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Abstract

Krichever.N ovikov algebras of meromorphic vector Helds with more than two poles on
higher genus Riemann surlaces are introduced. The structure of these algehras and their
induced modules of fonns of weight A is studied.



1. Introductlon

In the study of conformal field theory arecent generalization of the Virasoro Algebra
was given by Kriehever.Novikov [1][~] for Riemann surfaees of higher genus. Let X
be a fixed Riemann surfaee of genus g. We ehoose two "generic " points P+ and P_
and eonsider the Lie algebra of meromorphic vector fields on X which are holomorphic
on X \ {P+ ,P-}. Krichever and Novikov showed that this algebra admits a eentral
extension. They eonstructed aseries of representation eoming from the operation of the
vector fields on the meromorphie forms of weight ,\ whieh are holomorphic on
X \ {P+,P-} . This algebra (with or without eentral extension) is now usual1y cal1ed
Kriehever-Novikov algebra (short: KN algebra). For g = 0, henee X = Ipl (all varieties
are over the eomplex numbers () this algebra is exaetly the Virasoro algebra. A crucial
part in the theory is the fixing ofa distinguished basis of the vector fields and of the
forms, the so cal1ed KN basis.

There is a meromorphic (1-) differential p holomorphic on X \ {P+, P_} with residue
+1 at P+ and residue -1 at P- and onlyimaginaryperiods (see [3,p1l6]). It waspointed
out [~J[61that in string theory the levellines ol the function (Q denotes a point different
from P+ and P_)

u(p) =Re kP p

on X \ {P+, P-} could be interpreted as elosed string configuration at the proper
time r. Here r gives the value of the function u along the levelline. As r _ :i:oo the
levellines beeome eireles around the points PT representing free incoming and outgoing
strings.

Hence it is quite natural to ask for more strings coming together and interacting. In
terms of KN algebras this is the question of the structure of the algebra of meromorphie
vector fields which are holomorphic exeept at a certain points.

The aim of this paper is to give the results of such a generamation. Details of the
ealeulation and further developments will be found in aseparate publication [4.1.For the
generalities on Riemann surfaces , the theorem of Riemann-Roch and its application to
the KN algebra ror two points see [31. Forthe interpretation in physics see [6-14.].

~. Fundamental de6nltions

Let X be aRiemann surface of genus g. We always assume X to be compact and
without boundary. X can also be considered as a connected, projective, nonsingular
eurve over (- A formal sum ol points QI,"', Q, e X with integer multiplicities,
(1) D =L:ßiQi

;=1

2



is called a divisor. K denotes the canonical divisor, resp. the canonical divisor dass,
resp. the canonicalline bundle (which is the same as the holomorphic cotangent bundle).
The sections o£the canonicalline bundle are the differentials. K>' := K~>' is,\ times the
tensor product o£ the bundle K with itself. For'\ < 0 this means K>' := (K.)~I>'I . K.
denotes the dual bundle, the holomorphic tangent bundle. 1£we ase the divisor notation,
then K>' corresponds to the divisor ,\. K.
The definition o£K>' with ,\ e Z is dear. To define it tor ,\ half integer we have to choose
a "square root" o£K. This is not unique tor g ~ 1 . For arbitrary ,\ we have to consider
coverings o£ X. In this paper we will restrict ourselves to integer valued '\. The case of
arbitrary ,\ will be covered in [.1.

The (meromorphic) sections of K>' are ealled (meromorphie) £orms of weight '\. Forms
of weight -1 are the veetor fields. Let D be a divisor as above then HO(X,'\K +D)
is the vector space of meromorphic ,\ - forms whieh are holomorphie outside the support
of D ( which is the set o£ points appearing with nonvamshing multiplicities) and have a
zero o£ at least order -ni at the point Qi. As usa al a zero o£ negative order mi is
interpreted as a pole of order .....mi. We use the notation ordq,(,) tor the order o£ the
zero of the section , at the poini Qi.

By the theorem o£ Riemann-Roch (see [3,p.107]) and using deg(,\K) = 2'\(g - 1) we
get

(2) dimHO(X,'\K +D) - dimHO(X, (1- ,\)K - D) = deg('\K +D) - g + 1
= (2'\ - 1)(g - 1)+ deg D.

Let k be a natural number bigger or equal to two. Let PI, P'J, •.. , Pit be k different
"generie" points of X. In our context generic means that there is a countable set of
points of X which have to be avoided. We choose an arbitrary numerica! order of the
points. This we will keep fixed. In addition we fix loca! coordinates Zl around the points
P,with ZI(P,)=0 forl=l, ... ,k. XOdenotes X\{P1,P'J, •.. ,P/t}.

3. Tbe level Une.

LEMMA 1. Let X be aRiemann sur/ace 01genus g, PI, P2, ••• , Pit k different points
(k ~ 2). Let

(3)
/t

Ci e (: ,i= 1, .. "' k with ECi = 0 ,
i=1

then there exists a unique meromorphic differential p on X such that

(a) pis holomorphic on X \ {PI, p2'"""' PIt},
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(b)resp,(p)=Ci, fori=1, ... ,k,

(e) p has only imaginar,y periods.

The proof is a generalization of the proof in [3,p.1161, see also [4:1.

Let us apply the lemma in the following situation. Let 1 ~ I < k be a number, Pi,.'" PI
and Pl+i, ... , Pk be a partition ofthe points Pi' P'l, ... , Pk. If we set

(4) 1
Ci = 21' i = 1, ... , I and Ci = 1

2(k.-l)' i=I+1, ... ,k

we get EiCi = O. Let p be the differential existing by lemma 1. We ehoose Q E X with
Q :F Pi, i= 1, ... , k.

u(p) := Re ~p p

is now a harmonie function defined on XO = X \ {Pi' P'l, ... , Pk} with

(5) tim u(P) =-00, i=1, ... ,1 and tim u(P) =00, i=I+1, ... ,k.
p-~ p-~

The levelline for T E IR is defined as

(6) Cr := {P E XO Iu(P) = T} .

Varying T defines a global fibration of the surlaee X \ {PI, P'l, ... , Pk}. Eaeh levelline
splits in a union of disjoint (real) curves. Singular points ean only oeeur at the zeros
oI the differential p. For T < 0 the levelline Cr splits in a collection oI I eomponents
cr, r = 1, ... , I, where eaeh eomponent cr is a eurve diffeomorphic to SI around the
point Pr' For T :> 0 we get the same situation around the points Pr, (I + 1) ~ r :S Je.

Finally, if w is a meromorphie differential which is holomorphic on XO, then the value
of the integral of w along any nonsingular levelline will be the same.

4:.The KN. algebra and the KN. modules

DEFINITION.

(a) The (generalized) Kriehever.Novikovalgebra (KN algebra) o( the Riemann surfaee
X o( genus g and the points (h ~ 2) PI, P2, ••• , Pk is the Lie algebra o( meromorphie
vector Belds on X, wbieh are holomorphie on XO = X \ {PI, P'J,... , Pk}. It is denoted
by KN(PI, P'J,"', Pk) or just by KNk.

(b) The (generalized) Kriehever.Novikov module (KN module) 01 weight A E Z is
the veetor spaee 01 meromorphic (orms 01 weight A whicb. are holomorphie on XO :=
X\{PllP'l"",Pk}.ltisdenotedby P>'(PI,P'J, ... ,Pk) ,orjustby Ft.
Of course, KN(Pll P'l,"', Pk) equals p-l (PI' P'Jl"" Pir) as vector space.
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By taking the Lie derivative Fe is a Lie algebra module over KNk. In local terms
the action can be described as folIows. Let e be a meromorpmc vector 6eld and j be
a meromorpmc form of weight '\. Locally they are given as

(7) ß
e(z)1 = a(z) ßz' j(z)1 = ß(z) dzA, with dzA := (dz)0A •

Then the Lie derivative is given by

5. A basis for Fe in the cases (g ~ 2, ,\ =1= 0, 1) and (g = 0, ,\ E Z)

First we will give a set of generators wmch is completely symmetrie in the points
Pr, 1= 1, ... , k. We set

(9) M(,\) = (2'\ - 1)(g - 1) - 1 .

is a one-dimensional vector space. It is generated by a (up to multiplication with a
constant) unique form

For the details of the calculation we refer to ['J. The argument is similar to the case
considered in [2J. Let me scetch the main idea. Starting point is the following

LEMMA 2. Let t:. be a Une bundle, L its corresponding divisor, na natural number. Set.
l:= dimHO(X,L), then

(11 ) dimHO(X,L - nP) = max(l- n,O)

if P is a genenc point on X.

We use the fact, that in our cases of A either

(12) deg( A . K) = A(2g - 2) ~ 2g - 1 or
deg((l - A) . K) = (1 - A)(2g - 2) ~ 2g - 1 .
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Renee one of this divisors is nonspecial, whieh says that the seeond term of the leCt hand
side of Riemann-Roeh theorem vanishes [3,p.107]. With Riemann-Roeh we ealeulate

(13) dimHO(X,'\. K) = (2'\ - 1)(g - 1) or

dimHO(X, (1-'\) .K) = (1- 2'\)(g - 1) .

Using (11) and assuming PI, P2, .•. , Pk to be generie we ealeulate

(14) dimHO(X,'\. K - 1101 PI - 1Io2P'J'" - nkPk) = 1,
(15) dimHO(X, >.. K - nlPl - n2P'J'" - (nk + a)Pk) = 0, a E IN.

The former implies the statement on the dimension, the latter implies that the generator
has exaetly the preseribed order at the points.

By requiring for the loeal representation at the point Pk

(16)

the 1 = I" (1101,1102,"" nk) is eompletely find. We will assome this normalization in the
following.

PROPOSITION 2. The set

k-l

(17) { I"(n}, 1102, ••• , nk) 11101,1102"", nk-l E Z, nk =M(>.) - I:ni }
i=1

is a set of generators for F" (PI, P'J, ••. , Pk).

For k > 2 this set is not linearly independent. To get a basis of F( we introduee the
following types of generators (n, l E Z)

(18) In(>'):=I.\(n,O, ,O,M(>')-n), n~O type I

(19) In(>'):=I.\(n,O, ,O,M(>')-n), 110<0 type 11
(20) I~(>') :=I.\(O, ,n, ... ,O,M(>')-n), 110<0 type 111,

In the definition (20) l = 2, ... , k -1 and the nomber 110 has to be plugged into the l -th
position. If it is eonvenient we will also use the notation J ~ (>.) to denote generators of
type I and type 11.
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PROPOSITION 3. The set of

(21) 1n('\), ne Z and I~('\), ne Z, n S -1, with 2 S l S k -1

If there is no ambiguity we will drop the ,\ in the notation. Due to the special importance
o{ certain weights we introduce

e~ := 1~(-1), and o~ := 1~(2)

and (assuming the result o{ the next section already)

A~ := I~(O), and W~ := 1~(1).

O{ course, it is also possible to embed the Riemann surface into its Jacobian and to
describe in some sense more explicitly the above forms in terms o{ theta functions, prime
{orms etc. as it was done for k = 2 in [lI) and [14.]. This will be covered in [4:].

6. A basl. for Ft In the (ue. (g ~ 2,'\ = ° or ,\ = 1) and (g = 1,'\ e Z)

Due to the fact that ,\. K is a special divisor we have to modify the argument and
the basis.

PROPOSITION 4. (g ~ 2,'\ = 1). A set of symmetrie generators of Fl is given by
(n; e Z, i = 1, ... , k - 1)

(22)
k-l

11(nI, n2, ••• , nk-l, (g - 1) - L nil,
j=1

k-l

nj ~ 0, L nj S (g - 1),
;=1

k-l

(23) 11(nll n2, ••• , nk-ll (g - 2) - L n.-), nj::; -1,
j=1

where at least one nj S -2 or E~;11nj ~ 9 and
(24) 11(-1,-1,0, ,0),/1(-1,0,-1, ... ,0), ... ,

11(0,-1,-1, ,0), ... ,/1(0, ... ,0,-1,-1).

The elements 1in case (22) and (23) are uniquely given by a similar argument as above.
In case (24) we understand by 11(0,0, ... ,0,-1, ... ,-1, ... ,0) the unique differential
given by lemma 1with Cl = -1 and Cm = 1. Here l and m are the entries being equal to
-1 in the description o{ 1with l < m. Here again we have similar types (n e Z)

() ._1 ( ).- 1( {g - 2 - n, n ~ 9 )25 Wn.- n 1 .- 1 n, 0, •.. ,0, 9 _ 1 _ n, 0 S n S 9 _ l' type I
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(26)

(27)

'-1 (1)'- {Jl(-I,O, ... ,O,-I),
Wn.- n .- 1( )1 n, 0, , 0, g - 2 - n ,

1 '-1/(1)'- {Jl(O, ,-I, ... ,O,-I),
Wn'- n .- 11 ( )0, ... ,n, ... ,0,g-2-n,

n =-1
n S-2
n= -I
n S-2

type 11

type 1111

In (27) we have l = 2, ... , Te-I .

PROPOSITION 5. Tne set oftne generators (25)-(27) is a basis for F-l (PI, P'J,... , Pk) .

In the case o£genus 1K is the trivial bundle. Hence a1l tensor powers are agam trivial.
For this reason a basis of F~is a basis for a1l Ft.

PROPOSITION 6. (g ~ 2, A = 0 or g = I, A E Z). A set of symmetrie generators is given
by(njEZ, i=I, ... ,k-l)

k-l k-l
(28) 10(n17n'J, ••• ,nk_l' -g- L n.-), at least one nj > 0, or L nj < -g,

j=1 j=1
k-l k-l

(29) 10(nl, n'J, ... , nk-I, -g - 1 - Ln.-), nj SO, Lnj ~ -g - 1,
j=1 j=1

(30) 1°(0,0,0, ... ,0) == 1

In case (28) uniqueness is agam by a similar argument as above. In case (29) such
a 1 is only unique up to muliplication with a constant and adding a constant. Rence
normalization at the point Pk does not fix it completely. We will give a method for fixing
it by duality later on. The types are (n E Z)

(31) An:=/n(O):={/~(n,o, ... ,o,-g_-n), n>o. type I
1 (0,0,0, .. ,.,0)=1, n-O

(32) An :=/n(O):= {/~(n,o, ,O,-g-l-n), -g Sn< 0 type 11
1 (n,O, ,O,-g-n), nS-(g+l)

(33) A~ := I~(O) := {/~(O, , n, ,0, -g - 1 - n), -g Sn< 0 type 111,
1 (O, ,n, ,O,-g-n), nS-(g+l)

with l=2, ... ,k-l.

PROPOSITION 7. Tne set of tne generators (31)-(33) is a basis for FO (PI, P'J,... , Pk) .
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'I. The structure comtant.

If we choose the basis in KN(PI,P:l"",Pk) and the basis in F>'(PI,P'J"",Pk)
as above then the module structure o{Fe over KNk, resp. the structure o{the algebra
KNk itself tor ,\ = -1 , is completely 6xed by the structure constants GJ"fj E 4: , given
by

(34)

Here Cl, ß, "1 are generalized indices. The structure constants are depending on the
weight ,\ . I:' denotes that only 6nitely many 17actually occur.

By doing loca! calculations at the points Pb P:l,"', Pk (similar to [S,p.115]) we can
determine which indices "1occur. We restrict ourselves to g ~ 2 and A :f: 0, 1 or g = 0 and
,\ E Z. In the remaining cases there are sorne minor modi6cations due to the exceptional
elements in the basis (see ['no

Let us 6x A. Depending on the type o{the basis elements we get the {ollowingresult:
(type I, type I)

(35)
n+m-I+3g

en .Im = L A~,m(A)/I' .
I'=max(O,n+m-l)

(type I,type 11)and vice versa

n+m-I+3g mln(-I,n+mc-I+3g)

(36) en• Im = L A~,m(A)/I' + L A~,m(A)/~ .
1'=0 I'=n+m-I

O{ course one o£ the sum could be the empty sumo This coefficients are exactly the
coefficients o{the KN algebra (modules) o{the two points PI and Pli:. In the boundary
cases we get

(36a) A~7mm-l+ag(A) = -(rn + An) - g(l + A),

Here an is the leading coefficient o{ en at the point PI and bm the leading coefficient o{
Im at the point PI'
(type I,type III,) and vice versa

n+m-l+3g mln(-I,n+m-I+3g)

(37) en• l:n = 2: A~!m(A)/I' + L A~!mp.)f!
1'=0

9
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n+m-l+8g min(-I,n+m-l+3g)

(38) e~ . Im = L B~/m (>,)/, + L B~,lm (>,)/:
,=0 r=n-l

The basic method for ealeulation of the eoeffident, is to write en, resp. Im as linear
eombination of the basis of the KN algehra KN(P/,Pk) , resp. KN module, do the
caleulation as above and transfer the result back in terms of our basis. For a detailed
ealeulation see [4.]. As ean be seen in (38) there is always a term I~n-l even if m was
chosen to be a big positive number.

(type 111"type 11I,)

n+m-l+3g min(-I,n+m-l+3g)

(39) e~.I!n= L G~:'m('\)/,+ L G~:lm(>,)/~.
,=0

(type III/, type lIlA), h ::/:l or (type 11,type III,):

r=n+m-l

-1 -1 n+m-l+3g
(40) e~ ./~ = L D~'/~('\)/~+ L E~:I;:('\)/~+ L F~:~('\)/, .

'=n-l '=m-l r=O

If n +m ~ -3g the last sum will not appear. Nevertheless in the first and seeond sum
all terms will oecur up to r = -1.
For Ic= 2 this is exactly the result of Krichever and Novikov [1]. In their rule of

indexing the above looks like

(41)
go

e(i) • I (j) = L R1,jl(i+ j+l),
'=-go

Both rules of indexing are related by

(42) i = n + ~g - 1 and i = m + ~ - ,\(g - 1) .

Here the structure looks very symmetrie. This symmetry does not oeeur for Ic> 2.
Henee we dedded not to ehoose this rule of indexing.

8. Example

To illustrate the result we ealculate in the ease of X = Ipl (henee g = 0) the algebra
KN(Pll P'J, ..• , Pk) . We ehoose such a parametrization Z of X that PI eorresponds
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to z = 0 and Pk corresponds to z = 00 • The points PI correspond to al E ( tor
l = 2, ... , k - 1. In this parametrization it is easy to give the basis in an explicit way

type I

type II(43)

n<O type IIII .

Here we normalized (contrary to the general rule) in such a way that the leading coeffi.
eient at 00 is equal to -1.

By direct calculation we see:

(44)

(45)

ren, eml = (m - n)en+m-b n, mEZ
m+n-l min(-I,m+"-I)

ren, elml = ~ Ar,l er + ~ Ar,l elL- n,m L- n,m l' n~O
1'=0 r=m-l

with l = 2, ... , k - 1 and

Furthermore tor l = 2, ... , k - 1

(47) [e~, e~l = (m - n)e~+m-l' n, m < 0 •

In the remaining case 1 S r, l S k - 1," =1= l we get

(48)
-1 -1

[er el ] = ~ DII,r,1 er + ~ EII,r,1 el
"' m L- n,m 11 L- ",m 11

11="-1 lI=m-l

with (setting q = m +n - 1 and al = 0 )

(49)

(50)

DII,r,1 = ( m ) (ar - al)9-1I(, - 2n+ 1)",m , _ n + 1

EII,r,1 = _DII,1,r
n,m m,n.

In particular, we see that e~1 and e~1 will always OCCUf.
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9. Duality

If we multiply a form of weight ,\ and a form of weight 1 -,\ we get a form of
weight 1, hence a l.differential. By taking the integral over suitable curves we get a kind
of a duality pairing between the above forms. We choose a differential (see equation (26))

(51)
k-l

1 " IP=k_l~W-l'
1=1

It has residue -1/(k - 1) at the points PI,"" Pk-l and residue +1 at the point Pk.
The levelline is a cirele around P/t: for 1" < 0 and a collection of cireles around the other
points for r ::> O. Let us denote such a cirele (with orientation) around PI by Cl. For
smooth Cr and for w E Fl (Pb P'J,"', P/t:) we get

(52) k-l 1 i 1 i 1 i
~ 21?r c' w = 2h C, W = 2h Jet w.

Of course, we could have chosen arbitrary cireles C' around the points P, without chan.
ging the value of the integral.

PROPOSITION 8. Let v E Fl- A (PI, P'J, ... , Pk) han the representation

(53)

v = L' 1'nln(l - A) + L' 'f'n/n(1 - A)+
n?O n<O

k-l

L L' '~/~(1 - A) •
1='J n<O

Then the coeJlicients can be calculated by

(54)

(55)

(56)

'f'n= -11 [ l-n-dA). v = ~ i I-n-I(A). v,
2 7f ct 217f C,

1'n=-1
1
[1-n-dA).v n<O

2 7f JCI

''--1 = _1_[ 10(A). v
217f C'

,,-- 'J = 2:7f£, 11 (,\) . v - ,,--1aL -1 ( ,\ )

12
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Here it ia deJined ('1' ~ 0, t < 0)

(57)

We get

(58)

Q~t('\) = -lI i Ir(,\)' //(1-,\) ., 2 'Ir JOI

Q~.-n-l (,\) = 1 and a~.m('\)= 0 iIm < -n - 1 .

In the case of k = 2 there are no terms of the third kind. Hence we get the (well
known) result

(59) m=-n-l
m 1= -n -1.

In case of genus g equal to 1 or in case of g ~ 2 and ,\ = 0 or 1 we have to add certain
constants to the elements A~ for -g S n S -1 (33) to make the proposition 8 also true
in this case. But remember, up to now we were only able to fix exactly this elements up
to an addition of a constant (see proposition 6). With the duality requirement they are
completely determined. See ["I for details.

10. The central extension

Starting from our Krichever-Novikov algebra KN = KN(P1, P'J, •.. , Pk) we consider
central extensions KN of it. Let E~ denote a fixed lift to KN of the basis element e~
of KN. Then KN is generated by a central element t and the set of E~ (n and I as in
equation (21)). We get

(60)
(61)

[Ear,tl=o
[Ear,Eß] = L:C;;,ßE,.+x(ear,eß)t.,.

Here a, 13,i are generalized indices (i.e. Ea = E~), GJ"ß are the structure constants
of the algebra KN

(62) [ea, eß] = I:GJ"ße,.,.
and X (a, 13) e «: is a 2-cocycle. It is defined for every pair of vector fields and it fulfills

(63)
(64)

x(a, 13) = -X(ß, a)
x(l/, g], h) + x(lg, hl, I) + X([h, II,g) = 0 .--These conditions are sufficient and necessary for KN being a Lie algebra.

To construct central extensions we use the method of [2].
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DEFINITION. Let (Ucn za) be a covering of X by coordinate patehes and let
Zß= laß (Za) be the transitionfunctions for non-empty Uanu~. A meromorphie projeeo
tive connection ia a coHection of loeal meromorphic functions R(X (za) whieh are related
on nonempty Ua nU~ by

(65)

Here S(h) is the Schwartzian derivative. It is deBned as

(66) hlll 3 (h") ~S(h) = --- -h' 2 h' .

The' denotes derivation with respect to the loeal variable z.

If all local Cunctions are holomorphic we call R a holomorphic projective connection.
There exists always a holomorphic projective connection [15,p.202]. Due to the trans-
formation law (65) the difFerence of two projective connections is always a quadratic
differential (Le. a form of weight 2). Rence by fixing one holomorphic connection Ra we
can get all of them by adding forms of weight 2. In the following we are mainly interested
in meromorphic ones which are holomorphic on X \ {P1, P~, ... , Pk} and have a pole of
at most order 1 at the points PI, 1= 1,... , k. We get for g ~ 2

(67)
3g-3 k-1

R = Ra +L cnOn +L c~1nI_1' Cn,C~1 e 4:
n=O 1=1

resp. for g = 1 (O~ = A~)

(68)
k-1

R = R.o + Co00 +L C~ 1nI-1 , CO, C~ 1 e 4: .
1=1

For g = 0 there is only something to add to Ro if Je~ 4

(69)
k-3

R = Ra +L c.O., C. e 4: ..=1
The O. are certain forms of weight 2. If we use "standard coordinates" for g = 1 and
g = 0 we can use R.o == 0 in these cases.

With the help of these projective connections we set for vector Helds e, h with the local
representations

(70)
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(71) x(e, h) := (~(J"'g -lu"') - R. (J'U -Ig')) dz .

(72)

This is a meromorphic l.form which we can integrate along the levellines er according
to the differential p of equation (51). We set with c E ((an arbitrary constant

x(e,h) = 24
c
d L..x(e,h) = 24

c
d L.x(e,h) .

PROPOSITION 9. x(e, h) de6.nes a 2-cocyde, hence a central extension 01 the KN alge-
bra.

11. Semiinftniie wedge representation.

We fix a weight A. Let F be F>'(PllP~",.,Pk), I~the basis 01 F, e~ the basis of
KN (PI , p~,... ,Pk). We want to give the elements of the basis a Z - graduation

(73)
(74)

l(i) := In,

l(i) := I~,
n~O
n < 0, l = 1, ... , k - 1 where i= (n + 1) (k - 1) - l •

A semiinfinite form is an element of the vector space

H = H>' (PI, P'J, •.. , Pk)

generated by the formal elements

(75)

with

(76) ir< ir+1 < ... < i.< m •

The dots in the right part of (75) means that starting from an arbitrary index m all
elements with index k ~ mappear.

We have

(77)

(78)

This action ofKN on F we want to transfer onto the vec:tor space H. We try the following
naive definition (Leibniz rule)

e.w:=(e./(id)A/(it)A ... + 1(it}A(e./(it))A ... + ...
+/(idA ... A(e./(m»)A/(m+I)'" + .•..
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The 1\ indieates how to ealeulate the result. The rules are (~, 1{t and 11 are neighbour
pieces)

(79)
(80)

(81)

~ 1\ Ij 1\ 1{t 1\ I •.1\ 11 := -~ 1\ Ii 1\ 1{t 1\ Ij 1\ 11, j> i
~ 1\ Ii 1\ 1{t 1\ Ii 1\ 11 := 0

4>" (t.c;/;) ". := t. c; (4)'' /; ".)

The definition (78) makes sense iI there are only finitely many terms on the right hand
side. A doser examination [4:1 shows that this only works for subalgebras of KN. We
introduee the following subalgebras

(82)
(83)

KN + := ( e" I n ~ 2 )

KN~ := ( e~ I n ~ -3g) 1= 1,.. " k - 1

For the elements of KN+ and of KN~ the action (78) is well de6ned. Henee H is a
module over these algebras. Unfortunately this is not true for KN~, 1 ~ 2.

In the case of KN~ H becomes a module over a eentral extension of KN [1]. It is
reasonable to expect that this will be true in the general situation. This question and a
doser study of the central extensions of KNk is under investigatio~ (5)[4:].

. .;. ..•
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