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v wen.w ABSTRACT.

Geometric quantization is applied to infinite v(couritéu,ble) dimensional linear Kihler |
manifolds to obtain a closed expression for the anomalous commutator of arbitrary poly-
nomial observables. Examples for the physical relevance of the result are given, including
the polarization dependence of Schwinger terms in bilinear constraint algebras, the central
terms of Virasoro and Kac-Moody a.lgebra.s and the determination of the critical dimension
~of the bosonic string.
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1. Introduction

A significant feature of quantum theories on infinite dimensional phase spaces is the

occurence of anomalies. Anomalous commutators between quantum operators, which ap-

pear in the algebra of first class constraints, are of special interest as they impose heavy

restrictions on the formulation of a consistent quantum theory.

For finite dimensional systems the geometric quantization scheme [GuSt,Sni,Woo] is
a well established tool, connecting the structure of the quantum theory with the geometry
of the classical phase space. It has also been applied to infinite dimensional systems in
order to investigate anomalies [BoRa,SaSw], their connection to the vacuum structure of
the quantum field theory [PIWa] and their polarization dependence [Nie]. »

The present paper is devoted to the calculation of anomalous commutators of polyno-
mial observables on Kéhler manifolds. All calculations are organized such that they hold
for bosonic as well as for fermionic systems with finite or infinite (countable) dimenensions.

The central result, worked out in section 3 gives a closed expression for the anomalous
commutator on a linear manifold. For bilinear observables this expression reduces to the
trace of a matrix commutator and hence vanishes for finite dimensional systems. Applied
to the constraint algebra of a field theory, as done in section 4, it allows to ﬁa.lcula.te
the Schwinger terms. The latter are shown to be cohomologlca.lly trivial if the (bilinear)
constraints preserve the holomorphic structure.

The physical relevance of our results is demonstrated by application to the Kac-Moody

and the Virasoro algebras in sections 5 and 6, respecfively. In section 7 we reconsider the : .

BRS-scheme in the context of géometric quantization and calculate the square of the

BRS-operator with our furmulas. Application to the bosonic string allows to determine its

critical dimension. A graphical representation of our ca.lculus reminding the techmque of :

Feynman-graphs is presented i in an appendix.




2. Geometric quantization

Geometric quantization on Kahler manifolds is a well established feature in the litera-
ture [Sni,Woo]. Here we review only the main results, relevant for our study of anomalies.
Let the phase space of a physical system be a symplectic manifold (M,w), then preqiia.nti-
zation means a representation of the Poisson algebra of classical observables — the smooth
functions on M — by operators on the Hilbert space of all smooth, square-integrable sections

in a Hermitian line bundle L over M. Such a prequantization is realized by a map

Fs Op =—ihVx, + F (2.1),

where Xp is the Hamiltonian vector field of F and V a connection on L with curvature

curv(V) = w/k. Let M carry a complex structure J and the symplectic form be determined

(locally) by a Kahler potential as w = dd*K(z,z1), where d and d* denote the holomorphic

and anti-holomorphic exterior derivative, respectively. Then we may choose

Vx=X-X| (i—(%ﬂx(z,ff)) - (2.2).

To obtain an irreducible representation, however, one has to restrict the Hilbert space
to the space H” of holomorphic sections of L. More explicitly, denoting by P/ C I‘(TM ) the
antiholomorphic polarization, spanned by the Hamiltonian vector fields of the coordinate-
functions z;, then each quantum state |S > is locally described by a function S(z, z"') on

M, obeying VyS = 0 V Y € P’. Furthermore the correct measure on H” reqmres the

introduction of (normalized) half forms vy, i.e. the use of the metaplectic representatlon -

[Woo,GuSt] for the quantization. Then a quantum state |S > is locally given by

iK(z,z%)

IS>:= S(z,z )1 = exp( ok

)a'(z)-uo , where 19 (X.,,...X,,,...)=1.

The operator Op is in general not compatible with the polarization P7 , 1.e. the action
of OF needs not to close in H”. For this reason prequantization has to be modified by the
BKS-construction [Bla,Woo], relating quantum states described in different holomorphic
structures. In the special case of a Kihler manifold this yields an explicit formula [Tuy1]
for the quantum operator corresponding to an arbitrary (BKS-quantizable) observable F:

F|S>= nh°‘[( thx,+F)|S>] (2.3),
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where ITt°! is the orthogonal projector onto the space of holomorphic sections 7. The

projection is computed via convolution with a generalized Bergman kernel B(z, z+; y, y*):
th '

F(S-uo)(z,z+) = /B(z,z'*'; ¥,y1) (OF - f-2—tr"(£x,)) S(y,y+)du(,,,,+) v (24).

Here the Lie derivative Lx, is considered as a linear operator on I'(T'M) and tr” is the trace

taken over the holomorphic components. This contribution is due to the transformation

of the half form under Vx, and corresponds to the non-invariance of the volume form on

the Hilbert space H”. The integration in (2.4) is done with the invariant measure

dpcyy+y = (Vg vo)V/| det(xi,)] H dyxdy} where nu(y,y"') =8 +8,,Ki(y, y"') (2.5)
kEK

and [] dyxdy; is the usual Lebesgue measure on M. The generalized Bergman kernel is
given by the sum ) p4(2, 2ot (y,y*), where {9, }sc4 is a complete set of orthonormal
states in H7 [Tuyl]. Explicitly we obtain

B(z; Hy,y%) =M exp (’_’9_(;»?2:)) exp (M) exp (ic(g—;tyﬂ) (2.6),

where N is a normalization and the function A(z,y*) is determined by {p,}sc4. With

certain assumptions we may integrate by parts in (2.3) and obtain:
Proposition [Tuy2]

If M is a Kahler manifold, which is either compact without boundary or §(z,z%) decreases‘ |

fast enough at OM, then the quantum operator corresponding to an observable F is -

F|S> = II“°1[(F+ AF)|S>]

2.7).
where AF(z,z%):= — Z fc,:ll(z,z"')?sz(z,z'*)‘E,‘ 27)

kleK
This local expression for the quantum operator is independent of the choice of coordinates.
As shown in [SaSw,Sch] it is possible to generalize this construction of [Tuy1,2]: To
quantize (linear) field theories one starts with the (inﬁnite dimensional) space of solu-
tions of the classical field equations [Woo|, considered as the phase space M. Moreover,
for theories containing fermionic degrees of freedom, one can use the notion of graded

manifolds [Kos,Ber] and proceed similarly to the bosonic case. Both generalizations do-
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not change the form of the Bergman kernel (2.6), only the normalization constant A, be-
comes formal. Furthermore in the graded case (2.4) is understood with the supertrace and
Berezin integration, respectively. The unusual form of the Laplacian in (2.7) is due to this

generalization. f

3. Quantum commutators

In the following we specialize our considerations to the case of a symplectic vector
space with a Kahler structure describing a linear field theory, where Kp; is constant, cf.
(2.5). For consistency this (infinite-dimensional) matrix has to be anti-Hermitian on the
bosonic and Hermitian on the fermionic part of M. Then one can prove the following

property of the projector It as given by (2.4):
gl

Proposition

Let M be a linear Kihler manifold with coordinates {zk}rex and K(z, )=y zk Kriz
the Kahler potential, with x; constant. Then for any pair of polynomial observables F
and G it holds

— —t

meFme |s >]]' ™! [F exp(ik'd -8 )G |S>] (3.1),

+
The graded differential operator 9.9 is given in terms of the Hermitian adjoint (n,:ll)t :
, + |
99 = Z NCr

k€EK -

Proof :
With the Kahler potential above the Bergman kernel (2.6) becomes (cf. [Tuy1,Sch])

B(z, 2% y,y%) = Ny exp Z ZhKR1Z] — 221:"“?/1 + yrrny; (3.2).
| =" - |

. . .. . + -
Writing W(z, 2%y, y% 2,2+) 1= exp(ZE20) B(2, 2%y, y+) B(y, y*z,2%) and
(18,), := Y &', this yields
leK

o

W(z,z5y,5%2,2%) b = W(z, 24y, 5% 2,2%) (ih (20,4), + k)
. )

W(z, 25y, 5% 2,2%) yf = (ih (L 8,), +2f)W(z, 29,9+ 2,27)
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Then we obtain for any monomial of the form Fa(y,y*) = [] (y;' ) (y)P
JEK

o™ [Fy I [G (S >]]
= / B(z,z+;y,y+)( I @)% ;)%

JEK

= [ W tuatin et T (zn (4 Bs); +z,) G(z,z+)a(z) dm..m dﬂ(mﬂ
. JEK R ) .

n=0

= [Westvtiee )(FM(z Y. (5.5 6, =+)) a(z)dm,,mduu,m

Here the first equality is just the deﬁmtlon of II*!, for the second we apphed the
identities for W and graded integration by parts [Ber] and finally we used the expa.nsmn i

n Bi
11 = Z —( > 6—z,.('cizl)f—é},,;*) =11 (Z("j—:l)fs’z;‘ +=:'>

jEK =0 k,leK JEK \leK

Observing that integration with B(y,y%; z,21) is a projection, proves (3.1). - q.e.d.

The same result has also been obtained for 2n-dimensional Tori {BHSS]. Denoting by »
{F,G} the quantum operator of the Poisson bracket between two classical observables-,,v
(3.1) yields with (2.7):

Theorem

Let M be a linear Ka.hler manifold, i.e. x;; is a constant matnx, and F G polynomla.l -

observables, then following holds:

a) The commutator of the quantum operators IF and & admits an integrﬂ ;epresénfation

(F,EllS> = /B(z,z+;z,z+) Qir,¢(z,z%) S(z,z7) dp(z+y with ; _‘_ " |
’ N (3.3

ik  inD.0 ik - e

Qur,e)(z,2¥) =1+ ?A)F(-’C,z )(e* )1+ ‘é‘A)G(”»z )¥(FG)




b) The anomalous commutator is given by an expansion in A as

A[F,G]IS >i= (’I_[F,G] - {F, G}) |S>

B
E/ red (3, Fa)n 1(3, Gak)]Sdp:f:(FG)
k,leK .JEK
ad (go (Si)s)z / B[F (3-3+)"+’G]s du ¥ (F G)
+ s [BlAR(3 Y0 4 r(3.T ) ad)s s (7
+ Z% / B[AF(‘E._6’+)"+1AG]S du¥ (P:E)) (3.4).

Here :F(F G) means to subtract or add the same expressions with F,G interchanged for
bosonic or fermionic observables, respectively. For infinite dimensions it is crucial not to

interchange the order of the summations in the k) term.

The first part (3.3) of the theorem indicates a possible connection between the com-
mutator in geometric quantization and the index of the Laplace operator (2.7) — at least
in the bosonic case, cf. [Gil]. It also shows up some interesting relations towards a modifi-
cation of the geometric quantization scheme, proposed by [Tuy2]. The second part is of a
more practical interest :
Obviously the construction (3. 4) does not yield a representation of the full Poisson algebra,
what is in accordance with the Groenewold-van Hove theorem [Gro,Jos]. Bilinear observ-
ables on finite dimensional spaces, however, should be represented correctly on quantum'i.‘
level. In that case the only contribution to (3.4) are the terms of order %, but those sum »
up as the trace of a commutator of finite matrices and hence cancel. Here it i is crucial to
use the metaplectic construction, determining the coefficient of the tr’-term in (2.4) to be o
—1/2. Any other factor would yield only a projective representation [Woo|. Considering
infinite dimensional systems the trace of a commutator need not vanish, so even the meta-
plectic representation of bilinears may be projective what means the appeara.nce of field

theoretic anomalies in this framework.
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4. Constraint algebras and Schwinger terms

Let us consider a Lie algebra g, acting as symmetry algebra on the phase space (M,w)
of a field theory . Then the symplectic version of Noether’s theorem [Ab,Ma] yields a set
C of functions on M. Under the Poisson bracket C forms a Lie algebra, homomorphic to
@, called the constraint. algebra of the system. The classical dynamics is restricted to the
constraint surface in M and according to Dirac for all F € C the corresponding quantum
operators JF' have to vanish on the Hilbert space of physical states. Thus the question

arises, whether the constraint algebra closes on quantum level. Anomalous commutators

between quantized constraints are called Schwinger terms and they can be computed from .

(3.4):

. Proposition
Let the phase space of a field theory be a symplectic vector space with a Kahler structure
K(z,2%) = ¥ 2§ k4121 and let a Lie algebra g act on it by linear symplectic (bosonic)

transformations. Then the constraint algebra C is spanned by quadratic polynomials

F, = Z (zkfa“zl +sz,“z,+ z,':’?:lz;") (4.1)
kK _

and the Schwinger terms of the system are given as

1)
A, F = ’—2—tr[~“Fb, 'C_lFa] (4.2).

A drawback of (4.2) lies in the potential divergence of the trace that reqmres a reg— (
ularization. This complication may be prevented by a shghtly dxﬂ'erent approach, starting
with a (cohomologically trivial) central extension of the constraint a.lgebra. C on the classi-

cal level : Dropping the equivariance condition on the momentum map we can add to each
F. € C a constant depending linearly on g. Often this constants can be chosen in such a
way that no divergent terms appear in the anomalous commutator (3.4) of the modified
constraints. All these computations yield the same Schwinger terms, considered as element
in the Lie algebra cohomology, i.e. they differ only by a functional of the commutator in g
[Jac]. However, only the equivariant momentum map (4.1) gives a representation of g for
finite dimensional systems. ‘

An example of special interest is the non-equivariant momentum map, obtained from

(4.1) by adding a term t;(Fak') to each constraint F,, leading to

7
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./{[Fb,p‘] = E—h tr ((2 kT)-(2x71E a) — (2671£2)-(2 n_lfb)) (4.3),
what often turns out to be a finite sum. Furthermore (4.3) allows an 1nterpreta.txon of
the anomalous commutator in terms of a violation of the holomorphic structure by the
Hamiltonian vector field Xz due to the f-term, cf. [BoRa]. Especially it shows that A{ F, F.
is cohomologically trivial, if [Xp, P’] Cc P7 . -

(4.2) and (4.3) allow to calculate the Schwinger terms for a given field theory exphcltly

This will be demonstrated for the examples of the Kac-Moody and the Vlrasoro a.lge-
bras in section 5 and 6, respectively. o

Another approach to eliminate unphysical degrees of freedom in a field theory thh
symmetries is the BRS formalism [BRS,HenTei,KoSt]. Here ghost fields are mtroduced
which may be considered as (classical) degrees of freedom, obeying a statistic opposxte
to the one of the constraints. The consistency of the BRS method requires the qua.ntu.m
commutator of the (trilinear) BRS-charge — containing the constraints and the ghosts —

with itself to vanish. Again (3.4) provides a nice tool to compute this commutator, as

worked out in section 7.

5. Example : The Kac-Moody algebra

g
4

To apply our methods to a physical example, we regard a system of N MaJora.na-Weyl
spinors ¥*() on the circle S; with the Poisson rela.tlons {¥(0), ¥ (0")}+ = 6(c— a")J" -
They can e.g. be thought as the independently left or nght movmg light cone components

of N noninteracting fermion fields on spacetime S; x R ‘each described by a Lagra.n a.n |

L= '\I’T7°7“3 ¥, where ¥ are real 2-component spinors [GOdO].l] On these let
gauge group G C O(N) with local a.lgebra. g represented by real a.ntlsymmetnc N I‘x:.N
matrices p® with [p?%, pb] = fabpe, giving rise to Noether currents J¢ = 3 Zpu \Il'\I»'-’

We thus get as phase space the space of sections in a N-dimensional rea.l spinor bundle
over 5. Because of the required periodicity of the current observables J *(o), the ﬁelds

have to be either 2m-periodic (Ramond case) or 21r-ant1penod1c (Neveu-Schwarz case) in

o. So they can be represented as

C iro ] K = Z+1 Neveu-Schwarz case v
Vi(g) = J th 2 5.1),
(o) '_EZK&' ¢ b {K =Z Ramond case (51)

what defines anticommuting coordinates f' on the phase space, obeying ¢it = ¢¢ .

8
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The symplectic form corresponding to the above Poisson relations now reads

== E z et | ,_ (5.2).’_

t—l reK

and is nondegenerated, even in the Ramond case, due to the fermionic character of the
coordinates ¢:. 7 v ’
The expansion of the currents J*(o) then deﬁnes the Kac—Moody'observabl&s T: by

Jie)= Y Tie™™  and Z dooeEEst - (53),
' neZ t,j=1r8€K .
yvielding the classical algebra {T2,T2} = f*T¢
In the Neveu-Schwarz case we define holomorphlc coordinates zk for k € IN by
zi = ¢ k-1 and, keeping the complex structure of the coordinates ¢, z;t = ¢* k10 To-
gether w1th the symplectlc form w (5.2) we then have a Kahler mamfold with potentla.l
K(z,zt) =3 3 ziz;". The Kac-Moody observables become

i kEN
k-H pa 6k+l
n+1 i i a ck—1 J+ 1) —n-—1 :+ j+
Z Z 2z] + p56n zie] T + — 5 % F (5:4)
3,7=1k,l€N

and we can é,pply (4.2) to calculate the anomalous commutator.
In the case of Ramond fields we have the additional problem to quantize the zero modes
¢i. For the calculation of the a.noma.ly, however, it is sufficient to require the followmg

operator relatlons mhented from the basic a.ntlcommuta.tors

: (1 fn=0andi=j ' :
XX, =4 2 | - (53),
& X _ |
XE 6’ . else

W1th X, denotmg the quantum operator corresponding to £. Using this and the deriva- ©

tion property of commutators and Poisson brackets the zero mode contributions to the
anomaly can be shown to vanish. Then the expansion of the Kac-Moody observables T
then coincides up to zero mode terms with the result (5.4) for the Neveu-Schwarz case and
quantizing the non-zero modes in the same way as above we are led to identical results in
both cases. :

Hence in either case the central term of the Kac-Moody algebra is given by (4.2)

A[QI':,,T,':] =2t htr [T, Tb] with (Tm i = p,J 5” ~t




as red off from (5.4). Thus we obtain (with 6, the step function) :

Arsa= B Y e Y Y - s

i,j=1 keN IEN

= Z p'J th Z(ok—m —0r_n) b (5.6)

i,j=1
ih a -n
=-—5mtr(p P*)orm
This coincides with the usual result for the Kac-Moody anomaly, derived e.g. with normal -

ordering methods [GodOli].

6. Example : The Virasoro-Algebra

Applying our general considerations to the example of the Virasoro algebra, we start
with the bosonic loop space of all smooth embeddings of the circle S into IR (1:P~1). More

precisely, we consider the symplectic manifold given by
QROPD .= {Y¥(0)|Y: 8! - RWP-D | yr(0) =0}

o= 223 [AVHEN A8 () 0 e

It can be shown, that the phase space (QIR(:D-1) w) is isomorphic to the canonical
symplectic manifold T*Q [BoRa}, where Q denotes the space of embeddmgs of the in-
tervall [0, 7] into RD-1)_ T*Q is the classical phase space of the open bosonic string.
The Vlrasoro algebra arises as the quantization of the Lie algebra gpig of 1nﬁmtesxma1

reparametrizations of S : The generators of the corresponding constraint algebra Cp;g are .

L(o)= Y 8,Y*(0)3,Y" (o) (6.2).

prv=1

Fourier expansion of the fields Y#(o) and the constraints (6.2) yields

: : D
w = Z Z 21k 8}y, dzpdzpt

kJeEN pv=1

D
=Z Y VEik(k+N)m,. YN,

k#0 pv=1

(6.3).
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These Ly, the Virasoro generators of Cp;g, constitute the clatssica.l Poisson a.l—gebrﬁ
{Lm,Ln} = (M — N)Lpyn that is quantized geometrically using (2.7). The Fourier
modes Y’ of the fields Y#(o) induce in a natural way a Kahler structure on (R (1:P-1) o)
with .
2zl =Y} and zf:+ =YY% for ke N - (6.9)

as holomorphic coordinates. Then the Virasoro generators can be written as

+ + (3 .y
In= Y 20N g+ @k 4+ Gl 4 (65)
kileN
and we can work out the anomaly of the constraint algebra from the formulas of section 2:

The coefficient matrix Ly is

2ik(k+ N)6iynuv N>o0

(Ln)gs = { . - (68)
2i1(1- N)&F v nu N<o

with k,I > 0. Clearly the anomalous commutator vanishes for N-M > 0, thus we demand
without loss of generality N > 0 and M < 0. From (4.2) we obtain

-h ——
AL L y) = 2_2_ tr( D n(m+N) 6l Gy — (M N))
. nEN (6.7)-
=D% (k(k—N)ok—N—k(k_M)ak)‘S;lN i
kEN

This yields the Virasoro-Algebra
. : D _ e
(Lm,LN) = ibh(M—~N)ILyyn — o B*(N®+(128-1)N) 63 (6.8)

as the central extended constraint algebra Cp;g. The (divergent) constant 8= > k may
. keN '
be removed by a redefinition of the generator Ly. We note that the central term, Linear

in N, is cohomologically trivial. The anomaly may also be computed in a cdhomologica.l
equivalent form from (4.3): Determining the respective coefficient matrices Ay and An
from (6.3) we obtain

-/i[LM.LN] = 2iﬁtr((n_1/\M)-(n_lxN))
=D%(Z(N—k)(N+M+k)0N_,,) &5 (6.9).

keN

D . -
= ih(V* - N) 53
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In the latter construction the anomaly appears without divergences, but the constraint
algebra Cp;g acquires an extension already on the classical level. A similar result has been
derived by [BoRa), who, however, omitted the half form contributions, leading to a fa.llure

of the representation already for finite dimensional systems.

7. The BRS-Operator and Geometric Quantization

In the context of geometric quantization the BRS-sc.hem; [BRS]‘rﬁa.y be‘degcnbed. ;
as follows [KoSt,HenTei]: The phase space (M,w) of a classical system with an algebra
C of first class constraints (identified in the following with the symmetry algebra g) is
extended by introducing the generators of the exterior algebras Ag and Ag* as additional
fermionic coordinates (ghost variables). For a basis {9i(z,z%)}icr of @ we denote the
structure constants by ,’; and the generators of Ag* and Ag by c* (dual to ¢;) and =;
(dual to c?), respectively. Then

West = W +Wohopt =w + Y drr; d? (7.1)

jer

is a symplectic form on the extended phase space M, ...
(In the notion of [Kos] Ag* is a sheaf over a pointlike manifold and thus defines a
graded manifold, which may be seen as the configuration space of the ghost sector. In
this setting Ag ® Ag* plays the role of the cotangent bundle over Ag* and wyp,,y is the

corresponding canonical two form Then M., is to be wntten as the gra.ded mamfold N

(M,C=(M) @ Ag* ® Ag)]

The symplectic action of the ghost number charge Ngpopr = Y. m;c? (defined by the
Poisson bracket {Nypo,¢,-}) induces a Z -grading on the space of functxons over Mczt. The
BRS-charge

Q(z,zt,¢e,7) = Zc’g_,(z z )—— Z c"c""f,-';-‘tr;c .(7.2)

JEK i,g,k€K
has ghost number —1 and its symplectic action (defining the classical BRS operator) is
nilpotent, i.e. {Q,{Q,-}} = 0. Thus this operator defines a cohomology. It can be shown
[KoSt,DuElTu,HenTei] that the zero’th cohomology class of the classical BRS operator is.
isomorphic (with respect to the Poisson algebras) to the space of functions on the reduced
phase space (i.e. the constraint surface modulo the action of the symmetry group generated

by the constraints). Thus as physical sector of the quantum Hilbert space one natx_u-a.lly 4
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takes the zero’th cohomology class of the qua.ntlzed BRS operator Q Tlns, obvi;usly,
requires Q2 = 0.

Therefore, starting from a bilinear constraint algebra and assuming a Kahler structure
on M.,:, we consider the fermionic trilinear BRS charge (7.2), obeying {Q,Q} = 0, and
calculate @? either from (3.4)

1 1
721> = ‘A[@QIIS>

—

—+
== 5,Q8 9.Q9,)|sd
kIEK/ ,Jexn“( IQ )n i i@ k)] # (7.3a)
(5.37) 5.3
2 : .
—h /B[Q_T—Q+AQ 2 AQ]de
or directly from (3.3) as

1 ., ih — —t — —t — ot ., .

722 IS>=—2— BlAQ 3-8 Q+Q8-8 AQ+Q(3-3 ) Q]S du + OK?)
(7.3b).

Choosing a suitable base on g%, the corresponding set of (complex) ghost coordinates
{ct, m;} splits completely into a holomorphic and an antiholomorphic part. Then, as worked
out in the appendix, graphical methods allow to prove:

i) The terms of order #? in (7.3) vanish.

ii) (7.3a) reduces to

%Q2IS>— ‘/B[Z c'e’ A[o..a,1+2(zz) Sdu (1),

tjerl
Alg.,9;] is given by (3.4) and the symbol (Z 2) means that the summatxon is restricted
to those k and I, for which c* and ¢! are both holomorphic or both antlholomorpluc (We
note that the order of the summations is still important). Of course, using (7.1) and (7. 3a)
an algebraic proof of (7.4) is also possible.
Specializing now to the case of the Virasoro algebra as the constraint algebra of the

bosonic string, (7.1) and (7.2) yield the symplectic form

Wert =w + Z dryde™N (7.5)
NeZ
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and the (trilinear) BRS-charge

Qv = Z cNIn(z,2%) - 1 Z cMcN(M - N)mpyn (7.6)
2
NeZ M,NeZ
respectively, where w and Ly are defined as in (6.1). The cN and mny may be regarded as
Fourier components of ghost fields C(c), () corresponding to the basis (6.2) in g and

thus the holomorphic structure (6.4) on M has a natural extension on M, :

c N w .‘
2y=c ZN = TN
N N for NelN (7.7).
5t =N 2yt =w_n
In addition we may choose z§ = ¢® and (z§)* = mo!
Now (7.4) yields
1 1 -M - '
z—'f: 2“’/ = 5 Z c MC NA{LM,LN]
M,NeZ
oo o : (7.8a),
—ih Y NN (Z (2N +K)YK -N)- > (N+K)(K — 2N))
NeN K=0 K=N A .
alternatively using (7.3b) we arrive at
1 o
EQ%’ = Z M. NA[LM,LN]
M,NeZ '
. o N-1 (7.8b).
—ih Y NN (N(z ~D)) K- (N+K)@2N - K))
NeN K=0 K=0

AL y,L y) 20d .Z{L L ] are given by (6.7) and (6.9), respectively. _Cé.lcﬁlating the inﬁ-‘_', -
nite sum in (7.8b) with the same treatment of divergences as used for (6.8), we see both -

expressions (7.8) to be equivalent to

1 - D ' 3.4 1 '
—=Q% =—ih Yy NN (N~ N)-NBD +2NB —- Bysiln (7.9)
ih 12 6 6
NeN .
The term proportional to N3 vanishes for D = 26, the critical dimension of the bosonic
string, while the term proportional to N may be removed by a redefinition of Lo on the

classical level.

t Strictly speaking the last definition will not yield a complex structure in the ghost sector, but it

defines a polarisation in TwMezt, as needed for geometric quantization.
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Appendix

For the evaluation of (3.4) a graphical representation reminding the technique of
Feynman graphs in perturbation theory may be useful:
We represent each monomial of degree n by a vertex with n (oriented) external legs and
the operator (55)4- by a "propagator line” (see fig.1).

The method is best illustrated by an example:
For a bilinear constraint algebra the graph for the BRS charge Q (7.2) looks like in fig.2
and we have the ”propagators” indicated in fig.3. We see that AQ contains only terms
with external c-line (fig.4). As no ¢—c propagator exists, the last term in (7.3a) (fig.5)
vanishes.
With similar arguments we see that the other contribution of order 4? in (7.3), as shown
in fig.6, also vanishes. So only the (k) terms contribute in (7.3) and we have fig.7 for the
rest of (7.3a) yielding (7.4). '
Furthermore the identity {Q,Q} = 0, used in section 7 is for any trilinear Q represented
by the graph in fig.8. Applying A to it yields fig.9, which shows the (%) terms of (7.3a)
and (7.3b) to be indeed identical.
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