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EQUA'l'IONAL COMPACTN~SUli UNIVERSAL ALGEBRAS ~

by

Günter H. Wenzel

It is the aim of this paper to give a unified setting to

and report on a new area of research in (universal) algebra:

the theory of equationally compact universal algebras.

We attempt in this study to present in a concise fashion all

essential results known on the subject matter as far as they
"

have bearing ort algebras rather than relational systems. More

precisely: We take into account all relevant results in

mathematical journals, a few unpublished results if they aid

in illuminating the scopi of some of the published results

and this author's own research. Proofs will not be given in

detail if they have appeared in printe Exception to this rule

will be iYlt1d e for two reasons only: (1) if new ideas intrude 'apon

a known result, (2) if the readability of this article seems

jeüpardized by too much omission. The paper will be concluded

with a list of open problems.

The terminology follows essentially G. Grätzer (17) and we
"assume familiarity with the results in that book. Even so, we

will collect, mainly for terminological purposes, the basic

concepts relevant to this report in)~ 1. The following lS a

listing of the various sections of this paper:

~ 0 Introduction.

~ 1 Basic concepts.

~ 2 Various compactness concepts.
~

~ 3 A fundamental characterization theorem and its consequences.

~ 4 Conrtections between weak equational compactness and

equational compactness in universal algebras.
/.,
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~ 5 Characterization theorems for (weak) atomic compactness

of a relational system cr involving rA I .

~ ,6 Connections to topology .

.~ 7 Equational compactness ( atomic compactness ) in

specific universal algebras (relational systems):

(1) Unary Algebras.

(2) W. Taylor's counterexample to a positive answer to

Mycielski's problem.

(3) Semilattices.
(4) Lattice-related structures.

(5) Boolean algebras.

(6) Abelian groups.

(7) ,1(- modules and rings.

~ 8 Compactifications of universal algebras. ~ '
~ 9 Problems.

I am grateful for the opportunity, offered, in 1968 by

the Carnegie-Mellon University in Pittsburgh / Pa, to give.., ,

a seminar on the topic. The Dotes then compiled (48) were

an invaluable basis for this work which, in turn, is a

condensed version of my "Habilitationsschrift" (51).

Thanks are also due to .NRC which has supported this and other

projects of mine with generous grants ..

In the proof reading I was assisted patiently and criticallyby

my students S. Bulman - Fleming, D. Haley and D. Kelly.

Last not least I thank G. Grätzer for his invitatioD to write

up this paper' for publication in the journal'llAlgebra Universalis
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It is the very question which has given life to the

mathematical discipline called "Algebra" that, in a modified

form, is underlying our topic: The question about the solva-

bility of certain systems of equations in certain pregiven

algebraic domains. However, while the original interest was

and is directed toward finding solutions of finite systems of

equations (or, at least, toward establishing the existence of

such solutions) our interestis of a more relative nature:
r~'"'--

G~ven a system of equations over some universal algebrawe want
to study the c6ndi~ions under which we can conclude the

existence of a solution of that system provided all finite

subsystems are solvable. To clarify our point we will initiate

our presentatioh wi th the aid of a few simple,

illustrating examples.

Example 1: If we consider the cycIic group Z of integers

with Addition + then we narrow our attention to the following

system L of equations:

3xO + xi = 1

xi 2x2
x2 = 2x3
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for every n E N, i.e. 2n divides
(x0 'x1'x2 ' ,xn ' )E

no f. x1 = 2 xn '+ 1

n runs through the set N of natural numbers.
Wo
Z is a solution

then

Visibly, if

of

x1 f. 0 for every natural number n. This being impossible,

~ has no solution. On the other hand, if L denotes then

set of the first n equations in Z ,then we choose Xo and
n-1 .xn such that 3xO + 2 xn = 1, deflne xn-1 = 2xn, xn-2 =

2xn_1' ....~., x1 = 2x2 and have, thus~ a solution (xO,x1' ...,xn)

of Z n Z is a system of equations which is not solvable,

although every finite subsystem iso This example {that can

be found ln Mycielski (31)) ought to be contrasted to the

next one.

Example 2 : If B is a complete Boolean algebra with JOln \/ ,

meet ~ , complement " zero 0 and identity 1, then every system

of equations involving variables, constants of Band the

above operations is solvable provided every finite subsystem

iso Wewill come backtethis result. ( See (1) and (44) ).

Example 3 : If we replace the Boolean algebra in Example 2

by a complete lattice L with join 'V and meet ~ , then
the conclusion is no langer true. To see this, let

L = [0, aO' a1 ' ,an ' ,1J ' n< (.JO'where 0 and :l are,
respectively, thesmallest and largest elementand the elements
an are pairwise unrelated:
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the other hand is it quiteeviderit that

If S is a set of cardinality

of equations overj E S j
, then the system

f- j implies x. i 'x. for any
1 J

1 xs; SES} would have cardinali-

(J,
() 1

i f-

z. , i.e.of

5 x./'.x. = 0, x.Vx. = 1t 1 J 1 J

not solvable in L, since i

solution (x )s SE:S

H 1 > ILI. On

L is

ty

z =

every finite subsystem Z 1 of L is solvable.

Example 4 : If B is an arbitrary non-void finite set and F

a set of finitary operations on B then any set of equations with

an arbitrary number of variables, constants from Band based

on finite compositions of the operations in F is solvable in

Bprovided it is finitely solvable. If only a finite number

of variables were involved then, of course, the fact that

the "Finite Intersection Property" holds for finite sets

would trivially yield the result. If infinitely many variables

are involved then one could convince oneself of the correctness
/j

of our claim by a process of reasoning that mimic~ the

proof of Tychonoff's well-known theorem concerning the

product of compact Hausdorff spaces. Since we will relate

topological compactness with our algebraic problems in what

follows we will skip a redundant argument at this point.
---

Example 5 : It is the same basic technique we used in

example 3 that together with Dirichlet's prime number theorem

yields the next peculiar system of equations o~er the

ring of integers Z. Not only is every finite subsystem,

but even every countable subsystem of equations solvable; the

whole system, however,admits no solution.
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If UJ1 is the initial ordinal of (~) 1 then the system

I = [ x1'Z (m.zft n)+ Yj'7 (m.zZ + n) = 1; Jt?<cu1 5
of equations over the ring Z is not solvable if n,m are

tl-nrelati vely prime natural numbers such that ----- </:. Z.
m

Mycielski chose m = 5, n = 2.

To see this we realize that for everY,cr:lOice of z!<= Z

+ J-the integer m. Zs -+ n is different from -1; hence, i- 'Z implies

zJ i-ZZfor.every solution (11<01 of L which, of course, is

impossible in Z. On the other hand, every countable subsystem

L ' of Z. is solvable in Z. For let Jo' f l' .f2' .... , fi' .... '

i< WO' .be the indices f,? actually occurring in L' and

choose zI'i such that m. zJ
i

+ n = Pi is a prime number for

every i € N; moreover we niake our choice such that i i- j implies

p. i- p .. vJe can do this since n+mJ n+2m, n+3m, .
l J

consti tutes an infinite ari thmetical" progression wi th initial--o"

element n, difference m and (n,m) = 1; thus, Dirichlet's

theorem assures an infinite number of prime elements in the

progression. Since therefore (Pi,Pj) = 1 if i i- j, we can find

integers s .. and t .. such that s .. p.~j-t .. p. =1; i.e. L."is
lJ lJ lJ l lJ J

solvable. Mc Kenzie has recently displayed

a system of equations with the above properties over the

Abelian group of integers.

Example 6 : Let' this time Z denote the set of integers wi th

one unary operation f only: fez) = z + 1. Any system of equations

invol ving variables, integers and the operations fn, TI E:. N, is
~i

solvable provided it is finitely solvable. If we add one more

-6-
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element, say a, and define f(a) = athen the above claim

remains still true. Let us, however, continue to extend this

algebraic system as folIows:

lf

1f
"If
~1f

z+1;
If

z~If
••jf

,-
1\

Then the resulting system does no more satisfy that proper-

ty - not even if we allow no constants. This is seen by the

following system of equations:

y = f{y), Y = f(x1), xi = f(x2), x2 =
The author's study of this unary case

J

f(X3), ..... "X =f(x 1)''''n n-l-

will be sketched in

Example 7 :

Both divisible Abelian groups G and p-primary Abelian groups G
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that (being modules over the ring of p-adic integers) (1) have

no elements of infinite height and (2) are complete in their

p-adic topology do have the property that any system of

equations with constants from G and involving only finite

compositions of the fundamental operations is solvable provided

summands of topologically compact Abelian groups, called

Abelian groups with this property of "relative solvability"

of equations of the type described in the last example

algebraically compact groups. He used two different, alth"ough

equivalent, definitions in the 1954, resp. 1969 editions of

his monograph "Infinite Abelian Groups". One may say that

the case of Abelian groups and the interesting structure

theory the question of "relative solvability" gave rise to
(

in that case was a strong impetus to further and more general

research. In the sequel the concept has attracted the interest

of algebraists and logicians alike and has been studied in

both a universaLalgebraic - logical and classical algebraic

framework. Structure theorems, decomposition theorems,

connections between algebra and topology, model-theoretic

and algebraic characterizations within fixed equational classes

of algebras were in the foreground of the investigation.

The topic seems to be particularly apt to please those minds

that strive after or look for interplay between challenging

and deep universal algebraic research with interesting



situations "that arise once one focuses one's attention on

particular "classical structures". And this, indeed, itdoes

if one recalls that this "relative solvability" behaviour forces,

e.g., Abelian groups to be direct products of exactly such

groups as we displayed in example 7 or Boolean algebras to

be injective etc. The interest in ~ classical interpretations

of our general problem prevails to this day as, e.g., the

1970 - papers of A. Abian (1), L. Fuchs (12), R.B. Warfield (47)
or D. Haley (20) witness.

On the universal algebraic side research has been done mainly

by J. Mycielski, B. Weglorz, G. Grätzer, H. Lakser,

S. Balcerzyk, J. ~os, W. Taylor, G. Fuhrken, L. Pacholski,

Mc Kenzie, the author and others.

W. Taylor has just completed a new preprint with material relevant

to our topic (see (42)) which, of course, cannot yet be included

in this presentation. Partly the results of that preprint

are aimed at relational structures rather than algebras; his

nice idea of a "minimum compact algebra" we were able to

include here at a fitting place.

We conclude this introductory section with a table of

notations that are frequently used throughout this report.
(.



Recurring Notations,

N = set of natural numbers'

R = set of real numbers

Q = set of rational numbers

H(K) = class of homomorphic images of objects in K

P(K) = class of direct products of objects in K

S(K) = class of subobjects of obj ects ln K

U(K) = class of ultraproducts of objects in K

UO(K)= class of ultrapowers of objects in K

C (ä!) = congruence set of (fl
21 = set of subsets of the set I

111 = cardinality of the set I

I~I= cardinalityof the ordinal ,~
V and ;,-.,...,= set-theoretical unlon and intersection.

\J = disjoint union ( If two sets A and B are not disjoint

then A~/B denotes a set that results from taking disjoint

copies of A and Band forming their union.)

[a]O= the block of a under the equivalence (:J
The elements of 77 ( U7.;i t:- I) are denoted by either' f or (if) .."I'

-. l lc-

,;;{;is S-pure with respect to cf
(71 and <.~'t: are mutually S-pure

= spectrum of (.lI with constants in S

If f is a polynomial in a universal algebra then we write the

arguments behind the symbol: f(ai, .... ,an). If f is any other

function then the argument preceds f: af,

- 10",-



~ 1 Basic concepts.

A relational system C7. is a triplet (A;F,R) of sets such

that the so-called carrier set Ais. non-empty, F is a set

of operation symbols that induce certain concrete finitary

operations on A (called "fundamental operations"), R is a set

of relation symbols that induce certain concrete finitary

relations on A. We generally assume Fand R to be well-ordered
f l(more a conveniencethan a necessity), say F = efo, ...,ft ,.~y<~

R = fro, ..... ,rJ ,.... Jt<O<2' and we assume f(f to be ann6'-ary
operation symbol, rJ to be an ms - ary relation symbol

(n~, mJG NO). Generally we will ( ln agreement with wide-

spread usage ) use the same notation for the symbols and

the concrete operations or relations induced by those symbols.

If, however, we need to emphasize what operations or relations
07we are exactly talking about then we will also write fg or

01rt ' respectively. If '(1 = (no, ..... ,nd ' .... )6<0<'1'

q-" = ( ) th 11 CL ('-:-- 'I)
<.; 2 mO' ..... ,mÖ , .... J'<O<2' en we ca = Li' '- 2
the type of 0/ .
If R = 0 then we say that (A;F,R) = (A;F) is a (universal) algebra

I

of type 1: = ce- l' If F = 0 then we .call (A;F ,R) = (A;R) a

-l~L-



strict relational system or a relational structure of type
,----r
L = 2'
Every universal algebra 01 =' (A;F) of type 7:= (nO, ...,nv"')

. a ~<~

is associated with a relational stru~ture 0"'" 1= (A;R(F» of-re _

type <[rel = (nO+1, ,n.i+1, )~<o( by defining

rö(a1, .... ,aniT-1) to hold true if and only if f~(a1"'" ,anS) -
a1. Being interested in algebra rather than model theory.

n,y+
we will, however, have only occasional transitions from the

one to the other

If 01 = (A;F,R) and et = (B;F,R) are two relational systems

in K( 7:') , the class 01' all relational systems of type 'L" ,

then a mapping f: A ----~ B is a homomorphism if firstly

f)('(a1, ,a )f = L,(a1f, ,a f) and secondly
u n6' <1 ng

r, (a1, .... ,a ) implies rcf (a1f, ..... ,am(\f) for all aiE:.A.
o m8 0

If, in addition, lJ(a1f, ,amSf) for some aiE A always

implies the existence of c1, ,c E A such that c.f = a.f. m~ 1 1
Ö

and rJ(c1, ..... ,cmg) holds true then we speak of a full homo-

morphism. If, even more, rt(a1, ..... ,ams) is always equivalent

to TJ(a1f, .....,amcSf) then we speak of a strong homomorphism.
Of course, in case of universal algebras the different

homomorphism.concepts coinoide. (See also (17),chapter 11,

~ 13). The concepts of monomorphisrn, endomorphism; automorphism,

epimorphism and isomorphism are then clear (since we talk

about set mappings and stay away from category theory).

The isomorphism theorems (again see,e.g., (17) or (36» connect

in the usual strong form homomorphisms with congruence'.relationse

-12.-



Subsystems andsubalgeb~as are, respectively, relational

systems whose carrier sets are subsets of the larger carrier set

and whose operations and relations are induced from the

larger algebra.

Let us be a little more space-consuming with the construction

of. the class !:.SCL) of polynomial symbols of type T = ez-1 ;c 2-)-
wi th constants inS . We choose, for every ordinal;r , the

symbol e8 and call the resulting class ~ = f e~ ;J1= ordinal)

the class of "proj ection symbols" . Ps ('L) is defined as a' class

of symbols as folIows:

(1)

for

can

Ev S .s PS('r ), (2) P1 ) . . . . ,P E: Ps('L.- ) = = =~ f.v(P1 ' . . . )p kP/ 'L )
nö ' u nö <.,

all f~~F, (3) ~('Z:") consists exactly of all elements that

be obtained in a finite number of steps using (1) and (2).

Equality is formal equality.

(2) would implicit~ly define an algebra (Ps( ''t-) ;F)of type ce-1
if PS(T) was a set rather than a class. So if we restrict the.

proj ection symbols e ~ by ~equiring 6.,( o( where c.X is a fixed
Cll10l 'Y"ept!cue) (

ordina~J\ in (1) E by this set E 0<) = fee; 6 L. 0( ] then we obtain

the algeb ra u..Js (&~= (Ps (IX ) ( 'L); F) of "0( - ary polynomial

symbols of type ~ with constants in S".

This construction is the obvious modification of the same

construction given in (17) for the case S = 0. The same remark

applies to the following continuation:

Let K(T; S) denote the class of all relational systems C1 .:J
type c-t- with S~A. Ps(O< )(-z;) induces on every(}!e=: K('L;S)

an algebra .'ZPS(o() ((57) of type 1:l' the so-called

"algebra of 0< -ary polynomials on 01 " in the following fashion:
(~x) (}!o( 0(

Every p ~ Ps ( re-) induces a mapping p ": A ----";'> A

according to the agreement that (i) e1'0( (xO) ••• ,xl""~<~ x(J

-13-



()1,0(' , _and s (xO;;.... ,xd' , ... )", - s for SES and
, 0< 0( (J,

(l'l') .f 07 ,.;>( ,1,d 1 d d f' d thl P1 , , P are a rea y e lne en
, ng &

f{{(P1'..... 'Pn ) induces f8(P1' .... 'Pn) ,0<' (XO' .. "XJ' ••. )cf~CI<"=
, 0/0< l . 'dIe¥' '
fv (P1 ' (xO,x1' 'xr' ){1 , •••• ,p , (xO'x1, ,x<', )C'.).
~( o<~, n8 0 a<~

Then Ps(O( )((J;) =: {p tJ!,~ ; pE ps\CX )('l:)}. Moreover, if 1'£ F
& ' - ~

d 07,0( ,0< P(0( ) (/P-t) than P:1. ' , PeS VI en
(J/ GV v< 01 n2l' {f; 0(
I'd' (p1 ' , ,Pni' .,0( ) -. ( I'/ p1' ,pnJ ) )' mak es
f;>] a well-defined operation on Ps (0< ) ((11).

Again it is a customary habit to drop the various superscripts

if confusion cannot arise. Also: Pe,(Z--) = p(r), K( 'C';0) = K(t.)

etc.

If L(~) denotes the first order language (with identity)
r

wi th variables xO' ..... ,xJ, ..•... , [!<..'>(, then we can proceed
• . (cX ) ( )as in the case 01' polynomJ.al symb als and deflne_L't'. S

for any set S as the set 01' formulas one obtains by replacing

.some, none or all 01' the free variables by elements ofS.

L (~)(S) has then its natural interpretation in relational
1:

systems rJ! c K( L ;S). For the remaining notations and concepts

of £irst order logic (as, e.g., atomic formulas, positive

are relational systems 01' type ~ and A5 B, then

formulas, quantifiers, satisfiability 01' formulas etc) see (17).
/?1 .-.ßIf UI and ",./.0

called an elementary extension oi'(J! (notation: rJ!f.:.,Jg )

are called elementarl1 equfvalent

holds in one relational

Cl( 2'4.-0' and each a E A0< the

in o$'if and Oi1J.y if it is so in
(}f and c<;

if for each formula ~ E L (O( ) ,
1:'

formula '1' is satisfied by a
(J; 1$ -fheJ2 Ca/lee! a17

~lementary subsystem.

if and only if every sentence that

system also holds in the other.

-14-



The concept "elementary extension1t is closely related to the
A'I /Vconstruction of an ultrapower cl! D of a relational system V,

with respect to the index set I andthe ultrafilter D of

subsets of I, As well-known, every relational system CJl is
(via the diagonal embedding) anelementary subsystem of every

of its ultrapowers,A, Tarski suggested the study of ultrapowers

in connection with the compactness theorem of logic, The theory

afforded a new proof for the latter theorem, the meatof which

led C. Ryll-Nardzewski to a slight variation that is useful

pure subsy'stem.

Of course, every elementary subsystem is a pure subsystem, We

end this section with a few refinements of these concepts and two
remarl{s. (see (4Jn, (1.[5)', (50))'

If ~f, Jj are relational systems and S~ A,B then a homomorphism

g: CI! ----~ ~ is called an S-retraction if sg = s for all SES.

'(Ag;F,R) = {)( g is then qn S-retract of (}J . If every finite

set of atomic formulas with constants in S which is satisfiable
. /1/1 , \~ "' c;6.:LnUI is satisfiable' in <x..::; then" ;'Je ca.1~!"" :; " ", ~ 'ehe system . --,

-15-



are called mutually S-pure ( notation:

If

3-pUre. ,d th- res()ect~o er ( notation:

and

C1~->0t6) .
hold then U!
CI~>~

and oG)
) .

Clearly:>- o - retracts are homomorphic images; Ä-retracts

g: ot'-----:7& OYe simply retracts ln the usual sense if CI<;; oe- .
-~ Let (!j, £ be relational systems of type 't"":

is anS-retract of the relational system 0<:; then(1) If Ol
00~u7 .

'Hemark - L 2

(2) If CI is a subsystem of;G and O! is a retract of e;&

are

then CI is a pure subsystem of ~

o<b /"-""-L Cl; and all sets of atomic formulas in L,.•.(S)
L

satisfiable in U! provided they are satisfiable in ~ then

contains anS-retract of c:x::f5
proof: (1) and (2) are clear. Let us turn to (3): To give that

proof we need to introduce a construction that we will use

frequentlyhereafter and therefore introduce via a proof-inde-

{O-l-2 = 2,2-1-0 = 2, 3-+8=11, 7+49 = 56, Ll~7, 8~1002, .. ~:~.J
If S.,; B then the spectrum of ._~ vIith respect to S (spec 0~»S----

is the system of atomic formulas with constants in S which we .
• ..p, >" ""'"

get by replacing every b E: B" sAb'Y the variable xb'

Back to th~ proof of (3): specS (oG) is satisfiable in o<:f) by con-

-1(j-



struction. So, by assumption, specs(~) is satisfiable in Cf' .
Let us assume that (ab; bE B\S) is a soluti~n 01' specs(c0')

in er . Then the mapping g: B ---»> A defined by bg = ab

1'01' bEB' S ana bg = b 1'01' b E-S is evidently an S-retraction

from ~ to (;Y;. ;

After this proof we are really in a position to stren&then

the claim made in 1. :2. ~ . (3) as folIows:

. Remark l.l,:: 11' ,-...6 .~> 01 and specs (00) is satisfiable ln 01
then there exists an S-retraction fr.om 06 to 01



~ 2 Väriouscompactness concepts.

_ As one checks the literature one finds a variety- of algebraic

"compactness" concepts that have, in varied forms, one aim in

common: the aim to describe a "relative solvability" behaviour

of algebraic structures ( as discussed in .se-ct~c_n 0 ).

We propose a new concept that contains essentially all the

others as special cases. Apart from the obvious advantage of

unification of concepts this allows us to deduce fundamental

results in their due general setting, referring specific results

to their proper place as corollaries.

Defini tion 2.1 : Let ()/E K ( c:" ; S) be a relational system,

M a fixed subclass of L~ and #~a fixed cardinal number.
A relational system ,;t; E K( 1::' ;S) is then called (S,();,!/t.--)- r~ compact

if it satisfies the following property:

If M (S) denotes the class of forinulas'l'J"eobtain after ha.ving

substituted elements from S for some variables in M-in all pbssible

waysand [is a subset of M (S) with:':::4-W formulas each finite
/71 ,,-subset of which is satisfiable in VI (i.e. L-

satisfiable". in ()( then L is satisfiable in .ß .
£]\1(S,L.Y/,l1Y) denotes the class of all (S,t~)1ly) - M compact

relational systems. If,~ iECM(S,Cr,.11f) for every cardinal

number /Nv then cilJ is said to be (S,CI)- M compact and the

class of all such relational systems is denoted by ~H(s,Cl).
-~g-



Via the next examples that ( en passant ) serve as

terminological definitions we will show how the other

compactness concepts appearing in print are related to this
notion:

Example 2 •. ,2: If M = Mat = cla~s ~ofatomic formUlas,then
~ N(S,v'/ ,#'1/) - Mat compactness is also called (S,ul ,'l1t/)-atomic

compactness, (S,~) - Mat compactness also (S,C~-atomic compact-

ness. If H (7:) = (/), i.e. if we are dealing with universal

algebras, then one speaks of equational compactness rather than

of atomic compactness under the above circumstances.
/f!A relational system (// is called weakly atomic compact if

i f c.; E cM (A, 0;) .
at

compact if

4n- - atomic compact if {.7/ E cM (A, C1,fi1P) .
-at

"equationally compact" or

[17 e cM «(/), vi), atomic compact
at

Similarly) C7 is called411/ - weakly atomic

V/ECM «(/), U!,11~)and
at

Again we use the phrase

I!weakly equationally compactl! under the above circumstances if

l//1 lS a universal algebra.

If we are dealing with Mat then We will simply drop the index

and write ~~(fr) rather than cM «(/) ,01) etc.
at

is the class of all positive formulas~Example 2.3: If M = Mpos
,

i.e. of all those formulas that are generated from the atomic

formulas via the application of (lxi)'" (-lIxy), /\, 'v, then

(S, t(11r) -' M~os compac tnes s is called (S,()f~.!#)- positive com-
pactness etc. C1 is positively comp8;ct if 01e cM (A,()I),>

/'" /~ posweakly positively compact if v'l e cr'fJ «(/), vI). The concepts
pos

of 4I'J.' -positive compactness etc are then formulated as above.

( see, e.g., (31), (~4), (SOn.
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Example 2. 4: If M = L"", then (S, C1} 'ili,)-L._ compactness is also
( ~

called (S,CI , '1M,') - elementary compac tnes s. (}l is called

(441'- ) elementarily compac.t if (/ E CL (A"O!) ( CL,, __(A, ('1,11"9) )
']; ~

and, accordingly, weakly ( 4j1/- ) elementarily compact if

elf E cL ~( (/) ,0/) (cL,..,( (/), (}/, 1#')) .
.~ t.

Although elementary compactness lS now introduced, it is

unfortunately, an uninteresting concept. For the class

of weakly elementarily compactrelational. systems

coincides with the class of elementarily compact relational

systems of the same type which, in turn, coincides with the

class of all finite relational systems of the given

To see this we look at the system of formulas I(I)=

for an arbitrary index set I. Surely, these systems

type.
~x . -f x . ; i;ij E I~
L 11 J J

of formulas

force a weakly elementarily compact relational system to be

fini te. Vice versa, if (J/ is a finite relational system

and z... a fini tely satisfiable set of formulas 1n L .•..CA) then
t

L is satisfiable in some ultrapower of ci by 1.1."

However, .. every such ultrapower is isomorphic to Ci(. Thus,

L is satisfiable in O! .
The same claim of lacking interest holds no longer true for
.41-1/ - elementary compactness as a result of Mycielski and

Ryll-Nardzewski (32) shows.

Example 2. 5: A relational system ~ containing the subsystem CIf

such that ;r? G. c ( A , LV) is called a closure of ti7in (46)

and a quasi-compactification of (J; in (48).



(11-0,

Example 2.6: In one of his preliminary reports,Aw. Taylor

calls a closure of a relational system 01 what, in our

terminology is a relational system c;.;t containing cJl such that

~~ c( A )~~). In a later preprint w. Taylor changes the

above terminology and calls such a relational system a

"strong closure". However, we stick to the first term.

Example 2. 7: In the light of the above terminology we may

re-read some of the examples in

Example 0.1 states that the cyclic group (Z;-f-) is not

equationally compact, not even ~) 0 - equationally compact.

In a later section we will see that that is not an accidental

phenomenon. It is generally true that I Aj - atomic compactness

of a relational system implies its atomic compactness.

Example 0.2 states that complete Boolean algebras are equationall,

compact.

The lattice ln example Q...:l. is not weakly equationally compact

if we adjoin the elements 0,1 as nullary operations. It also

cannot be embedded in any weakly equationally compact lattice

of the same type ( no~ can itbe embedd~d in ahy equationally

compact universal algebra of the same type, as a quick

theoretical argument will show).

Example 0.4 states that finite relational systems ar~alw~y~

atomic compact. A proof of this fact, independent of Tychonoff's

theorem,is implicit in 2.4:. '

Example 0.5 illustrates a broadening of our basic question.

Rather than requiring that all _f_i_n_i!_e_subsystems of a given

system of equations are satisfiable, we insist on the solvability

of certain disti~guishe~ subsystems that are not necessarily

- '2.,1.
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finite. Here is surely an area of mathematics wide open for

research in which not toomuch has been done for the time

being. However, it is not within the defined limits of this

work.

Example 0.6 gives examples of both equationally compact and

not weakly equationally compact unary algebras (A;f).

Example 0.7 , finally, shows that divisible Abelian groups

and p-primary Abelian groups that have no elements of infinite

height and are complete in their p-adic topology are

examples of equationally compact Abelian groups.

'rhis fact will be included in the St~{;,t:'tJi on special structures.

We close this section with aremark relating (J( and

Ci7 I in case of universal algebras and characterizingre
111/- atomic compactness of relational systems in an important

instance via the number of variables rather than the number of

formulas that can be used.

Remark 2.8 :(1) The universal algebra C!l is (weakly) equational'-

ly compact if and only if the relational

system (li 1 is (weakly) atomic compact.re.

(2) Let C1 be a relational system and 4w a cardinal

number with -1ij/ ?:-IAI: Then CI is ( weakly

/.Ut- - atomic compact if and only if every

finitely satisfiable system of atomic formulas

with ( without ) constants in A is satisfiable

(;7 provided it involves ~1f1/variables.
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proof: (1) is clear. (2) ean~ e.g. ~ be found in (1Lr) where

the resul t is claimed for A'11'?: fA I. However ~ the idea of the
. -t

proof~u~'ä('-5ted there only works for /11'2/~(AIas the weakly

atomic compact case clearly demonstrates. We give that proof

for ~~~IA!~H which fully suffices for our needs;
o

j

Let :2 = .L (x0 ~x1~x2 ~ . . . • • . . . • . • ~ x?l ~ • • . . . . . . )t 4,U-

V

be a system of atomic formulas involving the variables

(with 01" without constants in A ) where ;U
. v

X\' yj"-;UJ
,. U

is the initial

ordinal of /l1f/.

If 6 =s (Xy ~ ••••.•• , X)J ) is a formula in[then the set of
1 m

elements ic. At..< that satisfy G in 01 ~ in short: the
. ( ) . f f B AP - f v1 ~ • • • • ~)? ~.solutlon set ~gJ~ of 6' lS 0 the orm x" _ m

where B ~ Am ( onecopy of A for each I)' ) • 'I'hereare at the most
l

21A1 .IAI~ .1Jt- such solution sets and, hence, there is a

subsystem L1~' L involving only ~ iN' formulas such that

the solution sets of Z and of 2coincide. 'I'heproof is1

complete.

A final word: G. Grätzel" has pointed out to me that the

concept of (S, ()l, .1W) - fIT compactness does not take into account

as parameter the number of variables that may be used.

'I'his~in general, is admittedly so; but I feel that a concept

extended in that direction would 110 more guarantee the

simplicity and generality in the formulation of the furidamental

results to be derived in the next section. Besides~ we will
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encounter no inconvenience j"n describ.ü:~the few results that,

to this day, involve the number of variables in the systems

of formulas to be used. Finally, the last remark shows that,

in studying properties of a relational system U! (lAI ~ <h 0)
that result from the requirement that systems of atomic

formulas be satisfiable provided they are finitely satisfiable and
"

invol ve only 4'1'1' variables, we do not go beyond our terminology

if 4}1/?IA 1
1
- . It might be an interesting problem to study other

instances of that phenomenon ( e.g., in specific classes

of relational systems oruniversal algebras ).
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A Fundamental Characterization Theorem and its

Consequences.

In (44) B. Weglorz proved a basic result characterizing

atomic compactness of a relational system in various ways. In

the same paper and ln (45) he finds hirnself exposed to

rather similar situations involving different compactness
"-

1"-, . •concepts and is confronted with the task CJ statrf~a nevJ modlfled

characterization theorem in each case. In accordance with our

stated aim ( see also the author's paper (50)) we give these

characterization theorems a unified setting in the following

fundamental theorem:
Theorem -3- .1: Let 3 be a subset of the carrier set A of the

dJ1
relational system Ui . 'I'henthe following statements are

equivalent for a relational system ,c::G 01' the same type:

06 C' cZ~ (3, ()/)(1) E c ( 3 , /1 ) jl 1.e. is - atomic compact. -

(2 ) 00 contains 3-retract of every L such that Z 3_ 0(.an ..-.......-->

(3 ) ~ contains an 3-retract of every 3-pure extension of O! .
(4 ) ~ contains an 3-retract of every pure (i .e . A-pure)

extension of 01
(5 ) A contains 3-retract of elementary extension CJIan every of .

(6 ) 4 contains an 3-retract of every ultrapower of O! .

"1C~ then

spec 3C.-() is finitely satisfiable in C7 , hence completely
~ ,,0satis fiable in -v: ...;; • By theorem 1.4.- _, tib contains an 3-retrac t

of ,<; .
(2) implies (3), (3) implies (4), (4) implies (5), (5) implies (6)



$I'/nce
Aan ultrapower lS an elementary extension, an elementary extension

is a pure extension, a pure extension is an S-pure extension

and for an S-pure extension 01 holds.

(6) implies (1) : By L :1 ., if L is a system of atomic

formulas with constants in S which is finitely satisfiable 1n CI
then there is an ultrapower "7l15 of 01 in which L is satisfiable.

M S-retraction will, of course, preserve the solutions of ~ .

This proves the theorem.

The theorem immediately yields as corollaries the cited theorems

of B. Weglorz ( the meat of whose proofs is, of course, retained

in the above proof ).

Corollary 3.2 .. (( 44) ): Let 07. be a relational system then the

following conditions are equivalent:

(1) {)1 is positively compact.
(2 ) O! is atomic compact.

(3) {}/ is a retract of every pure extension.
( 4) ö7 is a retract of every elementary extension.
(5) (t/ is a retract of every ultrapower.

,./) AIproof: Taking S = A and dD = (A in theorem 2.2.1 yields the

equivalence of(2),(3\ (4) and (5). (1) implies obviously (2)

and (5) implies (1) since positive formulas are preserved if

one passes to homomorphic images while the constants of A

remain unchanged under A-retracts.
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Corollary ;3,3, (( 44) ): Let er be a relational system then the

following conditions are equivalent:

(1) ()/ is weakly atomic compact.

(2) 01 containB a homomorphic image of every weakly pure extension.

(3) 0/ contains a homomorphic image of every pure extension.
( 4) CI contains a homomorphic image of every elementary

extension.

(5 ) tJ( contains a homomorphic image of every ultrapower.
proof: Let S = (/) and CY = ,.,0 in theorem- ,3 .1.

One might wonder for a moment why weak positive compactness

does not appeal' in '3 '.} while positive compactness appeared in
()~7A, -3,2. The reason is that a retract made j a homomorphic image

vIof, say~ 07D ' while a homomorphism only emQ~j~ a homomorphic

image into O!, If one, in addition, reflects on the meaning of

universal quantifiers one i8 bound to stop wondering.The

following explicit counterexample shows that, indeed, we could

not have included the additional condition on weak positive
compactness.

Example ~3.4: The ring d = (Z; +, . ) of integers is weakly

equationally compact since every system of equations without

constants has the solution (0,0,0".,." ,). However, ~ is not

weakly positively compact inasmuch as ( see in this context
C "Jexample 1 in .~ G ) the following system is finitely satis-

fiable but not satisfiable in ~ :

l(¥xC<.öt (x(.t,JO"XUoi"1 = xe.uör1)JV {3xo-{'X1

- .•...• ,.,c.{-

= 2x2, x2 = 2x3,

= 2x , ..., ..• ,'n<:-N1.n "rl. J



Another counterexample was given by W. Taylor and G. Fuhrken

in (14). As a matter of fact, W. Taylor pointed my attention

to an erroneous claim of mine 1n (48) concerning exactly the

question just dealt with.

Corollary .,3.5((45)): Let (}1 , ~ be relational systems such

that tJ! is a subsystem of ~ . Then t'i18 following conditions

are equivalent:

(1) <~ is a quasi-compactification of (7 (i.e. oft<=. c(A,C'Y))

(2) ~ contains an A-retract of every pure extension of er .
(3 ) ck contains an A-retract of every elementary extension of 01.
(4) 00 contains an A-retract of every ultrapower of 01.
proof: Let S = A 1n theorem ~3.1.

Let us conclude this series of immediate consequences with

a result of B. Weglorz(0f).

Corollary ,._""3,6: If K is a class of relational systems of type '7::

closed und er the formation of ultrapowers (i.e. UO(K)S K) then

every absolute S-retract ()IE K (S~A) is (S,(I/)- atomic compact.

(We recall: 0; is an "absolute S-retractll in K if it contains

an S- retract of every extension,)

Let us go one, as we believe, useful step further by adopting

the next definition.

Definition :3.7: 61E K(?:) is called3.2Ure inj~.Qj~i'L.~
relational system provided every homomorphism g: ~ ---~ C7
can be extended to every pure extension of :Jj J.nK(7: )that is

within the equational class generated by G7 .
The last corollary (obviously weakly stated) suggests an immediate

strengthening which we find useful to record, since we have not
('{t)

yet seen it in print. WarfieldAattributes the result to Weglorz(44),

.That c'laim,.hoVJever, lS '-notcorrect ~..
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Theorem 3c8: A relational system---------'"-----
19,'i-I of type '{.-lS atomie

eompaet if and only if it is pure injeetive.

proof: Obviously, if C7 is pure injeetive then it is atomie

eompaet sinee every ultrapower of (;'7 lS 0. pure extension

within the equational elass generated by (}/ .So let, eonversely,
G~07 be atomie eompaet, assurne cf.) to be a pure subsystem

of -l (f) "..z E- HSP (vi » and let g: fJ ---.:p, 0/ be 0.

homomorphism:
(/;

'"i '- ',- g'
,:g '-

"-

£J c.~~ .~'

Then speeD (,z) is finitely satisfiable J.n%) , henee

specD (,z) is finitely satisfiable in {;1 and thereforeg

satisfiable in u7 (Here specDg(~) is the system of formulas

obtained from specD (Iv) by replacing d by dg for all dE D) .

We define g': .l --_..:? O! by cg' = cg for CE D a.nd

cg' = ac if e6 C"-D and (ac)et.-C\.Dis 0. sequence in A satisfying.

speeDg(~)' Then g' is 0. homomorphism extending g.
We would like to end this section with 0. theorem

that restriets the size of the ultrapowers to be used in

-3.2 for testing 0. relational system with respect to atomic

compactness 01' 0. universal algebra with respect to equational

compactness. To this end, however, we need general criteria

that interrelate these 'concepts with lAI .... criteria that we

will derive in the next but one seetion. To derive them we

prefer to first discuss some results on weakly atomic compaet

relational systems of general interest.
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5 4. Connections between Weak EquatioJ1al .Comp:actness and

Equational Compactngss in Universal Algebras.

Lemma -4-.1: (1)If d!?;~are given relational systems and

g: ,4-----) O! is an S-retraction then the (S,X)-iatomic

compactness of any X E fCl,'z~otj )implies the (S, Y)-atomic

compactness for the remaining two Y's.

(2) If S ~ A,Band ,,<:;E c (S., ,>(;) then (/7.~Ji.-c)cf}; holds if anEl. only

if there is an S-retraction g: 0/-----.> c0 .
(3) If S ~ A. ,i=1,2, (}l. <E:- c(S,~) then 011J:----~;.(j!2 holds

l II

if and only ,if ()71 and {,l( 2 are S-coretracti ve.
[see (1.f"!)-)c{J'.:.t (~-())):

proofA Let us just hint at the proof of (1):

If, e.g., ,~g lS (S,~) - atomic compact then so is",.G': For

take a system ~ of atomic formulas with constants in S which

is finitely satisfiable in .;:g. Then ( in view of the existence

of an S-retraction ) it is finitely satisfiable in ot1g, hence

(since elf g ~ ~) in £. The remaining cases are handled similarly.

Corollary4~2 _: If a relational system UI has al-element sub-

171system then ~ is weakly atomic compact.

Many classical algebras have 1-element subalgebras and are

therefore weakly equationally compact; e.g., lattices,

semilattices, groups and rings. If one is after any interesting

information concerning weak atomic compactness one finds oneself



bound, therefore~ to occasionally introduce constants as

nullary operations in order to get away from 1-element subalgebras

The following ideas were developed independently by

W. Taylor (41) and the author (50) for diffe~ent reasons.
',~

While W. Taylor was after a theory of minimum compact models

or, as it turns out, equivalently of minimal retracts of

weakly atomic compact relational systems, we attempted to

solve a very specific ( and still open problem posed by

B. Weglorz (45), namely whether or not the existence of
y;J. /7106 6 c ( A, ./f ) ,:.6;207, implies the existence of -Zc c(C,Z'),

L 2. (}j si. e. whether or not a rela tional system has a

quasi-compactification if and only if it has an atomic

compactification. The latter question being referred to

on compactifications ( where we will give an affirma-

tive answer to a weaker version of that problem ) we will

here use our methods to derive a relationship between

weak atomic compactness and atomic compactness in simple universal

algebras and the algebraic setting of an interesting theorem

due to W. Taylor whose approach, however, is rather model-

theoretic in nature. To this end, let us define with W. Taylor

what one understandE. "~Y _' a "minimum compact model" (l{-/t).
/1-1Definition _-!t. 3: A uni versal algebra VI is minimum compact

if (i) CJI is weakly equationally compact, itjl whenever

g: dI---..:.> d6 is a homomorphism vlhere o<~ is an algebra mutually

(/)- pure 'vJith(J/ then g is a monomorphism onto a .subalgebraof ,~t;.
To be precise: W. Taylor did define the above concept



for relational systems replaeing "equational" by "atomie",

"algebra" by "relational system" and "subalgebra" by "subsystem".

In remark 1.6 of (41) he asks whether or not in ease of an

algebra ('I it is possible to rep1ace the requirement that

et) be a relational system by letting 06 range over algebr'as

only. Sinee the answer~ in view of the crueial (erueial, at

leas~ for our approach) next theorem (see also (50)), turns

out to be affirmative, we have not altered Taylor's original

definition with.q.3.

Theo~~~( 50);Let O! be a weakly equationally eompaet universal

algebra all of whose endomorphisms are monie. Then all

endomorphisms are already automorphisms. (The same~ for that

matter, holds for relational.,syste.Tlls~) . . t': .-t'e<?J'f -(wo e5fc')1.h~lf'
{Ivt. /'7".:('.(.(",(:. ,c.,e..,-,,~ ,?",t'<'l .;;I'>1U,} . ."..,.:. WiCt>U.\.' .. rt:.<? fhec"-f'~rt '7"7 W." .
i 'h st':C{Ju (-':.) : ' ..a

proofÄ Assurne that there exists a proper monomorphism g: (J/--"7"> (J!
with Ag~A. Then we ean, in the natural fashion,build up

by lemma 2.3.1, there is a homomorphism

0;
n

it is

of

(i.e.

L1~, then we would have
'0

for sui tab le n (f N. Then

and all endomorphisms are monie)
So Olw

o
weakly equationally eompaet

the non-manie homomorphism Pi = Pj'A
A A n

P"Q r: vI ----;> 01 was a non-monie endomorphism
1 n n

whieh is a eontradietion to C,j/o = u.lfCln ~ (
4-1has the same properties that VI had

an inereasing ehain of mutually isomorphie algebras:

(:¥) Ul- O! e[ltefJIc(!f c {}; c- 0 -+ '1"" 2 -r . 3""'" n ...•..

Clearly, (llf."j = Li( (}f ; n = 0,1,2; ) is a weakly pure
o n

extension of C!I Benee,
r: (J/ ----~ (); and % (--.....J!~ 0/ .

NO 0
If P was a non-monie endomorphism of
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and, like all (j/n'n.(ct!O'it possesses a monomorphism into

()l 0 = C1. SO we can now. build a chain as in (.*") beginning
/9/ Ai- /'with U; but including' ;//0 and going on with (JI, 1 etc:o t<-Ö+
rH = 0/ c 01 c Ur c: er c: c ()( c C. /17/ c. /'J; c
(/{ 10'" 1 -t' 2 -( 3 r •••••• -I- n'r - . , -;- VboT" t.'r(;)({ 1'" .....

In short: we have all the ingredients to build,! by transfinite

induction, an increasing chain of arbitrary pregiven length:
/if1- /h c /,~'C c I!! C I'J! C C /,~ c.. VJv' - v I 0+ V{1r •••••• ..,..v"w .,..(..1'6; f r" ..... 7" VI,)' +- ••••• , 0'< c>( ,

o 0
such that each ~y is weakly equationally compact, has only

monic endomorphisms and (this is what matters to conclude the

proof) possesses a rnonomorphism into u~o = er . The last

property, of cou~se, yields an immediate cardinality contra-

diction since UI cannot contain isomorphic copies of each

member in this chain.

As a corollary we obtain an interesting theorem(see (42) or (50) )

Corollary 0.5: A simple algebra ( or relational system)

without i-element subalgeb~as is weakly equationally compact

if and only if it is equationally compact.

proof: Let 01 be weakly equationally compact. Then it contains

a homomorphic image of every ultrapower (J/ 5. If

is such a homomorphism then it is a monomorphism

"AI
g: OID~--7
on {JJ.

By 4,,4, gjA is an automorphism and" hence, ()7 is a retract

of (J; ~. 'I'hissettles the claim in view of ,3.2.

The above result can also be used to give a short algebraic

proof for a basic result of W. Taylor. We give this new proof,

while we refer to (41) or (42) for Taylor's original proof.
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'rheorem L,i.6( W. Taylor ()~1) and (42) ):

If ,~.J is weakly equationally compact then there exists

a unique (up to isomorphism) minimum compact algebra O!which
•.... //'

is mutually (/) - pure with 0-0
Every such (}; has, in addition, the following three properties:

/91(1) VI is equationally compact.

(2) ()/ is retract of every weakly equationally compact algebra-z"

whic],! is mutually (/)-pure with ()/ (hence with,~ ).

(3) Every e"ndomorphism of ()! is an automorphism.

proof: Let e;r={8; C:)(C(~); ~}/() .r;--!!->o(jj. Clearly, er has

a maximal element c.:; 0 and therefore er; = '-,!// () 0 t.e-r-~~)"~.

Since (.;:; is weakly equ2.tionally compact, there is

a homomorphism g: 06:/" Q0 ------> (">oC; which is a monomorphisITi

(otherwise g', the congruence relation on ,~ which is induced
':r

by the kernel cf g, would be in CI and g' -;:;'6~).
'rhus, a6/@ o equationally compact and

every endomorphism of 06'/ Go lS a monomorphism, i. e., by 1+.4,

an autoITiorphism. This implies, as in the proof of 4" .5, thai;

oZ..~/ e0 is minimum cOJ;tlpact and equationally compact (minimum

compact since every homomorphism into a mutually (/)-pure algebra

needs to be a monomorphism by construction). (2) is also clear

slnce

due to

O! = ;t /e contains a homomorphic image of Z," .o
weak equational compactness of ~ we CEln embed

However,

07 in -Z
via a monomorphism. Since the restriction of the homomorphism

from;; to 01 to O! is again a monomorphism, hence an automorphism

we are done. (3) and the uniqueness up to isomorphism are also

clear.



ß_ppendix:.__ (1) In 4.6 we did not need to assume that be

weakly equ'ationally compact if we, instead, assumed .Z:? 01.
ill w. Taylor did, indeed, showa little mor~!i namely that

. 1'VI AI b 2
y-)

of o<.::J ,

where 11/ is the power of the first order language

result. However) for our present interests, it seems quite suffi~

cient to know that IB\ is an upper bound for lAI ( particularly

since, e.g., for groups, rings, lattices etc. the cardinality

of A in the last theorem is exactly ~.

(3)The minimum compact algebras u1 within'~ in the last theorem

are exactly the minimal retracts of -.h' . So the theorem

contains the interesting information that all weakly equational~

ly compact algebras do have such minimal retracts.

(4) The theorem can be proved for relational systems (as Taylor

indeed did).

(5)Assume we would;) in definition Ir.3' -,.'allow that oi5
ranges over all relational systems of the associated type.

1hen, using (4);) we know that such a stronger minimum compact

algebra {s within any~iven one of ours as retract. However
the only possible retracts are the identity and we are

dana with showing that the two concepts coincide. W. Taylor
had realized that in (42).
(6) rrhe paper from vihi. eh v!e tock the a.bove theorem contains

much new material that we want to recommend ( (42) ). Jv'Iuchof

it is aimed at relational systems. We will;) of course, not

report on it, since it is a paper whose preprint is hardly out.
yYlM~. an

We 'A exception with the~rem 4.6 since it served weIl

to illustrate our method of
different proof A, in (1.f1).

~.4 and,thus, enabled us to give a
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Characterization Theorems for. (Weak) Atomic Compactnes~

of a Relational System "crl Involving lAI.

The two main results in this section are due to

J. Mycielski (32) and W. Taylor & G. Fuhrken (14), respectively.
\.

Forthe second theorem, however, we give a new proof which

allows us to bypass a few model-theoretic prerequisites that

are implicit ln the proof of Taylor and Fuhrken.

Before doing so we derive acute and useful auxiliary th~orem

of J. Mycielski and C. Ryll-Nardzewski, thus followirig the

path of (32).

The_o_r_e_m"",_5_-_.1_: If v1f is a relational system and #/j/ is an

infinite cardinal number then the following conditions are

equivalent:
(1) (,9/ is 411'- atomic compact

(2) Let r. 5;: L (A)
1"""

12 I ~ ;j/j'v be such tha t all formulas in

have exactly one and the same free vari~ble Xo and are of

the form 'f~(1x1) ..... (:ix )(<Jl~A" ••••• ,/,~)) where m,D.c'N
.(i . mJ ni J 3

and the cpt are atomic formulasvJi th constants in A,
') /91 .,-If L- is finitely satisfiable in vi then ~ is satisfiable

<

in O!
The proof goes along the following lines (details see (32)>~-

(1) implies (2): If (1) holds then we switch from L
to a system 2. 1 of atomic formulas with variables in A by

r~'replacing the bound variables in each ~i by new ones such that

none of these new variables appears simultaneously in d) d ef;k...:.ian -1

Unless j :::k .
C12 j. by tf~. I then

1 \:t1

formula in 1. J is

If we denote the new formulas corresponding to

L
I _. -r.

= {cj2JiI; (liJi appears in the matrix oi' a

a system of atomi~ i'ormulas finitely satisfiable
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Remark .• 5' .2: In theprem j-.1 we can drop. the cardinal number, .N""

1n both conditions.
":1Theorem 5-.3: For every relational system Uthe following___ f",,~ __

conditions are equivalent:

(1) (j1 is atomic compact.

(2) 01 is (AI - atomic compact.

In short,

not satisfiable after substitution

lG'(ao) ;a06 Aj is a subsystem

L jA land L (A ) is not satisfiable

accomplished.
..,-

If L is a system of atomic formulas wi th

6(ao) is

i- (A ) =

(L(A)/
In view of -5.1 we obtain that ei ther L is not

such that

(2) implies (1):

(21
1n vi . Thus, the proof is

constants in A such that (2-1 ~:1'1l/, I.... is finitely satisfiable

/./~ 2-ihe-in U/ and - invol ves the variables x (/ , J! <. 'x, then;~ au-

thors construct, by transfirü te induction on 't ~ c<, elements

a/ 7::') (~~ 't) suchthat (1) the system y.;:- that results

from replacing x by a (r) '.er- is still finitely satisfiable\7.\" .. ',] ,
,..) 1..

in O! and (2) (L1".? '(' 2 implies a,j'U-1) = a.j)(c2) for Y<. T1.

~.~"",,&'~Ri?dih~""~J;.~~~.:s Oi-.;t.i1BTI. "£he ca se r = 0<' will Yi e1d

a finitely satisfiable system Z 0< in which there are no more

variables left: thus, (a,:,(O<» is a solution of ..I
. 6 ,)/<' 0<

proof: Clearly, (1) implies (2). To show the converse take a

system ) of formulas as in theorem S .1 . (2) 'VIi thout IZlf'ii1, not

satisfiable in t! . This means that for every 80EA there exists

6(ao)C l. such that

of xo by aO' Then

"of L

in C1
finitely satisfiable or L is satisfiable in 0;
er is atomic compact.

While reflecting upon the theorem one may recall example 3 in

f 0 in which we showed that the lat.tice ,,£ = (L; \1 , /\ ,0,1)

= {ao' a1, ,an, J'0 { 0,1 J aivaj = 1,

= 0 for i f. j and the nullary operations 0,1 is not
--,3'1-

a. /' a.
1 J

with L



weakly equationally compact. We did this by displaying a

class ( not even a set ) of suitable systems of equations

whose very characteristic was the fact that it contained

systems of equatioDs with an arbitrary high number of equations.

By theorem ,5.3, however, we ought to be able to show

the non-equational compactness of c:I.' by

system of equations with constants ln L

And, indeed, the system L._ =['aivx = 1

[ aiAx = 0; 1 = 0,1, ] is finitely

solvable.

displaying a suitable
" )

of cardinali ty h O'

,i=0,1, ... JU
solvable but not

However, while our systems of equations in example 3 of

i~0 only invol ved the constants 0,1, Z invol ves,

in addition, all the a. , i = 0,1,2, So 2_ no more
1

proves the fact that 01:' is nöt weakly equationally compact.

And this is not surprising in view of the fact that

is indeed ~)O - weakly equationally compact as ~. Mycielski

mentioned in (31) without proof. However, an inductive proof
can be easily deviS'ed as in 5/'1.
Example 5.4: The lattice ~ = (L; v, A, 0 , 1 ) with the

two nullary operations 0,1 that is defined by L= {aO,a1, ..,an, ..l
v {0,1\ and a.va. = 1, a.Aa. = 0 für i;i j is not weakly

1 J 1 J

equationally compact, but it is No -'weakly equationally compact.



In the last example we got acquainted with an

~. 0 - weakly equationally compact universal algebra that

was not weakly equationally compact. This,therefore, makes an

immediate generalization of theorem ,5.3 to the weakly atomic

case impossible. The best one can hope for is then a theorem

that claims that weak atomic compactness is implied by

I A1'f -weak atomic compactness in case of a relational system Ci .
This result was conjectured by J. Mycielski in (31) and proved

for the first time by W. Taylor and G. Fuhrken in (14).
As mentioned before, we have found a ~ proof that

we want-ta include in this report.

'rheorem __J;L_~2_: For every relational system 0; the following

conditions are equivalent:

(1).Ci is weakly atomic compact.

(2) {)7 is IA(+- weakly atümic comp'act.

Before we proceed to the proof we use Mycielski1s last

theorem in order to cut down the number of ultrapowers we have

to use in order to test equational or atomic compactness.

With this we do what we desired to do at the end of section 2.

The only ultrapower that really matters enters in thepr60f

6£ 1.1 ~nd-is studied in (13). 0e define it-in our-öontext:

. -39--



Definition "S'.6: If rJ1 is a relational system and /l'W an

infinite cardinal number then the ultrapower (;; (If",) of Cl is
defined as follows:

Let J be a set of cardinali ty .-1/)1' and let I = 2 (J) be the ideal

of all finite subsets of J. For arbitrary XE J define

Ix = f T,; T<;;I, Xc=. T} . '1'hen {Ix';XE- J) generates a filter D1
of subsets of I which has the finite intersection property.

If D is an arbitrary ultrafilter of subsets of ~ containing D1
(and such exist, as we know!) £'hen V/(/tiv) is defined to

be 01 ~ . (Obviously J 0/ (in.") depends on the choice of D.

However, for our needs it fully suffices if we fix a D for

Theorem r 7'________ .,:;1.,:.- •

every .-1;.v , as we agree to have done.)

Let ,(/Ql,.X
- V"V' be relational systems, SS"A,B:

If (x..-; contains an S-retract of the ultrapovJer L (111/) for

some infinite cardinal numberj(t;lnd some extension L of (17 then

00 is (S, 01, Hv)- atomic compact.

proof: If ~ is a system of atomic formulas with constants

in S such that 121 ~4jtand L is fini tely satisfiable in 01
then let J = 2... in definit ion .5.6 of..z (14v). The remainder

follows as in the proof of 1.1. (See also (13), (32) and(44».

Corollary _3.8: The relational system 67 is atomic compact

if and only if 07 is ret~act of O! ( \A\) .
proof: This fol10ws in view of

'rhe "two ways statementll in r 8 .J. , ln connection with 5".7, has

to be considered with caution. To illustrate this point let us

look at the next example.



Example l;;-. g: In example
(-

,.!J-.4 we dealt wi th a la ttic e 0'----

. )

that was ~O - weakly equationally compact. Does this imply

(in the spirit of -05',8, strengthening "e;. 7) that ~ contains

a homomorphic image of oe (ILI) ? Obviously not! Foro( IL\)
is both an elementary extension of ~ and, as we know from

(13) ~ of cardinali ty ,Cv = \Gvl\ :

c/... ( \L\)

= 1
and d -, 1\ d ~ = 0,01 u2

A homomorphism g:c.( [L\) ------'? 0( TImst take 0 to 0,1 to-l

and different d~IS to different ayls
o g

cardinality contradiction arises.

and an obvious

He can now return to our proof of __5' ,5: Our proof is based on

ideas of the last section which, as a matter of fact, lend

themselves to a niee application of I1lyeielski Is J))'fiJ$/r,M theorem)
\. (For the origJrlaJ_ pr.Q,of .Qf Fuhrken ar.LdTaylorseE:. __(lJ:L}l-J-

m:~~Wlm~-5'~-30{sölet UI be-an- IAI'i- ::~\f!t om c - campa et system,
) _ _ Y;- , -- '{.ft:"k~yU = {EJ; G c: c (01); (j7 I e ~~)Cl J has, by Zorn 1 s lemma, a

SZi
maximal element Go' Then C7 I Go ~---~-!>O( and every

homomorphism g: Cf! I Go ----..;> 67 is monie, Sinee

spee0(O/leo)'has exactly IA/eo\~ lAI variables we ean

(by assumption on Cl! and rema.rk 2,8 ) satisfy spec0(U/leo)
in CI and have, therefore, an embedding g: {}Jleö---~ Cf~
If C116~ g is not yet a subsystem of (r then the reason for

this can only be that R aets a little poorly on (~eo'So we

eorrect this by agreeing that .1: is the enriehed 0l190g, i, e.

-41-



we define
=

the effect of the relations rJ E:- R on A /e og
. ffic.\ OJ(A/Gog) ~ r~ such as to make it indeed a subsystem,

o

This leads at the worst ( or best ? ) to an enrichment of
01 / Q og by a few valiä. re lationships ,
As in theorem .4',4 we prove that L has only endomorphisms
that are already automorphisms ( the crucial argument there
goes still through~sinee we ean stop

. r ()fand get a monomorphlsm r: ~8---~ J

spec( J;~) involves IAI'tvariables and
in 01 ).

at ~.~.With ICg\= IAIT

due to the fact that
is therefore satisfiable

If we ean find arenaetion h: ,[ ( IC () ---~;; then, by
r.- 8 rcorollary J., ~ is atomic eompact and, hence, by

lemmaL-/',l.(l), ()/ is weakly atomic compact and we are through.
However, spec ( .r.-. (I C \)) is a system of atomie formulas wi th
I eIl cl

lei -t
I CI -== \A I '

variables and is, henee, satisfiable in 07 since
Thus, VJe have a homomorphism h I : •.[ (I Cl) ----~ CI.

If p is the canonieal proj eetion from C1 onto CI / q; then
h'ep : L (iC I) -----)£ is a homomorphism which, restricted
to L-t is an automorphism. Thus, there is a retraction
h: J: ( I C I ) -------.:;> Z- , and we are through.
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5 ~ . Connections To TopologL'

Although the use of the word l1compactness" in the preceding

definitions is sufficiently justified by the very definitions,

there is a much stronger reason coming from topo~gy as was

observed by J. Mycielski in (31).
Let us recall that in our dealings with algebraic structures

such as semigroups 01" groups 01" rings 01" modules we are not

just interested in arbitrary topologies that we might be able

to inflict on the carrier sets of those algebras. In general,

we want the fundamental operations f8 to be continuous functions
nJ n,

f~: A .---~ A if A 5is endowed with the Tychonoff product topology
'.,S

and we want to be able to have l1small enoughl1 neighborhoods

to separate points, i.e. we insist on Hausdorff topologies.

This is summed up ln the next definition.

Defini tion 6'.1: If (/ t: K (T) is 8.n algebra 'ehen ((Yj, ~ )

shortly (1 , is a topological algebra of type 'L if f is

a Hausdorff topology on A which makes the operations continuous.

( Ci , 7 )is a topologically compact algebra if the topology

is compact, i.e. every cover of A with open subsets of A has

a finite subcover.

If Cl = (A;F ,R) is a relational system. then we call (CI,:r) a

topological relational system if ((A;F), 7) is a topological

algebra and the relations induced by Rare closed subsets of

the respective powers of A.
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-This is al~ we need to derive Mycielski's ,fundamental observation.

'l'heorem G. 2 : Every retractO/of a topologically compact

universal algebra is equationally compact.

proof: Since retracts of equationally compact algebras are

evidently aga in equationally compact, we may assume that Cl
itself is topologically compact.

Let I. be a non- empty set of polynomial equations with

constants in A which is finitely solvable. We weIl-order

the fl'nl'te subsvstems',T. ") Z y n o+'2 ana"
• - ,) <- 0' L1' .... ,- <}/' , • • •• , ,j' <:'/J , 1. .-

denote their ( non-ernpty) solution sets in A« by SO,S1"" 'S8'"
respectively. Since A is endowed with a compact topology,
Tychonoff I s theorem assures that A'=<carries a compac t topology,

1, ..... ,t (:'{), are
,-'

1 t (~) T )P, _Since Sy = Sy n ... , n S. v where SI?' y -
;;" l\ ü

the solution sets of the different single equations . Tln / .....and
.:>

I)since the sets S, are closed, we conclude that each S3 is a
\'
l)

closed set and the family { Sd';ö<(' 1 has obviously the finite
intersection property. Thus, since AC< is compact, f\(Si;t':r) i 0.

Since the latter set is the solution set of the whole systemZ-

we are done.



In exaetly the same way one ean, of course, prove the same

result for relational systems. However, we will
H is i1"t i'iH/'.', i~h.".t ,0

less sinee, unfortunately,Aan algebra [/7 is .~

if and only if the assoeiated relational system

eare less and

topologieal

Ci 1 iso 'rhus,re .
one has to be very eareful every time one is passing from the

one to the other and tries to earry speeific results along.

However, we mention the more general form of this fundamental

observation in aseparate remark:

Remark 6' . 3: Theorem 5.2 remains valid if we replace the

universal algebra 0/ by a relational system.

01', even more generally:

Remark 6.LI: Every 8-retraet of a topologically compact

relational system 01 that is a subsystem of 0,1 is

(8,(;1)- atomic compact.

A strong impetus for investigations concerning the interplay

between the algebraic properties and the topological behaviour

in case of atomic compact relational systems, respectively

equationally compact universal algebras, arose from J. Myeielski's

question whether the eonverseof theorem 6.2 ( respeetively,

remark 6.3 ) holds true. For a long time the answer turned

out to be positive in speeifie elasses of algebras:

Unary.algebras (A;f), Boolean algebras, Abelian groups,

vectorspaces or, more generally, R-modules, commutative

Noetherian rings with 1 ete. It was W. Taylor who via an

(as it strikes us) very eunning eounterexample defeated a

positive answer to Mycielski1s question in the general setting

of universal algebras ('see ( 39 ) ). We will present this
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counterexample in the next se~t~uh. It remalns, however,

of independent interest to find an answer to Mycielski's

question in any given equational class of algebras whose

equationally compact membersare accessible to characterization.

We will refer to this problem whenever it arises as Mycielski's

problem.

Definition 6.5: Given a class K of universal algebras qf

a given type ~) Mycielski's problem consists of the task

to decide whether or not every equationally compact algebra in K

is retract of a topologically compact algebra in K (or, at least

in K ( '( ) ) •

For the time being, there is no fully satisfactory connection

found between topological compactness and equational compactness

of universal algebras. Possibly algebras that are limit spaces

could provide a link of some ( possibly weaker ) sort. However,

a systematic investigation of such "convergence algebras" is

still to be carried out. W. Taylor's first attempt in that

direction is quite dominated by his interest in relational

,structures ( see (40)) as one of his results clearly demonstrates

In"attempting to answer Mycielski's problem for the class of

semilattices ( in which the equationally compact ones were

characterized by G. Grätzer and H. Lakser ) his methods only

allow hirn to conclude that, if oe is an equationally compact

semilattice, then aC' I is indeed retract of a topologicallyre
compact relational system. And from there it seems to be a

long way to a final decision of Mycielski's problem for

semilattices
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The fact that, to this day, there is no fully satisfactory

interplay between equational compactness and topological

compactness in the general setting of universal algebras is

not altered by the fact that W. Taylor (39) turned
(':theorem _,~-.1, respectively the succ~ping remark, into a

-
topological language. Let us look at that description:

Remark 6.6: Let (1be a relational system and let ~ be the

class of formulas of the type cTI(xoH]x1)...(:1xm)(c1?1A"'''1Jn)
m,n~. N, where all 4/ i are atomic formulas with constants in A and

every formula ~~ has exactly the one free variable xO'

denote the topology on A which has the subbase of

a compactis

42 (x) . j ;cIc.EJ.
0; is atomic compact if and only if 1Then

'rhen may .Ir
closed sets {r XE A; Cl. ::>

topology.

The proof, of course" consists of re-reading - ,S~.1 or ,5"-.2.

The definite shortcoming ( for algebraic purposes ), however,

is the fact that is neither Hausdorff nor does it necessarily

make the fundamental operations continuous if We are dealing

with algebras.

The fact that atomic compactness or equational compactness

are characteristics of a relational system that allow an algebraic

treatment of basically topological properties is, however,

illuminated by both the frequent positive answer to Mycielski's
problem .-,

,i
the last remark and, for that matter, by the very

definition of the concepts "atomic compactnessfl or

"equational compactness". To end this discussion VJith a concrete
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example we refer to the following extension 01' a lemma 01'

Numakura due to A. Hulanicki and B. Weglorz (see (45)).
Theorem 6.7: Every equationally compac~ semigroup with

cancellation law is a group.
The proof is published in detail in (45). A rough indication 01'

the method is the following: One proves the result first for

Abelian semigroups using the system = r x :: s' x .s' Sc'. S 1 .
The solvability 01' ~ implies the existence 01'1 and inverses.

For arbitrary semigroups "0 one uses this result together

with the fact that one can cover 'Cf by Abelian subsemigroups

to derive the result.
Corollary 6.8: (Lemma 01' Numakura): Every topologically compact

semigroup with cancellation 'law is a group.

Remark 6.9: The only equationally compact skewfields are the

finite fields.
To prove this one can use the result that every ultrapowe.r

Q){ ( ,pr",') 01'the skewfield 0{ is again a skewfield. Thus, all

retractions g: r){ ('1%) ----~.QJ< are embeddings which yields a

cardinality contradiction unless ;:){is finite. Mycielski, who

observed this fact first, has given a different reason in {31):
••
he considers the system S' '7Ix'(a-Xa) = 1; atK) which is finitely

solvable but not solvable in infinite fields.
An interesting situation arises in the case 01'equationally

compact integral domains. According to 6.7 they ought to be

skewfields, hence finite if the multiplicative semigroup

01' non-zero elements was equationally compact all by itself.

So non-finiteness ought 'to give rlse to some sort 01' a neighbor-

hoodsystem 01' (0) which might lead to a usable characterization.

Ever:'[integral dornain is equationally compact with respect to

systems 01'equations with one variable (as D. Haley observed).
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~. 7 Equational Compa_ctnes~_and AtCJ.m:LcCompactness in

In the various subsections of this section we will investigate

our concepts in algebraic structures of special interest.

(1) Unary algeb~as.

The results concerning mono-unary algebras are due to this

author (see (49». The cited paper contains 0. characterization

of equa tionally compact .unary algebras (A;f) of type (1) and an

affirmative answer to Mycielski!s problem in that case .
.<cl.We re call: (/ is connected if 1'01" any two 0.,b (..:.A there exist

n,m t. NO such that fn(a) ::fm(b). A fevJnew concepts facilitate

our task:
~C-'1

Definition~~J.l: 11' CI :: (A;f) is a mono-unary algebra then

afA is called a stagnant_~.lement if f(a):: cL st((7')'is the

set 01' all stagnant elemel.1tsin A.If nE NanO. 0. c Athen

the n-periphery na(a) is the set of all elements bcA such

that fn(b) ::0. and fn-1(b) i a. b~ A is called a minimal element

if it is not in the image of f.

If a E: A satisfies fm(a)i 0. 1'01" all mE NanO. nOi (0.) contains
/T!0. minimal element then 0. is said to have order n in Vi. Let

9..0; (0.) denote the set of all orders 01' an element a.

~ve 0.0.0. to 0a (0.) the symbol c>o if fm(a) i 0. 1'01" all mE: N

and there exists an infinite sequence 0.0,0.1", .... ,am, ....

such that 0. :: 0.0' ai i aj 1'01" i i j and am ::f(am+1).

Example _ 7 .2: The algebra -<n:: (Cn;f) with n elements /

C ::f 0.0" .... ,0. 1] ? whose indices are determined modulo nn n-
anO.whose operation l'is defined by f(ak) ::ak~l is called

the cyclic algebra with n elements. It has nosta~nant elements

unless n ::1. None 01' its elements has an order (be it finite

01" infinite).
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Example 7.3: The algebra J~= (J;f) whose carrier set is,
say, the set 01' integers and whose operation l' isdefined by

f(n) = n+l has neither stagnant nor minimal elements. Every
element has exactly infinite order.

We are now in a position to state the characterization theorem

for equationally compact unary algebras.l7= (A;f).

Theorem.- '7.4: The mono-unary algebra ();= (A;f) is equationally

compact if and only if the following conditions hold:

(1) Every element whose finite orders approach infinity is of

(2 )

infinite order.

()I contains either some subalgebra

subalgebra J
...;;(n E:. N) or the

n

In order to attack the naturally next question, namely

Mycielski's problem in the class
vStone-C~ch compactification ßA

K((l», we recall that the
cOi"Vlpft'tdj 1~,.d~.,..

01' a .,1\. !, topological
., \

Hausdorff space A is the (up to homeomorphism unique) compact

Hausdorff space that contains A as a dense subspace and to

which every continuous mapping from A into a compact

Hausdorff space B can be continuously extended. So if

{l; = (A;f) isa unary algebra then we can endow A withthe

discrete topology under which l' becomes a continuous mapping.

11' we now extend 1': A --_.7' A to 1': jfA ---~ (JA then

(3rJ! = ((.)A; 1') be comes a unary algebra.
/

Defini tion ~*[: /1()! , as j ust defined, is the

Stone-CeCh compactification 01' the rnono-unary algebra C!= (A;f)..

( /36( can, 01' course, be defined 1'01' arbitrary, not necessarily

rnono-unary, una~y algebras in exactly the same fashion).

Thus, surely ev~ry unary algebra can be emhprlded in a
,f

topologically compact unary algebra, namely its Stone-Cech cornpac-

tification.
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The fact that equationally compact mono-unary algebras are

even retracts of their Stone-Cech compactification depends

isL m
~-

n

essentiallyon the follovJing lemma:

Lemma 7.6: If (ff = (A;f) is a mono-unary algebra and

a subalgebra of (307 then there exists a subalgebra

of 0; such that' n divides m.

Theorem 7.7: If (Jl = (A;f) is an equationally compact mono-unary
;j

algebra then it is retract of its Stone-Cech compactification.

Here aremark seems in order: In the proof of the above

results we have referred to (35) in which paper a theorem is
v

stated which claims certain Stone-Cech compactifications to

be elementary exteD~ions of the underlying unary algebras.

Since the arguments used there seem questionable, we want to

point out that it is quite implicit ln ( }~9) and (51) that

(J(J is always a pure extension of (}l and that is all we need

for our purpose . Whether 01' not 13(1 is an elementary extension

of (,7 in case (;7 has no cyclic subalgebras (as is indeed claimed

in (35))seems to us an open question forthe time being.

In general, there are no suitable criteria to decide whether 01'

not a given mono-unary algebra is .an elementary extension of

a given mono-unary algebra er It would be interesting to
find such.

There is not much w.e know about equationally compact unary algebras

with more than one operation. The fact that W. Taylor defeated

.a positive answer to Mycielski's problem by an algebra with only

two unary operations indicates how quickly things get out of hand

in that situation. It also underlines that our last theorem has

the strongest possible setting. There is an occasional isolated

remark aS,e.g., the following due to J. Mycielski:

Remark 7.8: ((31)) Let C'l = (A;{g;ge G} ) be an algebra such that
G is a group of permutations of A such that the family C/---- of f:hxed
pQ~nt. sets F =[xfAl g(x)=x~ g~G, has the following property:, g
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"Every subfamily of <JF which satisfies the finite intersection

.property has a non-empty intersectionlf
, Then ()/is equationally

compact.

For a moment one might wonder whether a unary algebra (A;F) of

type~(1,1,1,1, ...,.,) is equationally compact if and only if

every mono-unary algebra (A;p), pcP Cl) (~), is eqtiationally

compact. This conjecture, however, is quickly defeated by the

following final example:

Example 7.9: Let 01= (A;f,g) be of type (1,1) VJith

A = Z u{an;nt: N) . We define f by fez) = z-d, f(an) = an+-1
and g by g(z) = z~l, g(an) = an' Then theorem 7.4 implies

immediately that (A;p) is equationally compact for all PE pcn((l,l»
01.'.Hm'Jever, v is not equationally compact as the following system'

of equations shows:

{x = f(x1), xl = f(x2), , xn = f(xn.;-l)' ; n<~J V

fx - g(x).~ . O( is not eVE;n weakly equationally' compact!

It is clear from (at the latest) this example that eventual

criteria for equational compactness have to take into account

that.subalgebras of an equationally compact algebra that

are distinguishable by a set of identities need again to be

equationally compact.
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Mycielski 1S Problem. (see (39).

As mentioned before , W. Taylor has constructed an algebra

(A;f1,f2) of type (1,1) which is equationally compact but not

a retract of any topologically compact algebra. The meat of the

matter is a highly interesting graph-theoretical construction

via which Taylor settles in the negative Mycielski1s problem

in case of relational systems. ~his relational system ( a graph)

then serves as basis for the definition of an algebra of type

(1,1) which is equationally compact but not a retract of a

topologically compact algebra. As far as the algebra is con-

cerned, W. Taylor did so far not publish the resulting example

but rather one of type (2) similarly constructed. As W. Taylor

has pointed out himself, the publishedexample does not do what

it is supposed to do. His unpublished example of type (1,1),
however, is c~rrect.

Definition 7.10: A relational structure Cl = (A;r) of type (2)
. l"fr(JI. . "lS called a graph J_S a symmetrlc and antl-reflexive

binary relation. Let k ~ 2: A circuit of' length k is a k-tuple of

mutually different elements of A such that any two successive ones
01are a pair in r j as.is the pair consisting of the last and the

first entry. If /r-f lS a cardinal number then a colouring of {?Jin

#. colours is a map c: A ---~ C such that lei = 1t and (x,y)<.~rtJ

implies xc :f. yc, The chroma~jc number !\ i/}/) of the graph (Jj

is defined as the least cardinal number 41' such that a colouring
of (/1 in 4],-' colours exists. 01 = (A 'r~ is theC// n. n' /

cornplete graph of n vertices if IA I = n and any two different--------- ..-------- . n

elements of A are in relation under r. Finally: A subset S of An

is called independent in the graph {9j provided (s,t) i r rJj for

any two elements s,tf S.
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W. Taylor constructed an atomic compact graph (G;r) which has

infinite chromatic number. Since graphs that are retracts of

topologically compact relational systems have always finite

chromatic number, this puts at our disposal the desired counter-

example.

atomic compact

of the topologicall

(B,r) then

~' ( Oj ) ~ n
(/ n

every n E N then

a finite graph withIf

q1 'If the graph {,;/= (A,r) is retract

( 01' even relational system ) ~=

Theorem 7.11:

9/=
graph

which has no odd circuits of length L n for
1/ ,";C" ,', (5i (;, \.") .('J .3, I... 14'-' (; 5 . • . • • • . • . . .• ,./ .•.•.. l S an

wi th '/\ (tJI) = I~) 0 .

We sketch the proof of this crucial observation:

compact graph

~ «(y) < 'i-,) O'
Theore~_7. 12:

proof: Of course, all we need to show is atomic compactness.

So let (5 be an elementary extension of f}! a.nd let us

construct a retraction g: '6 ---~ r .



The last theorem reduces the announced task to finding a graph

rJ n VJith t,(rn)?: n and VJithout circui ts of odd length .L. n.

This is achieved (up to finiteness of SI n) VJith the next

remark whose proof relies on elementary Euclidean geometry and

measure theory ..
2 - e
, --;:;72V! l~e - e-

= (G(e,k);r) has no circuits of odd

Let nE N and e~'R such that 2n ~Remarl{ 7.13:

Then the graph ff (e,k)

length L.. 2n + 1 for all k c::. N if G (e,k) is the unit dis c

in Rk and (x,y)t I' holds if and only if the (usual Euclidean)

distance d(x,y) is larger than 2-e. Apart from that VJe c~n find,

for ever tc:N, some kt( N such that x'(1(e,k));?t for all k:;:::kt.

This remark surely provides us VJith graphs ~n' VJithout

circuits of 6c1d lengths n and chromatic number -~ n.

HOVJever, the graphs VJe obtain are not finite. This last obstacle

we surmount with a theorem of De Bruijn and Erd5s for which

W. Taylor has given a neVJ and interesting proof. This latter

proof we can still abbreviate by ~ewriting it ic.the language

of spectra ( as D. Haley observed):

Theorem 7.1.4: (De Bruij n & Erd5s): A graph (}J ean be eoloured

in k eolours (k E N) if and only if every finite subgraph ean be
coloured in k eolourst

proof (W. Taylor; slightly modi fied by D. I-Ialey): If VJe ean

eonstruet a graph homomorphism g: (.1-----7 ~( then we are

obviously done, Sinee (due to our hypothesis) ~pec0((/) is

finitely solvable in alk it is solvable in (}Ik and VJe are done.

Putting together the preeeAding pie ces leads to the next
result:

Theorem 7.15: There exists an atomie eompaet graph whieh is

not retract of any topologieally compaet relational system.
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Theorem 7.16: There is an algebra (~= (A;f1,f2) of type (1,1)
, ' .
which i8 equationally compact but not a retract of any topologically

compact universal algebra.

The necessary construction is as folIows: We take the graph that
{Jt
.'1 n
that

For every ne::N, we take a finite graphled to theorem 7.15:

with 1\' (9nL3 n and without circuits of odd length ~n. Then
~. ~1I 1/("lrJI" {!j' '- " Cl! "graph was 1I = ,? 3 <-~ 4 LI // 5 ~ .•.•.•.•••••• U (j n V .

We identify once more r wi th r//' and have r~ GxG. Let us take

two new elements e1, e2 and A = rv G0{e1,e2] . We then define

x = (g,h) E rf1 and f2 as folIows: .t' 11 l' f( g if x = (g,h) c":r
f1(x) = ) f2(x) =

L e1 otherwise e2 otherwise.
Then (j7 = (A;f1,f2) is the equationally compact algebra which

is not a retract of any topologically compact algebra.
!

We might ask whether, at least, every equ~tionally compact algel

bra is such that its associated relational system is retract of

of a topologically compact relational system . The algebra of type

(1,1) just constructed defeats a positive answer to 'that question

as weIl. This w~s observed and proved by D. Haley in his

Master's thesis,and we find this a fitting pla~e to present it
(see (19».,

Remark 7.17: (Taylor's) bi-unary algebra just constructed is such

that its associated relational system is not the retract of any

topologically compact relational system.

topologically compact
()1that retrac ts upon Ir re 1.

J/O;"
J.2:t:'-0o~: Let ci = (A;f1,f2) be the
Suppose that ch= (B;r1,r2) is a

relational structure of type (2,2)
t'We define sand s' as J-t. ((:C' \i'J s: s ~ AxA

(x,y) E s if and only if (z,x)~ riO! and

(x,y) E: s' if and only if (z,x) E: rl~ and

and s' ~ BxB and
{;~-

(Z,y)E r2 for some zEA,
.;G(Z,Y)E r2 for some ZEB.
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Since s defines a graph structure on A we derive a contradiction

of (B;s') and (B;s') is a topologically compact relational

be checked that S/is closedtoIt remains therefore

system. The same mapping that retracts (B;r1,r2) onto

01 turns outto be a retraction of (B;s')rel(A;r1,r2) :::

onto (A;s).
. B2ln :

( ( ) b B -) C B4 T.T' • B4Let W :::i a,b,a,c ; a, ,c E. ) -- • ,v lS closed +n
'I' ~

because the topology on B is Hausdorff. Moreover, f~x 1"20

4 ~ ~is closed in B because, by assumption, 1"1 and 1"2 are

closed in B2. Thus, U :::wn(rf,x: r;'J is closed in B4. If 'i} is

the projection from B4 onto B2 defined by (R,b,c,d)'1T:::(b,d)

then S' is the image of U under '1\ • 'rhus, s;' is closed because

'Tl is a closed map.

We conclude this section .with posing a p.t0t.?)emvJhose solution

we are very int'erested in:

If an algebra ()/:::(A;P) is such that the aS;30ciated relational

system OIrel is retract of a topologically r;ompact relational

system, is then 01 retract of a topologically compact algebra?

(3) Semilattices.

Hardly anything i8 known about equationally compact lattices.

The closest result so far is the characterization of equationally

compact semilattices due to G. Grätzel' and H. Lakser (see (18».

Theorem 7.18: The semilattice Y::: (S; v) is equationally compact

if and only if the following three conditions are satisfied:

(1) Every subset T~S has aleast upper bound \/(t;tE-T) :::\/T.

(2) Every chain C~S has a greatest lower bound;\(c;cE- C):::!\C.

(3) If aE Sand C i3 a chain in~(f then a y (/\C) =/\(avc;c ('C).

It is easy to establish that the conditions are necessary.

The sufficiency was established by G. Grätzel" and H. Lakser via

the following two lemmas:



Lem.ma 7.19: Let s Vx. V V x. = r V x. V v x.
10 1n-1 Ja Jm-1

be an equation and K a set of. solutions which is downward

directed (in the product order). Then t = /\ (k;k (K) is 'also

~ solution of that equation.

Lemma 7.20: Le t p ( x ) = s v'x. v" V x . ,
------ _la 10-1
q(x) = r\/x .. v Vx. and let K be an arbitrary set of

JO. Jm-1
sol uti 0 ns 0 f t he equa ti 0 n p (x ) = q (x). Then t = \/ ( k ;k E.K) isa

solution for p(x) = q(x).

We found a new proof based on q different idea which we want to

include at this plaa~

We are concerned with proving that (1),(2),(3) imply the

equational compactness of the semilattice ;:;---. So let ~:;---

be a complete semilattice in which chains have always greatest

lower bounds and, if C is such a chain, (AChra = /\(c va;c e.-C).

'rhus, if C,D are downward directed sets then (;\C)v (;\D) =.

A(c vd; (c,d)G. CxD) and the latter greatest lower bound exists.

Let ct be an elementary extension of 0 and

the setuS(e) of upper bounds of e that

are also in S is not empty since 1EUS(e).

Let US (e) = {di; i E:: I ) , choose an arbitrary

E
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finite subset I' of land consider the finite set of

polynomial equations with constants in $, r (I')=(XI,Vd.=d. ;iEI1 .
l J.

Since eG E solves these equations there is an element SE S which

solves L (I'). Since zr is complete there is even 0. greatest lower

b d f S d . I 'l l. n ;Y h.oun o. I i;lE. /, say eIl' eIl' owever, lS i tself

in US(e), for the substitution x=eI"y=eI" Yi =
. f

satisfies the formula (fx)(x-::::Yi,iE1',-"'.-'x~y)

, . I'Gi' l E ,

in ;:r and,

henee, in es . In other words: The sentence with constants in S,

hence, e:::::e1,.

Surel~ I' ~ I" implies eI,? ~1" ; henee, US(e) is downward .

direeted and has, therefore, 0. greatest lower bound /\Us(e) in3/.

Sinee, for eES, we surely have /.t\Us(e) = ewe have the desired

retraetion g: (f: ---~ Crby eg =:!\Uc.(e) provided the lati~er
,-J

mapplng lS indeed 0. hODlomorphism. That property of g, however,

is easily cheeked:

Let e1,e2 E E. 'l'hen US(ei) ;~ US(e1\/ e2), i=l,,2, and, thus,

C/\US(e1» v C/\US(e2» ~/\uS(elve2)' i.e. elg\/e2g~ (e1ve2)g.

Vice verso.: e1gve2g = C/\US(e1»v' (/\uS(e2» = (by hypothesis)

/\(c1VC2; eiE US(ei». If (cl,c2)EUS(e1):r:US(e2) then

cl v ~2 C: LJS(e1Ve2) .Thus,,!\uS(elye2)~c'/\uS(el) ),,' (/\US(e2»,
i.e. g(e1 v e2) -0. g(e1) v g(e2).

/'/
Thus, (e1 v/e2)g = e1g ve2g. (j is therefore equationally co]"npact.

The problem of Mycielski i8 open to this day in the

elass of semilattices. W. Taylor's result (see (40» that every

equation~lly compact semilattiee i8 retraet of 0. topologieally

compaet relational system does not answerthe real question. It

would~if we had an answer to the problem we posed at the end of the

last seetion.
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,"
Corollary 7. 21~ If o<.~' = (L; V ,;\) is an equationally compact

lattice then

(1).~/..'is complete, (2) If.D~ L i8 a downward (upward) directed

by the foilowing example:

Examp!e 7.22 (D. Kelly)
,,1

ll) b,.. >

by ./ 0---

. '

This lattice is not equatio-

nally combact as the following

system of equations shows;

{Xi \/xj - z13v fX1AXj

{zlV'bi = 21,) 'J {Za/\ai

whe re i, JEN, i ~ J.

The original proof of 7.18 in (18) brings to light the truth of

the following remark:

Remarl{ 7~l:- A semilattice is equationally compact if and only

if every system of polynomial equations in one_ variable with

constants is solvable provided it is finitely solvable.

(4) Lattice-related structures.

If lo.enotes the class of all lattices and cL. E 1L
then ,~( -:S:..) denotes the associated poset (L; <;;;) and cL" ~
denotes the smallest lattice with smallest element 0 and

largest element 1 which contains r:l . If ~ (~) denotes the

class of all posets ,~( 4.'::.) -ehen iL ( 'f ) S ([)where (]J is the

class of all posets. IL( s) consists of the so-called

lattice-induced posets. Weglorz (46) prov~d the following

basic results on these: ,- Go --



Theorem --r ztf: If ~ = (L; v, A) is a lattiee then the following

statements are equivalent:

(1) (:;/_(~) is atomie eompact.

(2) o!..-' lS complete.

(3) ,~ (:=: is 'injective J_n ([)

(Lr) / (:=;) is injective in tL ( ~ ).

\ 5 ) ~' ( ~ ) is an absolute retract in IL ( ~ ) .
(6 ) r/.- (:=::) is an absolute retraet in (lJ

t 5) Boolean Algebras.

Although we do not know mueh about lattiees in general,

the equational class of Boolean algebras (;t; = (B; V,/\, I ,0,1)

is quite aceessible to our q~estions. The following tWD theorems

contain the crucial information (see B. Weglorz (44».
Th~or~!!!.-L2S: If <J:; = (B; \/, /\, I , 0 5 1 ) is a Boolean algebra

then the following conditions are equivalent:

(1) ~ is complete.

(2) ;<ß lS injeetive in the elass jß of all Boolean algebras.

(3) ,l;; is an absolute retrac t in the elass ]ß of all Boolean dLgdwilS

(4):t is equational1y eompaet.

Theorem_l26: The Boolean algebra is equationally compact if and

only if it is retraet of a topologieally eompact Boolean algebra.

While the first of the two theorems follows quickly with the ai-

of Sikorskils theorem stating that completeness and injectivity

coincide in Boolean algebras, the second uses, in addition~the

fact that every Boolean algebra ean be embedded in a direct

product of 2-element lattices.

Both theorems were recently proved by different ( partly ring-

theoretical) methods in (1). A. Abian achieves in that paper even
a slig11t strenghtening of the firs t f,heo.(ewl;
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Theorem ./.27(1)A Boolean algebra cI:.,: = (B; v', A, T,0,1) is

complete if and only if every system of polynomial equations

in one unknown each of whose equations is of the form a /\x = b,

a,b ~ B, is solvable provided every subsystem with two equations

has a solution.

As far as I know it was W. Taylor who observed first the

following remark (that follows easily from the fact that

finitely generated Boolean algebras are finite):

Remark 7.28: Every subalgebra of any given Boolean algebra is

a pure subalgebra.

(6). Abeliah Groups.

In general, equationally compact J<. - modules are not yet

characterized, and such a characterization will depend strongly

on J:< . The situation is qui te different if we confine our

attention to particular rings 9':? and, more specifically, to

the interesting case of unital modu les over the ring J of

integers, alias Abelian groups. Both the algebraic structure

of equationally compact Abelian groups 9= (G;-+,-,O) has
been extensively studied and MycielskiTs problem has been .

answered affirmatively in the class ~ of Abelian groups. The

relevant results are scattered through I. Kaplansky (24),

J. Los (27),(28), S. Balcerzyk (2) and S. Gacsalyi (15).

We will attempt in this section to give an account of the
relevant resurtj in A .

Gacsalyi proved in (15) that pure subgroups (in the group-

theoretical sense) and pure subsystems (in our sense) of Abelian

groups coincide. This yields immediately the following theorem:
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Theorem~ __~2...=- An Abelian group is equationally compact if

and only if it is a direct summand of every extending Abelian

group in which it is pure.

An affirmative answer to Mycielskils problem in ~ was given ln

(2) by S. Balcerzyk. His proof uses essentially the following

refinement of Birkhoff's subdirect representation theorem due to

J . ..f.,os (27):

Theorem 7.30: If 1: denotes the cyclic group with pn elements
pn,

(p = prime inte ger) and .2 ~>C.is the Prüfer group over the

prime number p then each Ab~lian group tj can be embedded in
/-/1 .41'a direct product ..1 of groups of the type..""'-'0( (0(:= 1,2, ... ,02)

such that (1) ?! i~ a pure subgroup of /) a~d. (2~ ,<Y is a

subdirect product of the groups .,l C.,(occurringin ,//f .
p p

T-heorer~17:.:l.l.:. (2): An Abelian group is equationally compact if

and only if it is a direct summand oi'a topologically compact

Abelian group.

In (2) Balcerzyk links up equationally compact Abelian groups
1.~ll<:-fhe-(

with .perl important _~a,;,;;;!E~:8,{, class of Abe lian groups: the

algebraically compact Abelian groups (in.the sense of (24),

1954-edition). Let us combine this result with the others and we

obtain the following result:
7 ("'1tTheorem f~3a~ If j is an Abelian groupthen the following

ßtatements are equivalent:
(1)

(2)

~ is equationally compact.

4! is direct summand of everyg extending Abelian group which
contains ~ as pure subgroup~

vi is direet summand of some tOD1OlOgl'Cet.~lly comD~ t Ab 1"";I' J - •• o.e . elan
group.

(4) 9- is .algebraieally eompact.

(5) (ß is the direet sum of a divisible Abelian group and an

Abelian group whieh is comp~ete and Hausdorff in its ) -topology.



Of course, other characterizations have been glven, but the

ones listed in 7.32 seem to us the most interesting ones.

There is one exception to thi~ remark. J. ~os (28') proved the

following theorem:

Theorem 7.33~ An Abelian group is equationally compact if and

only if there is a generalized A -limit for each ordinal ~

A"generalize d ,.\.- limit II is a linear mapping
Ci;

Lim: G ~-----~ Gwhich satisfies, in addition, the fqllowing laws:

(1) Lim( (g» = g and (2) Lim( (xo()cxd,,/l :: Lim( (y"",t<~A..) if there

exists ..r;{(.~ such that xi>(::Yo< for all 0( ~f .
SinceLos gave his proof when algebraic compactness rather than

equational compactness was emphasized, it appears to be a

worthwhile problem to attempt a generalization of the last theorem

to (at least, certain) classes of equationally compact&1J-modules.

For examples of equationally compact Abelian groups

we must refer to (24).

DJ 9z-=-.~odules and Rings .'_
Let'(}-<=(R;+,-,O,',1) be a ring with identity 1 and

9n= (M;+,-,O'lfr;rfR}) a unital left 2'<-module. J. Mycielski
and C. Ryll-Nardzewski proved in (32) an interesting generalization

of a result of Balcerzyk (3):
Theorem 7. 31~: The 21< -module 3:)l is equational1y compact if and only

if it is (I H \+ f» 0) - equat ional1y compact. ,(Balcerzyk had proved

this result for Abelian groups only).

Of'course, every :J? -module can be embedded in an equationally

compact one (name1y, its injecti~e hull). This result has been

essentially improved by R.B. Warfield in (47) using Bohr-compacti-

fications. Since this approach allows an affirmative answer to

Mycielski's problem, we will follow it up.
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be the Abel.i:::~n group Horn(Hom(j,.z),~ )
v .

group in the eomplex plane.

If qr is an AbeJjan

Oj' /rJ;
eation E.-( ,_)_ of ';/ to

- (j
where L is the eirele

group then "vi£? !:.e_c_alJ.:.the Bohr-eompaetifi-

Thereby we eonsider 67' a diserete group as we 0.0 Horn( {!,I... ) .o ;;
Then Hom(Hom(f/,l ),1,) ean, as set, be eonsidered a elosed

, Horn(Of ):. ), .'
subgroup of ~. d ' whieh, by Tyehonoff's theorem, is

a eornpaet Hausdorff spaee. 'l'hen B( /!) is a eompaet Abelian

group whieh eontains y as dense subgroup if 1,'Jeidentify g ~ G

wi th the 1I evalua tion rnap1I eg in B(:J!) mapping X to g;( ).

To put it via a universal property (see,e.g., (21) and (22)):
B(jI) is the topologieally eornpaet Abelian group whieh

(up to homeomorphism and isornorphism) is deterrnined uniquely

by the following two properties: (i) fJ is a dense subgroup of B1)
(ii) if fJj is a topologieally eompaet Abelian group and

X : 9J ---,} 2l is a homomorphisrn then there exists a (unique) eontinuou
A

(J4 0,)/\'extension ~: B( I) ---~ ~ such that the following diagram
/\ j

eomrnutes:

. If JJ2 is ana?"':'module then'we denote by BCt,m) the Bohr-eompaeti-

fication of the Abelian group :IX!.' underlying JJ~. Since the

sealar multiplieations f :M' ----'?> IV; I are continuous we eanr

extend them to f~~: Beln') ---.:;> B()Yl') and obtain thereby the

eompaet 'J.< -module B(JY)) eontaining )71 as dense submodule ,

again called the Bohr-eompaetification of d()2 .
tI..J-j.J

Theorem ?:~&-'1\'If (in is an- 9< -.module and B(Jrn its. .--(>-_.-
,4\-\

Bohr-eompactifiea tion then 3d! is Cl. pure submodule of B(3?2)

(i.e. every finite system of linear equations with eonstants in M

i s sol vab le ln JJl if and only if i t is solvable in B(}??) ) :
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We obtain as an immediate consequence an affirmative answer

to Mycielski's problem.

Theorem .7 . 36~ If ?l? is an equati onally compact -:1< - module then

'}}2 is a retract of itß Bohr-compactification.

We sum up the different charaeterizations of equationally compaet

9Q - modules in the next theorem:
(Lf7)

TheoreI12,..7. 37A:lf JJZ is an '0< -module then the following

conditions are equivalent:

(1) J)1 is pure"injeetive.

(2) 'j?1 is a direct summand of B(m).

(3) On is equationally eompaet.

As far as a characterization of equationally compaet

:J<.'1 -modules is eoneerned only partial resul ts have been achieved:

partial in the sense that they depend strongly on restrictions

upon the ring cn . So TI. B. Vlarfield has shown ( in (47) ) that

equationally eompaet 132. -modules must in general satisfy very

strong completeness-conditions (~-modules, we reeail, were

equationally compact if and only if they were a direet sum of

a divisible group and a group eomplete and Hausdorff in the

)- - topology). By specializing the ring ( as, e.g., '\AJarfield

does for Prüfer rings ) one can indeed achieve situations where

these completeness eonditions turn out to be essentially sufficient

But we only refer the interested readerto these rather ring theo-
rcef/c./7l.f! rreSi.,le.f.L VI/I" ;',>{er tc T.l~t":ef(.n,.d<y (2.4) 0-1...,01

D. Fieldhouse (11) for further-discussions of the module-theoretic

aspects of pure injectives. Of interest sounds a paper

announced by L. FuehE) (12) on!rAlgebraieally eompaet modules

over Noetherian rings" which we have not yet seen; interesting
sinee (as Warfield (ln) mentions\) it is still an ope11 qu ". eS,(;1.on
whether anytopologieally complete module over a Noetherian rlng
is neeessarily equationally eompact.
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Commutative Noethe:ri.anrings viith 1 are a natural first
choice if one attempts to characterize equationally compact
rings ;;1( . There are two reasons for this: F'irstly one can,
for _ever,rideal ,,(71 - (,-, ~ ) of ,):), expre ss tl.leJ .' - CL1" ... ,c"n U,

statement TlI' E Ö Tlby requiring the satisfiabili ty of
x1'a1~ 4- xn'an = I' in J< and gets therefore control
over the ideal lattice of J( via polynomial equations (which
is important in view of Warner's results(~~ on topologically
compact Noetherian rings with 1). Secondly one has at onels
disposal the classical ideal theory in such rings.
D. Haley, a student of mine mentioned before, has investigated
these rings in his Master's thesis and has come up with a
complete answer which }ji~S just
AnnalenTl (see (20)).

,
appeart~iin the Tlfllathematische

'1'heore]117,3f{: If J< is a commutative Noetherian ring with 1
then the following conditions are equivalent:
(1) 32 is a topologically compact ring.
(2) 9< lS an equationally compact ring.

an /71 (;:r) ,'71-'(3) < ':: \2.<;J(if(l' ;i=1, ..... ,s) where each U<. has exactly one
J.

.. -:1~) . vv . ,. <17maxlmal ldeal -111., (..-\(.. / /~'. lS flnl te and V'~. is comp.letel l l l
and Ham3dorff in'the //i{ -adie tOIJology.z '

The following are the two essential lemmata used in the proof:
Lemma 7.39: Quotien~rings of equationally compact Noetherian
rings with 1 are again equationally compact.

0..-"')

Lemma 7.40.£. If 0< is an equationally compact cornmutative Noetheria
ring with 1 such that the set of zero divisors is contained in a
proper ideal, then ,'3( has a unique maximal ideal 41'1/ , (j( /'#1/ is a
fini te ring and 92 is complete emd Hausdorff in the "p]rv-topology
(defined via the neighboy'hood systeElf1Jrn;nc N j of 0).

(1) locally cited: S. Warner, Cornpact Noetherian Rings,
Math. Annalen 178, 1968, pp. 53-61 (MR 38, No 5864)
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2.~fi!.lition . B.1: //1Let c'l be a uni versal algebra and -IN' an

infinite cardinal nurnber: The algebra:;;~' is called ;~(weak)-, -_.

equational compactific3tion of oY if (1 is a subalgebra
vtJ

of c<:J
\, ()

and '~{;J i s /N~?, - (weakly) equationally compact. 'rhe c las S of

alH?~weak) equational compactifications of 07 is denoted by

com~~'l~(7) ( 9.ornp.:v(eY) ). We then define Comp( CI) CompW ({t~

as the intersection ofall

through the cardinals. The

Cornp, ((7) (Cornp'1,'1, ( CI)) where /l/r runs
/1/;/ //]1/

elements of Comp((;) (CompVl(tj'))

f . " l' 0 ) f /17 Y'. 11 d :!:"v-, as' C0 '- . f' . '- . 0 f'lcac ns 0 U . (X~:: J.S ca e 0-/\'9-1), l-'. mpac vl ,J.gavJ.on

if cJi; contains ()/ as subalgebra and ,.,,(;> ~. ,c (A, CI' , 1ff/). The

class c ",((]7) contains alli!('-quasi-compactifications of (J; .
-;i'/P---

Again ~((J!)_::: ( \(S1?v((~j);41;i1/= cardinal) is the class of all
tA ,e

quasJ-cor.0J.?ßctifica.:.tiS?.Q~. of (l/. If {~06 contains the subalgebra
7/" v: Aand ...,~ E c (A, j~S ,111/) then ";0 is called an 4lV~~.os ur~_ of ('1

denotes the class of alland cl ({'!)
-./W--

Again cl ((/) =

closures of ('/

cardinal) is the class of all

closures of cl ~ see also (41)).

Cor?llary . ß. 2 : 1"1If V; is a universal algebra and 'IIV is an

infinite cardinal

and, accordingly,

number then Comp.",\0/) ~; cJ, (
.'i'ii~ /dj/

, ',' (/9;'" ), C' "1 (/Tl ) C:. ( /!7'/ )C OI/Ip \,' ._' C..L '0./, -' C v, •

In this terrninology we can now restate Weglorz's (frequently

quoted) problem as follows:

Prob lern .3 .3: OJeglorz (45)): Does Comp({;7 )::::: 0 impJ..y tha t

( If/ \
C v/;::-:: (/)?
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The problem has, so far, resisted our attempts to settle it.

We expect a negative answer, although we were able to give

a positive answer to the weaker version of the problem that

arises when one replaces in the above problem c by cl.

It is quite clear that not every universal algebra has an

equational 01' even only a weakly equational compactification.

As example of such an algebra we could take the lattice in

example 3 oi' f:~0 if we add 0,1 as nullary operations.~5
It is, however, true that every algebra has an //1'1/- equational

compactification. Much stronger than that ear1ier result of
Weg10rz is the fo11owing result of J. Mycie1ski and

C. Ry11-Nardzewski (32) which subsumes the above and other

simi1ar results.
{.3'2.)

rrhe_o__r_e_m_,_~~ 1\ If an arbitrary infinite universal algebra

and 4~is an infinite cardinal number then there exists always
;/-:' ,£1an algebra x..::.) such that (1) ~~, is an elementary extension of ~r,

(2 ) iBI
~ ~; -:: I AI ' (3 );;-..1...:;. is 4rt/ - elementarily compact.

proof: Let L"- be the initial ordina1 of //lr + which is a regular
,./

ordinal number. We define (lI' , ()i~/(, by transfinite induction as
<. V

follows:

all required conditions:

as folIows: If, 1'01' ,y </c-<'.. ,
/",2 11"// (\ '-'

iA('- =iA\ • If C:5pis a limit
• i (,

" , (\. ,'i.iV + ,(-.i ,1-VV
8'" 0 then i A S l~;\0 ;. i A\:::'IW • i A ( = IAI .

"'-(3) is clear: Ir L_ is a system

,1+/
IA, i=iAvl =
I 8+1' '0

; Yll1 ~
= lAI for a.ll

'-/-) /~7 ..,:;-() = v,' " Sa t l Sf l e s
/V,'

CI
true. (2) is seen

= (.7 . Ir \.7< /, theno ,'-~J
is a limit ordina1

ij

A1t!/

= i Air. then

('lo
()

If Ci / a')''=';

We claim that

Surely, (1) is

ordinal and
'1'];l/

'r'hus,indeed i Aul = ! BI = \AI
t-

of .~,Hl/ formulas with constants in B illhichis finitely solvable
/'

J_n ;Z;,'.•... '"

",-of I
L..

:: (~_!..then ( due to the
•.... .

/'.1 .are already in rj'"'' Wl th
!

regularity of lA-
i

.rl!

c.~~

) all the constants

is an elementary



i8 an arbitrary universal aJgebra and

(-Cl
subalgebra of ""/,;",'

I

i. '/:1-t

SatisfiabIein CI ';" 1.;,+
,~)

C0!'_C?:l:-l ar y_---.JLJ2_=~: I f

is finitely satisfiable ln

Thus, 2. is satisfiable in

, hence

4"'1-1/ is an infinite cclrdinal number then

The lattice in eX3.mple 3,
;i 0.

prove all

of the following possibilities:

u ~a,b C Q. Freudenthal,.showed that ef cannot be embedded
/1
'-'

topologically~compact group. Mycielski and

is empty. The example is the group of all transformations

into any

Compw((j/) = 0, Comp((~f) := 0, clu:l) = 0 and cU:?!) = 0.

f:!We want to give one more exarnple of an algebra ,)' such tha t
/~

Comp(Lj)o
ax+b, Oi

I;.;Ryll-Nardzewski wentone step further and showed that (1
be equationally compactified.

cannot

W~ do not know of any group that can be equationally compactified

but has no topological compactification.
(32) A

Theorem ',8.6.1\ 'rhe group 1of all transformations ax+b, Oia,bEQ,

cannot be equationallj compactified, not even ~uasi-compactified.
,,",.[1.,

We close this~;;;,tectionwith three simple observations. The fir[';t

two wertmade by B. Weglorz in (~Li). and (~5). The last (8.9) is
equally stmple but has never been remarked before.
Remark . 8.7: Let K be the smallest universal class containing

a finite number of weakly equationally compactalgebras.

Then Compw ({1 )n K f. 0 for every äl e K.

By .:}theoremor,Los one knows that K =
/~1 /J_I
l/I l' .... , (// are the fini tely many algebras in question ..n

S. U ,5(;'/ /:7 llnce l'l' .... ,'vnJ
.)l'1 I[~)in UIU!1' ..... ,GI ~ are weakly equationally compact., n1

Relf:ark 8.:_~: For each algebra 01 and each infinite cardinal

number41/-'there i8 a set ~-" of polynomial equations wi th
.- -'l)r"', Cl

constants in A which is finitely solvable and has the property
, '~/that .1;.ES;/ C) holds if and only • " '/') C';; r,'" T . C'1f "'?_ '!/ c:tn,.l L_ , J. Cl

111, G7
solvable ino't:.:'

- '(0 -



proof: Take all possible systems of polynomial equations with

constants in A ,,6th::;::i't/'equationsinvolving the variables
( ) - • 'L' 1 ,. 1
lXO ,xl" ..... ,XI'" •••• , j'<p:-, f< = lnlL-la OrQlna
( (J i j (,
"') J f' -, " :;-
c::.-- 0' L l' , ",--6' ........, Ö <;;"- •

'.2>
Next we exchange the variables in the various

of#V; say,

")

L- v such that
o

(I

(/ t- d implies .now that ~'Y ,
.l._ 0' and L_. 0 have no variables in

common. If we denote the resulting systems by
~- c-

\ t -.) "J thene (I t' •• G •• " 0 :i ~~_._ ,: , 0 0 • •• • 0 0 , () -",- -, "' .••

o . ,
)_.- = V ('" t • V <.' f ')L.-d'Oj

is obviously the desired system.

Remark 8.9 : (1) If ui isa universal algebra then there

exists a (unique) smallest congruence relation on &1 such

that {/;:./() is equat ion.ally~ . compactifiable.

(2) If K is an equational class cf universal
./.Ualgebras then every (;j(; K can be equi:;tionally (topologically)

compactified if and only if every subdirectly irreducible

algebra in K can be equationally (topologically) compactified .
.

; Oi~ C ({7j ) , (;~!/ (::; is equationally compactifiable:
-j

Then -t (=universal congruence) c e}-. Let C~0 = /-\(G' ; (;;',15 J') .

Then ()1 /6 0 is a subdirect product of all algebras (7/ 6' ,8,::.1:
If .,Z'fE: Comp({!nS) then tl/6:os17(2( ;e~,F), and the latter

algebra is equationally eompact. Thus, (~'0(: /F and we are done.

The same proof applies, of course, for the topological case.

ill is clear by Birl.;hoffI s subdirect representation theorem.

It seems to us an interesting problem to determine the
r -----

congru.ence C~'i specified in the last remark for every (7 with
Comp (Ci) = (/). (2), cf course, yields topological compactifi--

cations'for Abelian groups, modules etc even without the Bohr-

compactification. The implication for Boolean algebras and distri-

butive lattices is also clear.
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,
. ~_._' ... -.~.__ "",_".~ ,,,,,_,__ ,,,_,,~,"--'''''!_~''''_' " ...•...•.'".•.•.Io--o_ •.~,,_ .,_.. 'i.••.••••..._ .. ,,'

(2) C.ompactificatiopf:l_pre~~r.vinILPo~~i ti v 8.-..._ se.nt~nces.

Let Pos(~) denote the class of all universal algebras of the

type of C! tha.t satisf'y every positive sentencewith constants

in A that is satisfied in (; .

TheQ.~em ~..:.10: (50) If er is an algebra and_~ (?- Comp(q) then there

exists .[ C- Comp((}l) n Pos (Ch. Such is every extension ../...,-of r:7
...t'

which is maximal with respect to being a subsystem of~~ and an

eIe ment 0 f Pos ( (Jj) .

If we replace Pos by HSP then this result was stated by Weglorz

in (45). The .same holds true for the next theorem; however,

our proof is quite different and in the spirit of 3.1.

Theorem'~?::: '1'''1: If Cr is an algebra and c..:tEC ((1) then there exists

;; E-. c( (}hr, Pos({1) such that d/c;:',t(~~;c..
proof: By •.-3 ,1, .):}.contains an A-retrac t of every ultrapower

for every ,1-11/. Thus,

In particular: /J::~' contains an A-retractof (7 . er of (/f(iW)
-'1'1'

is CA,C;/,lh )-equationally compact

and, of course, in Pos ( (1). Thus, c);~' contains an (A, (j! , ;1,11') -

equationally compact algebra

One of them must then be (A, ()/) -equationally compact;; otherwise

there exists /;/f( Cl/ »411' for eacrl {t" such that ()}! t/;: c(A,(J/,-IY)
/l-"1'V 0'1'7-' /1fv

{}..
for all 1/f/.?./l1/( Cf ). If we have /;) different subalgebras of the

//N'

form (Jf . J;, //1(0) /!f(Y) .7/\~" th~n!"" ' ln -x...•, say vi , •• 0 • 0 • , i/i ,} , ••••••• , x - ..), ':;"
/j''j'-i-' . U

U'1C/N/(C.1(S'));rY'<::"O) .,would not be amongst them. This i8 a

contradiction, and the proof is complete.

Theore~_ ,g,'fl.-;: If c;! i8 an algebra and,,,{;(: cl Ct/) then there

. t r ,- CJ_(/.,<J.l)lr'IPO~-;((.7) Sl!l('h th't /!jC-:l'c:: -/,:eXlS -s '-v (::: ~ ~ ~. ~ la, vi -" ..._-':.>(:1•



p~?of : '1'he essence oi' the proof is contained in theorem 4.4.
6)s ..}.jCv.{~!ei A r;~He-:

..:r J f\' /.:J ( VJ) ~..L/'j" A 7 dLet (:j- =tcJ;otCoZ;'J ;/106 6!~--j J' By Zorn's lemma,0'+- has a
(c \ _

1'"'1 ' F jf 9 A Ymaximal element Vo and, therefore, 'v =.c'vjC 0 <::-----........-)""'0.

J /~, T X-:Since ~-..6e: cl ( Ll) there exis ts an A-retrac tion g:....<'_ ---?> o<Q

which is evidently a monomorphism. Also we have that all
.( "

A-retractions h: -<. ------:.~ ~ are monomorphisms. By theorem 4.4

we conclude that all A-'retractions h: ..;( ----7.z are automorphisms .

I '/E'Clearly, -<., C;; cl (e?!). By theorem 3.1., there exists an~'A-retraction
r- -r

r: ..(..(I Cl) ----.-~ -<:.- Since its restrietion to -<: needs to

be an automorphism, we are done.

As mentioned before, 0. different (and ~till unpublished)

proof was given by W. Taylor in (41).

In view of the preceding iesults the following theorem is

somewhat surprising. "'ja gives 0. negative ansvver to a question

raised twice by B. Weglorz ( (44) and (45) ) without having

received an answer so far.

implies the existence of 0. weak equational compactification

within the same equational class.

To see this one may take the algebra {Jl = (A; v, /\, I of type

( 2 , 2 , 1) wi t h A =i0. 1 ' Cl.2 ' . . .. .. , an ' . .. 1(J!0 , 1J s uch t hat

(A; V , /\) is the lattice of example 3 in section 0,

0' = 1, l' = O.
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This last section contains a list of problems (in arbitrary

order) that are naturally connected to this paper:

(1) Given an equationally compact partial algebra (9/:
Can we (possibly after suitable extension 01' the carrier set)

make the partial operations full operations such that the resulting

universal algebra is equationally compact? 1s there some "canonicalf

such full algebra associated with 0/ ?

1£1 (a) Study .equationally compact integral domains. Are they

always topolgically compact rings?

(b) Characterize equational compactness in suitable classes 01'

rings.

lli The only equationally cornpact skewfields are the finite ones,

How does that situation change if we allow only systems 01' equations

wi th finite ly many ( > 1 ) variab les ?

ill Given an equational class K 01' universal algebras in VJhich

equational compactness has been characterized: 11' .1/W is a fixed

cardinal number, then characterize those algebras that are not
equationally compact but are n ( (+H) ) .-equationally compact t!

(i.e. any system 01' polynomial equations with constants is

solvable provided it is finitely solvable and involves

variables) .

i5) Consider the foilowing property Pn
algebra: 07 has property P .if and only

n

(n(N) cf

ira;
a universal

lS'

((n»-equationally cornpact but not ((n+1»-equationally compact

(see problem (4».

(a) C.onstruct algebras wi th property P .. n

(c) Let 01 be of type (2) and nOc
-74-

(b) Are there, for any given n, unary algebras with property P ?
n

N: Can one rind a set 2: 01'
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following
identities which makes DO minimal with respect to the~property:

ff1f rJ! is in the model class of 2- then ((no» - equational com-

pactness of 01 implies equational compacthess of (//" ?
(

(For no = 2 it was shown in (18) that i idempotency, associativity,

commutativity] is such a set of identities).

ill Let.~ be a limit ordinal: Find and study algebras which are

((I:.x.(»-equationallyeompaet, but not ((I/\\+»--equationally compaet.

(see problem (4».

ill Develop a theory of equationally compaet lattiees. More

specifically:

(a) 1s a distributive lattice equationally compact if and only if
it is complete and flilly dis tribut:ive ? (This conj ecture came up

1n a eonversation with G. Grätzer)

(b) 1s there a conneetion between the interval topology and equa-

tional eompactness in distributive lattices ?

(e) 1s there a lattiee which is ((2»-equationally eompact but

not equationally eompaet ? (see problem 4).

i~ Study compact Hausdorff topologies on serüilattiees. Has

Mycielski's problem an affirmative answ~r in the class cf
semilattices?

i3~ (VJeglorz(4S»: Does the existence of a quasi-compactifieation

of an algebra (J/ always imply the existence of an equational

compactification of that algebra ? (1;>1e expect a

(102. 1s there a universal algebra c11 such that

of a topologically compact relation~l

negative answer.)

~ is retraetU/ rel
system, but {~ is not retract

of a topologically eompactalgebra ?

(11) (a) 1s there a group that ean be equationally compactified

but has no embedding into a topologically compact algebra?
(b) (Mycielski (31»: Study equational eompactness in the elass

of non-Abelian,conneeted, loeally compact topological groups.
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(12) (VJarfieId (47»: Are there any topologi cally comp lete

0< -modules over 0. Noetherian ring which are not equationally

compact?
"£.13) (0.) Study equat ionally compact unary algebras wi th more than

one operation.
(elementary) extensions of mono-unary algebras.(b) Study pure

(c) Let 07 be 0. unary

of d7 provided it is

algebra: Is frf/ always. an elementary extension

0. pure extension? (see (35) where a

special instance is given.)

? (A positive answer to (e) would,'
n'

questionable proof for 0.

(d)If G7 is a mono-unary

0;also cotltain some .z
algebra and 13('1 eontains

,/
~£ does thenn

of eourse,imply 0. positive answer to (d). Compare lemma 7.6)
114) Develop 0. theory of convergenee algebras (i.e. universal

algebras with 0. eompatible limit spaee structure). Relate it

to questions eoncerning equational eompaetness in universal algebrac

(15) Study the relationship between the existence of generalized

A - limits and equational eompactness in ?< -modules where 0<
is not the ring of integerso (see 7.33).

J<
(16) Let/,be a ring andL.(xi,yj,'zk)' ie:I, jtcJ, kc:K, a system of

'iR. i'I'l Cd_I.-i ee
f~:)Qlynomialequati ons invo 1ving the mut ually disj oint sets of

variables {xi;iEI) and f Yj;j (;J) and the constants Zk,k( K,

from R:
Are there rings other than the integers where one ean find one

such system L = Z O~i'Yj,zk) of eardinality ~R\ +~)o with
the following property: tlThe (f? ~ module JJl is equationally compaet

if and only if every substitution of y. by module-elements that
J

k
)- ( ".. \ p" .ma es "- ,no1tl8.' systerl ;".J='.th;varJ;:iJ')lesXi) .LlruteJ.ysolvable

makes solvable in:?IJl,ll?(In (3) Balcerzyk rinds the system
f ZlXo - '/n = n!xn;nEN Jfor Abelian groups.)
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(7) (a) .Let o{ be a lirnit ordinal with ~~ O~lo(l:::(A(:

If ur is not equationally eompact, can one always find a syste.m

L of polynomial equations with constants in A such that every

subsystem with less than lex \ equations is solvable, while L is

not solvable in 67 ?
(b) Let {)( be a uni vers al algebra and define the jb.:,.; SuJ;) as

follows:

S ((/j) :: f 0<. ; 0(:: limi t ordinal and every systern of polynomial

equations witheonstants in A is solvable if every

subsystem 2.t with IItl«o((is SOlvable:]
Is there anything that ean be said about the c.lgSi" S(();)that

oeeur that way?
i.l~ Is it possible to develop a theory of llcanoniealllequational

compactifieations of universal algebras in eertain equational

classes of algebras ( püssibly via non-monie representations

of the algebras as it is quite usual in eategorical treatments

of topological compactifications. See also 8.9 ) ?

iJ})_'Charaeteriz,e (1111',3<) - equational compaetness of
(commutative) Noetherian ringsX\with 1) if 1111,,' is an ideal of ,::Je; .

i.?-Q.l (D. Haley): Is equational compactness of a universal algebra
CJ1 iDlIJiiBdG;n q~('t)1 +H ~ ')t»)',".ed.üaJC:i~.onEü20nlPacthessof ()f ?

no'(i~)i - caro:i11a'lityof tl1e type 7:' of 07 =1 F ~.) (see problem 4).

D. Haley.has some interesiing results on problem 5 and related

questions.

We refer to (42) for another interöating source of problems in

a slightly different dj.rection.
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