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Abstract of the paper: An Approximation Theoretic Alter-

native To Asymptotic Expansions

For Special Functions.

Abstract: Some classes of functions, which are solutions

of ordinary linear homogeneous differential equations

of second order with an irregular singularity at infinity

possess asymptotic expansions with respect to a real po-

sitive variable at infinity. In the case of non-oscilla-

tory behavior of such functions these asymptotic expan-

sions can be replaced by near-best relative approximations

by polynomials of the reciprocal variable and by approxi-

mations with rational functions, using the socalled Cara-

theodory-Fejer methode The investigations include Kummer
functions resp. Whittaker functions (confluent hypergeo-

metric functions) with this behaviour. A large class of

special functions can be considered as Kummer functions

resp. Whittaker functions. Two examples concerning the

incomplete Gamma function and the transformed Gaussian

probability function are given in some detail.
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approximations in the reciprocal variable or by near-

best rational approximations.

We here consider special differential equations of second

order, which include the Kummer resp. the Whittaker func-

tions (confluent hypergeometric functions) of real expo-

nential behavior at infinity. In the first stepwe in-

vestigate the existence, uniqueness and estimation of

solutions of a given differential equation, which tend

to 1 for x ~ 00 • These results are used to construct

explicitly polynomial approximations and to discuss these

approximations with respect to their near-bestproperty.

Here only informations directly available from the diffe-

rential equation enter in the construction. We will get

upper andlower bounds for the minimal deviation in the

uniform approximation. Then to polynomial approxima~ions

of sufficient accuracy we apply the socalied Caratheodory-

Fejer method to construct near-best rational appro~ima-
I

tions with the same degree of the numerator and the

denominator polynomial.

At the end of the paper two examples are treated in de-

tail, i.e. we compute corresponding approximations and

gi~e ranges for the errors for the incomplete Gamma

function and for the Gaussian probability function,.
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This paper can be considered as a continuation and an

improvement of [5]. It is planned to investigate the

oscillatory case as weil as approximation problems in

sectors of the complex plane in a forthcoming paper.

1. Notations and estimations. Let q(x) be areal and

continuous function on (0,00) , given by

q(x) (1)

with real constants qO,q1 ' qo < 0 , and bounded func-

tion p:

I p (x) I ~ y for all x E (0,00) • (2 )

We are interested in solutions of the differential equa-

tion

y" + q(x)y = 0 on [T ,00) , ( 3 )

where T is positive and sufficiently large. Let

T = + v=ö':q. 0

and

p =

be two associate nuIDbers. The transformation

(4 )

(5 )

(6)
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leads to the differential equation

Lz = 0

with

Lz zn _ 2(, +e..)ZI+ p (p + 1) +p(x) z:= X 2
X

Let T be a suitable positive number and C[ T, (0) the

space of all real, continuous and bounded functions f

on [T,oo) • We will make use of the norm

11 f IIT = sup(if(x) I ,xE [T,oo))

Forany given r E C[T,oo) we are looking for such solu-

tions z of the differential equation

Lz = r(x)
7 on [T,oo) (8)

which have the properties

lim z(x) = 1
x-.oo

and 1im z I (x) = 0 . (9 )

This problem is equivalent to the following: We are

looking for functions z E C[T,oo) which satisfy tme

integral equation

z(x) = 1-7 G(X,t){(p(p+1)+P(t))z(t)-r(t)}d~
x t

Here . G(x,t) denotes the non-negative kernel

(10 )
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ft -2, (t-V)(V\2Pd= e \"t) v
x

0< x~ t< 00, (11)

which is bounded with respect to t, uniformly in x,

provided x ~ xo > 0 .

Lemma 1: For arbit rary T > 0 t he inequa lit y

11
J G(X,t)d~ 1\ ~
x t T

is valid UJith

K (T)
T

( 1 2 )

1 for ~ -12T P

K (T) = (-2p-2\ ( 1 3)
-[2p]-2 v!\ v }> for p < -1.

v =0 (v+1) (2,)v+1 TV

Here. [2p] denotes the largest integer less than

or equal to the nEgative number 2p •

Proof: From (11) we get

00 00 00 ( )2Pf G(X,t}di = f f e-2, (t-v) ~ didV
x t x v t ..

Let p ~ -1 . Then, using integration by parts,

j e-2,(t-V)(~)2Pdt =
v t t2



- 6 -

hence

00

f G(x,t) dt ~ 1
x t2 2TT

For p < -1 we have to apply the process of integration

by parts repeatedly until we get a negative sign in

front of the last integral. So one gets

OOf -2T (t-V)(~)2Pdt < 1_ >-l2p]-2
e \t 2- 2 ..•..----v \ t 2TV \)=0

v1( -2~-2)

(2TV)\)
• (14)

If we integrate the inequality (14) from x to infinity

with respect to v, we are lead directly to the esti-

mation (12) again.

Theorem 1 (cp. [3]): Let K(T) be defined as 1.-n (13).

Furthermore Let T satisfy

K (T) I Iw:= -T-( p(p+1) +y) < 1 ( 1 5 )

Then the integral equation (10) has one and only

one solution 2 E C[T,oo) .

For r
1
,r
2

E C[T,oo) let 21 resp. 22 be tJ:ze

corre spondi Y(J so Lut ion s oft he int egra L equa tio n

(10), provided (15) is satisfied. Then the estima-

tion

is vali.d.

K (T)
::; T ( 1 -w ) ( 16)
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Remark: The solution of (10) can be continued uniquely

to the interval (0,00) • Only estimations like the one

given in (16) are not available in this simple form.

Proof of theorem 1: The right hand side of (10) defines

an inner mapping of the Banach space C[T,oo) . According

to (12) and (15) this mapping is a contraction. There-

fore for given r E C[T,oo) there exists one and only

one solution Z of (10) in C[T,oo) . The validity of

(16) follows immediately.

2. Polynomial approximation. The solution of the integral

equation for r ~ 0

00

Z(x) dt= 1 - f G(x,t) (p (p+1) + p(t))z (t)2
x t

( 17 )

in C[T,oo) , where T satisfies (15), will be denoted

by zo(x) . If P possesses an asymptotic expansion of

the type

N P\I (1)
p(x) = ~ -V + 0, N+1

\1=0 x x
for ( 18)

N = 0,1, ... , then Zo possesses an asymptotic expansion

of the same type:

= ~ c~ + O( N~1)
\1=0 x 'x

for x ..•00, ( 19 )
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N = 0,1, ... , with Co = 1 . This can be derived from

(17), using the iteration procedure for contractions

(cp. [3]). It therefore seems natural to approximate

zo(x) by polynomials of the variable 1/x.

Let usrestrict now to the case

p(x) == Po . ( 20)

The approximations and estimations, which follow, will

be slightly modified if only

p(x) = Po + o(~)
holds.

for x -+ 00

In the sequel we use the abbreviations

g\! := (p+\!) (p+\!+1) + Po

We assume

(21 )

g :1= 0
\!

for all \! E NO (22)

This restriction is not a serious one, because one may

conclude easily from the linear system (31) below, that

zo(x) coincides with a polynomial of the variable 1/x

of degree \! , if (and only if)
,....
\! is the smallest

We now consider the Tchebycheff polynomials
integer from ~O such that g,....= 0 .

\!

T (u) of
n

the first kind,defined recursively by
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(23) .

for nEiN

or, explicitly by the representation (cp. [8]):

[nj2]
'1' ( u ) = .1. > (-1 )v ~ ( n -v \ (2 u) n - 2v

n 2 v=O n- v v}

From (23) one gets the relation

T (2w-l) =T2 (VW)n n

,nEIN. (24)

(25)

for real w E [0,1] and all n ENO . One deduces from

(24) and (25) the

Lemma 2: Let x ~ 1 Then

2T (1 --)n+l .x

where

n+l d
=L-L

)J=0 x)J

_ )J~n+l+)J))J _d)J = (1) ~\n+l-)J 4 , )J-O,l,...,n+l. (26)

Remark: It is well known that for T > 0 we have

11 T (1 - 2T) 11 = 1n+l x T

and these functions share the alternant property

(27)
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with

Tn+1 ( 1) = 1

A = 1 , 2" • • • , n+ 1

(28)

Theorem 2: Let T satisfy condition (15) and, according

to (20), p(x) - Po . Then there exists uniqueLy a

number A * 0 such that the unique soLution of
n

the integraL equation (10) with

r (x) = AT (1 _ 2T)n n+1 x

is a polynomiaL of degree n + 1 of the variabLe

1/x of the form

n+1 a
z(x) 1 +L v= -vv=1 x

provided

n+1 v
<5 := dO + L d (-2TT) v!

* 0
v=1 v g1g2 ... gv

(29)

( 30)

Remark: The inequality (30) can always be satisfied by

chbosing T sufficiently large.
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Proof of theorem 2: Inserting z(x) from (29) into the

differential equation (8) we get the following system

of linear equations for the coefficients:

= A d Tn 1
__________ - _ - - - - - - - - - - - - - - (31)

g a +2(v+1)-ra +1v v v
- - - - - - - - - - - - - - - - - - - - - - - - - -

ga - A d Tn+1.n+1 n+1 - n n+1

Multiplying the th~ equation of (31) by the factor

i ~=2,3, ...,n+2

and adding then all equations leads to

A Cl = gn 0

Therefore the question~ if Cl* 0 decides the solvabi-

lity (and uniqueness) of the system (31).
The coefficients can now be given explicitly: We get

go n+1 (-21")~-vT~}l!a = ~ L dv ~ g g +1 ...g~=v v v. ~

for v=1,2, ...,n+1, and

A
go=n Cl

(32)

(33)
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Theorem 3: Let T satisfy (15) and let 8 from (30)

be * 0 . Then for the polynomial solution z(~)
from (29) we get the following error estimation

in approximating Zo ~ the solution of the int~-

gral equation (17):

(34)

Proof: The assertion is a direct application of (16),
.using the fact stated in (27).

Theorem 4: The function

p (x)
n

A
= Z (x) - n T (1 _ 2T)

g n+1 xn+1
(35)

belongs to the space TIn of polynomials of degree

at most n &n the variable 1/x . We denote by

(36)

the minimal deviation in approximating the function

Zo by poZynomials fromthe space TIn with re-

spect to the intervaZ [T,oo). Then the foZZowing

estimations from above and from below are val~d:

_1- _
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and

d' t( TI) >_ IA I( 1~s 20, n \l rn gn+1
K (T) \

T (1-w ») (38)

Proof: Using (31) the eoeffieient of

ean be expressed by

-(n+1)
x in 2 (x)

A
n d Tn+1

g n+1n+1

The eoeffieient of - (n+1)x in

T (1 _ 2T)
n+1 x

is by definition equal to

d Tn+1
n+1

Therefore p E TI .- The upper bound (37) follows now
n n

easily from (34) and (35). To prove the validity of

(38) we may restriet to the ease

K(T) __ 1_
T (1-w) < -I gn+ 1 I (39)

Using (28) the de la Vallee Poussin theorem (ep. [6],

p. 82) leads to (38).

Remark: Choosing ~ large enough we are always able to

satisfy (39). One then knows, how elose in terms of the

given norm the eonstrueted polynomial in (35) is to the
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best approximating polynomial. Even more, one can make

the upper and lower bound for the minimal deviation ~s

close as one likes. We call therefore a near-best

approximation to on [T,oo)

It should be remarked that this method to get good ~ni-

form approximation of polynomial type from the differen-

tial equation has in its basic idea some connection with

the socalIed Lanczos Tau method ..One should compare here

the paper [7] by E.L. Ortiz.

3. Rational approximation. Let us use the transformation

2T
x = 1-u ( 40)

Then the function z(x) from (29) coincides with a conti-

nuous function w(u) on [-1,+1]. It can be uniquely

represented by the sum of Tchebycheff polynomials

w(u)
n+1

= 2= b T (u)
\I \I

\1=0
(41 )

with real coefficients. Obviously
A

b = nn+1 2gn+1

and

(42)
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In the following we assurne

(43)

We describe now a method to construct explicitly the

best approximation of w(u) by real rational functions

of maximal degree n in the numerator as well as.in

the denominator. This method can be found in [2] and

can be considered as a special case of the construc-

tions given in [4] and in [9]. The assumptions in theo-

rem 5 are satisfied in most cases.

Theorem 5 (cp. [2], [4], [9]): Let us denote by H the

Hanke~ matrix

H =

b1 b2 b3" . bn+1
b2 b3 0

b3

bn+1 0 0

We assume that H possesses on~y one eigenva~ue

A = A of sma~~est abso~ute va~ue~ and that its
n

mu~tip~icity is 1. Let h E ~n+1 be an eigenvector

to the eigenva~ue A withtcomponents
n
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h =

hn

Then

h*,Oo

and the polynomial

h*,On

h(v)
n

=L
v=O

has all its zeros in the unit disko We denote these

zeros by

0.1,0.2, ••• ,o.n

Let

R(u) = E)(u)
-er (u)

be the best real rational approximation of the

function w(u) with respect to the set

v = JE 1

1

p E TI , q E TI , q (u) .> 0 in (-1, + 1 ]}
n,n Lq n n

on the interval (-1,+1].

Then

(44)
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where

n V-a
k(v) = TI

]1 (45)
1-a v]1=1 ]1

and

1 1 for lvi 1u = -(v+-) = .2 v

For the proof of theorem 5 we refer to the original

papers.

Remark: Using the well known formula

\! E fNO '

one gets from (44) at once the denominator q(u) of

R(u) By multiplying w(u) by q(u) and using (44)

again, one gets the numerator p(u) of R(u)

4. Examples. For real sand x > 0 we consider the

incomplete Garnme function

Let

00

r(s,x) = J e-tts-1dt
x

(46)

y(x)
x
"2= e

1-s
-2-
x r(s,x)
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Then obviously

x s-1
Ai x 1-s d( -"2 -2-
dX\e x dx e x

a rel~tion which is equivalent to the special Whittaker

equa tion (cp. (3) and [1])

( 1 s-1 1-S2)y" + \- - + -- + -- y = 04 2x 4x2

According to (4), (5) and (20) we have

1
T = "2

The function

, p 1-s
= -2-' Po

1-s2= -4- (47)

x 1-szo(x) = e x r (s,x) (48)

satisfies the differential equation (cp. (7))

z" - (1 + 1~s)Z I + 1-2sz = 0
x

(49)

Using integration by parts in (46) we get easily the

asymptotic expansion

r(s,x) ~ e-XxS-1(1 + S~1 + (s-1)~S-2) + ... ) (50)
x

for x ~ 00 • Therefore the function

th.eproperty

lim zo(x) = 1
x~oo

from (48) has



- 19 -

For fixedx it is not possible to compute the value

of the function r (s,x) from the asymptotic expansion

(50) to arbitrary accuracy. The reason is that the se-

ries in (50) does not converge, unless s is a natural

number.

We restriet now to the case

o ::; s < 1

Because of the functional equation

-x s-1r(s,x) = e x + (s-1)r(s-1,x)

the restrietion (51) is not a serious one.

Furthermore we have (cp. (13)):

K (T) = 1

and (cp. (15))

( 51 )

w = 1-s
T

Therefore we have to assume that

T > 1-s (52)

holds. The expressions gv (cp. (21)) have the form

g = (v+1) (v+1-s)
v

They are all different from zero.

v E \NO

Now we choose n E \N . Then (26) and (30) yield, that

6 = 6n

n+1
= 1 + L

v=1

(n+1) (n+v) !4vTv
(v+1) (2v) !(n+1-v) ! (2-s) •.. (v+1-s) (53)
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is always positiv. So (cp. (29)) there exists uniquely

a function

z(x) = z (x)n

n+1 a
=1+= ~

v=1 x

with coefficients given in (32), which are all diffe~

rent from zero and alternating in sign, such that

1-s
:'£ 6 (T-1+s)

n
(54)

holds.
It 1S interesting how the coefficients av are for fixed

I

n and for T ~ 00 • A little computation shows

1im a = (s- 1) (s-2) ... (s-v )
T~oo v

for v=1,2, ... ,n+1 , i.e. our polynomial approximation

in the variable 1/x tends to the partial SUfi of the

asymptotic expansion (50), if T ~ 00

Let us remark, that the approximation of furriished

by z holds uniformly in x for all x ~ T and
n

uniformly in s for all s E [0,1] , since

hence

r(1,x)
-x= e .

s = 1

We now turn to the Gaussian probability function
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t2
1 x

2 dt<P(x) = -- f e
V2TI _00

We have

t2
00

<P(x) 1 1 ' 2 dt= - -J e
V2TI x

1 1 1 x2
= - r (2 ' 2)

2vn
2x

1 e 2 2
1 x= - _-0 __ 0 20(2)..n; x

where 20 belongs to the value 1
s = 2 0

For n = 3 and T = 5 we get the approximation

2
3

(x) = 1 (487738 _ 243680 + 350400 _ 624000 + 672000)
487738 x 2 3 4x x x

for the function 20(X) , which in terms of Tchebycheff

polynomials

can be written

T (u)
\!

u = 1 - .!Q
x

23 (x) = 243~690{2336800 TO(U) + 96148 T1 (u) + 5256 T2 (u) +

+444T3(U)+42T4(U)} 0 (55)

We have(cpo (54» with
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the error estimation

(56)

42 -5I E:1 (x) I :;; 487738 ~ 8.62 . 10 x ~ 5 •

This,approximation leads for the error function

E: 2 (x) (57)

to the estimation

:;; 3.44 . 10-5 .

The coefficients in the representation (55) decrease

quite fast, so that it is not necessary to choose T

large enough in order to get lower bounds for the mini-

mal deviation. Obviously the function zo(x) can be

approximated very weil by polynomials in the variable

1/x . It is not known which analytic properties cf Zo

are possibly responsible for this fact. - We abandon

to derive likewise good rational approximations to 20.

T~ make the approximation problem more transparent let

us close with considering the incomplete Gamma function

again, assuming

o < s < 1
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Then

x
r(s,x) = r(s) - f e-tts-1dt

°
s= f(S) - x f(s,x)

with

(58)

00 (_1)vxvf(s,x) = =v=o v!(v+s)

The function f is with respect to x the restrietion

of an entire function in the complex plane. Therefore

it can be approximated in every finite interval by

polynomials in x very well. Using the comparison theo-

rem 61 from [6] we get with a little computation the

following asymptotic result for the minimal deviation

E (f,T) in approximating f by polynomials of degree n
n

at most in the interval [O,T]

E (f;T)
n

T
__ Tn+1e-2 (1 '--------- + 0(n+11))

22n+1 (n+1) !(s+n+1) \
(59)

for n ~ 00 • A sequence of near-best approximating poly-

nomials can be constructed quite easily too. Replacing

f(s,x) by those polynomials in (58) yields good appro-

ximations for f(s,x) in [O,T] .
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