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Introduction.

This thesis deals with convergenee spaces,particularly

with e-embedded ones,and applies that theory to the problem

of representing comIl).utativetopological algebras as algebras

of continuous functions.

The first chapter, (chapter 0) is purelyintroductory,

summarising our notation and those results already known,

which we need. Coveringsystems (which are a generalisation

to convergence spaces of 'open cover' in topological

spaces) are defined and discussed in the next chapter.With

~these,many topological concepts can be extended to conver-

gence spaces - for instance,compactness can be characterised

by covering systems; we define local compactness,and could

define paracompactness,axioms of countability,and so on.

This line is investigated more thoroughly in the thesis of

Feldman 05J, for example.

Next,in chapter 2, we develop a sort of Stone-Weier-

strass theorem,extending those of Binz [7, Theorem 5J and

Feldman [15].
Classical Gelfand representation theory for commutative

Banach algebras is extended to commutative topological alge-

bras.Weshew that for each topological algebra A there is

a locally compact c-embedded convergenc~space

acts as carrier in the following sense:

The Gelfand map

Horn A, whichc.

d A ----'»~C I-'c m Ac. c.

is continuous (see (5J, where it is called the universal re-



presentation of A), and
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C Hom Ae Q 18 furthermore a complete

topologieal' algebra,carrying the topology of uniform conver-

gence on the compact subsets of HomeA. Conditions on Aare

given (coinciding with those known for Banach algebras,when

A itself is a Banach algebra),establishing when d is ac-

tually an embedding o~ a homeomorphism.

Last,these results ~re used to obtain anew the characte-

risation first given by Binz CS] of compact c-embedded con-

vergence spaces,and extend it to locally compact spaces.We

then give two examples of c-embedded locally compact spaces

which are,though,not topological.These examples have other

properties,enabling us to disprove certain conjectures.The

thesis ends bylooking at the relationship between a com.-

pletely regular topological space X, and the ~-algebra

CX of aYl continuous R-valued functions on the one point
-,compactification X of X. On the waY,we run across examples

shewing that our Stone-Weierstrass theorem,proved in chapter

2, is a genuine extension of those of Binz and Feldman.



-3-
o General background.

0.1 Convergence spaces and continuous maps.

The idea of a convergence space (whose utility as a

generalisation of topological spaces is,we hope,already

justified or will become so) is'central to this thesis.

To make it reasonably self-contained,we give here the defi-

nition and some simple properties of convergence spaces.

More details can be found in [1J,[2J or [4].

A pair (X,A), where X is a set and A a function with

domain X assigning to each point x of X a set Ax of filters

on X, is called a convergence space iff for each x in X the

.following conditions hold:

i) X E. Ax,

ii) ~E Ax and~' ~ ~ imply 4' e Ax, and

iii) ~, ~' e Ax .imply ~A~'e Ax.

Note: Our notation throughout is as above; namely,

i) x denotes the trivial ultrafilter at x in X,

ii) ~ ~~' means that ~ and ~' are filters on the

same set,and that ~ is finer than ~', and

iii) the greatest lower bound (with respect to this

ordering) of sets ~ or {~ ,...,~ } of filters on a set X is
1 n

'"denoted by A~, and ~~. or ~ A ••• A0 respectively.We use
I 1 1 n

analogous formulae for the union;intersection and product

of families of sets as weIl.

With this definition corne a nurnber of 'shorthand' nota-

tions: for instance,the convergence space (X,A) is often re~
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ferred to as the space XA, or simply x when no ambiguity

is possible;Further,we write I ~ + x in X 'and say

I ~ converges to x in X I, or 'x~ is a pair from X I

iff ~ E Ax. The set X is called the set underlying the

space XA' and A is called its (convergence) ~tructure.

For all points x of X, the filter AAx

Using these filters weconstruct aspace

space associated with X, as folIows:

is denoted by ~ .x

cX, the principal

~ + xin cX iff ~ ~ ~x'

Aspace X is called principal iff ~x converges to x in X,

for every point x. Equivalently, X ~nd cX are the same ~pace.

Every topological space will be regarded as a principal

convergence space,in which a filter converges to a point iff

it is finer than the neighbourhood filter at that point.

Any space X possesses an adherence operator aX' defined by

ax(A) = {x E: X I there is ~.E Ax such that ~ nA},

for each subset A of X. (We use the symbol ~n A for two

purposes: first, to mean that the filter. ~ has a trace on A,

that is, FnA lS nonvoid for all P E ~, and second, to de-

note the resulting filter {F "A 1 F s ~} on A. It will always

be clear what is meant.) One checks easily that this operator

satisfies three conditions,namely:

i) ax(0) = 0, (the symbol 0 denoting the empty set)
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ii) A<;;,aX(A),for all subsets A of X,. and
iii) aX (A Li A;) = aX (A )u aX (A; ), f0I' all A,A; r;; X.

Thus aX is a elosure operator,as soon as one knows that it

is idempotent,whieh it need not always be.Moreover,sinee.

for every subset A of X, the operators and acX eoin-

eide.This means simp1y that eonvergenee spaees are not uni-

que1y determined by their adherenee operators,as non-prinei-

~pa1 spaees do exist.However,there is a one-to-one correspon--

dence between the prineipa1 struetures on a set,and the ad-

herenee operators (that is,any operator satisfying the re-

quirem~nts given above). This £aet,whose proof is a not

unp1easant ea1eu1ation,appeared first in [1,Satz ~ .

A subset A of a eonvergence spaee X is said to be _e_1_os_e_'-'d_~
iff A = aX(A), and open iff the eomp1ement of A in X (de-
noted by X"-..A ) is e10sed in X. Obviously, A is open in X
iff AE cP whenever XE A and cP -+ X in X, and a1so,the eol-
1eetion of open subsets of X forms a topo1ogy on X. The set

X together withthis topo1ogy is written tX, and ca11ed the

topo1ogiea1 spaee assoeiated with X. C1ear1y tX and teX

are the same topo1ogiea1 spaee,sinee the topo1ogy is given

pure1y in terms of the adherence operator.

An obvious question: when is a convergence spaee topo1o-

gieal? One ean now see readi1y that aspace X is topo1ogiea1

iff it is prineipa1 and its adherence operator is idempotent.
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This characterization is also due to Kowalsky [lJ.

Gi~en a convergence space X and a filter ~ on X, the

cluster set clX(~) of ~ is defined,in the same way as in
topology,by

clX(ljl)= {XE Xl there lS ~ .• -+ X in X with ~..~ ~}.

The relation

is easily proved,along with the fact that the left inclusion.(,'.

may be proper,for non-principal spaces.

For any convergence spaces X and Y, a map f Ei yX is said

to be continuous iff f(~) -+ fex) in Y,'whenever x~ is a

pai~ from X. (The convention we follow here is that f(~)

denotes that filter on Y having {f(F) I F E~} as base. )

It is tobe noted that this definition and the usual oneare

equivalent,when X and Y are both topological spaces.Constant

maps are clearly continuous,as is the composite of continuous

maps,when defined.Furthermore,any continuous map f:X -t Y

has the following pair of properties:

i) f(ax(A)) ~ ay(f(A)~, for all subsets A of X, and

ii) when B is closed (or open) in Y, the set f-leB)
is closed (open) in X.

As usual,the symbol C(X,Y) means the set of all contin-

uous members of yX. When Y is the real or complex field

with the normal metric topology,we often slim this to CX,
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using also COX for the set of bounded continuous functions

on X.

At this point we should remark that the empty set 0 is
,

vacuously a convergence space,and that C0 consists solely

of the void function.Clearly C0 is a perfectly well-defined

algebra,whose operations are defined pointwise - we shall

always consider CX as an algebra with respect to the point-

wise defined operations,for all spaces X. Later howeve~ it

will be convenient to demand that our algebras be nontrivial.

For this reason we assume from now on that all spaces are

nonvoid.

The associated principal and topological spaces of a con-

vergence space are neatly characterized by means of an uni-

versal property (which phrase we often shorten to UP ).

Proposition 0.1 : Let X be any eonvehgence ~paee, C any

phineipal convehgenee ~pace,and T any topological ~pace.
Then

iJ a map f:X --+ C i~ eo ntinuo LL!.l i66

f:cX --+ C i~ continuou~,and

iiJ a map g:X ~ T i~ e 0 vl.tiVl.u.0 u~ i6~

g:tX -+ T i~ eontiVl.u.OLL~.

An immediate consequence of this proposition lS that

the identity maps

X ~ cX .--+ tX

are continuous,for all spaces X.



-8-
0.2 Induced structures and universal properties.

In this section we look briefly at initial and final in-

duced structures for convergence spaces,comparing them with

corresponding structures already known in the theory of topo-

logical spaces.Then we introduce that convergence structure

on C(X,Y) with which we are most directly concerned in this

thesis,the structure of continuous convergence.

We start with initial structures.Let X be a non-void set.

A collection F of mappings is called an initial system of

""mappings on X iff each map fE: F has X as domain, and

range Xf' say.When each Xf lS a convergence space,the

initial structure.on X induced by F is.obtained as folIows:

<P + x ln X iff f(<P) + fex) in Xf' für all f6 F.

The usual UP holds,and furthermor~,when the spaces Xf are all

topological,this structure is also topological,being in fact

the initial topology induced by F. More formally,we have

Proposition 0.2 Let X ea~~y the initial ~t~uetu~e indueed

. by an initial 6amily 06 mapping~,~ay,F. Then

il 60~ any e.onve~genee. ~paee. X.•, a map g:X"..,-+- X

i~ eontinuou-6 i66 e.aeh map fo g E C (X" ,Xf). Ft!.~the.fL,

ii)whe.n e.aeh -6paee. Xf i~ topologieal lo~ p~ineipall

X i-6 al-6o topologi~al lp~ineipal),the topblogy eoin~iding

with the. initial topology induee.d by F.

The proof is omitted;as it is straightforward calculation
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for the first part,and diagramme-chasing for the second.

A subset A of aspace X, and the product rrx of a c01-

1ection X of spaces are given the initial structures in-

duced by the inclusion jA' and the family {Trx, I X E. X} of

coordinate projections respectively.We define now the term

embedding,as a homeomorphism onto a subspace,the term homeo-

morphism needing no explanation.

We need later to know (at least for subspaces) what cX

and tX are,when X carries the structure induced by an ini-
4,;

tial-family F. To this end,we set up the commuting diagramme

given below,for each f (;;r:

X id cX id ~ tX>

f1
I I

f I fl
.,y -.v

id idXf ~ cXf ------~ tXf

Our convention is that those maps whose continuity a dia-

gramme purports to prove ar~-marked with broken arrows.Here

the desired continuity is proved by means of the UP for cX

and tx.

Next let c~X denote that space obtained from the initial

family {f:X ~ cxfi fE F}, and t~X be defined similarly.

By using the above diagrammes and the UP for c~X and t~X,

we see that

id:cX~ c~X ,and id:tX---7--t~X
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are both continuous. Für subspaces we can do better.To do so,

wemust use" a formula given in

Lemma 0.3 Le_t X be. a .6pac.e.,and B~As;X. The_n

Proof: Since the inclusion jA is continuous,we have the

inequality aA(B)(;ax(B), and hence

40n the other hand,if

filter ~ on X, with

xEax(B)ilA there is by definition a

x~ a pair from X and ~~B. In par-

A simple corollary of the formula just proved is

Lemma 0.4: 1) The. adhe.~enc.e. ope~ato~ 06 a c.onve~genc.e .6pac.e

i.6 idempotent i66 it i.6 idempotent 60h eac.h .6ub.6pac.e.

ii) Fo~ eac.h c.onve~genc.e .6pac.e X, and e.ac.h .6ub.6e~ A 06
X, the inc..tu.6-ZO n map jA: cA ~ cX -Z.6 an ('_mbedd-zng .T hat

-z.6,the .6pac.e.6 cA and c'A a~e the .6ame.

In proving the second of these claims one must know,as re-

marked before,that principal convergence structures are uni-

quely determined by their adherence operators.

Theassociated topology üf a subspace is not quite so

amenable to treatment,as üur next lemma shews.
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Le.t X be. a c.onve.!Lge.J!tc.f:> .. ,6pac.('.~and A = vnF~

whe.!Le.by. V i~ an open ~ub~e.t 06 X, and F i~ c.lo~e.d

~n X. The.n tA i6 Ci. ~ub~pace. 06 tX, that i~, tA = t~A.

Proof: First, A i8 open in F, for.if x~ i~ a pair from

F with x~ A, then j(~)~ x in X (here J denotes the

inelusion map of F into X). But V is open ln X, so

that VEj(~). Henee VnF = AE.ep, as required.

Next we shew that tF = t~F. We know already that tF

earries a finer topology than t~F. So, let C be elosed in

~tF. Then C lS elosed in F, by definition,and thus elosed

in X, by Lemma 0.3. Aeeordingly, C is elosed ln tX, and

even in t~F, this latter being a subspace of tX, by defi-

-nition of t~F. Henee tF = t~F, as claimed.

A similar proof,using open sets,shews that the topology

on tV is exaetly that inherited from tX. In partieular,

tA is a subspace of tF, since A is open in F. By eom-

bining these facts,we have our lemma.

We tu~n now to final eonvergen~e struetures.A eollee-

tion G of mappings is ealled a final system of ma~pings

in (a non-void' set) X iff eaeh map g 6 G ha.s range X, anel

domain X , say.When each X is a eorivergence space,theg g
final strueture on X indueed by G is defined below:

For all points x of X, let

:::x= {x} u {g(1/!) I g €: G and Y1/! lS a pair

from X with g(y) = x}.g
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Now we demand that ~ + x in X iff there is a finite sub-

set of ~x, such that (that is, q) belongs

to the A-ideal generated by ~x in the semi-Iattice of all

filters on X). The expected UP holds - again we do not

prove it - and is stated below.

Propo~ition 0.6 : Fo~ each convengence ~pace X', a ma~

f:X-- X' i~ contivl.Uou.6 i66 6o~ each gE. G the map

foC":X ~X' i~ cOl1til'1u.ou.~... bg

It is not necessarily true that X is principal or

topological when the spaces Xg are all principal or topo-

logical.Our Examples 4.5 and 4.6 will shew this,among othel'

things.ln particular,the final topology and the final struc-

ture are not generally homeomorphic;the exact relation is

given now.

Let X carry the final structure induced by a family G

of mappings, X' that induced from the family

G' = {g:tX ~Xg

and X" carry the final topology induced by the family G'.

Then tX, tX"', and, X" are all the same topological space.

Proof: Consider,for all ge.G, the commuting diagramme drawn

on the next page - in these diagrammes,any map not marked 'gI

is the identity map.on X.
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Xl!

Th l.dle.map lS continuous,from the UP for X. Hence

id2 is continuous (UP for tX).

The UP for X' is usednext ,to shew that id 3 is con-

tinuous.This,in turn,shews the continuity of id~.

are all continuous,and thus

id 5, by the

exact-

g :X -----'7 tXg

are also all continuous.This,though,is

Last,the maps

id 50 g:tx ~ tXg
ly what is needed to prove the continuity of

UP for Xli. With this,our claim is proven.

When X and Y are topological spaces,there aremany

topologies with which .C(X,Y), and particularly CX, can be

invested,some of these having been extensively studied.There are

two main reasons für introducing on C(X,Y) the structure

of continuous convergence [3J, which is often not even a

topology.First,it is defined in a very _natural way,and one

might hope for correspondingly 'natural' results - this hope

is justified - see [4J, for example.Second,it reflects to

some extent the properties of both X and Y, the question

being,how far.This question,asked of CX, has been ln theory

totally answered for a wide class of spaces,including the



-14-
completely regular topological.However,the details of this

relationship are still being worked out,and there are many

open problems.

We now set out the definitions.First,for ahy subset H

of yX, where X and y, are sets,the evaluation map w is
defined by

w:H x X --~ Y

(f ,x) ~ f (x) .

• (We should append to w the indices H, X, and y; we do

not do so,since it will always be clear what i3 meant.ln

fact for all. 'standardised' objects,such as adherence oper2-

,tors a, identity maps id, inclusion maps j, and others to

dome l.ater, we omit indices as much as possible whileavoiding

ambiguity.)

Given next convergence spaces X and Y, and a non-void

subset H of C(X,Y), we give the structure of continuous

convergence on H (obtaining the space H~ ),in which

e -+ f in H iff w(ex<j)) -}-f(x) in Y,~

for each pair x<p from X. The UP of this structure folIows.

Proposition 0.7 Fon any ~onv~ng~n~~ ~pa~~ Z, a map

l~ ~ontlnuou~ l66 th~ map g, mad~ up 6nom

th~ dlagnamm~
Cl x '-d

Z Y d ~ I} 'XX " TI ~ X ' ,

~Jw
y

l~ ~o ntlnuo u~ .
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J.S a subspace of C (X,Y). Further,c,
each point x of X induces a continuous map

X : H --~ Y , wi th x (f) = f (x) ,
~

called the point evaluation atx. The resulting map

. H .lX Y,
.•..

X --> X £; C (H ,Y)
~ c. c.

is also continuous,by the UP. We reserve the letter l

for these maps,sloughing as many of the indices as we can.

However, H can recei ve the .structure of pointwise con-
.•..

~vergence,the initial structure induced by the family X. We

denote the space so obtained by Hs' and observe that

id H ~ H
c. s

lS continuous.Further,we shall mostly use this structure

when Y is topological,in which case it is a topology too.

Finally,nothing ln its definition makes use of the conver-

gence structure on X; thus H lS well-defined,as above,s
whenever X l.S t H C Y'X andase} ._ , Y is a convergence space.

Returning to the subject at hand,we suppose that X, X~

and Y are all spaces,and that g : X ~ X~ is continuous.

In the natural way, ginduces a map

g c (X~, Y) '-~ c' (X, Y)
c. c.
f f> fog

which is actually continuous also.

00.1' introduction to the structure of continuous conver-

gence ends here; those interested are referred to [4J, in

which its general properties are thoroughly studied.
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0.3 Algebras and homomorphisms.

Here we set out our algebraic conventions,giving a few

remarks of a purely algebraic nature,before turning to con-

vergence algebras.Their carrier spaces and uni~ersal repre-

sentations are defined as in (5J. As the theory isexplained,

it is applied to C X and later again in chapter 3c. ' in our
study of topological algebras.

We use the more-or-less standard symbols N, Q,

""IR, and <[ for the sets of natural numbers,rationals,strictly

positive reals,reals and complex numbers, all carrying the

usual metric topology .Also, Ir" means IR 01' ([, and ID. the uni t

ball in

Throughout,the 'word 'algebra' lS taken to mean an

associative,commutative r -algebra.Further,unless otherwise

stated,every algebra has a multiplicative identity element

unequal to the additive identity O. The term homomorp-

hism is reserved for ~~algebra homomorphisms,taking

to 1, whenever both the range and domain algeb~as have 1.

If A is an 'IQ - (<[ -) algebra, we denote by Horn A

the set of all IK- (([ -) valued homomorphisrns of A. This

set can be equipped wi th the topology 0"[ pointwise conver-

gence,described on the previous page. Thus defined, Horn A
s

is a completely regular topological space,in fact,realcornpact.

Our purely algebraic remarks will be mainly concerned

with C-algebras with involution,and the cornplexification of
real algebras.

If A is a C-algebra,a map o
is called
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an involution iff it i8 self-inverse)satisfying also

o
(Ax + fly) - 0 - 0= A x + fl Y , and o

(xy)
o 0= x y

for all x,y E A and A,flE([. Let
oHorn A be the set of all,

o -true members of Horn A; that is,

h € Bomo A ifr h € Horn A, and

The complex conjugation in C is always written in

this thesis,as above.

To each h G Horn A eorresponds a conj ugate homomorphisII'.
hllE Horn A, with a ~ h(aO

) , for all a 6 A. Clearly

(h")" = h, for all h 6Hom A.

The algebra with involution (A,O) is called fully

symmetrie iff every member of Horn A is self-eonjugate,or

equivalently, iff HomoA = Hom'A, since the members of
oHorn Aare exaetly the self-eonjugate homomorphisms.

An element a€A i8 Hermitian iff oa = a , and just

as in C:. each point x e A admi ts an unique deeomposi tion

into Hermitian components

tex + xc» and

whereby 1 EC, wi th 12 = -J.. The set *A of all Hermitian

elements of A forms an lK-algebra eontaining 1. One ean

see that a homomorphism hE Horn A is self-conjugate iff

These observations are eolleeted in the next proposi-
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tion. To do this neatly, we make another definition, appli-

eable to any rr-- -algebra whatsoever. An ideal. M of an IF -al-

gebra A is an rQ -ideal (01' a C -ideal) iff the algebra A/M

is isomorphie to IR. (respeetively, to C ), and an f-ideal----
iff it is either an ~~ideal 01' aC-ideal. Obviously all

F -ideals are maximal, and no C -algebra possesses IR-ideals.

However, an 1Q -algebra may indeed have ([-ideals - för exam-

pIe, C regarded as an R-algebra.

Proposition 0.8 L~t A b~ an alg~b~a with involution
o

.:!.. ..

natu~al way hom~omo~phic.

ii) A i~ 6ully ~ymm~t~ic i66 A* ha~ no C-id~at~.

Hom",A.
'"

Proof: Onee the set-theoretie content of i has been shewn,

its topological part, and iv also,follow easily with stan-
dard methods.

It is enough,then,to write down a map ~f' 0a:Horn A -+ Horn A
and a map o

ß : Horn A ~
:> Horn A, and point out that they are

mutually inverse. For any xe A, with Hermitian components
a and and any homomorphism <~hOE Horn A , we define

a(ho)(x) ho(a) + lho(a').

To verify that a(ho) lS a homomorphism is not hard,and

left to the reader.Equally easily one sees that a(ho) is
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o -true. On the other h~nd,the map ß is more simply given;

for oh E: Hom A, we define ß(h) to be the restriction of h
••to A . The details of shewing that a and ß are inverse

are left out.

Claim ii is proven,when one observes that to each

C-ideal of A~ corr~spond two distinct mutually conjugate

homomorphisms in Hom A"',HomoA, and eonversely,for each

hE Hom A'" Homo A, the ideals

.jf-AnKer h and

coineide, being actually C-ideals cf ...
A •

Last,if A is not fully symmetric,there lS a homomorp-

hism h 6 Hom A for which h(A.••.) = C. Thus there lS aEo A

with h(a) = 1, and h(l + a2) = O. This is not possible,

.if + a2 is a unit of A, and h(l) = 1. With this,the

proof is at least completely sketehed.

The algebra C(X,R) is the set of all Hermitian ele-

ments 'of C(X,C), for any convergen~e spaee X. Furthermore

1 + [2 is invertible,whenever f is a real-valued eonti-
nuous funetion on X. Henc,e we have

Corollary 0.9

i~ 6ully ~ymmet~ic (with ~e~pect to the involution in-

duced 6~om conjugation in CI, and the~e i~ a canonical

homeomo~phi~m between Horn C(XJ<)s aVl.d Hom C(X,C).s



A very similar theory can be built ur for R-algebras,

with the help of their complexification; the complexifi-

cat ion A 2 of an IR-algebra A is the set A 'f,. A, in vJhich

ad~ition lS defined componentwise,multiplication by the for-

mula

(a,a') (b,b') = (ab - a'b' ,ab' + a'b),

and scalar multiplication similarly. The resul ting C -algebra

whose muJtiplicative identity is (1,0), possesses an invo-

lution
o (a,a') ~I--) (a,-a').

The 1mage of the injective Q-homomorphism

a A --~>_A2, defined by a(a) = (a,O),

is exactly the set of Hermitian elements of A2. Similarly

a 0 -true C -isomorphism can be ~efined between any algebra

with involution (A,O), and the cornplexification of its

Herrnitian subalgebra,under which

( l( + XC)X\---':;;o- Z"X

Inparticular,the algebras C(X,C) and C(X,Q)2 are

C-isomorphic,for all spaces X.

Accordingly it rnakes no difference from a purely alge-

braic standpoint,whether one studies algebras with involu-

tion 01' ~-algebras and their complexifications.We shall

usually take the latter point of view.
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eonvergence structures appear again now - we shall be

rather informal, and define only the term I convergence

algebra '. Other such terms used here have analogous defi-

nitions.

A convergence algebra AA is a F-algebra A, together

with a convergence structure A, such that the addition and

multiplication maps: AAx AA~ AA' and the scalar multipli-

cation map:JF y.. AA--). All are continuous.

We could actually discuss universal algebras (with or

without external operations), and obtain the following

straightforward results:

1) Subalgebras of a convergence universal algebra ( eVA )

are also eUAs, as subspaces of their parent.

2) The product of a family of eUAs all of the same

type is again a eUA.

3) The methods of [4, section2J can be used to show that

whenever X is a convergence space, and A a eUA, then

C (X,A) is a eUA of the same type,with respect to thec.
operations induced pointwise from A.

4) If A is a eUA without external operations,whose

internaIoperations are all finitary,and if

is any surjective homomorphism, then A' is a eUA under

th~ final structure induced ~y E.

As a particular case of the third remark above,we have

Theorem 0.10 The. alge.bnQ

ve.Jtge.nc.e.algebJta,6oJt all ~pac.e~ X.FuntheJtmone.,the. mod

6Ul1c.tion :"f l--~ I f I ..L/s c.o ntinuo u~ .
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All that remains to be explained i8 the term I local

convexity I. A convergence vector space EA over 1F i8 called

locally convex iff whenever ~ ~ 0 in EA,there is a coarser

filter ~ on E, which also converges to 0 in EA,and has

a base of absolutely convex seti. (This definition clearly

coincides with the usual one,for topological vector spaces.)

The local convexity of C X is easily verified directly;c.
ln fact though,for 8 ~ 0 ln C X, the filter 80 to be givenc.
ln Lemma 0.17 has a base of absolutely convex sets.

Local convexity has the same permanence properties as

~in the topological case; namely,subspaces and products of

locally convex convergence vector spaces are also locally

convex, as is the complexification of a locally convex con-

vergence vector space over ~.

Later the duality between a B2nach algebra A and its

carrier set Horn A is extended to topological algebras.In

doing this,one should consider only those homomorphisms over

which one has some control ~ the continuous ones.This selec-

tion principle i3 vacuous for Banach algebras,since each

f -valued homomorphism is continuous for these algebras.

With this in mind,for any convergence algebra AA,we call
the set

Horn AA = {h E Horn A I h i8 continuous}

the carrier set of AA' There is no reason apriori for

knowing if this set is vacant - the set Horn A itself may

be empty (for example, Horne = 0, when C is considered as

IR-algebra). We assurne from now on that vrhenever Horn AA is
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character as that banishing tte empty convergence space:

it is not necessary, but convenient.

Since Horn AA~CAA' it makes sense to consider the con-

vergence space HornQAA, which is called the ca~rier space of AA"

If AA' and A'A" are convergence algebras, and

u:AA ~ A' A' a continuous homomorphism, we get a map

h ~ hou,

By using the UP of the structure of continuous convergence
<-. it is easy to shew that u is continuous.Obviously, u

is a homeomorphism,when u is a bicontinuous isomorphism .

., ..

Our next result concerns the complexification of a con-

vergence 1R -algebra AA' and lS a ! continuous '.version of
Proposition 0.8,

Proposition 0.11 : Let AA be a Qonve~genQe ~-a!geb~a.Then

A 2
A (togethe~ with the pno-

dUQt Qonve~geriQe ~t~uQtu~e) Zö a Qonve~genQe C-a!geb~~

with Qontinuouö invo!ution, and

Proof: We shall first shew that thc multiplication map

ITI

is continuous. Let the real and in,aginary projections of AA 2

on AA be TI and TI. respectively. Thus, to prove theT' l

continuity of ITI, it is enough to shew that of TI om, andr
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TI iOm. '1'0 this end,consider the commuting diagramme

Al~2xAA 2
rYI

2 (a,a' ;b,b') I--+- (ab a"b" ,ab"--->-AA with - + a'b)

\., . l~. I I
AA )(AA -~AA (ab,a"b') l----~ ab - a"b"

and its imaginary counterpart.
As multiplication is continuous ln AA' and the product

of continuous mappings i3 continuous,the lower path i3 con-
TI om is also continuous,as claimed.Similarr

4'diagrammes and arguments prove the rest of the first part.

Turning now to the second part,we point out without proof
that when ho E: Hom AA' the homomorphism a(ho) taking (a,a")
in A 2

A to ho(a) + lho (a") ln C i8 also continuous. On the
other hand,the map G:AA >AA2 given earlier,with
G(a) = (a,O) , is continuous. Accordingly, a-l(h) = hoG

a:Hom AI. -----:;.. HomoAA
2

i8 a bijection.
We shall have shewn the continuity of a as soon as we

know that

is continuous.That this is so,derives immediately from the
commuting diagramme gjven below,and its imaginary compa-
nlon. ,
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(ho ,a) \--~ ho (a)

(ho ,a,a; )1---0> ho (a) + 1110 (a;)

Similarly the commuting diagramme

T
J /

.--.---
Ho m~A 112 X A 11 - '=-~). IR, (h , a)

1,L 0 In, I
~- •••.h((a,O))

1
o 2 2 W -Horn A x A --~ L. c. 11 11

establishes the continuity of
•.•... "

of the proposition.

(h,a,O) I---? h( (a,O))

a-1, and completes the proof

It is not hard to verify that if (A1I,0) is an algebra

with continuous involution and operations,then the natural

C -isomorphism
. • .#- 2
p.A1I ----+ (All)

1 0 1 0
XI~( oz(x+x ),-:t1(x-x))

lS a homeomorphism.On applying this to Cc.X' we have

Proposition 0.12: Thehe l~ a blc.ontlnuou~ l~omohphl~m

H om C (X ,C)c. c.

Cc.(X,(] and Cc.(X,lB)2. FU.'1thrut

and Hom C (X,R) ahe c.anonl-c._c.
aLt ~ pac.e~ X.

The proof is omitted - it consists solely of applying the

preceding three results.
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In [5J Binz defined the universal :roepre3entation_(also

known as the Gelfand map,ös 1n Banach algebra theory) of a

convergence IR -algebra [~1\ to be that map

d : A A -------'> C Horn A ~
11 C. c. 1l

given by dCa) (h) = 11(a), for all hE: Horn A1\ and aG-A.

The definition i3 equally applicable to C ~algebras, of course.

Theorem 0.13: The unive~~al ~ep~ehentation 06 any c.onve~-

':".

We omit the straightforward proof,which is to be found 1n L 51.

Two eoneepts,symmetry and quasi-symmetry,are useful when

dealing wi th eonvergence C -algebras ,for they allow us to

apply Stone-Weierstrass theorems.A eonvergenee algebra A]\

is said to be quasi-sym~etric if~ the subalgebra dCA) of

is elosed under eomplex eonjugation.WheneHom Al\... c.
an involution

o

has

, whieh nee~ not be eontinuous,it is ealled

symmetrie iff Horn A]\ = HomoAl\.' Equivalently, d is O-true,
that is, d(aO) = dCa) , for all ae.A. In partieular,

symmetrie algebras are quasi-symmetrie.

In the last part of this 'section we restriet our atten-

tion to subalgebras of Cc.(X,~), for any eonvergence spaee X,

proving that for some of these,ineluding C(X,~) itself,

the earrierset consists exactly of all the point evaluations.

This result was first given,for Cc.(X,1R.), in [6,Satz 1J.
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First,however,we fix our terrninology: each subalgebra A

01' C(X,R) inherits the pointwise-defined ordering.When A

is also a sublattice of C(X,~), it i3 called a sublattice-

algebra.ln this case,for any h~ Horn,A, we have

and hence

h ( I l' I) = :!: Ih(1') I
for all fe A. We call A monotone iff it i8 a sublattice-

algebra, and each homomorphism h € Horn A is also a lattice

.homornorphism. Two simple sufficient conditions for this are

given below without proof - the first is due to Isbell.

Lemma 0.14: i) A ~ublatti~ealgeb~a A 06 C(X,~) i~

monotone. i6 1 + I f I ,ü a uVl.itin A, 60~ all l' € A.

ii) A ~ubalgeb~a A 06 C(X,IR) i~ monotone.,

L6 60~ ea~h fEA, the 6un~tion /11'1 GA alJ.:,o.

We are now able to .state our result formally:

Proposition 0.15: The ~ontinuou~ ~eal-valued homomo~phi~m~

06 a monotone ~ubalgeb~a

the point eV4luation~.

A ~ C (X,R)~

Proof: We have seen earlier that each point evaluation

x: A ~~ is continuous - it is clearly a homomorphism.~

Let nOVl hE Horn A"'" i(X). There i8 then for each x E X a func-

l' E A, wi thxtion

range that
fx(x) i h(~x)' One can obviously ar-

h(f ) = 0 and that f,,(x) = 1, for all x G X.X ~
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If there is a filter G on A with a trace on Ker h,

such that G + 1 in A , then h ean not be eontinuous,asc.
the filter h (G) does not eonverge to h (1) = 1 in R. 'ro

complete the proof,we need only construct the filter 8, as

follows -

For any +EEf( , and any pair x~ from X, the set

B = f -1(1 + Eb) belongs to ~, by the continuity of f
EX .X X

(Recall that ~ denotes the unit ball in the scalar field.)

Furthermore,the .set

D
EX = and g (B ) s;;;. 1. + EIß}EX

contains 1, and f . Thus
X

v = +{D I E f IR and X EX}
EX

generates a filter G, converg1ng to

verify that 8f\Ker h.

To each set D E: e, there are

1n A . We must nextc.

Dl, ... ,DTEV and corre-

sponding indices Ea and xa' such that

the function

.1:'
D2nDa. However

d:. I

= 1 A

clearly belongs to each set Da' since A is a sublattice

of C(X,~). In addition, h(fD) = 0, as A is even monotone.

Our proof is now finished, since fD E D nKer h, as requil'ed.

This pröof scarcely needs alteration,in shewing that each

c.-continuous linear lattice homomorphism of a vector sub-
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lattice of C(X,~) into 1R is a positive multiple of a

point evaluation.

By working a little harder,one can extend the result of

Proposi tion 0.:15 to locally bounded subalgebras of C(X ,'R) ,

this term being defined in paragraph 2.1 lat~r.What happens

for other,more general,subalgebras is still an open problem.

Corollary 0.16 Fo~ eaeh eonve~genee ~paee X, the map

i:X ••..•Hom C (X,IR)
e c..

<..,

Proof: Obvious,thanks to Lemma 0.14.
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0.4 On c-embedded spaces.

This p~ragraph is shorter,and rather a mixed bag - we

introduce on any convergence space X the initial topology

induced by the family CX, and then a technical lemma,which

will be used several times later.Finally c-embedded conver-

gence spaces are defined as in [5l or [6J, and some oftheir

properties given.Much more information,and proof,is provided

in these two references.

Let X be aspace, and H a subset of CX. Then the fam-

ily i(X) of point evaluations induces the s-topology on H,

also known as the topology of pointwise convergence,or the

weak topology.The resulting topol?gical space Hs lS 1n

fact a subspace of CsX. Because point evaluations are con-

tinuous on H, the identi ty map id: H ~ H is alsoc. c. s

continuous.

For each space X, the initial structures induced on X

by the families C(X,H) and C(X,C) are the same,and ac-

tually tcpologies.The set X together with this topology is

denoted by wX. From the UPs for tX and wX, it is clear

that id:tX ---> wX is continuous.lt is by no means neces-

sary that wX be a Hausdorff topological space: it is Haus-

dorff iff CX separates the 'points of X.
The next result is the useful technicality mentioned

above,in which the situation is the followng; X is a con-

vergence space,and H a non-void subset of CX, and closure

in the space Hs is denoted by
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Lemma 0.17

whefLe 8
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H , .:t h e VL /.I 0 i-6c. f8 ,

{ B

Proof: For each pair x~ Crom X and each positive real

number ~, there are sets B ~ eAXrp and C 1 '" ~ withI\xcjl

The col1ection

{Eec ~X~) IA C5 IR.+ and x~ is a pair from X},

whereby

= {g Ei H I gec 1 . ,) <;: fex) + A~},
1\X (jl

consists purely of s-closed sets,and generates a filter GD
on H. Obviously 8 > 8 > 80, and

Now,with the lemma proven,we note

Go -+ f in H .
c

ln particular that

when 8 -+ 0 in C X, the filter Go constructed above has
c

a base of absolutely convex sets. This verifies our earlier

claim,that C Xis locally convex.c

It is shewn in [6,Satz 1] that the continuous map

is surjective,for all spaces X. We call X c-embedded iff

this map is a homeomorphism.Equivalently, X is c-embedded

iff i:X-;;.-HOlncCceX,C)is a homeomorphism,as one readily

verifies with the help of Proposition 0.12 and a commuting

diagramme.The results from [5J and [6J concerning c-embedded

spaces are collected below.
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X.

~'.

ii) Sub~pa~e~ and p~odu~t~ 06 ~-ernbedded ~pa~e~ a~e

d : C X -----, •.. C Horn C X~ c ~ ~

Another property of c-embeddedspaces is a variant of

Lemma 0.17 . From the UPs of wX and. HOIn C X we see
• sc.'

that i: wX ---'r Horn C Xs c, is continuous,for all spaces X.

~imilarly,when i is inject~ve,it is a homeomorphism. From

this follows

Lemma 0.19: 16 X i~ a c-elnb~~d~d ~pa~e,a~d x~ i~ a

Proof: We know from Lemma 0.17 that i(<p) -+ x in
Hence,using the homeomorphism between wX and

deduce that

as required.

Ho m C X, VJes ~
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1 Covering systems,

1.1 Definition and apology.

In passing from topological to convergence spaces not

only structure,but also language is lost: in this chapter 18

given a generalisation to convergence spaces of the topologi-

cal term 'covering system of neighbourhoods i Thi s allo1.vs

us to extend to convergence spaces many ideas and results

in topology,which are expressed in such terms.For example,

local compactness,paracompactness,axioms of countability,

~and so on.These are not idle extensions: in chapter 3 we use

loeal eompactness; in his thesis l15J, Feldman characterises

among other things, second countable completely regular topo-

logical spaces (that is, second countable metric) as those

completely regular spaces X for which

countable.

c Xc. is also second

To come to the point (at last),let X be a convergence

space,and S a nonvoid collection of nonvoid subsets of X.

The final family of inclusions {j ~ I SE. S } - with each S
u

considered as a subspace of X - induces a structure on X,

creating thereby aspace written XS' It holds always that

is continuous. We answ~r the obvious questiön
in the next lemma,after two definitions.

A collection S of subsets of aspace X is

1) a'quilt for X iff there is for each pair x~

from X a finite subset of S such that

a) X eS nS ,j., ,, x,/,
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E Q, and

epn S, for each

there is S oS S such that.xep

Note: 1) Every covering system is a quilt.A quilt Q which
is directed upwards (meaning that to any S,S'E Q there is
S" € Q ,.Tl' t',h S u S' <;: S" )' 1 ' tI'V _ lS a reaay a coverlng sysem.

2) \!Je can always assume that X = U S, wi thout af,,:,
~fecting the space Xs ; precisely, Xs and XS' coincide

for all collections S, when S' = SlJ{{x}!xeX} . \\Iiththis
assumption, which i3 always made from now on, S is a quilt
for XS'

We next shew that from nothi~g less than a quilt can the
parent space be wholly reconstructed.

Lemma 1.1: Let X be a ~onve~gen~e ~pa~e, and S a ~ol-

le~t..i..on0 6 ~ ub~ et~ 06 X (w..i..thX == U S J. Then X aVld

Xs a~e the ~ame ~pa~e L66 S ..i..~ a qu..i..lt6o~ X.

Proof: First,let S be a quilt für X. \!Je need only shew
that every pair xep from X is also a pair from XS' Now for
each S t:, Sxep' we know tha t the fi1ter epn S converges
in S. However, conditions ß and y guarantee that

to x

= I SES ,},xep

and hence converges to x in XS'



On the other hand,let X = US, and X = XS' 'l'hismeans

that for any pair x~ from X there are sets Sl""'Sp€ S

and filters ~l,' •• ,~p on X such that

]") A, r1 S :01Jldx <S SIV' for eacb IV = 1, ..... p."-- 't' a a ~- u, u, r J

ii) <Pa"Sa -~ x in Sa, for all indices,and

iii) ~ >

The third condi tion shews in particular that S 1 U ••• u Sp Go cj>.

Now define Sx~ = {Sa I ep1\ Sa}. It is Ilot possible for

~this set to be empty - as if it were,there would be for each

index a a set B e A, wi tha 't',

f' p
(/; = (USa)nnBaE~,

cC~I "'-I

which is not allowable. A similar argument shews that the

set U Sxep € ep,completing the prOCl.

When dealing with c-embedded spaces,it lS enough to con-

sider only those covering systems which are made up from

w-closed sets.For if X is c-embedded,and S is a cover

for X (naturally,the phra~e 'covering system I is often

shortened to 'cover') then we can give a cover T for X

refining S, and co~posed entirely of w-closed subsets of X,
in the following way:

For any pair xep from X, the filter ep also converges

to x in X.There is then a set

This means,though,there i3 a

S . - E S wi th x E S - E:x~' xep
w-closed set Txep-Eep,for

ep •

Clearly the collectionwhich

{T -Ixep

x€T -eS -xep - x~
x~ is a pair from X} is a cover,satisfying the claim.
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The construction (lfthe space can be usefully dual-

ised,as we now describe. Given a spaceX and a eollection S "

of"subsets of x, we get an initial system of mappings

{j s" : CX -----7>- C S I S G S}
c c.

on CX, obtainihg fromit the space CSX, It is easy to check

that i d: C X -----".. CsXc. . is always continuous.

However,~e shall shew that Cc.X and CSX coincide,when

S is a ~uilt or,in particular,a cover for X. This means,in

."theory at least,that one can more easily see how the proper-

ties of C X depend on the loeal propE,rties of X. Possiblyc.
the simplest example of its use in this way lS glven in Prc-

position 1.11 , where we show that for each locally eompaet

spaee X,the spaee C X is topological,earrying ln fact thec.

topology of uniform" convergence or the compacta of X.

A eonverse question,whose answer eould allow us to deduce

loeal properties of X from properties of Cc.X, is only partly

answered: namely,under certain restrietions on S, when

and CSX coineide, S is a quilt for X.

c Xc.

Note: An analogous spaee CSCX,Y) ean be given,for any

space Y, but to investigate these would be beyond the scope

of"this thesis.

Next it is shewn that the algebraic operations on C XS
are eontinuous,and then a sequence of calculations is given,

at the end of which we shall have proven the claims just made.
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F04 all ~paceh X, and non-void collec-

b d f 'f t'. d 1 J- ' C X Cge. 4a,an üU4-Z:'1.eh,. Ice. 1YI0 llunC.-1..,.COV/: 's --;;>- ,.SX

whidl. f ~\--~> I f I ) i-6 co n:tinuo u6 a.6 we..t.t.

( u vtd eh.

Proof: It will be enough'to do this for the addition map ad;

the other proofs are all similar to this.

"'..•.

The diagrammes

CSX )( CSX

js.xjs.\

C sc

j .oad
-~-'-~ C Sc

/
/' ad

x C Sc

commute,shewing the continuity of

That of ad itself now follows from the UP for CSX.

Gur sequence of calculations starts here,ending at
Theorem 1.4.

Lemma 1.3 : FOh any -6pace. X, i6 S ih a quii:t,:then c Xc

Proof: It isenough to shew that e ~ 0 in C X, wheneverc
Oe is a pair from CSX, So,let x~ be a pair from X. Then

~ 0 in C S
(~

lS the corresponding evaluationfor each Ses , where Ws
XcjJ .

map~ Hence for any positive real number E, there is
and BS € cjJ , such that
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for eaeh SE: Sxep' It follows that (ü(A y.. B) ~ E!b., where

A = ("'d AS Is 6 S )} '" e. and
Xy.l -

This shews that e ->- 0 in C X, and proves the lemma.c.

Lemma a: Let X be any c.onve~genc.e ~pac.e,and S ~ c.ol-

lec.tion 06 X, /.)IIc.hthat c Xc. aV/.d

Proof: We suppose that S lS not a quilt for X, that 1s,

there is a pair xep from X at whieh S failsto satisfy

requirement s. For eaeh y E X"" {x}-.,we ean find a w-e losed

.neighbourhood B
Y

of Y in wX, whieh misses x. We set

= { fe CX I f(B ) <;; b, for ally

whenever Y is a finite subset of X~{x}-.

yG Y},

- Next let D be a fixed w-elosed neighbourhood of x

in wX, and Br = D f\ ur, for any finite subset r of S.

Now we put

Ar = { f es CX I f (Er) ~ ~}.

Clearly the eolleetion

{ ),Ay ;\.6 IR+ y. is finite X~ {x}- 1.and a subset of J

U { )lAr
+ is finite })lEtR and r~ S

h~s the finite interseetion property (when Br 18 void, Ar
is naturally CX itself), generating a filter 8 on CX.
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Since whenever x '.0; S Ei S, the Cc,etDn S is a neighbour-

hood of x in tS, the filter e converges to 0 in CSX,
However it can not converge in C X. To see this,we argue

c..

three cases,corresponding to non-fulfilment of the three

conditions in the definition of a quilt.

Case J: x<G X\US.. 11'01' any indices Y and r, the

w-closed set Brr\ U{By Iy G y} does not contain x. 'l'hus

there is f E: CX, vanishing on this set and taking the value

J at x. VJe deduce from this that the filter w(e)l. x) is

the indiscrete filter {rF} on 1F , and in particular,does

not converge. Hence e also does not converge,in C X.c..

Case 2: for all S Ei S, either x {S 01' 1> has no

trace on S. Using again the set

above,we see that its complement in X is an open set; so

for any se.~ C ~ 1>, there is a point x" of C, lying outside

that closed set. As before,we can conclude that the filter

w(e x 1» is indiscrete, and that B does not converge in

Cc..X, The last remaining possibility,in which we suppose
So to be that non-void subset of S, consisting of sets con~

taining x, on which 1> has a trace, is that whenever r

is a finite subset of /So, then ur y. ep. However it too is

easily disposed of in the same way as ~bove.

VJith this,the proof of the lemma is complete.



Assembling these lemmas,we obtain

Theorem 1.4 Let X be a ~onve~gen~e 6pa~e,and S a

That this theorem is not as general as it might be,is

shewn by a simple examp le: when X = 1R., and S = {Q}, the

homomorphism j~ .: C 1R -;>- C 0
~ c-

is an embedding,as can

e~sfly be seen. Thus when S contains sets which are not

...•:.,'.

w-closed, it may fail to be a quilt,even if

are the same.

C X and
c-

This example,and the need to prove an analogue of Lemma 1.3

guide us to the following definition:

A collection S of subsets of aspace X has property (.)

iff for each pair x~ f~om X there is a finite subset Sx~

of S such that Sx~ = {S-lsG Sx~} has the properties

demanded in the definition of a quilt,and further,for each

and S E Sx~' there is BS E. ~, wi th

This enables us to state two lemmas,the first proved in the
.

same way as Lemma 1.3, the second acoI'ollary of Lemma et •

Lemma ß ~ Let X be a c.ol1ve~geVl.c-e .6pac-e,aVl.d S have pltO-

pefl.tlj (.). Then C X al'l.d C X alte equa.[.S c.

Lemma 16 C X CSx, theVl. r - {S-IS""S} .<...6 qu.Ltty: .) ::: ac-
60lt X.
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1.2 Applications to compactness.

In this section we shew by example that it is often pos-

sible with covering systems to use arguments well-known 1n

topology.In particular,compact convergence spaces admit a

characterisation by covering systems,mirrorin~ the original

Borel-Lebesgue definition. The one point compactification

lS then introduced for convergence spaces,where it is shewn

to retain (most of) its usual properties.Finally,locally

compact convergence spaces are defined and ~riefly studied.

First,the definitions needed: aspace X is said to be

T2 iff each convergent filter on X has exactly one limit

(equivalently,the cluster set of every convergent filter

contains exactly one point), and co_mpac!:.iff every ultra-
filter on X converges.

Note: We do not include T2 in our definition of compactness.

A list of the properties of compact spaces folIows.

Theorem 1.5 7)TYQhonov'~ theo~em hold~.

2) Clo~ed ~ub~pace~ 06 compact ~pace~ a~e compact.

3) A compact ~ub~pace 06 a T2 ~pace i~ clo~ed.

4) The continuou~ image a6 a compact ~pace i~ compact.

5) Any 6inite union 06 compact ~ub~et~ 06 a ~pace i~

ag aiJ1 co mpo.ct.

6) The 60llowing ~tatement~ a~e equivalent:

ij X i~ compact.

ii) The clu~te~ ~et 06 eve~y 6ilte~ on X i~ non-void.
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= X.

Proof: Statements 1 to 5 are easyto prove,either di-

rectly or with the help of 6. Fischer [2J observed the

equivalence of i and ii in 6, which we now prove in its

entirety.

That 1V implies iii lS obvious.Now let us consider

~I iii impiies i Suppose there is a non-convergent ultra-

filter ~ on X. This means that ~is not finer than ,
rj> f\ x,

for all pairs xep from X. 'rhere 1s thus a set AxepG cjJ /I. X,

.with Now the family

{ Axep I xep is a pair from X }

is a covering system for X, not satisfying iii.

Next comes I i implies .. I11. Let X be compact,

and. ~ a filter on X. Zornls lemma provides us with an

ultrafilter X on X, finer than ~, and which converges,

thanks to compactness. Hence the cluster s~t of ~ 1s non-void:.

Last, I ii implies 1V I. Suppose Q is a quilt for

,X not satisfying iv. Then Q~ = {X~ Q1QE Q} has the fin-

ite intersection property,and generates a filter T. We

claim that the cluster set of T is empty. To see this,we

note that for each pair xepfrom X, the set lJQXepE ep,whereas
X\U QxepE T. Consequently qJ is not finer than T ,which

proves the claim,and completes the proof of the theorem.
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With the help of this,a straightforward I classical I

proof of a result of Binzls can be given [8J; namely that

C X carries the topology of uniform convergence on X, whenc.

X is a compact convergence space. (For any space X, we de-

note this topology,and the topology of uniform convergence

on the compact subsets of X, by CnX and CkX respectively)

Formally, the result is

Proposition 1.6

""".'

tity ma.p

id: C X --.;:,.> C X
n c.

Before proving this,we need a technicality,of the same

ilk as Lemma 0.17.

Lemma 1.7 Let X be a c.onve~gence ~pac.e, H a non-empty

CX, and f8 a pa{~ nfLom H . Then to ea.c.hc.
po~itive ~eal numben \, the~e i~ a c.ovefL 5(\,8) no~
X by ~et~ c.lo~edin the initial topology induc.ed on

X by H.

Proof of lemma:

such that
There are sets B E 8xep and

holds,for each pair' xep from X. After defining

E (\,x ep) = {y I y 6 X and I g (y ) - f (x) I .2. \,

für all g <= Bxep } ,
we see first that E(A,Xep)d Cxep and hence that



is a cover "for X, and second that all the sets E(\,x~)

are closed in the initial topblogy generated by H.

This done,we can prove our proposition as weIl.

Proof of proposition i.6:

general framework that
1t is shewn in [3] in a much more

id: C X .~ C Xn c.

lS always continuous: it is,however,easily verified directly.
61n any case,the proof is left out.

Now let X be compact.To shew that id-1 lS contin-

uous in this case,it is enough to shew that 8 ~ 0 in CnX,
•'whenever 8 ~ 0 in C X. For each positive number \, thec.

cover S(\,8) to be seen in the lemma above has a finite

, subcover " say {E(\,XK~K) K= 1, ... ,C;;}. Hence

where the B 's correspond to the E(\,x~)'s in the lemma.
x~

This means,though,the convergence of 8 to 0 in CnX, as
claimed.

It is perhaps worth pointing out that c Xc.
may weIl be the same,without X's being compact - see Ex-

ample 4.4 . This can not happen when X is c-embedded,as was

shewn 1n [8J, and will be shewn in another way here in chap-

ter 4. Even now the reader has enough information to shew

the compactness of X, when X is c-embedded and the spaces

C Xc. coincide,but not enough to shew that X is
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also topologieal.

Some more definitions are given riext,the last for this

section. The one £.OiJ::lt.9..Ql.Il.t')actificatton(apC) of a con-

vergence space X (denoted by X) has X U {(X)} as under-

lying set,for any point 001 X. The convergence structure

on X is specified by requiring

i) that for points x in X, the pair x~ is from

X iff ~nx -+ x in X, and that

ii) ~ + 00 in X iff ~ ~ ~oo ' where ,+, lS that
'1-'00

filter on X having {X'K I K is a compact subset of X }

as base. Clearly X is embedded in X, just as usual.Again as

usual, the name one point compactification fis mislead-

ing,for when X is compact already,it is not dense in X -
see the following theorem,in which we have assembled the

simpler properties of .OPCIS•

A point x of aspace X is said to be )..oc~llycompact

iff ~ contains a compact set,whenever x~ is a pair from X.
The set of all locally compact points of X is written Xl'
and X itself is called locally compact iff it admits a cover

composed entirely of compact subsets,or equivalently,iff

each point is locally compact.

These definitions are ti~d together in

Theorem 1.8

Z} X ,,[-6 de.n.6 e. .(.~l X ,,[66 X ,,[-6 not c.ompac.t.

3) rhe. -6 e.t.6 X "Xl aVld clX(~ ) alte. e.qu.af.,-6olt af.f. -6pac.e..6., 00

4) X ,,[-6 T2 ,,[ -6 -6 X ,,[6 f.oc.af.f.1j c.ompac.t and T2•



Proof: We begin with 1, aiming to shew that every ultra-

filter ~ bn X converges in X. Two possibilities arise:

either ~ has a trace on K, for some compact subset K of

X, 01' not. In the first case,there lS a point k E K such

that ~nK -+ k in K, and also,we have K E ~. rrhen if JK is
~

the inclusion map of 1\ in X, it follows that

~
~ = jK(~nK) -+ k in X.

In the other case, ~

converges to 00 in X.

lS clearly finer than ep , and thus
00

The second clairn is just as easy,for if X is compact,

then epoo
... Hence <Pro does not have a trace on X, shew-= 00

ing that X is closed in X.

Conversely,when X lS not compact, ep has a trace on X,
00

-and accordingly, ai(X) = X. In other words, X is dense in X.

Toprove our third claim,we need a purely set-theoretic

result,whose proof is omitted,as it is standard Zorn:

Let Y be a set, K a family of subsets of Y closed

under finite unions,and cp" a filter on Y disjoint from 1<.
Then the set of all filters on Y finer than 1>" and dis-

joint from K possesses maximal elements (with respect to

the ordering », and for ariy such maximal elem~nt ~,

ooE X E X","Xl' thel'e is a filter
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on X such that x~~ 18 a pair from X, and no member of

~~ is compact. Applying the result quoted above here, with

Y = X, and K the collection of all compact subsets of X.,
~.

and for ~.. the filter j(~"") on X, we get a filter 1jJ on

X, such that 1jJ -+ X
. .1n X"" K E 1jJ, for all compact

subsets K of X. Hence 1jJ 2: ~oo' and so x E clX (~oo) .

On the other hand,when XE clx~(~ )nX, there is by defi-
\. 00

nition a filter ~ on X with ~ 2: ~oo' which converges to

x in X. This means that ~nX -+ x in X. But obviously the

filter ~nX 3 X" K, for all compact subsets of X, shewing

that x is not a locally compact point of X.

We have thus proven the theorem,since the fourth. part

of it is a direct application of the part just shewn.

Locally compact spaces as such come now into question,

some of their properti~s being given in the next theorem,in

part 2 of which we get less than the usual results (mainly

because 1n the case often discussed the space is locally

compact Hausdorff topological,and one has rather more to

work with). However new results appear in part 3, this fact

being due to the difference between topological and conver-

gence space final structures.

Before stating the theorem, let us recall our notation:

for each g in a final family G of mappings into X, the

domain of g is a set (convergence space) Xg. Now let Ko

be the set of all finite subsets of X, and K1 the set

of all images of compact sets: that is



K1 = {g(K) I 1\ i8 Cl cmnpact

subset of Xg, and gE.G}"

Finally,let K. be the closure of KaU K1 under finite

unions.Clearly the members of K. are all ctimpact in X.

In the third part of this theorem,we shew how far K. re-

presents the compact subsets of X.

Theorem 1.9 1) I 6

-'';'',

then the ~pace rrX i6 tocatly compact i66 all ba~ a 6i-

nite numbe~ 06 the membe~~ 06 X a~e compact,the excep-
tion6 being locatly compact.

2) Clo6ed ~ub~pace~ 06 locally compact 6pace6 a~e
again localty compact.

3) Let G be a 6inat 6amily 06 mapping6 into a ~et
X. Then

ii) when each domain 6pace ~6 locally compac~,

thel1 X, o.nd VJ"- •

16 K .{.6 a compac;(:~ub.6et 06 x, the~e .l~ K~

in K. containil1g K. When X i~ T2, then

Proof: We prove only part 3, since there is nothing non-

standard involved in the first two.

First,we note that covering systems can be cut down to

subspaces in the same way asin topology,meaning that if Y
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i3 a convergence space,and A a subspace of Y, then each

cover S for Y yields a cover SnA = {Sr1A I SES}

for A. Quilts can be cut down in this way,too.

To see 3i , we need only observe that KoU{g(X )lgE G}g

forms a quilt for X, and then use Theorem 1.5iv .

Now when every spaee X g is loeally compact,it follows

immediately from the definition of the final structure that

K' is a cover for X. However K' is composed wholly of

compact sets,as remarked before, which shews the local com-

pactness of X.

Since K- is a cover for X cl03ed under finite unions,

when K is compac t in X, there lS K' e: K - containing K,

which was our next claim. More precisely, there is a finite

subset Ko of X, and a finite subset Go of G, with com-

pact subspaces of for each g G Go, such that

K<;: Kou U{ g(K) I geGo}'g

Last,if X is T2 then K i3 closed in X, and hence the

set Kgfl e;-! (K) is eompact in Xg, for all gE Go' It is

now elear'how to change the inequality given above into an

equalitY,verifying our last assertion.

It does not seem possibl~ to improve these results much,

as the following example shews.

Example 1.10

ultrafilter on
Let n'-J

~j (such
= IN u {oo}, and cP be a non-trivial

exist in profusion,as[13,Theorem 9.~

demonstrates ). Further,let the set of all other non-trivial



ultrafilters on Dl be denoted by ~.

Two structures (actually topologies) are now defined on

~, and we obtain the usual are of ~~ as a final structure.

(This is one occasion on whieh the topological and conver-.
gence space final structures do coincide.) However there are

compact subsets of 'iN, such as IN itself ,vIhieh can not be

realised in the way deseribed 1n Theorem 1.9 .
The space ~l is defined as folIows: when ~ is a fil-

ter on ~, we require that ~ ~ n in ~l iff ~ = d, and

~ ~ co in n~:h iff ~ G. {<jJ,00,4J!\ oo}. rrhat is, ~l is prineipal

and its structure differs from the discrete topology at

only one point, co. It is easy t6 check that such spaces

are always topological.

The space ~2 is also topological,being defined in

the same way as ~l, except at co, where we require

~ ~ co in~2 iff \jJ > 001\ (f\.1l)

'"'-J

It is clear that ~. is obtained as the final strueture on

N induced by the identity mappings icl:\tll -+ N, anel

It is also easy to see that the compact subsets of Ul
are exactly the finite ones,using a eardinality argument.

~
rrhe eornpact sets in ~2 are "just the compact sets of N,

exeept for those which are members of <jJ. Since every rnem-
--..J

bel' of <jJ has infinite cardinality, the compact space N
can not be expressed as

--..J
N = J'lIl U IVI2, where Ml is com-

pact in ~l, anel J'lI2 eornpact 1n ~_2' Thus the claims of
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Theorem 1.9,3ii apply only to families of locally compact

spaces,in ~eneral.

Our last result in this section i8 an analogue for 10-

cal1y compact spaces of Proposition 1.6 , stating that

and CkX coincide,when X is locally compact.

c Xc.

Proposi ti~~ 1.11 The identlty map

i~ c.ontlnuou~,6o~ all ~pac.e~ X. When X l~ loc.ally

c.ompac.t,lt l~ a homeomo~phl~m.

,Proof: Let K be the collection of all compact subsets of

X. Then,as was shewn in section 1.1 , the identity map

is continuous. Also C K andn C Karec.

CX --> C Kn K€K},

and hence is a homeomorphism,for all

spaces X. Putting these facts together,we have our first

claim. 'l'he spaces and, c Xc. coincide,as soon as K

is a covering system for X, that is,as soon as X 18 10-

cally compact. With this,the proof ~s complete.
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2 A Stone-Weierstrass theorem.

Stone-Weierstrass theorems tendto be very useful,where-

ever they exist.In particular,the cas~ of CkX (the k in-

dicating that CX carries the topology of uniform conver-

gence on compacta) i3 worked out,for topological spaces X.
The situation lS very different für CeX, though.Here we

have the SWT (our abbreviation for 'Stone-Weierstrass

theorem I lS SWT) in the same form,for locally compact

topological spaces X., since for these CeX and CkX are

~the same space,and the classical SWT applies~ Then Binz

[7, Theorem ~ praved the following:

Let X be a completely regular topological space,and

'A a closed subalgebra of Ce (X,IR.),containing the constant

functions. If also A generates the topology of X (meaning

that A and CX generate the same initial topology on X)

then A = CX.

Questions are - how far can one get away from topology

generating? how far from closed? also what happens when the

algebra does not separate the points of X - for in the

classical case,the SWT can be stated in such a way as to

cope with this possibility [11, Chapter: 17J ? Feldman [1SJ
in his thesis shews that it is enough in Binzls result to

demand that A be an algebra of bounded functions,satis-

fying Binz!s conditions,apart from closedness.

In this chapter,we work towards a theorem relaxing both

the topology-generating and the closedness requirements,and



which is moreover statec:tfor algebr3.~3oi' IR - or C -.valued

functions,which need not separate the points of X, or con-

tain the constant functions. In charter 4 wc give an example

shewing that our escape from topology-generation require-

ments is genuine. We should point out,though,that there is

no reason at all to expect our result to be in any sense
, best possible I it just shews there was room far im-

provement,and leaves the hope that there are better S\lTTs

yet to be found.

2.1 Preliminary results.

Here are given a sequence of rather disconnected tech-

nica1 1emmas,to be used in the next ~ection in the proof of
C'T.TTF' t . t d th b '-l f) . tl 'our 01'V. 1rs we 1n ro uce e sym o. h, mean1ng -1e 'Cwo

point compactification of r;:(.
Let now X be a convergence .space,and S a non-void

fami1y of subsets of X. This defines on CX and its sub-

sets the topo1ogy n(S) of uniform convergence on the mem-

bers of S. (The topologies of.p05ntwise convcrgence,of uni-

form convergence on X, and of uniform convergence on the

compacta of X are particular cases of this topo1ogy.) As

indicated in the prbof of Proposition ~.11, this topo1ogy

is generated in two ways; as .the initial topo1ogy induced by

or by the improper seminorms (improper, meaning R-va1ued)

n8 I' f~ sup{ I f(x) i X ES}
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Further,let A(S) be the set cf all functions in CX

which are bounded on each set S <2 S; namely,

A (S) = {f E CX feS) 1.S bounded in F,for each SES}.

A subset A of CX i3 called S-büunded exaetly when it

is contained in A (S), and lOCCl.llyQounde_i when it is

für X. (It is the

locally bounded subalgebras which we shall be able to deal

with in the SWT.)

It would perhaps be helpful to shew where (CX,n(S))

lies in relation to CQX and CSX, and we do this here.

Rernark: 1) For all collections S, the identity rnap

id : (CX,n(S) --:;;.CSX is continuous. When it is a

homeornorphisrn,and X lS c-embedded,there is for each

set SES a cornpact set K ,in X,.which contains S.

2) The identity rnap id: (CX,n(S)) --=.;... C X is contin-
Q

uous iff S = {S- I SES} lS a quilt for X - where

denotes the closur~ operator in wX.

3) When eacfl S 6 S i8 contained ln sorne cornpact subset

of X (which rnay depend on' S ), then

i8 continuous.On the other hand,if it is continuous,

and X is c-ernbedded,then each set S lies in sorne

compact subset KS of X.



The proof 18 a strai tforward culculation - except per-

haps at those parts involving c-embeddedness,where an as yet

unproven result, Lemma 3.4 , is helpful - and is omitted.

Note: When X is c-embedded, and C X andc. ~CX,n(S))

coincide,for some collection S of subsets of X, it fol-

lows from parts 2 and 3 of the above remark that X is

locally cornpact, and that S is a quilt for X.

This last fact is actually a particular case of our

rrheorem 4.3 .

Another

o

easily proved fact is that the composition map

(A(S) ,n(S)) )(.ckf?..~ (A(S) ,n(S))

is continuous.Similarly,given any spaces X, y. and Z,

o : C (X,Y) ):, C (Y,Z) --> C (X,Z)c. c. c.

is also continuous [4, Satz' 6J, and in particular,

is continuous,for all spaces X. With these facts,we can

prove our next result,the third part of which generalises

one of Binz I s [7, Theorem 3J" IVIoreover:the proof is shorter.

Proposition 2,1 Let X be a c.onvehgenc.e ~pac.e,and S

,[l Whe.neve!L A ~CX ,[.6 a .6u.bgltoup (.6ub!LiI1g),the a.d~

d'[tion land mult,[pl,[c.at,[onl ,[~ c.ont,[nuou.6,w'[th !Le~pec.t
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to the n(S)-topology. The 6cala~ multipli~atio~ (i6

de6i~ed at all) ~eed ~ot be Qo~tinuou~.In 6a~t,it i~

eontinuou~ i66 A i~ a veeto~ 6ub~paee 06 A(S), the

alge.bJLa 06 aLt S ..bcJllIlded6un~tiof'l~ OJ1 X. (CompaJLe

with [13, exercise 2f'1'~ .l

ii) The n(S)~cl06UJLe 06 any ~ub~et 06 cx i~

S-bouJ1ded exactly whe~ the ~ub~et i~ it~el6 S-bou~ded.

16 A i~ an S-bou~ded 6ubalgebJLa 06 CX, then it~

n(S)'.el06UJLe. A

6uJLtheJLmoJLe monotone.

iiil The adheJLenee 06 aJ1Y lubalgebJLa 06

a monotOJ1e 6ubalgebJLa 06 cx.
C X i~c.

Proof: The first two parts are well-known - we shall not

repeat their proofs (although it will become clear that the

second half of ii can be proven in the same way as iii).

So suppose A to be a subalgebra of CX. Since the op-

erations in C X are continuous, a(A) is clearly also ae
subalgebra of CX. Thanks to Lemma 0.14ii , to shew that

a(A) is monotone,it is sufficient to shew that Ilfl E a(A)
whenever fE.a(A).

To this end,we take a sequenceof polynomials with real

coefficients and no constant term,say, '(gn) , such that

.(gn) + g in CkiR~ where we define g(cx) = /Ial , for all alSlR.

That this can be done,is due to the classical Weierstrass
approximation theorem.

Next,since fE.a(A), there i8 a filter e on CX with

a trace on .A, and converging to f ln C X. Hence the fil-e
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ter

( ) e f /I .•.! • C Xgn 0, -+ g 0 - 1 i"' I ln c.'

and further,has a trace on A, sinceA is an algebra.This,

though,completes our proof.

,"'1

Remark: 1) Our proof'is valid,whether or not the sub algebra

A contains the constant functions.

2) At the cost of retreating into calculations,one can
get a stronger result:

VJhen A is an S-bounded ) subalgebra of CX, and
f€ a(A) ( or fsA ) , then the function l/f belongs
to a(A) ( or to A ) as well,provided f lS a unit of CX.

3) Finally in this connection,one defines in the obvious

way the sequential adhere:nce ope}'ator Ciy of a convergence

space Y C these operators also satisfying the same three

properties that adherence operators satisfy,as one easily

can check ). In particular,for any subalgebra of

sequential adherence is a monotone sub algebra of

under inversion in the above sense.

c X, i tsc.
CX, closed

The next proposition shews that when computing theadhe-

rence of subsets of Cc.X, it is enough ~o do it for the
n(S)-closed ones,where S iso this time a cover for X.

Proposition 2.2 Fo~ any c.oue~ S 60~ X, and eac.h ~ub~et

H 06 CX, we haue aCH) = aCH), whe~e de-

note~ the n(S)-c.lo~u~e ope~a~o~.
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Clearly, a(H) £ a(H ), Slnca IT ~

1 "=:;

.-H . Conversely,

suppose that fe is a pair from c X. and thatc.. ~ e has a

trace on H. By definition,for each positive real number E

and each pair x4J from y there i~ ,3
""
S, C e 4J./.~. ) ,::> x4J EX4J

and B Ei: e with C <.;; Sxq), andEXIjJ EX4J

LU( B A, X C ,I) t;:; f (x ) + E fl::..
cx'jJ cx~,

Now let Dx4J be the set of all functions in CX assuming

values between -1 and 1 on S A,' and consider the set
x'jJ

, +
{B A, + cD A, lEE Rand xep is a pair from X }.

cX'jJ X'jJ

It obviously has the finite intersection property,generating

'a filter e" coarser than e. Nevertheless, still con-

verges to f in C~X.
We now shew that e" has a trace on H. Let us take

any finite collection of triples,say {CKXK4JK I K = 1, ...,T}.
By assumption there is a function

and by definition of H, there is a function fU E: H, differ-
ing from f"

Hence

by less than on S A,' for each index
XK't'K

K.

as required.

fU E +

It is convenient now to give some more notation - this

will allow us to state some results more succinctly,and
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we hope,more clearly.

For each subset of CX, we get a subset NA of x,
the null-set of A, by defining

NA = {xsX I fex) - 0 forall fGA}.

rn1e set NA is closed in X, being in fact closed in the

initial topology induced on X by A.
On the other hand,for any subset B of X, we define

an ideal l(B) of CX by

1 (B) = { f 6 CX f(B) <;;;; {O} }.

That we take 1(0) to be CX is consistent with this de-

finition,and with the set theory that we use.

For a discussion of the relationship between the opera-

tors N and 1.~see [9J. The only results that we need

therefrom,are that the ideals l(B) are always closed in

C X, and thatc. A ~ 1(NA)' for all A £;': CX. (These facts

are easily verified directly,without consulting [9J .) From
,

this it follows that the adherence in C X of each subsetc.
A of CX is also contained in l(NA).

The second new notation will allow-us to deal with sub-

algebras of CX which do not separate the points of X.
Any equivalence relation E on theconvergence space X

defines 0. subalgebra A(E) of CX; namely,the set of all

functions in CX which are constant on E-classes.It is

again easy to see that subalgebras obtained in this way are

always closed in Cc.X; more generally, if A is any subset
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of A(E), then a(A) ~ A(E).

On the other hand,any subalgebra A (or even subset)

of cx induces an equivalence relation EA on X, whose

equivalence classes are given by

for each x EX. erhe symbols X and are those ex-

plained in section 0.2, being the point evaluation at x,

and the map : x I-------'>- X ref:3pectively.)

For the rest of this section, X denote~always a com-

pletely regular topological space,and CX 0_e_a_n_sC(X,R),

.exclusively.

The universal property of the Stone-tech compactifica-

tion ßX of X provides for each function f E CX, a con-

tinuous mapping

coinciding with f on X. Each subset A of CX yields

in this way a corresponding subset A of C(X ,R), which

partitions ßX, the equivalence classes being of the form

= (.A )-1 (A)
l ßX,IR. x.

It is not hard to see that EA is the-restriction of E~

to X, that i8 [ßxnx, A = for all

Let 9 denote the projection of ßX onto Y = ßX/E~,
and let Y carry the final topology induced by 9. For

each f E A, the mapping
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1:: y---:;;,.f2,

defined by the equation f = is continuous,thanks

to the UP for the topological quotient structure.Further,

the topologies induced on Y by V, and by the initial fam-

ily !i = { ! I fE A} are the same, since the former is

compact,and the latter Hausdorff and coarser than the first.

Using the notation just developed,we state the classical

SWT (mainly to see how it looks in thj.s form), and then the

<.•.
last two lemmas to be given in this section.

The classical SWT Let Z be a ~ompletely ~egula~ topo-

logi~al ~pa~e,and A a ~ubalgeb~a 06 C(Z,F), ~lo~ed

unde~ ~omplex ~onjugation in the ~omplex ~a~e.Then the

(.That i~,eithe~ the algeb~a A(EA) it~el6,0~ the maxi-

mal ideal 06 that algeb~a ~on~ihting 06 6un~tion~ van-

Lemma 2.3 Suppo~e that x i~ a point 06 x, and c
a ~lo~ed ~u.b/.)et06 ßX. T6 V(x) 1- V(C), th.e~e i~ a

6un~tion g E A J.,u~h.that

~ - 1 (g ( x) + /l::;) (; ßX "" C •
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This lemma needs no proof,beyond observing three things:

first,that the set V(C) is closed in Y; second,that the

set A induces the topology on Y; and last, A is an algebra.

Lemma 2.4 Fo~ an S-bound~d and nCS)-clo~~d ~ubalg~b~a

to ~ithe~ CY, o~ to a maximal id~al 06 CY.

Proof: We know from Proposition 2.1 ii ,that A is a mono-

tone subalgebra of CX, and in particular,a sublattice.Henc~

separates the points of Y, at least in the weak

sense. Moreover, An C °x itself lS nX-closed (recall our

notation for sup-norms), and it is obvious that

=
for all f E A. It follows that the map

in which f f----'?>-!, is actually an injective,sup-norm pre-

serving homomorphism,whose image is thus a clo-
sed point separating subalgebra of CY. The classical SWT

now says thatit is either CY itself, or a maximal ideal

of CY. This establishes our lemma.

We add only the remark th~t the homomorphism

is injective,and a left inverse far t. To see this,one

simply looks at the definition of .V , and sees that

V Cf) = f 0 V = f, for all f E An COX.
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2.2 The theorem.

We give here our malD SWT, a corollary,and then a dif-

ferent SWT, of use lD chapter 3.

Let X be a Qompletely ~egula~ topologiQal

hpaQe, and A a lOQally bounded ~ubalgeb~a (not neQeh-
ho.~Le.y Qonta,i,ning 1 ) ob C(X,F), QJ!..ohc.dewde.Jt Qompl(u(

Qonjugatlon in the Qomplex Qahe.

Fu~theJt,huppohe the~e ih a ~ubhet G 06 X hUQh th~t

1) G:::J{ XGX I E~x"'X is nonvoid}, and

• 2) G ih QompaQt in the initial topoJ!..ogyinduQed on X
by the algeb~a A(EA).

Then the adhe~eVLQe in C (X,F) 06 A ih exaQtly
Q

the alg ebJw

Remark: The algebras discussed by Feldman and Binz were

topology generating; this corresponds in the statement above

to point separating, and being able always to choose G to

be empty.

Proof of the theorem: One inequality we already know -

The other,in which we now engage,is somewhat harder.We con-

fine ourselves until further notice to the real case only.

We assume also,as Proposition 2.2 allows us to,that A is

S-bounded and n(S)-closed,for some covering system S for X.

(For if A is S-bounded as we have assumed,its n(S)-clo-

sure A is also S-bounded, with = and
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satisfies the conditions of the

theorem when A does.)

First we shew that for each function fe A(EA)(lI(NA)

there is a function f~e A agreeing with f on G.

Let X~ denote the set X, together with the initial

topology induced by the family A(EA). Then the subset

\7(GvNA) of Y is closed,and inherits the same compact

topology from Y as it does from X~ via \7.Hence the

restrietion of f to GUNA induces a continuous function

.,',on 'il(GUNA), which has by Ti.etzels theorem a continuous

extension ;C to all of Y. Lem:na 2.Li now furnishes a

function f~ = 'il(r~) ln A agreeing with f on G.

Consequently, it is enough to shew that any function

ln A(EA)n I(NAuG) also belongs to a(A). Let now f be

such a function,that is, foeA(EA')n I (NAU G), and let Xli

be the set X'',f-01(0).

For each x e Xli and positive real number E, we define

and

E(x)

W( E,X) ={y E ßxi

mi n {E, ~ I f (x) I } ,

He have assumed that GU NA ~. f-1 (0). Accordingly,the equi-

valence class 'ilex) = E~x lies entirely in X, and so does

not meet the closed set ßX,,",vI( E, x). We get then from Lemma

2.3 a function u ~ A such that
EX
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M(c:,x) = {yc.ßx VJith

and

N(c,x) = {y (~(..;y with lu (y) - u (x) I < 1 } ,~J ,/,. 3. Cx . CX

U(C,X) _. {y G ßX with !UCX(y) - u (X) I <. .~ },I 3'- . CX

D(c,x) --{gE Ar-iCOX with Ig(y) - £(y)1 < c(x),

for all ye:.M(c,x) }

Since M(c,x) i8 saturated with respect to E:, meaning that

it i5 a union of EZ-classes,the closed sets V(M(c,x)) and

V(SX,,",VJ(E.:,x)) are disjoint J_n Y. Thus there is ~E CY,

.constant zero on the latter set,and one on the former.As be-

fore,the function g = V'(~) belongs to AnCoX, and a

multiple of g, namely, f(x)g, belongs to D(c,x). We note

further that the inequality

holds for all YE M(c,x) and gE D(c,x), thanks to our

ch01ce of c(x) .

We claim that the set

v = +{ D (c,x) I E.: E rR and x ce X tI }

has the finite intersection property,artd prove this 1n the

same way as Binz [7, Theorem'~.

Suppose {(cv,xv) I v = 1,...,n} is an arbitrarily cho-

sen finite collection of indices.It is no restrietion to

require
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Now let

11

]V] = \ I M( EK,x
K

) , endJu
1("= 1

Li

Du = (-\D(E. ,x )
~ K K

I\. = I

for u = 1,." .,n. We knoW that D1 18 non-void,and shall

complete our proof by shewing that D u+1 is non-void,when

Du lS" Suppose then that g G Du"

Two possibilities arise: if Mu = Mu+1' then ge Du+1

auto~atically.Otherwise,let E, F be any two E~-classes

.~".'

both lying in M :1"" M . He next define a functionu+ . u

V(MUUEUFUNA) --7--. IR

assuming the values 0 at the point V(NA), and f(xU+1)

at the points V(E) and V(F), and agreeing with g on

V(MU)' That this fuhction is well-defined,is because all

th~ sets concerned are mutually disjoint,and E~-saturated.

It is clearly continuous,since the three (or two,when E = F)

extra points are isolated from V(Mu)"

Now by usingTietze's theorem and Lemma 2.4, we get a

bounded function gEF G A, such that the restriction of

the function gEF to the setV(MuU E U F) coincides with

fEF" Hence the set

is a well-defined subset of

for fixed F, the collection

8X, containing M u E u F. Thusu
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E~ M ""M is CI EA

ß'-ClaSS }u+1 u

forms an open cover for the compact set Mu+1' from which

we extract a finite subcover

This shews that the function

~,which agrees with g on M." is greater than f - E (x )
- v - u+1 0+1

on Mu+1' Similarly,the sets

are open,arid contain M.,U F. The resulting coverof M
v u+1

also admits a finite subcover {u'F"" .~UF }. Now clearly,
1 1 i t;,

=

coincides with g on Mu' and even satisfies the inequality

on Mu+1' VIith these properti.es, g'"6. D~+l' completing the

induction step,and so verifying our claim, that V had the

finite intersection property.

VJe note in passing that for any gE Du' the inequali ty

I~I ~ 2\£1 holds on Mu' Further, if there are no over-

lapping equivalence classes,that is,if we can take G = 0,
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then the filter generated by V itself converges to f in

Cc.X, shewing that f<" a(A).

Otherwise,and in fact,in any case, let us define

F(c,x) = {g'-' A with If£(y) - .!(YJ I < c(x)

on N (c,x), and I g I < 21 f I on X}

and

F =
..1.{ F (c,x) I c € IR' and x E X I! }.

We claim ( again ) that F has the finite intersection pro-

6perty.Consider then a typical finite collection of indices,

say,

1\
U N(c ,x )
1<.\ K K

and

defined at the top of page 64 are closed in ßX, disjoint,

and ER-saturated.Hence we can find a function he A, such

that o < h ~ 1, being constant one on the first-named set,

and constant zero on the other.
Y'\

Now for any function gEn D(c, ..,x ),
K'~I K K

on X, and further,since

it is clear that
'1

hg = g on U N (c _,x )
I,~\ K K

we have hg E F (c ,x ), for each K.K K
The filter e so generated has a trace in A, by con-

struction. vJe prove next that . f8 is a pair from Cc.X,

which is not hard to do.

For XEXIl, the filter w(8)( LI) converges to f(x)x

in IR, since for any positive number c, the set N(s,x)nX

is a neighbourhood of x in X, with
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~: f(x) + 2ct..,.

(recall that 1£ ( y) - f (x) I < dx) < c on N(c,x) ). Next,

suppose that f(x) = O. Since I' is continuous,for"any

positive number c, there is a neighbourhood V of x ln X

with

However, for any F E F, we have Ig I < 21 I' I, whenever g E F.

Hence
w ( F x V ) c;;;:. 2 d:~"

.~'.

proving the convergence of w(e )(. U )x
In this fashion every point of X

.for,as only the possibilities x 6 Xli

to 0 in IQ.

has been accounted

or f(x) = 0 can

OCCUl"', and the proof of the theorem is complete, for IR..

The usual arguments allow us to extend the result to

subalgebras of C(X,C) which are closed under complex con-

jugation.

From now on,we return to our convention,under which

CX' means C(X,F).

When A is a subalgebra of CX such that at most fi-
nitely ß meet both X and ßX"'.X, the setmany EA-classes
{ y E X I Eßy meets ßX'"X } is itselfcompact,in the ini-A

tial topology induced on X by the family A(EA). Accord-

ingly, we can state '
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ih a locatly bounded hubalgeb~a '

06 CX, Qlohed unde..~ conjugation ~n the..Qomplex Qa.6e,

h -I'{ .1- t + I' 't () 't~Aß-c()C!.."n" I",n.n+ 60,.I-{,.6UQ ..c1a-i- a- mO.6--L ij/,JIA,-,C.cy mC!Yl.y _. - ..-l..,/.)/..JU') Il,_"---L -1..."

x and

aCA)

The section i8 ended with yet another SWT, applying

whenever X is a convergenee spaee.making C x topolo-
Q

gieal.There are no other restrietions on X at all.The

result does depend on another (Theorem 3.3
r:..,

later,but without using T cireular logic T

whi eh Vle prove

Theorem 2.7 Let X be a Qonve~genQe .6paQe .6uQh that

C X i.6 topologiQal,and A be a .6ubalgebha 06 CX,
Q

Qlo.6ed unde~ Qonjugation in the Qomplex Qa.6e. Then

a(A) =

Proof: The elassiealSWT stated earlier is used here,in

our proof. Sinee eaeh compact subset of Hom C X remainsQ Q

compact in Hom C X, the identity mapS Q

id : Ckl10m C X -~ CkHom C Xs Q C Q

is eontinuous.Further,

d C X --?>- C 110m C XC Q Q C

is a linear homeomorphism.Last, C X is topologieal,and now
Q

Remark 3.4 and Theorem 3.3 are summoned,to shew that

110m C X is a locally eompact convergenee spaee,and thatQ Q
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C Hom C X -~ CkHom C XQQ Q Q Q

is also ahomeomorphism.Putting these together,we see that

-1
d : CkHom C X --:'>-=- C XS Q Q

is continuous.Also,the subalgebra dCA) of CkHom C Xs Q

satisfies the conditions of the usual SWT - the closure

under conjugation is easily verified,as each member of
HomC X i8 a point evaluation - andc.

= A(Ed(A».

Our theorem follows directly from these facts.

'Remark 2.8 We have already noted what it means for ~ sub-

algebra (or even subset) A of CX to generat~ the topology

on X- an equivalent version reads:

A subset A of Cx is topology-generating on X iff

no E~-equivalence class meets both ßX X and X, and A

separates the points of X.

We shall need this form of the statement later, in sec-

tion 4.2. Its proof, if not already known to the reader,
is a straight forward calculation.
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3 Topological algebras.

3.1 Generalities and Banach algebras.

Here we restate our blanket assumptions,that our algebras

are commutative f-algebras,from now on always, possessing a

multiplicative identi~y element 1. A topological algebra

Ar is not always required to be Hausdorff; however,the

multiplication should be (jointly) continuous.Further,

Horn A and Horn Ar denote the set of all ~-valued,and all

continuous Ir -valued homomorphisms of the topological Ir -al-
Ar' Other symbols to be seen are and4,. gebra

mean that A

A
P

carries the topology generated by a seminorm p

defined on A, and that by a non-empty ,set P of seminorms

on A respectively.

Those properties of normed algebras required as back-

,ground are summarised below - prdofs can be found in Rickart

_.11Q], for example.

1) Any normed algebra Ap can be given an equivalent

norm q, which is submultiplicative, and normalised so

that q(1) = 1, We assurne this to have been done in future.

2) The complexification A 2
P

of any normed algebra A
P

over can be given a norm such that the injection

a : Ap
--~')o ••• A 2

P

is norm-preserving ~O, Theorem 1.3.~
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3) Every rnaxirnaJ.ideal of a Banach algebra is an f-ideal,

that is, the quotient field is r .\AThenthe algebra is over
C , only C -ideals can appear as maximal ideals.

4) For any cornplex Banach algebra
space Horn As

A , the.topological
p

is cornpact and Hausdorff, and the ihequality

Ih(a) I < p (a)

holds, for all hornornorphisrns hE Horn A and points a E A.
Hence,every rnernberof Horn A is norrn-continuous,and the

"'Gelfand rnap
d: A ~C (HornA,C)

p n s

is also continuous .

.5) The results quoted in 4 are also true of real Ba-
nach algebras as well,as one rnay easily.check,using corn-
plexifications.

Suppose A
P

in section 0.3
to be areal Banach algebra.We have seen

that Horn A is (horneornorphicto) a closeds
subspace of Horn A2, which is cornpact, bys 4 and 2. Thus
can Horn A be proved cornpact.s

Now let ho e: Horn A and a E A. As in section 0.3, we
-have h€Horn A , taking (a,c() to ho(a.")+ lho(a"').

Hence
ho(a) = h((a,O))

< p'"((a,O)) = p(a)
the inequality stemming frorn 4, and the subsequent equality

/

fr,orn 2, if p is that norm whose existence 2 furnishes.
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It follows that every real-valued homomorphism of A

is norm-eontinuous,as is the Gelfand map

d Ap -- ...••)0 C (HornA,R).n s

6) In any eomplex Banaeh algebra

is invertible iff h(a)

A , an element a€ Ap

is non-zero, for all hE Horn A.

7) For any real Banaeh algebra A , the following eon-p

ditions are equivalent ( see [10, Theorem 3.1.21J )

i) Every maximal ideal of A is an ~-ideal.

ii) 1 + a2 is invertible,for all a€ A.

iii) The eomplexifieation of ~ is symmetrie.p

Proof: Proposltion 0.8 shews that ii implies iii, and

also that i implies iii.

We next prove I iii ~ i 'Sinee eaeh member of

Horn A 2
P

is eontinuous,by 4, the symmetry of A 2
P

is equi-

valent to its full symmetry. But from 3, every maximal ideal

of A iE an ~-ideal,and by the full symmetry of A2, even

an ~-ideal. Aeeordingly, l holds.

Last,we prove that i and iii together imply ii,
whieh will be enough to prove the equivalenee. For the rea-

son given above,we assurne without loss of generality that

A2 is fully symmetrie. Henee

h«l + a2,0)) = 1 + h«a,0))2 > 1,

for all h € Horn A2, and a€ A. This shews that (1 + a2 ,0) .

is invertible in A2, by 6, and eonsequently 1 + a2 is a
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unit in A.

The prelirninaries being over,we consider a Banach F-al-

gebra Ap' rernernberingthat the sets Horn Ap and Horn A

are equal,and that

id Horn A ---';00 Horn Ac. p s

is continuous ( section 0.2). On the other hand,since

~HornA is a cornpact space,the evaluation rnaps

I

!.

w C Horn A 1<. Horn An s s ---'> F

is also continuous.lt follows that

w 0 ( d x id ) A 'I.. Horn A --';;>-- Fp s p

(a,h) \--->- h(a)

(which is none other than the evaluation rnap) is continuous,

and so,so is

id : Horn A ~ Horn As p c. p

by the UP far the structure of continuous corivergence.We

have just proved

Proposition 3.1The ~pac.e~ Horn A a~d Horn A a~e ~den------- s c. p

~ic.al,6o~ a~y Ba~ac.h algeb~a A .Tha~ i~,~he c.a~~ie~p

~pac.e (in ou~ ~e~~eJ 06 any Banac.h algeb~a i~ a c.ornpac.~

Hau~do~66 topologic.al ~pac.e.

A , the
p

~ pac.e~ Horn A a~d Horn A c.oinc.ide, and a~e c.ornpac.ts p c. p

~opologic.al.
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3.2 The carrier space of a topological algebra.

We turn our attention to topological algebras in gene-

ral,and shall shew that the carrier space of any (commuta-

tive) topological algebra (with identity) is a locally com-

pact c-embedded convergence space.Then thefir~t of a sequ-

ence of results on the universal representation of these

algebras is given.

To start with,we know that C~X is a Banach algebra,

for each convergence space X, and that

""" ---~C Xc.

is continuous.ln particular,if AT is a topological algebra

'with topology T, and E is a non-void subset of Homc.AT'

the maps
iE jo. ~

E ~ Hom C E ~ Hom COE ~ Horn COE.c.c. c.n s

are all continuous - the last homeomorphism thanks to Pro-

position 3.1. Using this terminology,we state
r-
,

Lemma 3.2 Le.t

i~ a c.ontinuou~

E be. c.lo~e.din Homc.AT' and ~uppo~e. the.4e.

~-alge.b4a homomonphi~m

~uc.h that the. diag4amme.

. .
J ° 0 iE

c.ommute.~. The.n E i~ c.ompac.t.
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To prove the lemma,it is enough to remark that E is

a closed subset of the compact subspace hE(HomsCOE) of

Hom~AT' and thus itself compact.

_T_h_e_o_r_e_m3.3. The. -6pa~e. Hom~AT i-6 .to~a.t.ttj.~ompa~.:tan.d

~-e.mbe.dde.d,no~ e.a~h .:topo.togi~af afge.b~a AT'

During the proof,we shall need the technical lemma given

below; it is of the same sort as Lemma 1.7 .

Lemma

..•,.

po-6i.:tive.n.umbe.~ H ~

Proof of lemma Suppose e + f in H~. By definition there

are sets Bfe lC f" e and with

Now we'put

E (f8) = {g Ei H g (Cf8) ~ f (x) + At:..}
I

and note that as fe ranges over the pairs from H~, we get

a cover with the required properties.

Proof of Theorem 3.3 Let 8 be the neighbourhood filter

at 0 in Ar. The lemma just above yields a cover,say

S (1,8), of Hom~AT' such that for each pair h~ from

Hom~AT we have



-77-
for some suitable neighbourhood Uh~ of O.

If jh~ denotes the inclusion map of E(h~) ln the

space HomeAr, the homomorphism

is continuous,as always.However,the set E(h~)(a) is

bounded in F, for any a E- A, since Uh~ is absorbent.

Thus

~Next, (*) shews that the reduced map

is continuous as well. Last,for each h"eE(h~) and a e A,

=

=

iE(h~) (h") (a) =

j'~• 0 i~(ht) Oj')(jht' 0 dCa»)

iE(h~)(h")o jO(jh~.O dCa))

jh~." d(a)(h")-

! -

1

-I

= h'(a).

It follows that J' • 0 d satisfies the condition ofh~
Lemma 3.2, allowing us to conclude that E(h~) is compact,

for all pairs h~ from HomeAr. In Dther wordS, HomeAr
is locally compact; it is c-embedded, being a subspace of

the c-embedded space CeAr, and the theorem stands proven.
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Remark 3.4 1t ~~ now ~f~a~ that. C Hom AT ~~ a fo~affy--- ~ ~

~onv~x topofog~~af afg~b~a wh~n~v~~ AT ~~ a topofo-

g~~af afg~b~a, and ~n 6a~t that

id : C Horn AT~ ~ --.--.,> C H (; m AT
k . ~

This result is needed in the proof of our second SWT,

Theorem 2.7 .Itis clear,we hope,that nowhere in proving

this remark have we used any typeof SWT; the next propo-

•..sition follows immediately from Theorem 2.7, though.

Proposition 3;5 16 AT ~~ a topofog~~af ~-afg~b~a,o~

a qua~~-~yrnrn~t~~~ topofog~~af C-afg~b~a,th~n th~ af-

g~b~a dCA) C Horn AT'~ ~

The universal representation of any topological algebra

is,as mentioned earlier,always continuous,but need not be

an embedding,even when it is injective.It cannot be,if A

is not locally convex,for example.

In the coming sections we investigate this question

and obtain results,characterising those topological algebras

for WhlCh the universal repr~sentation is actually an em-
bedding.
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3.3 A special case,the submultiplicative seminorm.

The nature of the universal representation is investi-

gated here rather more closely,for a certain class of 10-

cally convex topological algebras,and results parallel to,.
and including,those well-known for commutative Banach alge-

bras [12J are obtained.

First,a few pertinent definitions. A seminorm p on an

F -algebra A is called weakly submultiplicative iff there

is a positive real number ßp such that

p (aa") < ß p (a)p (a" ),
- p

for all a, a ..
E A, and submultiplicative iff we can take

ßp = 1. For each seminorm p on A, the kernel of p

(written Ker p ) is exactly the set of all members of A

at which p vanishes.Obviously, Ker p is a subspace of A,
being actually an ideal,if p is weakly submultiplicative.

In this case,the quotient algebra A/Ker p can be

normed,since p is constant on equivalence classes.We shall

denote the completion of this normed algebra by A- crea-p'
ting in this way a Banach algebra,whose norm p is weakly

submultiplicative, and even submultiplicative,if pis.

We call the natural homomorphism from

which a ~ [aJ, TIp' Tha t is, LaJ
A

=

into A- underp ,

TIp(a).

If now Ar is a topological algebra,and p a contin-

uous weakly submultiplicative seminorm on A , then

--'»- Ä-p
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is continuous and the map

is well-defined,continuous and injec~ive.(The first two

facts derive from Proposition 3.1 , the third from the den-

sity of A/Ker p

is compact in

pact space.

in .A-. ) Further,the set TI. (HornÄ-)p p s p

HorneAT' being the continuous image of a com-

Using the notation set out above,we glve now sufficient
.•.. conditions on AT for its universal representation to be

an embedding - these conditions being actually necessary

also,in the case described below.

Proposition 3.6

e on A, J...6

d(e) eonvenge~ J...n CeHorneAT, then e eonvenge~ J...nAT'

In thJ...~ea~e, d J...~ an ~rnbeddJ...ng.When al~o AT

J...~ eornplete,the J...rnagealgebna dCA) J...~ elo~ed J...n

CeHorneAT, beJ...ngJ...n6aet the whole algebna J...6 AT J...~ an

tR--algebna on a qu.a~J...-~!JrnrnetnJ...eL--alge.bna.

Proof: Conditions i and ii say exactly that d is an

embedding,since we know already that it is continuous.That

now the completeness of AT implies that of dCA) ln

C Horn AT is just as clear,since d is linear.Accordinglye e
dCA) is closed in C Horn AT' the last claim following nowe e
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directly from Proposition 3.5

To any submultiplicative seminorm p on an algebra A
corresponds a seminorm \! on A, defined byp

v (a) = lim (p(an)) ~p . n
for all a E A. Its properties are described ln [10, Theo-
rem 1.4.1J ; one which we need is that

~on A. If in addition,there is y ~ 1 with

,on A, then
p < y\! •- P

Such seminorms are here called y-seminorms.
The Eanach algebra A-

P
shares any such properties with

p(a)2 = lim p ((an] )2

= lim p(a )2n
< y1im p (an2) = yp(a2),

whenever a E Äp' and the seq~ence in A-. Furt-p

her, [10, Coro11ary 3.1. 7J states that

Ih E Horn A- },
P

for any ä E Ä-.p Equality occurs,if Ä-p is a complex alge-
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bra,or areal one whose every maximal ideal is an R-ideal

conditions equivalent to this are given in paragraph 7 of

section 3.1 . Thus

> sup{ !h(a) I, with hE7T "(Horn Ä-) }pp'

for all aE A, since p(a) = p(La])

A real algebra A lS said to be good wo P, where P
is a collection ot submultiplicative seminorms on A, iff

equali ty holds in (0), for all p Ei P. It is clearly suffi-

•...cient for this to hold, if every closed r -ideal of Ap
this, symbol denoting A together with the topology induced

by P - is actually an ~-ideal. The preamble now over,we

can state our next results.

Theorem 3,9

who~~ topotogy i~ gene~ated by a 6amity P oß y-~emi-

no~m~.In the ~eat ea~e we demand in addition that A be
good wo P. Then the unive~~at ~tp~e~entation oß AT i~

an embedding.

Conve~~ety,i6 it i~ an embedding,the topotogy on A

i~ gene~ated by a 6amity aß ~up-~emino~m~ (whieh a~e in

Proof The converse follows without further comment from

carries the topology of uniformthe fact that C Hom ATe e
convergence on the compact subsets of the (locally compact)
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To prove the first part,we aim to apply Proposition 3.6

Since AT is Hausdorff,each non-zero el~ment a of A is

'seen' by some seminorm pE P, that is, p(a) 1- O. From

our assumptions,though,it follows that

for some positive number Yp' and hence h(a) 1- 0, for

some homomorphism h E TI • (HornÄ-) . This shews the injecti-p p
vity of the universal representation.

Next,we have also seen that

K' = {TI "(Horn Ä-)p p
pEp}

.is a collection of compact subsets of HomeAT' Accordingly,

and

id d(A)k---> (d(A),n(K') ),

-i
d (d(A),n(K') )

are both continuous,where k and n(K') denote the topo-

logies oi'uniform convergence on tl1e compacta in HomeAT'

and on the family K' respectively,and Q is the family

{ vp I p E: P } of seminorms on A. ('l'hat d is an isometry

of semi.norms guarantees us the continuity of d-1.) Hence

d AT --)0--- d (A) c.

is a homeomorphism,since at one end AT and AQ coincide,

as topological spaces,and at the other, dCA) and d(A)kc
also coincide,and in between,the continuous maps d and

- 1
d ..
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help to complete the proof of our claim.

Corollary 3.8
P~opo~itio~. rhe~

iJ the no~mufa

p(a) = supt I h(a) I , with
.

h E 1T (Horn Ä -) }p p

1,=y
P

i~ c.fo~ed i~ C Hom Arc. c.

appfie~ to eac.h~emi~o~m p 6 P with

ii) whe~ Ar i~ c.ompfete, dCA)

a~d the~ af~o

"'.'

the unive~~af ~ep~e~e~tatio~ on Ar i~ a homeomo~phi~m.

The proof being clear,we move on to the preparations to

our last result of this sort,dealing with topological alge-

bras with a (not necessarily continuous) involution.

We recall that a set P of seminorms on an algebra A

is directed iff for any p ,p" E: P there is plie P with

pli > P V p" .

Now let (A,o) be an algebra with involution.A family P

of submultiplicative seminorms on A satisfies condition

(a)

( ß)

iff

iff

p (aa 0) = p (a)p (a0 ) , }

p(a) = 0 ~ p(aO) = 0,

for all a E A

and peP.

(y) iff the conjugate homomorphism hX of h be-

longs to Horn Ap' whenever hE Horn Ap for some p '"P.

for all
( 0 ) iff

iff

p(a), 1
= p(a)2,

and peP.
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Remark: 1) Any Banach algebra with involution satisfies

conditions (ß) and (y) automatically.

2) Condition (8) implies conditions (ß) and (y),
I

and (£) implies all the others.Plainly in both these

cases the involution is continuous.

We are now able to give a lemma,strongly resembling one

in [12, section 1.7.~ in form and proof.

Lemma 3.9
P if.J a 6amily 06 f.Jubmultipli~ative -6emÜl.O!l.m-6 OVL A, thel1

"'.'

Ap i-6 -6ymmet!l.i~ i6 aVLY 06 the 60llowiVLgf.JtatemeVLt-6 hold-6 :

1 ) P if.J di!l.e~ted,aVLd (a) aVLd (y) hold.

2) (cd aVLd (8) . hold.

3) (£) hold-6.

Proof : Suppose the claim false .,Thismeans there is a homo-

morphism hE Hom Ap' for which heb ) -; heb) for some

point b of A. In fact we can find an Hermitian element
a E A, with h(a) = 1, as noted in section 0.3 . Clearly

h(a + ln1) = 1(1 + n)

.for all natural numbers n <:;;IN.

Digressing slightly,we point out that for any submult-
iplicati ve seminorm p and any h<:;;Horn A,

h(a) < p(a)

for all aGA iff h is p-continuous.

At this point,the proofs forthe different cases start
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to diverge from each other.The first case is dealt with first.

Since h is P-continuous and pis directed,there is a

seminorm p E. P, such that h",.Horn Ap' This means the conju-

gate homomorphlsm hl( is also p-continuous. Thus

hll (a - n 1.1 ) = h ( (a - n 11 ) 0 )

= h(a + n11) = -1(1 + n),

for all n GIN. However, by the p-continui ty of hand h" ,

4< .• and

and so

p(a + nlJ) > Ih(a + nd) I = 1 + n

> Ih.¥ (a - n d) I = 1 + n,

(1 + n)2 < p(a + nd)p((a + nd)O)

= p (a 2 + n 21) , by ( a)

< ;: n 2 ,

for all n E N, an impossibili ty.Thus case 1 is proved.

Case 3 being a particular instance of 2, we are fini-

shed when case 2 is proven. With this as our intention,we
relilarknext that

p (x +lY) > max { p (x) )p (y) }

when x anp y are Hermitian ln A, and p is any semi-

norm on A satisfying (8). ( For then

p (x + lY ) = P (x - lY),

and hence
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p(x) < i( p(x + lY) + p(X - lY) )

= p(X + lY)

by the triangle inequality.By symmetry,the other ine~uality

needed is also true.)

As before,we have hG Horn Ap' and an Hermitian element

a E A with h(a) = 1. The first fact shews the existence of

a finite subset P' of P, such that h is P'-continuous.

Let p = maxP' (that is,

p(b) = max{ q(b) I qE p'.}

'for all b E A.) Then p lS a submul tiplicati ve seminorm,

not necessarily satisfying (8). Nevertheless,

1 + n = ,Ih(a + nll)1

< p(a+nl1),

for all natural numbers,and furthermore there is a seminorm

depending on n, for which

p(a + nll) = p(a+nll).n

However, p(a-'-nll)n > n, as remarked above.Consequently,

n(n + 1) < p (a + nll)p (a - nll)n - n

for all n € N.Again this is impossible, and the proof of the

lemma is in this way completed.
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Note: The last inequality derives from the triahgle ine-

quality,together with the fact that p(7) = 1. Now for

any seminorm q satisfying (a), we have

slnce = 1°. Hence,in the lemma, p(l) = max{q(l)lq.: P"}

and so p(1) = 1, as required.

Proposition 3.10 Suppo~e Ar i~ an Hau~do~66 topologi-

~al C-algeb~a with involution,who~e topology i~ gene-
4ated by a 6amily P 06 ~ubmultipliQative ~emino~m~.

16 in additio n QO nditio n~ .(a) and (ß ) a~e ~ati~-

6ied,then the unive~~al ~ep~e~entation i~ an embedding,

and 6o'Lall a € A and p € P,

p(a) = sup{ Ih(a)! I h G TI • (Horn Ä -) }.-p p

Proof: It is only necessary to shew that p(a2) and p(a)2

are always equal,and then appeat to Theorem 3.7 and Corol-

lary 3.8 i

Accordingly, let a'"A and peP be arbi trarily chosen.
Then

= p ( aa 0 ) 2
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by applying (a) several times.If p(a2) < p(a)2, this

equality can be preserved only if p(aO) = 0, and with

this,also p(a) = 0, using (S). The ensuing contradic-

tion establishes the claimed equality,and the theorem.

Corollary 3.11

th~ univ~~~at ~~p~~~~ntation i~ a hom~omo~phi~m i6

1) AT i~ compt~t~ and qua~i-~ymm~t~ic,and condi-

tion~ (a) and (ß) hotd,o~

2) AT i~ compt~t~, P i~ di~~c.t~d, and att 06

(a) , ( ß) and (y) hotd,o~

3) Ar i~ compt~t~, and 60th (a), (8) hotd,o~

4) Ar i~ compt~t~, and (s) hotd~ .
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4 Applieations and examples.

4.1 Compaetness and loeal eompaetness.

We apply here the results of the previous ehapter to

get a different proof of Binzls eharaeterisation [8, Satz 9J
of eompaet e-embedded. spaees in terms of C X, and then ex-c.

tend it as far as possible to loeally eompaet e-embedded

spaees.Two examples follow,shewing that little better ean

be done,for non-eompaet spaees.These examples have a number

of other properties of interest,some of whieh we point out.

For any eonvergenee spaee X, we say that C X is ac.

Banaeh algebra,when it is topologieal (and automatieally

eomplete - see L7J or [3J), and the topology is norm-

able.Proposition 3.1 is now adapted to our present ends.

Lemma 4.1 When Cc.i i~ a Banac.h algeb~a,the ~pac.e

Horn C X i~ a c.ompac.tHau~do~66 topologic.al ~pac.e,andc. c.

C X c.a~~ie~ the topology 06 uni60~m c.onve~genc.e on x.c.

Proof: Suppose p to be that ncrm on cx generating the

topology on Cc.X. Then by 3.1 we have

Horn CXs
ld
-+

Li
--* Horn C Xc. c. .

are both homeomorphisms. Next,

J LdC X --~ C Horn C X ~ C Horn CXc. c. c. c. n s

are also homeomorphisms,thanks to Theorem 0.18 iv and Pro-

posi tion 1.6 . However, for eaeh funet ion f € CX,
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cl.
C x ----~ C Hom C Xn n ~ ~

is a norm isometry,for all spaces X. These observations,

when put together,verify the lemma.

Theorem (Binz) 4.2 Fo~ a»y ~-embedded ~o»ve~ge»~e ~pa~e,

the nollowi»g ~tateme»t~ a~e equivale»t:

il X i~ ~ompa~t.

iil X i~ ~ompa~t a»d topologi~al.

iiil C X~
nily ~a~~yi»g the topology on u»ino~m co»ve~ge»~e 0» xl.

Proof Clearly ii implies i, and we have already seen

in Proposition 1.6 that i implies iii. Now supposing iii,

we note that c-embeddedness and Lemma 4.1 together imply

that X is compact and topological.

In order that , ...
III -9 ii ' 01' even iii 9- i

should be true,c-embeddedness 01' something very close is

needed - in example 4.4 aspace X is constructed,satis-

fying .iii, and for which

i X )50 Hom C X
~ ~

is a bijection,but X is not compact.

The Extension to locally compact spaces follows just as

directly out of the apparatus we have set up.
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Theorem 4.3 Fon any c-embedded ~pace X, the ~tatement~

.
i~ a topological algebna (who~e topology

given below ane equivalent:

iJ X i~ locally compact.

iiJ X i~ locally compact and locally topologieal .

iJ.i J C Xc
i~ nece~~anily that 06 uni60nm convengence on the com-

pact ~ub~et~ 06 xl.

Proof: The term I locally topological I is tobe ..taken

as meaning that the space under discussion has a covering

~system whose members all inherit a topological convergence

structure from the parent space.

Trivially, I ••
II -9-i' , and Proposition 1.11 shews

that I i ='> iii I • Last ,Theorem 3.3 and c-embeddedness

imply the local compactness of X. However,each compact

subset of X is topological,by Theorem 4.2, so that X

is also shewn to be locally topological.

Two examples (4.5 and 4.6) of c-embedded locally

compact convergence spaces are presented,one not principal,

the other principal but not topological.These shew,inter

alia,it isnot possible to obtain a result as sharp as Binz's

in the locally compact case ~ namely,a c-embedded locally

compact space _n_e_e_d_n_o_tbe topological.

ExamplE: 4.4 Throughout these examples,we are concerned

with real-valued functions only,and use CX to mean C(X,R)

exclusively. Now let Z be that convergence space whose
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underlying set is the interval [0, 1J, and whose structure

is the usual topology everywhere except at O. There the

structure is to be principal,with a base for the filter

~o being the set

It is easy to check that Cz = C[0, 1J, and also that

c Z carries the topology of uniform convergence.However,c.

Z is not compact,since there is no finite 'subcover '

for the covering system.•...

For the next two examples,let D be the right open

half plane in <[, and X be the set D u {O}, wit.h the

natural topology,in which the neighbourhood filter at a

point X E. X is denoted T .x --I--

I

Example L~. 5 Let (A) be a sequence of closed discsn

all contained in X and all containing the point O. More,

we suppose the sequence nested (that is,increasing strictly)
.and that

00

X = U A . For each nEIN, let,,:( n

~n = T nA .o n

The space X' has underlying set X, and carries the

final structure induced by the family of injections

An ~ X I n E 1N }.
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Clearly if xeD then xiP lS a paip from X~ iff the fil-

ter <P is finer than Tx' and iP -+ 0 in X~ iff

<P > jn(<pn)

for some ne./N.

We shall prove that X~ has the following properties:

1) It is a non-principal locally compact c-embedded

convergence space.

2) There are continuous functions on X~ which are

not continuous on X.

3) The spaces cX~, tX~ and wX~ all coincide,and

are not locally compact.

Proof of 1: Evidently X~ is not a principal space.Part

3 of Theorem 1.9 tells us that X~ is locally compact,

being a final convergence structure derived from a family

of locally compact spaces.Since

id X~ --""'" X

is continuous,as one sees from the definition of X~, it
follows' that

.
CX ~ CX~. One deduces from this that

i X~ --7 Horn C X~
c. c.

is injective,allowing us to identify the sets X and
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The last thing to check in this group of properties is

the c-embeddedness of X~. Let then e~ denote the neigh-

bourhood filter at 0 ln C X~c. (which exists,since X~

is locally compact). One can now readily see from the defi-

nition of the structure of continuous convergence that x~

is a pair from Horn c' X~
c. c. iff

and

w ( e ~ x ~) -+ 0 ln 1R.,

f(~) -+ fex) ln 1Q

for all f E CX~. The second of these requirements is true

in particular for functions from CX, and so, for all x EX,

~ -+ x in Horn C X"c. c.

implies that is finer than T.x
When x is not zero,this alone suffices for x~ to be

a pair from X~. On the other hand,if ~ -+ 0 in Horn C X~ ,
c. c.

there are B '"e~ and C ~ ~ with

w (B xe) <;; [-1, 1J .

Thus there is a positive number ~ and a compact subset K
.of X~ for .which

B ::::> { f E CX~ f (K ) ~ [- ), , J }.
However,the inequalities ~ < 1 and C ~ K must hold

true,otherwise even the functions in CX yield a contradic-

tion. Theorem 1.9 is used again,to shew that K, as a com-
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pact subset of X', lies in A n for some n E\N. This shews

that has abase on A , and hence thatn >

With this,we have proven also that X' is c-embedded.

Proof of 2: Let (x) be a sequence in X, converging ton

o ln X, and such that X 6 A 1""A, for all nEM. Withn n+ n
the help of Tietze's extension theoI'em,we can construct a

function f on X, satisfying

ii). f(xn) = 1, for all nd~, and

iii) the restriction of f to A is con-n

tinuous ,for all n ~ IN.
It is clear that fE CX', by the universal property of

final structures,and as well, f .cannot be continuous on X.

Proof of 3 The identity maps

cX' ---";) tX'

are both continuous,as pointed out on page 7. Thus to shew

the identity of all three spaces,it is enough to shew that

is continuous too.

id wX' --.-'>- cX'

From the definition of wX', a filter ~ converges to

x in wX' iff f (~) -+ f (x) in IR, for all f E CX'. In par-

ticular, q, > T, which reduces our task to those filtersx
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suspected of converging to o.

00

Thus in proving that each member of the filter ~Ijn(~n)

contains a wX.-neighbourhood of 0, we shall have proven all

our claims.
t>OTo each AE A j (~) we associate a monotone decreasing

n=1 n n
sequence (a) in the following fashion:n

There is an open disc N(O,al) centred at 0 and cf

radius al, such that

-<.. .. ,

For n > 1, we choose a with 0 < a < a l'n n n- and

A nN(O,a ) <;; A (lA.n n n

The boundary of the disc N(O,a ) and of An-1 meet. n
at points u v for all n > .., The points u are ton' n' .L • n
be all above the real axis,and the v 's all below. Sincen

-the sequence (an) is monotone decreasing,we can join

to to and vn to by straight

lines, for all n ~ 2~ and obtain in this way a continuous

curve enc losing a portion U of X, wi th 0 4 U.
By construction, U ~ A. We now shew that U is a neigh- -I

bourhood of 0 in wX. ~ To see this,we construct a function
f E CX. wi th U = {xeX f(x)G (-1,1) }.

The set AI~ U is closed in Al, and does not meet O.
That means that
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and also 0 ~ gl ~ 1, für some gl E CA1, since Al is a com-

pletely regular space. Arguing by induction,we suppose we

have g € CA , and thatn n

=

g (A ""U) = {1}, andn n

Along the common boundary of An and An+1""'-(Anu U), the

function gn is constant, 1. Consequently,we can define a
"~J.,

continuous function hn on A u (A +1'" (A u U)), extendingn n n

g , and constant 1 on the remaining part. Now since then

domain of hn is closed in An+1; Tietze's theorem gives us
,

gn+1 € CAn+1 extending hn, bounded between 0 and 1, and

constant 1 on An+1'" U.

The desired map f is exactly that,whose restriction to

each An is gn' for f is continuous on X', and

Last,one can see that the (identical) spaces cX', tX'

and wX' are not locally compact,by noting that if any neigh-

bourhood of 0 in wX' is ccmpact,the~e i~ on~ of the: form

for f in CX' with f(O) = o.
Such subsets are not compact,for a cover exists,without

finite subcover. The set F = -l[ l\ -1 1f -1 1 f (-~-), ~ . 2'2 lies

entirely in D, and is not compact" as a subset of C, since
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° is an accumulation point of F in the usual topology.

Let S be a cover of F by open subsets of D, admitting

no finite subcover.Then is a cover for

also admitting no finite subcover.

Thus none of these sets f-l[-l,~ lS a compact neigh-

bourhood of ° in wX', and hence wX' is not locally com-

pact.Next comes the second example of this sort.

Example 4.6 Let X" be that space whose underlying set

~is X, and whose structure is the final structure induced

by

J D --")r-- X, and

j ": [0,00) ---'»- X.

Weput <t" = j"(Ton[O,oo) ),observingthatfor xED,

</> -+ x in X" iff </> > T ,- x

and ,O</> is a pair from X" iff </> > </>". Further ,

id X" ---';0 X'

is continuous,so that CX""2 CX'.

Some properties of X" of interest to us are:

1) there are functions in CX" which fail to be

continuous on

2) X"

X' ,

is a principal c-embedded locally compact

convergence space which is not topological,and
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3) the spaces tXll and HX" are identical,and not

locally compact.

perhaps we should explain why these claims are of inter-

est,before going any further.First,that non-topological loc-

ally compact convergence spaces exist,is itself interesting,

particularly in view of our extension of parts of Gelfand

theory to topological algebras,involving local compactness

through Theorem 3.3 . Second, it Hould be interesting to know

exactly when c-embedded locally compact spaces are topological.

Our example shews that to require that they be principal lS
'"
not enough. Last, we suspect that if Z is locally compact

c-embedded, and if id : Z~ Z'--:;..wZ are both contin-

uous, then Z' lS also locally compact only if Z = Z' . Our

examples at least partially bear this out.

,
Turning nOH to the proofs of Dur claims,we observe that

the second may be proved in the same way as its counterpart

in the previous example,the details being accordingly omitted.

Proof of 1: The function f definedfor all'.

points XE D by

f (x) = 6-<[2- J, -
. lxi

and by f(O) = 1, is continuous on Xll
, but not on X'

as one readily verifies.

Proof of 3: We know already that id : tXll -----7 wXll

is continuous,being actually a homeomorphismwhen restricted
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to D. Hence,as in the previous example,it is enough to shew

that every tX"-neighbourhood of 0 is even a wX"-neigh-

bourhood.

With this ln mind,we introduce the idea of a standard

triangle,which is nothing more nor less than the set of

points in the open triangle with verticesO, u, and v,

together with the point 0, whereby u and v are complex

numbers such that u + v is real and strictly positive.

Each standard triangle is a wX"-neighbourhood of 0, as can

be seen with the help of the function f constructed in the

first part of this example.

It will be shewn that each tX"-neighbourhood of 0 con-

tains a homeomorphic image of a standard triangle,and this

will be th"m the proof that wX" and tX" are the same.

Digressing momentarily,we recall that the function

d ( ,B) : Y ----?'- IR giyen by the formula

d(y,B) = inf{ d(y,b) I bE B }

for y E Y s is continuous , for each subset B of the metric

space Y. In particular,if A is a tX"-neighbourhood of 0,

the sets A f\ [0,00) and AriD are open in [0,00) and D

respectively,when A itself is tX"-open.

For each x e X, let

=

and note that the open disc N(X,A) ~ AnD, for each XE A(jD.
X

Now suppose that [0,a1J ~A, and" 0 < a < a' ~ a1. It fol-
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lows from the foregoing digression that ~x attains a posi-

tive minimum on this interval. Let ~1 denote the lesser of
1 and the minimum of ~x' computed on the interval"2al

[~al ,al]' then let n1 be the smallest natural number such

that la < (n1 - 1)~1' Clearly then,for i = 1, ... n -121- , 1

the open discs all lie in An D, where x.
1

is
the point a -. 1 (i - 1)~1'

We repeat ~his construction,for the interval [}a2,aJ,

for = x . And then again - and so on. We should,ofn1

course,do it formally with induction; the procedure lS clear.

In this way the interval (O,a~ has been covered by an

,infinite sequence of open discs of decreasing ra-

dius lying. 1n A ("')D. Further ,the points ux' vx 01' inter-

section of the boundary of the x-th with the x+l-th

disc allow us to draw a curve (by'joining u1 to and

Ux to ux+1' and Vx to vx+1 as in the earlier example)

enclos1ng a ,'-region U, W1 th U <;;; A. Naturally, we have

included 0 in U as weIl.

Next we define a continuous bij ection g: X" -->~ X"

with the property that the set g(U) lS a standard set, in

fact that with vertices 0, u1, and This will establish

the result,for then U is a wX"-neighbourhood 01' 0, con-

tained in A.

The ~apping g is constructed simply by vertical dilation,

as folIows: if u =!R Cu11, there is a continuous function

whose graph is that portion cf the curve
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above the real axis.Now is defined by

g()l + lV) )l + 1\), if )l.:.. 6{[uJ,

g ()l + 1\» = )l + 1V)ljl uJ/O{(uJß()l) otherwise.
. .

except for g(O) = 0, for all +
)lE 1R and \)E: IQ.; the con-

tinuity of g is easy to check,since g leaves the posi-

tive real numbers unchanged,and the restriction of g to

D is also continuous,as ß()l) is never zero.One can then

verify that g is indeed a homeomorphism of X" onto it-

."'self, and of wX" onto itself also.

Hemark 4.7 The space X" ~ust given enables us to con-

trovert two conjectures; it is not true that

i) the adherence operator in

for all spaces Y, and

C Y is idempotent,c.

ii) the algebraic operations are continuous in the

principal space associated to C Y, for. all spacesc. Y.

Proof : We have seen that the adherence operator in X" ,
and hence in Horn eXIl is not idempotent.The latter is,how-c. c.. ,

ever,a subspace of C eXil, whose adherence operator there-c. c.
fore can not be idempotent (L.emma 0.4 i ).

Next,were the operations in ce c X"c. c. continuous,this

principal space would already be topological (since princi-

pal convergence groups are topological (2, section 3.3,
Satz 5J). This would contradict the first part of this rem2rk,
as then the adherence operator in C C XtJ would be idempotent.c. c.
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4.2 The subalgebra A of CX.

Here a particular,already well-known,subalgebra A of

CX is introduced,and itsrelation to X, and particularly

to the subset of locally compact points of X, briefly in-

dicated - at least for completely regular topoiogical spaces

X. Naturally we fit Ae into this relationship.

On the way,we run across a large class of spaces,for

which Aseparates the points of X, but does not generate

the topology on X. Our Stone-Weierstrass theorem applies,

(name:ly,Corollary 2.6), whereas those of Binz and Feldman

do not.

Throughout this section, X is a non-compact convergence

'space,later restricted to be also 80mpletely regular töpolo-

gical. Thus X is always dense in its one point compactifi-

cation X ; another symbol we recall - the coarsest filter

converging to 00 in X is ~ . We now define
00

A = {f E CX I f(~';'f\ X) is a Cauchy
filter- ln lF }, and

A = {f E CX I f(~oo"X) is a Cauchy
-filter in rF}.

It is an easy calculatiorrto shew that

(induced by the inclusion map J -X ~ X ) is a norm-pre-

serving isomorphism,allowing us in what follows to use An
-and C X interchangeably.n
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Proposition 1.6 shews that -C X is a Banach algebra,
c.

under the uniform-norm topology,and hence (Proposition 3.1 )

id : Horn C X ~ Horn CXc. c. s

is a horneornorphisrn,and Horn As
""0;

(that is, Horn CXs under an-

other name) is a cornpact Hausdorff topological space.Further,

is surjective,and as a result, Horn A\ix(X) can contain at

most one point,
4.

A

00. In fact,the sets Horn A and iX(X)

are equal if X is not locally cornpact.Clearly the one

point cornpactification of the space
1"'

.HornA again.s

The sets A and Aare given in a different,but equi-

valent,way when X is cornpletely.regular:

A = { fECOX I f is constant on BX,\X },

and
A = { f E' CX f ßX~ !F. is

~
ßX\ Xconstant on },

with ßX the Stone-6ech compactification of X, and 1 the

Stone extension of f e CX. Frorn now on ~itle consider cornpletely
regular spaces only.

The set Xl of all points in X possessing cornpact neigh-

bourhoods is open in X, and locally cornpact as a subspace

I ._-
I

of ~. Moreover, Xl and Horn A ~{~} are obviously horneo-s
rnorphic,and so A generates the topology on Xl.
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The algebra A can be regarded as a subalgebra of CeXI'

in which it is dense,by the classical SWT, Thus A is closed

in CeX1 iff it is the whole algebra CXI' However,from the

foregoing remarks,we know that A = C~, This means simply

that the Stone-~ech and one point compactifications of Xl

coincide ,shewing that Xl is almost compa-~t ~3, page 95J,

Conversely,if Xl lS almost compact,then A

in particular closed in CeXI'

= CXI' being

Let Xt denote the set ßX ~ Xl' The equi valence rela-

4tion generated on ßX by A, for which the symbol was

used in chapter 2 , has equivalence classes

=

=

{x}, if x E; Xl' and

otherwise.

Further,since each function in A' is bounded on X, the con-

ditions of Corollary 2.6 are fulfilled,and we conclude

a(A) = {f e CX I fis constant on xtn X },

(When XtnX = 0, this is to be interpreted as no restrietion

at all; that is,if X is locally compact,then -A is dense

Two possibilities arise, when A lS closed in CeX'

First, if xtn X is empty, then A = CX, which shews that

X is almost compact. Second, when X is not locally com-

pact, the set xtn X of points without compact neighbour-

hoods in X is dense in Xt' for otherwise there would be

functions 1n CX constant on Xtl\ X but not on ßX"\.X,

contradicting our assumption that A is closed in CeX,
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In both cases the converse is clearly true.

Example 4.'7 A completely regular topological space lS

~called almost locally compact iff it has at most one point

without compact neighbourhoods. When X is almost locally

compact but not locally compact, Aseparates the points of

X but does not generate the topology thereon. Nevertheless

A is dense in C~X, by Corollary 2.6

An example of such aspace is the space X of Examples

4.5 and 4.6. Thus our relaxation of topology-generation

4requirements in our SWT is genuine, though small.

Ta summarise, we state

Theorem 4.8 Suppo~e X l~ a ~ompletely negulan topolo-

gl~al ~pa~e. Then the oollowlng ~tatement~ hold:

1) A l~ ~lo~ed ~n c X <=> ( elthen X l~ almo~t~

2) X l~ almo~t lo~ally ~ompa~t ~ A ~epanate~

the polnt~ 00 X ~ A l~ den~e in C X.~

3i X i~ lo~ally ~ompa~t ~> A genenate~ the topo-

logy 00 X <='> A ha~ a (ne~e~~anily ul1iquel den~e~

maximal ideal <,;.> C~X i~ topolog-{~al.

4) X. i~ almo~t ~ompa.c.t<='> A = CX <.='>

A ~epanate~ the poil1t~06 X and i~ ~lo~ed in C X.~

5) X i~ lo~ally ~ompa~t and a-~ompa~t . <:--:> the ~et~

A al1d A alteunequal <=> C Xc i~ topologiQal, the topo-

logy ~temmil1g onom a tnal1~latiol1-invanial1tmetni~.
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The proofs of 1 and 2 have already been sketched.
That of 3 we give now.

When X is a locally compact Hausdorff topological
~

space, X is a compact Hausdorff topological sI?ace,whose

topology is generated by CX. Thus A ~enerates the topo-
logy of X.

Next,let A be topolo~y-generating,and Ye ßX'X. Then

Y E. Horn A. However, A is a monotone subalgebra of CX and so

Y : A > ~ lS not continuous (Proposition 0.15 ). Hencec.
the kernel of Y is a non-closed maximal ideal in A , and~ c.
accordingly dense (since the adherence of any ideal is an
ideal as well).

The maximal ideals of A are in one-to-one correspon-

dence with the set Horn A, as is known from Banach algebra

theory.If one of these is dense in

corresponding to ~, since ....
00

A , it can only be thatc.
lS the only homomorphism

.with any chance of being in .Horn A '.iX(X). This means that

X is locally compact - for otherwise ~ coincides with

some point evaluation on X, as noted earlier in this section .

.Last,the equivalence of the first and last statements

comes immediately from Theorem 4.3, and with this,the proof
of claim 3 is complete.

We have already dealt with 4 in the observations pre-

ceding this theorem,and so only 5 remains to be proved.

The equivalence of the first and third conditions therein

is (modulo Theorem 4.3 ) a well-known result from the theory

of the topology of uniform convergence on compacta - see

[14, Theorem 2J, for example.
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Now let X be a Hausdorff, a-compact.,locally compact

but not compact topological space.Then one can arrange that
00

x = U A?:, where A?:+1
5cl S S

Ar;+1"" Ar; is non-void,and

lS a neighbourhood of Ar;'.
Ar; is compact, for ~ll r; €- N.

Using these sets,it is straightforward to construct a func-

tion f" CX such that
--.Jf(ep nX) -+00 in F. In fact,for each

00

positive integer s, there is f € CX, wi th 0 < f < 1,s s -

~(This derives from the complete regularity of X, and the

compactness of As.) Now the function

f = X --~~ lF

is weIl defined and continuous,and further,

f(ep0X)-+00 in IF.
. 00

.Hence fe A\A.

On the other hand,if ~~A is non-emptY,containing a
function f, say ,then for each peIN, the set

is compact (beinga closed subset of the compact space X).

However the collection {Kp. I p cN} clearly forms a cover-

ing system for X, which is thus shewn to be locally compact
and a-compact,as required.

(Note that in the above paragraph,all we use is that

~\A is non-void,and general properties of the one point
compactification.)
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