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.Ab,frGct. A unifled approach to branch-and-bound and cutting plane methods for solving a ceriain class
of nonconvex optimization problems is proposed. Based on this approach an implementable algorithm
is obtained for programming problems with a bilinear objective function and jointi)" convex constraints.

1.Introdudion and Problem Statement

In what followswe descrihe a comhined hranch.and.hound and cutting plane algorithm
for solving a certain class of nonconvex optimization prohlems. The algorithm is 6rst
descrihed as a conceptual method, without particular reference to implementation. We
then specialize it to prohlems with a hilinear ohjective function and with jointly convex
constraints. In this case all suhprohlems occurring are convex, and the algorithm appears
to he implementahle efficiently.

We are going to consider the followingprohlem, denoted hy (P):

(P) min {/(z,y)l:z: E X,yE Y,Uj(:Z:,y) SO Vi E J},

where we assume that: J is a finite set, X is a (sequentially) compact set, Y c JRm is
a compact convex set, the functions I,Uj (i E J) : X x lRm -+ JR are continuous on
X x JRm and convex on JRm for any 6xed :z:EX. .

Of particular interest will he the special case, denoted hy (BL), of a hilinear ohjective
function and convex constraints:

(BL) min {/(:z:, '11) := (p,:z:)+ (:z:,My) + (q, y)l:z:EX, '11 E Y,Uj(:Z:, y) S 0 Vi E J},

where X c JRn and Y c JRm are compact convex sets, Uj (i E J) : X X JRm -+ JR
are continuous convex functions, M is a given matrix, and p, q are given vectors. This
prohlem can he solved using only convex suhprograms. Hence we ohtain in this case an
implement ahle algorithm.

Bilinear programs without the joint constramts Uj(:Z:, '11) S 0 and with X, Y polyhedra
have heen studied hy several authors, see 12,3,6,7,8,9,10]. All of these methods are hased
on the fact that a solution is ohtamed within the vertex-set of X and Y. This property
does no longer hold for problems with joint constramts. These methods therefore cannot
he adapted to the present more general setting.

Bilinear programs withjoint convex constraints have heen studied in 11]. The present
algorithm, if specialized to the case of hilinear programs, is very much different from the
algorithm descrihed in 11]. There the hounding operation is hased on using lower convex
envelopes of the function (:z:,My), whereasin our case the hounding operation is hased
on relaxing the constraints.
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Let us note that the case of an objective function I(z, $I) := (z,My) +lo(z, $I), where 10
is convex, can be reduced to the form (BL) by minimizing instead the objective function
(z,My) +t subject to an additional constraint lo(z,y) -t SO.

2.DescrlptloD of the algorlthm

We are going to describe an algorithm for solving problem (P). In addition to the
already stated assumptions about (P) we require the following: V is given as

V := (y E .Olml~(y) SO},

where ~ : .Olm -+ .ol is convex, and subgradients of ~ are supposed to be available. We
choose once and for all a partition I = 11 U 12 (11 n 12 = 0) of the family of constraints.
We select a sequence {!'k} of positive numbers such that !'k '" O. We let

Vk := (y E .Olml~(y) S e'k}.

Finally we assume that we dispose of a compact polyhedron BO c .Olm such that every
optimal solution of (P) is contained in X x BO. Denote by G the feasible region of (P),
and let r denote the optimal value of problem (P) (we always adopt the convention that
an optimal value equals +00 if no feasible points exist).

Given a dosed subset B c BO we define the problem P(B) as

P(B) min {J(z,y)lzEX,YE B,gAz,y) S 0 ViE J},
and we define the relaxed problem R(B) of P(B) as

R(B) min {J(z,ydlz E X, $11E B,gj(Z,Yd S 0 Vi.E 11,
$12E B,gj(Z,Y2) SO Vi E 12}.

By .8(B) we denote the optimal value of R(B). Due to our compactness assumptions,
whenever .8(B) < +00, then R(B) has an optimal solution (zB, yp, yf). By (Xk we shall
denote the least upper bound for r known so far in iteration k.

Roughly speaking the algorithm runs as follows: At a typical step k, say, we are given
a collection f k of subsets Bq c BO, all Bq described by affine inequalities, such that any
optimal solution of (P) is contained in X x UqBq. Since .8(B) cannot exceed the optimal
value of P(B) this implies that r ~minq .8(Bq). For all Bq E fk the relaxed problem
R(Bq) should be solved. Ir .8(Bq) > (X/n or if V n Bq = 0, then Bq is deleted !rom fk.
Out of the remaining sets one, Bk E fk say, is selected such that .8(Bk) is minimal. It
is then dear that .8(Bk) S r S (Xk. Now either we cut off part of Bk, thus obtaining
a subset B~ of Bk such that V n B~ = Y n Bk, or we bisect Bk, thus obtaining two
complementary subsets Bt and B~ of Bk. We replace Bk by B~ in the first case and
by {B~,B~} in the second case to obtain fH1. The algorithm may terminate 6nitely;
it will do so in particular iJl' r = +00. The algorithm can now be described in detail as
folIows.

Algorithm

In1tialization. With the given set BO solve problem R(BO). Ir .8(BO) < +00, let
(zO,yp, y~) be an optimal solution of R(BO). Let ex-I := +00 and let fo := {BO}.

Iteration i (k = 0, 1, ... ). At the beginning of iteration k we have a collection f k of sub.
sets Bq c BO such that every solution of (P) is containedin XXU{BqIBq E fk}. Foreach
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B9 e rk we know ß(B') and, if ß(B9) < +00, we know an optimal solution (:r:',yf,yn
or R(B'). Furthermore 010-1 ~ r is at hand. Set 010 := min {Ok-l,min {1',IB' e
rk,ß(B') < +oo}}, where 1', := min {J(:r:','1)I11 e [yf,y!j, (:r:', '1) e G}. Let ~k :=
{B' e rkIß(B') S 010 and Y n B' :F'} (from Ok~ r ~min {ß(B')IB' e rk, y n B'
:F '} rollows ~k :f: '). Select Bk e ~k such that ß(Bk) = min {ß(B')IB9 e ~.}. Let
ßk := ß(Bk) = /(:r:k,y~).
Il ßk = 0k, then terminate: Ok = r (Stop 1).
Il ßk < Ok then form the two convex sets

Bt :=b e Bk n ykIUj(:r:k,y) SO Vi E Jll/(:r:k,y) - ßk SO},
B~ := bE Bk n ykIUj(:r:k,y) SO Vi E J2}.

We have to distinguish three possihle cases:

Oase 1: Bf nB! :f: ••
In this case select uk e Bf n B~.
Il uk E Y, then terminate: ßk =r (Stol' f).
Il uk f1. y, then seleet tk E Bp(uk) - a suhgradient of cp at uk - and let

B~ := bE Bklcp(uk) + (tk, y - uk) SO}.
Solve R(B~). Let rHl := ~k \ {Bk} U {B~}. Go to iteration k+ 1.

Oase 2: B~ nB~ = 0 and yt E yk for all i E {1, 2}.
In this case yf e Bf (i = 1,2). Seleet an affine function lk with IIVlk11S 1 and a point
uk e B~ such that

where t > 0 (independent of Te) and .,pk(Y):= max {J(:r:k,y) - ßk,rpax Uj(:r:k,y)} (from
JEI1

Bf n B~ = • follows .,pk(Uk) > 0). Set

B~ := bE Bkllk(Y) SO}, Bt := {y E Bkllk(Y) ~ O}.
Solve R(B~), R(Bt). Let rk+l := ~k \ {Bk} U {B~,Bt}. Go to iteration Te + 1.

Oase 3: Bf nB! = 0 and yf f1. yk ror some ie {1,2}.
In this case seleet wk Ebt,yn such that cp(wk) = plax cp(yf). Select tk e Bcp(wk) and

1=1,2
let

B~ := {ye Bklcp(wk) + (tk, y - wk) SO}.
Solve R(B~ ). Let r k := ~k \ {Bk} U {B~}. Repeat iteration Te (Te unchanged).

This completes the description of iteration Te.

Remarks. 1. Assume that J2 = 0. Then Bf nBt = Bf, hence Bf nBf = .,implies
B~ = e and there£ore y~ f1. yk. Tms means that case 2 (hisection) never occurs, and the
algorithm hecomes then a pure cutting plane method.

2. Assume that BO = Y (e-k then heing irrelevant). Then Bf C Y (i = 1,2). Hence
yf e Y (i = 1,2), and i£ uk e B~ n B~, then uk e Y. This means that only case 2 or
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termination can occur. The algorithm becomes in this situation a pure branch.and.bound
method.

3.Examples

We give here two examples for the determination of llr and ulr as requested under
case 2 of the above algorithm.

1. Let ulr E B~be a solution of min {llu - ytlr~lu E Bn, where 11.11denotes euclidean
norm. FromBtnB~ =. follows ulr =1= Yt. Now let ,Ir := (ulr - yt)/lIulr - ytll, and define

llr(Y):= (rlr,y) - (,Ir, (yt+ulr)/2).
Then IIVllr1l = 1, moreover llr(ulr) - llr(yt) = lIulr - ytll and -llr(yt) = llr(ulr). An
elementary geometrie argument shows that llr (ulr) :S llr (y) Vy E B~, hence in parlicular
llr(ulr) :S llr(Y~). Thus we have

Ilulr - ytll = llr(1.'Ir) -lk(yt) = 2lk(1.'1o) = -2l1o(yt) :S 2l1o(Y~).
Assume now that .,p1ois Lipschitz continuous with Lipschitz constant L > 0 independent
of /c. Then, since .,p1o(yt) :S 0, it follows

.,pk(U1o) :S .,pk(U1o) - .,pk(yt) :S L .lIuk - ytll.
Rence condition (.) is satisfied with 0 < t :S (2L)-I. We remark that the above con.
struction can be used evelllÜ Lipschitz continuity is not ful6.lled, sIDcewe may replace
the left.hand side of inequality (.) by t . 111£10- ytll without affecting the validity of the
convergence theorem given in the next section.

2. The second example is designed towards the case of a bilinear objective function.
Assume that J(z,.) is affine, and choose J1 = e. Then .,pk(y) = J(zk, y) - Pir. Choose
1£10E Bt such that '1/110(1£10):S .,pk(yt). Assume that IIV.,pkll :S L with constant L > 0
independent of k (this assumption is satisfied, ü I(z, y) is bilinear and the zk vary in the
compact set X). Define

lk(Y) := L-l . ('I/I1o(y) - '1/110(1.'10)/2).
Then IIV110ll:S 1, moreover from .,p1o(yt) :S 0 and .,pk(Y~) ~ 'I/Ik(Uk) follows l1o(yt) :S
-L-l'1/1k(1.'1o)/2 and l1o(Y~) ~ L-l.,pk(uk)/2. Rence condition (.) is satisfied with 0< t:S
(2L)-I.

4:.Convergence 01 the algorithm

We turn now to the convergence result for the above algorithm. It is easily seen that
for fixed Iccase 3 can occwr only finitely often. Indeed, the cardinality oe rl: does not
increase und er case 3, and therefore after finitely many occurences of case 3 one has
lP(yn :S e10 (i = 1,2) - see [5]- so that then either case 1 or case 2 must occur, leading
to an increase of /c. Rence we mayassume without loss of generality, ü the algorithm
does not terminate finitely, that for each k a couple (z1o, 1£1:)E X x BO is produced such
that (x1o, yt, 1ft) is a solution ofR(BI:) and uk obeys the rules of case 1 or case 2. Recall
that Pir := I(z , yt) = P(Bk). It is dear that

PI: :SPHI :Sr :S O'1o+l :S 0'1:.
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Theorem.
i) If the algorithm terminates at iteration lcwith Stop 1, then Cllr= r.
ii) If the algorithm terminates at iteration k with Stop f, then ßIr = r, and (zlr, ulr)

is a solution of (P).
iii) If the algorithm is not finite, then ßIr / r, and every cluster point of {(zlr, ulr)}

is a solution of (P).
Proof: i) Ir the algorithm terminates with Stop 1, then ß/r = Cllr. From ßIr S r S Cllr
follows r = Cllr'

ii) Ir the algorithm termmates with Stop f, then ulr E Bt n B~ and ulr E Y, hence
(:z:Ir,u/r) E G and J(zlr,ulr) - ßIr S O. So r S J(zlr,ulr) S ßk. It remains r =
J(zlr, uk) = ßk, and (zlr, uk) is optimal for (P).

iii) Assume now the algorithm never terminates. Then from monotonicity ßIr / ßsr.
Let (i', ü) E X x BO be a cluster point of the sequence {(zlr, uk)}, and let zlr(i) _
Z-, uk(i) - ü, 1I~(i) - VI' 1I:(i) - V2for some suitable subsequence. Assume that case 1
happens infinitely often for this subsequence. Since ",Ir(i) E B~(i) nB;(i) under case ~, it
folIows by a simple continuity argument that (Z-,ü) E G and J (Z-,ü) - ßS O. But from
(Z-,11) E G and J (Z-,ü) S ß S r follows J (Z-,11) = ß = r. Hence (Z-,11) solves (P) and
ßIr / r.
Assume now that case 2 happens infinitely often for this subsequence. Then, choosing
again a subsequence if necessary, we may assume that either Bk(i+1) C Bt(i) for all i
(case A) or Bk(i+l) C B~(i) for all i (case B). If case A holds, then lI~(i+l) EBt(i), hence
l/r(i) (lI~(i+l») ~ 0, and therefore from the roles of case 2

t . tPk(i) (uk(i») S -lk(i) (1I~(i») S lk(i) (lI~(i+l») -l/r(i) (lI~(i»)

S 111I~(i+l)- lI~(i) 11- o.

Likewise, if case B holds, then from lI;(i+l) E B~(i) we obtain

t . tPk(i) (uk(i») S 1I11;(i)- 1I:(i+1)11_ o.
Hence it follows that tPk(i) (uk(i») - o. This leads to gj(Z-, ü) S 0 Vi E J1 and
J(Z-,11) - ß S 0, whereas from uk(i) E B;(i) follows ii E Y and gj(Z-, ii) S 0 Vi E J2.
Again we have obtained (z,11) E G and J (z, ii) S ßsr, which implies J (Z-, ii) = ß = r
and the optimality of (z,11). q.e.d.

We remark that the constraints gj(z, u) S 0 with i E J2 are satisfied for all iterates
(:z:/r, ulr), whereas the constraints with i E J1 are possibly satisfied only in the limit.
Thus the partition of J into J2 and J1 - besides allowing for mathematical needs - could
reßed a distinction between "hard" technological constraints which should be rigorously
satisfied even for approximate solutions, and "soft" managerial constraints, which admit
a certain tolerance.

5.Bilinear programming

Under the convexity assumptions made for problem (P) all subproblems encountered
in the above algorithm are convex, with the possible exception ofR(B9). The solution of
R(Bq) is therefore crucial for implementing the algorithm. Here we shall brießy diseuss
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the situation ror problem (BL). In this ease R(Bf) ean be solved by using only eonvex
subprograms and avertex finding procedure ror Bq.

Assume, slightly more general than in (BL), that I(z,y) is eonvex with regard to z
and affine with regard to Y, and that the Uj(z, y) are eonvex jointly in both variables.
Let J1 := 8, J'l := J. Problem R(Bq) reads then

R(Bf) min {/(z,ydlz E X,Yl E Bq,Y2 E Bf,Uj(z,y'l) ~ 0 Vi E J}.

Let

Gq := {(z, y) E X X BqIUj(z, y) ~ 0 Vi E J},

a eonvex set. Denote by Ti (i = 1, ... ,mq) the vertiees or Bq. Sinee 1(z, .) is affine one
has min I(z, y) = mp. I(z, Vi). Benee one obtains

yEB" I

,8(Bf) = min {/(z, YdlYl E Bq, (z, Y2) E Gf} = min {min I(z, Ydl(z, Y2) E Gq}
!/lEB"

= min {mp. I(z, vi)l(z, Y2) E Gq} = mp. (min {/(z, vi)l(z, Y2) E Gf}).
I I

Thus ü the vertiees vi are known, R(Bf) ean be solved by solving the eonvex pro grams

C(vi)

Sinee the polyhedron Bq is generated from some predeeessor Bq' by adding one affine
inequality, the vertiees or Bq ean be ealculated from those or Bf' by some available
methods, among whieh a method deseribed in [4] seems to be efficient. Ir I(z, y) is
bilinear, the Uj(z, y) are linear and X is a polyhedron, then the programs C(vi) beeome
linear.
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