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Abatract. A unified approach to branch-and-bound and cutting plane methods for solving a certain class
of nonconvex optimization problems is proposed. Based on this approach an implementable algorithm
is obtained for programming problems with a bilinear objective function and jointly convex constraints.

In what follows we describe a combined branch-and-bound and cutting plane algorithm
for solving a certain class of nonconvex optimization problems. The algorithm is first
described as a conceptual method, without particular reference to implementation. We
then specialize it to problems with a bilinear objective function and with jointly convex
constraints. In this case all subproblems occurring are convex, and the algorithm appears
to be implementable efficiently.

We are going to consider the following problem, denoted by (P):
(P) min {f(z,y)|z€ X,y€Y,g;(z,4) <0 VjeJ},

where we assume that: J is a finite set, X is a (sequentially) compact set, Y C IR™ is
a compact convex set, the functions f,g; (f € J) : X X IR™ — IR are continuous on
X %X IR™ and convex on IR™ for any fixed z € X.

|
1.Introduction and Problem Statement

Of particular interest will be the special case, denoted by (BL), of a bilinear objective
function and convex constraints: ’

(BL) min {f(z,¥) == {p,2) + (2, My) + (¢, v}|z € X,y € Y, g(z,9) <0 Vj e J},

where X C IR™ and Y C IR™ are compact convex sets, g; (€ J) : X x R™ — R
are continuous convex functions, M is a given matrix, and p, ¢ are given vectors. This
problem can be solved using only convex subprograms. Hence we obtain in this case an
implementable algorithm.

Bilinear programs without the joint constraints g;(z,y) < 0 and with X,Y polyhedra
have been studied by several authors, see [2,3,6,7,8,9,10]. All of these methods are based
on the fact that a solution is obtained within the vertex-set of X and Y. This property
does no longer hold for problems with joint constraints. These methods therefore cannot
be adapted to the present more general setting.

Bilinear programs with joint convex constraints have been studied in [1]. The present
algorithm, if specialized to the case of bilinear programs, is very much different from the
algorithm described in [1]. There the bounding operation is based on using lower convex
envelopes of the function {z,My), whereas in our case the bounding operation is based
on relaxing the constraints.
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Let us note that the case of an objective function f(z,y) := (2, My} + fo(2,y), where fo
is convex, can be reduced to the form (BL) by minimizing instead the objective function
(z,My) +t subject to an additional constraint fo(z,y) —t <O.

2.Description of the algorithm

We are going to describe an algorithm for solving problem (P). In addition to the
already stated assumptions about (P) we require the following: Y is given as

Y := {y € R™|p(y) < 0},

where ¢ : R™ — IR is convex, and subgradients of ¢ are supposed to be available. We
choose once and for all a partition J = J, UJ; (J; NJ; = 8) of the family of constraints.
We select a sequence {e;} of positive numbers such that ; \, 0. We let

Y*:={ye R™|p(y) < ex}.

Finally we assume that we dispose of a compact polyhedron B® C IR™ such that every
optimal solution of (P) is contained in X x BY. Denote by G the feasible region of (P),
and let f* denote the optimal value of problem (P) (we always adopt the convention that
an optimal value equals 4oco if no feasible points exist).

Given a closed subset B C B? we define the problem P(B) as

P(B) min {f(z,y)|z€ X,y € B,gj(z,y) <0 VjeJ},
and we define the relaxed problem R(B) of P(B) as
R(B) min{f(zayl)lzeXaylEB,gj(a’vyl)SOVJ'E Jla

y3 € B,gj(2,y2) <0 Vj € J,}.

By B(B) we denote the optimal value of R(B). Due to our compactness assumptions,
whenever #(B) < +co, then R(B) has an optimal solution (22, yP,y¥). By a; we shall
denote the least upper bound for f* known so far in iteration k.

Roughly speaking the algorithm runs as follows: At a typical step k, say, we are given
a collection I';. of subsets B C B?, all BY described by affine inequalities, such that any
optimal solution of (P) is contained in X X UgyB?. Since #(B) cannot exceed the optimal
value of P(B) this implies that f* > min, #(B?). For all B? € T'; the relaxed problem
R(B9Y) should be solved. If 3(B?) > oy, or if Y N BY = §, then BY is deleted from I'.
Out of the remaining sets one, B¥ € T; say, is selected such that #(B*) is minimal. It
is then clear that #(B¥) < f* < aj. Now either we cut off part of B¥, thus obtaining
a subset B¥ of B* such that Y N B¥ = Y N B¥, or we bisect B¥, thus obtaining two
complementary subsets BX and B* of B¥. We replace B* by B* in the first case and
by {BE,B_’;} in the second case to obtain I'y;;. The algorithm may terminate finitely;
it will do so in particular if f* = +o0. The algorithm can now be described in detail as
follows.

Algorithm

Initialization. With the given set B® solve problem R(B®). If #(B°) < +oo, let
(2°,¥0,93) be an optimal solution of R(B?). Let ar_; := 400 and let I'y := {B°}.

Iteration & (k =0, 1,-- ). At the beginning of iteration k we have a collection I'y. of sub-
sets B? C BO such that every solution of (P) is contained in X xU{B9|BY € I';}. For each
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B9 € Ty we know B(BY) and, if #(BY) < +oco, we know an optimal solution (29, y{, y§)
of R(BY%). Furthermore ay-; > f* is at hand. Set ax := min {o}_;,min {7,|B? €
Tk, B(BY) < +oo}}, where 74 := min {f(z%n)|n € [v{,¥], (2% n) € G}. Let Ay :=
{BY € T|8(B?) < a) and Y N B # 8} (from oy > f* > min {#(BY)|BY € T+, Y N B
# @} follows Ax # 8). Select B¥ € Ai such that #(B*) = min {#(B9)|B? € Ax}. Let
B = ﬂ(Bk) = f(zkv y{r)

If Bk = ok, then terminate: ay = f* (Stop 1).

If fx < o then form the two convex sets

Bf :={ye B*nY¥|g;(z*,y) <0 Vi€ Ji,f(e*,y) - Bx <0},
Bt :={ye B nY*|gj(zF,¥y) <0 VjeJ3}.

We have to distinguish three possible cases:

Case 1: BfnBf # 0.

In this case select u* € B¥ n BS.

If u* € Y, then terminate: fx = f* (Stop 2).

If uk @Y, then select t¥ € 3p(uF) - a subgradient of ¢ at u* — and let

B* := {y € B¥|p(v*) + (t¥,y — v*) < 0}.
Solve R(BX). Let Tx41 := A \ {B*} U {B%}. Go to iteration k + 1.

Case 2: BfNBf =0 and y* € Y* for all ¢ € {1,2}.
In this case y* € BF (i = 1,2). Select an affine function {; with |[Vii[| <1 and a point
u¥ € B¥ such that

~l(yt)
t- k) < { k¥
(*) i (v¥) le(vk),
where ¢t > 0 (independent of k) and i (y) := max {f(z*,y) — Bs, max g;(z*,y)} (from
JEN
BY n B = @ follows ¢ (u*) > 0). Set
B = {y € B*|l¢(y) < 0}, BY :={y € B¥|ix(y) 2 0}.
Solve R(B%), R(BX). Let T'x41 := Ay \ {B*} U {B%,B%}. Go to iteration k + 1.

Case 3: B¥ N B% =0 and y* € Y* for some ¢ € {1,2}.
In this case select w* € {y¥, y5} such that p(w*) = max ©(yf). Select tF € p(w*) and
i=1,

let

Bk = {y € BF|p(w*) + (t*,y — w*) < 0}.
Solve R(B%). Let Ty := Ax \ {B*} U {B*}. Repeat iteration & (k unchanged).
This completes the description of iteration k.

Remarks. 1. Assume that Jo = §. Then B} N B = B¥, hence B N BY = @ implies
B¥ = @ and therefore y¥ & Y*. This means that case 2 (bisection) never occurs, and the
algorithm becomes then a pure cutting plane method.

2. Assume that BY = Y (ci then being irrelevant). Then Bf C Y (s = 1,2). Hence
y* €Y (i =1,2), and if u* € Bf N B4, then u* € Y. This means that only case 2 or
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termination can occur. The algorithm becomes in this situation a pure branch-and-bound
method.

S. Examples

We give here two examples for the determination of /; and «* as requested under
case 2 of the above algorithm.

1. Let «* € B% be a solution of min {||u — y¥|I?|u € B%}, where || - || denotes euclidean
norm. From B"’nB" = @ follows u* # y¥. Now let r¥ := (u¥ — y¥)/||u* — y¥]|, and define

le(¥) = (r*,9) — (%, (uF + w¥) /2).

Then ||Vik|| = 1, moreover li(uF) — li(y¥) = |Ju* — y¥| and —ll,( ¥) = l(u*). An
elementary geometric argument shows that lx(u*) < lx(y) Yy € B, hence in particular
le(u*) < Ik (y%). Thus we have

o = 9t = be(w*) ~ (o) = 20 (s¥) = ~2Le(v]) < 2 (s3)-

Assume now that ¥; i is Lipschitz continuous with Lipschitz constant L > 0 independent
of k. Then, since ¥x(y}) <0, it follows

¥k (u¥) < di(v*) = da(of) < L-Jlu* - of].

Hence condition () is satisfied with 0 < ¢t < (2L) . We remark that the above con-
struction can be used even if Lipschitz cont.inmty is not fulfilled, since we may replace
the left-hand side of inequality (#) by ¢ - [Ju* — y¥|| without affecting the validity of the
convergence theorem given in the next section.

2. The second example is designed towards the case of a bilinear objective function.
Assume that f(z,-) is affine, and choose J; = §. Then ¢i(y) = f(z*,y) — Ar. Choose

k € B% such that ¢x(u*) < Yi(yk). Assume that |[Vyy| < L with constant L > 0
independent of k (this assumption is satisfied, if f(z, y) is bilinear and the z* vary in the
compact set X). Define

ely) =L71 - (a(v) — da(u¥)/2).

Then ||Vik|| < 1, moreover from ¢¥i(yf) < 0 and ¥i(y5) > ¥i(u¥) follows l(yF) <
~L Y (u ”)/2 and i (y%) 2 L'k (u*)/2. Hence condition (*) is satisfied with 0 < ¢ <
(2L)~1.

4.Convergence of the algorithm

We turn now to the convergence result for the above algorithm. It is easily seen that
for fixed & case 3 can occur only finitely often. Indeed, the cardinality of I'y does not
increase under case 3, and therefore after finitely many occurences of case 3 one has
w(y¥) <ex (1 =1,2) - see [5] - s0 that then either case 1 or case 2 must occur, leading
to an increase of k. Hence we may assume without loss of generality, if the algorithm
does not terminate finitely, that for each k a couple (=¥, u*) € X x B is produced such
that (z*, y¥, y%”z is a solution of R(B"' ) and u* obeys the rules of case 1 or case 2. Recall
that By == f(z*,y¥) = B(B*). It is clear that

Br £ Br+1 £ f* < ag4y < ak.




Theorem.
i) If the algorithm terminates at iteration k with Stop 1, then oy = f*.
ii) If the algorithm terminates at iteration k with Stop 2, then 8 = f*, and (z*, uF)
is a solution of (P).
iii) If the algorithm is not finite, then Sx / f*, and every cluster point of {(z*, «F)}
is a solution of (P).
_Proof: i) If the algorithm terminates with Stop I, then 8x = aj. From # < f* < ax
follows f* = ay.

ii) If the algorithm terminates with Stop 2, then u* € B¥ N B and «* € Y, hence
(2*,u*) € G and f(z*,u*) — B < 0. So f* < f(z*,u*) < Bi. It remains f* =
f(z*,u¥) = Bx, and (z*, u*) is optimal for (P).

iii) Assume now the algorithm never terminates. Then from monotonicity fx / § < f*.
Let (Z,%) € X x B be a cluster point of the sequence {{z*,u*)}, and let zF() —
z, ukl) — 7, yf(i) =T yf(") — g, for some suitable subsequence. Assume that case 1
happens infinitely often for this subsequence. Since 4*() Bf(") an(") under case 1, it
follows by a simple continuity argument that (Z,%) € G and f(%,%) — § < 0. But from
%,%) € G and f(%,%7) < § < f* follows f(%,%) = F = f*. Hence (Z,%) solves (P) and
Be / f*.

Assume now that case 2 happens infinitely often for this subsequence. Then, choosing
again a subsequence if necessary, we may assume that either B*(*+1) ¢ Bi(i) for all ¢

(case A) or B(i+1) ¢ B¥) for all i (case B). If case A holds, then y*(*1) ¢ B*() hence
k) (yf("'*l)) > 0, and therefore from the rules of case 2

t- gy (59) < ~lgy (5F) < iy WFCHY) = by (459)
< JoftHD — yfO) — 0.

Likewise, if case B holds, then from yg (+1) ¢ B*) we obtain
t- iy (W¥ ) < i3 ® - 3V > 0.

Hence it follows that ;) (w*®)) — 0. This leads to g;(%,3) <0 V5 € J; and
f(%,%) — B < 0, whereas from «*() ¢ Bg('.) follows ¥ € Y and g;(Z,7) <0 Vi € Ja.
Again we have obtained (7, %) € G and f(Z,%) < # < f*, which implies f(Z,7) = § = f*
and the optimality of (Z,%). q.e.d.

We remark that the constraints g;(z,4) < 0 with 5 € J3 are satisfied for all iterates
(z*, u*), whereas the constraints with ; € J; are possibly satisfied only in the limit.
Thus the partition of J into J3 and J; - besides allowing for mathematical needs — could
reflect a distinction between "hard” technological constraints which should be rigorously
satisfied even for approximate solutions, and ”soft” managerial constraints, which admit
a certain tolerance.

5.Bilinear programming

Under the convexity assumptions made for problem (P) all subproblems encountered
in the above algorithm are convex, with the possible exception of R(B?). The solution of
R(BY) is therefore crucial for implementing the algorithm. Here we shall briefly discuss
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the situation for problem (BL). In this case R(B9) can be solved by using only convex
subprograms and a vertex finding procedure for BY.

Assume, slightly more general than in (BL), that f(z,y) is convex with regard to z
and affine with regard to y, and that the g;(z,y) are convex jointly in both variables.
Let J; := 0, J; := J. Problem R(BY) reads then

R(BY) min {f(z,91)|z € X,y1 € B%,y; € B, gj(z,92) <0 Vje J}.
Let
G? == {(z,y) € X x BYg;(z,y) <0 VjelJ},

a convex set. Denote by v' (¢ = 1,---,m,) the vertices of BY. Since f(z,) is affine one
has Igigt f(z,y) =min f(z,v'). Hence one obtains
y 1

B(BY) = min {f(2,v1)}v1 € B, (2,32) € G} = min { min /(2,91)|(z,v2) € G}

= min {uin (2, +/)|(2,45) € G7) = min (min {/(e,v)](e:33) € G7).

Thus if the vertices v are known, R(B9) can be solved by solving the convex programs
C(v') min {f(z,v')|(z,y) € G%}.

Since the polyhedron BY is generated from some predecessor BY by adding one affine
inequality, the vertices of BY can be calculated from those of B¢ by some available
methods, among which a method described in [4] seems to be efficient. If f(z,y) is
bilinear, the g;(z,y) are linear and X is a polyhedron, then the programs C(v') become
linear.
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