Common Extensions of Positive Vector Measures
 Klaus D. Schmidt and Gerd Waldschaks

$$
93-1989
$$

Klaus D. Schmidt and Gerd Waldschaks, Mannheim

We prove a general theorem on the existence of a positive common extension of a family of positive vector measures in an order complete Riesz space. Our theorem gives an easy access to vector-valued versions of results due to Guy, Horn and Tarski, and Marczewski.

1980 Mathematics Subject Classification (1985 Revision). Primary 28B15; Secondary 47B55.

Key words and phrases. Positive vector measures, positive operators, common extensions of vector measures, and linear operators.

The following result was proposed by Guy [3]:
1.1. Proposition.

Let Ω be a set, let M and N be algebras of subsets of Ω, and let $\mu: M \longrightarrow \mathbb{R}$ and $\nu: N \longrightarrow \mathbb{R}$ be positive additive set functions. Then the following are equivalent:
(a)
$\mu(A) \leq \nu(B)$ and $\nu(C) \leq \mu(D)$ holds for all $A, D \in M$ and $B, C \in N$ satisfying $A \subseteq B$ and $C \subseteq D$.
(b) There exists a positive additive set function $\varphi: 2^{\Omega} \longrightarrow \mathbb{R}$ satisfying $\varphi(A)=\mu(A)$ for all $A \in M$ and $\varphi(A)=v(A)$ for all $A \in N$.

This result is remarkable since it characterizes the existence of a positive common extension in terms of the set functions alone; by contrast, no such result is known in the case of bounded additive set functions, where some condition on the algebras seems to be indispensable; see Lipecki [8] and Schmidt and Waldschaks [12]. Moreover, Proposition 1.1 cannot be extended to more than two set functions; see Bhaskara Rao and Bhaskara Rao [2; Example 3.6.3].

Unfortunately, the proof of Proposition 1.1 given by Guy [3] is incorrect, as will be made precise in Section 4 of this paper, and the proofs given by Bhaskara Rao and Bhaskara Rao [2; Theorem 3.6.1] and Kindler $[5,6]$ are rather extensive. In the present paper we prove a general extension theorem for families of positive vector measures which gives an easy access to vectorvalued versions of Proposition 1.1 and results due to Horn and Tarski [4] and Marczewski [10,11].

Throughout this paper, let Ω be a set and let. G be an order complete Riesz space. Let us first recall some definitions and facts which will be needed in the sequel:

For a Riesz space \mathbb{H}, a linear operator $T: \mathbb{H} \longrightarrow \mathbb{G}$ is positive if $T x \in \mathbb{G}_{+}$holds for all $x \in \mathbb{H}_{+}$. For further details on Riesz spaces and linear operators, see [1].

For an algebra F of subsets of Ω, a vector measure $\varphi: F \longrightarrow G$ is positive if it maps F into G_{+}. Let $\mathbb{E}(F):=\operatorname{lin}\left\{x_{A} \mid A \in F\right\}$
and define $x: F \longrightarrow \mathbb{E}(F)$ by letting

$$
x(A) \quad:=x_{A}
$$

where X_{A} denotes the indicator function of $A \in F$. Then $\mathbb{E}(F)$ is a Riesz space with order unit X_{Ω}, and X is a positive vector measure. Moreover, each vector measure $\varphi: F \longrightarrow \mathbb{G}$ defines its representing linear operator $T: I E(F) \longrightarrow \mathbb{G}$, given by

$$
\mathrm{T}\left(\sum_{i=1}^{n} \alpha_{i} x_{A_{i}}\right):=\sum_{i=1}^{n} \alpha_{i} \varphi\left(A_{i}\right)
$$

and each linear operator $T: \mathbb{E}(F) \rightarrow \mathbb{G}$ defines a vector measure $\varphi: F \longrightarrow G$, given by $\varphi:=$ TOX.

Obviously, φ is positive if and only if T is positive.

The following extension theorem is a consequence of the Hahn-Banach theorem for linear operators; for a proof, see [1; Theorem 2.8]:
2.1. Proposition.

Let \mathbb{E} be a Riesz space with order unit $e \in \mathbb{E}_{+}$, let \mathbb{F} be a subspace of \mathbb{E} satisfying $e \in \mathbb{F}$, and let $S: \mathbb{F} \longrightarrow \mathbb{G}$ be a positive operator. Then there exists a positive operator $T: \mathbb{E} \longrightarrow \mathbb{G}$ satisfying $T x=S x$ for all $x \in \mathbb{F}$.

For a Riesz space \mathbb{E} and a family $\left\{\mathbb{E}_{\delta} \mid \delta \in \Delta\right\}$ of subspaces of \mathbb{E}, let $\Phi\left(\mathbb{E}_{\delta} \mid \delta \in \Delta\right)$ denote the collection of all families $\left\{\mathrm{x}_{\delta} \in \mathbb{E}_{\delta} \mid \delta \in \Delta\right\}$ satisfying $\mathrm{x}_{\delta} \neq 0$ for at most finitely many $\delta \in \Delta . A$ family $\left\{T_{\delta}: \mathbb{E}_{\delta} \longrightarrow \mathbb{G} \mid \delta \in \Delta\right\}$ of linear operators has a common extension if there exists a linear operator $T: \mathbb{E} \longrightarrow \mathbb{G}$ satisfying $T x=T_{\delta} X$ for all $\delta \in \Delta$ and $x \in \mathbb{E}_{\delta}$.
2.2. Theorem.

Let \mathbb{E} be a Riesz space with order unit $e \in \mathbb{E}_{+}$and let $\left\{\mathbb{E}_{\delta} \mid \delta \in \Delta\right\}$ be a family of subspaces of \mathbb{E} satisfying $e \in \prod_{\Delta} \mathbb{E}_{\delta}$. For a family $\left\{T_{\delta}: \mathbb{E}_{\delta} \longrightarrow \mathbb{G} \mid \delta \in \Delta\right\}$ of positive operators, the following are equivalent:
(b)
$\Sigma_{\Delta} T_{\delta} \mathrm{x}_{\delta} \in \mathbb{G}_{+}$holds for each family $\left\{\mathrm{x}_{\delta}\right\} \in \Phi\left(\mathbb{E}_{\delta} \mid \delta \in \Delta\right)$ satisfying $\Sigma_{\Delta} x_{\delta} \in \mathbb{E}_{+}$. The family $\left\{T_{\delta}\right\}$ has a positive common extension $T: \mathbb{E} \longrightarrow \mathbb{G}$.

```
Proof. It is sufficient to prove that (a) implies (b).
Define }\mathbb{F}:=\operatorname{lin}(\mp@subsup{L}{\Delta}{}\mp@subsup{\mathbb{E}}{\delta}{}).\mathrm{ Then the mapping }S:\mathbb{F}\longrightarrow\mathbb{G}\mathrm{ ,
given by
    Sx := 涔 T
for all }x\in\mathbb{F}\mathrm{ and arbitrary { {}\mp@subsup{\mathbf{x}}{\delta}{}}}\in\Phi(\mp@subsup{\mathbb{E}}{\delta}{}|\delta\in\Delta)\mathrm{ satisfying
x = \Sigma \Sigma\Delta x x , is well-defined and linear, and it is also positive.
Now the assertion follows from Proposition 2.1.
```

Theorem 2.2 is due to Maharam [9].

For a family $\left\{F_{\delta} \mid \delta \in \Delta\right\}$ of algebras of subsets of Ω, a family $\left\{\varphi_{\delta}: F_{\delta} \longrightarrow \mathbb{G} \mid \delta \in \Delta\right\}$ of vector measures has a common extension if there exists a vector measure $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$ satisfying $\varphi(A)=\varphi_{\delta}(A)$ for all $\delta \in \Delta$ and $A \in F_{\delta}$.
3.1. Theorem.

Let $\left\{F_{\delta} \mid \delta \in \Delta\right\}$ be a family of algebras of subsets of Ω. For a family $\left\{\varphi_{\delta}: F_{\delta} \longrightarrow \mathbb{G} \mid \delta \in \Delta\right\}$ of positive vector measures, the following are equivalent:
(a)
(b)

all $m, n \in \mathbb{N}$, all $A_{1}, \ldots, A_{m+n} \in \bigcup_{\Delta} F_{\delta}$ satisfying $\sum_{i=1}^{m} x_{A_{i}} \leq \sum_{i=m+1}^{m+n} x_{A_{i}}$, and all $\delta(1), \ldots, \delta(m+n) \in \Delta$ satisfying $A_{i} \in F_{\delta(i)}$ for all $i \in\{1, \ldots, m+n\}$. The family $\left\{\varphi_{\delta}\right\}$ has a positive common extension $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$.

Proof. It is sufficient to prove that (a) implies (b). For all $\delta \in \Delta$, define $\mathbb{E}_{\delta}:=\mathbb{E}\left(F_{\delta}\right)$ and let $T_{\delta}: \mathbb{E}_{\delta} \rightarrow \mathbb{G}$ denote the representing linear operator of φ_{δ}. We claim that

$$
0 \leq \Sigma_{\Delta} \mathrm{T}_{\delta} \mathrm{g}_{\delta}
$$

holds for each family $\left\{g_{\delta}\right\} \in \Phi\left(\mathbb{E}_{\delta} \mid \delta \in \Delta\right)$ satisfying $0 \leq \sum_{\Delta} g_{\delta}$. Indeed, this is obvious for families of simple functions taking their values in \mathbb{Z}, by the assumption on $\left\{\varphi_{\delta}\right\}$, and hence for families of simple functions taking their values in \mathbb{Q}. Consider now an arbitrary family $\left\{g_{\delta}\right\} \in \Phi\left(\mathbb{E}_{\delta} \mid \delta \in \Delta\right)$ satisfying $0 \leq \Sigma_{\Delta} g_{\delta}$, and let m denote the number of $\delta \in \Delta$ for which $g_{\delta} \neq 0$.

For each $k \in \mathbf{N}$ and $\delta \in \Delta$ choose $g_{\delta, k} \in \mathbb{E}_{\delta}$ such that
each $g_{\delta, k}$ takes its values in \mathbb{Q} and satisfies $g_{\delta, k}=0$ if $g_{\delta}=0$ and

$$
g_{\delta, k}-\frac{1}{k m} x_{\Omega} \leq g_{\delta} \leq g_{\delta, k}
$$

Then we have, for all $k \in \mathbb{N}$,

$$
0 \leq \Sigma_{\Delta} g_{\delta, k}
$$

and hence

$$
0 \leq \Sigma_{\Delta} T_{\delta} g_{\delta, k} \leq \Sigma_{\Delta} T_{\delta} g_{\delta}+\frac{1}{k} T x_{\Omega} .
$$

Since \mathbb{G} is order complete and hence Archimedean, we obtain

$$
0 \leq \Sigma_{\Delta} T_{\delta} g_{\delta},
$$

which proves our claim. Define now $\mathbb{E}:=\mathbb{E}\left(2^{\Omega}\right)$. By what we have shown and Theorem 2.2, the family $\left\{T_{\delta}\right\}$ has a positive common extension $T: \mathbb{E} \longrightarrow \mathbb{G}$, and it is then clear that the vector measure $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$, given by

$$
\varphi:=T O X,
$$

is a positive common extension of the family $\left\{\varphi_{\delta}\right\}$.

In the case $\mathbb{G}=\mathbb{R}$, Theorem 3.1 is equivalent to a result of Lembcke [7].

As a consequence of Theorem 3.1 we obtain the following vector-valued version of Proposition 1.1:
3.2. Corollary.

Let F_{1} and F_{2} be algebras of subsets of Ω. For positive vector measures $\varphi_{1}: F_{1} \longrightarrow \mathbb{G}$ and $\varphi_{2}: F_{2} \longrightarrow \mathbb{G}$, the following are equivalent:
(a)

$$
\varphi_{i}\left(A_{i}\right) \leq \varphi_{j}\left(A_{j}\right) \text { holds for all } i, j \in\{1,2\} \text { and all }
$$

$$
A_{i} \in F_{i} \text { and } A_{j} \in F_{j} \text { satisfying } A_{i} \subseteq A_{j}
$$

(b) $\quad \varphi_{1}$ and φ_{2} have a positive common extension
$\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$.

Proof. Consider $m, n \in \mathbb{N}$ and $A_{1}, \ldots, A_{m+n} \in F_{1} \cup F_{2}$ satisfying

$$
\sum_{i=1}^{m} x_{A_{i}} \leq \sum_{i=m+1}^{m+n} x_{\bar{A}_{i}}
$$

and hence

$$
\sum_{i=1}^{m+n} x_{A_{i}} \leq n x_{\Omega}
$$

For $i \in\{1, \ldots, m+n\}$, define

$$
C_{i}:= \begin{cases}A_{i}, & \text { if } A_{i} \in F_{1} \\ \emptyset & , \text { otherwise }\end{cases}
$$

and

$$
D_{i} \quad:=A_{i} \backslash C_{i}
$$

Define now

$$
g \quad:=\sum_{i=1}^{m+n} x_{C_{i}} \quad \text { and } \quad h \quad:=\sum_{i=1}^{m+n} x_{D_{i}}
$$

Then we have $g \in \mathbb{E}\left(F_{1}\right)$ and $h \in \mathbb{E}\left(F_{2}\right)$, and $g+h \leq n x_{\Omega}$. For $k \in\{1, \ldots, n\}$, define

$$
M_{k}:=\left\{\omega \in \Omega \mid \mathrm{kx}_{\Omega}(\omega) \leq g(\omega)\right\}
$$

and

$$
\mathrm{N}_{\mathrm{k}}:=\left\{\omega \in \Omega \mid \mathrm{kx}_{\Omega}(\omega) \leq \mathrm{nx}_{\Omega}(\omega)-\mathrm{h}(\omega)\right\}
$$

Then we have $M_{k} \in F_{1}$ and $N_{k} \in F_{2}$, and we also have $M_{k} \subseteq N_{k}$ and thus

$$
\varphi_{1}\left(M_{k}\right) \leq \varphi_{2}\left(N_{k}\right)
$$

Using

$$
\sum_{i=1}^{m+n} x_{C_{i}}=g=\sum_{k=1}^{n} x_{M_{k}}
$$

and

$$
\sum_{k=1}^{n} x_{N_{k}}=n x_{\Omega}-h=n x_{\Omega}-\sum_{i=1}^{m+n} x_{D_{i}}
$$

and the previous inequality, we obtain

$$
\begin{aligned}
\sum_{i=1}^{m+n} \varphi_{1}\left(C_{i}\right) & =\sum_{k=1}^{n} \varphi_{1}\left(M_{k}\right) \\
& \leq \sum_{k=1}^{n} \varphi_{2}\left(N_{k}\right) \\
& =n \varphi_{2}(\Omega)-\sum_{i=1}^{m+n} \varphi_{2}\left(D_{i}\right)
\end{aligned}
$$

hence

$$
\sum_{i=1}^{m+n}\left(\varphi_{1}\left(C_{i}\right)+\varphi_{2}\left(D_{i}\right)\right) \leq n \varphi_{2}(\Omega)
$$

whence

$$
\sum_{i=1}^{m+n} \varphi_{j(i)}\left(A_{i}\right) \leq n \varphi_{2}(\Omega)=n \varphi_{1}(\Omega)
$$

and thus

$$
\sum_{i=1}^{m} \varphi_{j(i)}\left(A_{i}\right) \leq \sum_{i=m+1}^{m+n} \varphi_{j(i)}\left(\bar{A}_{i}\right)
$$

for all $j(1), \ldots, j(m+n) \in\{1,2\}$ satisfying $A_{i} \in F_{j(i)}$ for
all $i \in\{1, \ldots, m+n\}$. The assertion now follows from Theorem 3.1.

We now record two further applications of Theorem 3.1:
3.3. Corollary.

Let \mathcal{C} be a collection of subsets of Ω satisfying $\varnothing, \Omega \in \mathcal{C}$. If $\zeta: \mathcal{C} \longrightarrow G$ is a set function such that

$$
\sum_{i=1}^{m} \zeta\left(c_{i}\right) \leq \sum_{i=m+1}^{m+n} \zeta\left(C_{i}\right)
$$

holds for all $m, n \in \mathbb{N}$ and $C_{1}, \ldots, C_{m+n} \in \mathcal{C}$ satisfying

$$
\sum_{i=1}^{m} x_{C_{i}} \leq \sum_{i=m+1}^{m+n} x_{C_{i}}
$$

then there exists a positive vector measure $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$ satisfying $\varphi(C)=\zeta(C)$ for all $C \in \mathcal{C}$.

Proof. For each $C \in C$, let F_{C} denote the algebra generated by C and define a positive vector measure $\varphi_{C}: F_{C} \longrightarrow G$ by letting $\varphi_{C}(C):=\zeta(C)$ and $\varphi_{C}(\bar{C}):=\zeta(\Omega)-\zeta(C)$; note that the assumption on ζ yields $\varphi_{C}(\bar{C})=\zeta(\bar{C})$ for all $C \in C$ satisfying $\bar{C} \in C$. Consider $m, n \in \mathbb{N}$ and $A_{1}, \ldots, A_{m+n} \in \cup_{C} F_{C}$ satisfying

$$
\sum_{i=1}^{m} x_{A_{i}} \leq \sum_{i=m+1}^{m+n} x_{\bar{A}_{i}}
$$

and thus

$$
\sum_{i=1}^{m+n} x_{A_{i}} \leq n x_{\Omega} .
$$

Relabelling the A_{i} if necessary, we obtain

$$
A_{1}, \ldots, A_{p}, \bar{A}_{p+1}, \ldots, \bar{A}_{m+n} \in \mathcal{C}
$$

for some $p \in\{0,1, \ldots, m+n\}$. Then we have

$$
\sum_{i=1}^{p} x_{A_{i}}+(m+n-p) x_{\Omega} \leq \sum_{i=p+1}^{m+n} x_{\bar{A}_{i}}+n x_{\Omega}
$$

hence

$$
\sum_{i=1}^{p} \zeta\left(A_{i}\right)+(m+n-p) \zeta(\Omega) \leq \sum_{i=p+1}^{m+n} \zeta\left(\bar{A}_{i}\right)+n \zeta(\Omega)
$$

whence

$$
\sum_{i=1}^{m+n} \varphi_{C(i)}\left(A_{i}\right) \leq n \zeta(\Omega),
$$

and thus

$$
\sum_{i=1}^{m} \varphi_{C(i)}\left(A_{i}\right) \leq \sum_{i=m+1}^{m+n} \varphi_{C(i)}\left(\bar{A}_{i}\right)
$$

for all $C(1), \ldots, C(m+n) \in C$ satisfying $A_{i} \in F_{C(i)}$ for all i $\in\{1, \ldots, m+n\}$. The assertion now follows from Theorem 3.1 口

In the case $G=\mathbb{R}$, Corollary 3.3 is due to Horn and Tarski [4]; see also Lembcke [7].
3.4. Corollary.

Let C be a collection of subsets of Ω such that

$$
\left(\Pi_{D} D\right) \cap\left(\Pi_{E} \bar{E}\right) \neq \varnothing
$$

holds for any two disjoint finite subcollections D and E of C. If $\zeta: \mathcal{C} \longrightarrow \mathbb{G}$ is a set function which maps \mathcal{C} into an order bounded subset of \mathbb{G}_{+}, then there exists a positive vector measure $\varphi: 2^{\Omega} \longrightarrow \mathbb{C}$ satisfying $\varphi(C)=\zeta(C)$ for all $C \in C$.

Proof. Let $u:=\sup _{C} \zeta(C)$. For each $C \in \mathcal{C}$, let F_{C} denote the algebra generated by C and define a positive vector measure $\varphi_{C}: F_{C} \longrightarrow \mathbb{G}$ by letting

$$
\varphi_{C}(\mathrm{C}):=\zeta(\mathrm{C}) \text { and } \varphi_{C}(\overline{\mathrm{C}}):=u-\zeta(\mathrm{C}) .
$$

Consider $m, n \in \mathbb{N}$ and $A_{1}, \ldots, A_{m+n} \in \bigcup_{C} F_{C}$ satisfying

$$
\sum_{i=1}^{m} x_{A_{i}} \leq \sum_{i=m+1}^{m+n} x_{\bar{A}_{i}}
$$

and thus

$$
\sum_{i=1}^{m+n} x_{A_{i}} \leq n x_{\Omega} .
$$

We now reduce the previous inequality by subtracting

$$
\begin{aligned}
& x_{A_{i}}=0, \quad \text { if } A_{i}=\varnothing, \\
& x_{A_{i}}=x_{\Omega} \quad \text { if } A_{i}=\Omega, \text { and } \\
& x_{A_{i}}+x_{A_{j}}=x_{\Omega} \text { if } A_{i} \text { and } A_{j} \text { are complementary. } \\
& \text { Relabelling the } A_{i} \text { if necessary, }
\end{aligned}
$$

we thus obtain

$$
\sum_{i=1}^{p+q} x_{A_{i}} \leq k x_{\Omega},
$$

for suitable $p, q, k \in \mathbb{N} \cup\{0\}$ satisfying $p+q \leq m+n$ and $k \leq n$ as well as

$$
A_{1}, \ldots, A_{p}, \bar{A}_{p+1}, \ldots, \bar{A}_{p+q} \in C .
$$

By the assumption on C, we have

$$
(\overbrace{i=1}^{p} A_{i}) \cap(\overbrace{i=p+1}^{p+q} A_{i}) \neq \varnothing
$$

This yields $p+q \leq k$, hence

$$
\sum_{i=1}^{p+q} \varphi_{C(i)}\left(A_{i}\right) \leq(p+q) \varphi_{C(i)}(\Omega) \leq k u
$$

whence, reversing the previous reduction,

$$
\sum_{i=1}^{m+n} \varphi_{C(i)}\left(A_{i}\right) \leq n u
$$

and thus

$$
\sum_{i=1}^{m} \varphi_{C(i)}\left(A_{i}\right) \leq \sum_{i=m+1}^{m+n} \varphi_{C(i)}\left(\bar{A}_{i}\right)
$$

for all $C(1), \ldots, C(m+n) \in C$ satisfying $A_{i} \in F_{C(i)}$ for all i $\in\{1, \ldots, m+n\}$. The assertion now follows from Theorem 3.1. 口

In the case $G=\mathbb{R}$, Corollary 3.4 is due to Marczewski [10,11]; see also Lembcke [7].

The following example shows that the proof of Proposition 1.1 given by Guy [3] is incorrect:

In the notation of $[3]$, define $X:=[0,1)$ as well as $F_{1}:=\left[0, \frac{1}{2}\right), F_{2}:=\left[\frac{1}{2}, 1\right), G_{1}:=\left[0, \frac{1}{3}\right), \quad G_{2}:=\left[\frac{1}{3}, \frac{2}{3}\right)$, $G_{3}:=\left[\frac{2}{3}, 1\right)$, let R and S denote the algebras generated by the sets F_{1}, F_{2} and G_{1}, G_{2}, G_{3}, respectively, let $\lambda: R \longrightarrow \mathbb{R}$ and $\mu: S \longrightarrow \mathbb{R}$ denote the restrictions of the Lebesgue measure to these algebras, and define $N:=2$ and $M:=3$ as well as $a_{1}:=-1, \quad a_{2}:=-1, b_{1}:=1, b_{2}:=1, b_{3}:=1$. With these definitions, the final equality in the formula following (12) is false, and this is also true for the inequality by which it may be replaced.
[3] Guy, D.L.:
Common extensions of finitely additive probability measures.
Portugaliae Math. 20, 1-5 (1961).
[4] Horn, A., and Tarski, A.:
Measures in Boolean algebras.
Trans. Amer. Math. Soc. 64, 467-497 (1948).

Aliprantis, C.D., and Burkinshaw, O.:
Positive Operators.
New York - London: Academic Press 1985.
[2] Bhaskara Rao, K.P.S., and Bhaskara Rao, M.: Theory of Charges.
New York - London: Academic Press 1983.

51 Kindler, J.:
A Mazur-Orlicz type theorem for submodular set functions.
J. Math. Anal. Appl. 120, 533-546 (1986).

Kindler, J.:
Supermodular and tight set functions. Math. Nachr. 134, 131-147 (1987).

Lembcke, J.:
Gemeinsame Urbilder endlich additiver Inhalte. Math. Ann. 198, 239-258 (1972).

Lipecki, Z.:
On common extensions of two quasi-measures. Czech. Math. J. 36 (111), 489-494 (1986).
[9] Maharam, D.:
Consistent extension of linear functionals and
of probability measures.
In: Proc. Sixth Berkeley Symp. Math. Stat. Probab., vol. 2, pp. 127-147.
Berkeley: University of California Press (1972).
Marczewski, E.:
Indépendance d'ensembles et prolongement de mesures. Coll. Math. 1, 122-132 (1947-48).

Marczewski, E.:
Ensembles independants et leurs applications à la théorie de la mesure.
Fund. Math. 35, 13-28 (1948).
Schmidt, K.D., and Waldschaks, G.:

Common extensions of order bounded vector measures.
Preprint (1989).

[^0]
[^0]: Authors' address:
 Fakultät für Mathematik und Informatik
 Universität Mannheim
 A 5
 6800 Mannheim
 West Germany

