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1. IntrodudioD

Deeomposition methods for finding saddle points of a funetion ip : X X Y - IR are

eharaeterized by an alternating sueeession of master programs and subprograms [7]. The

master programs detennine the proper iteration points, wmeh are approximate saddle

points over a suhset X" x Y" of the original domain. The suhprograms ealeulate auxili.
ary points, wmeh serve to update the suhset under consideration. For certain structured

problems the suhprograms may decomposej this fact accounts for the name and the prac-

tical importance of decomposition methods, hut is not essential for their mathematical

theory of convergence, wmch is our main concern here.

In [12] asymmetrie decomposition scheme for finding convex-eoncave saddle points has

heen deseribed, wmeh subsumed several previously known methods. More recently in [1]

another general scheme has been described, wmch introduced regularisation in solving

the subprograms. The present paper synthesizes these two approaches and may also be

viewed as a survey of some classical decomposition methods.

Wework essentially within the setting of Sion's celebrat.edminimax theorem [15],i.e. the

function ip eonsidered will be quasi.convex.eoneave. The compactness assumption for the

underlying domam, wmch has already been relaxed in [1], will he further weakened. We
also admit more general regularizing functions than in [1]. The procedure is descri-

hed in such a way that the extension to Nash equilibrium points in n.person games is

straightforw ard.

We recall that a function J : X - IR is called quasiconvex iff the level sets

{z E X IJ (z) ~ Q'} are convex for all Q' E IR. Furthermore J is ealled quasieoncave
iff - J is quasiconvex. A function ip : X X Y - IR is called quasi-convex.concave iff

ip (" 'Y) : X - IR is quasiconvex for all 'Y E Y and ip (z, .) : Y - IR is quasiconcave for all

z E X. We denote by convA the convex hull of the set A.
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2, Prelimlnari"

Let there be given two nonvoid sets X, Y and a function p(z, y) :X X Y -+ IR.

A point (e., ".) E X x Y is ealled a saddle pointof p on X x Y iff

p(e., y) S p(z, ".) V(z, y) E X x Y. (1)

Heneeforth we shall use the functions

M(z) := sup p(z, y) : X -+ IR U {+oo}, (2)
yEY

m(y) := inf p(z, y) : Y -+.IR U {-oo}. (3)
:rEX

Condition (1) ean then be written as M(e.) S m(".), and this inequality ean only

be satisfied as an equality, sinee one has always m(y) S p(z, y) S M(z) for arbitrary

(z, y) E X x Y. If (e.,".) is a saddle point, then e. solves the primal problem

(P):

and ". solves the dual problem

(D):

inf{M(z)lz EX},

sup{m(y)ly E Y},

(4)

(5)

and the extreme values are equal. Henee i£ the set of saddle points is nonempty, then it

eonsists of all the pairs (e.,".) where e. solves (P) and 11. solves (D).

Le.t us now assume

(Hl) X and Y are nonvoid closed eonvex sets in some normed linear spaees;

p :X X Y -+ IR ia quasi.eonvexoeoneave and eontinuous.

Under (Hl) the function M(.), being the supremum of a family of lower semieontinuous

functions, is agam lower semieontinuous. Likewise m (.) is upper semicontinuous. By

Sion's minimax theorem [15,91 p has a saddle point over X x Y if, in addition to (HI),

X and Y are compact. The latter requirement can be weakened as follows:

(H2) We are given a nonempty finite subset ZO C X x Y such that the set

S:= ((e,l1) E X x YI<p(e,y) S P(Z,l1) V(z,y) E ZO} is compact.

Lemma 1. Under (HI) and (H2) p has saddle points on X x Y, and all saddle points

lie in S.

Assume that there exists no saddle point (e., 11.) E X X Y satis!ying (1). Consider the

sets

S(z,y):= ((e,l1) E X x Ylp(e,y) S <p(z,,,)}, (z,y) E X x Y.
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Then the family of dosed sets {S(:e, y)l(x, y) e X x Y} has empty intersection over S.

Since S = n{S(:e,y)l(x,y) e Zn} is compact by (H2), there exist finite subsets Xl cX

and yl C Y with ZO c Xl X yl such that the family {S(x,y)I(:e,y) e Xl x yl}

has empty intersection over X x Y. LetEl:= convXl and Hl := convyl. These

sets are convex and compact, and by Sion's original result there exists a saddle point

(el,l1l) e EI x HI of rp over EI X Hl. But then

(el,,,l) en{S(x,y)l(x,y)eXl xyl}=F',

a contradiction. Hence rp has saddle points over X x Y.
If (e., ".) is a saddle point overXxY, then dearly rp(e., y) ~ rp(:e, 11.) for all (x, y) e ZO,

hence (e., 11.) e S. q.e.d.

Remark_ A doser inspection of the proof of the lemma shows that in (H2) the re-

quirement of ZO being finite can be replaced by the requirement that ZO = XO x yO

with convXo and convyo being compact. In particular, if Y itself is compact and

{e e XIM(e) ~ M(z)} is compact for some z e X, then (H2) is satisfied with

ZO := {z} X y, since in this case

S = {(e, 11) e X x YIM(e) ~ rp(z,,,)} c {e E XIM(e) ~ M(z)} x Y,

and S is compact.

Example. We go through an example in detail to illustrate the usefulness of hypothesis

(H2). We assume in addition to (HI) that Y is a cone, and that rp(x~ y) := l(x) +g(:e, y)
with g(x,.) positively homogeneous in Y for every x EX. Then

M(x) := {1(:e) if g(x, y) ~ 0 Vy E Y
+00 else,

and the primal problem (4) becomes

(P'): inf {J(x)l:e EX, g(x,y) ~ 0 Vy E Y}. (6)

Weassume further that 10 is inf-compact, meaning that the level sets {x E Xll(x) ~ a}
are compact for all a e JR, and we assume that the following Slater-type regularity

assumption (RA) is satisfied:
(RA) Y is locally compact, and there exists a finite subset Xo c X such that

min g(x,y) < 0 Vye Y \ {Oy}.
:rEXO

Then hypothesis (H2) is satisfied with ZO := Xo X {Oy}.
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Indeed: From loea! eompactness of Y follows the existence of a compact subset B C

Y \ {Oy} such that Y = 1l4' B, and since g(z,.) is upper semicontinuous (RA) implies

the existence of 6 > 0 such that min g(:r:, y) S -6 Vy E B. Let ß E IR be arbitrary,
zEXO

and choose IeE IR such that k ~ max I(z) and k ~ ß. Since g(:r:,.) is positively
zEXO

homogeneous it follows for all A ~ 0:

min (I(:r:) + g(:r:, y)) S k - Ab Vy E AB.
zEXO

In particular if A > 6-1 (k - ß) =: "0 we have min SO(:r:,y) < ß Vy E AB. Hence for
zEXO

A > "0 the set AB is disjoint with the level set {y E Y I min SO(:r:,y) ~ ß}; the latter
zEXO

is therefore contained in the compact set [0,"01. B and is itself compact. Now choose

Zo := XO X {O}.Then

s = {(e, 11) E X x Y lso(e, 0) s so(:r:, ,,) V:r:E XO}

c {e E XI/(e) S aO} X hE YI min so(:r:,'1) ~ ßO},
zEXO

where aO := sup min so(:r:,y) and ßO := in! I(:r:). aO and ßO are finite since the functions
y XO X

being extremized are continuous and have compact level sets. Now S, being contained

in a compact set, is itself compact, and so (H2) is satisfied. q.e.d.

Henee under the assumptions of the example SOhas a saddle point (e., 11.). By what has

been said previously this implies that e. solves (P') and that I(e.).s I(:r:) +g(:r:,'1.)

VzEX.

3. Decomposition Print::iple

For notationa! simplicity it is convenient to represent the saddle point problem (1) as a

variationa! inequality problem. Set Z :=X X Y and define ~(-,.) : Z X Z - IR by

~(z,r) :=SO(z,'1) -so(e,y), z:= (:r:,y), r:= (e",). (7)
Then the problem of finding (e., 11.) satisfying (1) is equiva!ent to finding r. = (e., 11.)
satisfying

r. E Z, ~(z,r.) ~ 0 Vz E Z. (8)

Note that ~(r,r) = 0 for all rE Z. Moreover ~ is continuous £rom (Hl). But ~(-,r) is

not necessarily quasiconvex (unless SO is convex.concave, in which case ~(-, r) is convex).

Note that r. satisfying (8) maximizes the function in! ~(z,.) over Z. Under (Hl) and
zEZ

(H2) problem (8) has a solution. Moreover any solution of (8) is in S. This result

4



obviously remains true ü in (8) we replace the set Z by a closed, convex product set

0=:3 x H with ZO cO c Z.

Several other assumptions which we have to mue are collected in the following hypothesis

(H3), where ~, S, Z have the same meaning as before.

(H3) a) We are given a lower semicontinuous function H: Z x Z -10 .IRU {+oo} with

H (z, ~) ~ 0 for all (z,») E Z X Z and H (z, z) = 0 for all z E Z.

b) The function ~ •...•.inf (~+ H)(z,») is upper semicontinuous.
zEZ

c) (~+ H)(z,~) ~ 0 for an z E Z implies ~(z,») ~ 0 for all z E Z.
d) There exists a compact set K C Z such that {z E ZI(~ +H)(z,») ~ o} c K

for all) E S.

Example •.
a) Let Z be finite-dimensional, and let ip be eonvex-concave, whieh implies that ~h~)
is eonvex. Moreover let ~ be de6ned on an open neighbourhood of Z x Z. Then from

[I3;theorem 24.7] it follows that the subgradients of ~h») are UßÜormly bounded on the

eompact set S x S. Hence

~(z,» = ~(z,)) - ~()')) ~ -kllz -)11 Vz E Z, V~ E S.

Now ehoose H(z, d := IIz- )112.Then (~+ H)(z,~) ~ 0 (z E Z, ~ E S) implies

o ~ -kllz-~II+llz-~1I2, and thereby IIz-~1I~ k. Henee there exists a set K as required

in (H3)d). Moreover, if H is ehoosen this way, and ~h d is eonvex, then (H3)a)-e) is

trivially satisfied. If ~ is continuously differentiable, one can also ehoose

(~+H)(z,r) :=~()')) + (V'l~(),d,z - d + k -Ilz - )112,
with k > 0 so large that H ~ O.

b) Let Z be finite-dimensional again and consider the choice

H(z,)):= {o for IIz -)11 ~ p
+00 else

for some p > O. Then (H3)a), b), d) are satisfied. Moreover (H3)c) is satisfied if every

local minimum of ~h» is a global minimum.

In what follows we always assume that (HI), (H2), (H3) hold. For ease of notation we

describe the symmetrie decomposition scheme in terms of ~ and Z above. From this

basic model we derive by specialization various unsymmetric implementations.
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Tbe decompositioD metbod

At thestart we are given the finite subset ZO c Z £romassumption (H2). At the beginning

of the n.th iteration we need the previously calculated auxiliary points z1, ... , zn-l E z.
Choose a set zn such that ZO U {z1, ... , zn-I} C zn C Z. Choose a product set

on = sn X Hn closed, convex, such that zn c on C Z.

Master provam:

Select the iteration point fn E on such that ~(z, fn) ~ 0 YzE zn. (9)

Subprogram:
Select the auxiliary point zn E Z such that

Tms completes the n-th iteration.

(10)

(11 )

(12)

We convince ourselves that the above rules are consistent. The existence of fn satisf'ying

(9) followsfrom the fact that cphas a saddle point on sn xHn. Moreover, since ZO c zn,

wehave fn ES. In addition, since (~+H)(rn, rn) = 0, it followsfrom assumption (H3)d)

that the lower semicontinuous function (~+H)(., rn) assumes its minimum over Z within
the compaet set K. Hence zn satisf'ying (10) exists, and moreover zn E K.

As a stopping criterion we introduce the quantity

Tn:= (4?+H)(zn,r").

It follows £rom (10) that Tn ~ 0 and

Tn ~ (4?+H)(z,\n) Vz E Z.
If zn = zko for some ko < n, then Tn = 0, since (9) and H ~ 0 imply

o ~ (4? + H)(zko, rn) = (~+ H)(zn, \n) = Tn ~ o.
In trus case it follows £rom (12) and (H3)e) that rn is already an exact solution of (8),

i.e. the algorithm terminates after finitely many steps. If trus case does not oceur, for

the sequence {rn} generated by the above rules we have

Theorem 1. The sequence {\n} has duster points, and every duster point is a solution

of (8). Moreover, for the quantity Tn := (~+H) (zn, \n) there holds lim Tn = O.
n-oo

f.IQ.Qf. Since rn ES, where S is compact, it follows that the sequenee {fn} has duster
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(13)

points. Let ~. be an arbitrary cluster point of this sequence. Since zn E K, and K
is compad, the sequence {(zn, ~n)} contains a subsequence ((zn(j), ~n(j»)} (i E .IN)

converging to (z., ~.) for some z. E K. From (9) we have 0 S ~(zk, ~n) Vk < n. In

particular, for n := n(.i), we obtain in the limit 0 S ~(zk,~.) Vk. Now, for k:= n(.i)

we obtain in the limit

o S ~(z.,~").

From (10) and H ~ 0 follows ~(zn,~n) S (~+H)(z,~n) Vz E Z. By (H3)b) this yields

in' the limit

Altogether we have

o S (~+H)(z,~.) Vz E Z.

From assumption (H3)c) it follows that

o S ~(z,~.) Vz E Z.

Hente r. is a solution of (8). Moreover, it follows£rom (13) that

o S (~+ H)(z., ~.).

But 0 ~ (~+ H) (zn, ~n) for all n, as stated above, and due to the lower semicontinuity

of ~ + H we obtain (~+ H)(z., ~.) = O. In view of our compactness assumption this

means that Tn -- 0 for the entire sequence {T n}' q.e.d.

In the absence of further information about H beyond that given in (H3), the condition

-Ir S Tn (where e > 0 is given) may be used as a convenient stopping criterion to

terminate the procedure.

Example. The cutting method for the problem

max (inf ~(z, r)),
)EZ zEZ

where Z is compact and ~ is continuous, runs as follows:

rnsolves max (inf ~(z,r)),
)EZ zEZ"

znsolves min ~(z, rn),
zEZ

where zO E Z is arbitrary and {zO, z1,.' "zn-1} C zn C Z. Clearly zn, rn satis6fy (9)

and (10) with on = Z and H == 0, provided (8) is solvable. If ~ is given by (7) and

zn = Xn X yn, then the cutting method with ~n = (en,l1n), zn = (zn,yn) decomposes
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as follows:

en solves

"n solves

~n solves

yn solves

min (sup p(e, y)) ,
eEX yEY"

max (in! p(~,,,)),
IJEY zEX"

min p(~, "n),
zEX

max p(en,y).
yEY

(14)

(15)

(16)

(17)

(20)

(21)

Hence we obtain two parallel, unrelated algorithms: The first one, involving en, yn

and given by (14), (17) is the cutting method for solving min M(e). The second one,
€EX

involving "n, ~n and given by (15), (16) is the cutting method for solving max m(,,).
IJEY

In the remaining parts we shall restriet ourselves to the case where zn = Xn X yn for

all n and

H(z,~) := F(~, e) +G(y,,,)
with F :X X X - IR and G : Y X Y - IR continuous, nonnegative functions satis!ying

F(~,~) = 0 V~EX, G(y, y) = 0 Vy E Y,

p(~,,,) + F(~, e) ~ tp(e,,,) V~ EX implies p(~, 1/) ~ p(e, 11) V~E X, (18)

p(e,y)-G(Y,1/)~p(e,,,) VYEYimpliesp(e,y)~p(e,,,) VyEY. (19)

Then (H3)a), b), c) are satisfied. We have

(~+H)(z,~) = p(~, 1/) + F(~, e) - (p(e, y) - G(y,,,)),

and therefore (9), (10) take the following form:

a) Select (en,1/n) E sn X Hn such that

p(en,y) ~ tp(~,'71n) Vil E Xn, Vy E yn.

b) Select iln E X such that

~n solves min (tp(il, '71n) +F(~, en)).
:rEX

Select yn E y such that

yn solves max (p(en, y) - G(y, '71n)). (22)
yEY

Here xn c X and sn cX have to be chosen such that XO U {~l, ... ,~n-l} C xn C sn

with sn closed, convex. Similarly for yn and Hn.

If an = Y n = Y for all n, then the auxiliary points yn are not needed for the procedure,

and (22) becomes void. In trus case, if only en E xn, we can use

T"n := tp(~n, 1/n) - p(en, ,.,n) + F(~n, en)

as stopping criterion.
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We remark that if the problem is separable in the following sense:

p(z,y):= L:Pij(Zi,Yj), x= IIXi, Y = IIYj,
',1 i j

F(x,e):= L:Fi(Zi,e,.), G(y,'1):= LGj(Yj,'1j),
i j

then the subprograms (21) and (22) disaggregate into subproblems of smaller size.

4:. Variant.

Let us consider in more detail a particular implementation of the procedure (20)-(22).

We assume that pis convex-concave and that XO = {zO} is a singleton. For the n-th
iteration, given zo, ... , zn-I, we let

n-l

En := (.-\= p.o"'" An-I) E .lRnlA~ 0, LAi = 1},
i=O

and for AE En and YE Y we deHne
.n-l

1/In(A,y) :=L AiP(zi, y).
i=O

Rn is as before. The n-th iteration consists of the following steps:

..~

Determine (An, 1'/n) with An := (A~, ... , A~_d
as a saddle point of 1/In(A,y) on En x Rn.

n-l

Set en :=L ArZ".
i=O

Detennine zn, yn according to (21), (22).

(23)

(24)

Setting xn = {zo, .. " zn-I} and En := conv(zO,' .. , zn-I), we have en E sn, and the

couple (e", 1'/n) deHned above satisfies (20), since
1/I"(>'",Y) ~ 1/In(>',11") VAE E", Vy ERn

implies

p(en,y) ~<p(zj,1'/n) Vi=0, ... ,n-1, VyER".

The existence of a saddle point of 1/1"over E" X R" is guaranteed, since the validity

of (H2) for 'P with regard to X X Y implies the validity of (H2) for 1/Inwith regard to
En X Y.

Note that 1'/"can be found as a solution of
"-1

(D"): max (inf '" AiP(zi,1'/)) = max (, min p(zi,'1)),
FlEHn .\EEn L- FlEHn ,=0 ... n-l

i=O ' ,
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and >'" can be found as a solution of

If one chooses Y" = H" = Y for all n (which implies that y" is super6.uous), one obtains

algorithm. 2 of [1]. Provided that in addition F= G= 0 one obtains for algorithm. (23),

(24), (21) the following two.sided bounds for the saddle value so(~., 11.):
so(x",1J") = m(l1") ~ so(e.,'7.) ~ M(~") ~ sup tP"(>.",y) = tP"(>'",'7"),

yEY
where the last inequality follows from the convexity of soh y).
H SO(x, y) := I(x) + g(x, y) with Y a cone and g(x,.) positively homogeneous in Y for

every x EX, then the primal problem, as already stated, becomes

(P'):

and with Y" =H" = Y step (23) reads as folIows:

(Ph): >."solves

(Dh): '7"solves

min (sup L >'i(J(xi) + g(zi, y)))
AEEn yEY .

I

= min{L >.;/(xi)l>' E r;", L >'ig(Xi, y) ~ 0 Vy E Y},

max( inf L >'i(J (xi) + g(xi, '7)))
'1EY AEEn .

I

=max(JnPt(J(xi) + g(xi, 71 ))).
'1EY I

Note that the convexity of g (., y) implies that e" is feasible for (P').

Finally, in case that Y = lR~ and so(x, y) := I(x) + (y, g(x)}, g :X -- IR" l (P') reads

(P"): inf{J(x)lx EX, g(x) 50},

and (Ph) and (Dh) become a pair of dual linear programming problems:

(P;;): min{L >.;j(xi)l>. E r;", L Aig(Xi) 50},
i i

(D~): max{JnPt(J(xi) + ('7,g(x')))I'7 ~ O}.
I

This method with F = 0 has been given by Dantzig [7, Ch.24.1] and - with a different

motivation- in [16, Ch.14.4J. With F = 0, but SO arbitrary, algorithm (23), (24), (21) has

been described in [12] as an extension of Dantzig's method for SO not necessarily being a

classical Lagrangian.

Algorithm 1 of [1] is obtained if one treats y in the same way as x: One defines

tP"(>',~):= L>'i~iSO(xi,yi),
i,i
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where i, i run from 0 to n - 1, one requires (>'nd"n) to be a saddle point of tP n (>.,p) over
~n X ~n, and one sets

en := L:>.rzi, "n:= I: Pjyi.
i i

The determination of (>' n, pn) is a dual pair of linear programming problems:

>.n solves min (m<;LxL:>'i1p(zi , yi) ),
>'EE" J. .

I

Pn solves max (mPt L:pjlP (zi , yi)) .
pEIl" I .

J
(20) is again satisfied with Xn := {:.;o, ... , zn-I}, an := conv(zO" .. , zn-I),

yn :={yO",.,yn-l}, Hn :=conv(yO,.",yn-l).

Huard', methQsI.For the case that 1p is an ordinary Lagrangian function Huard [5]has

given a modification of Dantzig's decomposition algorithm. We can generalize Huard's

method for problem (8)

r. E Z, ~(z, r.) ~ 0 Vz E Z

as folIows. We assume that we are given a continuous function iI : Z x Z -+ IR, which

satisfies all the requirements of (H3) with one exception: H ~ 0 is replaced by the weaker

requirement that for every a E Z
(25)

(26)
(27)

We assume for simplicity that Z is compact and choose on a convex, compact product
set such that on :J conv {zO, zl, , , " zn-I}. Then the algorithm reads:

Choose ~n E on such that ~(z,~n) ~ 0 Vz E on,
Choose zn E Z as a solution of min(~ + H)(z, ~n),

zEZ

Note that (26) is essentially a sharpening of (9) (now zn = on), (27) remains practically

the same as (10). The existence of ~n and zn with the required properties is ensured,

and moreover they lie in a compact set. Any cluster point ~. of the sequence {~n} is a

solution of (8).
Indeed: There exists a subsequence, indexed by nU), such that ~n(j) -t ~.,

zn(j) -t z. E Z. From (26) follows in view of (25) that (~+iI)(z,~n) ~ 0 Vz E on.
Hence in particular (~+iI)(zk,~n)~.() Vk < n. In the limit trus gives

(~+ H)(z., ~.) ~ O.

From (27) follows in the limit that

(~+H)(z"r.) ~ (~+H)(z,r.) Vz E Z.
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Altogetherwe have 0 ~ (~+ ii)(z, r.) VzE Z, and in view of (H3)c) this implies

o ~ ~(z,r.) VzE Z.

Hence (8) is satisfied. q.e.d.

Suppose in particular that we choose on = conv (zO, ... , zn-I) X Y, in which case the

need for caleulating yn disappears. Then we choose ii(z, r) := F(z, e,,.,) and subproblem
(27) becomes to find

zn EX minimizingp(z, "n) + F(z, en, "n).
In particular, if p is continuously differentiable, we may ehoose F in such a way that

p(z, "n) + F(z, en, "n) := p(en, "In) + (VI p(en, "n), Z - en) + kUz - enlrjl

for some k ~ O. Then condition (25) is satisfied. Condition (H3)c) is satisfied if p(.,,,)

is pseudoconvex.

5, Deletion 01 auxiliary points

It is an unpleasant feature oI the methods deseribed so far that the auxiliary points

zn, yn have to be stored and used in all subsequent iterations. Here we want to obtain

versions which allow for the deletion oI auxiliary points. The crucial hypothesis which

we need for this is (H4):

(H4) p(x,.) is unimodal, i.e., for all x E X there exists at most one y E Y where p(x,.)

assumes its supremum over Y.

With this hypothesis the master program (20) in the decomposition method may be

drastically simplified towards a method of feasible directions [41. A first example of the

method to be described below has been given in [121.A more elaborate version for the

quadratic case, together with an estimate of the rate of eonvergence, has been described

in [14].

Besides (H4) we make in this section the following additional assumptions:

1) The set Y is compact.

2) For some zE X the set Q:= {e EXIM(e) ~ M(z)} is compact. Let S:= Q X Y.

3) There exists a compact set K c X such that

{zEXlp(x,,,)+F(z,e) ~p(e,,,)}CKforall (e,,,)ES.

12



From 1) followsthe continuity ofM(.), and from 1) and 2) followsthe existence of saddle
points of tp over X X Y - see the remark after lemma 1. Assumption 3) replaces (H3)d).

The modified iteration runs as follows: For the start we choose eo E Q and zo E K

arbitrarily. At the beginning of the n.th iteration we are given en-1 E Q and zn-l EK

ealeulated in the previous iteration. The n.th iteration eonsists of the following steps a)

and b):

a) Seleet (en,,, n) E X X Y such that

M(en) = tp(en,,,n), M(en) 5 tp(en-1,,,n), M(en) 5 tp(zn-l,,,n). (28)

b) Seleet zn E X such that

zn solves min (tp(x, "n) +F{z, en)). (29)
:zEX

The requirements under a) are consistent, sinee any saddle point (en,,, n) of tp over

[en-1, zn-I] X Y is a solution. Itwe choose (en, "n) in this way, then the computation

of (en,,, n) may be coneeived as taking place in two stages. First we caleulate en by

minimizing M(.) over [en-1,zn-l]. Then we ealculate"n by maximizing tp(en,.) over

Y. Due to (H4), (en,,,n) so ealeulated is indeed a saddle point on [en-1,zn-l] x Y.

Sinee en-1 E Q and M(en) 5 tp(en-1,'1n) 5 M(en-1), it follows that en E Q, too.
Henee (en,,, n) ES, and from assumption 3) follows the existenee of zn satisfying b);

moreover zn E K. The sequence {(en, 17n)} has cluster points, sinee it is eontained in

the compaet set S.

Theorem 2. Every cluster point of the sequenee {(en,."n)} generated by (28), (29) is a

saddle point of tp on X x Y.

fu..Qf.
Let (e.,,,.) be a cluster point of {(e","n)}. Due to the compaetness of K there exists a

subsequenee, indexed by nU), such that
en(j) -e.,,,"(j) -"., zn(j) -z., 11"(j)+1-Tf.

From (28) we obtain

M(en) = tp(e", 11")~ tp(e"-l, 17n) ~ ~\.f(e"-l).

Henee the entire sequenees {M (e") }, {tp (e" , "n) }, and {tp (e" -1, 11")}are decreasing and
are eonverging towards the same value. Due to continuity we obtain then

M (e.) = tp (e.,".) = tp (e.,Tf) , (30)
and (H4) implies 17. = Tf. Furthermore, (28) givesM(en) 5 tp(zn-l,,,"), and substitu.

13



ting n := n(j) + 1 we obtain in the limit

M( e.) s p(x., 1j) = p(x. , f'I.);

henee, from (30)
(31)

From (29) it follows that

p(xn,f'ln) +F(xn, en) S p(x,f'ln) +F(x, en) "Ix EX.

Sinee F ~ 0, this yields in the limit for the subsequenee

p(x. ,,,.) S p(x, f'I.) + F(x, e.) "Ix EX.

Using (31) we obtain

p( e., 11.) S p(x, 11.) + F(x, e.) V:eEX.

Then £rom (18) it follows that

p(e.,f'I.) S p(x,f'I.) "Ix E X,

henee M(e.) S m(f'I.), and (e., ".) is a saddle point. q.e.d.

Rate 0' convergence. Sinee the variant (28)-(29) is dose to a method of feasible di.

reetions, it is natural that we ean estimate the rate of convergenee by adapting results

for the latter dass. We borrow £rom 14]. We speeialize algorithm (28)-(29) as follows.

F(x,e) := IIx - elpl, and (en,lIn) is chosen as a saddle point of I" on len-1,xn-1] x Y.

So we have
en solves min {M(e)leE [en-1,x"-1]},

11" satisfies M(en) = p(en,11"),
xn solves min{p(x,lIn) + Ilx - enl121x EX}.

We assume in addition

1. 10(-, y) is convex;

2. there exist constants 0 < v S V such that for all e E Q

a) M(e + h) - M(e) ~ p(e + h, lI(e)) - p(e, lI(e)) + vllhll2 Vh EX - e,
b) M(e + h) - M(e) S p(e + h, lI(e)) - p(e, ,,(e)) + V Ilhll2 Vh E X - e,

where l1(e) is (uniquely) determined by the requirement p(e,l1(e)) =M(e).

v
Theorem 3. With an := M(en) - in{ M(x) we have an+1 S an(1 - ~), where

:rEX V
V = min{1, v}, and V = max{1, V}.

14



follows

hence

T" ~ cp(e" + h, 11") - cp(e", 11") + IIhll2 Vh E X - e".
Since 17~ 1, hEX - e" implies h := 171"E X - e". So we obtain, using the convexity of

cp ( ., y), that

T" ~ 17. (cp(e" + h, 1]") - cp(e", 11")) + 17211h1l2
~ 17. (cp(e" + h, 11") - cp(e", fI") + vllhll2) Vh E X - e".

From assumption 2a) it follows that

T" ~ 17. (M (e" + h) - M (e" )) Vh E X - e" ,
hence

T" ~ 17. (-a").
Furthermore with I:= 1 and h" := z" - e" we obtain

V

M(e" + Ih") -M(en)

~ cp(e" + Ih", 1]") - cp(e", 11") + V .¥ 'lIh"1I2 [from assumption 2b)J

~ I(cp(z",fI") - cp(e",1]")) + v. ¥ .lIh"1I2 [from assumption 1)1

~ I. (cp(z", 11") - cp(e", 1/") + IIh"112) [sinceI ~ ~]

= I. T".

Since en + Ih" E [e", znJ it follows from the definition of en+ 1 that

l\J(e"+l) - M(e") ~ IT".
- 17

Hence a"+1 - an ~ A' v(-a") and a"+1 ~ a"(1 - V). q.e.d.

The same rate of convergence, but under somewhat different assumptions, has also been

establishedin [14].

If we require in addition to the assumptions made for algorithm (28)-(29) that cp(., y)
is convex and cp(z,.) is strictly concave (thus sharpening (H4)), then algorithm (28)-

(29) can be modified as folIows: Givene"-1 E Q and zn-l E K we define for (z,y) E

[e"-l,z"-I] x Y:
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where ,\ E [0, I] is detennined by z = ,\e"-l + (1- '\)Z"-l. The n-th iteration consists

of the following steps:

a) Select (e",1/") E X x Y such that

(e", 1/n) is a saddle point of tPn (e, 1/) over [en-l, zn-I] X Y.

b) Select Z" EX according to (29).

This is essentially algorithm 2 with the deletion rule trom [I]. Again the sequence

{(e" , 1/n)} is contained in the compact set S. Every cluster point of the sequence

{(en, 1/n)} is a saddle point of'P on X x Y.

Indeed: Let (e., 1/.) be a cluster point of (en, 1/"). Due to the compactness of K there

exists a subsequence, indexed by n(.i) (.i E IN), such that
en(j) _ ~, 1/n(j) _ 1/., zn(j) - z., 11n(j)+1_;;, e"(j)-l - e, z"(j)-l - i.

Then e. = ,\.e+(I-'\ .)i for some ,\. E [0, I]. Let '1/1. (e. , y) := ,\.'P(e, y)+(I-'\ .)p(i, y).
From step a) follows in particular

sup '1fJ"(e",y) ~ 'I/In(en,'7n) ~ 'I/In(e"-I,11n) = 'P(en-I,11n).
yEY

From the convexity of 'P(., y) follows 'P(en , y) ~ 'I/In(en , y). So we obtain
M(e") ~ sup 'I/In(e",y) ~ 'I/In(e",11") ~ 'P(en-I,11n) ~M(en-l).

yEY

Hence the entire sequences {M(en)}, {sup 'I/In(en,y)}, {'I/In(en,11n)} and {'P(en-I,1'/")}
yEY

are converging towards the same value. From continuity and 'P(e.,y) ~ 'I/I.(e.,y) we

obtain then

M (e.) = sup '1fJ.(e. , y) = '1/1. (e •• 1'/.)= \0 (e., 1/) ~ '1/1. (e•• 1/).
yEY

Since '1/1. (e. , .) is strictly concave and therefore satisfies (H4), this implies1'/. = 1/. So we

obtain

M (e.) = <P(e.,1/.) = '1fJ.(e.,11.) .
Step a) gives furthermore

'I/In(en,1/n) ~ 'I/In(xn-1,1/n) = <p(Xn-1,l1n).
Substituting n := n(.i) + 1we obtain in the limit that

'1/1. (e., 11.) ~ 'P(x.,;;) = 'P(z.,1/.).
Hence

Since subprogram (29) remains unchanged the same argument as in the proof of theorem

2 shows then that M(e.) ~ m(1'/.), and (e., 11.) is a saddle point. q.e.d.
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6, Extension to eqllilibriWD problem.

The notion oC a (Nash-) equilibrium is oC fundamental importance in the theory ofnon-

cooperative n.person games. Let there be given a finite Camily oC sets Zi (i e I) and a

corresponding Camily oCfunctions J; : rr Zj - IR (i e I). We abbreviate
JEI

Z := IIZi, Z~i:= rr Zj (ie I), so that Z = Zi X Z .••• Similary for z =: (Z;)iEI e Z
iEI jEI,j::j:.i

we abbreviate z .••.:= (Zj)jEI,j::j:.i e Z~i, so that Z = (Zi,Z .••).

A point \". e Z with \. = (\"t)iEI is called an eguilibrium point oCthesystem oCfunctions

J; iff Corall i e I

J;(\t,\"~.) ~ I;(Zi,\: •.) VZj e Zj.

Let us assume that for all i e I

1. the sets Zi are nonempty, convex, compact, (32)

2. the functions J;(.) are continuous on Z , (33)

3. the functions J;(., z .••.) are quasiconvex on Zi for each fixed Z~i e Z~i. (34)

Then there exists at least one equilibrium point - see [10, 11], and the remark below.

We define the function ~ : Z X Z - IR by means of

~(z, \) := L:U;(Zj, \~..)- J;(\"i, \"~..)),
JEI

where Z = (Z..)iEI e Z and \"= (\..)iEI e Z. Then ~(\", \")= 0 for all \ e Z. It can easily

be seen that \. e Z is an equilibrium point if and only if ~(z, \.) ~ 0 for all Z e Z. This

is agam problem (8), and we can apply the general decomposition scheme (9)-(10) given

above. A simple realization with H = 0 is as folIows:

At the beginning of the n.th iteration we are given finitesubsets Zr c Zj (i e I).

We determine \" e Z with \n = (\r)jEI such that for all i eI

J;(\r,\~) ~ J;(Zj,\:::') VZj e zr .
We determine zn e Z with zn = (z[i)jEI such that for all i e I

J; (zr , \~) ~ 1;( Zi, \~) VZj e Zi.
We set zr+! := zr u {zn, and start the next iteration.

Recall tha;t (35) is solvable because of the existence of an equilibrium point on

IIconv zr. Every limit point of the sequence {\n} is an equilibrium point.
JEI
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Remark. For algorithmic reasons we needed the theorem of Sion [15, 9] only in the

situation where the functions occuring are continuous (whereas the original formulation

of this theorem needs only appropriate semicontinuity requirements). Under the stronger

assumption of continuity Sion's theorem as well as Nash's result [10, 11] follow readily

from Fan's 6xed point theorem. Indeed, to obtain Nash's result assume that (32), (33),

(34) are satis6ed. DeHnemultivalued mappings Ai : Z~ Zi (i e I) by
Ai(Z) := {\t e Zd/;(\t,z ...•.) ~ /;(\i,Z ...•.) Y\i e Zi}. Let

A(z) :=IIAi(Z) : Z=:Z.
iEI

Then A(z) is convex, compact and nonempty for an z e Z, and by the result of [2, p.123]
A(.) is upper semicontinuous. Hence by Fan's 6xed point theorem [8]A has a fixed point
\. e A(\.). With \. = (\t)iEI this means that \t e Zi minimizes /;(-, \~.) over Zi, hence
\. is an equilibrium: Nash's result. Sion's result becomes a special case of Nash's result:

choose p = h = - h in the latter to obtain

tp(e., y) ~ tp(e., ".) ~ p(x, ".) Yx e X, Yye Y,

which is Sion's result.
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