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Abstract

Krichever-Novikov algebras of meromorphic vector fields with more than two poles on
higher genus Riemann surfaces are introduced. The structure of these algebras and their
induced modules of forms of weight ) is studied.




1. Introduction

In the study of conformal field theory a recent generalization of the Virasoro Algebra
was given by Krichever-Novikov [1][3] for Riemann surfaces of higher genus. Let X
be a fixed Riemann surface of genus g. We choose two “generic ” points P, and P_
and consider the Lie algebra of meromorphic vector fields on X which are holomorphic
on X\ {P4+,P_}. Krichever and Novikov showed that this algebra admits a central
extension. They constructed a series of representation coming from the operation of the
vector fields on the meromorphic forms of weight A which are holomorphic on
X \{P;,P_} . This algebra (with or without central extension ) is now usually called
Krichever-Novikov algebra (short: KN algebra). For g = 0, hence X =IP' (all varieties
are over the complex numbers C) this algebra is exactly the Virasoro algebra. A crucial
part in the theory is the fixing of a distinguished basis of the vector fields and of the
forms, the so called KN basis. ;

There is a meromorphic (1-) differential o holomorphic on X\ {P.,P_} with residue
+1 at P, and residue —1 at P_ and only imaginary periods (see [3,p116]). It was pointed
out [3][6] that in string theory the level lines of the function (Q denotes a point different
from P, and P_)

u(p)=ReLPp

on X \{P4,P_} could be interpreted as closed string configuration at the proper
time r. Here 7 gives the value of the function u along the level line. As r — oo the
level lines become circles around the points P representing free incoming and outgoing
strings.

Hence it is quite natural to ask for more strings coming together and interacting. In
terms of KN algebras this is the question of the structure of the algebra of meromorphic
vector fields which are holomorphic except at a certain points.

The aim of this paper is to give the results of such a generalization. Details of the
calculation and further developments will be found in a separate publication [4]. For the
generalities on Riemann surfaces , the theorem of Riemann-Roch and its application to
the KN algebra for two points see [3]. For the interpretation in physics see [6-14].

2. Fundamental definitions
Let X be a Riemann surface of genus g. We always assume X to be compact and

without boundary. X can also be considered as a connected, projective, nonsingular
curve over €. A formal sum of points Q,,...,Q; € X with integer multiplicities

{
v D=} niQi

2



is called a divisor. K denotes the canonical divisor, resp. the canonical divisor class,
resp. the canonical line bundle (which is the same as the holomorphic cotangent bundle).
The sections of the canonical line bundle are the differentials. K> := K® ig ) times the
tensor product of the bundle K with itself. For A < 0 this means K> := (K*)®\ , K*
denotes the dual bundle, the holomorphic tangent bundle. If we use the divisor notation,
then K> corresponds to the divisor \- K.

The definition of K* with \ € Z is clear. To define it for A half integer we have to choose
a “square root” of K. This is not unique for g > 1 . For arbitrary A we have to consider
coverings of X. In this paper we will restrict ourselves to integer valued A\. The case of
arbitrary A will be covered in [4].

The (meromorphic) sections of K* are called (meromorphic) forms of weight \. Forms
of weight —1 are the vector fields. Let D be a divisor as above then H %(X,\K + D)
is the vector space of meromorphic A - forms which are holomorphic outside the support
of D ( which is the set of points appearing with nonvanishing multiplicities) and have a
zero of at least order —n, at the point Q;. As usual a zero of negative order m,; is
interpreted as a pole of order —m;. We use the notation ordg,(s) for the order of the
zero of the section # at the point Q;.

By the theorem of Riemann-Roch (see [3,p.107]) and using deg(\K) = 2\(g — 1) we
get

@) dimH°(X, K + D) ~ dimH°(X,(1 = \)K — D) =deg(AK + D) =g + 1
= (2A —1)(g — 1) + deg D.

Let & be a natural number bigger or equal to two. Let Py, P;,..., P be k different
“generic” points of X. In our context generic means that there is a countable set of
points of X which have to be avoided. We choose an arbitrary numerical order of the
points. This we will keep fixed. In addition we fix local coordinates z around the points
Py with 2z(P)=0 for!=1,...,k XO° denotes X\ {P,P;,.. o Pr}.

3. The level lines

LEMMA 1. Let X be a Riemann surface of genus g, Py, P;,...,P; k different points
(k> 2). Let

k
(3) ¢ €C ,i=1,...,k with ) ¢;=0,

=1

then there exists a um'éue meromorphic differential p on X such that
(a) p is holomorphic on X \ {P,, Py, ..., Ps},
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(b) resp,(p) =ciy, fori=1,...,k,
(c) o has only imaginary periods.

The proof is a generalization of the proof in [8,p.118], see also [4].
Let us apply the lemma in the following situation. Let 1 </ < k be a number, P;,..., P
and Pyy,..., Px be a partition of the points P,, Ps,..., Pi. If we set
1 . 1 .
(4) Cf="2'l', Z=l,...,l and C,'=—m, Z=l+1,-..,k

we get 3., ¢; = 0. Let p be the differential existing by lemma 1. We choose Q € X with
Q#P,1=1,...,k.
P
u(p) = Re[ p
Q
is now a harmonic function defined on X% = X\ {Py, P;,..., P} with

(5) Ph_{x}alu(P)=—oo, t=1,...,. and Plin}__"u(P)=oo, t=l+1,...,k.

The level line for 7 € IR is defined as
(8) Cr:={PeX"|u(P)=1}.

Varying 7 defines a global fibration of the surface X\ {Py, P;,..., P:}. Each level line
splits in a union of disjoint {real) curves. Singular points can only occur at the zeros
of the differential p. For r < 0 the level line C; splits in a collection of [ components
Cr, r=1,...,l, where each component C' is a curve diffeomorphic to S! around the
point P,. For 7 2» 0 we get the same situation around the points P,, ({ +1) <r < k.

Finally, if w is a meromorphic differential which is holomorphic on X9, then the value
of the integral of w along any nonsingular level line will be the same.

4. The KN - algebra and the KN - modules

DEFINITION.

(a) The (generalized) Krichever-Novikov algebra (KN algebra) of the Riemann surface
X of genus g and the points (k > 2) Py,P,,..., Py is the Lie algebra of meromorphic
vector fields on X, which are holomorphic on X° = X \ {Py, P3,..., P}. It is denoted
by KN(Py,Ps,...,P) orjust by KNj.

(b) The (generalized} Krichever-Novikov module (KN module) of weight A € T is
the vector space of meromorphic forms of weight A which are holomorphic on X° :=
X\ {P1,Py,...,P}. It is denoted by F>(P,,P,,.. -s P) , or just by Fp.

Of course, KN(Py, Py,...,P:) equals F~!(Py,P,...,P;) as vector space.
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By taking the Lie derivative F 1is a Lie algebra module over KNi. In local terms
the action can be described as follows. Let ¢ be a meromorphic vector field and f be
a meromorphic form of weight A. Locally they are given as

(7) o) = ale) ot F(e = B(s)dib, with di? o= (d2)O* .

Then the Lie derivative is given by

(8) e.f () == Lof) (&) = (a(z)?:gi—")ﬂ.ﬂ(z)%ﬂ) "y

5. A basis for F}} in the cases (g >2,1#0,1) and (g =0, € Z)

First we will give a set of generators which is completely symmetric in the points
P,i=1,...,k. We get

(9) M) =(2A-1){(g-1)~1.

PROPOSITION 1. Let ny,na,...,nk-1 €Z and ng=M()\) =¥V, then
H°(X,\-K —niP| —naP3 -+ — ny Py)

is a one-dimensional vector space. It is generated by a (up to multiplication with a
constant) unique form

(10) [ =f*ni,na,...,nx) with ordp,(f)=ni, 1 =1,...,k.

For the details of the calculation we refer to [4]. The argument is similar to the case
considered in [3]. Let me scetch the main idea. Starting point is the following

LEMMA 2. Let £ be a line bundle, L its corresponding divisor, n a natural number. Set
l:=dim H%(X, L), then

(11) dim H%(X, L - nP) = max(! — n,0)
if P is a generic point on X.
We use the fact, that in our cases of ) either

deg(A - K)=A(29-2)>29-1 or

(12) deg((1~1) - K) = (1-2)(20-2) 22 - 1.
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 Hence one of this divisors is nonspecial, which says that the second term of the left hand
side of Riemann-Roch theorem vanishes [8,p.107]. With Riemann-Roch we calculate

dmH’(X,)\-K)=(2A-1)(g—-1)  or

(13) dim HO(X, (1-)) -K) = (1 - 2\) (g - 1) -

Using (11) and assuming P;,P;,..., P; to be generic we calculate

(14) dim HO(X,\- K —n Py = ngPy - - = npPy) =1,
(15) - dimH'(X,\- K —n P, —naPy- -~ (nk+a)Py) =0, aeN.

The former implies the statement on the dimension, the latter implies that the generator
has exactly the prescribed order at the points.

By requiring for the local representation at the point P,
(16) filz) = 2g* (1 + O(2y)) d2*

the f = f*(ny,n3,...,n4) is completely fixed. We will assume this normalization in the
following.

PROPOSITION 2. The set

k-1
(17) { ey ne) [rayngy ey niy €3, ne =M(A) = Y n; }
=1

is a set of generators for FA(Py, P,,..., Py).

For k > 2 this set is not linearly independent. To get a basis of F) we introduce the
following types of generators (n,/ € Z)

(18) Ia(X) :=f"(n,0,...,0,M(,\)-n), n>0 type I
(19) fa(A) = f}(n,0,...,00M(})~n), n<0 typell
(20) i) :=f"(0,...,n,...,0,M(/\)—n), n<0 type 1,

In the definition (20) /=2,...,k—1 and the number n has to be plugged into the { -th
position. If it is convenient we will also use the notation f1(A) to denote generators of
type I and type II.




PROPOSITION 3. The set of

(21) fa(A)yneZ and  fi(A), neZ,n<—1, with 2<{<k~1
is a basis of FA{P\,P;,...,P) .

If there is no ambiguity we will drop the X in the notation. Due to the special importance
of certain weights we introduce

ehi=/fa(-1), and 0} :=ri(2)
and (assuming the result of the next section already)

A =fi0),  and Wl = fL(1).

Of course, it is also possible to embed the Riemann surface into its Jacobian and to
describe in some sense more explicitly the above forms in terms of theta functions, prime
forms etc. as it was done for £ = 2 in [11] and [14]. This will be covered in [4].

6. A basis for F in the cases (§ >2,A=00rA=1) and (g =1, € Z)

Due to the fact that A - K 1is a special divisor we have to modify the argument and
the basis.

PROPOSITION 4. (g 2 2,)A = 1). A set of symmetric generators of F} is given by
(n,- € Z, i=1,...,k—-1)

' k-1 k-1
(22) MHrsnayeoone-n(g=1) =Y n), 720, Y n<(g-1),
=1

i=1
k-1
(23) fl(nlyn21°“ank-—l’(g_2)—Zni)y nt'#‘l’
=1

where at least one n; < -2 or E,’-‘:ll n; 2 g and
(24) 1(-1,-1,0,...,0), f}(-1,0,-1,...,0), ...,
S, -1,-1,...,0), ..., f}0,...,0,-1,-1) .
The elements f in case (22) and (23) are uniquely given by a similar argument as above.
In case (24) we understand by f!(0,0,...,0,—1,...,~1,...,0) the unique differential

given by lemma 1 with ¢; = —1 and ¢,, = 1. Here | and m are the entries being equal to
—1 in the description of f with /| < m. Here again we have similar types (n € Z)

-2-n,n2
.(25) wn = fa(1) :=fl("’0"'”’0’{g—l-n: OSf&Sg—l)’ type |
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. ._ f‘(—l,O,. ,0’_1)’ n=-—1
(26)  wn = fa(1) = {f‘(n,O,.. 0,9—3-n), n<-2 type II
— — fl(os' y_lv ’07 "l)s n=-1
27)  wh=fl(1) = {fl(o,. e 00—2—n), n<-2 type III;

In (27) we have [ =2,...,k—1.

PROPOSITION 5. The set of the generators (25)-(27) is a basis for F~'(Py, P, ..., P) .

In the case of genus 1 K is the trivial bundle. Hence all tensor powers are again trivial.

For this reason a basis of F is a basis for all F}.

PROPOSITION 8. (g>2,A=00rg=1,\€ Z). A set of symmetric generators is given

by (n; € Z, 1=1,...,k—-1)

k-1

=1

k-1 _
(28)  f%ny,ng,...,ne_1, ~g— Z ni), at least one n; >0, or Z n; < —g,
=1
k-1 k-1
(29) fo(nla"%' ey Mp—1,—g— 1 - an‘)s n; <0, Zni 2—-g-—1,
=1 =1
(30) f%(0,0,0,...,0)=1

In case (28) uniqueness is again by a similar argument as above. In case (29) such
a f is only unique up to muliplication with a constant and adding a constant. Hence
normalization at the point Py does not fix it completely. We will give a method for fixing

it by duality later on. The types are (n € Z)

__ = | /%n,0,...,0,~g—n), n>0
(31) An = fn(o) H {f“(o,o,o,..,.,O) = 1’ n=20 typeI
f%(n,0,...,0,—g -1 —n), —g<n<0
= fa(0) = type II
(32) An :=/a(0) . {f°(n,0,...,0,—g-n), n<—(g+1) ype
] . f°(0,...,n,...,0,—g—1—n), —g5n<o
(33) An ) fn(O) ) {fo(oi'”’n)- °~)0a_g_n)y n < “(g+1) type 1L

with {=2,..,k~-1.

PROPOSITION 7. The set of the generators (31)-(33) is a basis for FO(Py,P,,...,P}) .




7. The structure constants

If we choose the basis in KN(Py, P,,...,P;} and the basis in F> (Pi, P, ..., Py)
as above then the module structure of F over KNy, resp. the structure of the algebra
KNy itself for A = —1 , is completely fixed by the structure constants CZ’ s € C , given
by

(34) carSs =3 Clsls-
v

Here o,f,7 are generalized indices. The structure constants are depending on the
weight A . Y’ denotes that only finitely many [~ actually occur.

By doing local calculations at the points Py, P;,..., Py (similar to [3,p.115]) we can
determine which indices 4 occur. We restrict ourselvesto g > 2 and A #£ 0,1 or g = 0 and
A € Z. In the remaining cases there are some minor modifications due to the exceptional
elements in the basis (see [4]).

Let us fix A. Depending on the type of the basis elements we get the following result:
(type I, type I)

n+m-—1+3g

(35) en-fm= Z: A;’m(/\)f,- .

r=max(0,n+m-1)

(type Litype II) and vice versa

n+m-~1+3g min(—1,n+m=1+3yg)
(36) en-fm= D, Anm(Nfr+ > AL (W)Y
r=0 r=n+m-1

Of course one of the sum could be the empty sum. This coefficients are exactly the

coefficients of the KN algebra ( modules) of the two points P; and Pj. In the boundary

cases we get

(36a) AREMTITI(N) = —(m+ An) —g(1+)), ARLPI(A) =(m+ An)bﬂb”‘—.
n+m-—1

Here a, is the leading coefficient of ¢, at the point P, and b, the leading coefficient of

/m at the point P;.

(type I type III;) and vice versa

n+m-1+3g min(-1,n+m-1+3g)
(37) enfm= D AL+ ) Al (NS}
r=0 r=m-1




n+m-—1+3¢ min(-1,n+m~1+3g)

(38) h-fm= Y BN+ > By (/!
r=0

r=n-1

The basic method for calculation of the coefficient, is to write e, resp. f,, as linear
combination of the basis of the KN algebra KN (P, Pi) , resp. KN module, do the
calculation as above and transfer the result back in terms of our basis. For a detailed
calculation see [4]. As can be seen in (38) there is always a term f! n—1 even if m was
chosen to be a big positive number.

(type IIL;, type HI[)

n+m-1+3g min(-1,n+m—1+3g)
(39) hofm= 3 O+ > Crm(A)J1 .
r=0 r=n+m-—1

(type IIL;, type Il14), h # [ or (type II, type 1L):

-1 -1 n+m-1+3g
(40) b fh= 37 DEANA+ Y ERANA+ S FMO/,
r=n-—-1 r=m-~1 r=0

If n+m < —3g the last sum will not appear. Nevertheless in the first and second sum
all terms will occur up to r = —1.

For k = 2 this is exactly the result of Krichever and Novikov [1]. In their rule of
indexing the above looks like

Jo

3
(41) ey - S5 = Z Rl ifi+i+yy Go= 29
’ I=—go
Both rules of indexing are related by
) 3 . g
(42) i=n+39-1 and J=m+§-A(g—1).

Here the structure looks very symmetric. This symmetry does not occur for k > 2.
Hence we decided not to choose this rule of indexing.

8. Example

To illustrate the result we calculate in the case of X = IP! (hence g = 0) the algebra
KN(Py, P3,...,Pr) . We choose such a parametrization z of X that P; corresponds
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to z =0 and Pj corresponds to z = oo . The points P, correspond to a; € € for
l=2,...,k— 1. In this parametrization it is easy to give the basis in an explicit way

a
e,,=z"5z-, n>0 type I

(43) en = 2"5;, n<0 type Il
=(z- a,)“%, n<0 type III; .

Here we normalized (contrary to the general rule) in such a way that the leading coeffi-
cient at oo is equal to —1.

By direct calculation we see:

(44) lensem] =(m —n)entm-1, n,meD
m+n-1 min(~1,m+n~1)
(45) [em eIm] = Z A:l’,lme' + E A::’,lmclr n 2 0
r=0 r=m-1

with{=2,...,k—1 and

(46) A$.',',,.=(m+znl( 1)'+'()(t_:;+1)(2m-—1—t)) ntm-l1-r . >

n

r_m+1)-a,"*""l"-(2m—1—r), - r<0

(46a) AL, = (
Furthermore for [ =2,...,k—1 (

(47) [ehs ] = (m — n)ehsm-1, MM <0.

In the remaining case 1< r, (< k—1,r#! we get

(48) [en’em]— Z Da"’ e, + Z E”"l ’

s=n—1 a=m-1

with (setthlgq=m+n—lanaa1=0)

’1"vl= m -— qg-—s —_
(49) paz=(, ", )= a)y o= 2m+1)
(50) Egy = ~Dily .

In particular, we see that ¢”, and ¢/, will always occar.
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9. Duality

If we multiply a form of weight A and a form of weight 1 — A we get a form of
weight 1, hence a 1-differential. By taking the integral over suitable curves we get a kind
of a duality pairing between the above forms. We choose a differential (see equation (28))

(51) p=#zw‘_l.

It has residue —1/(k—1) at the points P;,..., Pr—; and residue +1 at the point P;.
The level line is a circle around Py for 7 € 0 and a collection of circles around the other
points for 7 3 0. Let us denote such a circle (with orientation) around P: by C'. For
smooth C: and for w € F!(Py, Py,...,P;) we get

1 1
52 =
(52) ; 2ir C; 2x7r YT gix c

Of course, we could have chosen arbitrary circles C! around the points P; without chan-
ging the value of the integral.

PROPOSITION 8. Letv € F1-* (P, Py,..., Py) have the representation

v = Z”'nfn(l - /\) + Z,Tnfn(l - ’\)+

n>0 n<o0

k-1
S =),

{=2 n<0

(53)

Then the coefficients can be calculated by
1 : |
(54) "'n—mfgk fonai(A) v = f f-n=1(A) - v, nZO
(55) r,,.—_—f fonai(N) v n<0
T Jor o
l _— e——— -
(56) o = " f;, fo(N) v

1
[ El
8_'—2i7r f' 1(A) v = 1'-P r-1,-5(N) -
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Here it is defined (r > 0,t < 0}

1
CU o) = g7 = b 5 A=)
We get
(58) ol _._;(A)=1 and ohm(A) =0 fm<-n-1.

In the case of k = 2 there are no terms of the third kind. Hence we get the (well
known) result

(59) 21”] fn(A)- fm(l ) {(1) Z:::::i'

In case of genus g equal to 1 or in case of g > 2 and A = 0 or 1 we have to add certain
constants to the elements 4!, for —g < n < —1 (33) to make the proposition 8 also true
in this case. But remember, up to now we were only able to fix exactly this elements up
to an addition of a constant (see proposition 6). With the duality requirement they are
completely determined. See [4] for details.

10. The central extension

Starting from our Knchever-N ovikov algebra KN = KN(Pl yP3y...,Pr) we consider
central extensmns KN of it. Let E! denote a fixed lift to KN of the basis element e
of KN. Then KN is generated by a central element ¢ and the set of E! (n and { asin
equation (21)). We get

(60) [Ea,t} =0
(61) ' [EayEs] = Z o, gy + x(eayen)t.

Here a,f,7 are generalized indices (i.e. E, =E! }, C7 ,p are the structure constants
of the algebra KN

(62) leares] = D CT pey
v
and x(a,f) € C is a 2-cocycle. It is defined for every pair of vector fields and it fulfills |
(63) X(av ﬁ) = '—X(ﬂ’ a)
(64) x({f,g1:#) + x((g, ], /) + x([h, fl.9) = 0 .

These conditions are sufficient and necessary for KN being a Lie algebra.

To construct central extensions we use the method of [3].
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DEFINITION. Let (Ua,za) be a covering of X by coordinate patches and let

23 = fas(2a) be the transition functions for non-empty U,NU 8. A meromorphic projec-
tive connection is a collection of local meromorphic functions R, (2o) which are related
on nonempty U, NUjy by

(65) Ro(e9) (52) = Ralea) 4 S(fus) -

Here S(h) is the Schwartzian derivative. It is defined as

R 3 (R7\?
(68) S(h)—F_E (F) .
The ' denotes derivation with respect to the local variable z.

If all local functions are holomorphic we call R a holomorphic projective connection.
There exists always a holomorphic projective connection [18,p.202]. Due to the trans-
formation law (65) the difference of two projective connections is always a quadratic
differential (i.e. a form of weight 2). Hence by fixing one holomorphic connection R, we
can get all of them by adding forms of weight 2. In the following we are mainly interested
in meromorphic ones which are holomorphic on X \ {P1, Py,..., Px} and have a pole of
at most order 1 at the points P, [ =1,...,k. We get for g > 2

3g-3 k=1
(67) R =Ry + Z: cn0n+2c‘_lﬂl_l, cnyc €C
n=0 =1
resp. for g =1 (O}, = A!)
k-1
(68) R=Ry+ coldg +ZC‘_10{_1, CO,CI.I ed.

=1
For g = 0 there is only something to add to Ry if £ > 4

k-3
(69) R=Ro+Zc,ﬂ‘, c,€C.

a=1

The 2° are certain forms of weight 2. If we use “standard coordinates” for g=1and
g =0 we can use Ry = 0 in these cases. \

With the help of these projective connections we set for vector fields e, & with the local
representations

(70) o= 1) h=als)ms
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(71) x(e, h) = (%(f’”g -f¢d")-R- (f'g - fg’)) dz .

This is a meromorphic 1-form which we can integrate along the level lines C; according
to the differential p of equation (51). We set with ¢ € € an arbitrary constant

(72) x(e k) = 24*1 ( ) = if x(e h)

PROPOSITION 9. x(e, k) defines a 2-cocycle, hence a central extension of the KN alge-
bra.

11. Semiinfinite wedge representations

We fix a weight \. Let F' be F}(Py,P,..., P}, f! the basis of F, ¢!, the basis of
KN(Py, P;,...,Pc). We want to give the elements of the basis a Z - graduation

(73) f(l’) = fn, n20
(74) foy=1f% n<0il=1,...,k—1wherei=(n+1)(k-1)~1.

A semiinfinite form is an element of the vector space
H = HM(P,P;,...,P)

generated by the formal elements

(75) W=Ji )N ) Ao Sy A m) Afme) A -
with
(78) Iy <tp41 <...<8, <M .

The dots in the right part of (75) means that starting from an arbitrary index m all
elements with index ¥ > m appear. :

We have
[}
(77) ewy-fiy =2 Glifuy Gl eC.
4

- This action of KN on F' we want to transfer onto the vector space H. We try the following
naive definition (Leibniz rule)

e.w:=(e.j(,-l))/\f(.~,)/\ R f(,'l)/\(c.f(;,))/\ T

78
o g Ao Al Sm) A fmeny--e + -

15



The A indicates how to calculate the result. The rules are (®, ¥ and v are neighbour
pieces)

(79) BASFAUNSiAvi==BASi ASAfjAv, >3
(80) SAfiACASfiAv:=0

r

(81) ®A (Zr:c;f,-) Av :=Ec,~ (BASfiAD) .

=1

The definition (78) makes sense if there are only finitely many terms on the right hand
side. A closer examination [4] shows that this only works for subalgebras of KN. We
introduce the following subalgebras

(82) KNy :=(ea|n>2)
(83) KN :=(e |ns-3g) I=1,..,k-1

For the elements of KN, and of KN’ the action (78) is well defined. Hence H is a
module over these algebras. Unfqrtunately this is not true for KN , { > 2.

In the case of KN3 H becomes a module over a central extension of KN [1]. It is
reasonable to expect that this will be true in the general situation. This question and a
closer study of the central extensions of KN; is under investigation [5][4].
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