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1. Introduction

The following result was proposed by Guy [3]:

1.1. Proposition.

Let Q be a set, let M ahd N be algebras of subsets of @ ,
and let p : M — R and v : N — R be positive additive set
functions. Then the following are equivalent:

(a) L(A) < v(B) and v(C) < u(D) holds for all A, DEM

and B, Ce€N satisfying A< B and C <D

(b) : There exists a positive additive set function
® AN, satisfying ¢(A) = u(A) for all A€M
and o(A) = v(A) for all AeN .

This result is remarkable éince it characterizes the existence

of a positive common extension in terms of the set functions alone;
by contrast, no such result is known in the case of bounded
additive set functions, where some condition on the algebras

seems to be indispensable; see Lipecki [8] and Schmidt and
Waldschaks [12]. Moreover, Proposition 1.1 cannot be extended

to mofe than two set functions; see Bhaskara Rao and Bhaskara

Rao [2; Example 3.6.3].

Unfortunately, the proof of Proposition 1.1 given by Guy [3] is
incorrect, as will be made precise in Section 4 of this paper,
and the proofs given by Bhaskara Rao and Bhaskara Rao [2;

Theorem 3.6.1] and Kindler [5,6] are rather extensive. In the
present paper we prove a general extension theorem for families
of positive vector measures which gives an easy access to vector-

valued versions of Proposition 1.1 and results due to Horn and

Tarski [4] and Marczewski [10,11].




Throughout this paper, let Q be a set and let G be an order
complete Riesz space. Let us first recall some definitions and

facts which will be needed in the sequel:

For a Riesz space H , a linear operator T : H—> & 1is positive

if Tx E(B+ holds for all x € H+ . For further details on Riesz

spaces and linear operators, see [1].

For an algebra F of subsets of Q , a vector measure
@ ¢+ F — G is positive if it maps F into @G, . Let
IE(F) := 1lin { Xa | A€eF }
and define x : F —> E(F) by letting
X(A) = X,

Xa
is a Riesz space with order unit Xgq and X 1s a positive
vector measure. Moreover, each vector measure ¢ : F — G
defines its representing linear operator T : IE(F) —G ,

given by
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and each linear operator T : IE(F) —> &G defines a vector
measure ¢ : F — G , given by

¢ = Tox .

'Obviously, @ 1is positive if and only if T is positive.

denotes the indicator function of A€F . Then E(F)



2. Positive operators

The following extension theorem is a consequence of the

Hahn-Banach theorem for linear operators; for a proof, see

[1; Theorem 2.8]:

2.1. Proposition.

Let E® be a Riesz space with order unit e € E+ , let F Dbe a
subspace of E satisfying e € F , and let S : F—> &G be a
positive operator. Then there exists a positive operator

T : E—> @G satisfying Tx = Sx for all x € F .

For a Riesz space E and a family { E& | €A } of subspaces
of E , let &¢( Eé IE)EA) denote the collection of all families

{ xg € E 5€A } satisfying Xg # 0 for at most finitely many

5 |
5€eA ., A family { T(,5 : IE:5———>(I5 l 5€A } of linear operators

has a common extension if there exists a linear operator

T : E— G satisfying Tx = Téx for all &6€A and x €]E:5 .

2.2. Theorem.

Let E be a Riesz space with order unit e € E, and let

{ Eg | €A } be a family of subspaces of E satisfying

e€( \,Ey . For a family { Tg : Eg—> G | §€A } of positive

operators, the following are equivalent: _

(a) I, Tgxg € G, holds for each family {xé} € 0(Eg |6€A)
satisfying ZA Xg €EE, .

(b) The family {Té} has a positive common extension

T : E—G




Proof. It is sufficient to prove that (a) implies (b).
Define F := lin (\JA]EE)) . Then the mapping S : F—> & ,
given by

Sx &= ZA T.éx5

for all x € F and arbitrary {XB} € o( Eg | 8€A) satisfying
X = L, Xg 4 is well-defined and linear, and it is also positive.

Now the assertion follows from Proposition 2.1. |

Theorem 2.2 is due to Maharam [9].




3. Positive vector measures

For a family { F 5€A } of algebras of subsets of Q ,

5 |
a family { 05 * F& —> G | 6§€A } of vector measures has a

.common extension if there exists a vector measure ¢ : 2Q —_—

satisfying o (A) cp5(A) for all &€A and A€F6 .

3.1. Theorem.

Let { F 5€A } be a family of algebras of subsets of Q .

5 |
For a family { o5 : Fg —G | 8€A } of positive vector

measures, the following are equivalent:

m m+n
(a) T @ ay (AL) < L @q.,:y(A.,) holds for
i=1 6(i) i = i=m+1 6(i) i
all m, n €N, all A,, ..., A € \_jA Fé satisfying
m m+n
T Xy = X Xp , and all &6(1), ..., &(m+n) € A
i=1 i i=m+1 i -7
satisfying Ai.eFé(i) for all i€ {1,...,m+n} .
(b) The family {wa} has a positive common extension
Q

P 27 —>G .

Proof. It is sufficient to prove that (a) implies (b). For

all 86 €A , define IE_.:= ]E(Fé) and let T E. —>» @ denote

&5° 6 ° S)

the representing linear operator of g - We claim that
0 = %, Te9

holds for each family {gﬁ} € o Eg | 5€a) satisfying 0 < ZA. dg -

Indeed, this is obvious for families of simple functions taking

their vélues in Z , by the assumption on {wé} , and hence for

families of simple functions taking their values in @ . Consider

now an arbitrary family {ga} € <D(Z]E6 |§5€A) satisfying 0 ﬁ'ZA dg

and let m denote the number of &6 €A for which gg £0 .

For each k € N and 6 €A choose 98 k E‘E6 such that
[4




each g6,k takes its values in @ and satisfies gé,k =0 if gg = 0

and 1 '
98,k km*ea = 98 = 95,k

Then we have, for all k € N ,

0 < X

- A gélk
and hence
1

0 = 25, Te9%,k = %pTe9% * x Txq -
Since @G 1is order complete and hence Archimedean, we obtain

0 = I, Tg% -
which proves our claim. Define now IE := E(ZQ) . By what we have
shown and Theorem 2.2, the family {T5} has a positive common
extension T : E—> G , and it is then clear that the vector
measure ¢ : 2Q —> @ , given by

¢ = Tox ,

is a positive.common extension of the family {@6} . a

In the case @G = R , Theorem 3.1 is equivalent to a result of

Lembcke [7].

As a conseqguence of Theorem 3.1 we obtain the following

vector-valued version of Proposition 1.1:

3.2. Corollary.

'Let F1 and F2 be algebras of subsets of Q . For positive

vector measures P, ¢ F1 —> @G and @, F2 —> @G , the following

are equivalent:

(a) @i(Ai) < wj(Aj) holds for all 1i,j € {1,2} and all
Ai.EFi and Aj EFj satisfying A, < Aj .
(b) \ ¢, and ¢, have a positive common extension




Proof. Consider m, n € N and .A1, ceey Am+n € F1lJF2
satisfying . _

m m+n

X < z X=

. A, — . .

i=1 i i=m+1 i

and hence

m+n
L Xap,

ny .
i=1 i @

A

For i€{1,...,m+n} , define
@ , oOtherwise

and

i i i
Define now
m+n m+n
g = § X | and h == _§ XD. .
i=1 i i=1 i

Then we have g E'E(F1) and h EZE(FZ) » and’ g+h < nXq - |

For k€{1,...,n} , define

M, = {weq |k&ﬁw < glw) }
and
N, = {we@ | kxglw) < nxgy(w) -hiw) }
Then we have M, €F, and N, €F, , and we also have M, < N,
and thus
o, (M) < 0y (N )
Using |
m+n n
X = g = I X
i=1  Ci k=1 Mg
and
n m+n
X = nx, -~ h = nx,- I X ’
k=1 Nk . @ 4= Py

and the previous ineQuality, we obtain




m+n n
T @, (C,) = r o,(M)
i=1 171 k=1 17k
n
< I o,(N,)
k=1 27k
m+n
i=1
hence
m+n
whence
m+n
i§1 wj(i)(Al) < ne,(R) = n®1(9) '
and thus
m m+n _
T oL (A.) < T ®. ,., (A.)
1=1 j(i) i jemeq J() 71 "
for all j(1), ..., j(m+n) € {1,2} satisfying A; €Fj(i) for

all i€{1,...,m+n} . The assertion now follows from

Theorem 3.1. o

We now record two further applications of Theorem 3.1:

3.3, Corollary.

Let C be a collection of subsets of @ satisfying @, Q@ € C .

If T : ¢ — @G 1is a set function such that

m m+n
151 c(cy) < =, c(c;)
holds for all m, h € W and C1, ey Cm+n € C satisfying
m m+n |
i91 %Sy S gamer Yy

then there exists a positive vector measure ¢ : 2Q —_— G

satisfying @(C) = T(C) for all CE€C .
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Proof. For each C€C , let FC denote the algebra generated

by C  and define a positive vector measure O ¢ FC —> G Dby
letting o (C) := T(C) and wC(E) := C(R) -T(C) ; note that the
assumption on { yields wC(E) = T(C) for all C €C satisfying C €C .

Consider m, n € N and A1, cees Am+n € \ }C FC satisfying

m m+n

R TR
and thus

m+n

o %Ay 2 e

Relabelling the Ay if necessary, we obtain

for some p€{0,1,...,m+n} . Then we have

p m+n
I X + (m+n-p)x, < z X% + nx ’
i=1 By @ i=p+1 By @
hence
P m+n -
T C(a;) + (mn-p)T(Q) < r  C(a;) + nl(RQ)
i=1 i=p+1
whence
m+n
i=1
and thus
m m+n _
T oo, (A) < T e, (B)
121 c(i) "'i S=m+ ] c(i) "'i
for all cC(1), ..., C(m+n) €C satisfying Ai(EFC(i) for all
ie€e{1,...,m+n} . The assertion now follows from Theorem 3.1 o
In the case @& = R , Corollary 3.3 is due to Horn and Tarski (4];

see also Lembcke [7].
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3.4. Corollary.

Let C be a collection of subsets of Q such that
((M\pD) N ([ NgE) # ¢

holds for any two disjoint‘finite subcollections D and E of C .

If T : C — @G 1is a set function which maps ( into an order

bounded subset of G, , then there exists a positive vector measure

o : 2% —>@ satisfying o¢(C) = T(C) for all CE€C

Proof. Let u := sup,, C(C) . For each C€C , let FC denote

the algebra generated by C and define a positive vector measure

O FC —> @G by letting

oo (C) = T(C) and wC(E) = u - g(c) .
Consider m, n € N and 2 SRR A . € \ }C FC satisfying

m m+n

z XA < x X=

i=1 i i=m+1 i
and thus

m+n

Xy 2 oXg o

i=1 i

We now reduce the previous inequality by subtracting

XAi = 0. if A, = ® ,

XAi = Xgq if Ay = Q@ , and

xAi + XAj = Xq if Ay and Aj are complementary.

Relabelling the Ai if necessary,

we thus obtain

p+gq

Xy 2 kxg

i=1 i

for suitable p, g, k € NU{0} satisfying p+tg <m+n and k <n

as well as

e s o g Ap+q€C -
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By the assumption on C , we have
p p*g
(f"\Ai>n(/_\Ai> £ 0 .
i=1 i=p+1
This yields p+g < k , hence
p*q
151 Oc(q) (By) = (Pradoq ;) (@) < ku

whence, reversing the previous reduction,

m+n
I Ccn By s m
and thus
m . m+n _
151 ®c(y) Py = i=§+1 Cc(y) By)

for all cC(1), ..., C(m+n) € C satisfying Ai.EFC(i) for all

i€{1,...,m+n} . The assertion now follows from Theorem 3.1. o

In the case @G = R , Corollary 3.4 is due to Marczewski [10,111];

see also Lembcke [7].



4, Remark

The following example shows that the proof of Propositionv1.1

given by Guy [3] is incorrect:

In the notation of [3], define X := [0,1) as well as

1 1 1 1 2
e [01'2_) ’ F2 = [511) v G1 e [Ol§) ’ G2 = [§I§) ’

Gy := [%,1) r let R and S denote the algebras generated by

the sets F1, F and G1, G2, G3, respectively, let A : R — R

2
and W : § —> R denote the restrictions of the Lebesgue measure
to these algebras, and define N := 2 and M := 3 as well as

a, = =1, a, := -1, b1 =1, b2 =1, b3:= 17 . With these

definitions, the final equality in the formula following (12) is

false, and this is also true for the inequality by which it may

be replaced.
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