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O.Introduction

The purpose of these notes is to show that symmetry, ~in partieular translational

symmetry, is the base on whieh two not ions in the theary of elasticity, associated
with deformable bodies in lRn,namely eonstitutive laws and a certain dass of force
densities are in a one to one eorrespondenee. This correspondence is given by a von
Neumann problem eonverting force densities into eonstitutive maps which in turn

charaeterize eonstitutive laws.

As we will see below any eonstitutive law F - formulated in our fashion - yields a
a stress tensor, as in the usual treatment of elasticity (d.(L,L]). This tensor needs
not to be symmetrie, however. A eriterion for the symmetry is given far

constitutive laws invariant and all rotations of lRn.

To deseribe in short what we mean by a eonstitutive law, we begin by looking at a
moving deformable bounded body in lRn. The material should eonstitute of a
deformable medium. The medium forming the boundary may differ from the one

forming the inside of the body.

Let us first layout some elements of the geometrie setting. We make the geometrie
'. assumption that at any time the body is a n-;-dimensional, eompact, conneeted,

oriented and smooth manifold with (oriented) boundary. The boundary needs not
necessarily to be eonneeted. During the motion of the body the diffeomorphism
type of the manifold with boundary is assumed to be fixed. These assumptions
allow us to think of a standard body M, whieh from a geometrieal point of view is
a manifold diffeomorphie to the one moving and deforming in lRn. Consequently a
configuration is a smooth embedding from M into lRn. The configuration space is
henee the colleetion E(M,lRn) of all smooth embeddings of M into lRn.This set
equipped with Whitney's COO-topology is a Frechet manifold (d.(Bi,Sn,Fi]). A
smooth motion of the body in lRn therefore is described by a smooth eurve in
E(M,lRn). The ealculus on Freehet manifolds used in the sequel is the one presented
in (Bi,Sn,Fi], whieh in our setting coincides with the one developed in (Fr,Kr].

The physieal qualities of the deforming medium enter eertainly the work F(J)(L)
needed to deform (infinitesimally) the material at any eonfiguration JE E(M,lRn) in
any direetion L. The direetions are tangent veetors to E(M,lRn). Since the ladder

" space is open in the Freehet spaee Coo(M,lRn)of all smooth lRn-valued funetions
endowed with the COO-topology (d.(Hi]), a tangent veetor is thus nothing else but a
funetion in Coo(M,lRn)and vice versa.



3

In the following we take F, which is a one-form on E(M,lRn), as the basic entity of
-4,! our notion of a constitutive law. Throughout these notes F is assumed to be

smooth. We do not discuss the question as to whether F characterizes the physical
:

properties of the material fully or not.

To allow only internal physical properties of the material to enter F , we have to
specify the not ion of a constitutive law somewhat further. Basic to this
specification is the fact that these sorts of constitutive properties should not be
affected by the particular location of the body in IRn.Thus F has to be invariant
under the operation of the translation group IRn of the real vector space IRn.
Moreover we require F(J)(L) = 0, for any constant map L, and any JE E(M,lRn)
also.

The forms F, which have these two properties, can be regarded as one forms on

{dJ I JE E(M,lRn)}, where dJ is the differential of J. This set of differentials is
equipped with the COO-topology as weIl and is denoted by E(M,lRn)/lRn . The latter

space is a Frechet manifold, too. It admits a natural metric of an L -type, which is
2

• closely related to the classical Dirichlet integral.

A smooth one-form on E(M,lRn)/lRn will be denoted by FIRn. Hence we deal with

*'\ one-forms of the type F = d FIRn which are supposed to describe the work done

under any distortion. To handle such a one-form F we assurne that FIRn can be

represented via an integral kernel with respect to the mentioned metric.

*A one form F being of the form F=d FIRnand admitting an integral kernel is called

a constitutive law.

It turns out that any constitutive law F is determined by some smooth map
Sj E COO(E(M,lRn)/lRn,COO(M,lRn)),called a constitutive map.

Hence in our setting we charaeterize the medium as far as the internal physical
properties are encodable in the function f) . This constitutive function Sj determines
at any dJ E E(M,lRn)/lRn two smooth force densities 4>(dJ) and ~ dJ) linked to

f)( dJ) by th'e following system of equations:

Ll( J)f)( dJ) = 4>(dJ)
and

dS)(dJ)(N) = ~ dJ) .
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Here n( J) is the Laplacian determined by the pull back under J of a fixed scalar
product on IRn. N is the positively oriented unite normal of 3M in M. The
integrability condition necessary to solve this von Neumann problem of which the
force densities are given and the funetion .f) is the unknown is equivalent with the
requirement that

F(J)(z)=O

The constitutive function .f) determines a stress tensor T given by

T( J)(X,Y): = <dS)( J)X,dJY> V JE E(M,N).

".

x,Y vary arnong all smooth vector fields on M . Vice versa any stress tensor yields
a constitutive map via the force densities mentioned above.

::lmce 1" 1S also aifected by ihe materiai forming the boundary, we ireai In an
analogous way the boundary material and exhibit in analogy to S) a characteristic

constitutive map ~. Thus n(j)~(dJ) with j := JI ßM and JE E(M,lRn) describes the
force density ~ dJ) up to a constant force density along 3M. However dS)(dJ)(N)
also determines force densities which need not to be of the form ~ dJ). This
observation allows us to decode the influence of the whole body on the physical

quality of the boundary material.

In section 8 we show that both S) and ~ are structured in the following sense:

In S) and in ~ is, generically and naturally encoded the work needed to deform
volume, area and shape of the body and the boundary respective. The shape is
partly expressed by the unite normal veetor field N(j) along the embedding j of the
boundary. The procedure to decode these influences mentioned is to use an
L -.splitting of d~(dJ) .

2

Finally we discuss the symmetry of the stress tensor, which is based on the action
of the rotation group on the configuration space ..

Acknowledgements:
We are indept to Thomas Ackermann and Günter Schwarz for valuable discussions,
criticisms and correetions.
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1. Configuration and phase spaee, geometrie preliminaries

Let us think of a material body being deformable moving and defarming in the
~ Euclidean spaee IRn.We make the geometrie assumption that at any time the body

maintains the shape of a n-dimensional, compact, connected, oriented and smooth
manifold with (oriented) boundary. The boundary shall not necessarily be
connected. The physical qualities of the medium forming the boundary may differ
from the ones forming the inside of the body.

Fundamental far our investigation is the assumption that during the motion of the
body the diffeomorphism type of the manifold with boundary is assumed to be
fixed.

Hence we can think of a standard material body M of which the underlying
manifold is diffeomorphic to the body in IRn.
The standard body constitutes of a deformable medium and we use M to denote
both, the manifold with boundary and the material body.

-;. From this situation we read off what we mean by a configuration : A configuration
- is a smooth embedding

nJ:M-+IR .

Hence the space of configurations is E(M,lRn), the collection of all smooth
embeddings of M into IRn. Endowed with the COO-topology the configuration space
is a Frechet manifold (d.[Bi,Sn,Fi) or [Hi]).

Clearly each JE E(M,lRn) induces a smooth embedding

JlaM: OM-+lRn,

a configuration of the boundary BM of the body. Let us denote the collection of all
smooth embeddings of BM into IRnby E( OM,lRn).The latter space endowed with the
COO-topology is also a Frechet manifold.

Next let us determine the phase space. The set E(M,lRn) is obviously a subset of
.. Coo(M,lRn),the collection of all smooth IRn-valued maps of M. We equip it with the

COO-topology, also. Since M is compact, Coo(M,lRn)is a complete metrizable locally
. convex space, a so-ealled Frechet space.

The phase space is therefore
TE(M,lRn) = E(M,lRn) x Coo(M,lRn).
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- Proceeding for OM as for M we obtain E( OM,lRn)as an open subset of the Frechet
space COO

( OM,lRn)(cf. (Hi]). Hs tangent bundle is obviously trivial. The phase space
for the boundary is hence E( aM,lRn) x COO

( OM,lRn).

In the sequel of these notes we write 0a instead of {JIOM I J ( Coo(M,lRn)}. The

map assigning to any JE E(M,lRn) its restrietion J 10M is called R.

On the configuration space we have two natural aetions namely

and

assigning to each JE E(M,lRn) and eaeh z E IRn the embedding J + z and goJ
respectively for each g E SO(n). These actions refleet the translational and the
rotational symmetry of E(M,lRn) respeetively.
t and .5 extend obviously to Coo(M,lRn).The groups IRnand SO(n) aet aeeordingly on
E( OM,lRn). These aetions restrict to °a and obviously both extend also to

COO
( OM,lRn).

The orbit spaees of the respective actions of the translation group IRnare denoted
by Coo(M,lRn)/lRn, Coo(OM,lRn)/lRn E(M,lRn)/lRn, E(OM,lRn)/lRn and 0a/lRn.,

The nature of these spaees are easily understood if we introduee for any
L E Coo(M,lRn)the differential dL which is locally given by the Frechet derivative.
The tangent map TL of L is (L,dL). The respeetive notion of 1E COO

( OM,lRn) is
introdueed aeeordingly.

Hence the orbit spaees mentioned above are not hing else but spaces of differentials
of the elements of those spaees on whieh IRnaets.

For our later investigations we observe that M and OM inherit via respeetive
embeddings into IRnsome basic geometrie struetures deseribed just below. Let us fix

'. a scalar produet < , > and a normed determinant funetion !1 (cf.(Gr)) on IRn,i.e.
IRntogether with < , > and !1 is a fixed oriented Euclidean space.

Eaeh JE E(M,lRn) and eaeh j E E( OM,lRn)yield Riemannian metries m( J) and m(j)
on M and 3M respeetively. These metrics are defined by
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-. (1.2)

and
(1.3)

m(J)(X,Y) = <dJX,dJY> , 't/X,Y E rTM

m(j)(X,Y) = <djX,djY>, 't/X,Y E rTDM.

Here rTQ denotes the collection of all smooth vector fields of any smooth manifold
Q (with or without boundary). Both m(J) and m(j) depend smoothly on its
variables J and j.

Associated with the metrics m( J) and m(j), we have the respective Levi-Civita
connections V(J) on M and V(j) on DM. They are determined by

(1.8) dJ V(J)X Y = d( dJY)(X), 't/ X,Y E rTM

and
(1.9) dj V(j)XY = d(djY)(X) -m(j)(W(j)X,Y).N(j), 't/X,Y E rTDM.

. By W(j) we mean the Weingarten map given by

. (1.10) dN(j)Z = djW(j)Z, V Z E rTM ,

\ *where N(j) is the unite normal vector field along j , for wh ich j iN(j)~ determines

the orientation dass of DM.

For any J E E(M,lRn) and a,ny j E E(M,lRn) let us denote by JLCJ) and JLCj)the
Riemannian volume form determined by m( J) and the orientation of M
respectively by m(j) and the orientation of DM. Let us denote by N the positively
oriented unite normal vector field on DM. This vector field depends on m( J).

2. Special Olle {orms OllE(M,nf) and- E(M,lRll)jnf

. We will characterize the type of the material which constitutes the body M in so
far as it affects the work caused by an infinitesimal distortion of M (cf. [He]' [E,S]'

'. [Bi], [Bi,Sc,So]). This idea is formalized by giving a smooth one-'form on E(M,lRn),
i.e. a smooth map

(2.1)
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which varies linearly in the second argument. We interpret F(J)(L) as the work
done if M is distorded by L E eOO(M,!Rn)at the configuration JE E(M,!Rn). Vve call
the medium described by F a smoothly deformable medium.

Next we expose F to the translational symmetry and require that

(2.2) F(J + z) = F(J), V JE E(M,lRn) ) V z E !Rn.

This means that the work caused by physical processes under consideration does
not depend on the particular Iocation of J(M) within !Rn. Moreover a constant
distortion by any z E IRnis supposed to cause no work. More formally this means
that we impose the following restrictions on F basic to our further development :

(2.3) (ii.) F(J)(z) = 0, V J E E(M,!Rn) , V z E IRn.

• One-forms F on E(M,lRn) satisfying (2.2) and (2.3) will be the basic ingredients of
. our notion of constitutive laws. To implement the possibility of extracting force

densities from our basic not ion of work we need a littie more structure associated
with our forms satisfying (2.2) and (2.3). We will do this in the next paragraph.

But first let us state the following obvious lemma:

Lemma 2.1 :

A smooth one-form F : E(M,lRn) x eOO(M,lRn)---I !Rsatisfying (2.2) and (2.3)iff it is
*of the form F = d FIRnthat is

(2.4) F(J)(L) = FlRn(dJ)(dL) ,

where
(2.5)

is a smooth one-form.

".
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In the last seetion we will study the effeet of the rotational symmetry on our

special types of one-forms, the constituti;e laws.

3, The notion of a constitutive law, the Dirichlet integral

The purpose of this seetion is to define what is meant by an integral representation

of a one-form FIRn on E(M,lRn) and in turn to define the not ion of a constitutive

law.

To obtain a tool general enough, we first will introduce a quadric strueture on
n' J n mE(M,IR ) x A (M,IR ). We denote the colleetion of all smooth IR -valued one-forms

of any smooth manifold Q by A J( Q,lRm) and equip with the COO-topology in ease Q

is compaet.
Let 1 E A1(M,lRn) and JE E(M,lRn) be given. The two tensor <1,dJ> determined

by 1 and J shall be given by < 1X,dJY> for all X, Y E rTM. This two tensor
; <'Y,dJ> yields a unique strong bundle map A( l,dJ) of TM defined by

(3.1) <1X,dJY> = m(J)(A( 1,dJ)X,Y), 't/ X,Y E rTM.

From this equation we read off :

(3.2) 'YX= dJA( 'Y,dJ)X , 't/ X E rTM .

For any pair of one-forms I , I E A'(M,lRn) and any embedding JE E(M,lRn) we, 2

define the dot product of 1 and 1 relative to J by
, 2

(3.3)

whieh is a smooth map on M. Here A( 12,dJ) is the adjoint of A( 12,dJ) formed

fibre-wise with respect to m(J).
Associated with this product is a quadratic structure GlRn(dJ) on A '(M,lRn) defined

., by

(3.4) GlRn(dJ)(I"12):= f 1,'12 J1{J).
M
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As mentioned before p,(J) denotes the Riemannian volume form determined by
m( J) ana the given orientation of M. The real number GlRn(dJ)( I )I )depends thus

1 2

smoothly on all its variables dJ, I and I .
1 2

GlRnyields obviously a metric on E(M,lRn)/ IRnagain denoted by GlRn .

We say that FIRn) a one-form on E(M,lRn)/lRn , admits an integral repesentation if

there exists a smooth map

called the kernel of FIRn, such that for any choices of dJ E E(M,lRn)/ IRn and

dL E Coo(M,lRn)/lRn

. (3.5)

holds true.

F IRn(dJ)(dL) = f a( dJ) .dL p,(J) = GlRn(dJ)( a( J)dL)
M

*We speak of a constitutive law F, if F = d FIRn and FIRn admits an integral

representation with kernel a.

To discuss the uniqueness of the kernel a) associated with a constitutive law, we

first prove the following :

Theorem 3.1 :

Let I E AI(M,lRn) and J E E(M,lRn) . There exists a uniquely determined differential
dS) E Coo(M,lRn)/lRn called the exact part of land a uniquely determined

ß E A1(M,lRn) such that

(3.6) 1= df) + ß,

where the exact part of ß vanishes. Both dS) and ß depend smoothly on J. 1£S)(po)
for some po E M is kept constant in J, then also S)varies smoothly in J.
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." Proof;

. We will exhibit the proof to some details, in order to re~eal the surrounding
structure, which will allow us to handle the integral representation introduced in
(3.5). First let us construct ,fj and ß. To this end we fix a basis e ,... ,e on !Rn,

1 n

orthonormal with respect to < , >. With these data we may write

(3.7)
n

,(X) = ~ leX) er ' 'tf X E rTM ,
r=l

with l E AI(M,!Rn) for all r=l, ... ,n . Since for each r

(3.8) lex) = m( J)(yr,X) , 'tf X E rTM

holds true for a weH defined yr E rTM, we find due to Hodge's decomposition
(d.[A,M,R]) a function i E Coo(M,!Rn) and a uniquely determined vector field
yr E rTM such that the foHowing three equations are satisfiedo

(3.9)

and

(3.10)

yr = gradJi + y~

divJY~=O

together with the boundary condition

m(J)(Y~,N) = 0 along ßM.

Here the indices J in grad J and div J meax: that the respective operations are

formed with respect to m( J). This decomposition is obtained by solving the
following von Neumann problem

(3.11)

- with the boundary condition

(3.12) di(N) = m(J)(yr,N) .

. This problem has, according to [Hö], a solution T
r unique up to a constant.
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.' The desired funetion Sj and the form ß are defined by

. (3.13)

and
(3.14)

Sj:= ~ l.e rr

ÄX):= ~m(J)(yl,X), \;/X E rTM,
r

respeetively. It is a matter of routine to show that dS) and ß do not depend on the
basis chosen. A somewhat involved matter is to show the smoothness properties.
With these notions we immediately deduce (3.6). One easily verifies that the exaet

part of ß vanishes.

o

Some of the calculation made in the proof above allow us to look at GlRn(dJ) from

another angle. Given , E AI(M,lRn) and JE E(M,lRn) we have according to (3.7)

and (3.8) in above proof

(3.15)
n

r(X) = dJA( "dJ)X =.~ m(J)(yr,X) er' \;/X E rTM .
r=l

Let us denote (dJ)-le by E , for all r=l, ... ,n. Then we read off from the equationr r

(3.15) that

(3.16) yr = A( "dJ)Er ' \;/r=l, ... ,n ,

holds true. This re mark yields the following observation:

Proposition 3.2 :

Given 'I "2 E Al(M,lRn) , JE E(M,lRn) and a fixed basis el, ... ,en on IRnorthonormal

with respeet to < , >, then there exist two sets

Y 1, ... ,y n and
1 I

1 ny ,...,y
2 2
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..
of vector fields in rTM, such that

(3.17)

and hence
n

(3.18) GlRn(dJ)(",):= f,., ~(J) = E f m(J)(Y r,Y r)MJ).
I 2 1 2 r-l 1 2M - M

1£in addition '1 = dS) for some S)E Coo(M,lRn) then GlRn(dJ)( dS),,) = 0 provided

that the exact part of, vanishes.
2

Prao! :

. Let y.r E rTM for r=I, ... ,n and i=I,2 be as in (3.8). Then
1

- n -
(3.19) ,., = tr A(, ,dJ) .A(, ,dJ)= E m(J)(A(, ,dJ) .A(, ,dJ)E ,E )

I 2 1 2 r=1 1 2 r r
n

= E m(J)(Y r,Y r)
r=1 1 2

establishing (3.17). To show the last part of the proposition we use Gaussl theorem
n

under the three assumptions that S)= E ie and divJyr = 0 as weIl as
r=1 r 0

m( J)(yr,N) = 0 :
o

n
(3.20) GlRn(dJ)(", ) = E f m(J)(gradJi,yr)

1 2 r=l M 0

n
= E f di(yr)MJ)
r=l M' 0

n
= ~ f (divf i yr) - T.divJyr)MJ)
r=l M 0 0
n

= ~ f m(J)( i yr,N)~J)
r=1 M 0

=0,

o
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In case 'Y and 'Y in the above proposition are exact, then the respective vector
I 2

fields in (3.20) are gradients. Hence the right hand side of the integral in (3.18) is
the classical. Dirichlet integral (cf.[J]) for lRn-valued functions. We call the middle

integral in (3.18)) therefore the Dirichlet integral of any two smooth lRn-valued

forms 'Y , 'Y relative to J E E(M,lRn).
1 2

Proposition 3.2 also shows that the integral kernel of a constitutive law is not
unique at all. We may add to any kernel a map which assurnes as its values,
one-forms of which the exact part vanishes. However the following theorem

guara.nti~s us a uniqueness_ of a very specific type of kernel. The proof of the
following theorem is a matter of routine:

Theorem 3.3 :

Let F be a constitutive law with integral kernel. There exists a unique smooth map

(3.21)

such that for any JE E(M,lRn) and any L E Coo(M,lRn)

(3.22) F(J)(L) = ! a(dJ).dL p(J) = GlRn(dJ)(a(dJ),dL)
M

holds true. In fact there is a unique smooth map

satisfying the following two equations

(3.23)

and
(3.24)

a( dJ) = dS'J(dJ), V dJ E E( M,lRn)/!Rn

3M! <,fj(dJ),z>p(J) = 0, Vz E !Rn.
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Equation (3.22) together with (3.23) show that dSj is the generalized gradient of
FIRnwith resped to GIRn .

It is this type of gradient mentioned above whieh charaderizes the material.

Clearly each eonstitutive law F forms via Q' and equation (3.1) a tensor on M given
by

(3.25) T(J)(X,Y) := <a(dJ)X,dJY>

= mU)(dJA(a(dJ),dJX),Y>, V X,Y E rTM .

Viee versa eaeh two-tensor depending smoothly on dJ defines a kernel of a
eonstitutive law. We eall T( J) the stress tensor at the eonfiguration J.

TU) splits into asymmetrie and a skew symmetrie part. We will investigate at the
end of these notes under what eonditions on dS) the skew symmetrie part vanishes.

4. Force densities associated with eonstitutive laws

The purpose of this sedion is to assoeiate with any eonstitutive law at any
eonfiguration some weIl defined force densities, one acting upon the whole body,
and an extra one acting upon the boundary only. Viee versa any given pair of sueh
force densities satisfying an integrability condition will be obtained via a suitable
constitutive law.

Throughout this sedion F is a constitutive law, its kernel is ealled Q'. By the
previous theorem we may assurne that a(E(M,lRn)/lRn) ( Coo(M,lRn)/lRn.

To construet the foree densities mentioned we use F in the form

( 4.1) F( J)(L) = f tr A( a( dJ), dJ) . Ä( dL,dJ) p{J) ,
M

holding for any of the variables of F. Representing any L E Coo(M,lRn)relative to a
given JE E(M,lRn) in the form
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L = dJ X(L,J) ,

with a unique X(L,J) E rTM we derive

(4.3) dL X = dJ V(J)XX(L,J) , V X E rTM .

and hence obtain immediately

(4.4) A( dL,dJ) = V(J) X(L,J) , V L E Coo(M,lRn).

Thus if e ,... ,e is a arthonarmal basis of IRnfar which we let E E rTM again be
I n r

given by dJ E = e for r=l, ... ,n thenr r

n -
(4.5) F(J)(L) =}.; f m(J)(A(a(dJ),dJ).'V(J)E X(L,J),Er) ji{J).

r=l M r

Let us introduce the notion div JT, the divergence of a strong bundle

endomorphism T of TM by

(4.6)

This not ion does not depend of the basis chosen.Equation (4.6) together with (4.5)
imply

(4.7) F(J)(L) = f divfA(a(dJ),dJ)X(L,J)) ji{J)
M

- f m( J)( div JA( a( dJ),dJ),X(L,J)) ji{ J) .
M

To bring these formulas in a more familiar form we introduce the notions of .6.( J)K
and .L\(J)-y., the Laplacian for any K E Coo(M,lRn)and any ! E AI(M,lRn). In doing
so we follow [MatJ. We begin with the definition of 8 by letting

'.
( 4.8) OK = O.

1£! E A I(M,lRm) far some natural number m, we set
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(4.9)

Clearly

(4.10)

if

tl( J) is then defined by

(4.11)

Consequently we have
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n
6, = -~ V(J)E (,)(Er) .

r=l r

r(X) = m(J)(Y,X), VX E rTM.

tl(J) := d6 + &l .

(4.12)
n

tl( J)K = &lK = - ~ V(J)E (dK)(Er) .
r=l r

and therefore we verify the following relation:

(4.13)
n

tl(J)K = - (r~l d( dJ A( dK,dJ Er))(Er) - dJ A( dK,dJ)(V(J)E
r

Er))

n
= - ~ dJ V(J)E (A(dK,dJ))E

r=l r r
= - dJ div JA( dK,dJ) .

Hence equation (4.7) turns into

(4.14) F(J)(L) = f div .fÄ( a( dJ),dJ)X(L,J)) t4. J)
M

+ f <tl(J).f)(dJ),L> t4.J) 1

M

'. Using Gauss'theorem we derive with the help of theorem 3.3 the following
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Proposition 4.1 :
..

Let F be a constitutive law. Then for each JE E(M,lRn) there exists a smooth map

uniquely determined up to a smooth map from E(M,lRn) into IRnfor which

(4.15) F(J)(L) =J<il(J)5j(dJ),L>fL(J)

+ f <dSj( dJ)(N),L>iN fL(J)
aM:

and in turn a Green's equation

(4.16) f <il(J)S)( dJ),L>fL( J) - f <S)( dJ),il( J)L>fL( J)M M
= f <dL(N),S)(dJ»iN fL(J) _ f <dS)(dJ)(N),L>iN fL(J)

DM . DM

: are valued for all variables of F. Here iN fL(J) is the volume element on aM: defined
_ by fL(J) and N, the positively oriented unite normal veetor field along DM ( M.~

The developrnents made so far show that any characteristic of the material
formulated via our notion of a constitutive law are encoded in the map Sj. We call
this map Sj therefore a constitutive map.

The above proposition motivates us to set for any JE E(M,lRn)

(4.17)
and
( 4.18)

<I>(J):= il(J) S)(dJ)

y?c dJ) := dS)(dJ)(N) ,

with S)(dJ) .as in (4.15).

'. We call the maps <I>and rp the force densities associated with F.

To prove the following theorem is now a matter of routine again.
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."

Theorem 4.2:

Every constitutive law F E Al(E(M,lRn),IR) adrnits a srnooth constitutive rnap

(4.19)

uniquely deterrnined up to rnaps in COO(E(M,lRn)/lRn,lRn),such that F can be

expressed by

(4.20) F(J)(L) = f <Ll(J)f)(dJ),L>jt(J) + f <df)(dJ)(N),L>iNjt(J),M 3M

for each JE E(M,lRn) and each L E Coo(M,lRn). For all JE E(M,lRn) the rnap Sj

defines the force densities

(4.21)
: and

(4.22)

with the following property :

<1>( dJ) = Ll(J) f)( dJ)

!p(dJ) = df)( dJ)( N) ,

(4.23)

Given vice versa two srnooth rnaps

(4.24)

and
(4.25)

for which the integrability condition (4.23) holds. Then there exists a srnooth rnap

..
such that f)( dJ) is uniquely deterrnined up to a constant for each JE E(M,lRn) and

• which satisfies (4.21) and (4.22). Moreover .f) is a constitutive rnap for the
constitutive law F given by
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F(J)(L) =' f <ep(dJ),L>p(J) + f <~dJ),L>iNP(J) ,M DM

Remark 4.3
This theorem shows us that our notion of constitutive laws based on translational
invariance are equivalent with the IRn-valued solution of von Neumann problems
formulated on M and hence are equivalent with a pair of force densities satisfying
the integrability condition (4.23). which is obviously the analogon of (2.3).
Moreover if for each JE E(M,lRn) the one form a(dJ) splits as

a( dJ) = d.f)(dJ) + ß( dJ)
with d.f)(dJ) the exaet part of a( dJ), then both a( dJ) and dSj(dJ) determine the
same force densities !

5. Constitutive laws for the boundary

The task in this section is to study constitutive laws for the boundary, that is for a
deformable medium forming a skin of which the underlying point set is the
(n-l)-dimensional manifold DM. This skin, formed by a deformable material, will
be studied on its own and is not regarded a.'5 boundary of some body. In doing so,
we first formulate in analogy to seetions two and three what is meant by a
constitutive law for a skin. Also in this case the translational invariance and an
appropriate integral representation of one-forms describing the work of the
material subjeeted to distortions is the essential too!.

Let us recall that the open set 0ae E(DM,lRn) is the colleetion of all JIOM with

J E E(M,lRn). The constitutive laws to introduce will be formulated on any open set° e E(M,lRn) and williater be specified on °a.

At the very first we introduce the notion corre~ponding to the Dirichlet integral:
Given any I E Coo(OM,lRn)and any j E E(OM,lRn) then for all X,Y E rTaM
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<dl X,dj Y> = m(j)(A(dl,dj)X,Y)

holds for some smooth strang bundle endomarphism A( dl,dj) of TOM. Moreover
there is a uniquely defined smooth map

(5.2) c(dl,dj) : ßM --I so(n) ,

with so(n) the linear space of all skew maps of (!Rn,< , » , satisfying the following
two conditions

(5.3)

and
(5.4)

c(dl,dj)dj(TpOM) c !R.N(j)(p),

c( dl,dj)N(j)(p) c djT p OM ,

'tpEOM

't p E 011,

and such that the equation

. (5.5) dl X = c( dj,dl)dj X -rr dj A( dl,dj)X

; holds true far any X E rTM. We refer to [Bi,Sn,Fi] or [Bi,Sc,So] for more details.
Based on (5.4) we introduce U(dl,dj) by

(5.6) c( dl,dj)N(j) = dj U( dl,dj) .

This veetor field U( dl,dj) E rT 011 is obviously uniquely determined.

Splitting A( dl,dj) into its skew- respeetively selfadjoint parts C( dl,dj) and B( dl,dj)
formed pointwise with resped to m(j) we end up with

(5.7) dl = c(dl,dj).dj + dj(C(dl,dj) + B(dl,dj)) .

This decomposition relative to any dj E E( OM,!Rn)generalizes in the obvious way to
any 'YE A '( OM,!Rn)and reads in this case as

(5.7a) 'Y= c( 'Y,dj).dj + dj(C( 'Y,dj) + B( 'Y,dj)) .

The quadratic structure G~n( dj) at dj E E( OM,!Rn)/!Rn applied to any two

'Y1,'Y2 E A\8M,!Rn) is defined by integrating the funetion
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'1"2:= -~tr c('1,dj)'c('2,dj)

- tr C( 'l,dj). C( '2,dj)

+ tr B('1,dj).B('2,dj)

with respect to P(j), that is, it is defined by

(5.9) Ggn(dj)('1"2):= f'1"2P(j)
M

= - ~ f tr c( 'l,dj) .c( '2,dj)P(j)
M

- f tr C( 'l,dj). C( '2,dj)P(j)
M

+ f tr B( 'l'dj). B( '2,dj)P(j) .
M

Ggn obviously yields a metric on E(M,lRn). Let 0 C E( GM,lRn)be any open set.

. We now define a constitutive law F 0 on 0 in analogy to section two, that is we

reqUlre

(5.10)

t0 hold for some one-form Fgn on 0 fIRn and demand furt hermore that for some

aE COO(O,Al(GM,lRn)) the followingequation is valid

We introduce for any j E E( oM,lRn) the Laplacian Ll(j) accordingly to (4.11) but
require that E in this case is a moving frame on GM.s

With this notion at hand the constitutive laws on 0 are characterized in details in
the next theorem:

Theorem 5.1 :

Let F 0 be a constitutive law on any open set 0 C E( GM,lRn).The following are then

• equivalent:
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(i.) Fa admits a kernel a E COO(O/lRn,AI(GM,lRn)) .
.'

(ii.) There is a smooth map ~ E COO(O/lRn,COO(GM,lRn)) uniquely determined up to

maps in COO(O/lRn,lRn),such that

(5.12) F a(j)(l) = f d~( dj) .dl P{j) ,
GM

't j E 0,

and 't I E COO(GM,lRn) .

(iii.) Ther~ is a smooth map ~ E COO(O/lRn,COO(GM,lRn)) uniquely determined up to

maps in COO(E(M,lRn),lRn),such that

(5.13) F aej)(l) = f <i1(j)f)( dj),I>P{j), 't j E 0, 't I E COO(GM,lRn).
GM

(iv.) There is a unique smooth map rp E COO(O,COO(GM,lRn)), such that

. (5.14)

and which satisfies

(5.15) f <rp(dj),z>P{j) = 0 ,
GM

't j E 0, 't z E IRn .

For an explicit formulation of i1(j) in terms of the coefficients of dj we refer tü
[Bi,Sc,So].

Remark:

The re mark at the end of seetion 4 translates accordingly to the situation studied
in this seetion.

"0 Next we will investigate a boundary material implemented to a body formed by a
deformable medium.



24

." 6. The interplay between constitutive laws of boundary and body

The deformable media forming the inside of the body and the boundary
respeetively may differ and each separate material hence has to be described on one
hand by different constitutive laws. This we have done in the previous sections. On
the other hand these materials together form one body and should be describable
by only one constitutive law holding for the whole body. Since constitutive laws
behave additively, the comparision between the two procedures allows us to decode
the influence of the whole body to the constitutive properties of the boundary
material.

Let the constitutive law of the deformable medium forming the whole body be
called by F again.

According to theorem 4.2, F is determined by a smooth constitutive map

The following theorem exhibits its influence to the constitutive entities of the
material forming the boundary of the body. We will indicate next the methods to
prove it.

The map .f) yields according to theorem 4.2 force densities

(6.1)

and
(6.2)

The force density aeting on aM, is defined by

(6.3) rp( dJ) = d.f)(dJ)(N), 'r/ dJ E E( M,lRn)/ IRn.

Having the integrability condition (5.14) of l1(J) In mind, we split this force
density 'P into

(6.4)

~ where 'PlRn(dJ) is characterized for each dJ E E(M,lRn)/lRn by the equation
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f < IOlRn( dJ),z>iNPC J) = 0 , 'Vz E !Rn8M

is a smooth map, which makes (6.4) to hold.

According to theorem 5.1 the condition (6.5) allows us to choose some map

(6.6)

such that for all dJ E E(M,!Rn)/!Rn the equation

(6.7)

holds true.

Theorem 6.1 :

Any smoothly deformable medium is charaeterized by a constitutive map

determining itself two smooth maps

(6.8)

and
(6.9)

which are linked to Sj by the boundary condition

(6.10) dSj(dJ)( N) = ll( J 10M) ry(dJ) + 1t{dJ) .

.•.
ry is unique up to !Rn-valued smooth maps of E(M,!Rn) and 'Ij; is unique. Moreover Sj
satisfies the integrability conditions
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0= j<L1(J)Jj(dJ),z> p(J) + r <dJj(dJ)(N),z>i7\TP(J),
M 8M:oI ~,

for each JE E(M,lR
n
) and each z E IRn. Equation (6.11) equivalently formulated

reads as

(6.12) 0 = f <L1(J)Jj(dJ),z>p(J)
M

+ f < W( dJ),z>iNP( J) ,
8M:

a boundary condition holding for Jj and 1/J together. The constitutive law on
E(M,lR

n
) describing the constitutive properties of the materials forming body

together with its boundary is thus given via the formula,

(6.13) F(J)(L) = f <L1(J)Jj(J),L>p(J)
M

+ f <L1( J 18M:)f)(J 18M:)+ W( dJ) ),L>iNJL{J) ,
8M:

V JE E(M,lRn), V L E Coo(M,lRn).

The work of any distortion 1 E Coo(8M:,lRn)of the deformable material forming the
boundary detaehed from the body is for any JE E(M,lRn) given by

(6.14)

for some constitutive map f:JaE Coo(0a/lRn,Coo(OM,lRn)).

The constitutive properties of the deformable medium of the boundary detached
from the body, which is given by a smooth map f:J0 E Coo(Oa/lRn,Coo(8M:,lRn)). Hence

f:J- f:Ja and 1/J describe how the constitutive properties of the material forming the

boundary of the body is affected by the fact that this material is incorporated into
the material forming the whole body.
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7. Simple examples
.'

In this section wewill study weIl known one farms on E(M,lRn) in the light of our

formalism developed above. We do so by looking at particularly simple constitutive
maps.

(i.) In our first example we specify a constitutive map by Sj(dJ) = J for all
J E E(M,lR

n
). The following ca1culation is easily verified :

(7.1) 1dJ .dL 14.J)
M

= f < Ll(J)J,L>p{J) + 1<dJ(N),biNp{J)M DM
= 1tr A(dL,dJ)p{ J)

M

= 1tr V(J)X(L, J)p{ J)
M

= 1div JX(L, J)p{ J)
M

= f <N(j),L>p{j)
DM

=D( Ip{J))(L),
M

for all JE E(M,lRn) and for all L E Coo(M,lRn).
Introducing the volume function

(7.2)

assigning to any JE E(M,lRn) the volume

(7.3)

we have

(7.4)

W(J) = Ip{J),
M

DW(J)(L) = 1dJ.dL p{J),
M

with N(j):= TJN together with the following notions 1:= LIOM and j:= J/OM.
The above calculation shows

(7.5)
and
(7.6)

<P(dJ) = Ll(J)J = 0, V JE E(M,lRn)

~ dJ) = N(j) , V JE E(M,lRn) .
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Clearly I = z with z E IRnimplies

(7.7) f <N(j),z>P(j) = 0 , V z E IRn.
M

With the notations of the previous section this shows that in this example

(7.8)

The map f) determined by Sj in this case is thus given by

(7.9) N( J) = ß(j)f)( dJ) , V J E E(M,lRn) and j:= JI8M.

(ii.) Next let us turn our attention to f)a on E(8M,lRn), given by f)Jdj) = j, for

all j E E( 8M,lRn) . One easily verifiesthe following set of equations

(7.10) 8M! <ß(j)j,I>P{j) = JMI dj .dl P{j)

= !(div.X(l,j) + 6(1,j).H(j))P(j)
-8M J

= D( f P(j))(l) .
8M

Defining the area funetion

(7.11)

sending any j E E( OM,lRn)into

(7.12)

we have

Dm(j)(l) = ßM!dj .dl P{j)

for all variables of Dm. The constitutive map Qa determines a map iJa given by

~ (7.13)

together with
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dSjJ dJ)(N) = L\(j)j = H(j). N(j) ,

for each JE E(M,lRn) and j := J 10M. The function H(j) is the mean curvature,
that is the trace of W(j) .

(iii.) Next let us consider quite another influence of the boundary by looking at the
map Q I} : 01}/lRn --+ C

OO
( O11,lRn)given by QJ dj) = N(j) , for all j E 0 I}' Then the

formula

(7.15) L\(j)N(j) = &lN( J)
= &lj W(j)
= - dj grad.H(j) + (tr W(j)2) .N(j)

]

.
•

holds for any j E 0 I}' Let us point out that L\(j)N(j) =1= 0 even if j( 011) (IRn is

minimal, that is to say even if H(j) = const.
In the special case of dirn 011= 2 a topological constant, the Euler characteristic
N( 011), enters the constitutive law F determined by N(j) for each j E 0 I}' It is

hidden in the formula

(7.16) F(j)(N(j)) = f <L\(j)N(j),N(j»P{j)
IJM
= f tr W(j)2P{j) .

IJM

This is seen by using the Cayley Hamilton theorem (cf.[Gr]) and the Gauss Bonnet
theorem (cf.[G,H, V]), applied to the right hand side of equation (7.16), which
yields

(7.17) F(j)(N(j)) = - 411" X( IJM) + fH(j)2p{j) .
IJM

8. A general decomposition of constitutive laws

In this section we will exhibit a decomposition of the constitutive map fj based on..
the examples of the previous section.
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*We will show that Dm and R Dmmultiplied with appropriate IR-valued maps are
.' all part of any constitutive law F defined on E(M,lRn).

To get the full decomposition of a given constitutive law we broaden our scope a
little and introduce first of all the Hilbert space A. consisting of all maps

1

, , , : TM - IRlinear on the fibres of TM for which the right hand side ofI 2

(8.1) GlRon(dj)(",);= I,.')'P{j)
120M I 2

exists. Clearly d~N( dJ) , dj and dN(j) all belong to Aj and are generically linearly

independent. The set 0 of all J E E(M,lRn) for which these three differentials are
3

linearly independent form a dense open set. Let j := J 10M. In special case j( OM) is
a (n-l)~phere in IRnhowever, N(j) is a real multiple, r say, oi j and ~N(dJ) is

hence ~.j. In the case oi linear independence the three above mentioned
\n-.L}

• differentials are in general (with respect to GlRn(dj)) not orthogonal to each other,

however. We might orthogonalize them by using the method oi Schmidt. For each
J E 03 we then split the differential of ~(dJ) into components along span of the

: three mentioned differentials and a component perpendicular to them.

Next we extend all maps ~N(dJ), j and N(j) to all of M in the following way :

Given fE Cj( OM,lRn)we solve the following Visik problem (cf.(Hö]) :

(8.2) fl(J)fM = 0

dfM(N) - fl(j)f = 0 ,

with fM c CCll(M,lR
n)and JE E(M,lRn) and where j := J 117M. All the splittings and

extensions done to construct jM and N(j)M depend smo~thly on j E E( OM,lRn). Let

moreover ~N be given by

The above mentioned decomposition of Sj lS then described In the following
theorem:
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Theorem 8.1 :
•.

Let F be a constitutive law on E(M,/Rn) deterrnined by
• ,fj E COO(E(M,/Rn)//Rn,COO(M,/Rn)).Then S) deterrnines uniquely three srnooth rnaps

(8.3)

and two srnooth rnaps

a ,a,a : 0 C E(M,/Rn)/lRn -+ /R
I 2 3 3

such that the following splitting holds for any dJ E 0 C E(M,/Rn)
3

(8.4) Q(dJ) = a (dJ). QN(dJ) + a (dJ)j + a (dJ). N(j) + Q2(dJ)
I 2 3

li with j := j/ ßM.. The differential dQ2(dJ) is orthogonal with respeet to G( dj)~n to

. the span of dQN(dJ), dj and dN(j).
\

The rnap ,fj(dJ) decornposes for each JE 0
3

accordingly into
,
•

with j := J IßM and where S)2(dJ) is such that (8.10) holds.

9. The rotationa1 symmetry

Finally we investigate the effect of the SO(n), the syrnrnetry group of the oriented
Euclidean veetor space (/Rn,< , >,.6.) to a constitutive law. In particular let us

• charaeterize those which are invariant under SO(n) .

•• As rnentioned in the first seetion we have the operation
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sending any gE SO(n) and any JE E(M,lRn) into
•.

-G(g,J)= go J .

Let Sg(J) := g 0 J for each pair gE SO(n) and each JE E(M,lRn).

The induced operation sT on TE(M,lRn) is therefore determined by

ST(g,(J,L)) = (goJ,goL) ,

for all gE SO(n), for all JE E(M,lRn) and for all L E Coo(M,lRn).

Invariance under SO(n) of a given constitutive law F with Sj means that the
following equation

(9.1) F(g 0 J)(g 0 L) = F(J)(L)

holds far all the variables of Fand for any g E SO(n). Thus the constitutive map
) satisfies

..
(9.2)

or reformulated

f dSj(godJ) .d(goL) p(goJ) = f dSj(dJ) .dL p( J)M M

(9.3) f tr [(g -1A( dSj(godJ),godJ) - A( dSj(dJ),dJ)). Ä( dL,dJ)]P( J) = 0
M

with g = (dJ)-1 0 g . Thus gE SO(T M), the special orthogonal group of T M
p P

for each p E M. The volume p is invariant under the action sT . Hence

(9.4) f d(g-lo Sj(godJ) - Sj(dJ)) .dL p(J) = 0,
M

• holds for all g E SO(n), for all JE E(M,lRn) and far all L E Coo(M,lRn) . From the

last equation and from the general procedure of representing differentials via,..
embeddings we read off



33,

Proposition 9.1 :•
• Given a eonstitutive law F with eonstitutive map i) E COO(E(M,lRn),Coo(M,lRn))then

F is invariant u'nder SO(n) iff

(9.5) g-lo di)(godJ) = dS)(dJ), 'r/ G E SO(n).

The validity of this equation is equivalent with the following identity

(9.6) A( dS)(godJ),godJ)(p) = A( dS)(dJ),dJ)(p)

holding for all gE SO(n), for all p E M and for all JE E(M,lRn). Moreover the stress
tensor T( J) determined by S) is invariant under SO(n) für any J E E(M,lRn).

Let F be a SO(n)-invariant eonstitutive law. (9.5) implies that for eaeh e E so(n)

~ (9.7) eodSJ(dJ) = dDSJ(dJ)( eodJ) ,

: with D the derivative on E(M,lRn)/lRn. Here so(n) is the Lie-algebra of SO(n).

Based on (9.7) it is a matter of routine to show that in ease S) is invariant under
SO(n) then e dS)(dJ) = 0 for any e E so(n) and any JE E(M,lRn). In ease of
dirn M = 3 this means that the SO(n)-invarianee of S)(J) yields S)(dJ) = const.

and in turn that F = O.
Splitting A( dS)(dJ),dJ) with resped to m(J) into symmetrie and skew-symmetrie
part and doing the same für A(dDS)(dJ)( eodJ),dJ) and using (9.7) yields

(9.8) coB(dS)(dJ),dJ)(p) + ~oC(dSj(dJ),dJ)(p)
= B( dDS)(dJ)( eodJ),dJ)(p) + C(dDS)(dJ)( eodJ),dJ)(p)

with cE so(T pM) for eaeh fixed p E M. Here so(T pM) denotes the Lie Algebra of

SO(TpM). 1£tr A(dDS)(dJ)(eodJ),dJ)=O then (9.8) yields

(9.9) tr ~oC( dS)(dJ),dJ)(p) = 0 , 'r/ e E so(n), 'r/ p E M

and 'r/ J E E(M,lRn).

and viee versa. This implies the following theorem:
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Theorem 9.2 :

.' For any SO(n)-invariant constitutive law with (smooth) eonstitutive map S) the
following are equivalent:

(9.10)

(9.11)

C( dS)(dJ),dJ) = 0, \;f JE E(M,lRn)

tr A( dDS)(dJ)( eodJ),dJ)=O \;f JE E(M,lRn)

(9.12) The stress tensor T( J) associated with S) is symmetrie for eaeh
eonfiguration J.

Let us illustrate (9.11) somewhat. In doing so 'we proeeed similar as in seetion 8
and take the components of dS)(g .dJ) and dS)(dJ) along dJ, this is to say we have
the splitting

, (9.13)
~

and
•
• (9.14)

dS)(g.dJ) = fr(g.dJ).dJ + dS)l(g.dJ)

dS)(dJ) = TI(dJ) .dJ + dYJl(dJ) ,

where both dYJl(dJ) and dS)l (dJ) are orthogonal to dJ with resped to GlRn(dJ).

Both TI and fr ean be regarded as internal pressures. All the maps in (9.13) and
(9.14) are smooth. We therefore find

(9.15) ftr A(dSj(g.dJ),dJ) p{J) = n.fr(g.dJ).W(J)
M

= n.TI(dJ).W(J).tr g + ftr A(g.dYJl(dJ),dJ) p{J)
M

and in turn
(9.16) f tr A(dDS)(dJ)( e .dJ),dJ) =n .W(J) .Dfr( dJ)( e .dJ) .M .
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Hence (9.11) requires

(9.17) Dfi(dJ)(c.dJ) = 0, V J E E(M,lRn) and V cE so(n),

showing that fi is up to the first order invariant under SO(n).
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