Nr. 79 - 1988

One forms on $E(M,\mathbb{R}^n)$ with integral

representation

E. Binz

(Universität Mannheim)

ONE FORMS ON E(M, Rⁿ) WITH INTEGRAL REPRESENTATION.

E. Binz

Let M be a smooth, oriented and compact manifold of dimension n-1. By $E(M, \mathbb{R}^n)$ we denote the collection of all smooth \mathbb{R}^n -valued embeddings of M. This set is open in $C^{\infty}(M, \mathbb{R}^n)$, the \mathbb{R} -vector space of all smooth \mathbb{R}^n -valued maps of M, (the operations are defined pointwise), which carries the C^{∞} -topology. Since $C^{\infty}(M, \mathbb{R}^n)$ is a Fréchet space, $E(M, \mathbb{R}^n)$ is a smooth Fréchet manifold. Here smoothness is always ment in the sense of [Gu].

A smooth map F: $E(M, \mathbb{R}^n) \times C^{\infty}(M, \mathbb{R}^n) \longrightarrow \mathbb{R}$ is a one form provided the partial map F(j) sending each k $\in C^{\infty}(M, \mathbb{R}^n)$ into F(j,k) is linear for each fixed j $\in E(M, \mathbb{R}^n)$. Call the collection of all smooth one forms on $E(M, \mathbb{R}^n)$ by $A^1(E(M, \mathbb{R}^n), \mathbb{R})$. To handle such forms we define what is ment here by an integral representation. Specifying terminology, let \mathbb{R}^n be oriented and $\langle ; \rangle$ be a fixed scalar product. Each j $\in E(M, \mathbb{R}^n)$ defines hence a Riemannian metric m(j) given by m(j)(X,Y) = $\langle djX; djY \rangle$ for all X,Y in the collection Γ TM of all smooth vector fields on M. dj is locally identical with the Fréchet differential of j. Finally N(j) denotes the oriented unit normal field along j.

F admits an integral representation provided there is a smooth map $\varphi_F: E(M, \mathbb{R}^n) \longrightarrow C^{\infty}(M, \mathbb{R}^n)$ such that for each $j \in E(M, \mathbb{R}^n)$ and any $k \in C^{\infty}(M, \mathbb{R}^n)$

$F(j,k) = \int \langle \varphi_F(j);k \rangle \mu(j)$

holds. The map $\langle \phi_F(j); k \rangle$ assigns to any $p \in M$ the value $\langle \phi_F(j)(p); k(p) \rangle$ and $\mu(j)$ is the Riemannian volume element determined by m(j). If ϕ_F exists, then it is uniquely determined by F.

Let F admit an integral representation. Then each $j \in E(M, \mathbb{R}^n)$ splits into $\varphi_F(j) = djY(j) + \omega_F(j) \cdot N(j)$ with $Y(j) \in \Gamma TM$ and $\omega_F(j) \in C^{\infty}(M, \mathbb{R}^n)$. Splitting furthermore Y(j) according to Hodge's decomposition uniquely into a gradient with respect to m(j) and a divergence free vector field we have

 $\varphi_{\mathbf{F}}(\mathbf{j}) = d\mathbf{j}\mathbf{Y}^{\circ}(\mathbf{j}) + d\mathbf{j} \operatorname{grad}_{\mathbf{j}}\tau_{\mathbf{F}}(\mathbf{j}) + \omega_{\mathbf{F}}(\mathbf{j}) \cdot \mathbf{N}(\mathbf{j})$ with div_jY[°](j) = 0 and $\tau_{\mathbf{F}}(\mathbf{j}) \in \mathbb{C}^{\infty}(\mathbb{M}, \mathbb{R}^{n})$ for each j $\in \mathbb{E}(\mathbb{M}, \mathbb{R}^{n})$.

<u>Rn-invariant one forms on E(M, Rn).</u>

The Abelian group \mathbb{R}^n operates on \mathbb{R}^n as the group of translations. This operation lifts to an operation Φ of \mathbb{R}^n on $C^{\infty}(M,\mathbb{R}^n)$ by letting $\Phi(h,z) = h + z$ for each $h \in C^{\infty}(M,\mathbb{R}^n)$ and each $z \in \mathbb{R}^n$ identified with the constant map assuming z as its only value. The differential

d: $C^{\infty}(M, \mathbb{R}^n) \longrightarrow \{dh / h \in C^{\infty}(M, \mathbb{R}^n)\}$

yields hence a bijection of $C^{\infty}(M,\mathbb{R}^n)/\mathbb{R}^n$ on to its range. The action Φ restricts to $E(M,\mathbb{R}^n)$ since $j + z \in E(M,\mathbb{R}^n)$ for each $j \in E(M,\mathbb{R}^n)$ and each $z \in \mathbb{R}^n$. Hence both $\{dj/j \in E(M,\mathbb{R}^n)\}$ and $\{dh/h \in C^{\infty}(M,\mathbb{R}^n)\}$ are Fréchet manifolds when endowed with the respective quotient topology.

 $F \in A^1(E(M, \mathbb{R}^n), \mathbb{R})$ is called \mathbb{R}^n -invariant provided that there is a smooth one form

 $F_{\mathbb{R}}n: C^{\infty}(M,\mathbb{R}^n)/\mathbb{R}^n \times C^{\infty}(M,\mathbb{R}^n)/\mathbb{R}^n \longrightarrow \mathbb{R}$ such that $F = d^*F_{\mathbb{R}}n$. To define the notion of an integral representation for $F_{\mathbb{R}}n$ we fist introduce the two tensor $T(\alpha, j)$ for each $\alpha \in A^1(M,\mathbb{R}^n)$ by setting

 $T(\alpha, j)(X, Y) = \langle \alpha(X); djY \rangle \forall X, Y \in \Gamma TM.$

This two tensor is represented by a smooth strong bundle map $P(\alpha, j)$ of TM as $T(\alpha, j)(X, Y) = m(j)(P(\alpha, j)X, Y)$. Decomposing $P(\alpha, j)$ into its skew- and self-adjoint part $C(\alpha, j)$ and $B(\alpha, j)$ respectively yields for each X $\in \Gamma$ TM

 $\alpha(X) = c(\alpha, j)djX + dj \cdot C(\alpha, j)X + dj \cdot B(\alpha, j)X$ for a well determined map $c(\alpha, j) \in C^{\infty}(M, so(n))$ (with so(n) the Lie algebra of SO(n)) which maps $\Re \cdot N(j)$ to TjTM and vice versa. Writing the analogous decomposition of dh $\epsilon C^{\infty}(M, \mathbb{R}^n) / \mathbb{R}^n$ we define $\alpha \cdot dh$ by

 $\alpha \cdot dh = trc(\alpha, j) \circ c(dh, j) + trC(\alpha, j) \circ C(dh, j) + trB(\alpha, j) \circ B(dh, j).$ FRn is said to admit an integral representation provided that there is a smooth map α : $E(M, \mathbb{R}^n)/\mathbb{R}^n \longrightarrow A^1(M, \mathbb{R}^n)$, $(A^1(M, \mathbb{R}^n))$ carrying the C[°]-topology) such that

 $F_{\mu\nu}(dj,dh) = \int \alpha(dj) \cdot dh \mu(j)$.

 α is not uniquely determined by $F_{\mathbb{R}^n}$!

The relation between the two integral representations.

Let $F \in A^1(E(M,\mathbb{R}^n),\mathbb{R})$ be \mathbb{R}^n -invariant i.e. $F = d^*F_{\mathbb{R}^n}$. Assume that $F_{\mathbb{R}^n}$ admits an integral representation by α . We will solve

 $\int \langle \varphi(\mathbf{j}); \mathbf{h} \rangle \mu(\mathbf{j}) = \int \alpha(d\mathbf{j}) \cdot d\mathbf{h} \ \mu(\mathbf{j}) \ \text{given } \forall \mathbf{h} \in \mathbb{C}^{\infty}(\mathbf{M}, \mathbb{R}^{n})$ for the smooth map $\varphi: \mathbb{E}(\mathbf{M}, \mathbb{R}^{n}) \longrightarrow \mathbb{C}^{\infty}(\mathbf{M}, \mathbb{R}^{n})$. To this end we write $\mathbf{h} \in \mathbb{C}^{\infty}(\mathbf{M}, \mathbb{R}^{n})$ as $\mathbf{h} = d\mathbf{j}X_{\mathbf{h}} + \Theta_{\mathbf{h}} \cdot \mathbf{N}(\mathbf{j})$ for $X_{\mathbf{h}} \in \Gamma T \mathbf{M}$ and $\Theta_{\mathbf{h}} \in \mathbb{C}^{\infty}(\mathbf{M}, \mathbb{R})$. Moreover we express the Lie derivative $L_{\mathbf{X}}(\mathbf{m}(\mathbf{j}))$ via $\mathbf{m}(\mathbf{j})$ by a smooth strong bundle map $\mathbb{L}_{\mathbf{X}}$ of TM to read as $L_{\mathbf{X}}(\mathbf{m}(\mathbf{j}))(\mathbf{Y}, \mathbf{Z}) = \mathbf{m}(\mathbf{j})(\mathbb{L}_{\mathbf{X}}\mathbf{Y}, \mathbf{Z})$ for any choice of all $\mathbf{X}, \mathbf{Y}, \mathbf{Z} \in \Gamma T \mathbf{M}$. Then if $\nabla(\mathbf{j})$ denotes the Levi-Civita connection of $\mathbf{m}(\mathbf{j})$ and $\widetilde{\nabla}(\mathbf{j})\mathbf{X}$ the adjoint of $\nabla(\mathbf{j})\mathbf{X}$ formed with respect to $\mathbf{m}(\mathbf{j})$ we immediately deduce $\mathbf{B}(\mathbf{dh}, \mathbf{i}) = \frac{\pi}{2} \cdot \mathbb{L}_{\mathbf{m}} + \Theta_{\mathbf{h}} \cdot \mathbf{W}(\mathbf{i})$. $\mathbf{C}(\mathbf{dh}, \mathbf{i}) = \frac{\pi}{2} \cdot (\nabla(\mathbf{i})\mathbf{X}_{\mathbf{h}} - \widetilde{\nabla}(\mathbf{i})\mathbf{X}_{\mathbf{h}})$, and

$$\begin{split} & \mathsf{B}(\mathsf{dh},j) = \frac{\pi}{2} \cdot \mathsf{L}_{X_{\mathbf{h}}} + \Theta_{\mathbf{h}} \cdot \mathsf{W}(j), \quad \mathsf{C}(\mathsf{dh},j) = \frac{\pi}{2} \cdot (\nabla(j)X_{\mathbf{h}} - \bigotimes(j)X_{\mathbf{h}}), \text{ and} \\ & \mathsf{c}(\mathsf{dh},j)\mathsf{d}jX = -\mathsf{m}(j)(\mathsf{W}(j)X_{\mathbf{h}},X) \cdot \mathsf{N}(j) + \mathsf{d}\Theta_{\mathbf{h}}(X) \cdot \mathsf{N}(j). \end{split}$$

W(j) being the Weingarten map of j. If we define the covariant divergence $\operatorname{div}_{j}P$ of a smooth strong bundle endomorphism P of TM via a mooving (with respect to m(j)) orthonormal frame e_1, \ldots, e_{n-1} as

$$\operatorname{div}_{j} P := \sum_{r=1}^{n-1} \nabla(j)_{e_{r}}(P) e_{r}$$

then we easily obtain for $\Theta_{\rm h}$ = 1

 $tr B(\alpha, j) \circ B(dh, j) = div_{j}B(\alpha, j)X_{h} - m(j)(div_{j}B(\alpha, j), X_{h})$ $+ \langle tr B(\alpha, j) \circ W(j) \cdot N(j); N(j) \rangle$ $tr C(\alpha, j) \circ C(dh, j) = div_{j}C(\alpha, j)X_{h} - m(j)(div_{j}C(\alpha, j), X_{h})$

and

```
 tr \ c(\alpha, j) \circ c(dh, j) = -2m(j) (W(j)U(\alpha, j), X_h) 
with c(\alpha, j)N(j) = djU(\alpha, j). Hence if we define
 \phi(j) := -dj \ div_j (B(\alpha, j) + C(\alpha, j)) - - 2dj \ W(j)U(\alpha, j) + (tr \ B(\alpha, j) \circ W(j)) \cdot N(j), \ \forall \ j \in E(M, \mathbb{R}^n)
```

BINZ

we immediately deduce from the above equations the following:

<u>Theorem 1</u> Let $F \in A^1(E(M, \mathbb{R}^n), \mathbb{R})$ be \mathbb{R}^n -invariant such that $F = d^*F_{\mathbb{R}^n}$, where $F_{\mathbb{R}^n}$ admits an integral representation by α . Then F admits an integral representation by φ given for each $j \in E(M, \mathbb{R}^n)$ by

$$\tau_{\mathbf{F}}(\mathbf{j}) = -\mathbf{tr} \mathbf{B}(\alpha,\mathbf{j})$$

$$(Y_F)^{\circ}(j) = -\operatorname{div}_{j}(B(\alpha, j) - (\operatorname{tr}B(\alpha, j) \cdot \frac{\operatorname{Ia}}{\operatorname{dim}M} + C(\alpha, j)) - 2 W(j)U(\alpha, j)$$

2.2

and

$$\omega_{\mathbf{F}}(\mathbf{j}) = \mathrm{tr} \ \mathbf{B}(\alpha, \mathbf{j}) \circ \mathbf{W}(\mathbf{j}).$$

The splitting of $\gamma \in A^1(M, \mathbb{R}^n)$

Let $\gamma \in A^1(M, \mathbb{R}^n)$ and $\gamma = dk + \gamma'$ for some $dk \in C^{\infty}(M, \mathbb{R}^n) / \mathbb{R}^n$ and some $\gamma' \in A^1(M, \mathbb{R}^n)$. The differential dk is called an integrabel part of γ . Given next $j \in E(M, \mathbb{R}^n)$, and any orthonormal basis in \mathbb{R}^n , writing γ as a linear combination of forms in $A^1(M, \mathbb{R})$, and expressing them by vector fields via m(j), then Hodge's decomposition of these fields yield a unique splitting $\dot{\gamma} = dk + \gamma'$ where γ' has only zero as an integrabel part. dkis called the maximal integrabel part of γ . Moreover $\int \gamma' \cdot dh \mu(j) = 0$ for all $h \in E(M, \mathbb{R}^n)$. This implies:

<u>Corollary 2</u> Let $F \in A^1(E(M, \mathbb{R}^n) / \mathbb{R}^n, \mathbb{R})$ with $F = d^*F_{\mathbb{R}^n}$ where $F_{\mathbb{R}^n}$ is represented by α , which we write as

 $\alpha(dj) = dk(j) + \alpha'(j) \quad \forall j \in E(M, \mathbb{R}^n),$

where $\alpha^{\,\prime}\left(j\right)$ has only zero as an integrabel part, and set moreover

$$k(j) = djX_{k}(j) + \Theta_{k}(j) \cdot N(j)$$

then dk is uniquely determined by $F_{\mathbb{R}^n}$, and the following equations hold:

div_j(B(k(j),j) + C(k(j),j) = $\Delta(j)X_k(j)$ with $\Delta(j)$ as the Laplace Beltrami operator of j. div_j(B($\alpha'(j),j$) + C($\alpha'(j),j$)) = 0

as well as \int tr W(j) $\circ B_{\alpha}$ '(j) $\mu(j) = 0$. Moreover

 $Y_{\mathbf{F}}(\mathbf{j}) = -\Delta(\mathbf{j})X_{\mathbf{k}}(\mathbf{j}) + W(\mathbf{j}) \operatorname{grad}_{\mathbf{j}}\Theta_{\mathbf{k}}(\mathbf{j}) - \Theta_{\mathbf{k}}(\mathbf{j}) \operatorname{grad}_{\mathbf{j}}H(\mathbf{j})$ $- 2 \cdot W(\mathbf{j})^{2} X_{\mathbf{k}}(\mathbf{j})$

and

$$\omega_{\mathbf{F}}(\mathbf{j}) = \operatorname{div}_{\mathbf{i}} \mathbb{W}(\mathbf{j}) \mathbb{X}_{\mathbf{k}} - \operatorname{dH}(\mathbf{j}) (\mathbb{X}_{\mathbf{k}}) + \Theta_{\mathbf{k}}(\mathbf{j}) \operatorname{tr} \mathbb{W}(\mathbf{j})^{2}.$$

Stationary points

Let $F \in A^{1}(E(M, \mathbb{R}^{n}), \mathbb{R})$ be represented by $\varphi_{F} \in C^{\infty}(E(M, \mathbb{R}^{n}), C^{\infty}(M, \mathbb{R}^{n}))$. F is said to be stationary at j if F(j)(h) = 0 for all $h \in C^{\infty}(M, \mathbb{R}^{n})$. Hence F is stationary at j iff $\tau_{F}(j) = 0$, $(Y_{F})^{\circ}(j) = 0$ and $\omega_{F}(j) = 0$. If moreover $F = d^{*}F_{\mathbb{R}^{n}}$ where $F_{\mathbb{R}^{n}}$ is represented by α with dk as maximal integrabel part, then using the terminology of corollary 2 F is stationary at j iff the following equations hold $\operatorname{tr} B(\alpha, j) = 0 = \operatorname{div}_{j}X_{k} + \Theta_{k} \cdot H(j)$ $\Delta(j)X_{k}(j) = W(j) \operatorname{grad}_{j} \Theta_{k}(j) - \Theta_{k}(j) \cdot \operatorname{grad}_{j} H(j) - 2 W(j)^{2}X_{k}(j)$

 $dH(j)(X_k) = div_j W(j)X_k + \Theta_k(j) \cdot trW(j)^2.$

Symmetries of F and Fgn

Let $F \in A^1(E(M, \mathbb{R}^n), \mathbb{R})$ be represented by $\varphi \in C^{\tilde{\omega}}(E(M, \mathbb{R}^n), C^{\tilde{\omega}}(M, \mathbb{R}^n)$. Call a \in Diff(M) to be a symmetry of F if

 $F(j \circ a)(h \circ a) = F(j)(h) \quad \forall j \in E(M, \mathbb{R}^n) \text{ and } \forall k \in C^{\infty}(M, \mathbb{R}^n)$ which holds provided iff $\varphi(j \circ a) = \varphi(j) \circ a$ for all $j \in E(M, \mathbb{R}^n)$. The collection Diff_FM of all symmetries of F is a closed subgroup of DiffM. Its formal Lie algebra ∂iff_FM consists of all X $\in \Gamma TM$ for which

 $DF(j)(djX)(h) = - F(j)(djX) \quad \forall j \in E(M, \mathbb{R}^n) \text{ and } \forall h \in C^{\infty}(M, \mathbb{R}^n)$ which is equivalent to say that

 $D\varphi(j)(djX) = d\varphi(j)(X) \quad \forall j \in E(M, \mathbb{R}^n).$ In fact DF(j)(djX) is represented by $d\varphi(j)(X)$.

In case $F = d^*F_{Rn}$ and F_{Rn} admits an integral representation, then Diff_FM = DiffM.

<u>Examples</u> 1) Consider V: $E(M, \mathbb{R}^n) \longrightarrow \mathbb{R}$ given by $V(j) = \int \mu(j)$ for each $j \in E(M, \mathbb{R}^n)$. Hence

 $DV(j)(h) = \int \langle H(j) \cdot N(j), h \rangle \mu(j)$

 $\forall j \in E(M, \mathbb{R}^n)$ and $\forall h \in C^{\infty}(M, \mathbb{R}^n)$.

Since $N(j \circ a) = N(j) \circ a$ und $H(j \circ a) = H(j) \circ a$ for any choice of $j \in E(M, \mathbb{R}^n)$ and $a \in DiffM$ we have

D(H(j) N(j))(djX) = dH(j)(X) N(j) + H(j) djW(j)Xshowing hence that DV is DiffM-invariant. This however is obvious from the fact that V factors over the Fréchet manifold $E(M, \mathbb{R}^n)/DiffM$. The one form DV of $E(M, \mathbb{R}^n)$ is \mathbb{R}^n invariant and $(DV)_{\mathbb{R}^n}$ is represented by dj. Hence T(dj,dj) = m(j). DV(j) is stationary at j iff H(j) = 0.

2) Next consider $F_{\mathbb{R}^n}$ given by $F_{\mathbb{R}^n}(dj)(dh) = \int dj W(j) \cdot dh \mu(j)$ for all $j \in E(M, \mathbb{R}^n)$ and all $h \in C^{\infty}(M, \mathbb{R}^n)$. Hence

 $\varphi(j) = -\operatorname{div}_{j}W(j) + (\operatorname{tr} W(j)^{2}) \cdot N(j)$

=
$$-dj \operatorname{grad}_{i} H(j) - (\lambda(j) \cdot N(j) - H(j)^{2}) \cdot N(j)$$

where $\lambda(j)$ is the scalar curvature of m(j). Then

 $F(j)(h) = - \int \langle dj \operatorname{grad}_{j} H(j) - (H(j)^2 - \lambda(j)) N(j), h \rangle \mu(j).$

The tensor T(djW,dj) is identical with the second fundamental form of j. Clearly F is stationary at j iff $H(j)^2 = const = \lambda(j)$.

<u>References:</u>

[Gu] Gutknecht, J.

"Die C_P-Struktur auf der Diffeomorphismengruppe einer kompakten Mannigfaltigkeit". Diss ETH 5879 Zürich, 1977.