI~n

that is, IP'n(T) is the family of polynomials of degree less or equal to n defined on the domain T.
A triangulation of a polygonal domain V is a finite collection of open triangles {Tdf::o such that

(a) Ti n Tj = if i =f: j and U'Ti = 15.
(b) No vertex of any triangle lies in the interiar of an edge of any other triangle.

The family of triangulations Th for h E (0,1] of the domain V is said to be non-degenerate if

(a) max{diam T: T E Th} ::; h diamV
(b) There exists a p > 0 such that for all T E Th and all h E (0,1]

diam Br :::::p diam T

where Br is the greatest ball contained in the triangle T.

We call h the grid-size of a given triangulation Th.

Now we proceed with the approximation of HJ(D). We assume spatial dimension d = 1,2 or 3 and
for convenience we assume that D is a polyhedral domain in ~d. Let Th be some non-degenerate
family of triangulations of D and for each Th E Th define

VM := {v E COCD) : VlaD = O,v E 1P'1(K) far each K E Th}. (6.3)

We let NI denote the number of internal nodes in the triangulation. Note that NI is the dimension
of the finite element space VM and it inversely proportional to the grid-size h. Furthermore, note
that the continuity of the functions in VM secures that VM is a subspace of HJ (D), as an easy
computation using the Green formula shows.

The approximations (6.2)-(6.3) may now be put together to define the finite dimensional space

(S )-l,k,l V,o, (S )-1 k (6.4)N,K,M 0 := M 'CI N,K '.
Because VM C HHD) and (SN,Id-1,k C (S)-l,k we clearly have that

(s )-l,k,l C (S)-l,k,l.N,K,M 0 0

for any choice of N, NI, K. Let J be in (S);-l,k,l. Then the projection of J into (SN,K,M );-l,k,l is
given by

JN,K,M (x):= L J!: (x)Hcx
cxETN.K

(6.6)

where J!:(x) E VM denotes the projection of Ja E HJ(D) into VM. The following result is due to
Benth and Gjerde [2].

Theorem 6.1. Let k, q :::::0 be given and assume r := k - q > r*) where r* solves
r*

" .---- = 1 (r* ::::;1.54).
2r* (r* - 1)

Then there exists a constant C > 0 depending on Th such that

IIJ - JN,K,MII_1,_k,1 ::; BN,K,rIIJII-1,-q,1 + ChIIJII-1,-k,2,
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and fo1' any gE (S)1,k,1

I((f - fN,K,M,g))1 ::; (BK,N,Tllfll-1,-q,1 + Chllfll-1,-k,2)llgIl1,k,1
whe1'e

BK,N,T =VC1(1')K1-T + C2(1')(2T(1'1'_1))N+l

1
C1 ( 1') = 2T (1' _ 1) _ l'

C2(1') =2T(1' -1)C1(1').
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(6.7)

(6.8)

Note that we have changed notation slightly here, assuming both k, q 2: 0 and explicitly writing
the minus signs in the norms.

Using the space (6.4) the Galerkin approximation problem [4]' derived from the variational for-
mulation in (4.3), becomes

Find uN,K,M E (SN,K,M )Ö1,-k,1 such that

A_1,_k(uN,K,M,v) =(f,V)-1,-k,O for all v E (SN,K,M)Ö1,-k,1

Existence of a unique solution to (6.8) is a result of the Lax-Milgram Theorem together with
(6.5) and the results about coercivity and continuity of the bilinear form. Furthermore, by Ceas
Theorem [4] we have the following estimate on the error

Ilu - uN,K,MII_1,_k,1 ::; ~L min{llu - vll-1,-k,1 : v E (SN,K,M )Ö1,k,1}, (6.9)

where CL < 00 is the continuity constant from Lemma 5.1 and e > 0 the coercivity constant from
Lemma 5.3.

Assuming u E (S)Ö1,-q,1 n (S)-1,-q,2 then by Theorem 6.1 together with (6.9) we get the error
bound

lIu - uN,K,MII_1,_(Q+T),1 ::; ~L (BN,K,Tllull-1,-Q,1 + Chllull-1,-(q+T),2), (6.10)

for any M, N, K and q big enough.

This bound on the error implies convergence of the numerical method in (S)Ö1,-k,1, because by
(6.7) it is clear that BN,K,T ~ 0 as N, K ~ 00 as M ~ 00 (or equivalently as h ~ 0).

7. AN ALGORITHM FOR THE NUMERICAL SOLUTION

We now turn our attention to the finite dimensional Galerkin variation al problem (6.8). The
solution of (6.8) has the chaos expansion

UN,K,M = ~ uMHLJ 0: a,
aELN,K

(7.1)

where u;f are in VM C HJ(D) and the cutting IN,K is defined in (6.1). The formulation corres-
ponding to (4.5) becomes

For each 'Y E IN,K find ut;j E VM such that

Bo(ut;j,w) = (f-y,w)o - ~ B-y_a(ut;j,W) for all w E VM' (7.2)
a-<-y

Note that now we also need the property

1 E IN,K => {a EI: a -< 'Y}C IN,K. (7.3)
in order to have a well-posed problem. The cutting defined in (6.1) satisfy this property. Since
this is a finite dimensional problem both existence and uniqueness of a solution follows by the
induction argument in Theorem 4.2.
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We rewrite (7.2) to aseries of liriear systems of equations. Let {<Pn}~1 be some basis for VM.
Then each coefficient u;;; can be written as

M

u;;; (x) =L c~<Pn(x) (c~ E IR). (7.4) '.
n=1

Substituting this sum 'into (7.2) and choosing w = <Pm gives us the following series of M-
dimensional linear systems:

Aoc')' = f')' - L A')'-acß,
a-(')'

(7.5)

where the matrices A')'-a := [ß')'-a(<Pn, <Pm)]are in IRMxM and the vectors f')' := [(1')', <Pn)O]and
c')' := [c~] are in IRM.

Remark 7.1. Since the equation for c')' depends on c;;; for a -< " we need to traverse the multi-
indices in such a way that the necessary information is available when we reach the ,th equation.

Summarising these ideas give the following algorithm for the numerical solution of (LI). Here we
assurne that an appropriate triangulation Th has been chosen, with the corresponding function
space VM and basis {<Pn} (n = 1, ... ,N). Furthermore, we assurne that there has been chosen
N, K E N to get a cutting as described in (6.1),and that the set of variational equations (7.2) has
been formed.

Algorithm 7.2.
1. Form the ordered set IN,K
2. Start with , = (0, ... ,0) E IN,K
3. 11, E IN,K do

3.1 Calculate f')' = [(1')', <Pn)O,D].
3.2 Find the set.c.')' = {a E IN,K : a -< ,}
3.3 For each a E .c.')'

3.3.1 Calculate the matrices A')'-a = [ß')'-a(<Pn, <Pm)].
3.3.2 Update the right hand side f')' := f')' - A')'-aca

3.5. Solve the problem Aoc')' = f')'
4. Find the next, and go to 3.

We now comment on the different parts of this algorithm:

First, note that there is a one-to-one correspondence between each a in IN,K and the binary
number given by

bin(a) := 11 ... 1011 ... 10 ... 011 ... 1.
'---v--" '---v--" '---v--"

Q:'K-l

(7.6)

In step L we order the set IN,K in the following way: Given a, ß E IN,K then

ß 'f { lai< Iß\' or (7 ~)
a< 1 lai = IßI, bin(a) < bin(ß) . (

This relation makes IN,K into a totally ordered set. Clearly, a -< , imply a < , so (7.7) provides
a good way of choosing the next , in step 4.

Next, considering the number of required computations. A straight forward calculation shows
that the algorithm requires (N~K) matrix- and vector-definitions (cf. step 3.1 and 3.3.1), (NiJ~K)
matrix-vector products and vector additions (cf. step 3.3.2), and (Nj{K) solutions of a linear
system (cf. step 3.5). The exa:et amount of numerical work required depends on ehoice of basis
{<Pn}, numerical integration method in step 3.1 and 3.3.1, and how one solves the linear system
in step 3.5. When deciding these parameters for a given case, the above results are helpful when
trying to mini mise the numerical work. Note that by storing the matrices after they have been
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(7.8)

calculated in step 3.3.1, instead of recalculation them when we use them again later, we reduce
the number of matrix-definitions from (N~;K) to (Ni(K). This saves us a considerable amount of
computational time, but makes the algorithm need more memory.

Usually one will calculate fa and Aß using numerical integration over all the elements in Th. This
kind of integration is a standard tool in (deterministic) finite element methods and there are many
available software-packages forthis (we used Diffpack [22]). Our opinion is that the possibility to
use ready software made für deterministic problems is an advantage for the method. Furthermore,
we did aLU factorisation of Ao to solve the equation in step 3.5. If M is large it is preferable to
apply an iterative method like the Conjugated Gradient (CG) method here. See Golub and Van
Loan [10] for both LU-factorisation and CG.

Once all the coefficients u;: (a E TN,K) have been computed, one can do stochastic simulations
of uN,K,M(x,w) by simulating Ha(w) for each a E TN,K and summing like described in (7.1). The
simulation of

Ha(w) = IIhaj((w,7]j))
j

can be done using Lemma 2.1. Draw K independent standard Gaussian distributed variables and
form the product (7.8) for each a E TN,K.

Finally, we would like to point out the parallelism inherent in the problem. Since c, only depends
on {ca: a -< ,} it is clear that we can solve für {c, : 1,1 = k} in parallel.

8. A NUMERICAL EXAMPLE

The main motivation for this Section was to provide an application of Algorithm 7.2. We also
wanted to investigate the properties of the solution to the pressure equation (1.3).

Let the permeability and source term given by (slightly misusing notation)

7]a(x)
K(w,x) = expo W(x,w) = L -,-Ha(w) and f(x,w) = 1,

a.aEI

respectively (x E D,w E 5'). The above permeability corresponds to the singular permeability
case studied in [17]' where the authors prove existence of a strong solution in (5)-1. It should
be noted that this solution has later been shown to be in a much smaller space g-l, see [3] for
details.

We applied Algorithm 7.2 on the variational formulation arising from the press ure equation (1.3).
The properties of the solution was investigated through direct simulations of the pressure, and
by plotting the norm Ilu~llooh E TN,Id against increasing multi-index. This plot is interesting
because of the bound

thus if the numerical results indicate that Ilu;:1100 is uniformly bounded in a, then this would
indicate that the solution is in (5)-1,-k,O for some (small) k > O.

We solved three specific cases: Case A, Band C, corresponding to the one-dimensional (A,B) and
two-dimensional (C) case with given choices of cutting (N, K) and grid size M. The specific data
are given in Table 1. We did more simulations than those we report here, but we picked these
examples to illustrate the typical behaviour of the solution.

Now we have the following comments on the simulations.

First, the one-dimensjonal cases (A and B): We start with the stochastic simulation oft he pressure.
In Figure 1 and 2 we show typical behaviour for the simulated pressure. These simulations are
done as described in the comments to Algorithm 7.2. Note here how the approximation in case
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ABC
[-5,5] [-5,5] [-1,1] x [-1,1]
100 100 256
(3,15) (15,3) (3,15)

Lagrange interval Lagrange interval Lagrange triangle
TABLE 1. Data used in the numerical simulations.

Case
Domain (D)
Nodes (M)
Cutting (N, I<)
Element

B (N = 15, I< = 3) in Figure 2 is much smoother than for case A (N = 3, I< = 15) in Figure I.
This has the explanation that in case B we have I< = 3, so there are fewer random variables used
when simulating each H-y(w). Another contribution to this behaviour of the simulated pressure is
that coefficients degrease much fast er for increasing N compared to increasing I<, see discussion
below.

Now we consider the 11 . 1100 norm of chaos coefficients. In Figure 4 and Figure 5 we give plots
of Ilu~lloo against the ordering of the multi-indices a E IN,K described in (7.7). Note how the
plot in Figure 4 shows three distinct levels for the values of Ilu~lIoo. These levels corresponds to
different order (laI) of the multi-indices a. By comparing Figure 4 with the rapid decrease in the
values of Ilu~lIoo that can be seen in Figure 5, the conclusion we get from our numerical data is:
When we increase lai, thus moving to higher order chaos of the solution, the values of Ilu~1100 are
bounded (and even seem to decrease).

Thus, our numerical results indicate that the solution is in fact quite regular. Since the u'" 1100
are bounded (and even decreasing) we expect the real solution to be in some space(S)-l,-k,O for
quite small k > O.

This argument on the behaviour of the coefficients is also supported by looking at the error term
in (6.10). As M is chosen big compared to N and I<, the right hand side in the error (6.10) is
dominated by the constant

(r > r* ~ 1.54).Cl C ( r ) 11I+1
I<r-1 + 2 2r(r _ 1) 1 ,

Thus, it is no surprise that the coefficients decrease faster when we increase N (case B) compared
to the increase in I< (case A).

To give an idea of how the shape of coefficients u"" we included in Figure 4 some typical chaos
coefficients u!j plotted against the space variable, for the one-dimensional case Al.

Next, for thetwo-dimensional case: In Figure 6 we present a plot that corresponds to Figure 4 and
5 for the two one-dimensional cases. We can still see the same bounded (and decreasing) behaviour
of Ilu~1100 as for the one-dimensional case, and the conclusion from this numerical investigation
is the same as for the one-dimensional case.
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FIGURE 1. This plot shows nine different simulations of the pressure in the one-
dimensional case A (N = 3, K = 15). As a comparison we included a plot of the
expected solution uo.
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FIGURE 2. Same king,of plot as Figure 1 above for the one-dimensional case B
(N = 15,K = 3).
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FIGURE 3. The figure shows some typical coefficients u~, plotted against space
in the one-dimensional case A (N = 3, K = 15). Counted from right to left
we have coefficients numbered 1, 13, 59, 201, 274, 387, 431, 611 and 797. The
simulations of the pressure is then a sum of these (and many more) coefficients,
with a stochastic weight (cl (7.1) ).
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FIGURE 4. The figu;'~ shows Ilu.:y 1100 plotted against the ordering of the multi-
indices in IN,K for the one-dimensional case A (N = 3, K = 15). Note the three
distinct levels in the values, as the order lai increase.
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FIGURE 5. Same plot as in Figure 4 above, but now for the one-dimensional case
B (N = 15, K = 3). Notice that there is a clear trend towards sm aller IIu11100 as
we move towards bigger a.
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FIGURE 6. The figure shows lIu11100 plotted against the ordering of the multi-
indices in IN,K in the two-dimensional case C. We see the same behaviour as for
the corresponding one~'dimensional case A.
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