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Abstract of the paper: An Approximation Theoretic Alter-
native To Asymptotic Expansions

For Special Functions.

Abstract: Some classes of functions, which are solutions
of ordinary linear homogeneous differential equations

of second order with an irregular singularity'at infinity
possess asymptotic expansions with respect to a real po-
sitive variable at infinity. In the case of non-oscilla-
tory behavior of such functions these asymptotic expan-
sions can be replaced by near-best relative approximations
by polynomials of the reciprocal variable and by approxi-
mations with rational functions, using the socalled Cara-
théodory-Fé&jér method. The in&estigations include Kummer
functions resp. Whittaker functions (confluent hypergeo-
metric functions) with-this behaviour. A large class of
special functions can be considered as Kummer functions
resp. Whittaker functions. Two examples concérning the
incomplete Gamma function and the transformed Gaussian

probability function are given in some detail.
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Many special functions, mostly solutions of ordinary
linear homogeneous differential eqguations of second or-
der, possess asymptotic expansions at the irregular
singular point infinity. These expansions do not repre-
sent good approximations to the function, in general.
Frequently it is not even possible to compute values of
the functions with prescribed accuracy from those ex-
pansions. On the other hand, as we will show here, these

expansions can be replaced by near-best polynomial



approximations in the reciprocal variable or by near-

best rational approximations.

We here consider special differential equations<3fse¢ond
order, which include the Kummer resp. the Whittaker func-
tions (confluent hypergeometric functions) of real expo-
nential behavior at infinity. In the first step we in-
vestigate the existence, uniqueness and estimation of
solutions of a given differential equation, which tend

to 1 for X » « . These results are used to construct
explicitly polynomial approximations and to discuss tﬁese
approximations with respect to their near-best property.
Here only informations directly available from the diffe-
rential equation entef_in the construction. We will get
upper and lower bounds for the minimal deviation in the
uniform approximaﬁion. Then to polynomial approximations
of sufficient accuracy we apply the socalled Carathéodory-
Féjér method to construct near-best rational approxiﬁa—
tibns with the same degree of the numerator and the

denominator polynomial.

At the end of the paper two examples are treated in de-
tail, i.e. we compute corresponding approximations and
give ranges for the errors for the incomplete Gamma

function and for the Gaussian probability function.




This paper can be considered as a continuation and an
improvement of [5]. It is planned to investigate the
oscillatory case as well as approximation problems in

sectors of the complex plane in a forthcoming paper.

1. Notations and estimations. Let g(x) be a real and

continuous function on (0O,«) , given by
qg(x) = ) + = > (1)

with real constants dgrdq 95 < 0 , and bounded func-
tion p :

lp(x)] < v for all x € (0,») . (2)

We are interested in solutions of the differential equa-

tion

y" + q(x)y =0 on [T,=), (3)

where T is positive and sufficiently large. Let

T =+ —qo (4)
and
94
p = -3 (SX

be two associate numbers. The transformation

z(x) = eTxxpy(x) (6)




leads to the differential equation
Lz =0

with

gt 4 0o 1);—p(x) 2

X

. (7

Lz := z" - 2(71 +90
X

Let T be a suitable positive number and C[T,»)  the

space of all real, continuous and bounded functions £

on [T,») . We will make use of the norm
£l = suptl£(x) |, x€lT,=)) .

For any given r € ClT,») we are looking for such solu-

tions 2z of the differential equation

on [T,x) , (8)

which have the properties

lim z(x) = 1 and lim z'(x) = 0 . - (9)
X=> X0

This problem is equivalent to the following: We are
looking for functions =z € C[T,») which satisfy the

integral equation

z(x) = 1-f G(x,t>{<o(p+1>+p(t)>z(t>—r(t>}i§ . (10)

X t

Here - G(x,t) denotes the non-negative kernel




o 20
21 (6NN T3, o<x<t<s, (11)

t
G(x,t) = [ e
_ - \t/

-

which is bounded with respect to t , uniformly in x ,

provided x 2 Xy > 0

Lemma 1: For arbitrary T > O the inequality

® dt k (T)
/ G(x,t)THTS v (12)

t

18 valid with

v
I
ey

1
57 for o

(13)

« (T) SO
-[2p1-2 v!( 28 2\ 1
TS0 (v+1) (2n) T Y

for p < -1.

Here [20] denotes the largest integer less than

or equal to the negative number 2p .

Proof: From (11) we get

| G(x,t)é% = [ e 2T(t'v)<%> g%(bi
X t X Vv t

Let p =2 -1 . Then, using integration by parts,

t 2 2 T t t3 - 2rv

[+ _ _ 2p [+] _ - 2p
[ e 27 (t v)<g> de o 1 p*l (o 27 (t v)(z> at _ _ 1
v £t 2tv v




G(x,t)

< dt 1
f
X

For o < -1 we have to apply the process of integration
by parts repéatedly until we get a negative sign in
front of the last.integral. So one gets

‘ -2p-2 ‘
© 2 —[2 ]"2 \)!
| e-2r(t—v)/v> Pat _ _1 £ E v } G4
. > ‘

\t t2 B 21V2 v=0 (2rv)v

If we integrate the inequality (14) from X to infinity
with respect to Vv , we are lead directly to the esti-

mation (12) again.

Theorem 1 (cp. [31): Let «(T) be defined as in (13).

Furt hermore let T satisfy

_ «(T)
- T

(lo(p+D) | +y) < 1 . (15)

Then the integral equation (10) has one and only

one solution =z € CIT,).

For r € CI[T,») Llet =z be the

) 1 23

corresponding solutions of the integral equation

' T resp.
(10), provided (15) <s satisfied. Then the estima-
tion

k (T) '
5 ”T (16)

IA

H 21—22 HT ) H r1_r

T(1-w

78 valid.




Remark: The solution of (10) can be continued uniquely
to the interval (0,«) . Only estimations like the one

given in (16) are not available in this simple form.

Proof of theorem 1: The right hand side of (10) defines

an inner mapping of the Banach space ClT,=) . According
to (12) and (15) this mapping is a contraction. There-
fore for given r € C[T,») there exists one and only
one solution 2z of (10) in CI[T,») . The validity of

(16) follows immediately.

2. Polynomial approximation. The solution of the integral

equation for r = O ,

2(x) = 1 = | 6(x,£) (p(p+1) +p(t))z ()5 (17)
X t
in CI[T,=) , where T satisfies (15), will be denoted
by zo(x) . If p possesses an asymptotic expansion of
the type
N p /
p{x) = — + O\—E:T) for X - ’ (18)
v=0 X X
N =0,1,... , then z, possesses an asymptotic expansion
of the same type: |
N Sy f 1 ' :
ZO(X) = E -5 + O\W) fOI.'» X = o, (19)
v=0 X X




N =0,1,... , with ¢4 = 1 . This can be derived from
(17), using the iteration procedure for contractions .
(cp. [31). It therefore seems natural to approximate

zo(x) by polynomials of the variable 1/x .

Let us restrict now to the case

p(x) = py - (20)

The approximations and estimations, which follow, will

be slightly modified if only
p(x) = p, + O/l -~ for x o
0 \x

holds.

In the sequel we use the abbreviations

g, = (p+v)(p+v+1)-+po , Vv € No . (21)

We assume

g, * o} for all v € NO . - (22)

This restriction is not a serious one, because one may
conclude easily from the linear system (31) below, that

z (x) coincides with a polynomial of the variable 1/x

0
of degree Y , if (and only if) v is the smallest

integer from W such that g. = 0 .
V

0
We now consider the Tchebycheff polynomials Tn(uf of

the first kind,defined recursively by



To(u) = 1 ' T1(u) =u ’

(23) .
n+1(u) = 2uTn(u)v- Tn_1(u) for ne N ,
or, explicitly by the representation (cp. [8]):
[n/2] ,
_ 1 _1,v _D n\)\ n-2v n
RO DU - 2-(7) 2w ,new . (24)
From (23) one gets the relation
Tn(2w'-1) = T2n(VW) (25)
for real w € [0,1] and all n €’NO . One deduces from
(24) and (25) the
Lemma 2: Let x 2 1 . Then
T (1-=) e ’ n € N ’
n+1 =0 <M 0
where

+ +1+ '
a = (-n¥ H§T}E<g+}_ﬁ>4” , u=0,1,...,n+1. (26)

Remark: It is well known that for T > O we have

(1 -—~0 =1 (27)

e, Iy

and these functions share the alternant property
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(mn =1 .

n+1
4y A
n+1(1—7) = -n"
(28)
with |
x, = 2T < ; A=1,2,...,n+]
1 -cos<n+1>

Theorem 2: Let T satisfy condition (15) and, according
to (20), p(x) = Pg - Then there exists uniquely a
number A+ O such that the unique solution of

the integral equation (10) with

rix) = An n+1(1 -——ﬁ

is a polynomial of degree n+1 of the variable

1/x of the form

n+1 aV
z(x) =1 + - ’ (29)
v=1 x
provided
n+1 5 T)V '
8 d+§ g f{=2tT) vl . o5 | (30)
v= v g1g2 "gv

Remark: The inequality (30) can always be satisfied by

choosing T sufficiently large.



Proof of theorem 2: Inserting z(x) from (29) into the

differential equation (8) we get the following system

of linear equations for the coefficients:

ZTa1 - = Ando-go
g1a1-+4ra2 = A d1T
———————————— I I T R (31)
_ v
gvav-+2(v+1)ra\)+1 = AndvT
_ n+1
In+1%n+1 Andn+1T :
"Multiplying the uth equation of (31) by the factor

(-20) " T (u=1)
999 -9 -1

H U=2r3l---ln+2 H

and adding then-all equations leads to
An6 = 99

Therefore the question, if 8 # O decides the solvabi-
lity (and uniqueness) of the system (31).

The coefficients can now be given explicitly: We get

9, nti —9 YTVl _
a, = w2y 5> a {20 Tl (32)
Ve U=v H gvgv+1"'gu

for v=1,2,...,n+1, and

(33)
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Theorem 3: Let T satisfy (15) and let § from (30)
be * O . Then for the polynomial solution 2z(X)
from (29) we get the following error estimation

in approximating Zq o the solution of the inte-

gral equation (17):

lzg-2llg < (B |Foss (34)

0 nT(1l-w) °

Proof: The assertion is a direct application of (16),

~using the fact stated in (27).

Theorem 4: The function

A
= - _n_ _2T ‘
pn(x) = z(x) o Tn+1(1 X) (35)

belongs to the space T, of polynomials of dégree

at most n in the variable 1/x . We denote by
dist(zy,M ) = inf [ 2 =P |1T (36)
pEI%

the minimal deviation in approximating the function

z by polynomials from the space LI, with re-

0
spect to the interval [T,w) . Then the following

estimations from above and from below are valid:

o - 1 «(T)
dlst(zo,nn) < \Izo P, HT < lAn|<Ign+1|+_T(1-w)>'(37)
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and
, (1 < (T)
> -
dlSt(ZO,Hn) = lAnl\*[ng-‘]I T(1—w)/ . | (38)
. o -(n+1) .
Proof: Using (31) the coefficient of x in  z(X)
can be expressed by
A
: n n+1
a = d T
n+1 gn+1 n+1
The coefficient of x_(n+1) in
2T
Taer (150
is by definition equal to
a Tn+1

n+1

Therefore P, € Hn .— The upper bound (37) follows now

easily from (34) and (35). To prove the validity of
(38) we may restrict to the case

k (T) ' 1
TO-w) < To,,1 ° (39)

Using (28) the de la Vallée Poussin theorem (cp. [61,
p. 82) leads to (38).

Remark: Choosing T large enough we are always able to
satisfy (39). One then knows, how close in terms of the

given norm the constructed polynomial in (35) is to the
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best approximating polynomial. Even more, one can make
the upper and lower bound for the minimal deviation as
close as one likes. We call Py therefore a near-best

approximation to Zy On [T, )

It should be remarked‘that this method to get good uni-

formiapproximation of polynomial type from the differen-
tial equation has in its basic idea some connection with
the socalled Lanczos Tau method..One should compare here

the paper [7] by E.L. Ortiz.

3. Rational approximation. Let us use the transformation

v

_ 27
X = 75 - (40)
Then the function 2z (x) from (29) coincides with a conti-

nuous function w(u) on [-1,+1]. It can be uniquely

represented by the sum of Tchebycheff polynomials

n+1
w(u) = 23 b T (u) (41)
v=0 VoV

with real coefficients. Obviously
A

b = I (42)
n+1 2gn+1

and

i _ n+1

2 b =1 .
v=0



In the following we assume

b1 O - (43)

We describe now a method to construct explicitly the
best approximation of w(u) by real rational functions
of maximal degree n 1in the numerator as well as .in
the denominator. This method can be found in [2] and
can be considered as a special case of the construc-
tions given in [4] and in [9]. The assumptions in theo-

rem 5 are satisfied in most cases.

Theorem 5 (cp. [21, [41, [9]): Let us denote by H the

Hankel matrix

We assume that H possesses only one eigenvalue

A= A, of smallest absolute value, and that its

n+1

multiplieity Zs 1. Let h € R be an eigenvector

to the eigenvalue Ay with*components
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‘Then

ho#'O ’ hn¢O '

and the polynomial

o
hiv) =5 hvvv
v=0

" has all its zeros in the unit disk. We denote these

zeros by

Let
' _ g(u)'
R(u) T )
be the best real rational approximation of the

function w(u) with respect to the set

- /B 0 in [- |
Vn’n iqlpenn,qenn,q(u)}o in [-1,+1]

on the interval [-1,+1].

Then

b4

w(u) - R(u) = %%{vn+1k(v) + v—n—1k(%)} , (44)



where
n V'-ocu
k(v) = E 1-a v
p=1 u
and
1 1
u = 3(v+g) for |lv| =

For the proof of theorem 5 we refer to the

papers.

Remark: Using the well known formula

(vv-+v—v) , v €N, ,

T (u) = o

Y

N —

one gets from (44) at once the denominator

R(u) . By multiplying w(u) by E(u) and

original

~

g(u) of

using (44)

again, one gets the numerator 5(u) of R(u)

4. Examples. For real s and x > O we consider the

incomplete Gamme function

r(s,x) = J e 5 lat
X

‘Let

X 1-s

y({x) = e2 X r(s,x) .

(46)




Then obviously

df x 1-s 4(_ "2 2 -5
dx dx X Y)) = !
a relation which is equivalent to the special Whittaker

equation (cp. (3) and [1])

2
" 1 s-1 1-s
y© ¥ ("Z *x T 2>Y =90 -

According to (4), (5) and (20) we have

1 1~ ‘
The'function

X 1=s
X

zo(x) = e I (s,x) (48)

satisfies the differential equation (cp. (7))

w 1-s | 1-s _
z <1 + —;—)z‘ + —z = Q . . (49)

Using integration by parts in (46) we get easily the

asymptotic expansion

F(s,%) ~ e-xxs-1<1 . 5;1 . (s—1)§s—2) N ..o> (50)
: X
for x -» « ., Therefore the function zO from (485 has

the property

lim zo(x) = 1 .
K->



For fixed 'x it is not possible to compute the value

of the function F(s,x) from the asymptotic expansioh
(50) to arbitrary accuracy. The reason is that the se-
ries in (50) does not converge, unless s 1is a natural

number.

We restrict now to the case
0O0<s< 1 . (51)
Because of the functional equation

r(s,x) = Mt E L (s-1)T (s-1,x)

the restriction (51) is not a serious one.

Furthermore we have (cp. (13)):
k{T) = 1

and (cp. (15))

Therefore we have to assume that
T > 1-s (52)
holds. The expressions 9, (cp. (21)) have the form
g, = (v+1) (v+1-35) ;7 Vv § NO
They are all different from zero.

Now we choose n € N . Then (26) and (30) yield, that

3
+

o . (n+1) (n+v) 14°T"
§=8_=1+2 (v+1) (2v) 1 (n+1-v) ! (2-8) ... (v+1=-s) (53)

<
l
—_
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is always positiv. So (cp. (29)) there exists uniquely

a function

3
+
-
o))

[

z(x) = én(x) =1 + —

<
1l
»

withvcoefficients given in (32), which are all diffe-
rent from zero and alternating in sign, such that

1-s
lzg = 2y llg s 5 _(T-1+s) (54) ,

holds.
It is interesting.how the coefficients a  are for fixed

n and for T » = . A little computation shows

lima = (s=-1)(s-2)...(s-v)
Tow

for v=1,2,...,n+1 , i.e. our polynomial approximation
in the variable 1/x tends to the partial sum of ﬁhe
asymptotic expansion. (50), if T - =

Let us remark, that the approximation of zO furnished
by z holds uniformly in x for all x 2 T and

uniformly in s for all s € [0,1] , since

r¢(1,x) =e

, zO(X) n(X) = 1 '

1]
N

We now turn to the Gaussian probability function:



- 21 =~

.t
o(x) = —— [ e 24t
V2m -
We have
ot
p(x) =1 - —— ] e %3¢t
Va2n X
2
=1 -, %5
2V
2
X
=1__1_..e___2_..z(.>_{_2_)
I
\/2_17 X 0" 2

where 25 belongs to the value s = 5

For n=3 and T =5 we get the approximation

(x) =__1.___
3 487738

; 243680 , 350400 _ 624000 672000)

<487738 - " > 3+ 7
X x~ X

for the function zo(x) , which in terms of Tchebycheff

polynomials

10

T (W o, ou=1-2

can be written

1

23(x) = §z§§g§6{2336800T0(u)4—96148T1(u)4—5256T2(u)+

+-444T3(u)+-42T4(u% . (55)

We have (cp. (54)) with



51(X) = z5(x) - z3(x) (56)

the error estimation

42
487738

5

: |a1(x)| < ~ 8.62 - 10° , x2 5.

This approximation leads for the error function

_ 2 f
ez(x).= o (x) - {1 - £ 23(%?)} (57)
to ﬁhe estimation

-5 e

le,(x) | < 3.44 - 10

The coefficients in the representation (55) deérease
quite fast, so that it is not necessary to choose ‘T
large enough in order to gét lower bounds for the‘mini—
mal deviation. Obviously the function zo(x) can, be
approximated very well by polynomials in the variable
1/x . It is not known which analytic properties of Z4
afe possibly responsible for this fact. - We abandon

to derive likewise gpod rational approximations to Z5 -
Tb make the approximation problem more transpareht let

us close with considering the incomplete Gamma function

again, assuming
t

! . 0 < s < 1 .
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Then

X -1
r(s,x) = I'(s) - | e "t 'at
0

= T(s) - x°f(s,x) (58)

with

f(s,x)

=5 v!(v+s)

The function £ 1is with respect to X 'the restriction
of an entire function in the complex plane. Therefore

it can be approximated in every finite interval by
polynomials in x very well. Using the comparison theo-
rem 61 from [6] we get with a little computation the
following asymptotic result for the minimal deviation
En(f,T) in approximating £ by polynomials of degree n

at most in the interval (Oo,T] :

T
n+l 2 \
T e / 1
140 (—) (59)
22n+1(n+1)!(s+n+1)\ n+1 )

En(f;T) =

for n - = . A sequence of near-best approximating poly-
nomials can be constructed quite easily too. Replacing
f(s,x) by those polynomials in (58) yields good appro-

ximations for TI(s,x) in [O,T] .



References

(1] M. Abramowitz a. I. Stegun: Handbook of Mathema-
tical Functions.Dover Publ., New York (1965)

r

N. Achyeser: Uber ein Tschebyscheffsches Extremum-

(2]
problem. Math. Annalen 104, 739-744 (1931).
[3] ., A. Erdélyi: Asymptotic Expansions. Dover Publ.

New York (1956).

[4] M. Gutknecht: Rational Carathé&odory-Fejér Appro-

ximation on a Disk, a Circle, and an Inter-

val. Journ. Appr. Theory 41, 257-278 (1984).

[5]r
Entwicklungen I. Computing 1, 39-49 (1966)[

(61 G. Meinardus: Approximation of Functions: Theory

lin, Heidelberg, New York (1967).

(7] E.L. Ortiz: Canonical Polynomials in the Lanczos

Analysis. Acad. Press London, New York@

73-93 (1974).

G. Meinardus: Uber die Approximation asymptotischer

and Numerical Methods. Springer-Verlag, Ber-

Tau Method. Appeared in: Studies in Numerical



(8]

(91

- 25 -

Snyder: Chebyshev Methods in Numerical Appro-
ximation. Prentice-Hall,Englewood Cliffs,

New Jersey (1966).

Trefethen: Chebyshev Approximation on the-
Unit Disk. In: Computational Aspects of
Complex Analysis, 308-323, Reidel Publ.,

Dordrecht (1983).



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030



