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~f (s , p) = f f (x) w ,
(s ; x) =p

n(s;x) = L SjXj = p, s e sn-~, p e ~
j=~

space E we
function 'R,

(1)

by

(2 )

Given a smooth function f on an n-dimensional real affine
can associate (under certain. condi tions) another
which is defined on the set of hyperplanes

where w is given by
(3) w= (-l)j-~

(cf. [GGV] ). Using the
convenient form

dx~A ...Adxj-~Adxj+~A ...Adxn
Sj

o-function, we can wri te (2) in the

(4 ) ~fOLp) = f f(x) o(p-(x;s»dx.
(Rn

The transformation 'R is called the Radon transform. We wish to
obtain a formula expressing f (x) in
over hyperplanes , or in other words
This formula depends on whether the

terms of its integrals
to invert equa tion (4).
space has even or odd

dimension. A few successful approaches had been made to obtain
a single formula for f in terms of 'Rf, and one way to obtain
such a formula is presented in [GSt]. In our notes we show the
splitting of this (single) formula into the wellknown formulas
for even and odd dimensional spaces, by simply using
elementary properties of the Fourier trans form together with
special homogeneous generalized densities.



(5 )
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In order for the integral (2) to converge for all values of s
and p we need to require that f(x) be absolutely summable over
the entire space, i.e.

f If(x) Idx < 00.
IRn

For our considerations however we place stronger requirements
on f (x). We shall assume, that f (x) is infini tely differen-
tiable rapidly decreasing as are all of its derivatives. Then
the Radon trans form of f is an infinitely differentiable
function of sand p, (cf. [GGV]).

Let
(6) Tf(s) =(2~)-n/2 f f(x)e-i(s;x) dx

denote the Fourier trans form of f. There is a simple relation
between the Radon transform of f, and its Fourier trans form .
The Fourier trans form can be wri tten directly in terms of
integrals over hyperplanes . Specifically, in order to calcu-
latE~ (6) we firstly integrate over the (s;x) = p hyperplane
and then integrate the expression so obtained over p for fixed
S. This yields

(7 )
00 •

Tf(s) = (2n)-n/2 f ~f(s,p)e-1p dp.
-00

If we replace s by ~s with ~ * 0 and then change variables in
the.integrand, writing ~p for p we obtain, using the homogene-
ity of :Rf(s,p), (we have :Rf(~s,~p) = 1~I-l:Rf(s,p),'d ~ e IR\{O})

00 .
(8) Tf(~s) = (2n)-n/2 f ~f(s,p) e-1~P dp

-00

= (2n)-Cn-:I.)/2 T(~f) (~).

This shows that the Fourier transform in n dimensions reduces
to the Radon trans form followed by a one-dimensional Fourier
transform. Although the analogon of the Radon. trans form exists
in many homogeneous spaces, we should keep in mind that, the
se~ond of these transforms is peculiar only to Euclidean
space. (cf. [GGV]). Applying the inverse Fourier transform in
(8) we obtain



(9 )
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00

~f(s,p) = (2n)-%(n+2) f ~f(~s) ei~p dp.
-00

In order to invert
(10) ~f(s,p) = f fex) 5(p-(x;s»dx,

(11)

we use the following relation given by the Fourier inversion
forrnula

fex) = (2n)-n/2 f eix~ ~f(~) d~.
IRn

Cutting the integration over IRn into two pieces by firstly
integrating over t e ~+, and then over sn-~, we obtain

(12) fex) = (2n)-n/2 f
sn- ~

f eitQ.x ~f(tQ) tn-~ dt dQ,
o

where dQ is the volurne density on sn-~ induced by the standard
density on ~n. If we define

(13)

and use

[ tn-~ für t > 0tn- ~ .+
0 für t < 0

furthermore forrnula ( 8 ) we can write (12) as

-00
(14) fex) = (2n)-n+% f

sn- ~
f eitQ.x ~(~f) (t) tn-~ dt dQ.

+

This is the inversion forrnula we need in the sequel for our.
cornputations. For the sake of cornpleteness however, we present
above all .the relation wi th the Radon inversion forrnula in
[GSt]. For this reason we introduce the operator Ir on
distributions on ~ defined by

(15) ~(Irv) (t) = t~~(v) (t)
or equivalently

f itc(16 ) (Irv) (c) = (2n)-% e t~ ~ (v) (t) dt.
IR

Using the last expression (16), and forrnula (14) we arrive at
(17) fex) = (2n)-(n-~) f In-~[~f] (Q.x)dQ

sn- ~
yielding the forrnula in [GSt].

Let us

such as
now go back to equation (14). Ternpered distributions
tn-~ are exarnined in detail in [GSh1]. In particular+
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the following relation holds:

(18) tn-:l = iei(n-1)Tt/2 f(n)' (2Tt)-% 1"«p+io)-n) (t).
+

For the inner integral in (14) we obtain

(19) f eitQ'x 1"(Rf) (t) tn-:l dt
+

= (2 Tt)- % 1"-1(1"(Rf) (t) . t ~- :l) (Q. x) .

In (19) we have to interpret t~-:l as a tempered distribution.

Let us set

(20) c .- i. (2Tt)-% ei(n-1)Tt/2 f(n)

= i. (2Tt) -~2 (n-1)!' ei (n-1) Tt/2 ,

where r denotes the gamma function. Replacing by

c'1"«x+io)-n) (t) we obtain

(21) 1"-1(1"(~f) (t) . tn-:l) (Q.x) =
+

= c.1"-l(1"(~f) (t) .1"( (x+io)-n) (t» (Q.x).

Using 1"f(s) '1"g(s) = (2Tt)-% 1"(f.g) (s) we can write

(22) 1"-l(1"(~f) (t) .t~-:l) (Q.x) =
= c. (2Tt)-% 1"-l(1"(~f(Q,p).(p+io)-n) (t) (Q.x)

= c. (2Tt)% ~f(Q,Q'x).(Q'x+io)-n

00

= c. (2Tt)-% f ~f(Q,p)' (Q'x-p+io)-n dp,
-00

and formula (19) becomes

00

(23) f eitQ.x 1"(~f) (t) .t~-:l dt =
-00

00

= (2Tt)%.c' (2Tt)-% f ~f(Q,p)' (Q'x-p+io)-n dp
-00

= i. (2Tt)-%(n-1)! 'ei(n-1)Tt/2 f ~f(Q,p)' (Q'x-p+iO)-n dp.
-00

The fundamental relation, (cf. [GSh1], p.94)

(24)

yields
(-1) n- :liTt

(25) (Q'x-p+io)-n = (Q'x-p)-n - (n-1)! 'oCn-:l)(Q.x-p).

Inserting(2~) into the last equation of (23) we obtain

(26)
00

f eitQ'x 1"(~f) (t) .tn-:l dt =
+

-00



dp +
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. (1) (D. %1 n- n= 1(2n)-%.e (n-1)!.f J?f(Q,p).(Q.X-p)-n dp +
-(D

+ %(2n)+% e%i(n-1)n 1 J?f(Q,p).5(n-~)(Q.x-p) dp
-(D

= i(2n)-%.e%i(n-1)n(n-1)!.1 J?f(Q,p).(Q.x-p)-n
-(D

+ %(2n)+% e%i(n-1)n J?~n-~)f(Q,Q.x).

(R~n-~) (Q,p) denötes (n-1) ,times differentiation wi th respect
to p). For ~ E ~\{O} we have (cf. [GGV])

and in particular
(28) Rf(-Q,-~) = Rf(Q,~),

i.e. Rf is an even function.

Let n be odd, then (Q.x-p) -n is an odd function and this is
also true for the product Rf(Q,p). (Q.x-p)-n. Thus the integral
after the last equali ty sign in (26) vanishes. Therefore we
obtain with (14) for n odd the formula

(-l)%(n-~)(29) f(x) = 2(2 )n-~ f J?~n-~)f(Q,Q.x) dQ.
n sn- ~

If n is even, then the very last expression in Formula (26) is
odd in sand therefore the integral over this expression
vanishes identically for fixed x, yielding

(30) f(x) = (-1)%n(n-1)! (2n)-n f f J?f(Q,p)(Qx-p)-ndp dQ,
sn-~ IR

where the integral over p is understood in terms of its
regularization. (cf. [GSh1], p.335) .

The formulas obtained by our elementary computations coincide
with the results presented in [GGV], thus showing a direct
interpretation of the unification formula in [GSt].
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