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O. Introduction

In the past the rational mechanics of deformable media was largely
concerned with materials governed by linear constitutive equations. In
recent years, the theory has e:-..-panded considerably towards covering
materials for which the constitutive equations are inherently nonlinear,
and/or whose mechanical properties resemble in some respects those of a
fluid and in others those of asolid (cf[Tr,No],[Le,Fi]).

In the present article we formulate a satisfactory global mathematical
theory of moving deformable media, which includes all these aspects.

As we shall see, in our theory the stress tensor is neithe!' necessaril.Y local
nor symmetrie. In fact it does not even determine the equations of motion. It
is a more general object, namely, the stress form, which governs the motion.
Typical for our considerations is the stud;-.' of the motion of a soap bubble,
i.e. of a closed, deformable, two-dimensional material surface in [R3. It is
intuitively deal' that this complex motion can be described as the
superposition of two different ones. These are on one hand the "elastic"
deformation of the soap bubble in "radial" direction, and the
"instantaneous", "viscous" fluid flow of the same soap bubble along its
surface, that is "transversally" to its "elastic" deformation on the other.
For our general case let us assume that at any instant the deformable
medium in [Rn forms a manifold and that the diffeomorphism type of this
manifold does not change. Hence these manifolds are all diffeomorphic to a
fixed one, which we denote by M.
.-\s we shall show, this fascinating representative problem of mechanics of
continua as well as the general problem of motion of a deformable medium
leads to a dynamical system on a suitably chosen infinite-dimensional
manifold. In order to explain the main ideas of our global approach we
introduce at first the differential geometrie framework.
The manifold M is supposed to be smooth, compact, orientl~d and of dimension
less or equal to n-1. The ambient euclidean spaee [Rn is assumed to b>2

equipped \\'ith a fixed scalar product < , > .
Hence an instantaneous configuration of the medium is given by a smooth
embedding of M into (Rn. Therefore the configuration space is E(M,[Rn), the
space of all smooth embeddings of 11 into [Rn.As shown in [Bi,Fi], E(M,[Rn) ean
be given a smooth principal bundle structure. More precisel~.' let Diff M be
the group of smooth diffeomorphisms of M, and define the act.ion 1> of Diff M
on E(M,[Rn) as follows

(0.1 ) 1>(Lg) = j 0 g,

Let us denote the quotient of E(M,lRn) by this action by U(:VI,lRn), and identify
it with the set of all smooth submanifolds of M in [Rndiffeomorphic with M.
Further denoteby TI the projection of E(M,[Rn) onto U(M,(Rn). Endowed with
the COO -topology, E(M,[Rn), UCM,[Rn)and Diff M becorne Frechet manifolds. The
quadruple (E(M,lRn),IT,UO..f,lRn),Diff M) is then a principal bundle with Diff M



as its structure group. Hence the fibres of this principal bundle have the

form

(0.2) j 0 Diff M J jE E(MJlRn
).

In the particular case of the soap bubble we now visualize the two motions
described above as follows :
The "instantaneous" fluid flow along its surface is described by a curve in
one of the fibres of the above principal bundle, while the "radial"
deformation is given by a curve which is transverse to the fibres of EO.IJlRn

).

Each configuration jE E(MJlRn
) yields a Riemannian metric m(j)J assuming on

any pair of tangent vectors v,w E TM the value

(0.3) m(j)(v,w) := <dj v,dj w) ,

where the scalar product is to be taken pointwise.
The "instantaneous" metrical properties of the mo\'ing body are described in
this metric. Suppose now that the deformable medium is moving. We furnish
the description of its motion by assuming that we know the work done by the
forces acting upon M. It is in this work that all the constitutive information
on the medium is coded. We therefore call it the constitutive law. The fluid
component of the medium is expressed through the dependence of the work
on an extra parameter. Accordingly the constituti ve law is then gi ven by

(0.4)

where F is linear in the third argument, the first factor in the cartesian
product is the space of extra parameters and furthermore the trivial tangent
bundle TE(M,lRn) = E(M,lRn) x Coo(M,lRn

) is the phase space of motions in
E(~l,IRn).
We concentrate on those eonstitutive l<:1.\\'S \vhich admit an integral
representation. More precisely, we assumfO that f isgi\'en by

(0.5)

with f
F

TE(M,lRn) ---1 Coo(M,lRn)being a smooth map ealled the force density.
The equation of motion on ECM,lRn

)described by a smooth cur"'e

(0.6) A ) 0,

is given then by

(0.7) F(o(t»(a(t),h) = Hf (fr(a(t),o(t»,h)j..da(t»
= ~Jp(a(t»<ö (t)Jh)/-.da(t»



We note that in (0.7) we have assumed for simplicity that the constitutive
lav,; F depends on the "velocity" a(t), Le. k=a(t). Interpreting h as a virtual
displacement, (0,7) is just d'Alembert's principle of virtual work, which was
formulated for the mechahics of continua by [He]. Eut (0.7) implies easily

(0.8)

To obtain a more refined form, let us denote by "T" and ".1" respectively- the
tangential and ehe normal component with respect to a(t)(M). The equation
of motion (0.8) splits into the coupled system

~(a(t))Z(tlZ(t) + Z(t) + W(o(t),a(t).1)Z(t) + [(a(t).1)']T
= p-l(o(t)) Y(a(t),a(t)),

(0.9)
[(o-(t)).1)'].1 =
p-l(o(t))'fF(o(t),a(t)).L - [daet).LZ(t)).L - S(o(t)(Z(t),Z(t)),

Here ~(a(t)) denotes the Levi-Civita connection of m(o(t)), the metric given
by a(t), S(o(t)) is the second fundamental tensor, Z(t) and Y(o(t),o-(t))
belang to rTM. Furthermore W(j,i'.;') is the unique bundle map of T~l
associated with a smooth map N : M~ (Rnsatisfying

(0.10) <dj Z(p),N(p» = 0, 'rj ZErTM, pE. M

and which is determined by

(0.11) dj W(j,N)Y = (dN,y)T,

Among the force densities acting on ~I we distinguish between internal
forces and externaiones. Of a special interest is the study of the motion of
the deformable medium M subjected to an interna] force density. Clearly,
internal physical properties of the mo\'ing medium are described by
constitutive laws invariant under the translation group {Rn. Evidently, the
{Rn-im'ariant configurations are differentials cf embeddings. We hence
identif\.'

(0.12 )

and more generally

(0.13)

The phase space for the {Rn-invariant motion is hence

(0,14)

We require that the internal constitutive law F admits the representation



(0.15)

where

(0.16)

F = FlRn 0 Td ,

00 n I n) I 00 n IFIRn: C (M,lR) IRn X E(M,lR IRn X C (M,lR) IRn -----1lR

is a parameter depending one form ( the parameter varies in the front
factor in (0.16) ) and Td is the tangent map of the differential

(0.17)

(0.18 )

To get a detailed description of the motion of the deformable medium, we
assurne now that FIRn itself has an integral representation

FlRn(dk)(dj,dl) = Mjo:(dj,dk)dl ~(j),

'rJ jE E(M,lRn), k,lE Coo(M,lRn),

where IX is an {Rn-valued one-form, the so-called stress form, depending
itself on an extra parameter,i.e.

(0.19)

The stress form IX decomposes naturally at each

(dk,dj) E TE(M,lRn) \ IRn = Coo(M,lRn)IlRn x E(M,lRn) IlRn

into

(0.20) IX(dj,dk) = cIX(dj,dk) dj + dj C(X(dj,dk) + dj B(X(dj,dk) .'

with C(X TM -----1 TM and B(X : TM --1 TM being smooth, strong bundle
endomorphisms, which are respectively skew- and selfadjoint with respect
to m(i) and c(XE Coo(M,so(n». Here so(n) denotes the Lie algebra of the
group of all proper rotations SO (n). In case that M is of codimension 1, the
equations of motion (0.9) read as

(0.21)
€(a(t),o-( t» = p-l(a(t)) tr (B(X(da(t),do-(t» W{a(t))

- dda(t),o-(t» Z(t) + h(a(t»(Z(t),Z(t».

Here da(t),o-(t))E Coo(M,IR), U(X(da(t»E f'TM, W(a(t» is the Weingarten map,
diva(t) is the divergence taken with respect to m(a(t»), b(a(t») is the second
fundamental form, tr denotes the trace and TIX(dj,dk) is the so-called stress
tensor, defined as

(0.22) v Z, Y E fTJ.i,

Each (X E A1(M,lRn), and hence the parameter depending stress form splits



relative to an embedding iE E(M,lRn) into

(0.23) 0: = dh + ß ,

where h f Coo(M,lRn), the so called i11tegrable part of ((, is uniquel;'
determined up to a constant. Moreover h splits into parts tangential and
normal to j(M), Le.

(0.24) h = di Zh + h.l

(with h.l = eh'N(i), eh E Coo(M,lRn), in case of dirn M = n-1) for a \ve11
determined '.-ector field Zh E fTM. Using the Hodge decomposition

(0.25)

we thus obtain immediatei)'

(0.26) 0:(Y-) = dil7(i)xXh +- diWh(i)X +- S(i)(Xh,Y.) + (dh.L(Y).l +- ß(Y.),

'r;j X E fTM.

This allows us to lead off the coefficients in (0.22) as

(0.27)

Wh(i) denotes here the strong smooth bundle map of BJ gi \ten by

(0.28) 'rJ Y. E rnf

"J

17(i)/"h is the adjoint of V(~Xh with respect to m(i) fo:-med fibrewise, so that
each v E T :'.1 is se nt into V(i)Xh(\.'), V P E M. Moreover

p P P

(0.29)

is the strong srnooth bundle endornorphism 01' T~1 defined by the Lie
derivative LXh (m(i» via the equation

(0.30)

Using now the definition of the Laplace-Beltrami operator ~(i)

(0.31)

and introducing R(i)Xh via



(0.32) 'r;/ Y E rTM ~

where Rie(m(i)) denotes the Rieci tensor of m(i), we obtain in the ease of
codimension 1 the formulas

(0.33)

divi Bdh = ~ 6(i)Xh + ~ R(i)Y.h
+ W(i) gradiE\ + eh gradiH(i),

divi Cdh = ~ .0.(UXh - ~ R(UZh - ~ gradidiv/h '

tr Bdh = - ~(i) Wh + tr(eh W(i») .

a fixed embedding i.
Here the unnormalized mean cun,'ature HO) is defined to be tr W(i) . Next
we introduce the notion of structural viscosity. To this end we consider on
thi? one hand the decompositions (0,23), (0,24-) and (0,25) for the stress form
o:(dk,dj), which now depends on an additional parameter dk with k E

Coo(M,lRn). On the other hand, we use the decomposition for k, Le.

(0.34)

(0.35)

E,'en though dk is determined only up to a constant, z~depends uniquely on
dk. This allows us to relate X~and x~ uniquely to eaejl. other by

(0.36)

where v(dj,dk) E Coo(M,IR)and X(dj,dk) E rT~l is point\vise orthogonal to z~.
We call the function v(dj,dk), the coefficient of structural viscosity .
.-\ccordingly we call these deformable media, whose constituti\'e laws depend
only on k.1, frictionless deformable media, while the deformable media,

whose constitutive laws depend on the whole of k, will be calJed frict.ional
ones.
Furnished with the structure de\'eloped so far, we deduce next the
equations of motion of a deformable medium M subjected to a general
constitutive law

n) 00 n) 00 nF : E(M~IR x C (M,IR x C (M,IR ) ~ IR.

To do this, we assume that F splits into

(0.37 )

and that Fint is of the form

(0.38)



Furthermore, we require that Fext and F!Rn both admit integral
representation and denote the rcsu1ting force densities by 'f ext and 'fint
respt~tively. Using Hodge's decomposition, we bbtain for all j E: E(M,[Rn)and
all k E: Coo(M,[Rn)

(0.39 )

and in turn

(0.40)

{

'fint(j,k): dj gradjTint(j,k) + dj Y~nt(j,k) + 'Pfnt(j,k) ,

'fext(j,k) dj grad{ext(j,k) + dj Y~xt(j,k) + f;xt(j,k),

'f(j,k) = dj (gradjTint(j,k) + gradjT ext(j,k»

+ dj ():~nt(j,k) + Y~xt(j,k) + ftnt(j,k) + f~xt(j,k)

.- dj gradj T(j,k) + dj yOU,k) + f.l(j,k) ,

'r/ j E: E(M,lRn), k E: CooCM,lRn).

Hence the equations 01' mot.ion in case 01' dirn M = n-1 are

(OAl)

V(a(t»Z(t)Z(t) + 2(t) + 2'da(t),a(t» W(a(t»Z(r)

- grada(t)€(a(t),a(t» .
= fl-1(a(t))(grada(t)T(a(t),a(t)) - ~(a(t))[v(da(t),da(t))Zo(t)

+ Zh(da(t),da(t» + gradaü)l!'(a(t),a(t»]

- W(a(t)[grada(t)eh(da(t),da(t») + 2(W(a(t))Zh - grad eh)]

- 8h(da(t),da(t»grada(t)H(a(t)]) ,

_£~:;:~'t~~~~(:,,~~',~:(t:;~~~\( d:~:;:~::~:a~:~~tl) .
+ div a(t) v( da(t) ~da(t ))W(a(t ))Zo(t)

+ diva(t)W(a(t»Xh(da(t),da(t»
- 8h(da(t),da(t) tr W(a(t)2] + h(a(t)) (Z(t),Z(t))

- dE:ia(t),a(t» 2(t) + Kext(o(t),a(t»]

where 'fext.l(a( t) ,a( t» = Kext(a( t) ,alt)) N(a( t)).

In case the motion follows a fixed surface iC\I)c[Rn given b\" a fixed

embedding i E E(\I,[Rn), the equation (0.-l-1) reduces ta

V'(i)X(t)X(t) + X(t) = p-l(Z(t»[ -gradiT int(Z(t).l.(t)
- .0,(i)[ll(Z(t),X(t») ZO(t) + Xh(X(t),X(t))

+ gradi\jl(X(t),X(t»] - W(i)[gradi 8hU(t),X(t»

+ 2 (W(a(t»Xh - grad 8h)] - 8hU(t),Y(t» gradiH(i) ,

(0.42 )
0= p-l(X(t» (-Tint(X(t),X(t»'H(i) - dH(i)[ll(X(t),X(t»Xü(t)

+ diViV(X(t),X(t»W(UXO(t) + diviW(UXhU(t),X(t»

+ Xh(X(t),X(t))] - 8h(X(t),X(t) tr W(i)2)

+ l;J(i)(X(t),X(t») + Kext(X(t),X(t» ,



where X(t) is the push-forward of Z(t) by g(t) E Diff M, i.e.

(0.43) X(t) = Tg(t) Z{O g{tf1 , \I t E k A,).) .

At the end of the paper we remark how to introduce a \"olurrie acti,,'e
pressure n(dj,dk) , which allows us to decompose F(dj,dk) into

(0.44) F{dj,dk) = F(dj,dk) - n(dj,dk)'DV(j) ,

where V(j) denotes the volume of .i(~O.
rr(dj,dk)'DV(j) is the work used against the infinitesimal volume change by
DV(j). Let us point out that n(dj,dk) is not identical with T int(dj,dk), the
former is areal, the latter a smooth function.

We have omitted to discuss the influence of thermodynamics to the
deformations of the medium. We will do these studies in a forthcoming paper.
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1. The space of configurations as a principal bundle

As already mentioned a configuration of the moving deformable medium M is
described by a smooth embedding of M into' an euclidean ambient space !Rn.
In the present paper we assurne that the dimension dirn M of the manifold M
satisfies the inequality

( 1.1) dirn M ~ n-1.

Let us recall that a smooth embedding j : M----1!Rn is a smooth map satisfying
the following conditions (i) the tangent map

(1.2)

of j at pE: M is injective for any pE: M,
(i i)
( 1.3) j : M ----1 j(M) c !Rn

is a homeomorphism.
We point out at this occasion that the tangent map

( 1.4-)

splits naturally into

(1.5)

where

( 1.6)

and

(1. 7)

Tj = (j,djJ,

dj = prz 0 Tj

n !Rn ----" nprz : fR x ---, fR

is the projeetion onto the seeond factor along the first one, i.e.

(l.8) for all pairs (a,b) E:fRn x !Rn .

Thus dj represents locally nothing else but the Frechet differential of the
loeal representative of j.
We denote by E(M,!Rn) the set of all smooth embeddings 01' M into !Rn. Henee
E(M,fRn

) is the set of all eonfigurations of our moving deformable medium. Ir
we equip E(M,!Rn) with the Whitney COO

- topology (cf. [Gui,Go]), then it
becomes an infinite dimensional Frechet manifold.
The reason is the following one
Consider the set Coo(M,lRn

)of allsmooth maps of M into {Rn, which is endowed



with Whitney's COO
- topology and note that tagether with the pointwise

defined operations of addition and multiplication with seal ars COQC\fJlRn)
becomes a complete metrizable, locally convex space, a so-called Frechet
space.
Since as shown in [Hi] E(M,lRn) is open in Coo(M,lRn), it hence carries the
structure of a Frechet manifold (cf. [Bi,Fi]),
Usingnow the differential calculus in locally convex spaces constructed
either in [Ba], [Gu], [Mi] or [Fr,Kr], it is evident that the tangent space
Tj E(M,iRn) at jE E(M,lRn) is nothing else but eoo(M,1Rn).
Therefore the tangent bundle TE(M,lRn) is trivial, i.e.

(L9)

We note that TE(M,lRn) is the phase space of motions in E(M,lRn).
Next we introduce the principal bundle structure of E(M,lRn), which is crucial

for our formalism to describe the motion of the deformable medium M.
Following [Bi,Fi] we first describe the group action. Let Diff ~I be the group
of all smooth diffeomorphisms of 11 equipped with the COO

- topology. Diff M is
a Frechet manifold, in which the operations are srnooth in either one of the
above rnentioned nations of differentiability.
Consequently we call Diff M a differentiable group. The tangent space at
the identity in Diff J.I is naturally identified \vith rTM, the' set of smooth
vector fields on M.
The operation cf:> of Diff M on EUv1,IRn)given by

0.10) cP(j,g) = j 0 g 'r/ jE E(M,lRn), gE Diff M,

is srnooth .
.Consequently E(M,iRn) can be represented as

(1.11) E(M}lRn) = U i 0 Diff \1
iE E(M,lRn)

i.e. as the collection of smooth fibers. The quotient U(:'rl,lRn) of EC:.1,lRn)by
Diff M

0.12)

inherits a srnooth Frechet manifold and it is naturally identified with the
collection of a11 smoothsubrnanifols of \1 in lRnwhich are diffeomorphic to M.
Let us denote the quotient map, i.e. the projection of E(M,lRn) onto U(M,lRn),
by rr. The quadruple ( E(M,lRn), rr, U(M,lRn), Diff M ) is then a principal bundle
in the sense of [Gr,H,V].
Each configuration jE E(M,lRn) induces a Riemannian metric rn(j) on M defined



by

(1.13) m(j)(X)Y) := < djX) djY >

Denoting now by II{(M) the set of all smooth Riemannian metries on M

equipped with the COO
- topology J we obtain then a natural map

(1.14)

Noting that 9JHM) is an open cone in S2(Mh the Frechet space of smooth
symmetrie two tensors on MJ we deduce that :lJ((M) is also a Fr~chet
manifold and that the map m is smooth (cf. [Seh]).
:\loreover the tangent bundle T1J((M) of :].1((M) is trivial) i.e.

(1.15) 2T:Ilt(M) = 9R(M) x S (M).

For later use we calculate at this point the derivative Dm(j)(k) of m at j E
EO,f,[Rn) in the direction of h E Coo(M,[Rn). Due to the [R - bilinearity of m in
the variable j E E(MJIRn) we have

(1.16) Dm(j)(h)(X,Y) = < djXJ dhY > + < dhXJ djY »
\;J XJY E rTM.

Splitting h into
h = dj Xh + h.l

v:ith Xh E rTM and h.i being pointwise normal to j(M) in [Rn, equatian (1.16)
turns in ta

(1.17) Dm(j)(h)(XJY) = <djX)d(djXh)(Y» + <d(djZh)XJdjY>

+ <djZ)dh.in + <dh.iZJdjY) .

Since d(djXh)Y = dj'VUJy.:<'h + S(i)(XhJY) J where 'V(j) is the Levi-Civita
connection af m(j), (1.17) turns in ta

(1.18) Dm(j)(h)(X,Y) = m{j)(X,'V(j)yXh) + m(j)(V'(j)XXh'Y)

+ <djXJdh.iy> + <dh.i Z,djY>

= LXh(m(j))(XJY) + <djX,dh.iy) + <dh.iX,djX) ,

with Lv (m(j)) being the Lie derivative of m(j).
J'.h .1

In case h = eh'N(j) then

(1.19)

with h(j) the second fundamental farm of j defined by

~(j)(X)Y) := m(j)(W(j)XJY) = <dN(j)XJdjY>



Here W(j) denotes the Weingarten map of j given by

(1.20) djW(j)X = dN(j)X , 'tJ Z E f'TM .

If H(j) denotes tr W(j) , then

By div/h we denote the divergence of Xh formed with respect to m(j).
This me ans,

The function arm' li) is called the mean curvature of j, while H(j) denotes
the unnormalized mean curvature.



2. The metric (BEon the configuration space E(M,lRn
)

In order to
distribution
density map

(2.1)

define a metric on E(M,lRn
), whieh is adapted to the mass

of our moving deformable medium M, we first introduee a

n ~ 00p : E (M,IR ) ----'---J C (M,IR) ,

\vhich is supposed to be smooth in either sense of the above mentioned
notions of differentiability. In addition we require that p fullfills a
continuity equation, namely

(2.2)

where trj denotes the trace taken with respect to m(j). L'sing the fact that
the derivati\'e at j in the direetion of any hE Coo(M,lRn)of the Riemannian
volume form j.1(j) has the form

(2.3)

as shown in [Br,l], it follows that (2.2) i5 indeed the continuity equation.
Consequently the total ma5S m(j) attaehed to any jE E(M,lRn) via the
formula

(2.4-)

is constant in j.
The e:-:istence of such a function p ean be established as follows
Let iE E(M,lRn) be any embedding and denote by 0i its connected eomponent
in EC\I,lRn

). Then for any jE 0i the differential dj is related to di in the
following way

(2.5) dj = g 0 di 0 f,

where gE Coo(M,SO(n)) and f is astrang bundle isomorphism of TM which 1S
fibrewise positive with respect to m(i). One easily verifies that the
Riemannian \,'olume forms 11(j) and j.1(i) of j and i respecti\,-ely are related by

(2.6)

We then set

(2.7)

with pO) chosen such that

(2.8) p(i)(p) > 0 , V pE ~l,



and note that this map satisfies the continuity equation (2.2).
Next we introduce the metric (BE on E(M,lRn

) by the formula

(2.9) 00 nV h,kE C (M,lR ).

Due to (2.2) (BE is constant in j. Therefore the geodesics of <BE are straight
line segments as shown in [Bi,l].



3. The constitutive law and the general eguations of motion

By a constitutive law we understand a smooth parameter depending one
form, the so-called work

(3.1)

The first factor Coo(M,lRn) in the above cartesian product is the parameter
space. We often will regard F as a map

00 n ~1( nF : C (M,IR ) -, A E(M,IR ),IRL

The domain of F is the parameter space, the range the collection of all
smooth one forms on E(~,lRn) with values in IR. Ta handle this abstract
nation (3.1) we require an integral representation for F given by

(3.2)

where PF : TE(M,lRn) --1 Coo(M,JRn),the so-cal1ed force density, is assumed to
be a smooth map. We point out that F(k)(jJh) varies linearly only in hand
that it furthermore depends on the maps j and k globally.
The equation of motion on E(M,(Rn) described by a smooth curve

(3.3)

for some positive real AJ is given by

(3.4) F(a(t))(a(t),h) = cr3(j)(ö(t),h) = Mf <PF(a(t),a(t»),h> J.1(a(t»

= Mf p(a(t) <ä(t),h) l1(a(t))
'U hE CooOJ,lRn

),

where for the sake of simplicity we have taken k=a(tL
It is ob\,'ious that this equation implies

(3.5) p (a (t» ä (t) = f F (a (t) Ja (t) ), V tE (- A,A).

We note that (3.5) is a second order differential equation on E(M,lRn) and
not on parts of (Rn.
We rewrite it now according to the principal bundle structure of E(M,JRn), by
proceeding as follows :
At first we note that a(t) admits in (Rnthe pointwise splitting

(3.6) a(t) = da(t) 2(t) + a(t).L ,

where Z(t) E rTM is uniquely determined and a(t).L is, according to the
definition, pointwise perpendicular to a(t)(M) 1'01' each tE (-:\.,A).

Consequently ä (t) is given by



(3.7)

where

. (3.8)

ä(t) = da(O Z(t) + do(t) Z(O + (a(t).i)', tE (-A,A),

da(t) Z(t) = d(do(t) Z(t» Z(t) + da(t).i Z(t)

= do(t) V(o(t» Z(t) Z(t) + S(a(t» (Z(t),Z(t»

+ do(t) W(o(t),a(t).i) Z(t) + (da(t).i Z(t».i.
,

Here V(o(t» me ans the Levi - Civita connection of m(o(t», and W(o(t),o(t»,
the Weingarten map of o(t) is defined as follows :
Let N: NI ----j [Rn be any vector field along jE E(M,[Rn), such that

(3.9) <dj X(p), N(p» = 0, I;J XE rTM, pE M.

Then the Weingarten map W(j,N) of j given by N is the uniquely determined
bundle map of TM for which

(3.10) dj W(j,N) Y = (dN y)T .

In the particular case where NI is oriented and of dimension equal to n-l
and N coincides with the unit normal vector field N(j) of j(M) in [Rn, then
W(j,N(j» is nothing else but the Weingarten map, denoted in this particular
case just by W(j).
Let us turn back to ä(t). Obviously (compare cf. [Bi,6])

(3.11) 'ä{t) = do(t) V(o(t))Z(t)Z(t) + do(t) W(o(t),a(t).i) Z(t)

+ «o(t).i)')T + da(t) Z(O + S(a(t» (Z(t),Z(t»

+ (da(t).i Z(t».i + (a(t).i)').i

For unifying terminology we set

(3.12)

for each tE: (-A.,:\.) and a well defined vector fieid C(a(t),a(t» E: rTM.
If we split now 1'F(a(t),a(t) into a tangential and normal part respectively
then for all t E (-A,A) .

(3.13) 'fF(a(t),a(t» = fF(a(t),a(t»T + 'fF(a(t),a(t»l.

= da(l) YF(a(t),a(t)) + 1'F(a(t),o(t»l.

holds for a uniquely determined YF(a(t),a(t» E rTM.
The equation of motion splits thus into the coupled system

V(a(t))Z(t)Z(t) + Z(t) + W(a(t),a(t)l.) Z(t) + U(a(t),a(t»
= p-l(a(t)) YF(a(t),a(t»,

(3.14)
«a(t).i)').i = p-l (a(t» 'fF(o(t),a(t».i

- (da(t).i Z(t»l. - S(a(t» (Z(t),Z(t)) .



The first equation multiplied on both sides by da(t) yields an equation of
vectors which are tangential to alt) 0 Diff M, while the second one is an
equation of vectors in Coo(M,IRn), whichare normal to alt) 0 Diff M.

Hence the above coupled system (3.14) is a splitting of the equation of
motion according to the principal bundle structure of E(M,IRn) as mentioned
above.
In the particular case dirn M = n-1 we obtain

(3.15)

(3.16)

o-(t).1 = €(a(t),o-(t» N(a(t»

for weIl deterrnined €Ca(t),o-(t», KF(a(t),o-(t» E Coo(M,IR).

Hence

(3.17)

It remains now to calculate N(a(t»'. To this end we prove at first that

(3.18) DN(j)(pN(j» = - dj gradjT ,
00

'rI TEe (M,IR) .

Indeed let

Then we get

j(t) = j + t,pN(j) , 'tJ tE IR.

(3.19) ~t <dj(t),N(j(t») I t=D = 0

= (T'djW(j),i'Hj» + dT + (dj,D\(j)(pN(j»>.

Csing that (N(j),N(j» = 1, (3.18) then fo11ows.
Next consider a srnooth curve ,(tl E Diff M, tE (-\,\), \)0, and note that

(3.20) N(j 0 ,(t» = N(j) 0 ,(tl

Differentiating (3.20) we get

(3.21) DN(j)(dj X) = dN(j) X = dj W(j) Z ,

where X = 7(0). From (3.6), (3.15), (3.18) and (3.21) it follows that

(3.22) N(a(t» = DN(a(t» N(da(t) Z(t) + da(t),o-(t» N(a(t»
= da(t) (W(a(t» Z(t) - gradaü)da(t),o(t») ,

and hence

U(a(t),o-(t» = da(t),o-(t» W(a(t»Z(t) - grado(t)da(t),o-(t»

«o(t).1)').1 = E:(a(t),o-(t» N(a(t».



Moreover

(3.24) d(o(t).i) 2(t) = d€fa(t),o(t» 2(t) N(a(t»

+ dar t),o( t» dar t) W(a (t» 2( t)

- da(t) grada( t)€(a( t) ,a (t».
Thus (3.14) rewrites as

'V(a(t»Z(t) Z(t) +Z(t) + 2 da(t),o(t» W(a(t) 2(t»
-I. .

- grada(t)da(t),o(t» = P (a(t» Y(a(t)p(t»,
(3.25)

. • -1 .
€fa(t),a(t» = p (a(t» KF(a(t),a(t» + o(a(t» (2(t),2(t»

- dda(t),o(t» Z(t) .

We refer to (3.25) as the general equations of motion of a deformable
medium.
Let us now split YF(a(t),o(t» with respect to m(a(t» according to the Hodge
decomposition into

(3.26)

where T(a(t),o(t» E Coo(M,IRn) and

(3.27) di v 0 (t) Y\ (a ( t) ,a (t» = 0 1
i.e. the divergence of yOF(a(t),o(t» taken with respect to m(a(t» vanishes,
TF(a(t),a(t» E Coo(M,IR), and grada(t) means the gradient taken with respect
to m(a(t».
lJsing (3.26) we rewrite the first equation (3.25) as

,
(3.25 ) 'V(a (t ))Z ( t) 2 (t) + Z (t ) + 2 da (t ),a (t » W(a (t) 2 ( t)

- grada(t)da(t ,o(t»
= p-I(a(t» [ grada(t)TF(a(t),a(t» + yOF(a(t),a(t»].

The above Hodge decomposition of YF(a(t),o(t» yields a decomposition of
'fF into

(3.28)

where

(3.29)
{

0 . .
'fF(a(t),a(t» = da(t) grada(t)TF(a(t},a(t}},

'f~(a(t),a(t» = da(t) yOF(a(t),o(t» + 'fF(a(t),a(t)).i.

I

We note that the tangential part of the force ,density 'fF is divergence free.
Its corresponding work, i.e. the one form F, will be called the reduced
constitutive law.



4. The motion along a fixed surface HM)c !Rn

Let us consider again the coupled system (3.14) describing the motion of the
.deformable medium M. Noting that the embedding alt) varies with t and that
the submanifolds a(t1)(M) and a(tz)(M) of !Rn differ generically from each
other for different tl'tzE (-:\.,:\.), we obtain that the first equation (3.14)
describes the instantaneous motion of the deformable medium along the
submanifold M.

In this section we assume that the submanifolds a(t.)(M) of !Rn are identical
for all tE (-A,:\.).
As a visualising example we image a fluid moving on a sphere of fixed
radius.
More generally let iE E(M,!Rn

) be fixed.
Thus i(M) is a submanifold of [Rn on which a deformable medium moves
according to a constitutive law to be specified below. A configuration of
this motion is an embedding j of M ontoUM) and is hence of the form

(4.1) j = i 0 g,

for some gE Oiff M.
Consequently the configuration space is i 0 Diff M . It remains now to specify
the constitutive law on TO 0 Diff NI) J the phase space of the rootions on
UM). Ta this end let us first study the nature of a tangent vector h to i 0

Diff M at i 0 g, i.e. hE Tiog i 0 Diff M. If we denote byRg the right translation
by g, i.e.

Rg : Diff M ~ Diff M,
(4.2) { g go g ,

then the tangent map TRg(id) sends any tangent vector /.. E rTM at Id Diff M
into a tangent ,-ector in TgOiff \1. Moreover

(4.3)

is obviously surjective. Regarding j 0 g 0 Oiff NI as a submanifold of
E(M,[Rn), any h E Tjog E(M,[Rn) tangential to j 0 g 0 Oiff M is thus of the
form

(4.4) h = d(i 0 g) Xh J

for a uniquely defined vector field Xh E: rTM.
Thus we have a natural bijection

(4.5) dU 0 g) : rTM ~ Tiog i 0 Diff M c Tiog E(M;!Rn
) ,



sending each X E rTM into d(i 0 g) x E Tiog i 0 Diff M.
Sy (4.5) we see that T ( i 0 Diff M ) is trivialized via right translations as

(4.6)

Clearly

(4.7)

T( i 0 Diff M ) = i 0 Diff M x' rTM .

We now introduce the constitutive law via the smooth map

(4.8)

which is linear in h E Coo(M,lRn
).We note that in analogy to (3.1) we put

the parameter space di rTM as the first factor of the domain of definition.
The justification for choosing the third factor as being Coo(M,lRn

)instead or
rTM will be given later.
As in the preceding section we require an integral representation for the
constitutive law reading as

(4.9) F(dO 0 g)X)(iog,h) = J ('PF(i 0 g,dO 0 g)X,h) J10 0 g)

V hE Coo(M,lRn
), XE rTM, gE Diff M,

where the force density

(4.10)

is a smooth map.
The equation of motion on i 0 Diff M described by a smooth curve

(4.11 ) a : (-\,:\.) -----1 i 0 Diff M , A > 0,

subjected to the above constitutive law is hence

(4-.12)

or, equivalently,

(4.13) {P(OIt»)(~(t))'-= ('I'F10(t)''',(t)))T_,

P(a (t) )(a (t) ) -.:= ('f F(a (t) ,a (t) » -.: ,

':Veobviously have

tE (-A,A).

(4.14)

for a weIl defined vector field YF(a(t),a(t)) E rTM. Since a solution alt) of
(4.13) has the form



(4.15) alt) = i 0 g(t) ,

for a srnooth rnap
g : (-:\.,A.) --1 Diff M ,

it follows that

(4.16) alt) = d( i 0 g(t») Z(t)

= di 0 Tg(t) Z(t) ,

where Z( t) E rTM is well determined, and consequently

(4.17) ölt) = (d( i 0 g(t)) Z(t))'
= d( i 0 g(t» Z(t) + d( i 0 g(t) 2(t)
= d( i 0 g(t» 'V( i 0 g(t»Z(t)Z(t) +

d( i 0 g(t» 2(t) + S( i 0 g(t» (Z(t),Z(t»

Csing (4.17), frorn (4-.13) we obtain, \J tE (-:\.,A.),

(4.18) { p( i 0 g(t» S( i 0 g(t» (Z(t),Z(t») = 'fF(g(t),Z(t»J. ,

where we have used the notation

(4.19) f (g(t),Z(t)) := f ( i 0 g(t), d( i 0 g(t)) Z(t))

By cornparing (4.18) with (3.14) we observe that the last equations are
obtained frorn the first ones by setting a(t)"L = 0, in accordance with the
fact that UM) is a fixed surface.
We note that we can remove the instantaneous connection 'V(i 0 g(t)) and the
instantaneous second fundamental tensor S(i I} g(t» in (4-,12,) by using the
push-forward of Z(t) by g(t)E Diff \1, that is \\1': int;'oducl': !It) by

(4,20)
-1

I(t) := Tg(t)Z(t)g(t) . J H(-\,\) ,

Using (4.20) we obtain on one hand

(4.21)
{

alt) = di X(t)g(t) = d( i 0 g(t» Z(t) ,

ölt) = di X(t)g(t) + d( di fIt)) g(t)

On the other hand the equation

(4.22)

yields

(4.23) g(t) = Z(t)g(t) .



(4.21) and (4.23) imply

(4.24)

Setting now

(4.25)
{

YF(g(t),X(t»:= YF(g(t),Z(t» g(t) ,

fF(g(t),X(t».1. := (fF(g(t),Z(t»)).1. g(t) , tE: (-\.,\.)

and observing that the map

does depend by eonstruetion on dj rather than on j itself the system (4.18)
turns into

(4.26) {
Let us note that in the ease when we wou1d require that F(d(i 0 g» would
aet on rTM rather than on Coo(M,lRn), we wou1d obtain on1y the equatiol1s

(4.13), by missing the observation that the normal forces are up to the
density p of a geometrie nature.

The next step is to deeompose YF(g(t),A"(t» with respeet to m(i 0 g(t»
aeeording to Hodge unique ly into

(4.27)
{

y,lglt:.Y.lt») .= gradiTFigltJ,Y.lt»

dlVi 1 F(g(t),Y.(t» = 0,

where TF(g(t),X(t» E dXl(M,lR).

Thus the first equation (4.26) beeomes

,
(4.26 )

If we require

(4.28)

p(X(t»)(V(i)X(t)X(t) + X(t»

= gradiTF(g(t),A"(t» + yO(g(t),/.(t».

a((-\.,\.» c i 0 Difff1(i)M ,

where Difff1(i)M is the subgroup 01' all elements in Diff \1 which leave
J.l(i) invariant, then Z(t) has to be divergence free for all tE (-\.,\.).
This is due to the faet that



(4.29 ) Tid Diff M = { X E rTM I divi X = 0 } .

In this case a( t) has to satisfy the system of equations

p (V(i)X(t)X(t) + X(t»
= gradi 'T"F(g(t)J X(t)) + yOF(g(t),X(t)),

(4-.30)
p SO) (X(t),X(t» = 'fF(a(t),X(t»)l ,

div. X(t) = 0 ,
1

with p: i 0 Diff M--1 IR being a constant function.



5. The \Rn - invariance of internal constitutive laws

Let us assurne now that the motion of the deformable medium M is subjected
to an internal constitution law F, which admits an integral representation.
The fact that the corresponding force density is an internal one requires lt
to be independent of the region in /Rnin which the defornlable medium moves.
Hence an internal force density has to be invariant under the translation
or, more precisely, under the action of the translation group \Rn of \Rn
(cf.[Bi,4]).
Let us describe next this action of lRnon TE(M,lRn).
At first we recall that the translation group \Rnof the vector space /Rnis the
underlying abelian group of the /R-vector space \Rn.
The action

(5.1)
00 n n ------.l. ()() n)r : C (M,\R ) x /R -----, C (M,/R

(5.2) r (h,z) = h + z ,

where by h + z we mean the rnap defined via

(5.3) (h + z)(p) = h(p) + z , V pE M .

Hence ZE /Rn is naturallv identified with the constant map in Coo(M,/Rn)
assuming z as its value.
Clearly in the particular case where h = j E E(M,\Rn)

(5.4) r (j,z) = j + z ,

belongs to E(M,\Rn). Hence r reduces to

(5.5)

The tangent rnap Tr of r is given by

(5.6) Tr (h,z)(k,u) = ( h+z, k+u) ,
V kE ThCoo(M,lRn), hE dlO(M,\Rn), z,uE \Rn.

Hence r induces an action on TCoo(M,\Rn) defined by

(5.7)
00 n n ._~ 00 nTr : TC (M,\R ) x T\R -----, TC (M,\R ),

«h,k),(z,u» 1-+ ( h+z, k+u) ,
00 n 00 n nwhere kE ThC (M,/R) = C (M,/R) and uE Tz/R =

TE(M,\Rn) given by
/Rn, and respectively on

I

',~

(5.8) Tr : TE(M,/Rn) x T/Rn -----1 TE(M,/Rn) ,
(j,k),(z,u» 1-+ ( j+z, k+u) ,



----------------------------

Given now a parameter depending smooth constitutive law

(5.9) 00 n) 1 n)F : C (M,IR ~ A (E (M,IR ),IR

and continuing to write

(5.10)

we form next

(5.11 )

The requirement

(5.12) F (j+z, k+u) = F (j,k)
V jE E(M,lRn), kE Coo(M,lRn), z,uE lRn,

does then yield the type of constitutive law we want to work with.
In order to construct the desired type of (Rn-invariant constitutive laws, we
consider the quotients of the actions rand Tr. To this end we note that the
map

(5.13)

has the property that

(5.14) d-1(dh) = { h+z I zE lR }.

Hence if we quotient out the action of !Rn on Coo(M,!Rn) we obtain a bijection
aga in called d

(5.15)

Ire equip { dh I hE Coo(M,lRn) J with the uniquel:' dete!'mir:ed topol(Jgy making
d to a homeomorphism to cooOil .•lRn),llRn carrying the quotient topology. \ote
that both topological spaces are Frechet rnanifolds.
Next we identify thern 'via d. Hence we have identified also the

two Fr~chet rnanifolds E(M,lRn)\lRn and {dj I jE. E(M,lRn) t yielding

(5.16)

Therefore we obtain the following



Lemma 5.1 :
Given a smooth map

(5.17)

linear in the third argument, then the resulting (parameter depending) one
form F given by

(5.18) F = FIRn0 (d,Td)

is a (parameter depending) IRn-invariant one form on E(M,lRn
).

Here Td is the tangent map of

(5.19)

Remark 5.1 :
In the following we write

(5.20) instead of FIRn0 (d,Td) .

Remark 5.2 :
T~e abo'v'e lemma allmvs us to study the constitutive laws of the type
d FIRn rather than constitutive laws invariant under Tr.



6 . On the characterization of IRß-valued one-forms relative to embeddings

Let throughout this section iE E(M,lRn) be a fixed smooth embedding and
E A1(M,IRß) be a fixed smooth IRß-valued one-form. We follow [Bi,2].
As the first observation we formulate the following

Proposition 6.1 :
Let ()(t A1(M,lRn) and iE E(M,lRn) be gh'en.
Then the following decomposition holds

(6.1) ()( = dh + ß ,

where hE Coo(M,lRn), the so-cal1ed integrable part of cx, is uniquely
determined up to a constant. Moreo'l,'er this decomposition is maximal in the
sense that the integrable part of ß is a constant.

Proof :
Let e1, •.. ,en be an orthonormal basis of lRn. Then we get

\J Z E rTM ,(6.2 )
n

()(LO = L ()(s(X) es '
5=1

far an uniquely determined family ()(l, ••• ,()(n af smooth IR- valued ane-farms
on M, i.e. ()(sE: A1(M,!R), s= l, ... ,n. Clearly

(6.3) \J XE rTM, s= l, ... ,n.

In addition ()(s , s= 1, ... ,n, can be represented as

(6.4) \J XE rTM,

for a well defined YsE rTM. This vector fleid spli ts according to Hodge's
decomposi tion unique ly into

(6.5)
{

Y = grad. T
$ I $

div. yO = 0
I $ ,

+ yO
s '

where T E Coo(M,lRn) and y-OE rTM.
s s

Hence

(6.6) \J XE rTM .

Xext we define the integrable part h of ()( bv

(6. i)
n

h:= L T$ e$ ,
$=1

and the non-integrable part ß by



(6.8) ß (X).- 2:: m(i) (y~,X) es '
5=1

V XE rTM .

Inserting (6.6) into (6.2) and using (6.7) and' (6.8) yields the decomposition
(6.1). Tt remains only to show that (6.1) does not depend on the choice of
the basis of \Rn. To this end let e1,... ,en E \Rn be another orthonormal basis

n - - ;-:0 - -of \R and define (X , T , Y , hand ß accordingly.
Then

(6.9) Ci (X) = <lXCO, e >
- (dh(X), e> + «3(Z),e >

n n

- <' dTs(f.) es' e> + < ' m(i) (yO Z) >L L 5" es' e
5=1 5=1

n

= m(i) L gradi Ts (es,e > , X)
5=1
n

+ m(i) ( L y~ (e
5
,e > , 1.)

5=1
= <dh (X) , e > + <ß(X) , e >

= m(i) (gradi T ,X) + mO) (YO,Z).

Since on one hand

(6.10)
nL gradi Ts (es,e ) =

5=1

n

gradi ( L Ts <es,e > ) ,
5=1

(6.11 )

on the other hand

divi t \~<es,e » = t (divi \~) <e5,e > = 0 ,
5=1 5=1

we conclude due to the uniqueness 01' Hodge's decompusition the fClllO\ving
re lations

(6.12)

nL gradi ( Ts <es,e > ) = gradi T ,
5=1
n

, yO < e e > = yo .
~ 5 5J "

5=1

Consequently the uniqueness of the decomposition (6.1) follows, l1amely

n n

dh(z) = L (dhU),e > e - L <dh(Z),e > e - dhU)
=1 =1

v X E rTM .

(6.13) n

ß(X) = L <ß(Z),e > e
=1

n

= L «:HX),e > e
=1

- ß(Z)



--------------- ----------- ----------------------------------,

Let us detail now the decomposition (6.1).
For this purpose we note first that h can be given the form

(6.14) h = di X + h.L
h .

where Xh E ['TM is weH defined and h.L denotes the pointwise formed
component of h normal to i(M).
lJsing the fact that Xh splits into

(6.15)

where wh E Coo(M,{R), x~ E rTM, we deduce from (6.14) that

(6.16) dh(x) = di V(i)x X~ + di (V(i\ gradi \Ph + Wh(i) X)
+ S(i) (X~JX) + (dh.l.U».l. .

For the sake of readability we remind that Wh(U defined via

(6.17)

is a smooth strong bundle endomorphism of TM, which is se lfadjoint with
respect to m(i).
Let us show next that the divergence-free part X~ of Xh is uniquely
determined by h. To this end we use the fact that according to the above
proposition the integrable part h of IX is uniquely determined up to a
constant, i. e.

(6.18) h =h+z,

for some z E (Rn. Regarding z as a constanr map in e00(M,!Rn) w€ write it

in the form

(6.19) z = di X + z.l.
z

But the vector field Z on !Rn assigning to anv z E!Rn the vector
2(2) = 2 E:!Rn is the gradient of some map f E Coo(M,!Rn) and hence

(6.20)

Therefore

(6.21 ) h' = di X~ + di gradi (lf'h + f 0 i) + h.L + z.L

= di X~, + di gradi '¥hJ + hJ.L

or, equivalently



(6.22) di (X~, - X~) + di gradi( ~h' - wh -f 0 i )

= h.i + Z.i - h'.i = 0 .

But (6.22) implies

(6.23)

Using once more the uniqueness of Hodge's decomposition we conclude then
(cf,[Bi,2])

Proposition 6.2

Let lX € A1(M,lRn) and i € E(M,lRn) be given, and denote bv h € Coo(M,lRn
)

the integral part of <x, which is uniquely detemined up to a constant
()( = dh + ß .

Splitting h into
h = di Zh + hl. ,

where Xh E rTM is well defined, then the divergence-free part x~ of Xh is
uniquely determined.

Next we characterize lX E Al(M,lRn) relative to i E E(M,lRn
) from a quite

different point of view. To this end let us introduce the following two

tensor T()( on M

(6.24) T()«(X,Y) := < lXiX), di Y > ,
Clearly T

lX
is smooth. Next we denote by

'rJ X,Y E rTM .

(6.25) P : TM ---1 TM

the unique smooth strong bundle endomorphism for \'-hieh

(6,26) T()(U,Y) = m(i) (PZ,Y) ,

'V

and by P the fibre-wise formed adjoint of P with respect to m(i). The
symmetrie and the antisymmetric part of TlX' the tensors T~ and T~
respecti~.,.ely have the form

(5.27 )

(6.28)

Setting now

T~ U,Y) = mO) (~ (P + P) Z,Y) ,

T~ (X,Y) = m(i) (~ (P - P) X,Y)

(6.29) { B := 1. ( P + P )P,()( 2

C := 1. ( P - P )P,()( 2

J



we obtain that

(6.30)
,

cx(X) - cx(X) + di CO( X + di ~O( X , 'rI X E ['TM.

,
Clearly 0( (X)(p) is a vector in the normal space of TiTpM, 't;I pE M.
Hence there is a unique smooth map

(6.31)

where so(n) denotes the Lie algebra of the group of all proper rotations
of SO(n), such that

(6.32)

with

J

cx(X) - ccxdiX ,

(6.33) cO((N(j» .J. Ker CO( ,

We may now state the following

Proposi tion 6.3 :

'tJ X E rTM.

Let 0( E A.1(M,lRn) and i E E(M,lRn
) be given. Then there exist two uniquely

determined smooth, strong bundle endomorphisms
Ccx TM --1 TM

and
BO( TM --1 TM ,

which are skew- and respectively selfadjoint with respect to m(i), and a
uniquely determined map c/)( E Coo(~I,so(n», such that the following
relation holds

(6.3-!-)

Remark 6.1 :

cd X) - Ccxdi X + di CcxX + di BC( X, 'r;j X E rnL

(6.35) 6T~ = 0 iff eS/)( = 0 •

Indeed, let us consider the one form <i,cx) E A1(M,lRn
) , \vhich assigns to anv

X E rTM the real function (i,cx(X».
Since

(6.36) iff eS/)( = 0,

(6.35) then follows immediately.



~ext we link the two characterizations of IRn-valued one-forms relative to
embeddings, as expressed by the two propositions above. To this end let
IX E A1(M,lRn) and i E E(M,lRn) be given.
Using (6.1) and (6.14) o((X) turns into

(6.37) (X(X) = di 'V(i)XXh + di Wh(i) X + S(i)(Xh,X)
+ (dh.L(7o».L + ß(7o) .

Inserting (6.37) in (6.24) we get

(6.38)

Therefore

(6.39)

(6.40)

T (X (X, Y) = < (X (X) ,di Y >
= < di 'V(i)XXh + Wh(i) X, di Y > + Tß(X,Y)
= m(i) ('V(l)XXh'Y) + m(i) (Wh(i) X,1') + TßU,Y) J

\J X,Y E rT~L

T~ (X,Y) = ~ [ m(i) (V(i)XXh'Y) + m(i) (V(i\Xh,X) ]
+ m(i) (Wh(i) X,Y) + Tß(X,y) .

= } LXh (m(i» (X,Y) + m(i) (Wh(i) X,Y) + Tß(X,Y) ,

T~(X,y) = ~ [ m(i) (V(i)XXh'Y) - m(i) (V(i)yXh,X)] + Tß(X,Y),

Rewriting the Lie derivative LZh(m(i» of m(i) in the direction of Zh with the
help of the Theorem of Fischer and Riesz as

(6.4..1) LZh (m(i) (X,Y) = m(i) (LZh X,Y)

by a uniquely determined strong smooth bundle endomorphism

(6.+2 ) LZh : TM ~ TM ,

from (6.34) and (6.37) we infer the following farmuias far ccr' Ca and Ba :

(6043)

(6.44 )

(6. 45)

C(X di X = (dh.L(X))l. + S(iJ (Xh'X) + cl} di X ,

C(X Y. = ~ [ 'V(i) 70h - V (i) X h ] X + 13 z ,

Bex X = ~ [ V(i) Xh + V(i) Xh ] X + Wh(iJ X + Bß Z
= ( ~ LXh + Wh(i) + Bß ) X .

Instead of V(D Xh we often write V(i)Xh(v) for anv v E Tp),.L Similarily we
IV v IV •

use 'V(i)Xh(\') instead of 'V(i)vXh'
Using next the Hodge decomposition of Xh, i.e. (6.15) and taking into
account that

(6.46)
IV

m(i) «V(i) gradi ü'h - V(U gradi \fih) X,Y) = 0,

we obtain finally the following



Pro pos ition 6.4 :

Let IX E A l(M,lRn
) and i E E(M,lRn

) be given. Then the following relations hold

Q( = dh + ß ,
Q((X) = cQ( di X + di CQ(X + di BQ(X , I;j X E rTM,

where the integrable part h E Coo(M,lRn
) is uniquely determined up to a

constant , cQ( E Coo(M,so(n)) is a uniquely determined, CO( : TM ----1 TM is a
uniquely determined smooth, strong and skew-adjoint bundle endomorphism,
BQ( : TM ~ TM is a uniquely determined smooth, strong and selfadjoint
bundle endomorphism.

Writing
h = di X

h
+ hl. ,

where Ah E fTM, and using Hodge's decomposition

(6.47)

we obtain finally

(6.48)

(6.49)

(6.50)

Hence

(6.51)

cQ( di = (dhl.)l. + SO) (Xh, . ) + cß di ,

CQ( = ~ [ Vii) x~ - Vii) X~ ] + Cß '

BQ(= ~ Lxg + gradi'J..'h + Wh(i) + Bß .

tr BQ( = divi Ih + tr Wh(i) + tl' B{3
= - 6(i) wh + tr Wh(i) + tr 8[3 ,

where .0;.(i) is the Laplace-Beltrami operator of m(i).
Let us calculate now the co'variant divergence of BQ(and C

IX
• To this end we

recall at first the covariant divergence divi .A. of a smooth strong bundle
endomorphism

(6.52) A : TM ----1 TM .

Let e 1, ... ,em be a moving orthonormal frame of TM, and set

(6.53)
n

divi A = L V(i)er (A) er .
r=l

At first we compute divi V(i) Xh. Using the equation



(6.54)

we get

(6.55)

m(i) (V(Ue/v(U Xh) er,Y)

= m(U(V(Uer(V(Uer Xh) -V(i)V(i)erer Xh,Y),

V Y E rTM,

where ~(iL(h is the Laplaee-Beltrami operator of m(i) applied to Xh whieh
bv de finit ion is - tr V'(i)2 Xh .

• I'V

In order to eompute diviV'(i) Xh we eonsider the equations

(6.56)

(6.57)

and find

(6.58)

I\)

m(i) (V'(i)y(V'(i) Xh)(er),er)

= m(i) (er,V'(i)yV'(Uelh) - m(i) ( er,V'(UV(i),/h)

= m(i) (er' V'(i)y(V(i) Xh)(er»

n

L [ m(i) (V(Uer(?(i)XhHer),y) - m(i) (V(i)y(?(i)XhHer),er)]
r=l
= Rie (m(i»(Y,Xh) ,

where Ridm(i» denotes the Rieci tensor of m(i). Hence

I\)

(6 .5 9 ) m (i) (d iv)V'(i) Xh) ,y ) = t r V'(i) y (V (i )Yh) + Hic (m(i))(Z ,Y.h) .

But (6.59) yields

rv
(6.60) divi (V'(i)Xh) = gradidivi Xh + R(i) Y.h '

where R(i)Xh is defined via

(6.61) V Y E rTM.

From (6,49),(6.50),(6.55) and (6.60) we deduee

I

(6.62)

(6.63)



and consequently

(6.64)

(6.65)

divi (~LXh + eh) = ti(i) Xh '

divi (~ LXh - Ch) = R(i) Xh + gradidivi Xh

Let us restriet our attention to the case where M has codimension 1. Since M
is oriented we have an oriented unit normal vector field NO) along i.
Hence h E Coo(M,lR") splits uniquely into

(6.66)

where Ah E rTM, eh E COO(M,lR).
Thus

(6.67)

Defining the mean curvature H(il of i by

(6.68) tr W(i) = H(i)

we immediately find

(6.69)

and hence

(6. /0)

mO) ( dh)eh W(i» , Y )
n-1

= L m (i) (V (i) e (E\ W(i» er' Y)
r=1 r

= mO) (gradieh,W(i) Y) + m(i) (eh diVj W(U,Y)

On the other hand by Codazzi's equation (cf. (r:l])

(6.71)
mL m(i) (V(iler(W(i) e/i)
r=l

n-1

= L m(i) (V(i\(W(i)
r=l

= m(i) (gradj H(i),Y)

and consequently

(6.72)

From (6A9), (6.60), (6.67), (6.68) and (6.72) we infer then

(6.73) divi (Sh + Ch) = .D(i) Xh + WO) gradj eh + eh gradi H(i)

(6.74) diVi (Sh - Ch) = R(i) Ah + gradi diVj Ah
+ W(i) gradi eh + eh gradi H(i) ,



(6.75) divi Bh = ~ 6(i) Xh + ~R(i) Xh
+ W(i) gradi eh + eh gradi H(i)

We conclude this section by proving the foliowing

Lemma 6.5 :

Let (X t A1(M,lRn
) and i E E(M,lRn

) be given.
If (X has no integrable part, Le. (X = (3 , then

(6.76)

Proof :

Denoting bv e 1, ... ,en an orthonormal basis of lRn we have, in accordance
with (6.8) ,

(6.77) T(3U,Y) = < (3(.I.),di Y>
= m(i) «(Bf3 + C(3) Z,Y)

n

= ~ m(i) (Y~,X) <es,di Y>
n

= m(i) (~ <es,di Y> Y~,X) , v X,Y E rTM.

If now e 1'''' ,ern is a moving orthonormal frame in TM, then we get

(6.78)
m

m(i) (divi(Bß + Cß),Y) = L m(i) (!;l(i)er(Bß + Cß) er,Y)
r=lm n

= L L m(i) (!;l(D er <es,di Y) \~, er)
r=l $=1

B!' interchanging the summation the assertion then 1'o11ow5.



"7.The eguations cf motion cf a deformable medium subjected to an internal
constitutive law

Let M be a moving deformable medium of codimension 1J Le. dimM=n-1J
and assume that its motion is due onlv to an interna1 constitutive law F.
As we have already seen F is /Rn-invariant and admits the representation

*F = d FIRn
where

is a smooth map. Next we assume that F/Rn has an integral representation

(7,1) FlRn(dk)(dj,dl):= J oddj,dk)'dl fl(j) ,
H

where Q( is an IRn-valued one form, the so-cal1ed stress-form, Le.

(7.2)

We note that the integrand

(7.3) Q((dj,dk)'dl

in (7.1) is defined in the fol1owing wal'
Let first represent Q({dj,dk) and d1 according ta Proposition 6.3 as

and

respectively. Then we set

(7A) Q((dj,dk)'dl .- tr BQ((dj,dk)'Bdl + tr Ccxldj,dk)'Cdl
+ tr c(X(dj,dk)'cdJ '

(7.5)

Csing now (5,20) and (7.1), it is easy to see that the intemal constitutive
law F admits an integral representation by a force density fF, which
depends on ( the coefficients of ) the stress form (x. Indeed, to this end we
have to solve the equation

I<fF(dj,dk),l>/ ..dj) = I(X(dj,dk)'dl f.1(j), 'tj j E E(M,lRn),
M M 00

k,l E: C (M,lRn
).

Before ,doing so, however, we point out that (X in (7.5) is not uniquely
determihed. In fact we have (cf,[Bi,4]).



Theorem 7.1 :
Given lX E A1IM,lRn) and j E EIM,JRn) with dh as the integrable part of lX then

(7.6)

expressing the fact that the non-integrable part {3 of tX = dh + (3 is
00 n) I 1 n)orthogonal to C (M,IR IRn, regarded as a subspace of A (M,lR .

Proof :
By Proposition 6.1 we have, V X E rTM ,

n

dhX = ') m(j) (V,X)e
5
,

5~ 5

n

(3(X) = L m(j)ly~,X)e5 J

s=1

where \i = grad.r , divJ,y05 = 0, s =l, ... ,n. Then from (6.24-), (6.26) and
5 J 5

(6.29) it follows

e7.7 )

and

n

(Bdh + Cdh)X = L mlj) (V
5
,X)1'

S5=1

(7.8)

n

(Bß + Cß)X = S~l mej) (\~,X)Y5 .

where \ = V5 + y: ' s =l, ... ,n, satisfies the equation

Hence
V X E: fTM.

(7.9)
n n

(Bdh + Cdh) 0 (Bß + Cß)X = ~1 5~1 m(j) (y~,X) m(j) (\'5,,1) Y5'

- -
Therefore if e1,... ,en-1 is an orthonormal moving frame on M

(7.10)

n-1 n n

n

= L m(j) (Y~JV )5=1 • 5
Next we form

(7.1l)

n

{

cdh djX = L m(j) (Vs,X).(es,N(j».N(j)
s=1
n

cdh N(j) = L (es,N(j».dj Vs .



Similar equations hold for cß with Vs replaced by ~ for each s.
Hence

(7.12)

Therefore

(7.13)

and hence

C'x.o,X)-(e ,N(j»-(e .,N(j)-V ,s s s. s

n

tr cdh ° c(3 -= 2- E m(j) (\-O,V )
s=1 s s

n

(7.14-) tr(Bdh ° Bß + Cdh ° Cß + cdh ° cß)
But (7.14) implies

- 3- L m(j) (yO,V )
5=1 5 5

(7.15)
nt.J dh-ß jl(j) -= 3- S~1Mf m(j) (y~,V) jl(j) = 0

since yO and V are Lz-orthogonal, s= 1, ... ,n.s s

Let us now turn back to (7.5).
At first we study the equation

(7.16)

where for the sake of simplicity we omited the arguments of 0( and fF• On
one hand we note that 1 E Coo(M,lRn) can be represented as

(7.17)

and that it will be sufficient to consider oni)" those for which 8, - 1, i.e.

(7.18) 1 = dj Xl + ~(j) .

On the other hand according to Proposition 6,~ we have for a fi:-.:ed orthonormai
moving frame 81, ... ,en-1 E rTM

n-l-bOHj), S(j)(es,B()(es)

(7.19 )
n-1 rv

tr BO(0Bd1 = L ~m(j) «BO( ° (V(j)) 1.\ + V (j)1.1) es' e)
5=1
Ir!

+ ~ m(j) (BO( ° W(j)es' es)

n-l

= ~ m(j) (BO( 0 V(j)e/l' es)

= div jB()(X/ - m(j) (div jB()(,I./)

+ (tr (BO( ° W(j»-N(j), N(j»



We calculate next in the same way tr CO(0CdJ and abtain, using the fact
that

(7.20) tr Wlj) ° CO( = 0,

(7.21) tr Cex ° CdJ = divjCexXI - m(j)(divjCex, XI)

It remains naw ta calculate tr c()(o cdJ . Recalling ta this purpase that

(7.22) cdl dj Y = S(j) (XI' Y) , 'rJ Y E iTM,

and writing Cex N(j) with the help af a field, say Uex' in rTM as

(7.23) Cex N(j) = dj U(J(

we then get
"-1

tr Cex0 Cd! = 2: <Cex0 cd.!djes' djes> + <Cd.!0 c(J(N(j), N(j»
s=1
"-1

= ~1 <cexSlj)(XI,es)' djes> + <cdldj UO(' N(j»

n-l

= - 2: m(j)(W(j)XI' es) ~rIXN(j), djes>
s=1
- m,j)(W(j)U()(, Xl)

n-1

= - 2: m(j)(W(j)Xl, es)'m(j)(Uex' es) - m(j)(W(j)Uex'X1)
5=1

= - 2 m(j) (W(j)U()(, Xl)

The equatian far 'f F becames then

(7.24) I'J ('f f,l>~(j) = MI[div j( (B(J(+Cex)XI)
- <dj(div/Bex +Cex)+2W(j)U(J()

+ tr(B(J(0W(j»N(j), 1>] ~(j).

Using Gauss' theorem this equation yields

Proposition 7.2 :

Let F(Rn admits an integral representation given bv

F(Rn(dk)(dj,dl) = Hf ex(dj,dk)'dl ~(j) ,

where the stress form

ex : TE(M,lR") I (Rn ---i A1(M,lR")

splits into

IJ j E: E(M,(R"),
00 ")k,l E C (M,lR ,

l

Then. F admits an integral representation with a force density 'fF given at
(dj,dk) by



(7.25) f(dj,dk) = - dj (div (BO(dj,dk) + CO(dj,dk)
+ 2 W(j)UO(dj,dk)) + tr (8O(dj,dk)oW(j)).N(j)

Since 0( in (7.1) can be replaced by its integrable part as expressed in
(7.6) a redundancy occurs in (7.23). Let us therefore rewrite this equation
by replacing oddj,dk) by its integrable part dh(dj,dk). To this end we
first rewrite Udh(dj,dk) in terms of h(dj,dk) as done by [Bi,5] and restated

in the following

Lemma 703 :
Let h = dj Xh + EVN(j) for any h E Coo(M,lRn

) then Udh.l as defined in

(7.23) takes the form

(7.26)

Proof :
Equation (7.23) reads in the case under consideration as

By (6.44) we have moreover

cdh dj X = S(j)(Xh,JO + d8h(X)oN(j)

= - m(j)(W(j)Xh - gradj8h,X).N(j)

Therefore

(7.27) Cdh
2 N(j) = cdhodj Udh

= - m(j)(W(j)Xh - gradj8h,Udh) N(j)

implying (7.26).
In view of (7.6) and (7.26) we obtain

Corollary 708 :
Since für any (dj,dkl E TEo,f,lRn

) IlR!\ the stress-form '"x splits uniq118ly into

O(dj,dk) = dh(dj,dkJ + 13(dj,dkJ

with h(dj,dk) the integrable and (3(dj,dk) the non-integrable part
respectively, equation (7.25) turns into

(7.28)

where

f(dj,dk) = div Bdh(dj,dk) + Cdh(dj,dkl

+ 2 W(j)2Xh - 2 W(j) gradj8h

Using now the eqnations of motion (3.25) of the deformable medium M we



immediately obtain the following

Yain theorem:

. Let M be a moving deformable medium of codimension 1 subjected to an
internal constitutive law

00 n n 00 nF : C (M,IR ) x E(M,IR ) x C (M,IR ) ---1 IR ,

with
*F = d FIRn,

and
00 n! n) I 00 n IFIRn: C (M,IR ) !Rn X E(M,IR IRn X C (M,IR ) IRn---1 IR ,

a smooth map admitting an integral representation given by the so-called
stress form

This stress form ()(decomposes according to (6.34) at each

into

The equation of motion on E(M,lRn
)described by a smooth curve

;\.. > 0 ,

is then gi\-en by

(7.29) Mi
' p(o(t» <ä(t),l> !l(0(0) = r oddo(t),da(t))'dl !l(olt»

HJ

= J <fF(dait),daft)),1> fJ(o(t»,
H

where the force density fF satisfies (7.25). Using the fact that (7.29)
implies

(7.30) p(alt»ält) = fF(da(t),dalt» 'd t t I-\,;U

and writing a(t) in IRnas

alt) = da(t)ZIt) + dolt),alt»N(olt)), 'd t E (-A,;\..) ,

where Zlt) E rTM and €lo(t),a(t» E CooIM,IR) , the equation of motion (7.30)
splits into the coupled system



(7.31 )

~(a(t»Z(t)Z(t) + Z(t) + 2 da(t),a(t»W(a(t»Z(t)

-grada(t)€(a(t) ,al t»
= p-l(a(t)) [- diVa(t) TO«da(t),da(tJJ - 2 W(a{t)}UO(J1,

€(a(t),a(t» = p-l(a(t» tr BO«(da(t),da(t» W(a(t»

- dda(t),a(t»Z(t) + 9(a(t»(Z(t),Z(t» ,

where the smooth two tensor TO(ldj,dk), the so-called stress tensor, is

defined by

(7.32) TO(ldj,dk)(X,Y) = m(j)(BO( +ClX)(dj,dk)X,Y), IJ X,Y E rTM

and h(alt» denotes the second fundamental form of alt).

Remark :
(7.31) corresponds to Cauchy's law in the mechanics of continua.

Using Corollary 7.8 equations (7.31) turn into

Corollary :
Using the splitting of the stress-form into an integrable dh and a
non-integrable part (3 respectively, 17.31) reads

(7.33)

Example 7.9 :

~(a(t»Z(t)Z(t) + Z(t) + 2 da(t),a(t))W(a(t))Z(t)
. -1. .

-grada(t)E:ia(t),a(t» = p (a(t» [- diva(t)Tdh(da(t),da(t»

- 2 W(a(t»(W(a(t»Xh - grada(d~h)]'
, . -1 .
€(a(t),a(t» = p (a(t» tr Bdh(da(t),da(t» W(a(t»

- d€(a(t),a(t»Z(t) + h(a(t»(Z(t),Z(t»

Let lX be given by

(7.34 )

where

(7.35)

O«(dj,dk) = - r(dj,dk).dj ,

n I 00 nr : TE(M,IR ) !Rn ---1 C (M,IR )

is a smooth map. Then we have

(7.36) { B(Xldj,dk) = r(dj,dkHdTM '

CO«dj,dk) = 0 ,

clX(dj,dk) = o.



Therefore the stress tensor T()(and the force density PF become

(7.37)

and

T()((dj,dk)(X,Y) = r(dj,dk)'m(j)(X,Y) , 'rJ X,Y E rTM ,

(7.38) fF(dj,dk) = dj grad T(dj,dk) + T(dj,dk)'H(j) NU)

Then the Main theorem reduces to the following

Proposi tion 7.10 :

Let the hypotheses of the Main theorem hold and assume that ()( is given by
(7.34). Then the equations of motion of the deformable medium Mare given

by
V(a(t»Z(t)Z(t) + Z(t) + 2'da(t),a(t» W(a(t»Z(t)

. . -1 .
-grada(t)€(a(t),a(t» = P (a(t» grada(t)T(da(t),da(t» ,

(7.39)
, .' -1 .E:(a(t),a(t» = p (a(t» T(da(t),da(t»'H(a(t»

- d€(a(t),a(t»Z(t) + Ma(t» (Z(t),Z(t»

We call (7.39) the equations of motion of a perfect deformable medium. The
corresponding constitutive law will be refered too as the perfect
constitutive law.
The above corollary relates with the motion induced by a reduced
constitutive law introduced earlier as shown by the following

Corollary 7.11 :
Let P be a smooth (Rn-im-ariant constituti\-e taw splitting into the surn

(7.-W)

where pU and F are smooth (Rn-invariant constitutive la,vs admittin~ both
stress forms (x0 and (x' respectively. Assume moreover that (x0 and (X have
the decomposi tians

(i ,4.1)

with

{

(X°(dj,dk) = .r(dj,dk)'dj ,
(X'(dj,dk) = c(X'(dj,dk)'dj + dj'C(X'idj,dk) +

V (dj,dk) E TE(M,lRn
) IlRll

(7.42) tr 8(X'(dj,dk) = 0 .

Then the motion
a : (-:\',:\') ---j E(M,fRn

)

induced by F satisfies the equations



(7.43)

V(o(t»Z(t)Z(t) + Z(t)
+ 2 E;(a(t),a(t»W(a(t»Z(t) -grada(t)€(a(t),a(t»

= p-l(a(t» [grada(t)T(da(tLda(t» - diva(t)T~(da(t),da(t»

- 2 W(a(t)) Uoc)]

E:(a(t),a(t)) = p-l(a(t)) [tr(Boc'(da(t),da(t».W(a(t»))

- T(da(t),da(t) H(a(O)]

- ddo(t),a(t» Z(t) + b(o(t» (Z(t),Z(t» .



8. The structural viscosity

As known the notion of viscosity was first introduced by Newton as "the
resistance which arises from the lack of slipperiness of the parts of the
liquid". He made the assumption that the viscosity "is proportional to the
velocity with which the parts of the liquid are separated from one another".
As a measure of the viscous resistance one has introduced the caefficient
of \'iscosity lJ,

In this section we introduce the notion of structural viscosity, as done in
[Bi,5], Le. the notion of viscosity within aur apparatus.
Let again M be a moving deformable medium of codimension 1 and assume
that its motion is due only to an internal constitutive law f. As shown f is
lRn-invariant and adrnits the representation

'"F = d FlRn
with

a smooth map. In addition we assume that FlRnadmits a stress form

According to Proposition 6.1 the lRn-valued one-form 0( admits the
decomposi tion

O((dj,dk) = dh(dj,dk) + (.Hdj,dk),

where the integrable part h E Coo(M,lRn
)is uniqueJ.v determined up to a

constant. :;e~t we give hand k the equi\'alent forms

and respeetively

h = dj Xk + k.L
Moreo':er we set, using the fact that M has codimension 1,

(8.1 )

"Nesplit now according to Hodge's theorem Xh and Xk into

and

X-I.O d 'I.h - .h + gra j UI h '

diV/~~ = 0 ,

Xk = x~ + gradj \!k '

d. XO 01\' j 'k =



(8.2)

respectively. Let us remind of proposition 6.2, expressing in particular that
X~ and X~ are uniquely determined by oe and dk respectively.
We relate next X~ and X~ uniquely to each other by setting

X~(dj,dk) = lI(dj,dk)X~ + ~h(dj,dk),

where v(dj,dk) E Coo(M,IR) and Xh(dj,dk) E rTM is pointwise orthogonal to
x~,and call the function lI(dj,dk) coefficient of structural viscositv.
Accordingly we call the deformable media, whose constitutive la\vs depend
only on k.l, frictionless deformable media, while the deformable media
whose constitutive laws depend on the whole of k, will be called frictional
ones. Taking now into account (8.1) and (8.2), Proposition 6.4 becomes

Proposition 8.1 :

Let (X E A1(M,lRn) and j E E(M,lRn) be given and assume that M has
codimension 1. Then the following relations hold:

oe = dh +ß )
oe(X) = Coedj X + dj Cex X + dj Bex X) V XE rTM ,
h(dj)dk) = dj X~(dj,dk) + dj gradj\lih + 8h(dj)dk) N(j) )

~iVj .Y; = 0 ,
Zk= Xk + gradj~k '
div j Z~ = 0 ,
X~ = lI(dj,dk)X~ + Xk(dj,dk) ,

(8.3)

(8.+)

(8.5 )

cex(dj)dk)'dj = (dhl.~dj,dk»l. + V(dj,dk)S(j)(X~, . )
+ S(j)(Z, . ) + S(j)(gradj\J.h) . ) + c{3(dj,dk)'dj )

Coe(dj,dk) = ~ [V(j) lI(dj)dk)X~ - ~(j) v(dj,dl,)z~J

+ ~ [V(j)Zh(dj)dk) - ~(j)jh(dj)dk)J -'- C{I(dj,dk) ,

= ~ L Id' :11 ,/0 + 1. L-:'/ ' .' j' l2 v\ J)I')£.k 2 £.h\C1J.,i-:,

+ ~ Lgradj'h(dj,dk) + 8h!dj,dk) W(j) + B{3(dj,dl,),

't:J (dj,dk) E TE(\!):Rn) l:Rn

If Daw v(dj,dk) is a canstant map i.n Coo(M,(R), then we get

(8.6)

( 8.7)

Coe(dj)dk) = ~ v(dj)dk) (V(j) X~ - ~(j) I.~)
t /'\ rv /'\

+ 2 [V(j)Zh(dj,dk) - V(j}/h(dj,dk)J + C/3(dj,dk) ,

Boc(dj)dk) = ~ v(dj,dld LX~ + ~ LZh(dj,dk)

+ ~ Lgradj'h(dj)dk) + 8h(dj,dk) W(j) + B{3(dj)d};) ,

V (dj)dk) E TE(M)(Rn) I(Rn .



L"sing now the definition (7.32) of the stress tensor we get

(8.8) T(X(dj,dk)(X,Y) = m(j)((~ u(dj,dk) LZ~ + ~ u(dj,dk)

(V(j)Z~ - V(j)Z~) + ~ LX h(dj,dk)

+ ~ [V(j)Xh(dj,dk) - V (j) Xh(dj,dk)]

- ~ Lgradj'IJh(dj,dk) + 8h(dj,dk)'W(j)

+ B{3(dj,dk) + C(}(dj,dk)) /.. , Y) .

It is this equation which motivates us to call the function v(dj,dk)
coefficient of structural 'viscosity.



9. The equations of motion of a deformable medium subjected to a general
constitutive law

Let us suppose that the motion of the deformable medium M is governed by
the smooth constituü\/e law

and assume that F splits into

(9.1) F = F + Fext int '

where the internal constitutive law F. t and the external one F are alsom 9t

smooth. As shown F t is (Rn-invariant and admits the representation
In

with

Finally we assume that both f ext and f!Rn admit integral representations
and denote bv rp and 'P. the corresponding force densities. Accol'ding to. ext mt
(3.13) and (3.26) \ve have the splittings

(9.2)

(9.3)

fFint(j,k) = dj gradjTint(j,k) + dj \-üint(j,k) + fFint(j,k).l,

fF (j,k) = dj gradJ'T t(j,k) + dj yO tU,k) + fF (j,k).l,
ext ex ex ext

and hence

\vhere

(9.5)

Tint (j,k) + Text (j,k) = T(j,k)

yO (' k) + yO ('.k) = yO(. k)
Int J, ext J. J "

'f
F

. (j,k).l + fF (j,k).l = fF(j,k).l ,
mt ext

\;j JE E(}!,{Rn), kE Coo(\I,lRn),

and consequentlyinfel' that T

split F t intom

Since fF is {Rn- invariant, its tangential and normal parts grad Tint+yOint
ml n nand fF. respecti\.'ely are also {R-in\;ariant. lsing no\\ the {R--invariance
mt

of the Laplace -8eltrami operator ~, we
grad T are {Rn-invariant. Accordingly \ve

(9,6) f. = FO + F';nl Jmt ml u.



where FOlnt has the force density \f~int defined by

(9.7) 'P°F, (j,k) = dj gradJ'i t(dj,dk)
mt m

I

and F int admits the stress form

(9.8 )

Hence

(9.9)

{

"',: TE(M,lRn
) --J A'(M,Dln]

t)' (dj,dk) = ct)'J(dj,dk)'dj + dj Ct)'J(dj,dk) + dj 8IX
J(dj,Jld '

cddj,dk) = clX'(dj,dk)'dj + dj ClX'(dj,dk) +
dj (-Tlnt(dj,dk) IdTN + 8t)"(dj,dk))

Using (iAO) we then find

(9.10)

(9.11 )

fF, ( j ,k) = f~ (j ,1<) + fF' ( j,k )
mt mt mt

= dj gradjTint(dj,dk) + dj Y°int(dj,dk) + fFint(dj,dk)l.

= dj gradjilnt(dj,dk) - dj(divjBlX'(dj,dk) + dh'-Ft)"(dj,dk}

+ 2 W(j) (W(j)Zh - grad 8h)) + [tl' (BlX'(dj,dkHV(j)) -

Tint(dj,dk)'H(j)] N(j) ,

TlX(j,k) (I.,Y) = -Tint(dj,dk) m(j)(Z,Y)

+ m(j)((BlX' + ClX')(dj,dk)X,.Y) , 'rJ X,.1'£ rT:\I

,
On the other hand IX spUts a<;:cording to Proposition 6.4: at (dj,dkl into

,
()' (dj,dk) = dh (dj,dkl -l- 13(dj,dkJ,

where h(dj,dk)E CS"O(~l,lRn). Wr'iting

h(dj,dk) - dj Xh(dj,dk) + 8h(dj,dk) \(j) ,

k(dj,dk) = dj Xk(dj,dk) + EVdj,dk) \(j) ,

with eh' 8k E COO(M,IR),\\'e obtain by (9.10) and Proposition 6.-!-

(9.12) fF, (j,k) = dj gradJ'T, t(dj,dk) - dj(~(j) XhInt In

+ W(j)gradj8h(dj,dk) + 8h(dj,dk)gradjHU)

+ 2 W(j)(W(jlXh - grad eh))

+ (tl' ([ ~ LXh(dj,dkl + 8h(dj,dk) W(j)] 0 W(j))

- iint(dj,dk) H(j») N(j) .

Decomposing now Zh(dj,dk) and Zk by the Hodge theorem into

_ J



(9.13)
{

Xh(dj,dk) = X~(dj,dk)

div j Z~ = 0 ,

(9.14)
•

{

Xkldj,dk) = )(~ldj,dkJ

divj Z~ = 0 ,

introducing the structural viscosity lJ(dj,dk)E Coo(M,IR) \'ia

(9.15) X~(dj,dk) = v(dj,dk) Z~ + Xh(dj,dk)

and noting that

(9.16)

from (9.2), (9.3) and (9.11) we ob ta in

(9.1i)

(9.18)

fF(j,k) = fF (j,k) + dj (gradJ'T(j,k) - 6(j) [ V(dj,dk)/~
" ext

+ Xk(dj,dk) + gradjiJ-h(dj,dk)] - W(j ) [gradjE\(dj,dk)

+ 2 (W(j)Xh - grad E\)] - 8h(dj,dk) gradjH(j)]

- (Tint(dj,dk) H(j) + dH(j) [v(dj,dk) X~ + Xh(dj,dk)]

- divj v(dj,dk)W(j)X~ - divjW(j) Xh(dj,dk)

- 8h(dj,dk) tr W(j)2) N(j),

TC(dj,dk)(X,Y) = -Tint(dj,dk) m(j) (X,Y)

+ 1. (L .ll + LA + L )
2 V(dj,dk) Xk Xk(dj,dk) grad jllih(dj,dk)

(m(j»)(Z,Y) + m(j)(Wh(j)X,Y)

+ m(j)(C(/(dj,dk) X,Y) .

•
Consequently we may state the following theorEm, based on 19.1-;"), (9.18)

and (3.25)

Theorem 9.1 :

Let F: Coo(M,lRn) x E(M,lRn) x Coo(M,lRn) ---t1R be a smooth constitutive law
admitting the splitting (9.1), i.e.

F = Fin t + Fext '

where both the interna1 and the external constitutive laws. F. t and F t. In ex
respectively, admit integral representations \vith the respectiv8 force
densities fF. and 'fF .

mt ext
Then the general equations of motion of a deformable medium are gh-en by



'V(a(:) )Z(t)Z( t) +2( t) + 2 da( t) ,a( t» W(a( t) )Z( t )-grada( t)da( t) ,a( t»
= p l(a(t»(grada(t)Tint(a(t),a(t» - 6(a(t» [lI(da(t),du(t»zÜ(t)

+ Zh(da(t),du(t» + grada(t)'!-'h(a(t)!u(t»]
- W(a(t»[grada(t)8h(da(t),du(t» + 2 (W(a(t))Xh(a(t),a(t))

- grad 8hHa(t),a(t))] - 8h(da(t),da(t»grada(t)H(a(t»)
-1 •

+ p (a (t) )Yext (0 (t) ,0 (t» ,
(9. 19)

€(o(t),a(t» = p-1(a(t»[ -T t(da(t),da(t» H(a(t»

[
. ~ ~ .

- dH(a(t» v(da(t),da(t)) Z (t) + Zh(da(t),a(t))], . ° '+ diva(t)lI(da(t)~da(t»W(a(t»Z (t)

+ diva(t)W(a(t»Xh(da(t),da(t»
- 8h(da(t),da(t)) tr W(o(t)/] + ~(o(t)) (Z(t),Z(t))

- dda(t),a(t)) Z(t) + Kext(a(t),a(t»] ,

where f\xt (a( t) ,al t» = Kext(a( t) ,al t» i'J(a(t».
The motion of a deformable medium along a fixed surface i(M)c !Rnis

gh'en by

'V(i)Z(t)X(t) + X(t) = p -1(X(t»[ -gr';,diT int(X(t),X(t»

- ~(U[v(l.(t),X(t» ZO(t) + Xh(Z(t)"X(t)

+ 2 (W(UXh - grad 8h)] - 8h(X(t),X(t» gradiH(U

+ p-1(I. ( t» Yext ( X ( t ), ;{(t »
(9.20)

o = p -1(I. (t» (-T, t(l.(t),Z(t))'H(i)
in ~

- dH(i)[lI(X(t),X(t»XO(t) + Xh(X(t),X(t»]

+ diviv(l.(t),x(t))W(UXO(t) + diviW(UZh(X(t),X(t»)

- 8h(Z(t),X(t»trW(U2) + h(U(X(t),Z(t»

+ Kext(Z(t),X(t»,

\\here I(t) is the push-forward (-l.20) of Z(t) 'by gü) E Diff ~L

As an e\:ample let us consider the stress form

(9.21) oddj,dk) = - Tint(dj,dk)'dj + V dj'L,.J'1',k

with a constant 1J E IR. Then the motion along iOI)cIRn is governed by

(9.22) p(Z(t»(V(i)X(t)X(t) + X(t»

= - gradiTint(g(t),X(t» - 1I.2;.(i) X(t) - v'Ric(i) X(t)

in case dh'iX(t) = 0 . Thus the equation (9.22), a ~avier-Stokes type of
equation, is an approximation to (9.20).

Remark:
As done in [Bi,5] a type of pressure rr(dj,dh) can be introducedby forming
the L2-component of tr B(X'(dj,dk)OW(j) (in 7.25) along H(j) yielding the

decomposi tion



(9.23) 8()((dj,dk) = - rr(dj,dk).H(j) + 8()((dj,dk)

This allows us to split F(dj,dk) into

•
(9.24-) F(dj,dk) = F(dj,dk) - rr(dj,dk).DV(j)

where V(j) is the volume of j(M). 80th of these equations hold for all dj, dk
and dh. \lotivated by the last equation we call rr(dj,dk) the volume active
pressure. rr(dj,dk).DV(j) is the work needed to change the volume by DV(j).
Clearly this type of pressure also e:-.:ists in the realm of section J and is c1earl;"
not identical (in general) with T. t(dj,dk).In
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