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0.Introduction

The purpose of these notes is to show that symmetry, in particular translational
symmetry, is the base on which two notions in the theory of elasticity, associated
with deformable bodies in R", namely constitutive laws and a certain class of force
densities are in a one to one correspondence. This correspondence is given by a von
Neumann problem converting force densities into constitutive maps which in turn

characterize constitutive laws.

As we will see below any constitutive law F — formulated in our fashion — yields a
a stress tensor, as in the usual treatment of elasticity (cf.[L,L]). This tensor needs
not to be symmetric, however. A criterion for the symmetry is given for

constitutive laws invariant and all rotations of R™ .

To describe in short what we mean by a constitutive law, we begin by looking at a
moving deformable bounded body in R". The material should constitute of a
deformable medium. The medium forming the boundary may differ from the one

forming the inside of the body.

Let us first lay out some elements of the geometric setting. We make the geometric
assumption that at any time the body is a n—dimensional, compact, connected,
oriented and smooth manifold with (oriented) boundary. The boundary needs not
necessarily to be connected. During the motion of the body the diffeomorphism
type of the manifold with boundary is assumed to be fixed. These assumptions
allow us to think of a standard body M, which from a geometrical point of view is
a manifold diffeomorphic to the one moving and deforming in R™. Consequently a
configuration is a smooth embedding from M into R™. The configuration space is
hence the collection E(M,R") of all smooth embeddings of M into R™.This set
equipped with Whitney's C"—topology is a Fréchet manifold (cf.[Bi,Sn,Fi]). A
smooth motion of the body in R" therefore is described by a smooth curve in
E(M,R™). The calculus on Fréchet manifolds used in the sequel is the one presented

in [Bi,Sn,Fi], which in our setting coincides with the one developed in [Fr,Kr].

The physical qualities of the deforming medium enter certainly the work F(J)(L)
needed to deform (infinitesimally) the material at any configuration J € E(M,R") in
any direction L. The directions are tangent vectors to E(M,R™). Since the ladder
space is open in the Fréchet space C™(M,R") of all smooth R"—valued functions
endowed with the C*—topology (cf.[Hi]), a tangent vector is thus nothing else but a

function in C*(M,R") and vice versa.




In the following we take F, which is a one—form on E{M,R"), as the basic entity of
our notion of a constitutive law. Throughout these notes F is assumed to be
smooth. We do not discuss the question as to whether F characterizes the physical

properties of the material fully or not.

To allow only internal physical properties of the material to enter 2 , we have to
specify the notion of a conmstitutive law somewhat further. Basic to this
specification is the fact that these sorts of constitutive properties should not be
affected by the particular location of the body in R™. Thus F has to be invariant
under the operation of the translation group R of the real vector space R".
Moreover we require F(J)(L) = 0, for any constant map L, and any J € E(M,R")
also.

The forms F, which have these two properties, can be regarded as one forms on
{dJ | J € E(M,R")}, where dJ is the differential of J. This set of differentials is
equipped with the C®~topology as well and is denoted by E(M,Rn)/mn . The latter

space is a Fréchet manifold, too. It admits a natural metric of an L2—type, which is

closely related to the classical Dirichlet integral.

A smooth one—form on E(M,IRH)/[RH will be denoted by Fpn . Hence we deal with
' *

one—forms of the type F = d an which are supposed to describe the work done

under any distortion. To handle such a one—form F we assume that FIRH can be

represented via an integral kernel with respect to the mentioned metric.

A one form F being of the form F=d*FIRn and admitting an integral kernel is called

a constitutive law.

It turns out that any constitutive law F is determined by some smooth map
He Cm(E(M,Rn)/Rn,Cm(M,ﬂEn)), called a constitutive map.

Hence in our setting we characterize the medium as far as the internal physical
properties are encodable in the function $3. This constitutive function §j determines
at any dJ € E(M,an)/IRn two smooth force densities $(dJ) and ¢(dJ) linked to

$(dJ) by the following system of e;quations:
A(NHAT) = o(d])

and

dH(dTN) = (dJ) .




Here A(J) is the Laplacian determined by the pull back under J of a fixed scalar
product on R™. N is the positively oriented unite mormal of M in M. The
integrability condition necessary to solve this von Neumann problem of which the
force densities are given and the function $)is the unknown is equivalent with the

requirement that

F(JYz)=0 VJeEMR") and VzeR"

The constitutive function $) determines a stress tensor T given by
T(INXY): = <d( )X, dJY> Y J € E(M,N).

X,Y vary among all smooth vector fields on M . Vice versa any stress tensor yields

a constitutive map via the force densities mentioned above.

Since F 1s also atfected by the material forming the boundary, we treat in an
analogous way the boundary material and exhibit in analogy to $ a characteristic
constitutive map h. Thus A(3)H(dJ) with j:= J|OM and J € E(M,R™) describes the
force density @(dJ) up to a constant force density along M. However d§ydJ)(N)
also determines force densities which need not to be of the form @(dJ). This
observation allows us to decode the influence of the whole body on the physical

quality of the boundary material.

In section 8 we show that both §)and § are structured in the following sense :

In $ and in § is, generically and naturally encoded the work needed to deform
volume, area and shape of the body and the boundary respective. The shape is
partly expressed by the unite normal vector field N(j) along the embedding j of the
boundary. The procedure to decode these influences mentioned 1is to use an

L2—splitting of dp(dJ) .

Finally we discuss the symmetry of the stress tensor, which is based on the action

of the rotation group on the configuration space..
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1. Configuration and phase space, geometric preliminaries

Let us think of a material body being deformable moving and deforming in the
Euclidean space R". We make the geometric assumption that at any time the body
maintains the shape of a n—dimensional, compact, connected, oriented and smooth
manifold with (oriented) boundary. The boundary shall not necessarily be
connected. The physical qualities of the medium forming the boundary may differ

from the ones forming the inside of the body.

Fundamental for our investigation is the assumption that during the motion of the
body the diffeomorphism type of the manifold with boundary is assumed to be
fixed.

Hence we can think of a standard material body M of which the underlying
manifold is diffeomorphic to the body in R™.
The standard body constitutes of a deformable medium and we use M to denote

both, the manifold with boundary and the material body.

From this situation we read off what we mean by a configuration : A configuration

is a smooth embedding
J:M—R".

Hence the space of configurations is E(M,R"), the collection of all smooth
embeddings of M into R" . Endowed with the C*~topology the configuration space
is a Fréchet manifold (cf.[B1,5n,Fi] or [Hi]). |

Clearly each J € E(M,R") induces a smooth embedding
J|oM: M — R™,

a configuration of the boundary oM of the body. Let us denote the collection of all
smooth embeddings of M into R” by E(IM,R"). The latter space endowed with the
C®—topology is also a Fréchet manifold.

Next let us determine the phase space. The set E(M,R") is obviously a subset of
C®(M,R™), the collection of all smooth R"—valued maps of M. We equip it with the
C®—topology, also. Since M is compact, C*(M,R") is a complete metrizable locally
convex space, a so—alled Fréchet space.

The phase space is therefore

TE(M,R"Y) = E(M,R") x C®(M,R") .




Proceeding for M as for M we obtain E(OM,R") as an open subset of the Fréchet
space C™(OM,R") (ci.[Hi]). Its tangent bundle is obviously trivial. The phase space
for the boundary is hence E(dM,R™) x C™(6M,R™).

In the sequel of these notes we write O instead of {J|OM | J ¢ C®(M,R™)}. The
map assigning to any J € E(M,R") its restriction J|dM is called R.

On the configuration space we have two natural actions namely

t: E(M,R") x R* — E(M,R")
and
s: SO(n) x E(M,R™) — B(M,R™)

assigning to each Je E(M,R") and each z € R" the embedding J + z and goJ
respectively for each g € SO(n). These actions reflect the translational and the
rotational symmetry of E(M,[Rn) respectively.

t and s extend obviously to C*(M,R™). The groups R" and SO(n) act accordingly on
E(OM,R"). These actions restrict to Oa and obviously both extend also to

C™( IM,R™).

The orbit spaces of the respective actions of the translation group R" are denoted

by C™(M,R")/gn, C™(IM,R")/pn E(M,R")/pn , E(OM,R")/gn and O g/pn -

The nature of these spaces are easily understood if we introduce for any
L € C*(M,R") the differential dL which is locally given by the Fréchet derivative.
The tangent map TL of L is (L,dL). The respective notion of 1 € CU(IM,R") is

introduced accordingly.

Hence the orbit spaces mentioned above are nothing else but spaces of differentials

of the elements of those spaces on which R" acts.

For our later investigations we observe that M and OM inherit via respective
embeddings into R" some basic geometric structures described just below. Let us fix
a scalar product <, > and a normed determinant function A (cf.[Gr]) on R, ie.

R™ together with < , > and A is a fixed oriented Euclidean space.

Each J € E(M,R") and each j € E(OM,R") yield Riemannian metrics m(J) and m(j)
on M and M respectively. These metrics are defined by



T (1.2) m(J)(X,Y) = <dJX,dJY>, VXY eDlTM
and
(1.3) m(i))(X,Y) = <djX,djY>, VXY € 'ToM.

Here I'TQ denotes the collection of all smooth vector fields of any smooth manifold
Q (with or without boundary). Both m(J) and m(j) depend smoothly on its

variables J and j.

Associated with the metrics m({J) and m(j), we have the respective Levi—Civita
connections V(J) on M and V(j) on dM. They are determined by

(1.8) dJ V(D) Y = d(dJY)(X), VXY €DPTM

and

(L9)  dji V()Y = d(djY)(X) - m(W(HX,Y)-N(G), VXY elTM. -

. By W(j) we mean the Weingarten map given by

* (1.10) dNG)Z = djW()Z, VZeTTM,

*
where N(j) is the unite normal vector field along j , for which j iN(j)A determines

the orientation class of M.

For any J € E(M,R") and any j € B(M,R") let us denote by x(J) and u(j) the
Riemannian volume form determined by m(J) and the orientation of M
respectively by m(j) and the orientation of dM. Let us denote by N the positively

oriented unite normal vector field on M. This vector field depends on m(J).

2. Special one forms on E(M,R") and E(M,R™) /R0

We will characterize the type of the material which constitutes the body M in so
far as it affects the work caused by an infinitesimal distortion of M (cf.[He], [E,S],
[Bi], [Bi,S¢,S0]). This idea is formalized by giving a smooth one—form on E(M,R"),

l.e. a smooth map

(2.1) F: B(M,R") x C*(M,R") — R,



" which varies linearly in the second argument. We interpret F(J)(L) as the work

done if M is distorded by L € C®(M,R") at the configuration J € E(M,R"). We call

the medium described by F a smoothly deformable medium.

Next we expose F to the translational symmetry and require that
(2.2) F(J+2)=FJ), VIeEMR"), VzeR"

This means that the work caused by physical processes under consideration does
not depend on the particular location of J(M) within R". Moreover a constant
distortion by any z € R" is supposed to cause no work. More formally this means

that we impose the following restrictions on F basic to our further development :
(2.3) (ii.) F(N)(z) =0, VJeEMR"),VzeR".

One—forms F on E(M,R") satisfying (2.2) and {2.3) will be the basic ingredients of
our notion.of constitutive laws. To implement the possibility of extracting force
densities from our basic notion of work we need a little more structure associated

with our forms satisfying (2.2) and (2.3). We will do this in the next paragraph.

But first let us state the following obvious lemma :

Lemma 2.1 :

A smooth one—forF F: E(M,E") x C*(M,R™) — R satisfying (2.2) and (2.3)iff it is
of the form F =d Fpn that is

(24)  F(J)NL) = Fyn(dJ)(dL), VJ e E(M,R") and VL € C*(M,R"),
where
(2.5) Fgn : E(M,R")/pn x C*(M,R")/pn — R

1s a smooth one—form.



In the last section we will study the effect of the rotational symmetry on our

special types of one—forms, the constitutive laws.

3. The notion of a constitutive law, the Dirichlet integral

The purpose of this section is to define what is meant by an integral representation

of a one—form Fgn on E(M,R") and in turn to define the notion of a constitutive

law.

To obtain a tool general enough, we first will introduce a quadric structure on
E(M,R™) x A'(M,R™). We denote the collection of all smooth R"—valued one-forms
of any smooth manifold Q by AY(Q,R™) and equip with the C®—topology in case Q

is compact.

Let 7€ AYMR") and J € E(M,R") be given. The two tensor <7,dJ> determined

by v and J shall be given by <4X,dJY> for all X,Y € 'TM. This two tensor
<7,dJ> yields a unique strong bundle map A(7,dJ) of TM defined by

(3.1) <yX,dJY> = m(J)(A(1,d))X,Y), VXY eI'TM.
From this equation we read off :
(3.2) ' X = dJA(y,dDX, VXel'TM.

For any pair of one—forms T, € AI(M,IRH) and any embedding J € E(M,R") we

define the dot product of 7, and 7, relative to J by
(3.3) VNP i= tr A(y,d))-A(9p,d])

which is a smooth map on M. Here A(7,,dJ) is the adjoint of A(7,,dJ) formed

fibre—wise with respect to m(J).
Associated with this product is a quadratic structure Gmn(dJ) on AYM,R") defined

by

(3.4) Ggr(dD)(1m) = 11 MI).
M
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" As mentioned before u(J) denotes the Riemannian volume form determined by

m(J) and the given orientation of M. The real number Gmn(dJ)('yl,’yz) depends thus

smoothly on all its variables dJ, Y, and 7,
Ggn yields obviously a metric on E(M,IRH)/Rn again denoted by Gpn .

We say that an , a one—form on E(M,Rn)/mn , admits an integral repesentation if

there exists a smooth map
a: B(M,R") — AYM,R™),
called the kernel of F[Rn, such that for any choices of dJEE(M,an)/IRn and

dL € C™(M,R")/pn

(3.5) Fn(dJ)(dL) = S (d7)-dL u(J) = Gpn(dJ)(o(J),dL)
M

. holds true.

*
We speak of a constitutive law F, if F=d Fpn and Fpn admits an integral

representation with kernel o .

To discuss the uniqueness of the kernel a, associated with a constitutive law, we

first prove the following :

Theorem 3.1 :

Let v € AY(M,R") and J € E(M,R") . There exists a uniquely determined differential
dy e Cm(M,IRn)/an called the exact part of 4 and a uniquely determined

B e AYM,R") such that
(3.6) y=d9+ B,
where the exact part of 8 vanishes. Both d) and 8 depend smoothly on J. If £(po)

for some po € M is kept constant in J, then also §) varies smoothly in J.

A
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* Proof :

" We will exhibit the proof to some details, in order to reveal the surrounding
structure, which will allow us to handle the integral representation introduced in

(3.5). First let us construct f) and B To this end we fix a basis € €y O R"

orthonormal with respect to < , >. With these data we may write

n
(3.7) AX)= 2 9(X)e,, VXelTM,

r=1

with 4" € AM,R™) for all r=1,...,n . Since for each r
(3.8) FY(X) =m(NH(Y,X), VXelTM
holds true for a well defined Y' € I'TM, we find due to Hodge's decomposition

(cf.]AM,R]) a function 7° € C®(M,R") and a uniquely determined vector field
Yg € I'TM such that the following three equations are satisfied

(39 | Y' = grad Jrf +Y;
and
(3.10) divyY; =0

together with the boundary condition
m(J)(Y(r),N) =0 along dM.

Here the indices J in gradJ and divJ mean that the respective operations are

formed with respect to m(J). This decomposition is obtained by solving the

following von Neumann problem

(3.11) A7 = div JYI

- with the boundary condition
- (3.12) dr'(N) = m(JY YL, N).

This problem has, according to [Hg], a solution 7 unique up to a constant.
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* The desired function $) and the form S are defined by

T (3.13) f)::E'rr-er
T
and
(3.14) AX):=Tm(I)Ye X), VXelTM,
T

respectively. It is a matter of routine to show that dfj and S do not depend on the
basis chosen. A somewhat involved matter is to show the smoothness properties.
With these notions we immediately deduce (3.6). One easily verifies that the exact

part of B vanishes.

Some of the calculation made in the proof above allow us to look at G[Rn(dJ) from

another angle. Given 7€ A'(M,R") and J € E(M,R") we have according to (3.7)
" and (3.8) in above proof

M n
(3.15) AX) = dJA(3dD)X = 3 m(J)(Y' X)e , VXeDITM.
1

T=

Let us denote (dJ)_ler by B, for all r=1,...>,n. Then we read off from the equation
(3.15) that '

(3.16) Y = A(3dDE_, Vr=l..n,

holds true. This remark yields the following observation :

Proposition 3.2 :

Given 7,07, € AYM,R"Y), J € E(M,R") and a fixed basis € pee€p OB R™ orthonormal

with respect to < , >, then there exist two sets

1

Y
1

.Y ™ and Yl,...,Yn
t 2 2
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" of vector fields in I'TM, such that

. n X
(3.17) 77, = Z mIYLY)
12 r=1 1 2
and hence
2 I I
(318) Gga(dl)(7,7,) = y Sonu=3 y S mOY Y )

If in addition 7, = d$ for some $€ C®(M,R") then GRn(d.J)(dﬁ,'y2) = (0 provided
that the exact part of 7, vanishes.

A

Proof :

© Let Yir € 'TM for r=1,...,n and i=1,2 be as in (3.8). Then

- n -
. (319) ’)’1°’)’2=t1' A(7ladJ)A(72)dJ)= ) m(J)(A(7l)dJ)A(72)dJ)Er>Er)

r=1
= I« T
= ¥ m(J}Y" Y ")
r=1 2
establishing (3.17). To show the last part of the proposition we use Gauss' theorem

n
under the three assumptions that $= X 1'rer and divJY;=0 as well as

r=1
m(J)(Y‘;,N) =0:
n
I T
(3.20) Gmn(dJ)('yl,72)=I£1 Mf rn(J)(gradJT ,YO)
- fdrf(Yf)p(J)
R B S
. div (7 Y* div Y)u(J
-z Mf( ivy(r Y) = 7-div ;Y )u(J)
_ 3 S w0 YN
=1 M o
=0 .




In case Y, and 7, in the above proposition are exact, then the respective vector

fields in (3.20) are gradients. Hence the right hand side of the integral in (3.18) is
the classical Dirichlet integral (cf.[J]) for R"—valued functions. We call the middle
integral in (3.18), therefore the Dirichlet integral of any two smooth R"—valued
forms 707, relative to J € E(M,R™).

Proposition 3.2 also shows that the integral kernel of a constitutive law is not
unique at all. We may add to any kernel a map which assumes as its values,
one—forms of which the exact part vanishes. However the following theorem
guaranties us a uniqueness of a very specific type of kernel. The proof of the

following theorem is a matter of routine :

Theorem 3.3 :
Let F be a constitutive law with integral kernel. There exists a unique smooth map

(3.21) a: B(MR")/pn — C*(M,R")/pn ¢ AYMRY),

such that for any J € E(M,R") and aﬁy L € C"(M,R™)

(3.22) F(I)L) = f o(dJ)-dL u(J) = Ggn(dT)((d]),dL)

holds true. In fact there is a unique smooth map

ﬁ : E(M,IRH)/IRII — Cm(MJ[Rn) 3

satisfying the following two equations

(3.23) o(dJ) = dH(d]), VdJeEMR")/pn

and

3.24 <HANz>U N =0, VzeR™
(3.24) aMf d),z> K z
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Equation (3.22) together with (3.23) show that d$) is the generalized gradient of
FIRn with respect to GIRH .

A

It is this type of gradient mentioned above which characterizes the material.

Clearly each constitutive law F forms via o and equation (3.1) a tensor on M given

by

(3.25) T(N(X,Y) i= <o{dN)X,dTY>
= m(J)(dJA(o(dJ),dJX),Y>, VXY € ITM.

Vice versa each two—tensor depending smoothly on dJ defines a kernel of a
constitutive law. We call T(J) the stress tensor at the configuration J.
T(J) splits into a symmetric and a skew symmetric part. We will investigate at the

end of these notes under what conditions on d§) the skew symmetric part vanishes.

4. Force densities associated with constitutive laws

The purpose of this section is to associate with any constitutive law at any
configuration some well defined force densities, one acting upon the whole body,
and an extra one acting upon the boundary only. Vice versa any given pair of such
force densities satisfying an integrability condition will be obtained via a suitable

constitutive law,

Throughout this section F is a constitutive law, its kernel is called o. By the
previous theorem we may assume that a(E(M,IRn)/an) C Cm(M,IRn)/[Rn .

To construct the force densities mentioﬁed we use ' in the form

T (a) F(IYL) = iy f tr A(a(d]),d7)-A(dLT) p(J),

holding for any of the variables of F. Representing any L € C*(M,R") relative to a
given J € B(M,R™) in the form



(4.2) L =dJ X(L,]),
with a unique X(L,J) € 'TM we derive

(4.3) dL X = dJV(J)y X(LJ), VXe€DTM.

and hence obtain immediately
(4.4) A(ALd]) = V(1) X(L,J), VL eCM,R").

Thus if € resy is a orthonormal basis of R" for which we let Er € 'TM again be

given by dJ B =e forr=1,.,n then

(45)  F(J)YL) = %1 y S m(I)(A((d1),dT)-¥(T)g X(LIVE,) ()

Let us introduce the mnotion divJT, the divergence of a - strong bundle

endomorphism T of TM by

(4.6) div ;T := §1 V(J)g (T)E,).

I= T

This notion does not def)end of the basis chosen.Equation (4.6) together with (4.5)
imply

(47) FOYL) = [ divy(A(a(d]),dD)X(L,J)) u(J)
M
oy S m(I)(div ;A(a(d]),dT), X(L,T)) @(J) .
To bring these formulas in a more familiar form we introduce the notions of A(J)K

and A(J)y., the Laplacian for any K € Cm(M,IRn) and any y € A'(M,R"). In doing
so we follow [Mat]. We begin with the definition of 6§ by letting

(4.8) K=0.

If 7 € A'(M,R™) for some natural number m, we set
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n
(4.9) fy=-% V(J)E ('y)(Er) .
) r=1 T
Clearly
(4.10) by = — divJY ,

if
AX) = m(INY,X), VX eITM.

A(J) is then defined by
(4.11) A(N):=dé+ 4.

Consequently we have

n
(4.12) ADK=6K=—73

V(J)E (dK)}(E ).
r=1 r

and therefore we verify the following relation :

(4.13) ADK = —( gld(dJ A(dK,dT E))(E,) - dJ A(K,dI)( V(D) E)

I=

n
==X dIVD)p (AUKADE,
= T

= —dJ div;A(dK,dJ).

Hence equation (4.7) turns into

(4.14) O = [ div HA(a(d]) dNX(L,)) ((J)

+ . [ <A@ L> u(T)

with o{dJ) = d$(dJ) for some 5 € (C™(E(M,R")/pn,C*(M,R")) .

Using Gauss'theorem we derive with the help of theorem 3.3 the following
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Proposition 4.1 :
Let F be a constitutive law. Then for each J € B(M,R") there exists a smooth map
£ E(M,R") — C"(M,R™)
uniquely determined up to a smooth map from E(M,R") into R™ for which

(4.15) F(J)(L) = Mf <A()HdT),L>uT)
o S <dS(dT(N),L>iy )

and in turn a Green's equation

(4.16) . S <A0)HAI)L>u(T) - . S <HdT),AL>u(T)
= J <AL, S(dT)>iy W) _ " S <dK(dT)(N),L>iyg u(J)

are valued for all variables of F. Here iN #{J) is the volume element on IM defined
by 4#(J) and N, the positively oriented unite normal vector field along oM C M.

A

The developments made so far show that any characteristic of the material
formulated via our notion of a constitutive law are encoded in the map 5. We call

this map $) therefore a constitutive map.

The above proposition motivates us to set for any J € E(M,R™)

(4.17) ®(J) := A(J) 5(dJ)
and
(4.18) p(d]) = dH(dI)N),

with $(dJ) as in (4.15).

.. We call the maps ¢ and ¢ the force densities associated with F.

To prove the following theorem is now a matter of routine again.
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Theorem 4.2:
Every constitutive law F € AI(E(M,RH),R) admits a smooth constitutive map

(4.19) H: E(M,Rn)/mn — CY(M,RY) ,

uniquely determined up to maps in Cm(E(M,IRn)/IRn,IRn), such that F can be

expressed by

(4.20) FUJ)(L) = . S <AMDHADL>U ) + . S <dS(dD(N),L>iggu(3)

for each J € E(M,R") and each L€ C*(M,R"). For all JeEM,R") the map #

defines the force densities

(4.21) &(dJ) = A(J) H(dJ)

: and

" (4.22) A(d]) = dS(dI)(N),

with the following property :

(428) 0= [ <®(d3)z>u(7) + aM S <AdD)z)iggu(3), Yz eR™.

Given vice versa two smooth maps

(4.24) 3 : E(ME")/pn — C(MRY)
and
(4.25) @ : B(M,R")/pn — C¥(OM,R")

for which the integrability condition (4.23) holds. Then there exists a smooth map

5 B(M,R")/pn — C*(M,R")

such that $dJ) is uniquely determined up to a constant for each J € E(M,R") and
which satisfies (4.21) and (4.22). Moreover §) is a constitutive map for the

constitutive law F given by
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(42)  FU)YL) = f <®(dT),L>(T) + f <PdI),L>iggu(J)

for all J € E(M,R") and for all L € C*(M,R™).

Remark 4.3
This theorem shows us that our notion of constitutive laws based on translational
invariance are equivalent with the R®—valued solution of von Neumann problems
formulated on M and hence are equivalent with a pair of force densities satisfying
the integrability condition (4.23). which is obviously the analogon of (2.3).
Moreover if for each J € E(M,R") the one form ofdJ) splits as

o dJ) = ds(dJT) + AdJ)
with d$){dJ) the exact part of o{dJ), then both o(dJ) and d$(dJ) determine the

same force densities !

5. Constitutive laws for the boundary

The task in this section is to study constitutive laws for the boundary, that is for a
deformable medium forming a skin of which the underlying point set is the
(n—1)—dimensional manifold M. This skin, formed by a deformable material, will
be studied on its own and is not regarded as boundary of some body. In doing so,
we first formulate in analogy to sections two and three what is meant by a
constitutive law for a skin. Also in this case the translational invariance and an
appropriate integral representation of one—forms describing the work of the

material subjected to distortions is the essential tool.

Let us recall that the open set O&' C E(OM,R™) is the collection of all J|dM with

J € E(M,R"). The constitutive laws to introduce will be formulated on any open set
O € E(M,R™) and will later be specified on Oa

At the very first we introduce the notion corresponding to the Dirichlet integral :

Given any 1 € C*(6M,R") and any j € E(M,R") then for all X,Y € P'TM
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(5.1) <dl X,dj Y> = m(j)(A(dLd})X,Y)

holds for some smooth strong bundle endomorphism A(dl,dj) of TAM. Moreover
there is a uniquely defined smooth map

(5.2) c(dl,dj) : M — so(n)

with so(n) the linear space of all skew maps of (R",< | >) , satisfying the following
two conditions

(5.3) C(dl,dj)dj(TpaM) CR-N(3)}(p), VpedM
- and
(5.4) c(d,dj)N(j)(p) C dijaM ) Vpe oM,

and such that the equation
(5.5) dI X = c(dj,dl)dj X + dj A(dL,dj)X

holds true for any X € I'TM. We refer to [Bi,Sn,Fi] or [B1,5c,So] for more details.

Based on (5.4) we introduce U(dl,dj) by

(5.6) | o(dLAjN(}) = dj U(dL,dj) .
This vector field U(dl,dj) € T'TAM is obviously uniquely determined.

Splitting A(dlLdj) into its skew— respectively selfadjoint parts C(dl,dj) and B(dl,dj)-
formed pointwise with respect to m(j) we end up with

(5.7) dl = ¢(dl,dj)-dj + dj(C(dL,dj) + B(dLdj)) .

This decomposition relative to any dj € E(dM,R"™) generalizes in the obvious way to
any v € A'(OM,R") and reads in this case as

(5.7a) v = c(%di)-dj + dj(C(y,dj) + B(,dj)) .

- The quadratic structure ng(dj) at djEE(aM,IRn)/IRn applied to any two

17 € Al(aM,an) 18 defined by integrating the function
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(5.8) YTy = —%tr c( 71,dj)'c( 72,dj)
—tr C(y1,d3) - C(7,di)
+ tr B('yl,dj)°B(’)’2,dj)

with respect to u(j), that is, it is defined by

(5.9) GIn(di)(77,7) 1=Mf N7 M)
= —%Mftr c(’yl,dj) -c(’yQ,dj)}b(j)
= S5 Gy )l i)

+ Mftr B('yl,dj)°B(’)/2,dj)#(j) .

ng obviously yields a metric on E(M,R"). Let O ¢ E( OM,R") be any open set.

- We now define a constitutive law F3 on O in analogy to section two, that is we

+ Tequire

3 (510) Fa = d*Fan Y

to hold for some one—form an on O/IRH and demand furthermore that for some

a € C™(O,A'(OM,R™M)) the following equation is valid

(5.11) F £dj)(d]) = Mfa(dj)~dl #3), VdleCHMEY) pn Vdj€Ofpn.

We introduce for any j € E(AM,R") the Laplacian A(j) accordingly to (4.11) but

require that E_in this case is a moving frame on M.

With this notion at hand the constitutive laws on O are characterized in details in

the next theorem :

Theorem 5.1 :

Let Fa be a constitutive law on any open set O ¢ E(M,R™). The following are then

equivalent :
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(i.) Fa admits a kernel o € Cm(O/IRn,A‘l(aM,IRn)) .
(i1.) There is a smooth map b € Cm(O/IRn,Cm(aM,IRn)) uniquely determined up to
maps in Cm(O/an,IRn), such that

(5.12) FUCESN S d(di)-di u(3), Vjeo,
and  V1eC®(aM,RY).

(iii.) There is a smooth map b € Cm(O/[Rn,Cm((?M,Rn)) uniquely determined up to
maps in C*(E(M,R™),R™), such that

(5.13) Ffid = f<BIBIH), Vi€ O, Vie (M)

(iv.) There is a unique smooth map ¢ € C*(0,C™(IM,R™)), such that

(514) P = S <AdidI>pi), Vi€, Vie CHaMRT)

and which satisfies

(5.15) aMf<p(dj),z>p(j) =0, VieO,VzeR™.

For an explicit formulation of A(j) in terms of the coefficients of dj we refer to

[Bi,5¢,So].

Remark :

The remark at the end of section 4 translates accordingly to the situation studied

in this section.

Next we will investigate a boundary material implemented to a body formed by a

deformable medium.
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" 6. The interplay between constitutive laws of boundary and body

The deformable media forming the inside of the body and the boundary
respectively may differ and each separate material hence has to be described on one
hand by different constitutive laws. This we have done in the previous sections. On
the other hand these materials together form one body and should be describable
by only one constitutive law holding for the whole body. Since constitutive laws
behave additively, the comparision between the two procedures allows us to decode
the influence of the whole body to the comstitutive properties of the boundary
material.

Let the constitutive law of the deformable medium forming the whole body be
called by F again.

According to theorem 4.2, F is determined by a smooth constitutive map

9H: E(M,an)/[Rn — C(M,R™) .

: The following theorem exhibits its influence to the constitutive entities of the
material forming the boundary of the body. We will indicate next the methods to
! prove it.

The map ) yields according to theorem 4.2 force densities

(6.1) ® E(M,IRH)/IRn — C™(M,R™)
and
(6.2) ¢ : E(M,R")/pn — C*(OM,R")

The force density acting on dM, is defined by

(6.3) AdJ) = dH(dT)(N), VdJ e E(MR")/pn .

Having the integrability condition (5.14) of A(J) in mind, we split this force
density pinto

(6.4) P(dJ) = gpn(dJ) + ¢dJ), VdJe E(M,Rn)/mn ,

where len(dJ) is characterized for each dJ € E(M,IRH)/IRn by the equation
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(6.5) Ny S <ppr(dD),z>iplJ) =0, VzeR"

and where

y: E(MR")/on —R",
X R

is a smooth map, which makes (6.4) to hold.

According to theorem 5.1 the condition (6.5) allows us to choose some map

(6.6) b EQMR)/gn — C(OMAY)
such that for all dJ € E(M,an)/[Rn the equation
(6.7) ppu(dJ) = A(J| M) b(dJ)

holds true.

Theorem 6.1 :
Any smoothly deformable medium is characterized by a constitutive map

$: B(M,R")/pn — C*(MR")

determining itself two smooth maps

(6.3) b : E(MR")/gn — C"(OM,R")
and |
(6.9) ¥ B(M,R") — R"

which are linked to $) by the boundary condition

(6.10) dH(dI)(N) = A(J| M) b(dJ) + ¥(d]) .

b is unique up to R"~valued smooth maps of E(M,R") and 4 is unique. Moreover )

satisfies the integrability conditions
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(6.11) 0= . f <A(DHAI),z> 1) +aMf <dHATY(N),2>ipgp3)

for each J € E(M,R") and each z € R®. Equation (6.11) equivalently formulated
reads as
(6.12) 0= . S <ADHAT), 25T
+ <¥dJ),z>iN(J),
S <wany

a boundary condition holding for $ and ¥ together. The constitutive law on
E(M,R"™) describing the constitutive properties of the materials forming body
together with its boundary is thus given via the formula

(6.13) F(J)L) = . S <AD)HD),L>pT)
+ o S <AT|M(T| M) + WdJ)),L>iu(J),
VJeE(MRY), VL e C(M,R™).

The work of any distortion 1 € C*(AM,R") of the deformable material formmg the
: boundary detached from the body is for any J ¢ E(M,R") given by

(6.14) F (40D = aM S <A@[aM)p LA I>igu(T) .

for some constitutive map hg€ Cm(Oa/[Rn,Cm(aM,Rn)).

The constitutive properties of the deformable medium of the boundary detached
from the body, which is given by a smooth map ba € Cm(Oa/[Rn,Cm( AM,R")). Hence
h— ba and ¢ describe how the constitutive properties of the material forming the

boundary of the body is affected by the fact that this material is incorporated into
the material forming the whole body.

A
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7. Simple examples

In this section we will study well known one forms o E(M,R") in the light of our

formalism developed above. We do so by looking at particularly simple constitutive
maps.

(i) In our first example we specify a constitutive map by HNdJ) =T for all
J € E(M,R"). The following calculation is easily verified :

(7.1) MfdJ-dL w(J)
= Mf<A(J)J,L>y(J) + aI\4f<dJ(N),l>iN/x(J)
= f tr A(dL,dJ)u(J)
= f tr V(I)X(L,J)u( J)
= fdiv TX(L, D))
= ) NOL>(0)
a =D(_fuD),

for all J € E(M,R") and for all L € C%(M,R).

Introducing the volume function
(7.2) T: E(MRY) — R,

assigning to any J € E(M,R") the volume

(7.3) OEN S w3y,
we have
(7.4) DY(J)(L) = MfdJ-dL W),

with N(j) := TIN together with the following notions 1 := L|6M and j := J|oM .
" The above calculation shows

(7.5) ®(dJ) = A(J)T =0, VJeEMR"
and

(7.6) odJ) = N(j), VIeEMR".
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Clearly | = z with z € R™ implies

(7.7) Mf<N(j),z>p(j) =0, VzeR".

With the notations of the previous section this shows that in this example
(7'8) 99 = QQIRH .

The map h determined by $ in this case is thus given by

(7.9)‘ N(J) = AG)KdT), VJeEMR") and j:= J|OM .

(i1.) Next let us turn our attention to ba on E(OM,R"), given by f)a(dj) =73, for
all j € E(OM,R™) . One easily verifies the following set of equations
(7.10) <AGNI>ui) = dj-dl u(j)
! o
= g (XD + 6L HG)()
=D(_ fui)1).
i

Defining the area function

(7.11) 2A: E(OM,R") — R,

sending any j € E(dM,R") into

(7.12) A= S ),

we have

DRAG)(D) = dj-dl u(j)
i
for all variables of D2. The constitutive map ba determines a map S’Ja given by

(7.13) 0= A(INHHdT), VJ € E(M,R"),

together with
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(719) d9g(dT)(N) = AG); = H()-NG),

for each J € E(M,R") and j:= J{OM . The function H(j) is the mean curvature,
that is the trace of W(j) .

(iil.} Next let us consider quite another influence of the boundary by looking at the

map by 05 pn — C™(AM,R") given by heldi) = N(j), for allj€ O 4. Then the

formula

(7.15) AGING) = &N(J)
=& W)
= —dj grad;HG) + (1 W(I)-NG)

- holds for any j€ Oa’ Let us point out that A(j)N(j) #0 even if j(M) CR" is

minimal, that is to say even if H(j) = const.
In the special case of dim M = 2 a topological constant, the Euler characteristic
X(OM), enters the constitutive law F determined by N(j) for each j€ Oa. It is

: hidden in the formula

(7.16) PONG) = S <AGNG),NG)>u()
= tr W(i)Pu(i) -
)
This is seen by using the Cayley Hamilton theorem (cf.[G1]) and the Gauss Bonnet

theorem (cf.[G,H,V]), applied to the right hand side of equation (7.16), which
yields

(7.17) P)N(G)) = ~ 4 x(M) + Ny SHGYG) -

8. A general decomposition of constitutive laws

In this section we will exhibit a decomposition of the constitutive map § based on

the examples of the previous section.
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E S
We will show that DU and R D multiplied with appropriate R—~valued maps are
all part of any constitutive law F defined on E(M,R™).

To get the full decomposition of a given constitutive law we broaden our scope a
little and introduce first of all the Hilbert space Ai consisting of all maps

Tp Ty TM — R linear on the fibres of TM for which the right hand side of
' a1 :
. (\‘ = .
(8.1) Gn(di)(7,7,) = [ 77 (i)

exists. Clearly de(dJ) , dj and dN(j) all belong to A]- and are generically linearly
independent. The set 03 of all J € E(M,R™) for which these three differentials are

linearly independent form a dense open set. Let j := J|OM. In special case j( M) is
a (n—1)—sphere in R" however, N(j) is a real multiple, r say, of j and bN(dJ) 18

hence (_n%ﬂ] In the case of linear independence the three above mentioned
differentials are in general (with respect to Gpn(dj)) not orthogonal to each other,

however. We might orthogonalize them by using the method of Schmidt. For each
Je 03 we then split the differential of h(dJ) into components along span of the

. three mentioned differentials and a component perpendicular to them.

Next we extend all maps bN(dJ), j and N(j) to all of M in the following way :
Given{ e C?(HM,RH) we solve the following Visik problem (cf.[Hg)) :

(8.2) A(Dfy =0
dfy((N) - A =0,

with fy; C C*(M,R") and J € E(M,R") and where j := J|M. All the splittings and
extensions done to construct iy and N(])M depend smoothly on j € E(OM,R™). Let

moreover f)N be given by
(AN =T, YIeEBMRY) .

The above mentioned decomposition of § is then described in the following

theorem :
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Theorem 8.1 :

Let.  F  be a constitutive law  on E(MM,R™)  determined by
¢ e Cm(E(M,ﬂEn)/mn,Cm(M,ﬂ?n)). Then $) determines uniquely three smooth maps

, n
(8.3) 2,33 O3 C E(M,R )/!Rn — R

1

and two smooth maps

b 67 O C B(MR")/gn — C(OMRY)
such that the following splitting holds for any dJ € O3 C E(M,R™)
(8.4) h(dJ) = a (dJ)-hy(dJ) + 2,(dJ)j + 2 (dJ)-N(j) + b,(dJ)

with j := j/OM. The differential df)g(dJ) 18 orthogonal with respect to G(dj)gn to
the span of dhp(dJ), dj and dN(j).
The map $dJ) decomposes for each J € 03 accordingly into

(8.5) $(d)) = al(dJ)-J + a,z(dJ)-JM + aa(dj)-NM(dJ) + $5(d]),

with j := J| M and where $),(dJ) is such that (8.10) holds.

9. The rotational symmetry
Finally we investigate the effect of the SO(n), the symmetry group of the oriented
Euclidean vector space (R" <, >,A) to a constitutive law. In particular let us

. characterize those which are invariant under SO(n).

~ As mentioned in the first section we have the operation

‘ s:50(n) x B(M,R") — R™
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sending any g € SO(n) and any J ¢ E(M,R") into

5(g)‘]')=goj‘

Let sg(J) += g o J for each pair g € SO(n) and each J ¢ E(M,R™).
The induced operation $p on TE(M,R") is therefore determined by

s+ 50(n) x E(M,R") x C™(M,R") — E(M,R") x C™(M,R™)

5T(g>(J)L)) = (gOJ,gOL) )

for all g € SO(n), for all J ¢ E(M,R") and for all L € C*(M,R").
Invariance under SO(n) of a given constitutive law F with $) means that the

following equation
(9.1) F(g o J)go L) = F(J)L)

holds for all the variables of F and for any g € 5O(n). Thus the constitutive map

satisfies

" (9.2) . J d(godT)-d(goL) u(goT) = . S d(dT)-dL w(J)

(3

-

L 3

or reformulated

(9.3) . Str (3 L A(d5(god ), godT) — A(d$(dT),dT)) - A(dL,dI))u(J) = 0

with g = (dJ)—1 og. Thusge SO(TpM), the special orthogonal group of TPM

for each p € M. The volume #1s invariant under the action s7 . Hence
(9.4) y S g™ Hgodd) - G(d)-dL u7) = 0,

holds for all g € SO(n), for all J € E(M,R") and for all L ¢ C™(M,R") . From the
last equation and from the general procedure of representing differentials via
embeddings we read off
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Proposition 9.1 :
Given a constitutive law F with constitutive map $ € C*(E(M,R"),C*(M,R™)) then

F is invariant under SO(n) iff

(9.5) ¢ Yo d9godJ) = d$(dJ), Y G € SO(n).

The validity of this equation 1s equivalent with the following identity

(9.6) A(d$x(god]),ged])(p) = A(d£(dJ),dJ)(p)

holding for all g € SO(n), for all p € M and for all J € E(M,R"). Moreover the stress
tensor T(J) determined by $) is invariant under SO(n) for any J € E(M,R™).

Let F be a SO{n)—invariant constitutive law. (9.5) implies that for each c € so(n)
(9.7) cod$ydJ) = dDH(dJ)(ced]) ,

with D the derivative on E(M,IRH)/IRH. Here so(n) is the Lie—algebra of SO(n).

Based on (9.7) it is a matter of routine to show that in case §) is invariant under
SO(n) then cd$(dJ) =0 for any c €so(n) and any J € E(MR"). In case of
dim M = 3 this means that the SO(n)—invariance of §)(J) yields ${dJ) = const.
and in turn that F = 0.

Splitting A(d$(dJ),dJ) with respect to m(J) into symmetric and skew—symmetric
part and doing the same for A(dD${dJ)(codJ),dJ) and using (9.7) yields

(9.8)  coB(d(dJ),dI)(p) + coC(d$(dJ),dJ)(p)
= B(dDH(dT)(ced]),dJ)(p) + C(dADHdAT)(cod]),dT)(p)

with c € so(TpM) for each fixed p € M. Here SO(TPM) denotes the Lie Algebra of
SO(TPM). If tr A(dD$Y(dJ)(codJ),d])=0 then (9.8) yields

(9.9) tr coC(d$XdJ),dT)(p) =0, ) Vceso(n), VpeM
and VJeB(MRY).

and vice versa. This implies the following theorem :
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" Theorem 9.2 :

For any SO(n)-invariant constitutive law with (smooth) constitutive map § the

following are equivalent:
(9.10) C(d(dJ),dJ) =0, YJeEMRY
(9.11) tr A(dD$Y(dJ)(cod]),dT)=0 V J € E(M,R")

(9.12) The stress tensor T(J) associated with & is symmetric for each
configuration J.

A

Let us illustrate (9.11) somewhat. In doing so‘we proceed similar as in section 8
and take the components of d(g-dJ) and d$ydJ) along dJ, this is to say we have
the splitting

(9.13) d¥(g-dJ) = I1(g-dJ)-dJ + dj%l(godJ)
and '
(9.14) d9(d)) = II(dJ)-dJ + d$,(dJ),

where both d$,(dJ) and d$),(dJ) are orthogonal to dJ with respect to Gpn(dJ).

Both IT and IT can be regarded as internal pressures. All the maps in (9.13) and
(9.14) are smooth. We therefore find

(9.15) f tr A(d$(g-dJ),dJ) 4(J) = n-N(g-dJ)-B(J)
M

=0 IAn D -ug+ i A(g-d8,(d7)4T) W)

and in turn

(9.16) . S tr A(dD$Y(dJ)(c-dJ),dJ) = n-B(J)-DI(AT)(c-dJ) .
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Hence (9.11) requires
(9.17) DII(dJ)c-dT) =0, VJeEBMR") and Vc €so(n),

showing that ITis up to the first order invariant under SO(n).
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