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EQUATIONAL COMPACTNESS IN UNIVERSAL ALGEBRAS.

by - |
Glinter H. Wenzel

It is the aim of this paper to give a unified'seﬁting to
and report on a new area of research in (universal)_algebra:
the theory of equationally compact universal algebras. .
We.attempt in this study to present in a concise fashion all
essential results known on the.Subject matﬁer as far as they
have'bearing on algebras rather than relétional systems. More
precisely: We take into account all relevant results in
mathematical Jjournals, a few unpublished results if they aid
in illuminating the scope of some of the published results
and this author's own research. Proofs will not be given in
vdetail if they have appeared in print. Exception to this rule
will be made for two reasons only: (1) if new ideas ihtrudez@om
a known result, (2) if the readability of this afticle seems
jebpardized by too much omission. The papervﬁill be concluded
with a list of open problems.

The terminology follows essentially G. Gritzer (17) and we
assume familiarity with the résults_in that book. Evennso, we
will collect, mainly for terminological purposes, fhe‘basic
concépts relevanf to this report in’§ 1. The following is a
listing of the various sections of this paper:

§ O : Introduction.

1 : Basic concepts.

2 : Various compactness concepts.

=

A fundamental characterization theorem and its consequences.
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N

It : Connections between weak equaticnal compactness and

equational compactness in universal algebras.

~ 4~




[}

§ 5 : Characterization theorems for (weak) atomic compactness
of a relational systemlcy/ involving_fA!
§ .6 : Connections to topology.
 § 7 : Equational compactness ( atomic compéctness ) in
'specific universal algebras (relational systems):
-(1) Unary Algebras.
‘(2) W. Taylor’s counterexample to a positive answer fo
) Mycielski's problem. w”
4(3) Semilattices.
(4) Lattice-related structures.
l(S) Boolean algebras,
.(6) Abelian groups.
(7) ZR- modules and rings.

§ 8 : Compactifications of universal algebras. ¢

§ 9 : Problems.

I am grateful for the opportunity, offered. in 1968 by

fhe Carnegie—Mellon'Uniéersity in Pittéburgh / Pa, to give

a seminar on the topic. The notes then céhpiled (48) were

an invaluable basis for_this work which, in‘turn, is &a
‘condensed Version of my "ﬁabilitationéschrift" (51).

Thanks are aliso due to NRC which has supported this and other
projects of mine with generoué grants..

In the pfoof reading I was assisted patiently and critically by

my students S. Bulman - Flemlng, D. Haley and D. Kelly.

Last not least I thank G _Gritzer for his invitation to write

up this paper’for publication in the journal "Algebra Universalis'
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® 0 : Introduction.

It is the very question which has given life to the
mathematical discipline called "Algebra" that, in a modified
form, is underlying our topic: Thé question about the solva-
bility of certain systems of equations in certain pregiven
algebraic domains. However, while the original interest was
and is dirécted toward finding solutions of finite systems of
equations (or, at least, toward eétablishing the existence of
such solutions) our interest is of a more relative nature:
Given a system of equations over some universal algebra we want
to study the coéonditions under which we can conclude the
existence of a solution of that system provided all. finite
subsystems are solvable. To clarify our point we will initiate
our ' presentation with the aid of a few simple,
illustrating examples.

Example 1 : If we consider the qycIic group Z of integers
with Addition + then we narrow our attention to the following

system 2. of equations:

BXO + Xy = 1
-x1 = 2x2
X2 = 2x3




o

where n runs through the set N of natural numbers.
’ w

Visibly, if (x )EZ 0 is a solution

03X 2K onnes cee
of 2. then O # x, = 2'x

. n . N
[
n+1 for every neN, i.e. 2 divides
X4 # O for every natural number n. This being impossible,
Z; has no solution. On the other hand, if Z:n denotes the
set of the first n equations in Z: , then we choose X and
n-1 _ . _ \

X, such that 3x0-+ 2 x, =1, define Xpeq © 2xn, X5

2% x, = 2%, and have, thusy a solution (x X_)

neq2 s Xy 5 0sXq Xy
of Z:n' ;Z is a system of equations‘which is not solvable,
aithough évery finite subsystem is. This example (that can

be found in Mycielski (31)) ought to be contrasted to the

ﬁext one. R

Example 2 : If B is a complete Boolean algebra with join V ,
meet »A , complement ', zero O and identity 1, then every system
of equations involving variables, constants of B and the

above operations is solvable provided every finite subsystem

is. We will come back_to&his result . ( See (1) and (4k) ), °
Example 3 : If we replace the Boolean algebra in Example 2

by a complete 1aﬁtice L with join V and meet A v, then

the conclusion is no longer true. To see this, let

L.: {O,ao,al, ........ IS - T ,13 s n<<vo, where O and 1 are,

respectively, the smallest and largest element and the elements

a  are pairwise unrelated:

----------------
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If S is a set of cardinality ?{‘1 , then the system

;Z = { Xiﬁ\xj = 0, xi‘ij = 1, i # Jj € 53} of equations over
'L is not solvable in L, sincg i # J implies X4 #”xj for any
solution (XS)Sé 3 of /2 , 1.e. fo% 3 € S} would have cardinali-
by & . >l On the other hand is it quite evident that

every finite sﬁbsystem ‘21 of Z; is solvable.

Exémple 4 . If B is an arbitrary non-void finite set and F

a set of finitary operations on B then any set of equations with

o~
4

an arbitrary number of variables, constants from B and based
on finite compositions of the operations in F is solvable in

B provided it is finitely solvable. If only a finite number
of variables were involved then, of course, the fact that

the "Finite Intersection Property" holds for thinite sets
would trivially yield the result. If infiniteiy many variablés
are involved then one could convince oneself of the correctness
of our»claim by a process of reasoning that mimics . the

prbof of Tychonoff's well-known theorem concerning the

product of compact Hausdorff spaces. Since we will relate
tobological compactness with our algebraic problems in what
follows we will skip a redundant argument at this point.
Example 5 : It is the same basic technique we used in

example 3 that together with Dirichlet's prime number theorem

P

. )
yields the next peculiar system of é) equations over the

1
ring of integers Z. Not only is every finite subsystem,
but even every countable subsystem of equations solvable; the

whole system, however,admi®ts no solution.
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1 then the system

' )
Ir 0)1 is the initial ordinal of 53
. . + . = . < W }
(m %ff n)+y ?(m z? + n) 1 ,\?%7 1

2 o= {x
£27 $1
of equations over the ring Z is not solvable if n,m are
+q.
relatively prime natural numbers such that -imn, é’ Z.
Mycielski chose m = 5, n = 2.

To see this we realize that for every choiée of z, e Z

$

the integer maéfﬁ-n is different from il; hence, \?#'2 implies

z. #z _for every solution ( of 2 which, of course, is

$ s ey

impossible in Z. On the other hand, every countable subsystem
J of 2. is solvable in Z. For let fb, fl’ jé,...., §;,..,.,
i< Wy .be the indices f,ag actually occurring in J_! ahd
choose gz, such that m-z§.+ n o= ps is a prime number for

fi 1
every i €& N; moreover we make our choice such that i # j implies

jo

5 7 pj. We can do this since n+m, nN+2m, N+ 3M,yeeceecn- e eeee

constitutes an infinite arithmetical‘progfession with initial |
element n, difference m and (n,m) = 1; thus, Dirichlet's

theorem assures an infinite number of prime elements 1in the

progression. Since therefore (pi,pj) = 1 1if 1 # j, we can find
. : 'e ) § - Y. = ¢ s
integers 55 3 and tij such that 531 3P4 rtijpj 1; i.e. 2.1 is
solvable. , ~ Mc Kenzie has recently displayed

a'system‘of equations with the above properties over the
Abelian group of iﬁtegersn

Example 6 : Let this time Z denote the set of integers with -
one unary operation f only: f(z) = z+1. Any system Qf»equations

involving variables, integers and the operations fn, neN, is

solvable provided 1t is finitely solvable. If we add one more
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element, say a, and define f(a) = a then the above claim

remains still true. Let us, however, continue to extend this

algebraic system as follows:

@
/If d2@‘au9
£
z+1 5
i a3
Z¢
;S
f

S
[N

Then the resulting system does no more satisfy that proper-

ty - not even if we allow no constants. This is seen by the
following system of equations: ‘ P

v = f(y); y :'f(xl), Xy = f(x2), X, :'f(XB)’ ..... ”Xn:f(xn+1)"
The author's study of this unary case will be sketched 1in

§ 7.

Example 7

Both divisible Abelian groups G and p-primary Abelian groups G
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that (being modules over the ring of p-adic integers) (1) have
no elements of infinite height and (2) are complete in their
p-adic topology do have the property that any system of
equations with consténts from G and involving only finite
compositions of the fundamental operations is solvable provided
it is finitely solvable. )

The last example was subjecudto intensive research by several
authors. I. Kaplansky (24), in view of théir»r81e as direct
summands of topologically compact Abelian groups, called
Abelian groups With this properfy of "relative solvability" -

of equations of the type described in the last example

- algebraically compact groups. He used two different, although -

equivalent, definitions in the 1954, resp. 1969 editions of
his monograph . "Infinite Abelian Groups". Oné may say that
the case of Abelian groups and the interesting structure
theory the quéstion of "relative solvability" gave rise to

in that caSe was a strong impetus to further.and'more general
research. In the sequel the concept has attracted the ingerest
of algebraists  and logicians alike and has been studied in
both a universal:algebraic - logical and classical algebraic
framework. Structure theorems, decomposition theorems,
connections between algebfa and topology, model-theoretic

and algebraic charactérizations wiﬁhin fixed equational classes
of algebras were in the foreground of the investigation.

The topic seems to be particularly apt to please thosé minds

that strive after or look for interpliay between challenging

and deep universal algebraic research with interesting

-g-
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Situations'thét arise once one focuses one's attention on
particular "classical structures". And this, indeed, it does

if one recalls that this "relative solvability" behaviour forces,
e.g., Abelian groups to be direct products of exactly such

groups as we displayed in ekample 7T or Boolean algebras to

be injective etc. The interest in =mm=mg classical interpretations
of our general problem prevails to this day as,ie.g., the

1970 - papers of A. Abian (1); L. Fuchs (12), R.B. Warfield (47)
or D. Haley (20) witness.

On the universal algebrailc side fesearch has been done mainly

by J. Mycielski, B. Weglorz, G. Gritzer, H. Lakser,
- S. Balcerzyk, J. Los, W. Taylor, G. Fuhrken, L. Pacholski,

Mc Kenzie, the author and others.

W. TaylorAhas Jjust completed a new preprint with material relevant
fo our topic (see (42)) which, of course, cannot yet be included
in this presentation. Partly the results of that preprint

are aimed at relational structures rather than algebras; his

nice idéa of a "minimum compact algebra" we were able to

include here at a fitting place.

We conclude this introductory section with a table of

notations that are frequently used throughout this report.




Recurring Notations.

N = set of natural numbers’

Ny = Nvio]

R

set of real numbers

Q = set of rational numbers

H(X) = class of homomorphic images of objects in K
P(K) = class of direct products of objects in K
S(K) = class of sﬁbobjects of objects in K

U(K) = class of ultraproducts of objects in K

UO(K)= class of ultrapdwers of objects in K

C(C?) = congruence set of o

EI = set of subsets of the éet I

| I| = cardinality of the set I

x| = cardinaiity'of the ordinal

/ and /™ = set~theoretical union and intersection.

N

disjoint union ( If two sets A and B are not disjoint

then A&B denotes a set that results from taking disjoint

copies of A and B and forming their union.)

A

[a]©= the block of a under the equivalence &

Y

kS,

The elements of T?((ﬁi;i(il) are denoted by either f or (if)ieél'

w : . | )
C7~§~»%§: =x§ is S-pure with respect to 57
Cyéjix9g§: a7 andqu are mutually S-pure
specS(CV) = spectrum of 67 with constants in S
If f is a polynomial in a universal algebra then we write the

arguments behind the symbol: f(al,...;,an). If £ is any other

function then the argument preceds f: af.

G-




§.1 : Basic concepts.

A relational system 627' is a triplet (A;F,R) of sets such

‘that the so-called carrier set A is non-empty, F is a set

of operation symbols that induce certain concrete finitary
operations on A (called "fundamental operations"), R 1s a set
of relation symbols that induce certain concrete finitary
relations on A; We generally assume F and R to be well-ordered
" (more a convenience than a necessity), say F = {fO""’fX."J

Y

-ar
¥ y

to be ann

S

R = {ro,.;,..,rg ".'°§J:m2’ and we assume f
operation symbol,.ﬁg td be a:hg - ary relation symbol

(nX, @gé Ny). Generally we will ( in agreement with wide-

spread usage ) use the same notation for the symbols and ' i
the concreté operations or relations induced by those symbols.

If, however, we need to emphasize what operations or relations

we are ekactly talking about then we will also write fX or

1"?7 , respectively. If ‘2“1 = ( n |
"‘C2'= (mo, ..... ,mé‘,....)op(o(z, then we call T = ('(Tl,'-’:’
the type of CW . -

If R = @ then we say that (A;F,R) = (A;F) is a (universal) algebra

of type T = Tl. If F = @ then we call (A;F,R) = (A3;R) a

~14-




strict relational system or a relational structure of type

L:'C'z |
Every universal algebra 6& = (A;F) of type €T = (nO"°"nX"')y<o<
~ s

is associated with a relational structure erelz (A3R(F)) of

c-/ - <
typg Crel = (no+1, ...... ,ngﬁl, ..... )K<“ by defining
rx(al,..,.jan_fl) to hold true if and only if fg(ai"""ang.);:
&y 41 Being interested in algebra rather than model theory -

¥
we will, however, have only occasional transitions from the

one to the other

r OF - (AyF,R) and Zgz (B3;F,R) are two relational systémS-
in K(T ) , the class of all relational systems of type T,

then a mapping f: A ----> B is a homomorphism if firstly -

f8 (al,..,..,ang )£ o= fé(alf, ...... ,anyf) and secondly -
. . Ie g L
r5 (81"'°"am5) implies ré‘\alf, ..... ’amgf) for all a e A.

If, in addition, 2§(a1f, ..... s f) for some a.e A always

implies the existence of ¢ +sC € A such that cif = a.f

R 3

,C_ ) holds true then we speak of a full homo-

IR mg

"amg> is always equivalent

f) then we speak of a strong homomorphism.

tO'rg(a fovenn. s8ng
Of course, in case of universal algebras the different
homomorphism.concepts coincide. (See also (17), chapter II,

§ 13). The concepts of monomorphism, endomorphism, automorphism,
épimorphism and isomorphism are then clear (sirice we talk

about set mappings and stay away from category thebry).

The isomorphism theorems (again see,e.g., (17) or (36)) connect

in the usual strong form homomorphisms with congruence relations,

-19-




Subsystems and subalgebras are, respectively, relational

systems whose carrier sets are subsets of the larger carrier set
and whose operations and relations are induced from the
larger algebra.

Let us bhe a little more space-consuming with the construction

of the class ES(?T) of polynomial symbols of type 7 = <t15221—

- with constants in S . We choose, for every ordinal(y , the

symbol e, and call the resulting class E :{‘%X;g'= ordinal}

5
the class of "projection symbols". PS(Z‘) is defined as a class
of symbols as follows: '
(1) EC'S_‘.—PS('Z‘), (2) pl,....,pn§i %(?‘”_) === f&(pl,..o,pna)e%(‘l“’)
for all ﬁyeF, (3) %(Tf) consists exactly of all elements that
can be obtained in a finite number of steps using (1) and (2).
Equality is formal equality.
(2) would implicitﬁ;y define an algebra (Ps(t');F) of type 7y
if PS(??) was a set rather than a class. So if we restrict the.
projection symbols e& by_requiring 5’<nx’where o< ié a fixed

_ and veploce, . () . .
ordlnayA\ln (1), E by this set E :{éd; 5<:c<}then we obtain
the algebra fng<?2%: (Ps(a')( T)3;F) of "o - ary polynomial
symbols of type ©  with constants in S". |
This construction is the obvious modificatiqn.of the same
construction given in (17) for the case S :f®. The same remark
applies to the following continﬁétion: |
Let K(T ; S) denote the class of all relational systems C?‘cf
type < with S< A. PS(“')(t') induces on every<276 K(z 3S)

O
an algebra Z)S( )(Cﬁ) of type T the so-called

1’
"algebra ofo¢ -ary polynomials on 7 " in the following fashion:
N3 7 o o :
Every pG?PS(L )(Z’) induces a mapping p OZCX; A ——== A

&/,O{ - ’
¥ (XO,...,%f,..,ZQ; %5

according to the agreement that (i) e

....13...




? f

and séi’« <XO"°"’§y"'°%2u': s for se¢ S and
. _ , . o
(ii) ir plcﬁ’“ yeee e R p;f’d are already defined then
¥ a7 o
fg(pl,.....,pn ) 1nduces f (pi,....,pq%% > (xo,.,.,%J,. 'lﬁ<af
i (plﬁy (Xosxlge....osx{’ ) sP SO{<XO’X1”°.°.,}‘~CS‘,. )(S’\
a, ey h

Then P (67) ::f bl ; pe,Pé (T X} Moreover, if gf F
and pé?%“; ........ s Péﬁ’d _gkﬂ)(éﬁ) then é? 3
a & Ve ¥ N

¢ s X - )
fX(p1 e » Py Xy = (fg(pl,....,p )) makes
fé, a well-defined operation on Pq (6?)

Again it is a customary habit to drop the various superscripts
if confusion cannot arise. Also:4P@(2“) :‘P(Z*), K(Z;0) = K(f)
etc.

If L(al) denotes the first order lénguage (with identity)
with variables Xq ..o.,,ﬁy . é7<9( then we can proceed
as in the case of polynomial symbols and define L )(S)

for any set S as the set of formulas one obtains by replacing

some, none or all of the free variables by elements of 8.
()
.

systems &?611{(2’;8). For the remaining notations and concepts

L (S) has then its natural interpretation in relational

of Tirst order logic (as, e.g., atomic formulas, positive

formulés, quantifiers, satisfiability of formulas etc) see (17).
C W2

ir 47 and «& are relational systems of type € and AS B, then

c%; is called an elementary extenslon of ¥ (notatlon &4 423 )

if for each formula ¥ ¢ Lif) 243, and each e A” the
formula Y is satisried by & ined if and oniy if it is so in 67
G7 is then calted an 08 ' \ »
Aelementary subsystem. Cﬁ and &2 are called elementarﬁfequivalent
\ 7

if and only if every sentence that holds in one relational

system also holds in the other.

e




The concept "elementary extension" is closely related to the

. i T . q
construction of an ultrapower CW é of a relational system Cf

with respect to the index set I and the ultrafilter D of
subsets of I. As well-known, every relational system CW is

(via the diagonai embedding) an'elémentary subsystem of every
of ité ultrapowers.A. Tarski suggested the study of ultrapowers
in connection with the compactness theorem of logic. The theory
afforded a new proof for the latter theorem, the meat of which
led C. Ryll-Nardzewski to a slight variation that is useful
for our purpose:

Remark 1.1 (C. Ryll-Nardzewski (44)): Let é? be a relational -

system of type T . If 2. is a set of formulas in QU(A) TR
each finite subset of which is simultaneously satisfiable in C%

then Z:. is satisfiable in an ultrapower of C& .

A relational system 67 with S€ A is called an S-pure subsystem ofdg

(ocmf an S-pure extension of 67 )y if CW is a subsystem ofckg

and any‘finité set of atomic formulas in Lt(S) which is satisfiable

in gég is also satisfiable in C7 . If S = @ then we call 67
, ,

a weakly pure subsystem of & , If S = A then 67 is simply a

pure subsystem.

Of course, every elementary subsystem is a pure subsystem. We

end this sectioﬁ with a few refinements of ﬁhese concepts and two
remarks. (see (44), kM5)3 (50))

Ir é?, dé> are relational systems and S£ A,B then a homomorphism

g ( —---3 %  is called an S-retraction if sg = s for all se€ 3.

‘(Ag;F,R) z C?g is then ¢gn S-retract of 6?‘ . If every finite
set of atomic formulas with constants in S which is satisfiable

. ﬁ/ . . . T R T \%« o R L 7 4
in 1s satisfiable in 2 then we call the syétem'a%f '

_15_




i 3 '
v:_ q'ﬁure-”1th resonect to Qﬁi ( notation: C?C“§~>oéf),
If 67,v§~¢ (s and ¢é§,~£1~a 4 hold then 4 and %éf

. 7 -
are called mutually S-pure ( notation: O e~Sms oé; ).

“1ear1y @ - retracts are homomorphic images ! A- retracts

g Géf——#—{>6707651mp1y retracts in the usual sense if O7C<Z? .

Remark . 1.2 "+ Let 6? oZ? bé relational systems of tyoe‘?

(1) If 67 is anS-retract of the relational systemc&g then
B OF
(2) 1If o7 is a subsystem of%gjand 67 is a retract of oég
then 67 ié a pure subsystem of<aé?
(3) If <5 ~5 7 and all sets of atomiec formulas in J»(S)
are satisfiable in 427 provided they are satlsflable 1n<¢€ then
_ 6%’ contains anS-retract of o<f
proof: (1) and (2) are clear. Let us turn to (3): To give that
proof we need to introduce a construction that we will use
frequently hereafter and thereforg introduce via a proof-inde-
pendent definition:

Definition 1.2  : If ¢%§ is a relational éystem then letfz?i

denote the set of all possible true polynomial equations and
relations that hold in a?ﬁ. (E.g., ifix§7= (Z349 then o5 =
{o+2 =2, 2+0 =2, 3+8=11, 7+49 = 56, 4<£7T, 841002,..???..}

If S€B then the spectrum of oéf with respect to S (Spec 5 )

is the system of atomic formulas with constants in S Whlvb we‘
£

7’1/~a

get by replacing every bc;B‘\§Aby the variable X

Back to the proof of (3%): specs(dé) is satisfiable inx{fby con-

—16-




struction. So, by assumption, spécs(dg) is satisfiable in C?’.
Let us assume that (ab; be BAS) is a solutign of specs&{g)

in 67 . Then the mapping g: B ---> A defined by bg = ay,
fof be B\S and bg = b for beS is evidently a1S~retraction

from & to (§7, 4
After this proof we are really in a position to strengthen

the o1aim made in 1. 2 ¢.(3) as follows:
S

“Remark 1. 4_ 'z If xfﬂ > Oy'and séecS(AQ) is satisfiable in 67

then there exists amw S-retraction from aéjto G?




B e L e Rl i T T e e et et et e T A m——

§ 2 : Various compactness concepts.

. As one checks theﬂliterature one finds a variety- of algebraic
"compactness" concepts that have, in varied forms, one aim in
common: the aim to describe a "relative solvability" behaviour
of algebraic structures ( as discussed in Secteen 0 ).
Wé propose a new concept that<contains essentially all the
others as special cases. Apart from the obvious advantage of
unification of concepts this allows us to deduce fundamental
resulté in their due general setting, referring specific results

to their proper place as corollaries,

Definition 2.1 . : Let e K(z 3;S) be a relational system,
M a fixed subclass of Lt and #va fixed cardinal number.
A relational system AgeaK(27;S) is then called (Ehé%ﬁ@— M compact

if it satisfies the following property:

If M(S) denotes the class of formulas we obtain after having
substituted elements from S for some variables in M in all possible
ways;andZ:is a subset of M(S) with < # formulas each finite

" subset of which is satisfiable in é? (i.e. 2 is "finitely

satisfiable" in ¢/ ) then 2_ is satisfiable in <5 .
EM(S,CW,@W) denotes the class of all (S,é%,W%? - M compact
relational systems. If 5Z§ écM(S,Cy,%%) for every cardinal

number 4% then czg is said to be (S,C?)- M compact and the

class of all such relational systems is denoted by_EM(S,CW).
_,'23- ‘




Via the next examples that ( en passant ) serve as
terminological definitions we will show how the other
compactness concepts appearing in print are related to this

notion:

Example 2.. . 2: If M = Mat = ~ class .of atomic formulas, then

(S,00 ym) - Mat compactness is also called (S,éysgw)—atomic

compactness, (S,d) - Mat compactness also (S,/)-atomic compact-

ness. If R(%) = @, i.e. if we are dealing with universal

algebras, then one speaks of equational compactness rather than

of atomic compactness under the above circumstances.
. _
A relational system 57 is called weakly atomic compact if

(8, 0).

¢ . Q. A2
67 ¢ cy (@ ,C/), atomic compact if (7 e Cyp
at at
Similarly, (7 is called 44 - weakly atomic compact if

07 ; ) ) - %
Ofec (@ ,Cy,ﬂ%) and 4~ atomic compact if (7ec (A Cﬂﬂ%).
Mat Mat ’

Again we use the phrase "equationally compact" or

"weakly equationally compact" under the above circumstances if

627 is a universal algebra.

If we are dealing with Ma then we will simply drop the index

€
and write c( ¢ , ) rather than cy (0 ,(7) ete.
' at :
Example 2..  %: If M = Mpos is the class of all positive formulas,

i.e. of all those formulas that are generated from the atomic
formulas via the application of (?x,)w.(*&y),/\,\/, then
o

(S, d,m) ~ W

compactness is called (S (7 #¥)~ positive com-
pos 22

Pl % ‘_
pactness etec. CV is positively compact if 676'CM (A,éVL
<y 5, POS
weakly positively compact if Ol e CM (@, 67). The concepts
pos
of 7 -positive compactness etc are then formulated as above.

( see , e.g., (31), (44), (50)).

..19...




Example 2. . U4: If M = L? then (8,57,¢#)—L~ compactness is also
1%

called (S,C7,¢w) - elementary compactness. CV:is called

(##- ) elementarily compact if 7 I cr (Aydy) ( CLNKA,éy,ﬁW))
and, accordingly, weakly ( 443 - ) elementarily compact if

7 e CLN( 1) ,67) (CLAK @,CV,%%)).

Although elementary compactness is now introdﬁcéd, it is
unfortunately, an uninteresting concept. For the class

of weakly elementarily compact"reiatiOBaI.systémé

coincides with the class of elementarily compact relational
systems of the same type which, in turn, coincides with the
class of ali finite relational systems of fhe given type.

To see this we look at the system.of formulas 2 (I)= £xi#xj;i¢jéI}
for an arbitrary index set i. Surely, these systems of formulas
force a weakly elementarily compact relational system to be
finite. Vice versa, if 6? is a finite relational system

and 2. a finitely satisfiable set of formulas in L?(A) then
/_ is satisfiable in some ultrapower of &be 1.7,

However,.  every such ultrapower is ilscmorphic to 67’0 Thus,
) is satisfiable in 67 .

‘The same claim of lacking interest holds no longer true for
%% - elementary compactness as a result of Mycielski'and

Ryll~Nardzewski (32) shows.

. Bt R ,
ExampleAZ.- 5: A relational system X2 containing the subsystem.QV
such that <¥§<&c( A, 67) is called a closure of 7 in (L6)

and a quasi-compactification of (7 in (48,

~2€;-—:




(#4),

Example 2. 6: In one of his preliminary reports,Aw. Taylor

calls a closure of a relational system 57 what, in our
terminology is a relational System &@f containing 677 such that
¢Zfé-c( A ,4@). In a later preprint W. Taylor changes the

above terminology and callé such a relational system a

"strong closure". However, we stick to the first term.

Example 2. 7: In the light of the above terminology we may

re-read some of the examples in ¢
Examéle 0.1 states that the cyclic group (Z;+ ) is not
equationally compact, not even %)O - equationally compact.

In a later section we will see that that is not an accidental
phenomenon. It is generally true that [ A} - atomié compactness

of a relational system implies its atomic compactness.

Example 0.2 states that complete Boolean algebras are equationall;
compact.

The lattice in example 0.3 is not weakly equationally compact

if we adjoin the elements 0,1 as nullary operations. It also
cannot be embedded in any weakly equationally compact lattice

of the same type ( nor can it .be embedded in any equationally
compact universal algebra of the same type, as a quick

theoretical argument will show ).

Example 0.4 states that finite relational systems are always

atomic compact. A proof of this fact, independent of Tychonoff's

theorem,is implicit in 2.4, .

Example 0.5 illustrates anﬁroadening of our basic question.
Rather than requiring that all finite subsystems of a given
system of equations are satisfiable, we insist on the solvability

of certain distinguished subsystems that are not necessarily

- “_2\’/[ .




finite. Here is surely an area of mathematics wide open fbr

research in which not too. much has beén done for the time

being. However, it is not within the defined limits of this

work.

Example 9;§ gives examples of both equatiénally compacﬁ and

not weakly equationally compact unary algebras (A;f). -

Example 0.7 , finally, shows that divisible Abelian groups

and p—priﬁary Abelian groups that have no elements of infinite

height and are complete in their p-adic topology are

examples of equationally compact Abelian groups.

This fact will be included in the s¢¢ligy on special structureé.
We close this section with a remark relating 5% and

o7

¥~ atomic compactness of relational systems in an important

rel in case of universal algebras and charactérizing

instance via the number of variables rather than the number of

formulas that can be used.

Remark 2.8 :(1) The universal algebra 67 is (weakly) equational-
ly compact if and only if the relational
system C};el is (weakly) atomic compact.
(2) Let 67 be a relational system and 4 a cardinal
number with 4%%’2{Aif'Then 67 is ( weakly )
A% - atomic compact if and only if every
finitely satisfiable system of atomic formulas

with ( without ) constants in A is satisfiable

in 67 provided it involves < ## variables.

22~




proof: (1) is clear. (2) can, e.g., be found in (14) where

the result is claimed for 4#w =|A|. However, the idea of the

pPOOf_Euaﬁﬁﬂed there only works for 4ﬂvﬂAfgs the weakly

atomic compaét case clearly demonstrates. We give that proof
for wv;[Algfiwhich fully suffices for our needs: A ;/
Let J = 2. (XO,Xl,Xg, ........... , X
be a system of atomic formulas involving the variables Xngiﬁ)
(with or without con;tants in A ) where 6d is the initial

ordinal of ##% .

If 6 =B5(X, ,ccev.on, X, ) is a formula infthen the set of

2

1 m
elements in A that satisfy & in 67 , in short: the

g-hﬁ,g. ..,Vmi

where B < A" ( one:cbpy-of.A for eachgi).There are at the most
, ' _ E

2!A - |Al<4 #r such solution sets and, hence, there is a
subsystem Zij'g ZZ involving only < ## formulas such that

- -

the solution sets of /2 and of 2 , coincide. The proof is

-

complete.

A final word: G. Grdtzer has pdinted out to me that the

concept of (S,CW,JW) - M compactness does not take into account
as parameter the number of variables that may be used.

This, in general, is admittedly sog but I feel that a concept
extended in that direction would no more guarantee the
siﬁplicity and generality in the formulation of the fundamental

results to be derived in the next section. Besides, we will




encounter no inconvenience i¥ describ@gthe few results that,

to this day, involve the number of variables in the systems

.of formulas to be used. Finally, the last remark shows that,

in studying properties of a relational system 67 ((Al?%{o)

that result from the requirement that systems of atomic

formulas be satisﬁiable provided they are finitely satisfiable and
involve_only ## variables, we do not go beyond our terminology

if 4W£HA11‘. It might be an interesting problem to study other

instances of that phenomenon ( e.g., in specific classes

of relational systems or . universal algebras ).
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§ % : A Fundamental Characterization Tﬁeorem and its

Consequences.

In (44) B. Weglorz proved a basic result characterizing
atomic compactness of a relational system in various ways. In
the same paper and in (45) he finds himself exposed to

rather similar situations involving different compactness

AN

concepts and is confronted with the task Cf statﬁqa new modified
¢

characterization theorem in each case. In accordance with our

stated aim ( see also the author's papér (50) ') we give these

characterization theorems a unified setting in the following

fundamental theorem:

Theorem Z.1: Let S be a subset of the carrier set A of the

relational system C? . Then the following statements are

equivalent for a relational systenlgzg of the same type:

(1)<2g é c¢( S ,Cy)w i.e. 423 is (8,67) - atomic compaétf

(2) 5z§ contains an S-retract of eVery L such that gfﬁwéL% 6? 

(3) a&i contains an S-retract of every S-pure extension of C& .

() &Zg contains an S-retract of every pure (i.e. A-pure)
extension of C%

(5) GZ§ contains an.S—retract of every elementary extension of‘cy.

(6) o5

s contains an S-retract of every ultrapower of C? .

proof: (1) implies (2): If adféC(SgC%) and xrfiia (7 then

specS(XZ) is finitely satisfiable in 67 , hence completely
satisfiable 1in aii . By theorem 1.4 .7 , & contains an S-retract
of &C .

(2) implies (3), (3) implies (4), (4) implies (5), (5) implies (6)
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Simce
Aan ultrapower 1s an elementary extension, an elementary extension

is a pure extension, a pure extension is an S-pure extension
. b ¥ . S ¢
and for an S-pure extension «, of 57 obviously ,lewe 6/ holds.

(6) implies (1) : By 41..4 , if 2L is a system of atomic

formulas with constants in S which is finitely satisfiable in 67
then there is an ultrapower\7§7g of CW in which éi is satisfilable.
M S-retraction will, of course, preserve the solﬁtions of Z? .
This proves the theorem.

The theorem immediately yields as corollaries the cited theorems
of B. Weglorz ( the meat of whose proofs is, of course, retained

in the above proof ).

Corollary Z.2. {((44)): Let 67 be a relational system then the

following conditions are equivalent:

(1) 67 is positively compact.

(2) Cﬁ’ is atomic éompact.

(3) 6% is a retractjof every pure extension.

() C? is a retract of.every.elementary extension.

(5).67 i1s a retract of every ultrapower.

proof: Taking S = A and & = {/  in theorem 2.2.1 yields the

equivalence of (2),(3), (4) and (5), (1) implies obviously (2)
~and (5) implies (1) since positive formulas are preserved if

one passes ta homomorphic images while the constants of A

remain unchanged under A-retracts.
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Corollary 2.3 ((4L)): Let ar be a relational system then the

following conditions are equivalent:
(1) 6? is weakly atomicrcompact.
(2) Cﬁ contains a homomorphic image of every weakly pure extension.
(%) CW contains a homomorphic image of every pure extension./
(4) é% contains a homomeorphic image of every elementary
extension.
(5) é? contains a homomorphic image of every ultrapower.
proof: Let S = @ and (/ = A5 in theorem S 31,
One might wonder for a moment why weak positive compactness
does not appear in "3 .3 while positive compactness appeared in
. .3.2. The reason is that & retract made ¢/ a homomorphic image
of, say,é&é s while a homomorphism only emheds a homomorphic
image into C;f, If one, in addition, reflects on the meaning of
universal quantifiers one is bound to stop wondering.The
following explicit counterexampie shows that, indeed, we could
not have included\the additional condition on weak positive
compactness.

Example .2.4: The ring ;5 = (Z3;4, - ) of integers is weakly
N [

equationally compact since every system of equations without
constants has the solution (0,0,0, ...... ). However, 25 is not

weakly positively compact inasmuch as ( see in this context

example 1 in & 7 ) the following system is finitely satis-

fiable but not satisfiable in ;5

1
no
>

{(#%del)(xmo'xwom - Xcuo--ri)ju {30y = xg 0%y

>
N
!
N
»
=
»
w
b
1
no
>
A\

n n+i* " °
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Another counterexample was given By W. Taylor and G. Fuhrken
in (14). As a matter of fact, W. Taylor pointed my attention
- to an erroneous claim of mine in (48) concerning exactly the
question just dealt with.

Corollary .3.5((45)): Let 6?7, czg'be relational systems such

that ¢/ is a subsystem of oé? . Then the following conditions
are equivalent:
(1) o&? is a quasi-compactification of é& (i.e. aé%fc(A,C?))
(2) G&g contains an A-retract of every pure extension of C%,.
(3) p&f contains an A-retract of every elementary extension of 67.
() aiﬁ contains an A-retract of every ultrapower of C%.
Eggéﬁ: Let S = A in theorem "3 .1.
Let us conclude this series of immediate consequences with
a fesult of B. Weglorz{44),

Corollary .. Z.6: If K is a class of relational systems of type «

closed under the formation of ultrapowers (i.e. UQ(K)EﬁK) then
every absolute S-retract CVG'K (S<A) is (S,(?)— atomic compact.
(We recall: 67 is an "absolute S-retract" in K if it contains

an S~ retract of every extension.)

Let us go one, as wé believe, useful step further by adopting
the next definition.

Definition 73.7: Cﬁe& K(7) is called a "pure injective"

relational system provided every homomorphism g: Q)———€>C$

can be extended to every pure exﬁension or D in K(7 )that is
within the equational class generated by 67 .

The last corollary (obviously weakly stated) suggests an immediate-
strengthening which we find useful to fecord, since we have not.

yet seen it in print. Warfieléﬁttributes the result to Weglorz(Uih),
" That dlaim,mhowévér, is not éorrect:
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- ) /! . .
Theorem _ﬁiﬁz A relational system L?'of type #© 1s atomilc

compact if and only if it is pure injective.

proof: Obviously, if 67 i1s pure injective then 1t is atomic
'compact since every ultrapower of Cﬁ is a pure extension

within the equational class gewerated by CV . S0 let, conversely,

677 be atomic compact, assume¢2f to‘be a pure subsystem
' I 4
of JZ (JO,mZ: & HSP(C& Y)Y and let g:ia~"~9’67 be a

homomorphism:

D = L

Ao
Then speoD(AE) is finitelj satisfiable in 23 , hence
specDg(i;) is finitely satisfiable in 67 and therefore
satisfiable in 57 (Here SpeCDg(KZ) is the system of formulas
obtained from specD(,L) by replacing d by dg for all d&é D).
We define g':—z';-—4> 57 by cg' = cg for ce D and

cg' = a_ if ce CND and (ac) is a sequence in A satisfying

c ceC\D

specDg((;). Then g' is a homomorphism extending g.

We would like to end this section with a theorem
that restricts the size of the ultrapowers to be used in
4.2 for testing a relational.system with respect to atomic
compactness or a universal algebra with respect to equational
compactness. To this end, hcwever, we need general criteria
that interrélate these‘conéepts with {A] .... criteria that we
will derive in the next but one section. To derive them we
prefer to first discuss some results on weakly atomic compact

relational systems of general interest.
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§ 4. Connections between Weak Equational Compactness and

Equational Compactness in Universal Algebras.

5

Lemma ~44-.1: (1)If'57§xéare given relational systems and

g:,(f ————— > (/ is an S-retraction then the (S,X)-‘atomic

compactness of any Xﬁé{é%,&f,&éé} implies the (S,Y)-atomic

compactness for the remaining two Y's.

& N o S . 3 .

(2) If S€A,B and ec(S, X)) then (7~2+.0 holds if and only

if there is an S-retraction g: 67—~w9<z§.

(3) If 8§ = Ai,i:1,2, C%ié‘c(s,éz) then éz_é“V‘~§~““*ﬁé holds

if and only if Cvl and 572 are S-coretractive.

(See (45) and (50));

proofﬂ Let us just hint at the proof of (1):

If, e.g., dZé is (S,ﬁ%) - atomic compact then so is Ao : For

take a system.éf of atomilic formulas with constants in S which

is finitely satisfiable in czg. Then ( in view of the existence
£ ’

of an S-retraction ) it is finitely satisfiable in‘dggs hence

; g .
(since o&?gé&&é) in oéf. The remaining cases are handled similarly.

Corollary Uu.,2 .: If a relational system (/ has a 1-element sub-

system then 67 is weakly atomic compact.

Many classical algebras have 1-element subalgebras'and are -
therefore weakly eqﬁationally compact . e.g., lattices,
semilattices, groups and rings. If one is after any interesting

information concerning weak atomic compactness one finds oneself

2
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bound, therefore, to occasionally introduce constants as

nullary operations in order to get away from 1-element subalgebras.

The following ildeas were developed independently by

W. Taylor (41) and the author (50) for diffefent\;easons.
While W. Taylor was after a theofy of minimum compact models
or, as it turns out, equivalently of minimal retracts of
weakly atomic compact relational systems, we attempted to
solve a very specific ( and still open ) problem posed by
B.'Weglorz (45), namely whether or not the existence of

cxgzc( ALY L4520/ implies the existence of « ¢ cle 4,
4{4 = 67 . 1.e. whether or not a relational system has a
quasi~compactification if and only if it has an atomic
compactification. The latter question being referred to - -
5 & on compactifications ( where we will give an affirma-
tive answer to a weaker version of that problem ) we will

here use our methods to derive a relationship between

weak atomic compactness and atomic ccmpactness in simple universal
algebras and the algebraic setting of an interesting theorem
due to W. Taylor whose approach, however, is rather model-
theoretic in nature. To this.end, let us define with W. Taylor
what one understands ﬁky - a "minimum compact model" ("4-4).

. -
Definition ~ 4 .%: A universal algebra 57 is minimum compact
S

9
if (1) & is weakly equationally compact, (ii) whenever

(>
g:(?—-»écXé is a homomorphism where (Qé is an algebra mutually

@ - pure with 6? then g is a monomorphism onto a subalgebraofgii_

To be precise: W. Taylor did define the ahove concept
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for relational systems replacing "equational' by "atomic",
"algebra" by "relational system" and "subalgebra" by "subsystem".
In remark 1.6 of (41) he asks'whether or not in case of an
algebra d? it is possible to replace the requirement that

to be a relational system by letting DZ§ range ovef algebras
only. Since the answer, in view of the crucial (crucial, at

least, for our approach) next theorem (see also (50)), turns A
out to be affirmative, we have not altered Taylor's original
definition with 'J?.B.

Theorem U, UL(50)Let 67 be a weakly equationally compact universal

algebra all of whose endomorphisms are monic. Then all
endomorphisms are already automorphisms. (The same, for that

matter, holds for relational systems.) P, sy Ay
( We /'7?:‘: Cacte o farkd precy Simee we """"df’(:/“ e tha théowin 797 et /(()’“Sf twe esscn#al
instccyces) ! . . ’7 %
proofA Assume that there exists a proper monomorphism g:é{~~$67

with Ag$ A. Then we can, in the natural fashion,build up
an increasing chain of mutually isomorphic algebras:
i - chellclG o oooiois 7 e
(&) Jl = 070 51, 57 g5
Clearly , ﬁ&z = U/ @Q} n=0,1,2,.cc0... ) is a weakly pure

extension of (7 . Hence, by lemma 2.3.1, there is a homomorphism

r: &/;O ———— ﬁ/ and &/@4 2 (ﬁ?’.
0 0 -
If p was a non-monic endomorphism of é%ﬂ then we would have
‘. O
the non-monic homomorphism pq o= p{A for suitable n &N. Then
) n

piar: (ﬁ; - 2 C?g was a non-monic endomorphism of 67n
which is a contradiction to (7, ¥ (= & .

So é%u
0
weakly equationally compact and all endomorphisms are monic)

has the same properties that a7 had (i.e. it is

Cxoe




and, like all ﬁ/n, ne e,

670 :‘C7. So we can now-build a chain as in () beginning

it possesses a monomorphism into

with C? but including- L/w and going on with Ca}+ ete:

01 050,50 f/c(.). S0 5. e

0, . ¢
/% Gl 15
O

In short: we have all the 1ngred1ents to bUIIdﬁ by transfinite

induction, an increasing chain of arbitrary pregiven length: ’
- 9 - . 2 /
C‘;7— 07 (3 )71 aaaaaa —r—v,{; _._['3/ f.l-r ...... g (/’a’:‘:' ..... s y([}(;

such that each 0}; is weak¢y equationally compact, has only
monic endomorphisms and (this is what matters to conclude the
proof) possesses a monomorphism into éﬁo = CW . The last
property, of coufse,.yields an immediate cardinality contra-
diction since 67 cannot contain isomorphic copies of each
member in this chain.

As a corollary we obtain an interesting theorem(see (42) or (50) )

Corollary | #4.5: A simple algebra ( or relational system )
without 1-element subalgebras is weakly equationally compact
if and only if it is equationally compact.

proof: Letvéy be weakly equationally compact. Then it contains
a homomorphic image of every ultrapower éVI. If g: CV == (7
is such a homomorphism then it is a monomorphlsm on 67’

By 4.4, gIA is an automorphism and, hence, Cﬁfis a retract
of (] §° This settles the claim in view of .5.2.

The above result can also be used to give a short algebraic
proof for a basic result of W. Taylor. We give this new pfoof,
while we refer to (41) or (l42) for Taylor's original proof.
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Theorem 44 6( W. Tayler (41) and (42) ):

It - is weakly equationally compact then there exists

a unique (up to isomorphism) minimum compact algebra Cﬁfwhich

is mutually @ - pure with ng

Every such Cﬁf has, in addition, the following three properties:

(1) 67 is equafionally compact.

(2) 67 is retract of every weakly equationally compact algebfa;&g
which is mutually @-pure with (}' (hence witth§ ).

(3) Every éndomorphism of C?j is an automorphism;

Q??/:{Zj; EQGC(M?55 PAXE, fv@w$dffo Clearly, % has

‘a maximal element 690 and therefore Cﬁfz m?yéyo amﬂgf°yéf.

prodf: Let

. o, . ) .
Since X2 1s weakly equationally compact, there 1sg
a homomorphism g: ag/égo —————— o@é which is a monomorphism
(otherwise g', the congruence relation on Xg which is induced
. " -~ 7 SRR
by the kernel cf g, would be in ¢/ and g' .= é%ﬂ.
s ‘; . “’;i . . . p
Thus, céf/égo == QZ;_,zéﬁ/Cgo is weakly equationally compact and
. \‘(:) ! . . - ;
every endomorphism of ¢xb/690 is a monomorphism, i.e., by & .4,
an automorphism. This implies, as in the proof of & .5, thab
; .. 3 . . > 3 3
022 /690 is minimum compact and equationally compact (minimum
compact since every homomorphism into a mutually @-pure algebra
needs to be a monomorphism by construction). (2) is also clear
since é?=<2§/690 contains a homomorphic image of L. However,
due to weak equational compactness of ,K: we can embed C7jJ)<i
via a monomorphism. Since the restriction of the homomorphism
from z—to &/ to 67 is again a monomorphism, hence an automorphism
g p 5 1€ p
we are done. (3) and the uniqueness up to isomorphism are also

clear.
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_Appendix: (1) In 4.6 we did not need to assume that .J be

weakly equationally compact if we, instead, assumed 455’6?.
(2) W. Taylor did, indeed, show a little more, namely that

| Al = ZM/ where # 1s the power of the first order language

of X5 , i.e. wz= & +[RI+[F| .. We have not_derived that
result. Howevef; for our present interests, it seems quite suffi-
‘cient to know that (B‘ is an upper bound for [A] ( particularly
since, e.g., for groups, rings, lattices etc. the cardinality

of A in the last theorem is exactly 1

gélThe minimum compact algebras o7 withinfif in the last theorem
are exactly the minimal retracts of xéw. So the theorem

contains the interesting information that all weakly equational-~
1y compact algebras do have such minimal retracts.

Qﬂl The theorem can be proved for'rélational systems (as Taylor
indeed did).

(5)Assume we would, in definition 03, allow that o4

ranges over all relational systems of the associatéd type.
Then, using (U4), we know that such a stronger minimum compact
algebra is within any .given: one of curs as retract. However

the only possible retracts are the identity and we are:

done with showing that the two concepts coincide. W. Taylor

had realized that in (42).

gg) The paper from which we tock the above theorem contains
much new material that we want to recommend ( (42) ). Much of

it is aimed at relational systems. We Qill, of course, not
report on it, since it is a paper whose preprint is hardly out.
We Tﬁgénexception with thedrem ~ 4.6 since it served well |
to illustrate our method of . &4 and,thus, enabled us to give a

different proof}aﬁiﬂ (44),
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§ 5 . Characterization Theorems for (Weak) Atomic Compactness

. Fgt)
of a Relational System 0/ Tnvolving |A |

The two main results in this section are due to
J. Mycielski (32) and W. Taylor & G. Fuhrken (11'()5 respectively.
For the second theorem, however, we give a new sioof which ‘
allows us to bypass a few.mode1~theoretic prerequisites that
are implicit in the proof of Taylor and Fuhrken.
Before doing so we derive a cute andruseful auxiliary theoren
of J. Mycielski and C. Ryll-Nardzewski, thus following the
path of (32).

A
Theorem .5 .1: If O/ is a relational system and 47 is an

infinite cardinal number then the following conditions are

‘equivalent: |

(1) 67 is - atomic compact

(2) Let J Q’LTKA) ,-ti:fff4ﬂ/be.such that all formulas in 2
have exactly one and the same free variable Xq and are of

-~ A

the form %(}xi) ..... (:]xm) ( @i Al A C:Prr'l) where mq.,njc N
% j 3 ~
and the dﬁi are atomic formulas with constants in A.
. c s . . . ) 7"'. s o
ir AZ is finitely satisfiable in 07 then <~ 1s satisfiable
in 67
The proof goes along the following lines (detalls see ()2yh
o (1) implies (2): If (1) holds then we switch from <.
to avsystem 2 ' of atomic formulas with variables in A by
replacing the bound variables in each ng by new ones such that
none of these new variables appears simultaneously in dﬂ dnd(:[fk
unlesu i =k . If we denote the new formulas cowrespondlng to
J by Q)]‘ then 2-— :{QQQ'; CP% appears in the matrix of g
formula in Z }is a system of atomic formulas finitely satisfiable
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in 67 . Thus, the proof is accomplished.

(2) dimplies (1): 1If 2 is a:system of atomic formulas with
wr /. is finitely satisfiable
2 . . i 1'1 e

in 67 and AZ. involves the varilables xg,,df<;<, then&au—

I

constants in A such that A

thors construct, by transfinite induction on Tz« , elements

ax(i?) (y<t ) such that (1) the system ;Z; that results
from replacing xy by aY(Zf),y<?3 is still finitely satisfiable

il

L4 ]:/ [ 4 R . B s . [l
.1n C/ and (2) 7 1€ ¢ 5 dimplies ag(Ll) ax(cz) for y< T,.

LEswesheseededtendmasasten The case 7T

o~ will yield
a finitely satisfiable system 4le in which there are no more

<
§e X ,

variables. left: thus, (aX(CX)) is a solution_of_Zj .

_Remark " .57.2: In theorem 4.1 we can drop the cardinal number. ##

in both conditions.
D e . /> .
Theorem .J7.3: For every relational system i the following

conditions afe equivalent:

(1) 7 is atomic compact.

(2) 07 is [A] - atomic compact.

proof: Clearly, (1) implies (2). To show the converse take a
system 2. of formﬁlas'as in theorem .5 .1. (2) withoutfzwéwg not
satisfiable in C? . This means that for every aOeA there exists
G(aO)G‘Z_SuCh that 6(ao) is not satisfiable after substitution
of x4 by ay- Then _ZT(A ) = {Glao);aoe A} is a subsystem

of J_  such that {ZL(A;)fféf/1(and 2 (A) is not satisfiable
in 67 . In view of = 5.1 we obtain that either J_ is not
finitely satisfiable or zi_is satisfiable in CW . In short,

G% is atomic compact.

While reflecting upon the theorem one may recall example 3 in

§‘O in which we showed that the lattice d(: (L; vV, A ,0,1)

with L

{ao, Bqseenenn 5850 e e e j U { 0,1 j s ai\/aj = 1,

O for i # jJ and the nullary operations 0,1 is not
— 37—
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weakly equationally compact. We did this by displaying a

class ( not even a set ) of suitable systems of equations

whose very characteristic was the fact that it contained

systems of equations with an arbitrary high number of equations.
By theorer 5.3 , however, we ought to be able to show(,

the non-equational compactness of a(ﬂ by.displaying a suitable
system of equations with constants in L of cardinality fg 0°

And, indeed, the system Z__ :{aiVX =1 ;1= 0,1,... } 1%

t
O
Atd
N
']

{ a;AX = 03 P2 0,1,0000n. {is finitely solvable but not

solvable.

However, while our systems of equations in example 3 of
- ;gfo only involved the constants 0,1, al_ involves,4

in addition, all the a; 12 0,1,2,00c0enn So /2. no more

proves the fact that cy(: is not weakly equationally compact.
And this is not surprising in view of the fact that <>(
is indeed ‘&)O - weakly equationally compact as J. Mycielski

mentioned in (31) without procf. However, an inductive proof
can be easily deviged as in 5,1.
Example 5.4: The lattice . = (Lyv, A, O, 1 ) with the

two nullary operations 0,1 that is defined by L= {ao,al,..,an,.J

C/{ O,lg and afyaj = 1, aimaj = 0 for i # j is not weakly

equationally compact, but it is %QO - weakly equationally compact.




In the last example we got acquainted with'an
%9.0 - weakly equationally compact universal algebra that
was not weakiy equationally compact. This,therefore, makes an
immediate géneralization of theoren fg§ﬂ3 to the weakly atomic
case impossible. The beét one can hope for is then a theorem |
that claims'that weak atomic compactness is implied by
!Al*—weak atomic compactness in case of a relational system 67 .

This result was conjectured by J. Mycielski-in (31) and proved

-

for the first time by W. Taylor and G. Fuhrken in (14).
As mentioned before, we have found a new proof that

we want to include in this report. : -

Theorem &..5: For every relational system 6? the following

conditions are equivalent:
(1)467 is weakly atomic compact.
(2) 0 is lA{+— weakly atomic compact.

Before we proceed to the proof we use Mycielski's last
theorem in order to'gut down the number'bf_ultrapowers we have
to use in order to test equational or atomic compactness.

With this we do what we desired to do at the end of section 2.
The only ultrapower that really matters "énﬁers in tHe' proof
of 1.1 and is studied in (13). e define it.in our context:

.—39._




Definition 37.6: If 67:18 a relational system and »#» an

; /¢ i .
infinite cardinal number then the ultrapower Lﬁ/(ﬂ&) of 47 is

defined as follows:

N&

Let J be a set of cardinality ## and let I = be the ideal

of all finite subsets of J. For arbitrary xe¢ J define

IX :f T; TeI, xe T} . Then {ngxe Ji generates a filter Dy
of subsets of I which has the finite intersection property.

If D is an arbitrary ultrafilter of subsets of I containing D1 |
(and such exist, as we know!) Frhen &7(4%0 is defined to

be CW’% . (Obviously, 67(4%) depends on the choice of D.

However, for our needs it fully suffices if we fix a D for

every 7# , as we agree to have dorie.)

- 0 :
Theorem ~ 4.7: Let 57,&&? be relational systems, S< A,B:

If Qé/contains an S-retract of the ultrapower ;Zf (#) for
. .. . prre ) . ) (,«7,
some 1nfinite cardinal numberpand some extension Az'of ¢ then
J » >
02; is (S,CW,@w)— atomic compact.
proof: If 2 is a system of atomic formulas with constants
in S such that lZﬁ Satand D is finitely satisfiable in a7
then let J = J in definition 5.6 of < (#). The remainder

[ o

follows as in the prodf of 1.1. - {(Sce

jay)

1so (13), (32) and(l4)).

Corollary 5.8: The relational system C? is atomic compact

if and only if CW is retract of 67 (lat).

proof: This follows in view of F.3 and 5.7.

i~

The "two ways statement'" in 5.8, in connection with 5.7, has

to be considered with caution. To illustrate this point let us

look at the next example.

3




Example . 5.9: 1In example 5.4 we dealt with a lattice L

that was %)O - weakly équationally compact. Does this imply
(in the spirit of 5.8, strengthening .5.7) that A contains
a homomorphic image of a( (1Lt) 2 Obviously not! Foro((fL[)

is both an elementary extension of 0( and, as we know from

(13) °, of cardinality 4?’=laﬁl:

S CILy)

- 9 3 1o - A
Here Y1 # ¥o implies d5iv d?{.2 1
and dgl/\ Qgg = 0.
A homomorphism g:o(( Ll ) —==m=2 > o must take O to 0, 1 to'1
and different dg's to different a,'s ...... and an obvious

cardinality contradiction arises.

We can now return to our proof of .5.5: Our proof is based on

ideas of the last section which, as a matter of fact, lend
themselves to a nice application of Mycilelski's & theorem,
(For the original praof of Fuhrken and Taylor see (11) 2D
ey - 5.5.¥ So let v be'an §A[ vﬁi&?mlc compact system.
(7:42 {@; Gecldly; 0/© @g‘”"ﬁj has, bﬂj/z Zorn's lemma, a
maximal element CD(D’ Then 57/690 Q“ééwaéyand every
homomorphism g: 07/690 -mf-€> C? is monic. Since
speca(fﬁ/ﬁgo):has exactly iA/GOSé A} variables we can
(by assumption on ¢/ and remark 2.2 ) satisfy Specw(CW/éé)
in 67 and have, therefore, an embedding g: 67/56—~—é 670
If 67/66 g is not yet a subsystem of C? then the reason for

this can only be that R acts a little poorly on_{%é%. So we

correct this by agreeing that Z is the enriched szébg, i.e.

-1 -




we define the effect of the relations rre R on A /630g
Q

b L _ ' mc_g\ 0/ .. e . .
y rg = (A/@Og) F\rg such as to make. it indeed a subsystem.

This leads at the worst ( or best ? ) to an enrichment of

a7 /C?Og by a few valid relationships.

‘As in theorem * . 4.4 we prove that xi; has only endomorphisms
fhat are already automorphisms ( the crucial argument there
goes still through,since we can stop at Zkvﬁiﬁ1lcyﬁz {A{‘r
~and get a monomorphism r: 5:———£>67 due to the fact that

J
) S+ ) . s
spec(lG}) involves |A| variables and is therefore satisfiable

in '67 ).

‘ . . v,

If we can find a retmction h: £ (IC!) ———%,é’ then, by
corollary ‘.518, AC is atomic compact and, hence, by
lemma . 4.1.(1), 67 is weakly atomic compact and we are through.
However, spec( 1:(!0\)) is a system of ateomic formulas with
fC[’C" variables and is, hence, satisfiable in O/ since

, Cl -+ . ' -+ .

| C| <{Al". Thus, we have a homomorphism h': . ({Cl) ~---> é%
If p is the canonical projection from ¢l onto 6?/6% then

h'ep : ij(fCI) ————— >Z: ig a homomorphism which, restricted

to li, is an automorphism. Thus, there is a retraction

h: L (1ct) TS

M

, and we are through.




§ € . Connections To Topclogy.

Although the uée of the word ﬁcompactness” in the preceding
definitions is sufficiently justified by the very definitions,
there is a much stronger reason coming_from topokgy as was
observed by J. Mycielski in (31).

Let us reca11>that in our dealings.with algebraic structures
v‘such as semigroups or groups or rings or modules we‘are not

just interested in arbitrary topologies that we might be able

to inflict on the carrier seté of those algebras. In general,

we want the fundamental operations f, to be continﬁous functions
fx; Ang——«%>A if Anfis endowed with the Tychonoff product topology
and we want to be able to have "small enough" neighborhoods

td separate points, i.e. we insist on Hausdorff topologies.

This is summed up in the next definition.

Definition £.1: If 5762K(T’) is an algebra then (CV,;)

G . . , o
shortly 67 s 18 a topological algebra of type = 1if *z 1s
a Hausdorff topology on A which makes the operations continuous.

( 67, ? ) is a topologically compact algebra 1if the topology

is coﬁpact, i.e. every cover of A with open subsets of A has
a finite subcover.
If (7=(A;F,R) is a relational system-then we call (C?,g—) a

topological relational system if ((A;F),7) is a topological

algebra and the relations induced by R are closed subsets of

the respective powers of A.




~This is all we need to derive Mycielski's fundamental observation..

Theorem & .2 : Every retractﬂof a topologically compact

universal algebra is equationally cbmpaot.

proof: Since retracts of equationally compact algebras are
evidently again equationally dompact, we may assume that-67
itself is topologically compact.

Let JZ be a non- empty set of polynocmial equations with ‘
coﬁstants in A which is finitely solvable. We well-order

—12 d’" s

denote their ( non-empty) solution sets in 1N by 80581,.,.,8

respectively. Since A is endowed with a compact topology,

the finite subsystems:/ 0> 2 ...e,Z veee s ye<f3, OF /. and

Tychonoff's theorem assures that AN carries a compact topdlogyt

. N 1 t (g)
Since SV = ng)..,.nf% 3
-

(3
‘the solution sets of the different single equations in ., and

e
Do)

where S? sY =l ,t(y), are

since the sets S: are closed, we conclude that each S, 1is a

- W 3
closed set and the family {86;54(3{ has obviously the finite

;

2

intersection property. Thus, since INg is,compaot,/\(Sgsxgﬁ) £ 0.
U

Since the latter set is the solution set of the whole system 2_

we are done.

o




In exactly the same way one can, of course, prove the same
result for relational systems. However, we will care less and

it is net true that o
less since, unfortunately,Aan algebra (7 is rzgs topological
if and only if the associated relational system 67rel is. Thus,
one has to be very careful every time one is passing from the
one to the other and tries to carry specific results along.
However, we mention the more general form of this fundamental

observation in a separate remark:

Remark = .%: Theorem §.2 remains valid if we replace the

universal algebra <j7by a relatidnal system.
Or, even more generally:

Remark . & .4: Every S-retract of a topologically compact

relational system (7 that is a subsystem of 7 is

(8,67)_ atomic compact.

A strong impetus for investigations concerning the in?erplay
between the algebraic properties and the topclogical behaviour

in case of atomic compact relational systems, respectively
equationally compact universal algebras, arose from.J. Mycielski's
question whether the converse .of theorem =~ &.2 ( respectively,
remark 4.% ) holds true. For a long.time the answer turned

out to be positive in sgpecific classes of aigebras:

Unary algebras (A;f), Boolean algebras, Abelian groups,
vectorspaces or, more generally, R-modules, commutative ‘
Noetherian rings with 1 etec. It was W. Taylor who via an

(as it strikes us) very cunning counterexample defeated a
positivé answer to Mycielski's question in the general setting ‘

of universal algebras ( see ( 39 ) ). We will present this

_45_




counterexample in the next 5£¢fieh. It remains, however,

of independent interest to find an answer to Mycilelski's
guestion in any given eqguational class of algebras whose
equationally compact members are accessible to characterization.
We will refer to this problem whenever it arises as Mycielski's
problem,

Definition . 4.5: Given a class K of universal algebras of

a given type 7 5 Mycielski's problem consists of the task

to decide whether or not every equationally compact algebra in X

is retract of a topologically compact algebra in K (or, at least

in K(7)).

For the time being, there is no fully satisfactory connection

found between topological compactness and equational compactness

of universal algebras. Possibly algebras that are limit spaces
could provide a 1link of some ( possibly weaker ) sort. However,

a systematic investigation of such "convergence algebras" is

still to be carried out. W. Taylor's first attempt in that
direction is quite dominated by his interest in relational
.structures ( see (40) ) as one of his results clearly demonstrates
In"attempting to answer Mycielski's problem for the class of
semilattices ( in which the equationally compact ones were
characterized by G. Gritzer and H. Lakser ) his methods only

allow him to conclude that, if a( is an eéuationally compact
Semilattice, then gfrel is indeed retract of a topologically !
compact relational system. And ffom there it seems tc be a

long way to a final decision of Mycielski's problem for

semllattices




The fact that, to this day, there is no fully satisfactory
interplay between equatidnal compactness and topological
compactness in the general setting of universal algebras is
not altered By the fact that W. Taylor (39) turned

theorem .5 .1, respectively the Succ§ﬁing remark, into a
topological language. Let us look at thaﬁ déscription:

Remark 6.6: Let Cy'be a relational system and let E be the

class of  formulas of the type QRXO)4JX1)...(Jxm)((?1A...a@n)

m,ne¢ N, where all d?i are atomic formulas with constants in A and
every formula €fi has exactly the one free variable Xy

Then may .?' denote the topology on A which has the subbase of
closed sets {{ ><e.A;67'=9 @2 (x) '} ;d}é‘E?}.

Then GV is atomic compact if and only if ?l is a compact
topology.

The proof, of. course, consists of re-reading ~ 5.1 or .5 .2.

The definite shortcoming ( for algebraic purposes ), however,

is the fact that 2 is neither Hausdorff nor does it necessarily
make the fundamental operations continuoué if we are dealing

with algebras. |

The fact that atomic compactness or equaticnal compactness

are characteristics of a relational system that allow an algebraic
treatment of basically topological properties is, however, »
illuminated by both the frequent pcsitive answer to Mycilelski's
problem .. the last remark and, for that matter, by the very
definitibn of the concepts "atomic compactness" or

"equational compactness". To end this discussion with a concrete

—U?—




example we refer to the following extension of a lemma of
Numakura due to A. Hulanicki and B. Weglorz (see (45)).

Theorem 6.7: Every equationally compact semigroup with

cancellation law is a group.

The proof is published in detall in (45). A rough indication of
the method is the foliowing: One provés the result first for
Abelian semigroups using the system Zf. = fx = 8 Xg3 sc.Sf .
The solvability of 2 implies the existenée of 1 and inverses.
For arbitrary semigroups 07 one uses this result together

with the fact that one can cover (e} by Abelian subsemigroups
to derive the-result.

" Corollary 6.8: (Lemma of Numakura): Every topologically compact

semigroup with cancellation law is a group.

Remark 6.9: The only equationally compact skewfields are the

finite fields.

TO'prove this one can use the result that every ultrapower
éjg(,%w) of the skewfield ETQ is agaiﬁ a skewfield. Thus, all
retractions g:'zﬂi4%) ————3 gQ are embeddings which yields a
cardinality contradiction unless Ejg is finite. Mycielski; who
Pbserved this fact first, has given a different reason in (31):
he considers the system {‘X=(a—xa) = 13 aszi} which is finitely
solvable but not solvable in infinite fields.

An interesting situation arises in the case of equationally
compact integral domains. According to 6.7 they ought to be
skewfields, hence finite........ if the multiplicative semigroup
of ﬁon—zero elements was eguationally compact all by itself.

So. non-finiteness ought to give rise to some sort of a neighbor-

hoodsystem of (0) which might lead to a usable characterization.

Every integral domain is equationally compact with respect to

'systems of equations with one variable (as D. Haley observed).
| g |




§ 7 + Equational Compactness and Atomic Compactness in

Specific Relational Systems.

In the various subsections of this section we will investigate
our concepts in algebraic structures of specilal interest.

(1) Unary algebras.

The results concerning mono-unary algebras are due to this
suthor (see (49)). The cited paper contains a characterization
of equationally compact unary algebras (A3;f) of type (1)_and an

affirmative answer to Mycielski's problem in that case.

pa . . .
We recall: (/ is connected if for any two a,b &€ A there exist

n,m¢ N, such that f(a) = f™(b). A few new concepts facilitate

0
our task:

_— st
DefinitiOnﬁ_”?.l: I {f = (A;f) is a mono-unary algebra then

ae¢ A is called a stagnant element if f(a) = a. st((zlvis the

set of all stagnant elements in A.If ne N and ae¢ A then

the n-periphery n,(a) is the set of all elements be& A such
T

that £™(b) = a and fn~1(b) # a. be A is called a minimal element

if it is not in the image of f.
If a ¢ A satisfies fm(a)# a for all me N and ncy(a) contains

.. . . . i/
a minimal element then a is saild to have order n 1in QV.‘L&f

gcy(a) denote the set of all orders of an element a.
We add to oa,(a) the symbol o2 if ™(a) # a for all meN
and there exists an infinite sequence aO,ai, ...... ,am;...

).

Example 7 .2: The algebra Ain = (Cn;f) with n elements ,

such that a = ag, a; # aj for i # jJ and a, = f(a

1 m+1

Cn = fao, ..... B },whose indices are determined modulo n

and whose operétion fis defined by f(ak) = is called

ak'f 1

the cyclic algebra with n elements. It has no -stagnant elements

unless n = 1. None of its elements has an order (be it finite

or infinite).




~ . e oy o . .
Example . /.3: The algebra C} = (J;f) whose carrier set 1s,

say, the set of integers and whose operation f is defined by‘
f(n) = n+1 has neither stagnant nor minimal elements. Every
element has exactly infinite order.

We are now in a position to state the characterization theorem

for equationally compact unary.algebrasuév; (A;T). . -

. Theorem- - 7.4: The mono-unary algebra 47; (A;f) is equationally

compact if and only if the following conditions hold:

(1) Every element‘whose finite orders approach infinity is of
infinite order.v

(2) 627 contains either some subalgebra -<Cn (ne N) or the

. subalgebra i?
R g

In order to attack the naturally next gquestion, namely

Mycielski's problem in the class K((1)), we recall that the
v A cemp pote I] 1'\’.&) “ f'{ﬁ 7
Stone-Cech compactification MHA of a ~ | /4 g topological

Y

Hausdorff space A is the (up to homeomorphism unique) compact
Hausdorff space that contains A as a dense subspace and to
which every continuous mapping from A into a compacf
Hausdorff space B can be continuously extended. So if

7 - (A;f) is a unary algebra then we can endow A with the
discrete topology uhder which f becomes a continuous mapping.
If we now extend f: A ---> A to f:/@A ——;6/3A then

/367 = (A;f) becomes a unary algebra.
/

Definition 725:/367, as just defined, is the

v &
Stone-Cech compactification of the mono-unary algebra Cﬁ; (A,f).

(2367 can, of course, be defined for arbitrary, not necessarily
mono-unary, unary algebras in exactly the same fashion).
Thus, surely every unary algebra can be embedded in a

v
topologically compact unary algebra, namely its Stone-Cech compac-

tification.




The fact that equationally compact mono-unary algebras are
even retracts of their Stone-Cech compactification depends
essentially on the following lemma:

Lemma 7.6: If Cﬁr = (A;f) is a mono-unary algebra and Ac'm is

a'subalgebra of ﬁﬂﬁ7 then there exists a subalgebra 4& n

of 67 such that n divides m.

Theorem 7.7: If 6%7: (Ay;f) is an equationally compact mono-unary

algebra then it is retract of its Stone—gech compactification.
Here a remark seems in order: In the proof of the above

results we have referred to (35) in which paper a theorem is

stated which claims certaln Stone—éech compéctifications to

be elementary extensions of the underlying unary algebras.

Since the afguments used there seem Questionable, we want to

point out that it is quite implicit in (49) and (51) that

/36% is always a pure extension of 07 and that is all we need

for our purpose. Whether or not /gﬁfis an elementary extension

of 6? in case 07 has no cyclic éubalgebras (as is indeed claimed

in (35))seems to us an open question for. the time being.

In general, there are no suitable criteria to decide whether or

not a given mono-unary algebra is an elementary extension of

a given mono-unary algebra 67 . It would be interesting to

find such.

There is not much we know about equatidnally compact unary algebras

"with more than one oberation. The fact that W. Taylor defeated

"a positive answer to Mycielski's problem by an algebra with oﬁly

two unary operations indicates how quickly things get out of hand

in that situation. It also underlines that our last theorem has

the stfongest possible setting. There is an occasional isolated

remark as,e.g., the following due to J. Mycielsﬁé;

Remark 7.8: ((31)) Let CW = (A;{g;gf G&l) be an algebra such that

G is a group of permutations of A such that the family@ﬁr of fixed
point - sets Fg:{X€A3 g(x)=x; gcG, has the following preperty:

~§7 —




"Every subfamily of Q?ﬁg which satisfies the finite intersection
‘property has a non-empty intersection.Then é& is equationally
compact.
For a moment one might woﬁder whether a unary algebra (A;F)rof
type®=(1,1,1,1,.c.... ) is equationally compact if and only if
every mono-unary algebra (A;p), pé P(l)(t), is equationally
~compact. This conjecture, however, is quickly defeated by the

following final example:

Example 7.9 : Let (7= (A;f,g) be of type (1,1) with

|
and g by g(z) = z+1, g(an) = a.. Then theorem "7.& implies ‘

A =7 U{an;ne N . We define f by £(z) = z+1, f(an) = a4

4
immediately that (A;p) is equationally compact for all pe P(‘%(l,lﬁ.
However, 07 is not'equationalgfoompact as the following system-
of eqguations shows:

{X = f(X1>9 Xi = f(X2)5 °°°°°°°°° 2 X = f(Xrl-fj.)’ ..... ; n<("—loj U

X g(x)i . 07is not even weakly equationally compact!

It is clear from (at the latest) this example that eventual
criteria for equational compactness have to take into account
that subalgebras of an equationally compact algebra that

are distinguishable by a set of identities need again to be

equationally compact.

—_52 -



(2) W. Taylor's Counterexample to a Positive Answer to

Mycielski's Problem.(see (39).

As mentioned before , W. Taylor has cocnstructed an algebra

(Asf fz) of type (1,1) which is equationally compact but not

1>
a retract of any topologically compact algebra. The meat of the
matter is a highly‘interesting graphwtheorefical construction
via which Taylor settles in the negative Mycielski's problem

in case of relational systems. This relational system ( a graph)
then serves as basis for the definition of an algebra of type‘
(1,1) which is equationally compact but not a reﬂract of a
topologically compact algebra. As far as the algebra ié con-
cerned, W. Taylor did so far not publish the resulting example
but rather one of type (2) simiiarly constructed. As W. Taylor
has pointed out himself,.the published example does not do what
it 1s supposed to do. His unpublished example of type (1,1),
however, is correct.

Definition 7.10: A relational structure é7 = {(A;r) of tyvpe (2)

a

is called a graph if r is a symmetric and anti-reflexive

binary relation. Let k 22: A circuit of‘length k is a k-tuple of

mutually different elements of A such that any two successive ones

0
4

first entry. If % is a cardinal number then a colouring of 67in

~are a pair in r

o

4y _colours is a map c: A ---3> C such that (C| = % and (x,y)e r

5 3
implies xc # yc. The chromatic number tK (é/) of the graph CV

is defined as the least cardinal number -+ such that a colouring

of Oy in #2 colcurs exists, Cﬁ = (A _;r) 1s the
. n . n?
complete graph of n vertices iflAnI = n and any two different

elements of An are in relation under r. Finally: A subset S of A

is called independent in-the graph Cy’provided (s,t) & réy for

any two elements s,t € 3.

_53_

as_is the pair consisting of the last and the




W. Taylor constructed an atomic compact graph (G;r) which has
infinite chromatic number. Since graphs that are retracts of
topologically compact relational systems have always finite
chromatic number, this puts at our disposal the desired counter-
example.

Theorem 7.11: If the graph 6&:'(A;r) is retract of the topologicall

compact graph ( or even relafional system ) QZ§= (B;r) then
(<,

Theorem 7.12: CIf 27 is a finite graph with A (éy n

which has no odd circults of length = n for every n¢N then
/= 5/ u/(; b'(?IV’ ............ O is an atomic compact

graph with /& (&/) = fc))

We sketch the proof of this crucial observation:

EEQQEL Of course, all we need to show is atomic compactnesé.
So let Eg"be an.elementary extension of g?' snd let us
construct a retraction g: g—~—e~gf.
The following sentence with constants in G is‘then true in %g
if and only#it is t?ue in g?

T, . = Wolexer — Geggv ... vieg )
where G, :{gl,,...,gmf, ge G and ne N.

In other words: No element in ENG is related to ahy element

in G: é O/u’a\(%%mere Z 0/- (ExGyr). : . _

Thus, to construct a retraction g: ‘?____ g?we need simply to

construct a homomorphism h: g\g? ~~~~~ >.§7.
This, however,'ié simple. For é? contains a fixed finite
number tk of odd circuits for any given length 2k+1 (ke N).
This fact can be pinned down by a first.order sentence.

Thus , 2\\2? contains no circuits of odd length,i.e. x‘(g\§7)é 2
Then, ﬁowever, we simply map ENG via h on an edge of.g? énd

we are done.
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The last theorem reduces the announced task to finding a graph
g?fn with ’% (gy )= n and without circuits of odd length £

This is achieved (up to ilnltenebs of g/ ) with the next

remark whose proof relies on elemcniary Euclidean geometry and

measure theory,
Remark 7.1%: Let né N and e € R such that 2n < c —. ¢

; —57
/e - e?

7 R A

Then the graph (g?(e,k) = (G(e,k);r) has no circuits of odd

length £ 2n + 1 for all keN if G(e,k) is the unit disc
in R¥ ana (%,y)€ r holds if and only if the (usual Euclidean)
distance d(x,y) is larger than 2~-e. Apart from that we can find,

for ever te¢N, some k,€ N such that 7/(§f(e k))=t for all x>k

t
This remark surely prov1des us with graphs é?/ without

tr

circuits of odd length £ n and chromatic number 2 n.

However, the graphs we obtain are not finite. This last obstacle
we surmount with a theorem of De Bruijn and Erdds for which

W. Taylor has given a new and interesting proof. This latter
proof we can still abbreviate by rewriting it in-the language

of spectra ( as D. Haleyv observed):

Theorem  7.14: (De Bruijn & Erdds): A graph 57 can be coloured

in k colours (k€ N) if and only if every finite subgraph can be
~coloured in k colours:s

proof (W. Taylor; slightly modified by D. Haley): If we can
construct a graph homomorphism g: C? ————— > 6%% then we are
obviously done. Since (due to our hypothesis) épec@(C?)

finitely solvable in (jjk it 1s solvable in C&} . and we are done.

Putting together the prec@éding pieces leads to the next

result:

Theorem 7.15: There exists an atomic compact graph which is

" not retract of any topologically compact relational system.
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13*2) Of typ(’ (1 1)

Theorem 7.16: There is an algebra C?w: (Ayf
which is.équationally compact bﬁt not & retract of any topologically
compact universal algebra.

The necessary construction ié’as follows: We take the graph that

led to theorem 7.15: For every né& N, we take a finite graph %/

with (‘/ )2 and wilthout c1rcu1t5 of odd 1ength‘~n Then that
gr‘aphwas (; g/ %u[?»’.“-.u' ....... c‘}éf/nu.,..ﬁ....
We didentify once more r with r and have r< GiG Let us fake
two new elements e, e, and A = rCrGC{el,e2} . We then define
fl and f2 as follows: .

§ g if x = (g,h)er Jh if x = (g,h)er
£(x) = f,(x) =

e, otherwise

Then €%I= (A;fl,fg) is the eguationally compact algebra which

Lel otherwise

is not a retract of any topologically compact algebra.
We might ask whether, at least, every equationally compact alge
bra is such that its associated relational system is retract of
of a topologically compact relational system . The algebra of typé
(1;1) just constructed defeats a positive answer to that guestion
~as well. This wés observed and proved by D. Haley-in his
Master's thesis,and we find this a fitting place to present it
(see (19)). | ‘

Remark 7.17: (Taylor's) bi-unary algebra just constructed is such

that its assoclated relational system is not the retract of any

topoiogically compact relational systemn.

proof: Let ,/~ (AT f2) be the algebra of theorem~}§rﬁ_v7f4g

15
Suppose that OZ; (B;rl,rg) is a topologically compact

relational structure of type (2,2) that retracts upon (jyrel‘

. .‘A . 3 -
We define s and s' as j@{(@yﬁg "4 8¢ AxA and s'<€ BxB and

a .

(x,y) € s 1if and only if (z,x)¢ r,” and (z,y)é»r2 for some zeh,

o

(x,y) € s' if and only if (z,x_)é.r1

e
and (z,y)e€ ré’for some zelB.

1
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‘Since s defines a graph structure on A we derive a contradiction

sEeROSSee e aeFeEaRee by showing that (Aj;s) is a retract

S
of (B3s') and (B;s') is a topologically compact relational
system . The same mapping that retracts (B;ri,rg) onto

7
(A;rl,rz) = 6Vrel turns out.to be a retraction of (Bis')

onto.(A;s). It remains therefore to be checked that &'is closed
in B2:

¢
L

Let W = z(a,b,a,c); a,b,ceB q,

£B

N

W is closed in»Bu 

o 4
because the topology on B is Hausdorff. Moreover, 207 x r;f
}ﬁ

fé and rgo are
. o) A VAR
closed in B°. Thus, U = WK%%£€< r;') is closed in Bq. If O is

2 defined by (a,b,c,d)T = (b,d)

. . I ' .
is closed in B because, by assumption, r

the projection from Bu onto B
then s' is the image of U under W . Thus, £'is closed because

T is a closed map.

We conclude this section .with posing a problem whose solution
we are very interested in:

If an algebra Cﬁ’: (A;F) is such that ﬁhe associated relational
system CWrel is refract of a topologically compact relational

system, is then 6? retract of a topologically compact algebra ?

(3) Semilattices.

Hardly anything is known about equationally compact lattices.

The closes’ result so far is the characterization of equationally

o

compact semilattices due to G. Gritzer and H. Lakser (see (18)).

Theorem 7.18: The semilattice 'Er’= (8; V') 1s equationally compact

if and only if the following three conditions are satisfied:

(1) Every subset T< S has a least upper bound \/(t;terT) =\'T,

(2) Every chain C& S has a greatest lower bound/&(c;c&-c):f\c.

(3) If a¢ S and C is a chain in & then a~J(/\C) =/\(avc;c<30),
It 1s easy to establish that the conditions are necessary.

The sufficiency was established by G. Gritzer and H. Lakser via

the following two lemmas:
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Lemma 7.19: Let 8 VX. V vevevenn VX, S T A vV X,
LO n-1 JO : Jm—l

be an equation and K a set of solutions which is downward

directed (in the product order). Then t = /\(k;k ¢K) is also

" Lemma 7.20: Let p{x) = sv’x,iL V e neone VX, 5.

~0 n-1 .
a(x) = r“/xj Vieoaonn »/Xj and let K be an arbitrary set of
0 : m-1 : )
solutions of the equation p(x) = g(x). Then t = VQk;k ¢K) is a

a solution of that equation.
\

solution for p(x) = q(x).

We found a new proof based ond different ldea which we want to :
include at this rlacé : ‘ '

We are concerned with proving that (1),(2),(3) imply the

equational compactness of the semilattice g%/. So let J

be a complete semilattice in which chains have always greatest
lower bounds and, if C is such a cbain,(/\C%ra :/\(C\/a;ceec).
Thus, if C,D are downward directed sets then (AC)v (/D) =
/\(C\/d;(c,dk;CxD) and the latter greatest lower bound exists.

Let E? be an elementary extension of ¢ and e€ EN S. Then

the Set'US(e) of upper bounds of e that

are also in S is not empty since 16US(e).

Let US(e) = {di;i eI S, choose an arbitrary




finite subset I' of I and consider the finite set of

polynomial equations with constants in §, 2 (I'):{xl,vdi:di;iél'f.

Since e¢ E solves these equations there is an element se S which

solves 2~(I'). Since & is complete there is even a greatest lower

bound of i di;ie Ifj in o » Say ey,. e;,, however, is ditself

in US(e), for the substitution XZ€yysYT€q,, Vi o= di,iGiI',

. A L/ . .
satisfies the formula er)(xfgyijlel‘,-a»xrsy) in afand,

hence, in Eé . In other words: The sentence with constants in 3,

; c ,
(fx)(xé;di,l cI', — Xé:el,), holds in éé 3 hence, eLer,.

Surely I'£€ I'' dmplies e.,> e ; hence, U,(e) is downward
IY _IYY A 3 S

—

directed and has, therefore, avgreatest lower bound /\Us(e) in d
Since, for ee¢ S, we surely have /KUS(e) = e we have the desired
retraction g: Zf»——éiafby eg =: /\US(e) prbvided the latter
mapping is indeed a homomorphism. That property of g, however,
is easily checked:

Let e,se, € E. Then US(ei) 2 US(elyfeg), i=1,2, and, thus,
(‘;\US<81)>V_(/\US<62)) é’/‘\US(e1v62), i.e. €, 8 v’eggs(elveg)g-

Vice versa: e Eve,g = (/\Us(el))v‘(/\US(ez)) = (by hypothesis)
/\(C1VC2; cse US(ei)). If (01562>6Ué(ei)XUS(62) then

c v.c, ¢ Us(elyﬁeg).Thus, /\Us(elveg)g(f\US(el))v (/\Us(eg>)’

d.e. g(elv’ee)«é g(el)gfg(eg).
s
Thus, (elee?)g = ejgve,s. J is therefore equationally compact.
The problem of Mycielski is open to this day in the

class of semilattices. W. Taylor's result (see {(40)) that every
equationally compact semilattice is retract of a topologically

compact relational system does not answer the real question. It

would)if we had an answer to the problem we posed at the end of t

last section.
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Corollary 7.21: Ifcﬁj = (Ly¥ ,A) is an equationally compact

lattice then

'(1);%f is complete, (2) If D& L is a downward (upward) directed
set then>av’(AD) = /\(avd;ch) (a/i(\!D) = MQaAd;ch)).

(3) If a>»b are two elements in L and {Ci;ié If 1is a set of
elements in L such tﬁat_i £ j implies CiVCj = a, ci’\C  = b, then |
RIS |

Tﬁe fact that these conditions are not sufficlent is, e.g., seen
by the following example:

Example 7.22 (D. Kelly)

This lattice is not equatio-
nally compact as the following
system of equations shows:

Sy o= 2 .= g
ixi\ XJ ZlJ\}'{X1/4XJ ZO{

' , L o f .
{zi\’bi = u13 J (z@/\ai = ZO;

Ty where i,je N, 1 # j.
The briginal proof of 7.18 in (18) brings to light the truth of
the following remark:

Remark 7.2%: A semilattice is equationally compact if and only

if every system of polyncmial equations in one variable with

~constants is solvable provided it is finitely solvable.

() Lattice-related structures.

If ﬂ.denotes the class of all lattices and oL ¢ [_
then c{f(f&) denotes the associated poset (L; €) and ;{fé

denotes the smallest lattice with smallest element O and

4

largeét element 1 which conftains ~ Ir ﬁ.(fz) denotes the

class of all posets g('(é;) then L(<)< Q)where O is the
class of all posets. Q“(é!) consists of the so-called

lattice-induced posets. Weglorz (U46) proved the following

basic results on these:
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Theorem /. 2%: If AL :'(L; vV, A) is a lattice then the‘following
stétements are equivalent: |

(l)ﬁyf (%) 1s atomic compact.

(Z)fo is completé.

(3) £ (£ ) is injective in Q}

(1) K (£) is injective in (L (<).

(5) ;%f (<) is an absolute retract in L (<).

(6) ¢<r( %) is an absolute retract in QD .

{ 5 Boolean Algebras.

Although we do not know much about lattices in generai,
the equational class of Boolean algebras §z§: (B; V,A, ' ,0,1)
is duite accessible to our qﬁestions. The following two theorems
contain the crucial information (see B. Weglorz (44)).

Theorem 7.25: IfLo= (Bjv,A, ' , 0, 1) is a Boolean algebra

then the following conditions are equivaient:l

(1) «g is complete.

(2) &@ is injective in the class jﬁ of all Boolean algebras.
(3)<2§ is an abéolute retrdct in the class ﬂ% of all Boolean<ﬂ@chﬁs

(MXcZ; is equationally compact.

Theorem 7.26: The Boolean algebra is eguaticnally compact if and -

only if it is retract of a topologically ccmpact Boolean algebra.
While the first of the two theorems follows quickly with the aig
of Sikorski's theorem stating that completeness and injectivity
coincide in Boolean algebras, the second uses, in addition, the
fact that every Boolean algebra can be embedded in a direct
product of 2-element lattices.
Both theorems were recently proved by different ( partly ring-
theoretical) methods in (1). A. Abian achieves in that paper even

a slight strenghtening of the first thepvewt:



Theorem 7.27(1)A Boolean algebra aﬁ = (Byv ,~,',0,1) is

complete if and only if every system of polynomial equations
in one unknown each of whose equaticns 1s of the form asax = b,
a,be B, is solvable provided every subsystem with two equations

has a solution.

As far as 1 kﬁow it was W. Taylor who observed first the
following remark (that follows easily from the fact that

finitely generated Boolean algebras are finite):

Remark 7.28: Every subalgebra of any given Boolean algebra is

a pure subalgebra.

{6). Abelian Groups.

In'general, equationally compact Zﬁ - modules are not yet.
characterized, and such a characterization will depend strongly
on JR . The situation is quite different if we confine our
attention to particular rings R and, more specifically, to
the interesting case of unital modules over the ring é; of
integers, alias Abelian groups. Both the algebraic structure
of equationally compact Abelian groups é?f: (Gy+ ,-,0) has
- been extensively studied and Mycielski's problem has been.'
answered affirmatively in the éiéss A of Abelian groups. The
relevant results are scattered through I. Kaplansky (24),

J. Los (27),(28), S. Balcerzyk (2) and S. Gacsalyi (15).

We will attempt in this section to give an account of the®
relevant vesults in A
‘Gacsalyi proved in (15) that pﬁre subgroups (in the groupn_
theoretical sense) and pure subsystems (in our sense) of Abelian

groups coincide. This yields immediately the following theorem:
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Theorem 7.29: An Abelian group is equationally compact if

and only if it is a direct summand of every extending Abelian
group in which it 1s pure.

An affirmative answer to Mycielski's problem in A was given in
(2) by S. Balcerzyk; His proof uses essentially the following
refinement of Birkhoff's subdirect representation theorem due to

J. +tos (27):

Theorem 7.30: 1If Afvn denotes the cyclic group with pn elements
(p = prime integer) znd 'HZ e 18 the Prifer group over the

prime number p then each Abglian gfoup 47 can be embedded in

a direet product ’fg of groups of the tjpe 92: oc (o = 1,2,,..;£}
such that (1) é? ie a pure subgroup of /zf and'(Q)ggyis a
subdirect product of the groups ﬂdicioccurring in./:?«.

. P :
Theorem 7.31: (2): An Abelian group-is equationally compact if

and only if it is & direct summand of & topologically compact
Abelian group.

In (2) Balcerzyk links up equationally compact Abelian groups
withf;gmgkportant_ﬁgggr class of Abelian groups: the
algebraically coﬁpact Abelian groups (in.the sense of (24),

1954-edition). Let us combine this result with the others and we

-obtain the following result:

Theorem (7. 32 1r gfis an Abelian group then the following

statements are equivalent:

(1) g? 1s equationally compact.

(2) & is direct summand of every extending Abelian group which
contains 27 as pure subgroup:

(3) g?is direct summand of some topologically compact Abelian
group.

(4) gZis elgebraicaliy compact.

(5) g% is the direct sum of a divisible Abelian group and an

Abelian group which is complete and Hausdorff in its. ?-—topologya
' . . T A b >



Of course, other characterizations have been given, but the
ones listed in T7.3%2 seem to us the most interesting ones.
There is one exception to this remark. J. %os (28') proved the

following theorem:

Theorem 7.3%%: An Abelian group is equationally compact if and

only if there is a generalized,A -limit for each ordinal A
Avgeneralized A - 1imit" is a linear mapping

Lim: GQA ————— % G which satisfies, in addition, the following laws:

(1) Lim((g)) = g and (2) Lim((xd)wd%g = Lih(Q&L%%R if there

» £

exists ,fzifi such that x_ = for all “‘:j

o - Yo
Since Los gave his proof when algebraic compactness rather than
equational compactness was emphasized, it appears to be a

worthwhile problem to attempt a generalization of the last theorem

to (at least, certain) classes of equationally compact X -modules.

For examples of equationally compact Abelian groups

we must refer to (24).

(7) ¥R - Modules and Rings.

Let 7K = (Ry+,-,0,+,1) be a ring with identity 1 and
2D2= (M;+,—,O,{fr;reR}) a unital left ZQ—module;_J..Mycielski
and C. Ryll-Nardzewski proved in (32) an interesting generalization

of a result of Balcerazyk (3):

Theorem 7.34: The 2?,—module ngis eQuationally compact if and oniy
if it is (\Rl+ffo)’— equationally compact. (Bélcerzyk had proved
this result for Abelian groups only).

Of-Coursés every ZQ—module can be embedded in an equétionally
compact one‘(namely, its injective hull). This reéult has heen
essentiaily improved by R.B. Warfield in (47) using Bohrmcompacti-
fications. Since this approaéh alloﬁs an affirmative answer to

Mycielski's problem, we will follow it up.

-6l



I §7 is an Abelian group then we recall the Bohr-compactifi-

J

where Zu 15 the circle group in the complex plane.

cation B(é?) of ( to be the Abelian group Hom(Hom(ﬁ?,RC)jzl)

Thereby we consider é? a discrete group as we do Hom(g?,{j).

g

Then Hom(Hom(Gy,’ ), L ) can, as set, be considered a closed
subgroup of quom(C/’I )‘which, by Tychonoff's theorem, is

a compact Hausdorff space. Then B(é?) is a compact Abelian

group which contains g?as dense subgroup ( if we identify gé€ G

with the "evaluation map" eg in B(é?) mapping X;to 51

To put 1t vie a universal property (see,e.g., (21) and (22)):

B(§7) is the topologically compact Abelian group which

(up to homecmorphism and isomorphism) is determined uniquely '

by the following two properties: (1) gyis a dense. subgroup of B%?):
(i1) 1£ D

is a topologically compact Abelian group and
;( J/~~-9(Z is a homomerphism then theve exists a (unique)continuou
extension K. B((?) - ﬁD such that the folloWing diagram
commutes:

A

B(&?)»\X_
G v 2D

g-

Ny . e o _ . A
ir Z& is an @ “module then we denote hy B(A) the Bohr-compacti-
fication of the Abelian group P underlying /. Since the
scalar multiplications fr:ﬂ7' -~--32 M are continuous we can

extend them to fi: B(/N') ---2 B(JN') and obtain thereby the

=3

compact R -module B(IM) containing J77 as dense submodule,

again called the Bohr-compactification of EL
Cag }

P

: 850 g g L I . y ’ ‘ .
‘Theorem /.44 {3\ If j/? 1s,anf:?r~module and B() its

Bohr-compactification then &n is a pure submodule of B(J#?)

(i.e. every finite system of linear equations with constants in M

is solvable in &ﬁ if and only if it is solvable in B{(IW)).




We obtain as an immediate conseqguence an affirmative answer
to Mycielski's problemn.

s o . ‘ . ) b ,
Theorem 7.3%6: If %% 18 an equationally compact 9 - module .then

M2 is a retract of its Bohr-compactification.

We sum up the different characterizations of equationally compact
5 : ,

/R - modules in the next theorem:

CL{Z) ey .
Theorem ;ZQE7A:If a7 is an 9% -module then the following

conditions are equivalent:
(1) 2? is pure~injective. o
(2) 927 is a direct summand of B(#7).

(%) 473 is equationally compact.

As far as a characterization of equationally compact
3? -modules 18 concernsd only partial results have been achieved:
partial in tﬁe sense that fthey depend strongly on restrictions
upon the fing R . 30 R.B. Warfield has shown ( in (47) ) that
equationally compact X -modules must in general satisfy very
strong completeness-conditions (3~modu1esﬂ we recail, were

¢ .

equationally compact if and only if they were a direct sum of
a divisible group and a group complete and Hausdorff in the
45" topology). By specializing the ring ( as,e.g., Warfield
does for Prifer rings ) one can indeed achieve situations where
these completeness conditions turn out to be essentially sufficient

~But we only refer the interested reader to these rather ring theo- .
vetical yesults., We refer te “f1(¥&PFQw5k) (2v) ained

D. Fieldhouse (11) for further discussions of the modale—theoretic
aspects of pure injectives. Of interest sounds a paper

announéed by L. Fuchs (12) on "Algebraically compact moduleé

over Noetherian rings" whiéh we have not yet seen; interesting
since (as Warfield (47) mentions) it is still an open question

whether any topologically complete module over a Noetherian ring

is necessarily equationally compact.
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Commutative Noetherian rings with 1 are a natural first
choice if one attempts to characterize equationally compact
rings 3? . There are two reasons for this: Firstly one can,
for .every ideal €7 = (& se..058,) of JQ » express the
statement " re¢" by requiring the satisfiability of

s 4 : .
xi-a14—.....a,4~xnoan = r in < and gets therefore control

over the ideal lattice of R via polynomial equations (which

<1) on tecpologically

is important in view of Warner's results
compact Noetherian rings with 1). Secondly one has at one's
disposal the classical ideal theory in such rings.

D. Haley, a student of mine mentioned before, has investigated
‘these rings in his Masterfs thesis and has come up with a

complete answer which ﬂ&ﬂjust appearmiin the "Mathematische

Annalen" (see (20)). . . o ' S -

.

Theorem ¥, 3%: If K is a commutative Noetherian ring with 1

then the following conditions are equivalent:
(1) 2? is a topologically compact ring.
(2) R is an equationally compact ring.

(3) R = GD(E?i;izi,.n...,s) where each ZQ{ has exactly one

. . A . - 2.
maximal ‘1deal 4ﬁi, gki/ﬂvVi is finite and ¢, 1s complete
< i and Hausdorff in‘the;4€‘—adic topology. - ‘

The following are the two essential lemmata used in the proof:

Lemma 7.39: Quotien@rings of equationally compact Ncetherian
rings with 1 are again equationally compact.

lowl
Yy v . . . .
Lemma 7.40: If A 1s an equationally compact commutative Noetheria

ring with 1 such that the set of zerc divisors is contained in a
i  dea 72N . C R .

proper 1deal, then 4% has & unique maximal ideal 27 /4w 1s a
. . ZQ . . ) L 3

finite ring and < is complete and Hausdorff in the #mw ~topology

(defined via the neighborhood system'éwn;né Nj of 0).

. Yo
AT 2 2 == ey oty Rty A ATt F

(1) locally cited: S. Warner, Compact Noetherian Rings,
Math. Annalen 178, 1968, pp. 53-61 (MR 38, No 5864)
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§ 8 : Compactifications of Universal Algebiras.

i(i). Comp((?), comp ({7, c((?), c1 ({7,

i

Definition "~ &£.1: Let {/ be a unlversal algebra and % an

T -

infinite cardinal number: The aLgebraagn is called aA(weak)

e

. P . ST 7 s N
equational compactification of U if ¢/ is a subalgebra of =

(W .
and «& is #72 -(weakly) equaticnally compact. The class of
allﬂ(weak)equational compactifications of 67 is denoted by

Comp((7) ( Comp (//) ). We then define Comp((/) ( C ompw(iy) )

AN

as the 1nter5actlon of all Comp,, (C?) (CompZV(KY)) where -7 runs

r}/

through the cardinals. The elements of comp ((/) (Comp™ (L7 ))

are called equational compactifications (weak equational compacti-

. . ? . 0 . . . N7
fications) of 67 . X2 is called apquasi-compactification of ¢/
T v

. W . /'/}*‘ f N Ty .
if % contains Lﬁf as subalgebra and ~& ¢ .c(A,{/,#)., The

‘ . e e s A2
class ¢ (b,) contains all#~quasi-compactifications of‘ci.
i /,/
_— os 3 . . - .
Again c(/') =/ \(%%(éy 3 #% = cardinal) is the class of all

Ay 7 . ’ A5
*. If o contains the subalgebra (s

~

3

quasi~compactifications of i/

& ; A
and £ € c(A,% ,m) then « is called an #¥ ~closure of (7

i ~dy
and ¢l ((/) denotes the class of all .## - closures of {/ .
v

Again cl(Cy) = /A\(clwﬂ67)5.4@f: cardinal) 1s the class of all

Pdsd

closures of ﬁy { see also (44)).

: Ve A . .
Corollary #.2: If {4/ is a universal algebra and # is an

infinite cardinal number then Comp,, (/§) cl (L,)L c (L/)
and, accordingly, Comp (L /) CL(’/)&uc(‘/)
In this terminolcgy we can now restate Weglorz!' s (frequently

gquoted) problem as follows:

Problem &% .3%:(Weglorz (45)): Does Comp(v7)~n® imply that
c<Q7)-;.® ?

i




The problem has, so far, resisted our attempts to settle it.
We expect a negative answer, although we were able to give

a positive anéwer to the weaker version of the problem that
arises when one replaces in the above problem ¢ by cl.

It is quite clear that not every universal algebra has an
equational or even only a weakly eguational compactification.
As example of such an algébra we could take the lattice in

> 0 if we add 0,1 as nullary operations.
—

example 3 ¢f
It is, however,true that every algebra has as # - equational
oompéotification, Much stronger than that earlief result of
Weglorz is the following result of J. Mycielskil and |
C. Ryll-Nardzewskil . (32) which subsumes the above and other
similar results.

3,
Theorem."ﬁ.ﬂz/\If (7 is an arbitrary infinite universal algebra

and 7 is an infinite cardinal number then there exists always
N s o ) I i
an algebra =7 such that (1) < 1s an elementary extension of {(/,
A1

(2) 1Bl = iA[ ) (3 .4 15,4%/— elementarily compact.

. C e . .+ . .
proof: Let ¢ be the initial ordinal of .##» which is a regular
"/

ordinal number. We define C7Y 55%0, by transflnjue induction as
¢ Yl
follows:

6270 = (7 . 1Ir )~~(c then /, / ( 17 ) (see 5.6 ).
5 (}
7
Ir («\/1 is a limit ordinal then iﬁ; "kJ’((7,”.u
We Cldlm that Qi = Cﬂ; satisfies all required conditions:
A
{4

Surely, (1) is truefJ(2) is seen as follows: If, for y <« ,

. : . . L
Anie A e A

f [ _ i i . . _ e . . . L
IASI = {A]l then IA\FJ }Aﬁf = A7 =]Al . If is a limit
' - ‘ ; / A
ordinal and {A*; :{Ag Y for all y“¢ then QAJﬂe -lAyuu (A[ :;Ag .
O !
. ; 3 i . 4 . by ’
Thus, indeed [A { = 1B ={A| . (3) is clear: If <. is a system
(_/’
of £ify formulas with constants in B which is finitely solvable
A e .
in o0 = Lé then ( due to the regularity of « ) all the constants
// )
< [ . /‘f . - . s .
of Z are already in (/. with £<.¢. Since Cﬁg_ls an elementary
3 . i . .



5. .. . .. . /L

subalgebra of Cf s ig finitely satisfiable 1n , nence

L

~ i \’

l o T . A .{
satisfiable in C/+l . Thus, /. is satisfiable in & .
. :
Corollary 8.5 _: I is an arbitrary universal algebra and

41 1s an infinite cardinal number then
Comp (7)) # @, Comp, () # @, ¢l (/) # @ and ¢ () # 0.
The lattice in example 3, {SO; suffices to prove all
of the following possibilities:
Compw(éﬁ) = @, Comp(ﬂ%) = 0, ci(é?) = ¢ and c({/) = @.
WG ﬁant to give one more example of an algebra é?ﬁ such that
Comp(g ) is empty. The example is the group of %ll transformations
ax+b, 04 a,b¢ Q. FreudcnthaL showed that // cannot be embedded
into any topdloglcallywcompact group. Mygleiskl and
Ryll—NardzeWski went one step further and showed that(§7 Qannot.
be equationally compactified. 5‘
We do not know of any group that can be equationally compactified
but has no topological compactification.
(32) /
3,

Theorem f8;6.A'Phe group of all transformations ax+b,0#a,beqQ,

‘cannot be equationally compactified, not even quasi-compactified.

proye . . I
We close uhlSwS@CthP with three simple observations. The first

two wergmade by B. Weglora in (4%). and (45). The last (8.9) is
equally simple but has never been remarked before. .
Remark - £ .7: Let K be the smallest universal class containing

a finite number of weakly equationally compact algebras.

Then Comp" (7 YN K # ® for every (/¢ X.

I b3
- j " gy 4
roof: By a.theorem of fos one knows that K = SU?G/,.A.,Cf { if
prool (~11 /n
/71,..,.5L7 are the finitely many algebras in question.
; § /7 s A .
L= hP;ul,..,,Sv/n) we know that all algehras

Since U Sfjj,...,b7
in U?Ca,....,,b7 % are weak ly equationally compact.

; Vari . C . .
Remark 6ﬂ8: For each algebra {J/ and each infinite cardinal

number ## there is a set 2 .. of polynocmial equations with b

A s 4

constants in A which is finitely solvable and has the property

that Qﬁ@%w(éf) holds if and only if. gf,Yandlﬁ ,is solvable in . .
vid 5

~g-



proof: Take all possible systems of polynomial equations with

constants in A with <#'equations involving the variables

initial ordinal of # ; say,

ity
"~

xo,xl,.,,.u,,xy,.,.u.,dzﬂg,#

/

S, {‘\‘A

i
3 y >
2 M...,,...-.,z:—MJB.,..n,.,..,(><

~0? 1°
<

Next we exchange the variables in the various £, such that
<}

(\

J

g R

. . , S S . .
5?# ¢ i1mplies now that 4“5 and L8 have no variables 1n

common. If we denote the resulting systems by
- ot ' g . feg = _ I3 J— . <‘ .y
Z,égz.,l, .“.....,,33,__6',,,....M,{\;«\j, then .2 ~\/(2,4'5g £

is ObViOUSly the desired system.

Remark 8.9 : (1) If (7 is a UD“VGPbJI algebra then Lher

exists a (unique) smallest congruence relation (%a on 57 such
_ 7

that dﬁ,/%% is equationally compactifiable.

(2) If K is an equational class of universal

1

algebras then every (/¢ K can be equationally (topologically)
compactified if and only if every subdirectly irreducible

algebra in K can be equationally (topologically) compactified.

Proof: (1) Let o = GsEecC((f), (/& is equationally compactifiable
e A -4

-

Then ¢ (suniversal congruence) ¢ 27 . Let ’9 =/ (& €T,
Then 67/6;0 is a subdirect product of all algebras (7 (; F"

If Qc ¢ Comp(C7/¢ ) then 7 /& oF f?(% ;GeFy, and the latter

algebra is equationally compact. Thus, éfoéfﬁfand we are done
The same proof applies, of course, for the topological case.
(2) is clear by Birkhoff's subdirect represehtation theorem.
It seems QQ us an interesting problem to determine the
.

congruence 6?7 specified in the last remark for every (/ with

Comp((/) = @ . (2), of course, yields topological compactifi~
cations for Abelian groups, modules etc even without the Bohr-
compactification. The implication for Boolean algebras and distri-

butive lattices is also clear.

.,.71._,
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2) Compactifications preserving positive sentences.
( p I 23

Let Pos(é7) denote the class of all universal algebras of the
type of KV that satisfy every positive sentence with constants
in A that is satisfied in 6&

Theorem 8.10: (50) If 6? is an algebra andgéf<i Comp(é?) then thére

exists -J—G- Comp((?);ﬂ Pos(C?), Such’ 1is évery'extension‘zf of &7_
which is maximal with respect to being a subsystém ofvigand an
element of Pos((%).

If we replace Pos by HSP then this result was stated by Weglorz
in (45). The .same holds true for the next theorem; however,

our proof is quite different and in the spirit of 3.1.

Hedg: Ir 63 is an algebra and - /%cc/(/) then there exists

LZ:Q c(é?)f\Pos(C7) such that (764 %L,

Theorem

proof: By ..2.1, ci? contains an A-retract of every ultrapower
of (7. In particular:eﬁéf contains an A-retract <€;“of éy(ﬂw)
| (7 is (n, 7

. for every A47. Thus, 7 o1s (A, LF e )-equationally compact
and, of course, in Pos((/). Thus, =5 contains an (&, 7/, #)-

. ' Gy . 5 A p
equaticnally compact algebra CﬁA,WIMQ'éygéfufor every ‘¥ |
One of them must then be (Ajﬂ/) ~equationally compact; otherwise

-

there ex1sto/ﬁ?(6%;)/q,, for each /5w such that (W & (A, 07, 7)

//
for all 4t>4#((/ ). If we have .9 dlfferent’subalgebras of the
// 1-7' .
Lt . o i O Vi 9 ' . . o
form é%y,ln'%;, say 57( ),.nn.,v,zﬂ(d), ....... R y<ﬂo , then
Vel R ¢ .

L ,
CaéC4W(C7Qg));X<33 .would not be amongst them. This 1s a .
contradiction, and the proof is complete.

/.:l . ";-f .
Theorem g;%z: if Q/ls an algebra and {fr c1({/) then there
N2 >

- [{J;,,, .. /\;‘/ e
exists Z & cl(L/)f)Pos(Q7) such that 4/::,6 VA

7

AN}




proof : The essence of the proof is contained in theorem 4.4,
B @ sepedntes 4 pret '

& " - J | N A NG sk
Let Q/T =2@};é}5CX&@);&xf/é!@wliagb ? By Zorn's lemma, @ has a
/ & ) :

maximal element éyo and, thefeforeﬁfzﬁzmg/éﬁo @Wﬂé@aéi
Since>7%%cl(6?) there exists an A-retraction g: ., —_“€’wé§

which is evidently a monomorphism. Also we have that all |
A-retractions hi < ----=». are monomorphisms. By theorem 4.4

e LT s

-

—— o 3
=

we conclude that all A-retractions are automorphisms.
Clearly, {fé ci(é?). By theorem 3.1, there exists an“A-retraction
T zf(fC/) ————— Qf . Since its restriction to-{f needs to |
be an automorphism, we are done. |

As mentioned before, a different (and still unpublished)
proof was given by W. Taylor in (41).
In view of the preceding results the following'theorem is
somewhat surprising. "t gives a negative answer to a question
raised twice by B. Weglorz ( (4U4) and (45) ) without having
received an answer so far.

Theorem £.13: (50)' Tt is, in general, not true that the existence

of a weak equational compactification for an algebra é&: (A3F)
implies the existence of a weak equatidnal compactification
within the same equaﬁional class.

To see this one may take the algebra &?: (A ¥, A, ' ) of type
(2,2,1) with A :%algag,”...,,an,,..}i}jO,lj such that

(A; v ,A ) is the lattice of example 3 in section O, ai' TP

0" = 1, 1' = 0.




§ 9 : Problems.

This last section contains a list of problems (in arbitrary

order) that are naturally connected to this paper:

(1) Given an equationally compact partial algebra CQ/:

Can we (possibly after suitable extension of tﬁe carrier set)

make the partial operations full operations such that.the resulting
universal algebra is equationally compact? Is there some "canonical
such full algebra associated with 67 ?

(2) (a) Study equationally compact integral domains. Are they
always topolgically compact rings?

(b) Characterize equational compactness in suitable classes of
rings.

(3) The only equationally compact skewfields are the finite ones.

How does that situation change if we allow only systems of equations
with finitely many ( > 4 ) variables ?
(4) Given an equational class K of universal algebras in which

equational compactness has been characterized: If 4% is a fixed

cardinal number, then characterize those algebras that are not

equationally compact buf are "((4#))-equationally compact”

(i.e. any system of polynomial equatiéns with constants is e
solvable provided it is finitely solvable and-involves <f¢¢@ﬁf
variables). , ,/
(5) Consider the foilowiﬁg property Pn (n€ N) cof a universal
algebra: 6Whas property Pn if and only if 6}7. 18
({(n))~equationally compact but not ((n+1))-equationally cbmpact
(see problem (4)).

(a) Construct algebras with property Pn'

(b) Are there, for any given n, unary algebras with property Pn?

(¢) Let 6& be of type (2) and ny& N:  Can one find a set ;L,of
_7q,




following
identities which makes Ny minimal with respect to th@ﬁproperty:

"If C? is in the model class of / then ((no)) - equational com- -
7. . ‘ . ‘ 7
pactness of 5? implies eguational compacthess of a[" ?
_ i _
(For Ny = 2 it was shown in (18) that 5 idempotency, associativity,

commutativity % 1s such a set of identities).

(6) Let.)\ be a limit ordinal: Find and study algebras which are
((JA))-equationally compact, but not ((L\V))wequatidnally compact.
(see problem (4)). ' |

LZl ‘Develop a theory of equationally compact lattices. More
_specifically:

(a) Is a distributive lattice equationally compact if and only if
it is complete and fully distributive ?(Tbis conjecture came up

in a conversation with G. Gritzer)

(b) Is there a connection between the interval topology and equa-
tional compactness in distributive lattices ?

(¢) Is there a lattice which is ((2))-equationally compact but

not equationally compact ? (see problem 4).

(8) Study compact Hausdorff topologies on Semilattices. Has
Mycielski‘s problem an affirmative aﬁswér in the class cf
semilattices?

(9) (Weglorz(45)): Does the existence of a quasi-compactification
of an algebra 6% always imply the existence of an equational
compactification of that algebra ? (We expect a negative answer.)
(10) Is there a universal algebra Cﬁv such that Cﬁ;e] is retract
of a topologically compact relational system, but 67 is not retract
-of a topologically compact algebra 7

(11) (a) Is there a group that can be equationally compactified
but has no embedding into a topologically compact algebra?

(b)) (Mycielski (31)): Study equational compactness in the class

of non-Abelian,connected, locally compact topological groups.

_75--




(12) (Warfield (47)): Are there any topologically complete

222 -modules over a Nocetherian ring which are not equationally
compact?

(13) (a) Study eguationally compact unary algebras with more than
one operation. |

(b) Study pure (elementary) extensions of mono-unary algebras.

(c) Let 6&7be a unary algebra: Is//?@?always,an eleméntary'extension
of (// provided it is a pure exteﬁéion? (see (35) where a
questionable proof for a special instance is given.)
(a)I1r 6? is a mono-unary algebra and /3ﬁ’contain5'«2;n does then
6?&180 contain some AZ'H? (A positive answer to (c) would, |

of course,imply a positive answer to (d)i Compare lemma 7.6

Llﬂl Develop a theory of convergence algebras (i.e. universal
algebras with a compatible 1limit space structpre). Relate it

to questions concerning equational compactness in universal algebras
(15) Study the relationship between the existence of generalized
A - limits and equational compactness in éﬁ?“modules where O<

is not the ring of integers. (see T7.33).

(16) Letpbe a ring and zl(xi,y.;zk)§ ie¢l, jed, keK, a system.of

?ﬁ- i eclu e J
Agolynomial equations involving the mutually disjoint sets of

variables {xi;i613 “and % yj;jé Jj and the constants zygké K,
from R:

Are there rings other than the integers where one can find one

such system l = 2_(ii,yj,zk) of cardinality [R) +fQO with

3 “ ' - "'n - .
the following property:" The R - modu1e¢ﬁ7ls equationally compact

if and only if every substitution of yj by module-elements that

<
Ld
—

makes (now a'system with wvarisbles x.) Tinitely solvable
) 1

“ M

% . . .
makes solvable ind/."? (In (3) Balcerzyk finds the system

Lran

{XO —;yn = n!xn;ne?N jfor Abelian groups.)
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(17) (a).Let = be a limit ordinal with %;Ofk*MHW:

If CW‘is not equatioﬁally compact, can one always find a system

Zz, of polynomial equatipns with constants in A such that every

subsystem with less than lox | equatiohs.is solvable, Whilé ;z_ is

not solvable in Cy ?

(b) Let 67 be a universal algebra and define the 0&358(57) as

follows:

8(67) = fc&'; X = 1limit ordinal and every system of polynomial
equations with‘constaﬁts in A is solvable 1f every
subsystem ZE+ with LZ4J<kx/ig solvable. j .

Is there anything that can be said about the Lﬁﬂhgq(é?\ that

occur_that way?

(18) Is it possible to develop a theory éf»”canonical" equational

compactifications of universal algebras in certain equational

classes of algebras ( poesibly via non-monic representations

of the algebras as it is quite usual in categorical treatments

of topological compactifications. See also 8,9 ) 2

(19} Characterize ¥ ,R) - equational compactness of

. ., . . Mmoo . . . )
(commutative) Noecherlan ringsA(with 1) if ## is an ideal of K .
(20) (D. Haley): Is equational compactness of a universal algebra
67' impiied by (TQO(T)}+%§5 )

C
<¥O<T~>g :Ca‘l"@ X 4, TT-‘:’O{_ tﬂe type T of ﬁ ) (uee pl”Ob]em u)«

99w equa

nal oompaé%ﬁeés of 67 i

D. Haley.has some interes sting results on problem 5 and related

guestions.

ey

We refer to (42) for another g source of problems in

a slightly different direction.
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