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0. Introduction

In the past the rational mechanics of deéformable media was largely
concerned with materials governed by linear constitutive equations. In
recent years, the theory has expanded considerably towards covering
materials for which the constitutive equations are inherentlv nonlinear,
and/or whose mechanical properties resemble in some respects those of a
fluid and in others those of a solid (cf[Tr,Nol,[Le,Fi]).

In the present article we formulate a satisfactory global mathematical
theory of moving deformable media, which includes all these aspects.

As we shall see, in our theory the stress tensor is neither necessarily local
nor svmmetric. In fact it does not even determine the equations of motion. It
is a more general object, namely, the stress form, which governs the motion.
Tvpical for our considerations is the studyv of the motion of a soap bubble,
i.e. of a closed, deformable, two—dimensional material surface in lR?'. It is
intuitively clear that this complex motion can be described as the
superposition of two different ones. These are on one hand the “elastic”
deformation of the soap bubble in "radial” direction, and the
"instantaneous”, "viscous” fluid flow of the same soap bubble along its
surface, that is "transversally” to its "elastic” deformation on the other.

For our general case let us assume that at any instant the deformable
medium in R" forms a manifold and that the diffeomorphism tyvpe of this
manifold does not change. Hence these manifolds are all diffeomorphic to a
fixed one, which we denote by M.

As we shall show, this fascinating representative problem of mechanics of
continua as well as the general problem of motion of a deformable medium
leads to a dynamical system on a suitably chosen infinite—dimensional
manifold. In order to explain the main ideas of our global approach we
introduce at first the differential geometric framework.

The manifold M is supposed to be smooth, compact, oriented and of dimension
less or equai to n—1. The ambient euclidean space R" is assumed to be
equipped with a fixed scalar product <, > .

Hence an instantaneous configuration of the medium is given by a smooth
embedding of M into R". Therefore the configuration space is E(M,R"), the
space of all smooth embeddings of M into R". As shown in [Bi,Fil, E(M,R") can
be given a smooth principal bundie structure. More preciselv let DIff M be
the group of smooth diffeomorphisms of M, and define the action & of Diff M
on E(M,R™) as follows

(0.1) ®(j,g) = jog vV j € E(IMJRY), g € Diff M.

Let us denote the quotient of E(M,R") by this action by U{M,R"), and identify
it with the set of all smooth submanifolds of M in R" diffeomorphic with M.
Further denote by T the projection of E(M,R") onto U(M,R"). Endowed with
the Cw—topology, E(M,R"), U(M,R") and Diff M become Frkchet manifolds. The
quadruple (E(M,R™),IT,U(M,R™),Diff M) is then a principal bundle with Diff M



as its structure group. Hence the fibres of this principal bundle have the
form )

(0.2) j oDiff M , j€ E(MR").

In the particular case of the soap bubble we now visualize the two motions
described above as follows :

The "instantaneous” fluid flow along its surface is described by a curve in
one of the fibres of the above principal bundle, while the ”radial”
deformation is given by a curve which is transverse to the fibres of E(M,R™).

Each configuration j€ E(M,R") yields a Riemannian metric m(j), assuming on
anv pair of tangent vectors v,w € TM the value

(0.3) m{j)(v,w) = <dj v,dj >,

where the scalar product is to be taken pointwise.

The "instantaneocus” metrical properties of the moving body are described in
this metric. Suppose now that the deformable medium is 'moving. We furnish

the description of its motion bv assuming that we know the work done by the
forces acting upon M. It is in this work that all the constitutive information
on the medium is coded. We therefore call it the constitutive law. The fluid
component of the medium is expressed through the dependence of the work
on an extra parameter. Accordingly the constitutive law is then given by

(0.4) F o CPMRM) x EOMR™) x CTOMRM — R,

where F is linear in the third argument, the first factor in the cartesian
product is the space of extra parameters and furthermore the trivial tangent
bundle TE(M,R") = E(M,R") x C*(M,R") is the phase space of motions in
EGLR™).

We concentrate on those constitutive laws which admit an imegral
representation. More precisely, we assume that F is given by

(0.5) FOR)(G,h) =  [<ep(k),hou), v je EOLRY, hike CTMRY),

with ¢+ TEMR") —— C”(M,R") being a smooth map called the force density.
The equation of motion on E(M,R") described by a smooth curve

(0.6) o (=,0) — EMRY, x>0,
is given then by

(0.7) F(o()(a(t),h) =  [<Plo(n),a(1))houloin)

o[ PLa ()G (1),hoplo (1) v h e CTOMRY.
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We note that in (0.7) we have assumed for simplicity that the constitutive
law F depends on the "velocity” o(t), i.e. k=a(t). Interpreting h as a virtual
displacement, (0.7) is just d’Alembert’s principle of virtual work, which was
formulated for the mechahics of continua by [He]. But (0.7) implies easily

(0.8) plal(t)a(t) = #plalt),a(v)), ¥ te (=1,)),

To obtain a more refined form, let us denote by "I" and "L1” respectively the
tangential and the normal component with respect to a(t)(M). The equation
of motion (0.8) splits into the coupled syvstem

V(a(t)),,Z(1) + Z(1) + Wle),a(t)Hz(e) + [T
= p Ho(t) Y(o(1),5(1)),
(0.9)
Lot It =
p o o), ~ [doey Z(IF = So(NZ),Z(L).

Here V(ag(t)) denotes the Levi—-Civita connection of m(o(t)), the metric given
by o(t), S(o(t)) is the second fundamental tensor, Z(t) and Y(o(t),o(t))
belong to ["TM. Furthermore W(j,N) is the unigue bundle map of TM
associated with a smooth map N: M —) R" satisfving

(0.10) <dj Z(p),N(p)> = O, v € T'TM, pe M
and which is determined by
(0.11) dj W(iL,NY = (dNn

Among the force densities acting on M we distinguish between internal
forces and external ones. Of a special interest is the study of the motion of
the deformable medium M subjected to an internal force density. Clearly,
internal physical properties of the moving medium are described by
constitutive laws invariant under the translation group R". Evidently, the
R"-invariant configuraticns are differentials of embeddings. We hence
identify

(0.12) EGLR")/gn with {dj | j¢ E(MER™}
and more generally

(0.13) C®(M,R")/on and {dh | he CMRML
R

The phase space for the R"—invariant motion is hence
(0.14) . TEMR"Vgn) = {dj | j€ EMRM} x {dh | he CTMRD},

We require that the internal constitutive law F admits the representation



(0.15) F = FpaoTd,

where
(0.16) Fgn ¢ CTOMLR™ [ga x EQLR™) [gn x CTOLRY) [pn — R

is a parameter depending one form ( the parameter varies in the front |
factor in (0.16) ) and Td is the tangent map of the differential |

(0.17) d : EMMRY) — EMR"V/pgn .

To get a detailed description of the motion of the deformable medium, we
assume now that Fpn itself has an integral representation

(0.18) Fpaldk)(dj,dl) = \[a(dj,dk)dl pij),
v je E(MRY), ke CT(MR"),

where o is an R"-valued one—form, the so—called stress form, depending
itself on an extra parameter, i.e.

(0.19) x i EMRM |pn — AlOMRY).

The stress form « decomposes naturally at each

(dk,dj) € TEMR") |gn = CTOLRY) |gn x EQLR™) {pa
into

(0.20) x(dj,dk) = Co((dj,dk) dj + dj Co{(dj,dk) + dj Bo((dj_.dk) ’

with C, : TM — TM and B, : TM — TM being smooth, strong bundle
endomorphisms, which are respectively skew— and selfadjoint with respect
to m(i) and c € c™(M,so(n)). Here so(n) denotes the Lie algebra of the
group of all proper rotations SO(n). In case that M is of codimension 1, the
equations of motion (0.9) read as :

V(U(t))Z(L)Z(t)+2(t)+2'€(a(t),5‘(t))W(cr(t)Z(t?-grado(t)e(o(t),(!(t)}
= - p“‘(q(n))divo(t)To((do(n),dé(t))—2 Wig (1))l fda(1),do(t)),
(0.21)
elolt),a(t)) = p Ha(t)) tr (B, (da(t),da(t)) Wla(t))
- delo(t),olt)) Z{t) + blo(t))(Z(t),Z(1)).

Here e(a(t),o(t))e CT(MR), Ua(do(t))e I'TM, W(o(t)) is the Weingarten map,
diva(t) is the divergence taken with respect to m(a(t)), b(a(t)) is the second
fundamental form, tr denotes the trace and To((dj,dk) is the so-called stress
tensor, defined as

(0.22) Ty (d),dKIL,Y) = m(j)((Bo(+Co()(dj,dk)Z,Y) , ¥V Z,Ye 'TM.

Each « € AI(M,[R“), and hence the parameter depending stress form splits




relative to an embedding i€ E(M,R") into
(0.23) x=dh + §,

where h € C”(M,R"), the so called integrable part of «, is uniquely
determined up to a constant. Moreover h splits into parts tangential and
normal to j(M), i.e.

(0.24) ho=diZ, +h

(with bt = @,N(i), ® € CT(MR"), in case of dim M = n-1) for a well
determined vector field Z, € TTM. Using the Hodge decomposition

o _ 40
L= 7y + grad;¥, ,
(0.25)
L0
dl\i/:h =0 s

we thus obtain immediately

(0.26) w(X) = diVli), %, + diW, (DX + SOZ,7) + (dht () + BLz),
| o v Z € [TV

This allows us to read off the coefficients in (0.22) as

. 1,1 o Ry
¢, di —1 (dh. )0 + S"fl.)(./bh’ v) + badl B
(0.27) Cy = ?[V(I)Xh - V(I)Kh] + CrS s
Bo( =5 Lxg + gradi\L’h + Wh(i) + Bﬁ .

W, (i) denotes here the strong smooth bundle map of TM given by
{0.28) diw, (i) # = (dnt (', v 7 € CTM

[aV) .
V(i)Zh is the adjoint of V(i,z}{h with respect to m{i) formed fibrewise, so that
each vp € TPM is sent into V(i)Xh(vP), ¥ p € M. Moreover

(0.29) LXh : TM — TM

is the strong smooth bundle endomorphism of TM defined by the Lie
derivative Lxh(m(i)) via the equation

(0.30) m(i)(LXhZ,Y) = Lxh(m(i))(X,Y) s v Z,,7,Y € ITM.

Using now the definition of the Laplace—Beltrami operator A(i)

(0.31) div;(V()%,) = AW, = —tr VADZ,

and introducing R(i)¥, via




(0.32) m(1)(R(1)%,,Y) = Ric(m(i))(4,,¥), ~ ¥ Y € ™M,

where Ric{ml(i)) denotes the Ricci tensor of ml(i); we obtain in the case of

codimension 1 the formulas

. _ L N rive 1oy
div, By, = AKXy + 5 R
+W1)grad® + 8, gradHl),
(0.33) div, C, = 5 A4, — 5R(IZ, ~ 5 gradydiviZ, ,
trBdh:— A1) wh+tr®hW1)).

a fixed embedding i.

Here the unnormalized mean curvature H(i) is defined to be tr W(i) . Next
we introduce the notion of structural viscositv. To this end we consider on
the one hand the decompositions (0.23), (0.24) and (G.25) for the stress form
o(dk,dj), which now depends on an additional parameter dk with k €
C°°(M,!Rn). 0On the other hand, we use the decomposition for k, i.e.

(0.34) Kk = djx, + kb,

. 0

Kk = ~/‘k + gradjwk 5
(0.35)

dnjli 0.

Even though dk is determmed only up to a constant, / depends uniquely on
dk. This allows us to relate / and l uniquely to each other by '

(0.36) 70(dj,dk) = v(dj,dR)¥p + Z,(d],dk),

where v{dj,dk) € C™(M,R) and %(dj,dk) € 'TM is pointwise orthogonal to Xg.
We call the function v(dj,dk), the coefficient of structural viscosity.
Accordingly we call these deformable media, whose constitutive laws depend
onlyv on k‘L, frictionless deformable media, while the deformable media,
whose constitutive laws depend on the whole of k, will be called frictional
ones.

Furnished with the structure developed so f"ar, we deduce next the

equations of motion of a deformable medium M sub]erted to a general .

constitutive law

F: EMRY x CC(MRY x CC(MRY) — R.

To do this, we assume that F splits into

(0.37) F=Fou * Fint

and that Fint is of the form

x*



Furthermore, we require that F_ and Fgpn both admit integral

representation and denote the rosulting force densities by Poyy and Py
respectively. Using Hodge’s decomposition, we obtain for all j € E(M,R") and

all k € CT(M,R™)

P (k) = dj gradymy (k) + d] YmttJ, ) + L (k)

int
(0.39)

P oy () = 4 gradiTo () + df Yo (0K) + o (5K
and in turn |
(0.40) P(j,k) = dj (gradJTmt(J,k) + gradlre\t(j,k))

+dj (Yo (0K) + Yo (1K) + P (5K) + o (i)

= dj gradj_r k) +djy (J,k) + ot {i,K) ,
VjeEMRY, ke CTOLRY).

Hence the equations of motion in case of dim M = n—1 are

[ V(a(t))z(t)Z(t) + Z(t) + 2+€lo(1),6(1)) Wla(t))Z(t)

grad g(t)E(T a(t),a(t))

p Yo (1)) (grad s(yTot t),6(t)) — Alo(t))[vlda(t), do(t))Z (t)
Z,(do(t),d5(t)) + grad, y¢(a(t),a(t)] .
W(a t)lgradg )0, (do(t),da(t)) + 2(W(a(t))4, — grad ©,)]
©,(da(t),da(t))grad, 4 Hla(D)]) ,

+

!

{0.41) 4
elo(),a(t) = p Ha([ -1, (do(t),ddl 1)) Hlo(1).

- dH(a(t)[v(da(t),da(t)) ZO t) + 2 (da(t),o(t))]

+ divy(yidolt)e ag(t)W(a(1)Z° (T.) '

+ div (t)\h(a(t))x (do(t), do (1))

- ©,(da(t),da(t)) tr W(a(t)) 21 + Blo(1)) (Z(1),Z(1))

- de(o(t),(}(t)) ZUt) + x  lolt),att))]

|

where P, (a(t),0(t)) = Kk (0(t),a(t)) Nla(t)).
In case the motion follows a fixed surface i(M)cR" given by a fixed
embedding i € E(M,R"), the equation (0.11) reduces to

[ Vg + 21 = o 2 ~grad;T, (7(1),7(1)

— AW (),L( n)) 20y + % (/(n) 2(1)

+ grad; (X (t),Z(t))] - “(1)[grad1 ©, (Z(1),Z(t))

+ 2 (Wo(t)X, — grad ©,)] - @hmc),'x(t)) grad;H(i) ,

(0.42) 3 :

0= p X)) (-7 T (X (L2010 H(l) - dHE)[v(Z (), %()x%)
+ divip (X0, XENWHZ) + div; WX (Z(8),2())
o R E,Z0)] - (m),xm) b W)

L + B( 1)(/.(0 X)) + Kext(/(t) 2,




where 4(t) is the push—forward of Z(t) by g(t) € Diff M, i.e.
(0.43) Z(t) = Tg(t) Z(t) g(t)™, Vte (=),

At the end of the paper we remark how to introduce a volume active
pressure m(dj,dk) , which allows us to decompose F(dj,dk) into

(0.44) F(dj,dk) = F(dj,dk) — m(aj,dk)-DV(j) ,

where V(J) denotes the volume of j(M).

w(dj,dk):DV(j) is the work used against the infinitesimal \olume change by
DV(j). Let us point out that m(dj,dk) is not identical with 7 . (dj,dk), the
former is a real, the latter a smooth function.

We have omitted to discuss the influence of thermodynamics to the
deformations of the medium. We will do these studies in a forthcoming paper.
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1. The space of configurations as a principal bundle

As already mentioned a configuration of the moving deformable medium M is
described by a smooth embedding of M into’an euclidean ambient space R".
In the present paper we assume that the dimension dim M of the manifold M
satisfies the inequality

(1.1) dim M < n—1,

Let us recall that a smooth embedding j: M— R" is a smooth map satisfving
the following conditions (i) the tangent map '

(1.2) Tjp) : T.M — {i(p)} x R"

|%

of j at p€ M is injective for any p€ M, v
{ii)
(1.3) jiM— jM) ¢ R

is a2 homeomorphism.
We point out at this occasion that the tangent map

(1.4) Tj: TM— TR" = R" x R"

splits naturally into

(1.5) Tj = (3,dj),

where |

{(1.6) dj = pr,o Tj

and

{1.7) prZ:IR“xIRn——-){Rn

is the projection onto the second factor along the first one, iL.e.

(1.8) prz(a,b) =b for all pairs (a,b) € R" x R" .

Thus dj represents locally nothing else but the Frechet differential of the
local representative of j.

We denote by E(M,R") the set of all smooth embeddings of M into R". Hence
E(M,R™) is the set of all configurations of our moving deformable medium. If
we equip E(M,R") with the Whitney c™- topology  (cf. [Gui,Gol), then it
becomes an infinite dimensional Fréchet manifold.

The reason is the following one :

Consider the set C”(M,R") of all smooth maps of M into R", which is endowed




with Whitney’s c”- topology and note that together with the pointwise
defined operations of addition and multiplication with scalars C™(M,R™)
becomes a complete metrizable, locally convex space, a so—called Fréchet
space. ’

Since as shown in [Hi] E(M,R") is open in C™(M,R"), it hence carries the
structure of a Freéchet manifold (cf. [Bi,Fil).

Using now the differential calculus in locally convex spaces constructed
either in [Bal, [Gul, [Mi] or [Fr,Kr], it is evident that the tangent space
Tj E(M,R") at j€ E(M,R") is nothing else but C™(M,K").

Therefore the tangent bundle TE(M,R") is trivial, i.e.

(1.9) TEM,R™) = E(M,R™) x C(M,RY).

We note that TE(M,R") is the phase space of motions in E(M,R").
Next we introduce the principal bundle structure of E(M,R"), which is crucial

for our formalism to describe the motion of the deformable medium M.
Following [Bi,Fi] we first describe the group action. Let Diff M be the group
of all smooth diffeomorphisms of M equipped with the c”- topology. Diff M is
a Fréchet manifold, in which the operations are smooth in either one of the
above mentioned notions of differentiability.

Consequently we call Diff M a differentiable group. The tangent space at
the identity in Diff M is naturally identified with I'TM, the set of smooth
vector fields on M.

The operation & of Diff M on E(M,R") given by

- (1.10) d(jg) = jog v j€ E(M,R"), g€ Diff M,

is smooth.
-Consequently E(M,(Rn) can be represented as

(1.11) EMMRY = U io Diff M ,
ie EOLRY '

i.e. as the collection of smooth fibers. The quotient U(M,R") of _E(M,IR“) by
Diff M ’

: n _ n

inherits a smooth Fréchet manifold and it is naturally identified with the
~ collection of all smooth submanifols of M in R" which are diffeomorphic to M.
Let us denote the quotient map, i.e. the projection of E(M,R™) onto U(M,K"),
by II. The quadruple ( E(M,R"), 1T, U(M,R"), Diff M ) is then a principal bundle
in the sense of [Gr,H,V]. :

Each configuration j€ E(M,R") induces a Riemannian metric m(j) on M defined




by
(1.13) m(j)(X,Y) = < dj%, djY > ¥ 4,Y € ITM.

Denoting now by M(M) the set of all smooth Riemannian metrics on M
equipped with the c™~ topology, we obtain then a natural map

(1.14) m : EOLR™) — M(M).

Noting that M(M) is an open cone in SZ(M), the Freéchet space of smooth
symmetric two tensors on M, we deduce that M(M) is also a Fréchet
manifold and that the map m is smooth (cf. [Sch]).

Moreover the tangent bundle TR(M) of M(M) is trivial, i.e.

(1.15) TIM(M) = M(M) X S(M).

Fof later use we calculate at this point the derivative Dm(j)(k) of m at j €
E(M,R") in the direction of h € C*(M,R"). Due to the R — bilinearity of m in
the variable j € E(M,R") we have

(1.16) Dm(j)(h)(X,¥) = < djZ, dhY > + < dhX, djY >,
¥ Z,Y € DTM.

Splitting . h into
h=djx +h

with ¥, € I'TM and h' being pointwise normal to j(M) in R", equation (1.16)
turns into
(1.17) Dm(j)(M)(Z,Y) = <djX,d(djX ) (¥)> + <dldjZ,)Z,djv>
+ <djZ,dhty> + <dntz,divy> .
Since  d(dj4,)Y = djVij) X, + SIX,,Y) , where V(i) is the Levi-Civita
connection of m(j}, (1.17) turns into
(1.18) Dm(§)(M)(A,Y) = mEGUK,V(§)yXy) + mETVE) KT
+ <dj%,dh*tY> + <dhtZ,djv>
Ly, (MNEY) + ¢djf,dnty> + <dht®,diz> ,

t

with Lxh(m(j)) being the Lie derivative of m(j).
In case ht = ©,°N(j) then

(1.19) Dm(j)(h){¥,Y) = Lxh(m(j))(}{,\") + 2.9, *0())(4,Y),

with b(j) the second fundamental form of j defined by

BOINZLY) = m(IW(HZY) = AN(J)Z,djY> .




Here W(j) denotes the Weingarten map of j given by
(1.20) djw(j)x = dN(j)X , VAel'TM .

If H(j) denotes tr W(j) , then

(1.21) tr Dm(j)(h)(X,Y) = 2'divj}{h + O H(j) .
By divj}{h we denote the divergence of X, formed with respect to m{j).
This means,

divj}(h = V() .

The function a{-{r—ni‘h)- is called the mean curvature of j, while H(j) denotes
the unnormalized mean curvature.




2. The metric 635 on the configuration space E(MJ(RH)

In order to define a metric on E(M,IR"), which is adapted to the mass
distribution of our moving deformable medium M, we first introduce a
density map

(2.1) o EMIMR™) — CT(M,R),

which is supposed to be smooth in either sense of the above mentioned
notions of differentiability. In addition we require that p fullfills a
continuity equation, namely

(2.2) Dp(j)(h) = = 3 pj) try Dm(j)h), ¥ j€ EOMR™, he C LR,

where tr; denotes the trace taken with respect to m(j). Using the fact that
the derivative at j in the direction of anv h€ C”(M,R") of the Riemannian
volume form u(j) has the form

(2.3) Du(i)(h) = 5 u(j) tr; Dm(j)(n)
as shown in [Bi,1], it follows that (2.2) is indeed the continuity equation.

Consequently the total mass m(j) attached to any j€ E(M,R™ via the
formula

(2.4) m(j) = f P(i) (i)

is constant in j. :

The existence of such a function p can be established as follows :

Let i€ E(M,R") be any embedding and denote by O; its connected component
in E(M,R"). Then for any je O; the differential dj is related to di in the
following way '
(2.5) dj = godiof,

where g€ C7(M,S0O(n)) and f is a strong bundle isomorphism of TM which is
fibrewise positive with respect to mf{i). One easily verifies that the
Riemannian volume forms u(j) and p(i) of j and i respectivels are rslated by
(2.6) u(j) = det fouli) .

We then set

(2.7) plj) = pli)det £}

with p(i) chosen such that

(2.8) p(i){p) > 0, Y pe M,




and note that this map satisfies the continuity equation (2.2).
Next we introduce the metric G; on E(M,R") by the formula

(2.9) 8K = [ p(3) <hk> p(i), ¥ hke CTOMRM.

‘ Due to (2.2) 8 is constant in j. Therefore the geodesics of (BE are straight

line segments as shown in [Bi,1].



3. The constitutive law and the general equations of motion

By a constitutive law we understand a smooth parameter depending one
form, the so—called work

(3.1) F: C®MRM x EMMRY) x C(MR™) —) R.

The first factor C°°(M,[Rn) in the above cariesian product is the parameter
space. We often will regard F as a map

F: cPMRY — ANEMERM),R).

The domain of F is the parameter space, the range the collection of all
smooth one forms on E(M,R") with values in R. To handle this abstract
notion {3.1) we require an integral representation for F given by

(3.2) F(k)(3h) = o [<PeliK)Lh> u(j) , v je E(MR), hke CTOLRY,

where P : TE(M,R") — c™(M,R™), the so-called force density, is assumed to
be a smooth map. We point out that F(k)(j,h) varies linearly only in h and
that it furthermore depends on the maps j and k globally.

The equation of motion on EI(M,!R“) described bv a smooth curve

(3.3) o : (-),)) — EMMRY) ,
for some positive real X, is given by

(3.4) F(a(t)(alt),h) = B(1G(1),h) =  [<Pelolt),d(t)),h> plo(t)
= J pla(t)) <G(t)h> ula(t))
¥ he CC(MR™),

where for the sake of simplicity we have taken k=g(t).
It is obvious that this equation implies

(3.5) pla(t)) a(t) = ¥ (o(t),a(L)), ¥ t€ {—x,A).

We note that (3.5) is a second order differential equation on E(M,R™) and
not on parts of R"

We rewrite it now according to the principal bundle structure of E(M,R"), by
proceeding as follows :

At first we note that &(t) admits in R" the pointwise splitting

(3.6) a(t) = dolt) Z() + o)t

where Z(t)e¢ 'TM is uniquely determined and syt is, according to the
definition, pointwise perpendicular to a(t)(M) for each te (=\,\).
Consequently g(t) is given by




(3.7) G(t) = dolt) Z(t) + dalt) Z(t) + (G)r) , te (=a,n),
where

(3.8) ag(t) Z(t) = dldalt) Z(t)) Z(t) + dalt)r Z(v)
= dolt) Vio(t)) 7(t) Z{t) + S(o(t)) (Z2(1),Z(1))
¥ da(t) Wioln),a(0)b) Z(t) + (o)t zent.
Here V(o(t)) means the Levi - Civit; connection of m(a(t)), and W(a(t),o(t)),

the Weingarten map of o(t) is defined as follows :
Let N :M—R"™ be any vector field along j€ E(M,R"), such that

(3.9) <dj X(p), N(p)> =0, VvV Ze 'TM, pe M.

Then the Weingarten map W(j,N) of j given by N is the uniquely determined
bundle map of TM for which

(3.10) dj W(,N) Y = (aN V)T,

In the particular case where M is oriented and of dimension equal to n-1
and N coincides with the unit normal vector field N(j) of j(M) in R", then
W(j,N(j)) is nothing else but the Weingarten map, denoted in this particular
case just by W(j). '

Let us turn back to @(t). Obviously (compare cf. [Bi,6])

(3.11) 5(t) = dolt) V(a(t))g,)Z(t) + dalt) W(a(t),a(t)h) Z(t)
+ (G)N))T + do(t) Z() + S(a(t)) (Z(t),2(t)
+ (da(t)r z)t + (et .

For unifying terminology we set
(3.12) (FH)T = dolt) Ulalt),a(t)0

for each t€ (-A,A) and a well defined vector field Ula(t),0(t)) € TTM.
If we split now ’{’F(a(t),é(t)) into a tangential and normal part respectively
then for all t € (=X,\) '

(3.13) Polo(1),a(1) = Ppla(t),a(t)] + Polale),at)*
= do(t) Y(a(t),a(t)) + Po(a(t),o(t)"

holds for a uniquely determined Yg(o(t),0(t)) € I'TM.
The equation of motion splits thus into the coupled system

V(0(t))7(4)Z(8) + Z(t) + W(a(0),a(t)") Z(t) + Ula(t),0(1))
= pHat) Yplat),5(1)),
(3.14)
(ater )

il

p ™t (a(1)) Pelalt),ale))?
— (da(tyt Ze)t - Stalt)) (Z(1),Z(t)) .




The first equation multiplied on both sides by do(t) yields an equation of
vectors which are tangential to og(t) o Diff M, while the second one is an
equation of vectors in c®(M,R"), which are normal to o(t) o Diff M.

Hence the above coupled system (3.14) is a splitting of the equation of
motion according to the principal bundle structure of E(M,R") as mentioned
above.

In the particular case dim M = n—1 we obtain

(3.15) gt)t = elalt),a(t)) Na(t))

(3.16) PLlo(8),0(t) = kpla(1),6(t)) Nla(t))

for well determined elo(t),al(t)), KF(J(t),EJ(t)) € CP(M,R).
Hence

(3.17) Co)h) = elalt),a(t)) Nlalt)) + elalt),alt)) N(a(t)).

It remains now to calculate N(c(t)). To this end we prove at first that

{3.18) » bN(j)(T'N(j)) = - dj gradjr , v 7€ CT(M,R) .
Indeed let
jt) = j + t7N(}) , Y te R.
Then we get
(3.19) L ieNGED |, = 0

= rdjWOLNGDY + AT+ <djDN(TN(D.

Using that <N(j),N(j)> = 1, (3.18) then follows.
Next consider a smooth curve 7(t}€ Diff M, te (- ,1), \>0, and note that

(3.20) N(j o v(t)) = N(j) o v(t) .
Differentiating (3.20) we get
(3.21) DN(j)(dj Z) = dN(j) £ = dj W(j) Z,

where X = ¥(0). From (3.6), (3.15), (3.18) and (3.21) it follows that

(3.22) N(o(1)) = DN(o(t)) N(do(t) Z(t) + ela(1),&(t)) N(a(t))
= do(t) (Wla(t)) Z(t) = grad,(yelo(t),o(t))) ,
and hence
(3.23)) Ula(t),5(1)) = elo(t),a(t)) Wla(t)Z(t) — grad,y)ela(t),a(t))

(3.23,) (SR I = elalt),a(t)) Na(t)).




Moreover

(3.24) dta(t)t) z(t) = delo(t),a(t)) Z{t) N(o(t))
+ e(alt),o(t)) da(t) W(al(t)) Z(t)
~ do(t) gradg(t)e(o(t),b(t)).

Thus (3.14) rewrites as

Vla(t)z(y Z(t) + 2(t) + 2 elo(t),6(1)) Wlalt) Z()
~ grad,;)elo(1),6(1)) =P Ya(t) Y(a(t),a(t)),
(3.25)
e(o(),0(8)) = p Halt)) k(a(t),a(t)) + ulalt)) (Z(1),Z(1))
- dela(t),o(t)) Z(t) .

We refer to (3.25) as the general equations of motion of a deformable
medium. : '

Let us now split YF(U(t),b(t)) with respect to m(g(t)) according to the Hodge
decomposition into

(3.26) Yelo(1),0(t)) = Yu(a(t),a(1)) + gradg () Tpla(t),0o(t)),
where t(a(t),o(t)) € CT(M,R™) and

(3.27) div 4y Yplo(t),0(1)) = 0,

i.e. the divergence of YOF(U(t),b(t)) taken with respect to m(g(t)) vanishes,
TF(U(t),c}(t)) ¢ C”(M,R), and grad; ;) means the gradient taken with respect
to mioft)). o

Using (3.26) we rewrite the first equation (3.25) as

(3.25) V(o)) Z() + Z(t) + 2 elo(t),5(1)) Wiolt) Z(t)
G(t)e(o(t ,C'J'(t))
= p Ha(t) [ gradg(y)Tela(t),o(t) + Youlaln),6i)].

— grad

The above Hodge decomposition of YF(U(L),b(t)) vields a decomposition of
Pp into
(3.28) PLo(1),6(t)) = $Rla(t),0(t) + £(a(t),6(t)) ,

where
P (t),5(t))

da(t) grado(t)TF(a(t),Ef(t)),

(3.29) ,
Pelo(t),o(t))

do(t) Yoo (t),0(t)) + Pelo(t),o(t)t.

3
We note that the tangential part of the force,density Pp is divergence free.
Its corresponding work, i.e. the one form F, will be called the reduced
constitutive law.



4. The motion along a fixed surface i(M)c R"

Let us consider again the coupled system (3.14) describing the motion of the
_deformable medium M. Noting that the embedding ¢(t) varies with t and that
the submanifolds o(t)(M) and o(t,)(M) of R" differ generically from each
other for different t,t,€ (=1,}), we obtain that the first equation (3.14)
describes the instantaneous motion of the deformable medium along the
submanifold M.

In this section we assume that the submanifolds a(t)(M) of R" are identical
for all te (= A).

As a visualising example we image a fluid moving on a sphere of fixed
radius .

More generally let i€ E(M,R") be fixed. |
Thus i(M) is a submanifold of R" on which a deformable medium moves
according to a constitutive law to be specified below. A configuration of
this motion is an embedding j of M onto i(M) and is hence of the form

(4.1) j=iog,

for some ge Diff M.

Consequently the configuration space is i o Diff M . It remains now to specify
the constitutive law on T(i o Diff M) , the phase space of the motions on
i{M). To this end let us first study the nature of a tangent vector h toio
Diff M atiog,i.e. he T-10g i o Diff M. If we denote by Rg the right translation
bv g, i.e.

Rg : Diff M — Diff M,

3 )
g i gog ,

(4.2)

then the tangent map TRg(id) sends any tangent vector £ € I'TM at Id Diff M

into a tangent vecior in TgDiff M. Moreover

(4.3) TRg : TTM — TgDiff‘ M

is obviously surjective. Regarding j o g o Diff M as a submanifold of
EMR"), any h € Tiog E(M,R") tangential to j o g o Diff M is thus of the
form

(4.4) h=d{iog) Zy

for a uniquely defined vector field %, € I'TM.
Thus we have a natural bijection

(4.5) d(iog): ITM —) Ty, 1o Diff M ¢ Ty EQLRY)

g



| sending each X €¢ 'TM into d(iog) X € T-log i o Diff M.
By (4.5) we see that T ( i o Diff M ) is trivialized via right translations as

(4.6) T(ioDiff M) =ioDiff M X 'TM .
] Clearly
(4.7) dliog) X =dio TgX

We now introduce the constitutive law via the smooth map
(4.8) F:di 'TM x io Diff M x CT(M,R") — R,

which is linear in h € CT(M,R"). We note that in analogy to (3.1) we put
the parameter space di I'TM as the first factor of the domain of definition.
The justification for choosing the third factor as being C°°(M,1R") instead or
'TM will be given later.

As in the preceding section we require an integral representation for the
constitutive law reading as

(4.9) F(d(i o g)X)(iog,h) = [<Ppli o g,dli o g)X,h> uliog)
v he C(M,R™), X€ "'TM, g€ Diff M,

where the force density

(4.10) Po:ioDiff M x TTM — CT(MR")

is a smooth map.
The equation of motion on 1io Diff M described by a smooth curve

(4.11) og:(-\,\) — ioDiff M, x>0,
subjected to the above constitutive law is hence
(4.12) plo(t)alt) = Plalt),alt)),

or, equivalently,

| plaNGENT = (Phlat),aw’,

(4.13) L _
plat)(G(t)) = = (Pelalt),alt))) -, te (=X,1). |

We obviously have

for a well defined vector field YF(U(L),b(t)) € "TM. Since a solution a(t) of

|
(4.14) (Pelan),a (T = do(t) Ypla(r),6(1) ,
(4.13) has the form



(4.15) o{t) =i0gt),

for a smooth map
g: (=X,A) — Diff M,
it follows that

(4.16) g(t) = d( 1o glt)) Z(t)

=dio Tg(t) Z(t) 3

where Z(t) € 'TM is well determined, and consequently

(4.17) G(t) = (d( ioglt)) 2(t))
= d(ioglt)) Z(t) + dlioglt) Z(t)
=d(ioglt) \?( io g(t))z(t)Z(t) +
d(iog(t)) Z(t) + S(1ioglt)) (Z(1),2(1) .

Using (4.17), from (4.13) we obtain, ¥ t€ (=)\,\),

plio gtV ioglt)yyZ(t) + Z(1) = Yelglth,Z(t),
(4.18)
pCiog(t)) SCioglt)) (Z(t),Z(t)) = Pp(g(t),Z(t)*

where we have used the notation

(3.19) F(g(t),Z(t) = £ (1ogl(t),dlioglt)) Z(t)) .

Bv comparing (4.18) with (3.14) we observe that the last equations. are
obtained from the first ones by setting r'J(t)L = 0, in accordance with the
fact that 1(M) 1is a fixed surface.

We note that we can remove the instantaneous connection V(i o g(t)) and the
instantaneous second fundamental tensor S(i o g(t)) in (1.1&) by using the
push-forward of Z(t) by g{t)€ Diff M, that is we introduce 7{t) by

(1.20) Z(1) = TgZWgn) ™, LE(—AA) .

Using (4.20) we obtain on one hand

ag(t) = di Z(t)g(t) = d( 1o gl(t)) Z(v) ,

(4.21)

G(t) = di Z(t)g(t) + d( di Z(t)) g(t) .

On the other hand the equation

(4.22) g(t) = di g(t) = di Z(t)glv)
yields
(4.23) g(t) = Z(t)g(t) .

.



(+.21) and (4.23) imply
(4.24) Fldg(t)™ = di ¥(t) + di Vli)yX(E) + SHHK),X(L)) .
Setting now

Yelg(e),X(t)) = Yp(g(t),Z(t)) glt) ,
(4.25)
Pelg(t), £t = (Plg),ZN gt) ,  te (-\,))

and observing that the map
p: E(IMR™) — C”(M,R)

does depend by construction on dj rather than on j itself the system (4.18)
turns into

pLda(IUV(i)y ()4 () + X(1) = Y(g(t),X(1)) ,
p(da(t))SEN (K (), 7(t)) = P (g(t), () .

Let us note that in the case when we would require that F(d(i o g)) would
act on 'TM rather than on C°°(M,lR"), we would obtain only the equations

(4.13), bv missing the observation that the normal forces are up to the
density p of a geometric nature. '

The next step is to decompose Y (g(t),Z(t)) with respect to m(i o g(t))
according to Hodge uniquely into

Ye(g(t),Z(1)) = grad;t(g(t),2(t)) + YHg(t),Z())
(+.27)

div; Yo(g(t),%(1) = 0,

where 7.(g(1),Z(1)) € CT(M,R).
Thus the first equation (4.26) becomes

(4.26 ) PIZNTUE) gy K1) + X))
= grad;Tp(g(t),4(t) + Yl(g(t),4it) .

If we require
(4.28) al{=,\)) cio Dif‘f‘“(i)x\l ;
where Diff (i)M is the subgroup of all elements in Diff M which leave

u(i) invariant, then Z(t) has to be divergence free for all t€ (—X,1).
This is due to the fact that



(4.29) T;q Diff M = {¥ erT™ | div; £ =0 b l
|
|

In this case o(t) has to satisfy the system of equations

p (Vi) y ()X (1) + X(1))
= grad; Tp(g(t), £(1) + Yop(g(t),X(1),

(4.30)
p SU) (Z(1),2(1)) = Pololt),X(tH*

with p: 1o Diff M — R beihg a constant function.




5. The R® - invariance of internal constitutive laws

Let us assume now that the motion of the deformable medium M is subjected
to an internal constitution law F, which admits an integral representation.
The fact that the corresponding force density is an internal one requires it
to be independent of the region in R" in which the deformable medium moves.
Hence an internal force density has to be invariant under the translation
or, more precisely, under the action of the translation group R" of R"
(cf.[Bi,4]).

Let us describe next this action of R" on TE(M,R").

At first we recall that the translation group R® of the vector space R" is the
underlying abelian group of the R—vector space R".

The action

(5.1) r: CC(MRY) x R* — C”(M,R")

on C*(M,R®) is given by

(5.2) rhz) =h+z, v he CT(M,R"), z€ R" ,
where by h + z we mean the map defined via

(5.3) (h +z)p) =h(p) +z, VpeM.

Hence z€ R® is naturally identified with the constant map in c™(M,R™)
assuming z as its value.
Clearly in the particular case where h = j € E(M,R")

(.5.4) r (j,2) =] +z, Vv z€ E(M,R™),
belongs to E(M,[Rn). Hence r reduces to

(5.5) r: EOMRY) x R" — E(M,R").

The tangent map Tr of r is given by

(5.6) Tr (h,z)(k,u) = ( h+z, k+u) ,
¥ k€ Thc“(M,tR“), he C*(M,R"), z,ue R".

Hence r induces an action on TCT(M,R") defined by

(5.7) Tr : TCOMR™) x TR® — TCT(M,R™),
((h,k),(z,u)) » ( h+z, k+u) ,

where K€ ThCm(M,!R“) = C”(M,R"™) and ue€ ’I‘z[Rn = R", and respectively on
TE(M,R") given by

(5.8) Tr : TE(M,R®) x TR® — TE(M,R") ,
((j,k),(z,uw)) » ( j+z, k+u) ,



where ke TEMR") = C®(MRY) and ue TR" = R".

Given now a parameter depending smooth constitutive law

(5.9) F: CT(MRY) — AYEMRY),R)

and continuing to write

(5.10) F(j,k) instead of F(k,j) , j € E(MR") , k € C*(M,R")

we form next
(5.11) F o Tr((j,k),(z,u)) : CTIM,R®) = TJ.,,ZE(M,IR") —R .
The requirement

{5.12) F (j+z, k+u) = F (j,k)
vV je EM,R™), ke C®(M,RY), zue R",

does then yvield the type of constitutive law we want to work with.

In order to construct the desired type of R"—invariant constitutive laws, we
consider the quotients of the actions r and Tr. To this end we note that the
map

(5.13) d : C*OMR") — { dh | he CTOMLR™)
has the property that

(5.14) d Y(dh) = { h+z { zE R }.

Hence if we quotient out the action of R" on C”(M,R") we obtain a bijection
again called d

(5.15) d: CTOLRM|ga — {dh | he CTOLRMY
We equip t dh | he CW(M,IRn) } with the uniquelv determined topology making
d to a homeomorphism to C°°(M,[R“)’lm.n carrying the quotient topoclogyv. Note

that both topological spaces are Frechet manifolds.
Next we identify them via d. Hence we have identified also the

two Frechet manifolds E(M,[Rn)‘mn and { dj ‘ je EM,R™M } vielding
(5.16) TEMEY [gn = £dj | j€ EMRM } x {dh | he CTMR™ 3.

Therefore we obtain the following



Lemma 5.1 :
Given a smooth map

(5.17) Fga : CTOLRY) [gn x EQLR™) [pa x CTOLRY) [pn — R,

linear in the third argument, then the resulting (parameter depending) one
form F given byv

(5.18) F=Fgno (d,Td)

is a (parameter depending) R"-invariant one form on E(M,R").
Here Td is the tangent map of

(5.19) d : EIMR") — E(M,R™) |gn -
Remark 5.1 :

In the following we write

(5.20) d" Fgn  instead of Fpn o (d,Td) .
Remark 5.2 :

The above lemma allows us to study the constitutive laws of the type
* - . 3
d Fgn rather than constitutive laws invariant under Tr.



6 . On the characterization of R"-valued one—forms relative to embeddings

Let throughout this section i€ E(M,R") be a fixed smooth embedding and
¢ ANM,R™) be a fixed smooth R"-valued one—form. We follow [Bi,2].
As the first observation we formulate the following

Proposition 6.1 :
Let o€ ANM,R®) and i€ E(M,R®) be given.
Then the following decomposition holds

(6.1) « =dh + 3,
where he C”(M,R"™), the so-called integrable part of , is uniquelv
determined up to a constant. Moreover this decomposition is maximal in the

sense that the integrable part of 3 is a constant.

Proof :
Let e,...,e be an orthonormal basis of R". Then we get

n
(6.2) x(Z) = ) oK) e, vV Z€ TTM ,
=l

w

for an uniquelyv determined family 0(1,...,0(" of smooth R~ valued one-forms
on M, i.e. o°¢ AYM,R), s= 1,...,n. Clearly

(6.3) o*(Z) = < xlX)y e, V Z€ I'TM, s= 1,...,n.
In addition o« , s= 1,...,n, can be represented as

(6.4) ()

m(i) (Y, ¥) , v Z€ [TM,

for a well defined Y € I'TM. This vector field splits according to Hodge’s
decomposition uniquely into
Y = grad T_+ 2
s is s 7
(6.5)
div, Yo =0,
where T_€ c”(M,R™) and YIS)E CTM.
Hence

(6.6) O of(X) = dr(H) + mi)(YX) , ¥ KETTM.

Next we define the integrable part h of « by

n
(6.7) he= ) 7 e,
s=1

and the non—integrable part 8 by



(6.8) B0 = ) mli) (Yox)e , ¥V XEDTM,

s=1

Inserting (6.6) into (6.2) and using (6.7) and (6.8) vields the decomposition
(6.1). It remains only to show that (6.1) does not depend on the choice of
the basis of R®. To this end let 51,...,?5" € R" be another orthonormal basis
of R" and define @ , T, Y, h and § accordingly.

Then

o (X) = <x(Z), e >
<dh(X), e > +

n
<y dr ()
s=1

n

(6.9)

es,

H

s=1

n
&>+ <) mli) (Yo£) e, &2

s=1

m(i) ( Z grad; T, <e,e >, X)

n
Fmii) () T <e,e >, 4)

s=1

<BlZL),e >
|

= <dh(X) , e > + <Bp(X) , e>

= m(i) (grad; T

Since on one hand

(6.10)

s=1

on the other hand

n
. 0 —=
div; () Y] <e,e>) =

s=1

(6.11)

we conclude due to the unigueness

relations
n
z grad; ( 7 <e,e > )
(6.12) it ; _0
Y Vo <e,er =T L
s=1

Consequently the uniqueness of the decomposition (6.1)

(

n

dh(x) = ) <dn(Z),e >
=1

(6.13) n

BK) =) <p(A)e> e
=1

n n
Z grad; T <e_e > = grad, ( Z T e e > ),

7)) + m(i) (Y9,2).

s=1

[\/JD

. 0 -
(dlvi YS) Ce,e > =0,
1

v
1

of Hodge's decomposition the foilowing |
|

grad

follows, namely

n
e = ) <di(4le> e =dnld),
=1
n
= Y pRe>e = B,
=1
VX €TM.



Let us detail now the decomposition (6.1).
For this purpose we note first that h can be given the form

(6.14) h=di%, +ht,

where X, € I'TM is well defined and h* denotes the pointwise formed
component of h normal to i(M). '
Using the fact that X, splits into

4 = 40
£y = 4y *ograd by,

(6.15)
.40 _
dnixh =0,

where ¥, € C®(M,R), Xg € ’TM , we deduce from (6.14) that

(6.16) dh(X) = di V(i) 4 + di (V(i), grad; ¥, + W, (i) X)
+ S(1) (Zpy%) + (dnt ()t

. For the sake of readability we remind that Wh(i) defined via
(6.17) di W, (1) 7 = ()t

is a smooth strong bundle endomorphism of TM, which is seifadjoint with
respect to mf(i). '

Let us show next that the divergence-free part Xg of X, is uniguely
determined bv h. To this end we use the fact that according to the above
proposition the integrable part h of o is uniquely determined up to a
constant, i.e.

)

(6.18 h =h+2z,

for some z € R". Regarding z as a constant map in CUIMLR™)  we write it

in the form
(6.19) z=diXx + 7t .

But the vector field Z on R" assigning to anv z € R" the vector
Z(z) = Z ¢ R® is the gradient of some map ? € CT(M,R™) and hence

(6.20) £, = grad; (foi).
Therefore

LU 4 . . ) i , n 1
{6.21) h =di Z + di grad; (¥, + Poi)+h™ +z

= di 4 + di grad; ¥, + h**

or, equivalently



(6.22) di (X)) — %p) + di grad;( ¥,y — ¥, — Foi)
=nt+zt-nt =0.

But (6.22) implies
(6.23) A~ Xp +grad; (¥, — ¥ —foi)=0.

Using once more the uniqueness of Hodge’s decomposition we conclude then
(cf.[Bi,2]) '

Proposition 6.2 :

Let « € AYM,R®) and i € E(M,R") be given, and denote by h € CT(M,R™)
the integral part of «, which is uniquely detemined up to a constant

o = dh + 3.
Splitting h into

h =diZ +ht,

where Xh € ['TM is well defined, then the divergence—free part Xg of -Xh is
uniquely determined.

Next we characterize o ¢ AI(M,!R“) relative to i€ E(M,R") from a quite
different point of view. To this end let us introduce the following two
tensor To( on M

(6.24) TO((X,Y) =< x(X),diY >, v X,Y e I'TM .

Clearly T(x is smooth. Next we denote by

(6.25) P: TM — TM

the unique smooth strong bundle endomorphism for which

(6.26) T (4,Y) = mii) (PZ,Y) ,

and by P the fibre-wise formed adjoint of P with respect to m(i). The

symmetric and the antisymmetric part of T,, the tensors T; and T?(
respectively have the form

(6.27) TS (£4,Y) = m(i) (-(P + P) Z,Y) ,

- P
(6.28) To( (X,Y)

m(i) (P - B) Z,Y) .
Setting now

n
(P+ PP

KR
N

(6.29)
(P- F)p



we obtaln that
3
(6.30) ol¥) = o (X)) + di Cor X + di Ba X, ¥ X € 'TM.

Clearly or’(X)(p) is a vector in the normal space of TiTpM , ¥ p€ M.
Hence there is a unique smooth map

(6.31) cy € c™(M,so(n)) ,

where so{n) denotes the Lie algebra of the group of all proper rotations
of SO(n), such that

(6.32) o (%) = ¢ di¥
with v
(6.33) ¢, (N(})) L Ker ¢, v X € I'TM.

We mayv now state the following

Proposition 6.3 :

Let o« € ANM,R®) and i € E(M,R") be given. Then there exist two uniquely
determined smooth, strong bundle endomorphisms

Ci: ™ — ™
and

By : TM — ™,

which are skew— and respectively selfadjoint with respect to ml(i), and a
uniquely determined map ¢, € c®(M,so{n)), such that the following
relation holds

(6.34) (X(X):Co( di £ +diCy, £ +diB, 4, ¥y £ € I'TM.

Remark 6.1 :

Given o € Al(M,[Rn) and i € E(M,R"), then

(6.35) aT; =0 iff dx = 0.

Indeed, let us consider the one form <i,x> € ,'-\llM,an) , which assigns tc any
Z € I'TM the real function <i,x(Z)>.
Since

(6.36) 8<i,> = Tg( iff s = 0O,

(6.35) then follows immediately.




Next we link the two characterizations of R"—valued one-forms relative to
embeddmgs, as expressed by the two propositions above. To this end let
x € »\(M{R ) and i € E(M,R") be given.

Using (6.1) and (6.14) «(X) turns into

(6.37) o(X) = di Vi), Zy +di W, (1) X + SX,Z)
+ (dh*( x))* + p /)

Inserting (6.37) in (6.24) we get

(6.38) T, (X,Y) = < o(X),di ¥ >

i VU2, + W) ¥, di V> + Tp(d,Y)

m(i) (Vi)ygZ,¥) + mii) (W, (D) X,¥) + Ta(XY),
V Z,Y € PTM.

Therefore
(6.39) TS (X,Y) = 5 [ m(i) <v<1) (oY) + mi) (V) %,,2) ]
+ m(i) ( )/&)+T§(,<Y) ’
=5 Ly (m(1)) (Z,Y) + m(1) (W,(1) X,Y) + TRIZY) ,
(6.40) To(4,¥) = 5 [ mi) (V) X,,Y) = mli) (V) ¥, K] + TR(ZY),

Rewriting the Lie derivative Lzh(m(i)) of m(i) in the direction of Z_ with the
help of the Theorem of Fischer and Riesz as

(6.41) Lz, (m(i) (X,Y) = m(i) (Lzh 4,Y) VZ er'T™,

h

by a uniquely determined strong smooth bundle endomorphism

(6.42) Lzh : TM — T™ ,

from (6.34) and (6.37) we infer the following formuias for Cop? ch and BO(
(6.43) Co A1 Z = (AT + SU) (£,K) + ey di 7,

(6.44) Cu £ =50V 7, - V) 2, 17+ 7,

(6.45) B X = 5L V() % + V) %, 17 + W) ¥ + By ¥

— 1 soqs B
_(EL){h+Wh(l)+B‘3)X

Instead of Vi) 4, we often write V(D)4 (v) for any v € T M. Similarily we
use V (1)4,(v) instead of V 1,4

Using ne‘<t the Hodge decomposition of 4, i.e. (6.15) and taking into
account that

(6.46) m(i) ((V(i) grad; ¥, — V(i) grad; ¥,) £,¥) = 0,

we obtain finally the following



Proposition 6.4 :
Let o € Al(M,IRn) and i € E(M,R") be given. Then the following relations hold

x =dh + 8,

O((X)Zco(diX+diCO(X+dchxX, Y £ € ['TM,
where the integrable part h ¢ C”(M,R") is uniquely determined up to a
constant , c, € C®(M,so(n)) is a uniquely determined, Cp t T™ — TM is a
uniquely determined smooth, strong and skew—-adjoint bundle endomorphism,

BO( : TM - TM is a uniquely determined smooth, strong and selfadjoint
bundle endomorphism.

Writing
h=dix +ht,

where ¥, € I'TM, and using Hodge’s decomposition
Z = %2+ grad. v
“h ‘h i~ h?
(6.47)
div.z% = 0
i“h )

we obtain finally

(6.48) Co di = (dnh)t + SU) (X, . )+ cgdi
(6.49) co=liv) ¥ -T@) 01 +c
: x T2 LAy LAy B
_1 .
(6.50) By = 5 Lyt graguy + Wall) * B
Hence
(6.51) tr By = div; 7, + tr Wyli) + tr By

= = AG) ¥y + tr W) + e By

where A(i) is the Laplace—Beltrami operator of m(i).

Let us calculate now the covariant divergence of By and C, . To this end we
recall at first the covariant divergence div; A of a smooth strong bundle
endomorphism

(6.52) A:TM — TM .

Let €18y be a moving orthonormal frame of TM, and set

n
(6.53) div; A =) V) (A)e

1 y '
r=1

At first we compute div; V(i) X,. Using the equation



(6.54) m(i) (V(i)g (V) X,) e,Y)
= m(i) (Vi) (Vii)g Xp) =Ygy, e, Xp¥)s
r
VY €TTM,

we get

(6.55) div;(V(i) X,) = Al) X,

where A(1)4, is the Laplace—Beltrami operator of m(i) applied to ¥, which
by def1mt10n is - tr V(l)2 z,
In order to compute div; V(1) 1( we consider the equations

(6.56) m(i) (Vi) (V) %y)(e),¥)

e, (m(i) (V0 Zye),¥) - m(i) (Ti) X, (Vi) e,),¥)
- m(i) (T0) ,(e,),96), ¥)

m(i) {e,V(i)g V(i)yZy) — m(i) (er’V(i)V(i)erY Z,)
m(i) (e, Vi), (V1) X) V),

(6.57) m(i) (V) (V) Xh)(e e,)

= m(i) (e,V({1),VQ h) - m(i) (e ’V(I)V(l)‘e

= m(i) (e, V(i)( V(l) Z.)(e)))
and find

(6.58) Z Cml) (V) (TDR,)(e,),¥) = mli) (Ti)y(FiD)x,) (e e )]
1
Y: Ric (m(i))(Y,X,) ,
where Ric{m(i)) denotes the Ricci tensor of m(i). Hence
(6.59) m(i) (divy V(l)X ), Y) = tr V) (VIZ,) + RictmG))(Z,7)).
But (6.59) yvields
(6.60) divy(V(i)%,) = grad;div, %, + R() %,
| where R(i)X, is defined via
(6.61) m(1) (R(1)X,,Y) = Ric(m(i)) (X,,Y) , ¥ Y e TTM.

From (6.49),(6.50),{6.55) and (6.60) we deduce
(6.62) diviLy = A1) Xy + RQ) X, + grad,div,X,

(6.63) 2 divy G, = A1) X, - R(1) X, - grad;div; X,



and consequently

: 1 _ .

. 1 ey L
(6.65) div; (5 Lxh -C) = R(1) X, + graddiv; X
Let us restriét our attention to the case where M has codimension 1. Since M
is oriented we have an oriented unit normal vector field N(i) along i.
Hence h ¢ C°°(M,1Rn) splits uniquely into

(6.66) h = di ¥, + @ N(i),

where 4, € ['TM, ©, € C"(M,R).
Thus

(6.67) W, (1) = W(i) if =1
Defining the mean curvature H(i) of i by
(6.68) tr W(i) = H{i)

we immediately find

. n-1
= ) m(i) (Vi) (© WD) e,Y)
r=1
= m(i) (gradi@h,W(i) Y} + mi(i) (G)h divi W(i),Y)
and hence
(6.70) divi(@h W(i)) = W(i) gr'adl-@h + G)h di\"i W(i) .

On the other hand by Codazzi’s equation (cf. [K1])

m n-l
(6.71) rZlmm (V) g (WD) e,Y) = Zlmm (V) (WA e e,)

= m(i) (grad; H(1),Y)
and consequently
(6.72) div;(@, W(i)) = W(i) grad; ®, + ©, grad; H(i) .

From (6.49), {6.60), (6.67), (6.68) and (6.72) we infer then
(6.73) div; (By + Cp) I-A(i) Z, + W(i) grad; ®, + ©, grad, H(i)

(6.74) div; (B, — C)) = R(1) X, + grad; div; %
+ W(i) grad; ©, + ©, grad, H(i) ,

1




(6.75) div{ B, = 3 A() %, + LRO) %,
+ W(i) grad; ©, + ®, grad; H() .

We conclude this section by proving the following

Lemma 6.5 :

Let o« € AYM,R") and i € E(M,R") be given.
If « has no integrable part, i.e. o = 3, then

(6.76) divy (CB + BB) =0.

Proof :

Denoting by 51,...,e
with (6.8) ,

n an orthonormal basis of R" we have, in accordance

(6.77) TRUZY) = < B(A),di ¥

n

=Y ma) (Yo%) <e_,di >
a [ S

s=

n
= m(i) (Z eg,di V> YO1) ¥ 4,Y € PTM.
s=
If now €598y is a moving orthonormal frame in TM, then we get
m .
(6.78) m(i) (div;(By + Cp)¥) = ) m(i) (VA), (By + Cp) e,,¥)
r=1
m n
=) Y ml) (VA <y,di V> Y e

Bv interchanging the summation the assertion then follows.



7. The equations of motion of a deformable medium subjected to an internal

constitutive law

Let M be a moving deformable medium of codimension 1, i.e. dimM=n-1,
and assume that its motion is due only to an internal constitutive law F.
As we have already seen F is R'-invariant and admits the representation

*
F =d F[Rn
where
Fga @ CTOLRM g x EQLR™ [pn x CT(MR") —) R

is a smooth map. Next we assume that Frn has an integral representation

(7.1) Fon(dk)(dj,dl) = o(dj,dk)edl (i), Vv j€ EMRY),
R "l K1 € COOMRD),

where o is an R"—valued one form, the so—called stress—form, i.e.
(7.2) « : TEMRY |ga — ATOMLRY).

We note that the integrand

(7.3) o(dj,dk)dl

in (7.1) is defined in the following way :
Let first represent «(dj,dk) and dl according to Proposition 6.3 as

x(dj,dk) = ca,(dj,dk)-dl + dj-Ca(dj,dk) + dj~Bo((dj,dk)
and
dl = cl-dj + dj-CI + dj'Bl

respectively. Then we set

(7.4) x(dj,dk)dl = tr Bo((dj,dk)‘Bdl + tr C,tdj,dk)Cy

+ tr co((dj,d‘&\')'cdl )
Using now (5.20) and (7.1),‘it is easy to see that the internal constitutive
law F admits an integral representation by a force density g, which
depends on ( the coefficients of ) the stress form o. Indeed, to this end we
have to solve the equation

(7.5) J<Petdiaklbu) = | faldi,dk)dl pli), ¥ i € EOLRY,

K,l € CT(M,R™).
Before 'doing so, however, we point out that o in (7.5) is not uniquely
determined. In fact we have (cf.[Bi,41).



Theorem 7.1 :
Given o € AI(M,JR") and j € E(M,R") with dh as the integrable part of o then

(7.6) Jocdk u(§) = [ dnedk pij) ,

expressing the fact that the non-integrable part 8 of « = dh + f3 is
orthogonal to C°°(M,an)lan , regarded as a subspace of AY(MRM).

Proof :
By Proposition 6.1 we have, ¥ X € 'TM ,

n
dhz =} m(j) (V X)e,
n
BLK) = L m()Y,K)e, ,
s=1
where V_ = gradj‘rS s divj‘z"g = 0, s =1,...,n. Then from (6.24), (6.26) and
(6.29) it follows

n
(7.7) (By, + Cy)¥ :’S:Z1 m(j) (V,Z)Y,
and

n
- — . 0 .
(7.8) (By + Cp)X = szjl m(j) (YLX)Y, .

where Y, =V + Y? y S =1,...,n, satisfies the equation

m(j) (Y,Z) = x(X),e> , Vv XL € TCTM.

n n
(7.9) (Byp * Cgp) @ (Bg + Cgl2 = L L m(j) (Y),2) m(j) (V¥

) Yo .
s=1 §'=1 E

c
5

Therefore if €y5eees€p 1s an orthonormal moving frame on M

(7.10) tr(By, + Cy) o (By + Cg) = tr(By o By + Cyy 0 Cq)

n n
=L L Lmd) (Yoe)m(j) (VY m(j) (Y,e)
n
=L m(j) (Yv) .
=1 >

Next we form

n
Cgp diX = XL m(j) (V_,X)<e N(j)>N(j)
(7.11) =
n

gy N(J) = L <e N(i)>edj V.



Similar equations hold for <a with V_ replaced by Yg for each s:
Hence

n n

cnocg di £ = L L mli) (YLK Ce N(G><e NGV,
(7.12) s
Cgn © Cp N(j) = '21 Zlm(j) (VY )e<e N(j)><e_,N(j)>N(j) .
§=1l s=
Therefore
3 9
7.13) trc, o cp = 20 sZz:lm(j) (YS,VS)
and hence
n
(7.14) tr(By, 0 By + Cyy 0 Cy * Cyy 0 cg) = 3 SZ:lm(j) (v .
But (7.14) implies
n
- . 3 - . 1 0 ; i =
(7.15) wf 4B u@ =3 L[ m(i) (3% p@ =0
since Y{S) and VS are L2~orthogonal, s= 1,...,n.
Let us now turn back to (7.5).
At first we study the equation
(7.16) CPpyl> = tr ( ByoBy + CooCy + € 00y ) »

where for the sake of simplicity we omited the arguments of « and f;. On
one hand we note that ! € CT(M,R") can be represented as

(7.17) L =dj Z + O N(J)
and that it will be sufficient to consider only those ! for which @, = 1, Le,
(7.18) L =dj 4 + N .
On the other hand according to Proposition 6.4 we have for a fixed orthonormal
moving frame e,,.,e , € I'TM

n‘lI ] - ~
(7.19) tr ByoBy = ) 5m(j) ((By o (V(j)) 4, + V(jZ) e, e)

s=1

ml

+ mi(j) (Bo( o Wijle, e)
S:
n-1

Z KN(j), S(i)le,B,e,)

S

n-1

me(j) (By o V(i) %) €)) =
e

= divao(Xl - m(j)(divaO(,XI)
+ <tr By o W(J))N(j), N(j)> .



We calculate next in the same way tr Co(°Cd1 and obtain, using the fact
that ‘

(7.20) tr W(j) o Cor = 0, .

{(7.21) tr Cor o Cd] = diijo(Xl - m(j)(divjco(, Xl) .
It remains now to calculate tr Co® Cap
(7.22) Cal dj Y = S(j) (Xl, Y), VY el'TM,

. Recalling to this purpose that

and writing c, N(j) with the help of a field, say U, in I'TM as
(7.23) Co N(j) =dj U,

we then get
-1

o

trcy 0 Cy = ) <Cy 0 cydie, dje> + <cy o c N(j), N(j)>

1 x
-1

™13 90

e, SUNZE e, dje> + <cyd) Uy, NI
1
n-1
= - ) mGW(HZ, e) m N(j), djed
s=1
- m(')( W(ju

1%
"

o )

= - Z DWGIZ, e ) m()U,, ) — m(IW(HUy,Z)

o’ es
= - 2 m(j) (W(J)UO(, Xl) .

The equation for ¥ becomes then

(7.24) oJ<Bpbn(i) = | fldivi((B+C X))
- <d](d1V (By +Cp ) +2W( J)U )
+ tr‘(Bo(oW(J))N(J), >3 ulj

Using Gauss’ theorem this equation yields
Proposition 7.2 :

Let Fpn admits an integral representation given by

nl{dk)}(dj,dl} = Mf oo{dj,dk)edl p(j), v j€ E(M,R"),
' k,l € CT(M,R™),
where the stress form

o« @ TEMRY) [gn — ATOLR™)

splits into
o = ca°dj + dj°Co( + dj-BO(

Then F admits an integral representation with a force density ¢ given at
(dj,dk) by




(7.25) ?(dj,dk) = = dj (div (Bo((dj,dk) + C,ldj,dk)
+ 2 W(j)Uo((dj,dk)) +tr (Bo((dj,dk)oW(j))'N(j) .

Since « in (7.1) can be replaced by its integrable part as expressed in
(7.6) a redundancy occurs in (7.23). Let us therefore rewrite this equation
by replacing «f(dj,dk) by its integrable part dh(dj,dk) . To this end we
first rewrite Udh(dj,dk) in terms of h(dj,dk) as done by [Bi,5] and restated
in the following :

Lemma 7.3 :
Let h=djX, + ©N(j) forany h € C (MR") then Uy ,as defined in
(7.23) takes the form

(7.26) Ugh = W(PZy, - grade)h .

Proof :
Equation (7.23) reads in the case under consideration as

Cyy N(J) = dj Uy, -
By (6.44) we have moreover
gy di Z = S(X,X) + d& (X)-N(j)
= - mDW(X, — grade)h,X)°N(j) .

Therefore

(7.27) eyl N(G) = cyedf Uy

- m(GIWIL, — grade)h,Udh) N(j)

i

implying (7.26).
In view of (7.6) and (7.26) we obtain

Corollary 7.8 :
Since for anv (dj,dk) € TE(M,[R")K‘Rn the stress—faorm « splits uniguely into

x(dj,dk) = dh(dj,dk) + B(dj,dk)

with h(dj,dk) the integrable and p(dj,dk) the non-integrable part
respectivelyv, equation (7.25) turns into

(7.28) ?(dj,dk) = - div Bdh(dj,dk) + th(dj,dk)
2. o e s
+ 2 WYL, -2 W(J)_gradJGh
where
h = dj Xh + Oy N(j)

with X, € P'TM and @, € C”(M,R).

Using now the egmnations of motion (3.25) of the deformable medium M we




immediately obtain the following

Main theorem :

. .Let M be a moving deformable medium of codimension 1 subjected to an
internal constitutive law

F: C®MR™) x EIMR™) x CMR") — R,
with «

F=dFpn,
and

Fgn : COMR™ g x EQLR) [gn x CTILR") [gn — R,

a smooth map admitting an integral representation given by the so—called
stress form

o : TEOLR®) [gn — ATOLRY)

This stress form « decomposes according to (6.34) at each

(dj,dk) € TEQLR®)|gr = E(MR™) |ga X CTOLR™) [gn
into .

x{dj,dk) = co((dj,dk)'dj + dj~Ca(dj,dk) + dj°Bo((dj,dk) .
The equation of motion on E(M,R") described by a smooth curve

a: (=) — E(OMRY, A>0,

is then given by

(7.29) Mj' plalt)) <G(t),1> plalt)) Wl: o(dg(t),ad(t))dl plalt))

J<Peldatndato, > ploln),

i

where the force density fp satisfies (7.25). Using the fact that (7.29)
implies

(7.30) pla(t))d(t) = Ppldalt),da(t)) , VorE (=3,))

and writing o{t) in R" as
g(t) = do(t)Z(1) + ela(t),a(t))N(a(t)) , Vite(=\A),

where Z(t) € I'TM and e(o(t),5(t)) € CT(M,R) , the equation of motion (7.30)
splits into the coupled system




[ Valt)))Z(t) + Z(t) + 2 elo(t),a(t)W(a(t)Z(t)
~grad(¢)e(a(t),a(t))

= p Ho(t)) [= divyy, Teldo(t),do(t)) = 2 Wla(t)U, )],
(7.31) 1
ela(t),a(t)) = p Ha(t)) tr By (da(t),dd(t)) Wla(t))

L - de(a(L),a(tNZ(L) + bla(LINZ(),Z(1))

where the smooth two tensor T(x(dj,dk), the so-called stress tensor, is
defined by

(7.32) To((dj,dk)(X,Y) = m(j)(Bo(+C(X)(dj,dk)X,Y), v X,Y € 'TM

and bh(og{t)) denotes the second fundamental form of o(t).

Remark :
(7.31) corresponds to Cauchy's law in the mechanics of continua.

Using Corollary 7.8 equations (7.31) turn into

Corollary :
Using the splitting of the stress—form into an integrable dh and a
non—-integrable part f3 respectively, (7.31) reads

[ Va(t))yyZ(t) + Z(t) + 2 elo(t),6(t)IW(a(t)Z(t)
—grado(t)eio(t),ff(t)) = P—lta(t)) [_ leO(t)Tdh(dU(t)’db(t))

(7.33) 9 - 2 Wle(t)(Wla(t)X, — grad;,©,)],
e(a(t),a(t)) = p H(a(t) tr By (do(t),da(t)) W(a(t))
{ = de(a(t),0(t))Z(t) + Blo(t))(Z(t),Z(t)) .

Example 7.9 :

Let o be given by

(7.34) x(dj,dk) = - 7(dj,dk)dj , v j€ E(MRY), ke CT(M,RY),
where
(7.35) 7 ¢ TEMRY) |ge — CTOMRY)

is a smooth map. Then we have

, B, (dj,dk) = T(d},dk)-Idpy ,
(7.36) C,(dj,dk) = 0, v (dj,dk) € TE(MR")|pn ,
co((dj,dk) 0.



Therefore the stress tensor Ta and the force density 'PF become

(7.37) T, (dj,dK)(H,Y) = T(dj,dK) mGNKY) , ¥ XY € TTM,
and
(7.38) #(dj,dk) = dj grad T(dj,dk) + T(dj,dk)H(j) N(j) .

Then the Main theorem reduces to the following

Proposition 7.10 :

Let the hypotheses of the Main theorem hold and assume that o« is given by
(7.34). Then the equations of motion of the deformable medium M are given
by

Vialt))yyZ(t) + Z(t) + 2eela(t),a(t) Wlal(t)Z(t)

—grada(t)e(a(t),b(t)) = p—l(a(t)) grada(t)f(da(t),d&(t)) ’
(7.39)

€la(t),a(t)) = p H(a(t) T(da(t),da(t))H(a(t))

- dela(t),a(t)Z(t) + bla(t)) (Z(1),Z(t)) .

We call (7.39) the equations of motion of a perfect deformable medium. The
corresponding constitutive law will be refered too as the perfect
constitutive law.

The above corollary relates with the motion induced by a reduced
constitutive law introduced earlier as shown by the following

Corollary 7.11 :
Let F be a smooth R®—invariant constitutive law splitting into the sum

3
(7.40) F=F +F,

where FO and F are §mooth R"—invariant constitutive laws admitting both
stress forms o’ and respectivelv. Assume moreover that o and o have
" the decompositions

odj,dk) = T(dj,dk)dj ,
(7.41) o (dj,dk) = ¢ '(dj,dk)-dj + dj-C, (dj,dk) + djBy (d},dK) ,
v (dj,dk) € TE(MR") R

with
{7.42) tr Bo(’(dj,dk) =0.

Then the motion
g (=\,A) — EMRY)

induced by F satisfies the equations



[ Vot )2t) + Z()
+ 2 elo(t),d()W(a(t)Z(t) —grady yela(t),a(t))
= p Ha(1)) [grad,(,)T(da(t),da(t)) = divy ()T, (da(1),da(t)
(7.43) y - 2 Wla(t)) U,)]
(a(t),a(t)) = p Ha(r) [tr(B, (do(t),da (1)) W(a(1)))
- 1(do(t),do(t)) Hla(t))]
i — dela(t),6(t)) Z(t) + blalt)) (Z{t),Z(1)) .




3. The structural viscosity

As known the notion of viscosity was first introduced by Newton as "the
resistance which arises from the lack of slipperiness of the parts of the
liquid”. He made the assumption that the viscosity "is proportional to the
velocity with which the parts of the liquid are separated from one another”.
As a measure of the viscous resistance one has introduced the coefficient
of viscosityv v.

In this section we introduce the notion of structural viscosity, as done in
[Bi,5], i.e. the notion of viscosity within our apparatus.

Let again M be a moving deformable medium of codimension 1 and assume
that its motion is due only to an internal constitutive law F. As shown F is
R"-invariant and admits the representation

F=d Fgn
with

Fn @ CTOLR™) g  EQLRY) [pn x CTMR™ |pn — R
a smooth map. In addition we assume that Fpn admits a stress form

o« : TEMLRY |pn — AMER™) .

According to Proposition 6.1 the R"-valued one-form o admits the
decomposition

x(dj,dk) = dh(dj,dk) + p(dj,dk),

where the integrable part h € CT(M,R™) is uniquely determined up to a
constant. Next we give h and k the equivalent forms

h(dj,dk) = dj Z,(dj,dk) + ht(dj,dk)

and respectively
k=dj 4, + Kk .

" Moreover we set, using the fact that M has codimension 1,
(8.1) h*(dj,dk) = ®, (dj,dk) N(j) .
We split now according to H.odge’s theorem %, and Z, into

. -0 .
Zy =Xyt gr‘adj«yh s

.0 _
dl\'j‘"h‘ 0,
and

v = 0 ,
£ = X *ogradyyy

divi#p = 0

)




respecuvely Let us remind of proposition 6.2, expressing in particular that
Y and / are umquelv determmed by o and dk respectively.
We relate next X and X uniquelyv to each other by setting

(8.2) 20(d],dk) = v(dj,dK)E2 + 7,(dj,dK) |

where v(dj,dk) € C*(M,R) and Z,(dj,dk) € ['TM is pointwise orthogonal to
'Xg, and call the function U(dj,dk) coefficient of structural viscosity.

A\ccorchngh we call the deformable media, whose constitutive laws depend
only on kt , frictionless deformable media, while the deformable media
whose constitutive laws depend on the whole of k, will be called frictional

ones. Taking now into account (8.1) and (8.2), Proposition 6.4 becomes

Proposition 8.1 :

Let o« € AYMR™ and j € E(M,R") be given and assume that M has
codimension 1. Then the foilowing relations hold :

([ «x=dn +{3 , i
ox{X) = djf+dJC /+d]B £, v Xe T'TM ,
h(dj,dl\) dj / dj,dk) + dj grad ¥, + ©,(dj,dk) N(j),

j
! divj =0,

= th+ grad-lyk s
3 j
dl\J 7 =0,
| %) = vldj,dk)¥Ey + %, (dj,dk)
(8.3) ey (dj,dk)edj = (dh*(d],dK)* + v(d],dK)S(HE, . )
£ S, )+ Stidgrady,, )+ cgldf,dk)-dj
(2.1) €, (d3,dK) = 5 19() wldf,an)zd = ¥i5) wlaj,dx)7})
F LIVZ, (a4dK) - TO)7,(d5,a0] + Cldiae

k) = L 1

(8.5) Baldddk) = 3 Lyajaiaf * L/b\u k)

v (dj,dk) € TE(M,[R“)‘W

If now v(dj,dk) is a constant map in C™(M,R), then we get

Y]
(8.6) C,(dh,dk) = 5 wldj,ak) (V) 7} = V(§) 7))
+ LIV, (d,d0) - Vi1)7,0dj,di0) + Cyldj,dr)
- . . — 1_ . 1_ ~ \
1 - . <
+ 3 Lgradﬂh (dj,dk) * @nldidE) W(H) + Bpldj,dk) ,

v (dj,dk) € TE(M,[R“)lan



Using now the definition (7.32) of the stress tensor we get

(8.8) T, (d5,dK)E,Y) = m() (5 v(dj,dk) Lo + 3 w(dj,dk)
2y 0 & LI NS 0 ]; ~
+ 5 [V(DZ,(d),dk) = V() Z,(dj,di)]

L
2
l M - N v .
3 Lgradjun(dj,dk) * Onldidk)W())
+ Bﬁ(dj,dk) + C{}(dj,dk)) Ve , ¥) .

It is this equation which motivates us to call the function
coefficient of structural viscosity.

v(dj,dk)




9. The equations of motion of a deformable medium subjected to a general
constitutive law

Let us suppose that the motion of the deformable medium M is governed by
the smooth constitutive law

F: C”(MR™) x EOLR®) x CTIMR™) — R,
and assume that F splits into

(9.1) F=F . +F

ext int ’

where the internal constitutive law Fm
smooth. As shown Fin

X and the external one prl are also

. 1S R"~invariant and admits the representation

b 4
Fim =d Fan
with )
Fgn C%(M,R™) RE X EOLR™) | pn x C(M,R™) PR

Finally we assume that both F_
and denote by ?_ . and the corresponding force densities. According to
(3.13) and (3.26) we have the splittings

and Fpn admit integral representations

E . Sy — . s .0 . L
(9.2) fFim(J,k) = dj gradj‘rmt(;;,k) +dj Y (k) + PFim(J,k) )
4 . . . .0 . , N

(9..3) ?FEXL(J,R) = dj gradj'rext(bk) + dj Y Ext(J,k) + f’Fext(J,k) s

v je EMMR™), ke C(M,RY) ,

and hence
(3.4) PUiLE) = df gradT(k) + df YUK) + k0T
where
T R+ T (LK) = T
(9.5) v k) + Y0 k) = YOk
, o4 . R o oyd
{’Fm(J,k). + f’Fext(J,k) = PR,

¥ j€ EOMRY, ke CTOMRY),

-0
+
int X int

Since f; is R'— invariant, its tangential and normal parts grad 7
in

and f . respectively are also R'—invariant. Using now the R"-invariance
n

of the Laplace-Beltrami operator A, we infer that 1 and consequently
grad T are R"-invariant. Accordingly we split F. 1nto

(9.6) F.=F.




where FO. has the force density ‘PO, defined bv
int - Fint .

- 0 iy as
{8.7) PFm(J,k) = dj gradjr

int

(dj,dk)

]
and F int admits the stress form

& : TE(MM,RY) — ANMRY

(9.8)
o (dj,dk) = co(’(dj,dk%dj + dj Ca’(dj,dk) + dj Bo(’(dj,dk) .
Hence
O(’(dj,dk)'dj + dj Co('(dj,dk) +

{9.9) x{dj,dk) = ¢
' dj (—Tim(dj,dk) Idry * Bo(’(dj,dk)) .

Using (7.40) we then find

(3.10) P (k) = #7 (k) + Pp (1K)

= dj grad;T, (didk) + aj Y, (didk) + Pp (dj,dk)*
ae(d1,0K) = dj(div By (dj,dk) + div;C, (d],dk)
+ 2 W(j) (W(j)Z, — grad ©.)) + (tr (Ba’(dj,dk)-w(j)) -
T (d,dR)HGIT NG

dj gradjr

(9.11) T UL RNZY) = =7 (d,dK) m()(4,)

+ m(j)((Bo(’ + Ca’)(d‘j,dk)}(,Y) , ¥ AVeE TTM

On the other hand « splits according to Proposition 6.4 at (dj.dk) into
o {dj,dk) =.dh (dj,dk) + p(dj,dk) ,
where h(dj,dk)e C7(M,R"). Writing

hidj,dk) = dj %, (dj,dk) + ©(dj,dk) N(j)
k(dj,dk) = dj £, (dj,dk) + ©(dj,dk) N(j),

with ©,, ©, € Cc”(M,R), we obtain by (9.10) and Proposition 6.4

(9.12) P (1K) = 4] grad;T, (dj,dk) - dj(s () 4y
+ W(jigrad;@ (dj,dk) + & (dj,dk)grad;HiD)
+ 2 WW())L, ~ grad €,))

i . sy crs
+ (tr ([ 5 Ly apan * Opldidk) WD) o W(j))

- 7, (dj,dk) H(j)) N(j) .

Decomposing now Xh(dj,,dk) and Z, by the Hodge theorem into




Zy(dj,dk) = Zp(dj,dk) + grad; ¥,(dj.dk) ,
(9.13)
: -0 _
lej £, =0,
7, (dj,dk) = X)(dj,dk) + grad; ¥ (dj,dk) ,
(9.14)
div; 4, = 0,

introducing the structural viscosity v(dj,dk)e Cm(M,fR) via

(9.15) #2(dj,dk) = v(dj,dk) Z) + X,(dj,dk)
and noting that

(3.16) Ltr (Lpw(i)) = div,W(j)z - dH(j)Z

from (9.2), (9.3) and (3.11) we obtain

(9.17) Pik) = Pp (k) + dj (grad;T(3,k) = A [ v(dj,dk)Z,

+ Z,(dj,dk) + grad ¥, (d),dk)] = W(j) [grad ©,(dj,dk)
+ 2 (W(j)4, — grad ©,)] - ©,(dj,dk) grade(j)]

(r,(d},dk) H(j) + dH()) [v(dj,dk) X + %, (dj,dK)]

}

div, p(dj,dKIW(E] ~ div () ¥, (dj,dK)
— @, (dj,dk) tr W(§)?) NG,

(9.18) Ty (d],dk)(Z,Y) = =7, (dj,dk) m()) (Z,Y)

1_ ~
2 Wytgzan & ¥ Ltpao ¥ Lyead wpeejan’

(m())(Z,Y) + m(W, (7,1
+ m()C, (dj,dk) Z,Y)

+ + L

Consequently we may state the following theorem, based on {3.17), (9.18)
and (3.25)

Theorem 9.1 :

Let F :C7(MR") x E(IMR") x c”(M,R") —> R be a smooth constitutive law
admitting the splitting (8.1), i.e.

F= Fmt * Fext ’
where both the internal and the external constitutive laws, Fim and Fext
respectively, admit integral representations with the respective force
densities 'PFm and ?Fext .
Then the general equations of motion of a deformable medium are given by



[ v 08D () 2N+ 2V +2€(a(1),5 (1) W2t ~grad; ()e(a(t) a1t))
=p (a(t))(grada(t)f (a(t),a(t)) — Ala(t)) [v(da(t), da(t))Zo(t)
+ 7,(do(1),do(1) + grado(t)wh(a(t){a(t))l

- w (a(t)){grad ;)0 (da(t), da(t)) + 2 (W(a(t)X, (a(t),0(t))

- grad ®p)(a(t),a(t)] - ©, (da(t) do(t))grada(t)H(o(t))

+p (a(t)) a0 (),0(t))

(9.19) ¢
ela(t),0(t)) = p HaltN[ -1, (do(t),da(t)) Hla(t))
- dH(o(t)){v(da(t),da(t)) Z ( ) + / (da(t),a(t))]
+ div t)v (do(t), do £))W(a(t))Z2%t)

+ div t)W(o(t))x (doft), do(t))

-8, (do( ),da(t)) tr W(a(t))?] + blo(t)) (Z(t),Z(t))
| - delale)a (D) Z(t) + Ko a(t),a thl,

where P*_ (a(t),0(t)) = k,, (0(t),a(t)) Nla(t)),
The motion of a deformable medium along a fixed surface i(M)c IR“_ 1s
given bv

[ v Dy (A0 * Z(0) = p I V) -grad; Ty, (X(), Zt)
A [w(Z(t),4(t)) O(t) + / (/ t) Z(t))
+ 2 W%, - grad ©))) - ©, (X(t), (1)) grad;H(i)
x_(t)) \m(xm,xm)
(9.20) .
0 = p M) (—7 (Z(t) /(t))H(i)
dH( l)fv(Y(t) Y1670 (v) + (£ (4),4(00)]
div (£ (£), 41 t))wmx (t) + du WZ (X(1),4(1)
’(t) ZONtrwi)?) + bi) (X t) 71 m
ext(x(t) (),

+

!

—
+

where Z(t) is the push—forward (1.20) of Z{t) by g(t) € Diff M.
As an example let us consider the stress form

(9.21) x(dj,dk) = - Tmt(dj,dk)-dj + v dj-ka
with a constant v € R. Then the motion along i(M)cR"™ is governed by

(9.22) PIALENT(D) y ()4 (8) + £(1)
= - grad;T (g(1),Z(1)) — vA) Z(1) - vRicli) Z()

in case diviX(t) = 0 . Thus the equation (8.22), a Navier-Stokes type of
equation, is an approximation to (8.20).

Remark:

As done in [Bi,5] a type of pressure mw{(dj,dh) can be introduced by forming
the Lz—component of tr Bo{(dj,dk)"W(j) (in 7.25) along H(j) yielding the
decomposition



(9.23) B, (dj,dk) = — m(dj,dk)-H(j) + By(dj,dk) .
This allows us to split F(dj,dk) into

(9.24) F(dj,dk) = F(dj,dk) — w(dj,dk)-DV{(j)

where V(j) is the volume of j(M). Both of these equations hold for all dj, dk
and dh. Motivated by the last equation we call w(dj,dk) the volume active
pressure. w(dj,dk)-DV(j) is the work needed to change the volume by DV{(j).
Clearlv this tvpe of pressure also exists in the realm of section 3 and is clearly
not identical (in general) with 7 (dj,dk).
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