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E. Binz

Abstract: Let E (MI IRn) be the collection of all smooth em-
beddings of a compact smooth manifold M into IRn. Given a fixed
scalar product < I > on ~n/the pul I-back of < I > by
j E E(M/IRn) is denoted by m(j). We. show that m-1(m(j» is a
Frechet manifold for any j E E(M/~n). This manifold is infinit
dimensional if the codimension of M in IRn is large enough. The
resultlinks with Einstein's evolution equation and with
elasticity theory.

Introduction: Throughout these notes M is a compact smooth
manifold. The collection of all smooth embeddings of M into IRn
is called E(M/~n). This set is equipped with Whitney's
CCD-topology and since it is open in the Frechet spa-e.eca> (MI IRn)
(consisting of all smooth IRn-valued maps of M and carrying
Whitney'sCCD-topology) it is evidently a smooth Frechet
manifold.

Given" a. fixed scalar product < > on IRn each j E E (M,IRn)
defines a Riemannian metric m(j) on M, namely the pull-back of
< , > by j. It assigns to any two tangent' vectors v I w E TpM
the~-'; numbe~ <d'jvI djw> for any p E M. Here dj denotes the
IRn-valued one f?rm, called the differential of j, which
locally represented is the Frechet differential of j.
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What we show is that m-i{m{i)) the set of all j E E(M,IRn) with
m{i) = m{j) for a fixed i E E{M,~n) is aFr~ehet manifold when
endowed with the cm-topology, a result whieh holds verbatim if
E(M,~n) is replaeed by the eolleetion o~ all smooth immersions
from M into IRn.

At this point let us refer to (Ja], who showed that rn-i(m{i))
admits isometrie deformations. These beautiful investigations
are based on an extension of Nash's implieit funetion theorem.
Let us refer therefore to any j E m-1(m(i)) as an isometrie
deformation of i.

The method by whieh we establish the manifold strueture of
m~(m{i)) is the following one:
If j is near enough to i then its differential dj" is
represented by

dj = g'di.f.

Here g E CO(M,SO{n)) and f is a smooth strong bundle
isomorphism of TM self-adjoint and positive definite (fibre-

.,\ wise) with respeet to m{i) . If vp E TpM then the above
equation means

dj vp = g(p) (di f (vp))

... "

holding for any p E M. Henee j E m-i(m{i)) iff f = idTM. The
parameter spaee of a ehart at i in rn-i(m(i)) eonsists of the
Freehet spaee formed by all h E CO{M,~n) for whieh the
derivative Dm(i) (h) of m at i in the direetion of h vanishes.
This means that

holdsfor all vp' wp E TpM and allp E M. Sueh an h is ealled
an infinitesimal isometrie deformation of i.
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Let us point out that the ea1eu1us used in loea11y eonvex
veetor spaees is the one of [Gu] or [Mi]. In this eontext we

\..,

refer via [Fr] also to the beautifu1 ea1eu1us of Frö1ieher and
Kriege1.

Now dh of eaeh h E C~(M,~n) ean be written as

dh = s.di

with s E CO(M,End(~n)). Hence Dm(i) (h) = 0 iff

for all vp' wp E TpM and all p E M.
The cons truetion of achart at i in rn-I (m(i)) is based on the
observation that if dh satisfies Dm(i) (h) = 0 then

(expos) .di

is the differential of an ~mbedding j E m~l(m(i)) if
s E C~ (M,End (IRn)) is near enough to zero. exp is the usua1
exponentia1 given on End(~n). Henee our construetion of eharts
in m-1(m(i)) is based on an integration seheme of.infinitesima1
Eueiidean isometrie deformations.

If the codimension of M is high enough then m-1(m(i)) is not
finite dimensional.

The faet that rn-i (m(i)) is a Freehet manifo1d p1ays a erueia1
ro1e if isometrie deformations of embeddings have to. be
considered. Henee it links in partieu1ar to Einstein's
evolution equation formu1ated on Eue1idean immersions and to
e1astieity theory where the space of eonfigurations eonsists
of all embeddings of a body M into ~n. In the first ease the
above resu1t a110ws the rigid evolution given by an equation
for infinitesimal isometrie deformations to be rea1ized by
spaee-1ike seetions of the four manifo1d. We refer to [Bi,l]

IL---.-------.-- m.l>.,...... ~._-----------~--~--



BINZ

and [Bi,2] as well as to the excellent book [Ma,Hu] for
studies in those areas.

The fact that rn-I(m(i)) forms a Frechet manifold for each
i e E(M,lRn) reveals a structure additional to the principal
bundle structure of E(M,Rn) described in [Bi,Fi].

1) The space of embeddings E(M,lRn)

E (M,IRn) denotes the collection of all smooth embeddings of
a compact rn-dimensional manifold M into IRn. As shown e.g.
in [Hi] this set is open in CO(M,lRn) which is endowed with
the cO-topology. Since CO(M,lRn) is, due to the compactness
of M, a complete metrizable locally convex topological
vector space, a so called Frechet space, E(M,lRn) is
obviously a smooth Frechet manifold.

Any h e CO(M,lRn) defines a smooth symmetric two tensor m(h)
given by

m(h) (X,Y) = <dh X,dh Y>

for all pairs X,Y e rTM. By rTM we denote the collection of
all smooth vector fields on M, a Frechet space when endowed
with the CO-topology. dh is the differential of h, which
locally is. given by the Frechet derivative of h. Clearly
the tangent map Th decomposes into Th = (h,dh).

Evidently m(j)
je E(M,lRn).

is a. smooth Riemannian metric if

If. S2 (M) stands for' the collection of all smooth symmetric
two tensors of M equipped with the CO-topology

is a smooth map in the sense of [Gu] or [Mi] as a routine
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calculation shows (cf. [Sch]).

By m{M) we denote the collection of all smooth Riemannian
metries endowed with the Cm-topology. This set m{M) is an
open cone in S2 (M) and hence a Frechet manifold. Clearly
m(E{M,~n» c m(M) and

is a smooth map. It is generally not surjective as the
theorem of Nash (cf. [Ja]) teIls uso

The derivative of m at j e E{M,IRn) in the directionof'
h e Cm{M,~n) is

. Dm{j) (h)(X,Y) = <dh X,dj Y> + <dj X,dh Y>

for any two vector fields X, Y e rTM.

2) The relative description of differentials of embeddings.

Any two i,j e E{M,~n) can be smoothly.linked within E{M,~n)
only if j is in the connected component 0i of i e E{M,~n).
Clearly any E{M,~n)-valued smooth curve a of which the
domain contains [0,1] and which satisfies a{O) = i and
a(l) = j is a homotopy. It is such a homotopy which allows
us to describe dj of any j e 0i relatively to di. This
description is done as folIows: .

Associated with j e E{M,~n) we have its Gauss map

J:M ~ G{m,n)

mapping any p e M into dj TpM an element of the Grass-
mannian G{m,n) consisting of all planes of dimension m in
~n. This mapJ is smooth. On G{m,n) we have two canonical

~.'-.
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such that

!
I
.j..'. ;

therefore smoothly homotopic we have
their respecti ve Gauss maps i and 3
a smooth strong bundle isomorphism

dj = <p'di.

<p'di = (<p'8).di

<p: M ~ GL(n)

~: Ti TM ffi v(i) ~ Tj TM ffi v(j)

bundles 5 and Tl namely the rn-plane and the (n-m)-plane
bundle respectively (cf. [G,H,V]). These two bundles add upA_
to G(m,n)x~n. Hence the Whitney sum of their pul I-backs j S
and j-Tl with respect to the Gauss map is

BINZ

A_ ~_
Clearly j 5 ~ Tj TM and J Tl is isomorphic to v (j), the
normal bundle of Tj TM in Rnx~n.

preserving the Whitney sums. Since moreover range and
domain of ~ are trivial bundles ~ yields a smooth map

If thus i, j E 0i and
a smooth homotopy of
which in turn yields
(cf. [G,H, V])

This description of dj with respect to di however is not.
unique at all. To see this one choose.s any strong smooth
bundle isomorphism 8 of v(i) and extends it to all of Mx~n
by.the requirement that 811-5 = id. Then we have:

fot" all vp E TpM and all p E M. We abbreviate the last
equation by

Decomposing <p polarly into <p= g.f where g (p) E so (n) and
f(p) is self-adjoint with respect to < , > for any choice
of p E M implies
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for all vp' wp E TpM. Representing m(j) with respect to
m(i) by a smooth strongbundle isomorphism A of TM as

provides us with f := JA", formed fibrewise. The smooth
strong bundle isomorphism f of TM is evidently self-adjoint
and positive definite with respect 'to m(i). Bywhat we have
so far the following is easy to show:

differential .dj of--- --- ..--Theorem l:The
~onnect~dsomponent Oi
description of the form~-- ---

of a fixed--
dj = g.di.f

any j E Oi in the
i E E(M,lRn) ~lows JL

I~I
I

with g E C"'(M,SO(n» and f being ~ smooth s..tron2 bundle-isomorphism of TM fibrewise self-~int and positive
., ,.. --- - •...- .•..._--.--
~~finite ~ ~esp~cJ ~m(i). ~ ~ re~res=ntation f is
unique and determines the metric m(j) via the equation----- - ~--~- --- --- --~---

..holding !EE _ill vp' wp E TpM ~ ~ P E M. ~ ~r g ~
not unique. However if g: M ---+ End(lRn) is given by.------ ...•--------~....... - ."....,-, "'-'" ~

-and glv(i) = 0

then-- dj = g.di.f

~.~ ~ique r~epresentatio.D of dj £l.. die If j
smoothly, both g and'f vary smoothly as welle
~~ ~ ~ ~ .........,..~

and i vary- -
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Remark: In general the exterior differential 5{di.f) of the
.IRn-valued one form di. f does not vanish. Thus g can be
regarded as an "integrating factor" of di.f.

We pause briefly to illustrate the above mechanism by
looking at the covariant derivative of m{j). If.

P (j): IRn x IRn~ TM

denotes the orthogonal projection along v (j) followed by
(Tj)~ then the covariant derivative of Levi-Civit~ of m{~)
is given by

V(m(j) )XY = P{j) (d{dj Y) (X».

Hence for all X, Y E rTM the vector field V{m{j»xY is
represented via V(m{i» by

Thus if we set

V{g)XY = V(m(i) )XY + P{i) 'g-l.dg{X).di Y
then

and thus its curvature R{m(j» expressed by the curvature
R{g) of V(g) is

. R (m ( j )) (X, Y) Z = f -1 • R (g) (X, Y) f .Z '.

As it is easy to see g is in particular responsible for the
vanishing of the torsion of the Levi-Civita connection
V{m(j». For further remarks along these lines we refer to
[Bi,Pe] .

j

i
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Next we ,investigate the infinitesimal situation and remind
us of TiE(M,IRn) = CCD(M,lRn)for all i E E.(M,lRn).Given any
h E CCD(M,Rn) we choose a smooth curve 0 defined on a
neighbourhood of 0 E IRwith values in E(M,lRn) such that

0(0) = i and cr(O) = h.

By the theorem above we have thus

do (t) = g (t) .di .f (t)
and consequently

~t do(t) It=o = d ( ~t o(t) It=o )

dh = a"di + di.b

:~I
;.4>

']

dand b = dt f(t) It=od -a = dt g(t) It=o

= dh

<a:di,di> + <di,a"di> = o.

= ~t g(t) It=o .di + di"~t f(t) It=o.

Clearly alv(i) = 0 and b: TM ~ TM is self-adjoint with

implying

Let us point out that for all vp' wp ETpM and p E M

with

We therefore can represent dh by
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respect to rn(i). Let us investigate the above description
of dh sornewhat further .

.There is a unique C: TM ----+ TM, a' srnooth strong bundle
endornorphisrnof TM (fibrewise) skew-adjoint with respect to
rn(i} such that for all vp' wp E TpM

Therefore we find'a srnooth End(~n)-valued rnap

such that

Without loss of generality we can assurne that c(M) c so(n}
(where so(n) is the Lie algebra of SO(n)}.

We hence have furtherrnore

for all p e M. Here v (i)p denotes the normal of di. TpM.
Thus c is uniquely determined by a and can be viewed asa
vector field along i. The following is thus easily
verified:

Proposi tion 2: The differential dh of any h e ce> (M,IRn)--uniquely represented by~~-
dh = c'di + di.C + di.b

is
~

of TM which
where i E E(M,~n) is------bundle endornorphisms
,-

fixed.- C and b.--- ~ smooth s.!ro~
skew- respectively



BINZ

self-adjoint with respect to m(i). For each p E M the map-- ~ - --- .-----.. -- ,-.-
c: M ~ so(n)

maps di TpM into v(i)p and vice versa. Ijence c can be.-..- .....-.. ..• .- ----- ------- -- Aviewed as a vector field along the Gauss map i. The maps c,..... - _.
~ - ---. -- -------- -----C and b depend smoothly on h.~

Corollary 3: The differential dh of any h E Cm(M,~n) can be
."",-.-- - - .--.. ~ "",....,--

represented via s E Cm(M,so(n»as
~ ---

dh = s.di where s = a + C + b.,---
The maps C and bare given on di TM by
~ ~ --- ~ ..--

C.di = di.C and b.di = di.b

respectively and are both supposed to vanish on v(i).
"""'- .•.... - .".,..-. ~ ...-.....•...~~- --- - -

3) An integration scheme .

.As we saw in th~ previous section the differential of any
j E Oj can be described by

Similarly the differential dh of any h E Cm(M,~n) is given
relatively to di by

dh = s.di with s E Cm(M,End(~n».

Let us call <p a di-factor of dj and s an infinitesimal
di-factor of dh. In both cases we have not insisted on
uniqueness in the description.

~-~ ..-

/
I

L-_~,'it"'Tt' !!'iS>
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The question arises as to whether the di-factors can be
computed via the infinitesimal ones. The answer will be
prepared by the following:

Lemma 4: Given h E CCD(M,!Rn) of which the differential is~ ,....",..... , .•. - .....--........-~ . ...--
given by~-

dh = s.di

then for each natural number n
~ ""'---"....-- ~ ~

6 (sn. dU = o.

Proof: We form

F(s' ,j) .- s' .dj with aF(s' ,j) = 0

where s' varies in CCD(M,so(n» and j in 0i respectively. By
proposition 2 we may assume that F depends smoothly on its
variables. The total derivative od F at (s,i) in the direc-
tion of Ss E CCD(M,so(n) .and k E CCD(M,!Rn)is

where we set dk = s2'di. We demand that a(ss'di) = O. Hence
a ((s.S 2) di) = o. A simple induction on the power r com-
pletes the proof.D

Now one immediately deduces the following:

Corollary 5: ~ any h E CCD(M,!Rn)
differential dh is represented as......----=---- ,...- ...-

dh = s.di

of which the---

EH fi8
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6«expos) .di) = 0
the differential
defined on the

By proposition 4 we know that
that (expos) .di can be regarded as
IRn-valued smooth immersion j(s)

showing that j(s) factors to M and hence isoan 'immersion of
M. If s is near enough to zero then j(s)

The purpose of the next few developmen,ts is' to show that
given i E E(M,IRn) the set m-l(m(i» is a Frechet manifold
when regarded as a topological subspace of ~(M,lRn).
First we consider S C CCD (M,Rn) and identify S/IRn with the

dj(O) = diOTTt.

is a smoothly parametrized family of maps with
r~

'"(j(t.s) - i0Tt): M ~ !Rn

'"Tt: M ~ M

.
Hence dj (t.s) (regarded as an !Rn-valued one form on M) and
di belong to the same cohomology class in

be the canonical projection. Then if t varies in IR

'"universal covering M of M. Let

Proof:
showing
of an

near enough to zero.,-.....-- ----------- ,-------

with s E CCD (M,End (IRn» ~ IRn_yalued~ form
(expos) .di

and is the differential of some j E 01' provided that s is- - -- -------
is the differential of some smooth Rn-valued immersion on M-- - ----------- - --- --- ------

4) m-l(m(i» as a manifold.
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set {dh/ he S}, which carries hence the quotient topology
determined by S.

Due to proposition 2 and corollary 5 there is a map

given by
~exp(dh) = (expos) .di

where dh is uniquely represented as s.di with

s = c + C + b.
.' . (pf -I-h i.r W1Q.p

(Both C and bare as in corollary 3).Thesmoothn~
by the so called n-lemma (cf..[Gu] or [Mi]).

Due to the continuityof nexp we find an open neighbourhood .
U C 'Cm(M,~n)/~n of zero for which

For dh eU we immediately deduce.,

-1 .. .,nexp(dh) c m (m(i»/~n iff Dm(i) (h) = 0

Thus we have the first part of

W c {dh/ Dm(i) (h) = O}

Proposition 6: There is an open neighbourhood-'~,...,................- ~'. .

such that
~ --

-1~ ~ <l,pen_~ei~urhood ~ di e m. (m(i))/lRn. If W is small-enough, then.,""--- ---
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is a homeomorphism onto ~exp(W).~-~--
To verify the last part of proposition 6 we have to choose
W that small that the infinitesimal di-factor s of each
dh e W maps M into the domain of in~ectivity of

exp: so(n) ~ SO(n)

which is possible, due to the.continuity of ~exp'

Moreover the following is now evident:

Corollary 7: Given~
.Frechet manifold.
dj e-;-i (;( i) )"/IR~ a

i e E(M,~n) then m~(m(i»/Rn is a smooth-...-- -, ~
~ ~ ~ ~rmed ~ .!.akin~ ~ each
suitable small open neighbourhood W in~~ ~~...... -...- .•..........

n = n' + r for some
then i e E(M,~n'+r)

Tdj (m-i(m(i» /IRn) .:-{dh/ Dm(j) (h) = O}

as achart at dj and ~ as .a chart~......,.. ,....-- __ __ exp I W _........ ....---- ~ •

Finally our main theorem is immediate:

Theorem 8: Given i e E(M,~n) the set m-i(m(i» equipped with--- - - . .....,-----'--- -----
Whitney's Cm-topology is a smooth Frechetmanifold.

"'" 4 ---- ..-...-.'-"""'" -='" ~-..,- ~~---_._----

Remarks:
i) .The manifold rn-i(m(i» is infinit dimensional if n is

large enough. To see this let
natural number n'. If i e E(M,~n')
.and any h e Cm(M,~r) sati~fies

""'~ ...• " .•
\3,~~':'~:~':-:/\:":.~~.~'-.~;7" ~ '

;. - m" 1
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Dm ( i) (h) = O.

Hence m-1(m(i» is infinite dimensional.

On the other hand if the codimension of M is small
enough
metric

and i (M) C IRn satisfies
condi tions then m-1(m(i))

some addi tional geo-.
is diffeomorphic to

the Euclidean group of !Rn (cf. [B,B,G]).

iii) If E (M,lRn) is replaced by I (M,!Rn), the collection of
all smooth immersions of M into !Rn, and ifm means the
map

given by restricting m: cm(M,lRn) ~ S2(M) to I(M,lRn),
then ~1(m(i» is a Fr~chet manifold as welle The proof
follows exactly the same lines except for some (minor)
simplifications.
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