<u>A</u> <u>functional</u> <u>analytic</u> <u>description</u>

of normal spaces

by E. Binz and W. Feldman

Nr. 11

(1971)

A functional analytic description

of normal spaces

Throughout the paper X will denote a completely regular (Hausdorff) topological space and C(X) the R-algebra of all real-valued continuous functions on X. When this algebra carries the continuous convergence structure [1], we write $C_c(X)$. We note that $C_c(X)$ is a complete [5] convergence R -algebra [1].

Our description of normality reads as follows: A completely regular topological space X is normal if and only if $C_{c}(X)/J$ (endowed with the obvious quotient structure, see section 1) is complete for every closed ideal $J \subset C_{c}(X)$.

1. Residue class algebras

For a closed non-empty subset $A \subset X$, let I(A) denote the ideal in C(X) consisting of all functions in C(X) vanishing on A . Since the kernel of the restriction map

r: $C(X) \longrightarrow C(A)$,

sending each $f \in C(X)$ into its restriction f | A, is, I(A), we have the following commutative diagram of R-algebra homomorphisms:

(I)

where π is the natural projection map and \overline{r} the unique map factoring r. With $C_c(X)/I(A)$ we denote C(X)/I(A)endowed with the natural quotient structure (in the category of convergence spaces) of $C_c(X)$ with respect to π . This means that a filter converges to zero in $C_c(X)/I(A)$ if and only if it is finer than the image (under π) of a filter converging to zero in $C_c(X)$. Endowing C(X) and C(A) with the continuous convergence structure and C(X)/I(A) with this quotient structure, all the maps in diagram (I) are continuous.

<u>Proposition</u> 1. The R-algebra monomorphism \overline{r} is a . homeomorphism from $C_{c}(X)/I(A)$ onto a subspace of $C_{c}(A)$.

<u>Proof</u>. All we have to show is that a filter $\overline{\Theta}$ on C(X)/I(A) for which $\overline{r(\overline{\Theta})}$ converges to zero in C_c(A) also converges to zero in C_c(X)/I(A). That is, we must construct a filter Θ on C_c(X) converging to zero with the property that $\pi(\Theta)$ is coarser than $\overline{\Theta}$.

Let $\overline{\Theta}$ be a filter on C(X)/I(A) with $\overline{r}(\overline{\Theta})$ convergent to zero in $C_c(A)$. Hence for each p ϵ A and each positive real number ϵ , there is a neighborhood $U_{p,\epsilon}$ of p in X and an $F'_{p,\epsilon}\epsilon \overline{r}(\overline{\Theta})$ contained in r(C(X)) with

|f´(q)| ≤ ε

for all $f \in F_{p,\varepsilon}$ and all $q \in U_{p,\varepsilon} \cap A$. Without loss of generality, we can assume that each $U_{p,\varepsilon}$ is a cozero-set in X. To facilitate the construction of our filter, we choose inside of each $U_{p,\varepsilon}$ a zero-set neighborhood $\tilde{U}_{p,\varepsilon}$ X of p. Furthermore to each y in X\A there exists,

in

-2-

disjoint from A , a cozero-set neighborhood V_y of y in X inside of which we fix a zero-set neighborhood \tilde{V}_y of y in X . We intend to show that all the sets of the form

(*)
$$F_{p,y,\varepsilon} = \{f \in C(X): f | A \in F'_{p,\varepsilon}, f(\tilde{U}_{p,\varepsilon}) \subset [-2\varepsilon, 2\varepsilon] \}$$

and $f(\tilde{V}_{v}) = \{0\}$

for $p \in A$, $y \in X \setminus A$, and ε a real number greater than 0, generate the desired filter. We first demonstrate that

(**)
$$r(\bigcap_{i=1}^{n} F_{p_i}, y_i, \varepsilon_i) \supset \bigcap_{i=1}^{n} F_{p_i}, \varepsilon_i$$

where p_i , y_i , and ϵ_i are as above. To this end, let $f' \epsilon \bigcap_{i=1}^{n} F'_{p_i}$, and j a fixed integer between 1 and n We now choose an element $f \epsilon C(X)$ for which r(f) = f' and associate to this function the sets

$$P_{j} = \{q \in \tilde{U}_{p_{j}}, \varepsilon_{j} : |f(q)| \ge 2\varepsilon_{j}\}$$

and

$$Q_j = \{q \in X: |f(q)| \leq \varepsilon_j\} U (X \cup p_j, \varepsilon_j)$$

It is clear that $Q_j \supset A$, and furthermore, P_j and Q_j are disjoint zero-sets in X. Hence there is a function $h_j \in C(X)$ separating P_j and Q_j , that is,

$$h_j(q) = 0$$
 for all $q \epsilon P_j$
 $h_j(q) = 1$ for all $q \epsilon Q_j$

and

Without loss of generality, we may assume that $h_{,j}(X) \subset [-1,1]$

Similarly, we pick a function $k_i \in C(X)$ with the property that

$$k_j(q) = 0$$
 for all $q \in \tilde{V}_{y_j}$,
 $k_j(q) = 1$ for all $q \in X \setminus V_{y_j}$

and $k_j(X) \subset [-1,1]$. The function $g = f \cdot h_1 \cdot h_2 \cdots h_n \cdot k_1 \cdots \cdot k_n$ is an element of $\bigcap_{i=1}^{n} F_{p_i}, y_i, \varepsilon_i$ and extends f'. Now the filter Θ generated on C(X) by all the sets of the form (*) obviously converges to zero in $C_c(X)$. Because (**) is satisfied, $\pi(\Theta)$ is coarser than $\overline{\Theta}$, and thus the proof is complete.

Next, we will investigate the universal representation [2] of $C_c(X)/I(A)$, i.e., the R-algebra $C_c(Hom_cC_c(X)/I(A))$ and the R-algebra homomorphism

d:
$$C_{c}(X)/I(A) \longrightarrow C_{c}(Hom_{c}C_{c}(X)/I(A))$$

where $Hom_{c}C_{c}(X)/I(A)$ denotes the space of all continuous R-algebra homomorphisms from $C_{c}(X)/I(A)$ onto R together with the continuous convergence structure. The map d sends each element $\overline{f} \in C_{c}(X)/I(A)$ to the function_defined by $d(\overline{f})(h) = h(\overline{f})$ for each $h \in Hom_{c}C_{c}(X)/I(A)$.

We intend to establish a relationship between $\text{Hom}_{c}\text{C}_{c}(X)/I(A) \text{ and } A \text{ . The homomorphism } \pi \text{ induces}$ a continuous map

 π^* : Hom_cC_c(X)/I(A) \longrightarrow Hom_cC_c(X),

-4-

sending each $h \in Hom_{c}C_{c}(X)/I(A)$ to $h \circ \pi$. By $Hom_{c}C_{c}(X)$ we mean the collection of all continuous R-algebra homomorphisms from $C_{c}(X)$ onto R together with the continuous convergence structure. As pointed out in [3] the map

$$i_X: X \longrightarrow Hom_c C_c(X)$$

defined by the relation $i_X(p)(f) = f(p)$ for all $f \in C(X)$ and all $p \in X$, is a homeomorphism. Hence the map $i_X^{-1} \circ \pi^*$ maps $Hom_c C_c(X)/I(A)$ continuously into X. In fact, the range of this map is in A since $(i_X^{-1} \circ \pi^*)(h)$ for any $h \in Hom_c C_c(X)/I(A)$ is sent to zero by all the functions in I(A) and A is a closed subset of a completely regular space. Next, we show that $i_X^{-1} \circ \pi^*$ is actually a bijection onto A. Because π is surjective, the map $i_X^{-1} \circ \pi^*$ is clearly injective. For the surjectivity, choose a point $p \in A$. The homomorphism $i_X(p): C_c(X) \longrightarrow R$ annihilates all the functions in I(A), and therefore can be factored to a continuous homomorphism h on $C_c(X)/I(A)$. It is clear that $(i_X^{-1} \circ \pi^*)(h) = p$.

Proposition 2. The map

$$i_{X}^{-1} \pi^{*}$$
: Hom_cC_c(X)/I(A) \longrightarrow P

is a homeomorphism.

<u>Proof</u>. Since $i_X^{-1} \pi^*$ is a continuous bijection, it remains to verify that $(i_X^{-1} \pi^*)^{-1}$ is also continuous. We have the commutative diagram

where \overline{r}^* sends each $h \in Hom_c C_c(A)$ to $h \circ \overline{r}$. Since both i_A and \overline{r}^* are continuous, the proposition is established.

2. Closed C-embedded subsets

A closed non-empty subset A of a space X is said to be C-embedded if every continuous real-valued function defined on A has a continuous extension to X, that is to say

r: $C(X) \longrightarrow C(A)$

is surjective. For example, every compact subset of X is C-embedded.

<u>Theorem</u> 1. A closed non-empty subset A of a completely regular topological space X is C-embedded if and only if $C_{c}(X)/I(A)$ is complete.

<u>Proof.</u> If A is a C-embedded subset of X, then the map \overline{r} is a homeomorphism (see proposition 1) and hence $C_c(X)/I(A)$ is complete. Conversely, assume that $C_c(X)/I(A)$ is complete. Proposition 1 implies that $\overline{r}(C_c(X)/I(A))$ is a closed subalgebra of $C_c(A)$. By a type of Stone-Weierstrass theorem proved in [5], which states that a closed subalgebra

8. E

of $C_c(Y)$ that contains the constant functions and determines the topology (see [6], p. 39) of the completely regular topological space Y is all of C(Y), we conclude that the map \overline{r} is surjective. Thus A is C-embedded.

<u>Proposition</u> 3. A closed non-empty subset A of a completely regular topological space X is compact if and only if $C_{c}(X)/I(A)$ is normable.

<u>Proof.</u> For A compact, $C_c(A)$ is a normed algebra under the supremum norm. It follows from proposition 1 that $C_c(X)/I(A)$ is normable. On the other hand, if $C_c(X)/I(A)$ is normable, then $Hom_cC_c(X)/I(A)$ is a compact topological space (see [7]) and hence A is compact by proposition 2.

<u>Corollary</u>. Let A be a closed non-empty subset of a completely regular topological space X. If $C_{c}(X)/I(A)$ is normable, then it is complete.

3. Normal spaces

A completely regular topological space is normal if and only if every non-empty closed subset is C-embedded (see [6], p. 48). In view of theorem 1, we know that the space X is normal if and only if $C_c(X)/I(A)$ is complete for every non-empty closed subset $A \subset X$. Since every closed ideal in $C_c(X)$ is of the form I(A) for a non-empty closed subset A of X (see [4]), we state

-7-

<u>Theorem</u> 2. A completely regular topological space X is normal if and only if $C_{c}(X)/J$ is complete for every closed ideal $J \subset C_{c}(X)$.

References

 Binz, E. and H.H. Keller: "Funktionenräume in der Kategorie der Limesräume", Ann. Acad. Scie. Fenn. A,I, 383, 1-21 (1966)
Binz, E.: "Bemerkungen zu limitierten Funktionenalgebren", Math. Ann. 175, 169-184 (1968)
---- : "Zu den Beziehungen zwischen c-einbettbaren Linesräumen und ihren limitierten Funktionenalgebren", Math. Ann. 181, 45-52 (1969)

4. ---- : "On Closed Ideals in Convergence Function Algebras", Math. Ann. 182, 145-153 (1969)

5. ---- : "Notes on a Characterization of Function Algebras", Math. Ann. 186, 314-326 (1970)

6. Gillman, L. and M. Jerison: "Rings of Continuous Functions", Van Nostrand, Princeton (1960)

7. Schroder, M.: "Continuous Convergence in a Gelfand Theory for Topological Algebras", thesis, Queen's University