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ABSTRACT

One of the foundations of continuum mechanics is the description of forces in terms of
a symmetric tensor. The fundamental observation that the existence of a syminetric stress
tensor is a consequence of the material frame indifference is due to Noll [No63,Tr]. This in
turn means a local symmetry of the system under the action of the Euklidean group. In
this paper we will show that the assumption of locality in the axiom of frame indifference
is not necessary for a wide class of modells. We will prove the existence of a symmetric
stress tensor, demanding only the invariance of the system under global rigid infintesimal
Eukledian group action. The localization of that global symmetry will be done by means
of Hodge theory on manifolds with boundary.




1. Introduction

By means of differential geometric methods serveral progress has been made in the field of
continuum mechanics within in the last two decades, c¢f. [AMR,Mar] and references therein.
The purpose of this paper is to adopt such geometric notions in rational mechanics to the
question of objectivity [No63,Tr].

To obtain a geometric appropriate description of the deformations of a piece of material, we
use the embeddings of a material body B into the R ™ as ambient space, cf. [HuMal, where
the body is a Riemannian manifold. We denote by E(B,IR"™) the set of all embeddings
J : B > IRR"™, which itself carries the structure of an infinite-dimensional manifold. In
the classical notation such J is also called a placement of the body and elements of the
tangent space of E(B, R™) are refered to as virtual displacements. In this setting dynamics
means to formulate of continuum mechanics in terms of curves J(t) of embeddings. Since
our intention is to explore the geometrical structure of a system, we restrict ourselves to
statics, cf.[BSS]. |

Under a global model we now understand a system, where the respective non-linear equa-
tions of continuum mechanics are determined by some functional on’E(B ,IR™), depending
on the placement J in a possibly non-local way. Such a functional is refered to as the
(non-local) constitutive function of the theory. Here we start with the principle of virtual
work first introduced in continuum mechanics as d’Alambert’s principle by [He] and refor-
mulated in a geometric context by [EpSe] : There the constitutive function is the virtual
work F[J] which is a linear functional on the space of all virtual displacements, i.e. the
tangent space of E(B,R™), depending on the configuration J in a non-linear and non-local
way. With appropriate geometric and functional analytic specializations — cf. section 2 -

the principle states that J describes an equilibrium iff the integral

FJ|(A) = / < (), A >Re s (1.1)
B
vanishs for all virtual displacements A € TyE(B, R"™). Here ®(J) is a prescribed physical
force density and <, >R~ means the scalar product on JR". As a special case this principle
includes the description of hyperelasticity, where the equations of continuum mechanics
can be derived from a local energy fuctional or a Lagrangian [HuMa,TrTo).
Taking the principle of virtual work as such we will investigate the effect of a class of

symmetries on the functional F[J] and in consequence on the equations of continuum
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mechanics : For classical mechanics the symmetry group of special interest is the Euclidean
group E(n) [Thi] describing all rigid motions in the ambient space IR™. Since the internal
properties of a system are independent on the placement and on the orientation of the
embedded body as a whole, they cannot be influenced by rigid motions. Hence E(n) is
a natural sy’ﬁmetry’ group in continuum mechanics. An explicite investigation of that
symmetry is due to Noll [N063,59], who introduced it under the notion of material frame

indifference or objectivety. The action of E(n) on an embedding J € E(B,R") is

gr.plJ]=R(J+T) (1.2)

where g7 r) € E(n) is represented by a translation 7€ R" and a rotation R € SO(n).
In this context Noll’s axiom of objectivity reads as follows : A system is called material
frame indifferent if the constitutive function is such that no work is done against any
virtual displacement, which is rigid infinitesimal action of E(n) restricted to an arbitrary
subbody U C B. This means

[<a)secll>rems=0 (13)
U

for any infinitesimal action g, c) of the Euclidean groups. We note that this is a local

demand. Noll’s celebrate result [No63,Tr| is to prove the existence of a symmetric stress |
tensor, starting from that assumption.

The central result of this paper is that the locality of the E(n)-invariance, assumed by

Noll’s axiom (1.3), is redundant for the existence of a symmetric stress tensor. It suffies to

start with a weaker global demand on the global functional F[J], which is an integral over

the whole body B : This has to vanish if it is evaluated on all virtual displacements, which

are rigid infinitesimal actions of E(n), what means for the special case of the virtual work

given by (1.1) that

FUgeol) = [ < 8(0).900l0] >R us =0 (14).

B
In continuum mechanics fundamental quantities, as the deformation gradient or the 1°
Piola-Kirchhoff stress tensor, are described by two-point tensors [Er,HuMa]. Such objects
may alternatively be considered as vector-valued differential forms. The motivation for

using differential forms instead of the well known tensor calculus lies in the fact that there
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is a Hodge theory, which serves as powerfull ‘tool for solving boundary value problems.
Generalizing classical results on the Hodge theory on manifolds with boundaries [M038,62]
in section 3 we will give a lemma concerning a Neumann and a modified Dirichlet boundary
value problem for vector-valued differential forms. As a by-product we obtain a result on

an interesting boundary value problem for the divergence of vector fields.

The solution of the Neumann problem will be used in section 4 to prove the tensorial
character of the stress. The physical input therefore is the global demand of invariance
of virtual work under infinitesimal rigid translations, which is a consequence of (1.4).
By performing a Piola transformation we derive the weak form of Cauchy’s equation of
continuum mechanics from the principle of virtual work in the general form (1.1) and the
symmetry argument. We then observe that the stress tensor is not uniquely determined

from the kernel of F[J], but it owns a gauge freedom.

In section 5 we will use the Dirichlet problem to show the existence of a symmetric stress
tensor from the physical demand of invariance of the virtual work under rigid rotations. By
Noll’s theorem the existence of a symmetric stress tensor is equivalent to the local demand
(1.3) of frame indifference. Hence the use of Hodge theory, required for our proof, may be

considered as a localization of the global invariances.

Finally in section 6 we consider constitutive theory under the aspect of the Euclidean
group acting as symmetry group in continuum mechanics. It is shown how our approach to
the E(n)-symmetry of elasticity may be understood in the reduced phase space formalism

[MaWe] of symplectic geometry.

2. The Principle of Virtual Work and Material Frame Indifference

In this paper we will describe mechanical properties of a continuous medium in terms of
embeddings of a Riemannian manifold, as presented e.g. in [HuMa). For the physical space,
i.e. the ambient space of the embeddings, we take the Euclidean IR"; a generalization to
other ambient manifolds is possible, but requires more effort [BiFi]. To fix the notation we

introduce the following definitions :

By a body B we mean a compact orinentable Riemannian C*-manifold with boundary,
where the dimension dim B < n. We denote by Gg the Riemannian metric on B, by A the
(outward pointing) unite normal field on the boundary 0B C B and have the Riemannian

volume elements ug on B and ps = ixvps on 9B. Points of B are refered to as material
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points; they manifest themselves by their configurations in the ambient physical space

R"™. By a configuration (or placement) of the body B we then mean a C"-embedding
~JJ:B — R" and call

E(B,ﬂi’"):z{J:B—»R"]Jisack—embedding} (2.1)

the configuration space of the system. E(B,R™) can be given the structure of an infinite

dimensional manifold with

TE(B,R")={A:B—TR"|Aisa C*—map, IIp~o0A c E(B,R"™)} (2.2)

as tangent bundle, cf. [BSF,Mar]. In the language of classical mechanics [Thi] a tangent
vector on the configuration space, i.e. some A € T;E(B,IR"), is called a virtual dis-
placement. Although non-smooth configurations are important we restict our interest to
C*-embeddings with & 2lork=oc0.

Within the general framework of (inﬁnite-dimensional) manifolds as configuration space
of physical systems the principle of virtual work is naturally described by considering
the generalized force as an element of the co-tangent bundle. For continuum mechanics
Epstein and Segev [EpSe] gave the appropriate formulation, writing the work, done by
a virtual displacement A € T;E(B,IR™) as the evaluation with some co-tangent vector
FeT;E(B,R"™). For our considerations, we restrict the dual of the infinite-dimensional
space TyE(B,IR") to the space of co-vectors having a special L2-representation on the
manifold with boundary B. This means to take only such linear functionals on T, E (B,R"™)

into account, which have an integral representation of the form

F[J]:T;E(B,R") — R

FlJ)(A) = / < (), A >k~ ug + / < o(J),A >rn pg - (23)

B 8B
where <, >R~ denotes the Euclidean scalar product on R™. The precribed functions
®(J) € C¥B; R") and ¢(J) € C¥(8B; R™) are to be understood as the physical force
densities, effecting the material points inside the body and on the surface of B, respec-
tively. They may depend on the configuration J in a non-linear and non-local way. For
boundaryless manifolds, the virtual work (1.1) appears as a specialization of (2.3). Without

going into details about the proper treatment of forces in continuum mechanics, cf. [Tr],
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we remark that our considerations hold true, independent of the interpretation of ®(J) as
a traction force, a body force or a combination of both.
Given the functional dependence of & and ¢ on the configuration J, the principle of virtual

work (for a static problem) reads as :
J € E(B,R") is an equilibrium configuration < F[J](A) =0 for all A € T;E(B,R").

Searching for equilibrium configurations of the body by means of this principle is nothing
but solving of the weak boundary value problem of non-linear elastostatic (with traction
boundary conditions). It has been shown by [AnOs] that under some technical conditions
the balance laws in continuum mechanics are equivalent to this principle. Also a description

of dynamics can easily be included into this framework [BSS,BiSc|.

For our consideration we take the principle of virtual work as such and show, how the
symmetries of the ambient space R™ can be used to specify the form of the virtual work
and consequently the equations of continuum mechanics.

In the classical treatment this question has been attacked by searching for a material
frame indifferent formulation of elasticity and is answered by Noll’s theorem [No63,Tr].
The symmetry group in question is the group of rigid changes of frame on /R " which is the
semi-direct product R™ ®s SO(n) and called the Eucildean group E(n), cf. [Thi, MRW].
An element g(r,gr) € E(n) is uniquely represented by a translation T € R"™ and a rotation

R € SO(n) and its action on R™ is given as

E(nryx R® — R"

(2.4).
9.l =Rv+T)
The corresponding action of the Lie algebra e(n) is
e(n)x R® — R™ -
(2.5)

9z 0v] =Cv+z
where z € R™, C € so(n) and so(n) denotes the Lie algebra of SO(n), which is the space
of all anti-symmetric n X n matrices. By pointwise action on J(p) € IR" this induces
naturally an action on E(B,R").
Demanding the symmetry of a physical system under the group E(n) is the contents of

Noll’s axioms of frame indifference of forces and of frame indifference of working. The first
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<I><R(J +T)> = R®(J)  and ;5(R(J + T)) =R3J) VY(:,R)€E(n) (2.6)

for all body forces ®(J) and all surface forces (J). Its physical content is to consider only
those forces as relevant for the theory which are due to either interior interactions between
material points or tracition boundary conditions and which transform as vectors under
rigid rotations R € SO(n).

The second axiom, which is fundamental for our considerations, demands that rigid Eu-
clidean motions cause no work on any subbody U C B. Originally this was posed in terms
of the mechanical power of a motion, but for statics it is equivalent to the following : For
any subbody U C B those virtual displacements cause no work, which are infinitesimal

rigid Euclidean motions (2.5) the with domain restricted to this subbody :

[ <eDsecli>re s+ [ <ENaeol)>reno=0 Y UCE (21
U au

holding for any z € R™ and any anti-symmetric matrix C € so(n),’where &(J) describes
the force density on the surface QU and is a priori independent from the force acting on
OB. Since invariance is demanded for any U C B this axiom is a local one, which appears
somewhat artificial from a global point of view. To motivate it from physical considerations
requires some more arguments like the axiom of the cut principle of Euler and Cauchy [Tr]
or the demand that only short distance interactions have an effect [LaLi]. Also due to the
locallity of (2.7) it is not clear how results, deduced from this axiom, are influenced by
prescribed boundary conditions on 9B.

Hence we drop the postulate of locality in the frame indifference of the working and replace
(2.7) by an axiom that is more obvious from a physical point of view : We start with the
demand that the prescribed force densities determines a virtual work, obeying the global

invariance property

FlJ)(9(z.cy[A]) = FITIA)  Vga0) € en) | (2.8)

under the action of the Lie algebra of the Euclidean group. As worked out below this global

property of constitutive function suffies to reproduce the classical theory.




Theorem 1

Let the prescribed force densities ®(J) and (.J), acting on the body B and its boundary
OB, respectively, determine the virtual work by (2.3). If this work is e(n)-invariant in the

sense of (2.8), i.e. if

/ <®(J),9¢:.c0[J] >R~ 1B +/ <@(J)giz0)lI] >R po =0 (2.9)
B o8B

then the equilibrium configuration (respectively the motion) of the body B is determined

by the divergence of a symmetric stress tensor.

The crucial point of this theorem is that a gobal rigid symmetry condition suffies to prove
the existence of a symmetric stress tensor. Under the stronger (local) assumption (2.7) the
corresponding result is known as Noll’s theorem [Tr]. Similar theorems have been derived
by Gréen, Rivelin and Naghdi [GrRi], who replaced the working axiom (2.7) by starting
with an E(n)-invariant energy functional £[J] € C*°(B; IR ). Again this is a local invariance
demand and furthermore the existence of an energy functional restricts the theory to the
special case of hyperelasticity. .

The proof of the theorem above is based on Hodge theory on manifolds with boundaries,
which makes it possible, to obtain from the global axiom (2.8), the existence of symmetric
stress tensor as a local result. In this sense the cut principle of Euler and Cauchy, which
fills the gap between Noll’s local axiom and the global invariance demand in the physi-
cal argumentation, may be understood as a reflection of Hodge theory. Before doing the
constructions in detail we have to present some fundamental results of that theory for

manifolds with boundaries.

3. Vector-valued differential forms, Hodge Theory and Boundary Value Problems

Considering E(B, R"™) as the configuration space for elasticity, two-point tensors [Er] over
the body manifold B are natural objects to describe the phyiscal properties of the medium.
Such tensors are the canonical generalizations of vector fields and one forms over maps,

respectively. Restricting the general definition [HuMa)] to the case of interest we define :

A two-point tensor T of type 2), shortly denoted as a (r, s)-type two-point tensor,

T
0
at p € B over an embedding J € E(B,IR") is a multilinear mapping
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T:(T,Bx...xT,B) x (TjyR" x...xTj,R") — R (3.1).

>

- -

r—times s—times

One can think of a two-point tensor having two tensor legs, one in B and one in R". For
s = 1 a two-point tensor over J at p € B can also be considered as a multilinear form on
B with values in Ty, [R", in other words any such T is a J*(TIR")-valued form on B.
Hence the skew-symmetric (7, 1)-type two-point tensors fit into the notion of vector-valued
differential forms, which we define more generally for any Riemannian manifold M and

any finite dimensional vector space V :

Definition and Remark [GHV]

A V-valued differential form w € Q7(M; V) of degree r over a m-dimensional manifold M

is a smooth assignment of skew-symmetric r-linear maps to the points of M, where

wp:ngMx...prMz——»V VpeM (3.2).

Vo

r—times

The algebra of all V-valued forms on M is denoted by Q(M;V) = @, Q"(M;V). There
is a natural identification Q(M;V) = Q(M;R) ® V, such that the algebraic and analytic
structures on the algebra of usual (IR -valued) differential forms, carry over to Q(M; V).
In terms of a fixed scalar product <, >y the isomorphism can be given by means of the

pairing

<<,>>: VRO (M;V) — Q"(M;R)

(3.3).
<< v,w>>(X,... X)) =< v,w(Xy,... Xr) >v V(X1,...X,) eI'TM

Fundamental quantities in continuum mechanics as the deformation gradient or the 1°*
Piola-Kirchhoff tensor, are described by (1, 1)-type two-point tensors on the body manifold
and hence can also be considered as IR "-valued one forms. The use of vector-valued forms
instead of the well known tensor language is motivated by the fact that the Hodge theory
on the algebra of differential forms is a usefull tools to solve boundary value problems on
Riemannian manifolds, cf. [EbMa]. Thus the idea is to formulate boundary value problems
in continuum mechanics in terms of V-valued forms w € Q(M;V) with M = B and
V = R™ and use well known results from Hodge theory instead of solving the problems

directly by tensor calculus.



To do so we introduce, in view of (3.3), the exterior derivative

d:Q(M; V) — QM V) A
(3.4)
<< v,dw >> = d<<v,w>> YveV
where d is the exterior derivative on the algebra Q(M, R ) of real-valued forms. Similarly
the Hodge *-operator on (M, IR ) induces the operator
*: QM V) — Q™7 (M; V)
(3.5)
<LK Vy*xw >> 1= x <K V,w >> YveV
and it makes sense to define by § := (=1)™"*! x dx the co-differential § : Q"T1(M; V) —
Q7(M; V). Like the corresponding co-differential on Q(M, IR) this is a nilpotent operator,
i.e. 62 = 0 on Q(M;V). Furthermore it computes on a one form w € Q'(M;V) as minus

the divergence of the induced tensor w?, cf. [AMR], defined via a Riemannian metric Gy
on M by

Gu(Y,wh) := w(Y) VY € ITM (3.6).

In generalization of that property the co-differential can be computed [Mat] by means of

a local orthonormal frame {E;,... En} on TM as

(bw)(X1,...X;) = = (VEw)(Ex, X1,...X;) with Xi,...X, €eITM  (3.7)

k=1
where V is the Levi-Civita connection. Furthermore we can equip each space Q"(M;V)
with a Riemannian structure, induced from the scalar product <, >y and the metric Gum

by setting

< >ar QUM VY x QT(M; V) — QUM R)

, = 3.8
<w,n >qr = Z <"-’(Ejn'--’Ej.-)an(Eju---ijr) >v ( )

1< <Jr
where the (local) fields E-,. run through the orthonormal frame on TM. This definition
is frame independent and yields for r = 0 the scalar product <,>yv. It corresponds (for
V = R) to the usual inner product w A ¥ =< w,n >qr pp on "(M;R) and one can
prove [Ack] that (3.8) also given an expression for the "dot”-product, used in [BSS] to

formulate the virtual work in terms of stress forms. With that scalar product the space
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Q"(M;V) can be furnished with the structure of the Sobolev space H'Q"(M; V'), given as
the completion of the space of C!-differentiable forms w € Q7(M; V') with respect to the

norm

|| = /(< vy > + < dide >qr ) (3.9).

M
In that Sobolev space of H!-forms over M the operators § and d are adjoint to each other
up to a boundary term. Especially for any pair of w € H'Q}(M; V) and n € H'Q(M;V)

we have

/ <w,dn >q1 pm = / < bdw,n >qo pm + / < w(N),n >q0 pa (3.10),
M M oM

which is a consequence of the Stokes theorem. It yields the Gaufl theorem in terms of
differential forms by taking 1 to be constant.

Now we have introduced all stuctures, necessary to face the question of solving boundary
value problems by means of Hodge theory. The Sobolev space H'Q"(M;V) carries the

same topology as the one, used in the book of Morrey [Mo62], hence we have :

Theorem 2

Let M be a compact C*-manifold with boundary, where k > 2 or k = co and let A denote
the (outward pointing) unite normal field on M C M. Call furthermore w € H 1Q7(M; V)
to be of class C¥ if its derivatives of order k are v-Holder smooth.

a) For any function ¥ € H'Q%(M; V), there is a decomposition

¥ = 6fy + cw (3.11)

where By € H'QY(M;V)is a one form obeying Sy (N) = 0 and cy € V is a constant.
If ¥ € C5¥~2(M;V) then By is also of class C¥~2.

b) Given a r-form 3 € H'Q"(M; V) with Blay € H'Q"(OM; V'), there exists a (r +1)-
form ¢ € H'Q ™ (M; V) obeying the boundary conditions

flam =0

(3.12).
(5§)|3M(X1, ee ,X,-) = ﬂIaM(Xl, e ,X,-) vVX:,...X,€ I'ToM

If Blan is of class C¥~2 on M then £ can be chosen of class Cf~2 on M.
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With this theorem we have reformulated some — at least for V = IR — well established

results. Part a) is usually refered to as Kodeira decomposition of the function ¥ and

the solvability of the problem (3.12) is due to [Mo36]. This result is not quoted literally,

but taken from the proof of the lemma 6.2 there, where the assertion is given and ex-

plicitely used. By means of the identification Q(M; V) = Q(M; R )& V the generalization

to HXQ(M; V) is obvious. Hence we obtain on a compact Riemannian C*-manifold M with

boundary :

Lemmal

a)

b)

Given a pair of vector-valued functions ® € H'Q(M;V) and ¢ € H'QY(OM;V),
which obey the integrability condition

[oui+ [ons=0 (313),

M oM

there is a one form a € H!Q!(M;V) solving the boundary value problem

ba =0 on M

a(M)=¢  ondM (3.14).

If furthermore @ and ¢ are of class C¥~2 on their respective domains then a is also

of class Cf~2 on M.

Given a V-valued function ©® € H'Q%(M; V), which obeys the integrability condition

/ Oum =0 (3.15),
M

- there is a one form v € H1Q(M; V) solving the boundary value problem

bvy=0 on M

3.16).
Yom =0 on OM (

If O is of class Ck-2 then v is of class C¥~2, as well.
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Proof :
By the Kodeira decomposition (3.11) some 3¢ € H'Q'(M;V) is determined from @,

obeying

D =683 + co and B@(/\/’) =0 ' (3.17).
On the other hand one can choose for any » € H'Q%OM;V) some one-form
€ H'QY(M;V) such that ¢(N) = ¢ on OM. Applying Kodeira's decomposition to the
function 8¢ € H'QY(M; V) yields

8¢ = 6B, + ¢ with Bo(N) =0 (3.18).

Then the boundary value problem (3.14) is soved by the one-form

a=L0s+¢— P, (3.19).

To see this it remains to show that the constants c¢ and ¢, cancel each other by using the

integrability condition (3.13) and the Gaufl theorem, cf. (3.10) :

Jco—comn= [@-dayun= [+ [ouo=0 (3.20).

M M M oM

To prove b) we start similar as above and decompose © by (3.11). From the integrabilty

condition (3.15) the constant ce has to vanish and hence

©=606 with fBe(N)=0 (3.21).

Then there exists by part b) of theorem 2 some £ € H!Q?(M; V) such that

(8¢)lom(X) = Bolom(X) and felam =0 VX € TTOM (3.22).

We choose v = g — 6ée and obtain

by = O on M
Ylom(X) =0 on OM
holding for all vector fields X along OM. It remains to show that also y|am(N) = 0.

To do so we use the tubular neighbourhood theorem [La], which guaranties the existence

(3.23),
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of a local orthonormal frame of the form {/\7, Eg,...,ﬁm} with /{7[81\4 = N and Ei‘BM
tangential to OM near any p € M. Then (3.7) yields

(860)(V) = ~((V )V, ) + (v, €0)(Ee, V) lons
k=2 (3.24)

m

== 2_ Vg, (€o(Ex, N)lon
k=2

since (€o)|om =0 by (3.22). Also due to that fact (€o)lon is covariantly constant under
the action of the vector fields E, along OM, what proves (8¢e)lam(N) = 0. Since also
Bo(N) =0 by (3.21) the V-valued one form Ylom = Bo — b€ vanishs identically on M.
Finally the differentiability results directly read off from theorem 2. a

Both assertions of that lemma are not original. Part a) may also be derived using a solution
theorem for the Neumann problem AH = & and dH(N) = ¢, f. [H3), and setting a := dH.
This (stronger) result has been applied in [Bi] to similar questions as we consider here. Also
the (modified) Dirichlet boundary value problem of part b) has been considered elsewhere
[vWa,Bo]. These results coincide with ours, however the authors are more restrictive in
choosing M (M C IR™ being a sum of starlike connected domains (Bo] or M C R*® [vWa),
respectively) to obtain also estimates for the growth on the boundary. To relate their
approach to the one used here we remark that the operator 4, acts on a one form, like |
the divergence of the corresponding vector field, induced from Gy, by (3.6). Having this
in mind the result b) of the lemma 1 reads in the language of classical boundary value

problems :

Corollary

Let M be a (compact) Riemannian C*-manifold (k > 2) with boundary and let © €
C;~*(M;V) be given function, obeying the integrability condition Sy ©urm = 0. Then
the boundary value problem

divZ =0 on M
Z=0 on oM
has a solution Z € I(TM @ V) of differentiability class Ci=2. For V = R the section Z

becomes a C*~2 vector field on M.

(3.25)
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4. Translational Invariance, Stress Tensors and the Piola Transformation

Now we have all technical tools at hand to apply Hodge theory to the boundary value
problems we have in mind. To prove our central assertion, made in secction 2, we note
that due to the product structure of the Euclidean group we can consider the translational
and the rotational invariance separately. So we first use the invariance under global rigid
translations as an integrability condition to show that any virtual work, given in the form
(2.3) and obying a translational symmetry, also allows a tensorial description. Starting
from Noll’s axiom (2.7) of frame indifference of working such tensorial character of the
stress is evident. Under the (weaker) global assumption (2.9), however, we need Hodge
theory to obtain the local result, that any virtual work allows a description in terms of a

two-point tensor on the body manifold B.

Theorem 3
Let the body B be a Riemannian C*-manifold with boundary and let the virtual work be
determined from a pair (®(J),¢(J)) of force densities, each of Sobolov class H'Q° on its

domain, as

FLJJ(A) = / < B(J), A >R~ ps + / < o(I) A >R s (4.1)
B &8

with the virtual displacement A € T;E(B,R™) of Sobolev class H'Q°(B; R™). If global

rigid translations cause no work, i.e.

F[J](z)=/<<I’(J),z >Rn u3+/<<p(J),z S>Rn s =0 VzeR" (4.2),
B aB

there exists a IR"-valued one form a(J) € H!Q!(B;R"), called the stress form of the

system, such that the virtual work becomes

F[J}(A) = / <a(J),dA >q1 us (4.3).
, B

Here dA € H°Q!(B; R"™) is the differential of the virtual displacement and <, >q: means
the scalar product (3.8). a(J) is C*~2-differentiable if ®(J) and ¢(J) were of class C5~2.
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Proof :

Given the pair of functions (®(J), #(J)) we observe that the invariance condition (4.2) is
equivalent to the integrability condition (3.13) since z € IR" is arbitrary. Hence part a) of
lemma 1 above guaranties some a(J) € H'Q!(B;R") to exist, such that the virtual work

becomes

F[J)(A) = / < §a(J), A >qo us + / < a(J)YN), A >q0 po (4.4).
B oB

By applying Stoke’s theorem in the form (3.10) we shift the operator 6, acting on a(J), to
its adjoint d acting on A, such that the boundary terms cancel, what proves (4.3). a

This result enables us to link the description of the virtual work via force densities with
the usual formulation of continuum mechanics. In terms of the stress form a(J), which is

a (1,1)-type two-point tensor on B, the principle of virtual work rewrites as :
J is an equilibrium configuration & f; < a(J),dA >q: ug =0 for all A € T;E(B,R").

As an immediate consequence of this weak problem we can derive the equilibrium equation
for elastostatics in terms of the stress form, what yields the interpretation of a(J) as
the 1°t Piola-Kirchhoff stress tensor of the system. Therefore we let U C B be some
open (connected) subbody with boundary U and assume that OU N 9B = 0, for sake
of simplicity. By U, we denote a family of open subset of B, containing the closure of U,
i.e. U C U. C B, and require that the measure of the set U/ \U to be bounded by ¢, i.e.
fU,\U,/‘B < €. Then infinitesimal displacement A € T;E(B,IR"™) we choose such that it
~ takes an arbitrary constant value A € IR™ on the subbody U, vanishs on B\U, and is

smooth inbetween, i.e.

A onU
A(p) = A;\(p) = { ’\e(p) on Ue\U (45)
0 on B\U.

Since dA2 = 0 on U and on B\U., we obtain for the virtual work (4.3) done by A} by

using Stokes’s theorem

F[J](A;\) = / < 601(.]),1 >qo ug + / < a(J)(A?e),:\'e >qo0 U3 (4.6)
UA\U A(U\)
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where N, denotes the outward pointing normal on 8(U¢)\U). By construction boundary
splits into J(U\U) = OU, U OU and we have ./Ve|aU = —N where N is the outward
pointing normal of U. Since Xf(p) vanishs on dU, and takes the constant value A on OU

and furthermore < éa(J), Xe >qo is bounded, we obtain

FITJ(AY) = — / < a(T)A) A >a0 pa + ofe) (4.7).

oU

Considering the limit ¢ — 0 and observing that A € IR"™ was chosen arbitrarily, the

principle of virtual work in terms of the stress form «(J) yields
J is an equilibrium configuration & [, a(J)(N)ps = 0 for any subset U C B.

So we have obtained a well established formulation for the integral equation of elastostatics,
where the a(J) is to be considered as the 1°* Piola-Kirchhoff stress tensor. To make this
interpretation more explicite and to invetigate the symmetry of the corresponding tensor,

we have to study the Piola transformation in our framework.

Therefore we restrict our consideration to a n-dimensional body B. Then any embedding
J € E(B;R™) is a regular map, saying that dJ, the principle part of the tangent map
TJ = (J,dJ) is an isomorphism. It makes sense to introduce the adjoint dJ t of the tangent
map, which depends on the Riemannian metric G as well as on the scalar product <, >gn,

by writing
Geg(W, dJ'w) := < dJW ,w >pgn VWeT,B YVweR" (4.8).
If A denotes the Jakobian determinant of the map J, then
A Ao(D]ap(®) = a(I)|p(d ) VveR" (4.9)

yields a well defined tensor A,(J): IR™ — IR™ over each point J(p) in the image of B. It
is the inverse of that transformation, sending the tensor A,(J) into the stress form a(J),
which is denoted as the Piola tranformation [Ci] in continuum mechanics. To establish
A ,(J) as the Cauchy stress tensor we rewrite the virtual work (4.3) by pulling back the
virtual displacement A : B — IR™ to a IR "-valued function L = Ao J~! on J(B) C R™.

Then the differential becomes

dAlp(E;) = (gradL] sp) o dJ|p)(E:) . (4.10)
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where grad L is the vector gradient in the usual sense [TrTo]. With (3.8) for the scalar
product <, >q1 we get

F[J)(A) = Z/AJ < Ao(J) o (dJ " YH)N(E:),dA(E:) >R~ us
=1 B

= Z / Gs (Ei, dJ_loA;(J)ogradLodJ(E,-)) LR
=1u(B)

(4.11)

where A%(J) is the adjoint with respect to <,>pg~ and we notice that the Riemannian
volumes element on B and IR" are related to each other via the Jakobian by J*ug =

AT pgrn. Observing finally that {Ei,...,E,} is a orthonormal base on T,B we use the
cyclic property of the trace to obtain

F[J|(L) = / trace(A;(J)-gradL)umn =: / (Aa(J):gradL) LR~ (4.12).

J(B) J(B)

Then the principle of virtual work becomes :
J equilibrium configuration & fJ(B) (Ao(J):gradl)pr~ =0 for all L € H'Q(J(B), R™)
This is the standard form of the weak equilibrium equation of continitum mechanics, written
in terms of the Cauchy stress tensor A,(J) and the gradient of the virtual displacement
L:J(B)— R", [HuMa].
To be able to reformulate the computations, made above, in terms of the Cauchy stress
we further establish the celebrate Piola identity for one forms. To do so we observe that
for k € Q1(B, R) the induced vector fields x* and (x o dJ')! on B and J(B), respectively,
are related by

<v,(kodIY >gn=r(dI'v) =< v,dJk* >R~ Vve R" (4.13).

We remark, that f-operator(3.6) is defined with respect to the (different) metrics <,>g»
and Gg on the left and right hand side, respectively. Then we can prove the Piola identity.

Lemma 2
The co-differential operator ég : Q!(B,R") — Q°(B, R™) acting on the body manifold B
and the corresponding operator g~ : Q}(J(B), R") — Q°J(B), R") on the embedded

manifold J(B) are related to each other via a Piola transformation by

Aj-6rn(Aa(J)) = 88(a(J)) where Aj-Au(J)=a(J)odJ! (4.14).
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Proof :

Let ur~ € Q*(J(B), R) be the Riemannian volume form on J(B)and v € R" a constant
vector. By using some standard properties of the Hodge *-operator [AMR] we obtain with
(3.5) for the co-differential § g »

<< v,émnAa(J) >R")ﬂm" = d(* <v,Aql(J) >mn> = d(iKi\pmn) (4.15)

where Ka :=< v, Aq(J) >R~ is a R-valued one form on J(B). Replacing A,(J) by its
Piola transformed we set x, :=< v sa(J) >rn€ QY(B, R) and obtain from (4.13)

Kjp =407 (<v,a(J) >rr0dlt) = AT dJ(x!) (4.16).

Using A7l prn = J*ug for the pull back of the volume form ug this yields
d(iKnApRn) = J*d(inf,“s) ' | (4.17).
and respelling (4.15) for x! we finish the proof by observing that
(< v,J"(éB a(.])) >Rn)-(J',uB) = J*d(iniﬂg) = (< U,5RHA'O,(J) >]Rn) LR~ a

As mentioned above, cf. (3.6), the action of the co-differential on one forms and the di-

vergence correspond to each other. Applied to the Cauchy stress tensor A4 (J ), which is a -

IR ™-valued one form on J(B), this reads as

éRnAq(J) =divp=AL(J) (4.18).

Using the Gauf8 theorem and the Piola identity (4.14), the integral equation for the 1°t
Piola-Kirchhoff stress tensor, cf. (4.7), yields U C B

| 0=/63a(J)u5 = / divR-AL(J)ug- WU C B (4.19)
U J(U) '
as the equilibrium equation of the system. This is the balance law of linear momentum for
the Cauchy stress, as usually considered in contiumum mechanics. For a direct derivative
of that equation from the virtual work (4.12) we refer to [AnOs], where also possible

functional analytic suptilies are studied in detail.
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Finally we remark that the stess form a(J), and hence also the Cauchy stress tensor
Aqo(J) are not uniquely determined by the construction made above. The stress form may
be redefined to any a(J), which correponds to the same phyiscal data (®(J),(J)) by
ba(J) = ®(J) and &(N) = ©(J); a similar argument holds for Ao (J). This gauge freedom
corresponds to the fact, that only éa(J) or divAl (J), respectively, enter the equilibrium
equation (4.19).

One can imagine several such modifications : From the mathematical point of view it
seems natural to have o(J) € Q1(B; R ") to be an exact one form, i.e. to be the gradient of
some stress function H(J) € Q°(B; R™). This is possible without further assumptions, as
show in [Bi]. Considering continuum mechanics in its the classical formulation, however,
a description of the Cauchy stress in terms of a symmetric tensor is needed : The virtual

work (2.3) should admit some tensor KQ(J) on J(B), which is symmetric.

5. Rotational Invariance and the Symmetry of the Stress Tensor

To investigate the symmetry of the Cauchy stress tensor we start from a translational
invariant work of the form (2.3) for which theorem 3 guaranties the existence of a stress
form a(J). Performing an inverse Piola transformation we know by using the Piola identity

(4.14) that the Cauchy stress tensor solves the boundary value problem

AjbrnAy(]) = ®(J) on J(B)
Ar-As(J)n = ¢(J) on J(OB)
where n is a normal field along J(0B), defined by dJ*tn := A By means of Hodge theory

we then can prove the existence of a symmetric stress tensor KQ(J ), taking the (rigid)

(5.1)

rotational invariance (2.9) of F[J](A) as integrability condition.

Theorem 4

Let B be a n-dimensional Riemannian C *_manifold with boundary and let the work done
by any virtual displacement L € H'Q(J(B), R™) be

FlJ)L) = / (Aa(J):gradL) URn (5.2)
: J(B)
where the Cauchy stress tensor Ao (J) is determined from the forces (®(J), ¢(J)) by (5.1).

If infinitesimal rigid rotations of the whole body cause no work
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/ trace(A;(J)-C) Lrn =0 VC € so(n) (5.3)
J(B)

and there exists of a symmetric tensor :XC,(J) :R™ - R" obeying also (5.1). If ®(J) and

©(J) were differentiable of class Ck=2 on their respective domains then .KQ(J) 1s of class

k=2
ch-2,

Proof : ‘
With z and z vector fields on J(B) we write the anti-symmetric part of the A,(J) as

1 .
<2,S4(J)z >pni= 5(< 2, Aa(J)z SRo — < 2, Aa(J)z >,Rn) (5.4)

and thus get a so(n)-valued zero form Sa(J) € QUJ(B); so(n)). Rewriting the so(n)-
content of (2.9) in terms of the tensor Aq(J) yields (5.3) and since so(n) is the space of

all anti-symmetric n x n-matrices

/ Sa(J)purn =0 ' (5.5).
J(B) .
This is an integrability condition to apply part b) of lemma 1 what yileds the existence of

some o4y € Q(J(B); so(n)), solving the boundary value problem

SQ(J) = 5UQ(J) with UQ(J)IJ(aB) =0 (56)

Since g4()(z) € so(n) is an anti-symmetric matrix at each point q € J(B), we can define
an IR "-valued two form Lo € Q*(J(B); R™) by

< z, Ea(n(y, z) >Rr = ‘(5.7)

<Z,00(0)(y) 2 >Rr — < 7,04(5)(2)y SRn ~ < 2,040 (T)y >R"

where z,y and z are arbitrary vector fields over J (B). The co-differential of the IR ™-valued

two form ¥, ) computes according to (3.7) as

< :B,(SEQ(J)(Z) SDRnr = —(Z Ve.. < :L‘,EQ(J)(C,',Z) SRn — < Ve,.:l:, EQ(J)(C,',Z) >Rn

i=1

- <z, Ea(n(ei,veiz) >RN) (5.8)
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‘ where {e1,...,en} is a (local) orthonormal frame on J(B). Expanding this by (5.7) yields

< x,éza(J)(Z) >Rn = <l‘,50’a(]) Z>Rn

n

+Z(<Iave;(0au)(3))€i >R = <,04(5)(Ve,z)e; >pn (5.9).

=1

+ <5 Veloan(a)es >mn = < 2,00(Vez) e >pe)

We obtain a symmetric tensor on J(B) by setting

Au(]):= Aa(J) = 84y (5.10),
what is the symmetric part of Ay(J), cf. (5.6), modified by a symmetric correction term.
Due to the nilpotence of the co-differential on J(B) we furthermore have 5.&,,(]) = 6A4(J).
Hence it remains to study the behavior of KQ(J ) on OB. Therfore we argue similarly
as in section 3, cf. (3.24), by chosing the (local) orthonormal frame as {n,&,...,e,}
with €;|58) tangential and n| j55) normal to J(OB) near the surface of the body. By

construction o4 ;) vanishs on J(0B) and we obtain

< 2,6Z4(5)(8) >R~ = < B, Va(0u()(2)) & >po +3° (<2, V5, (0ay (@) & >pe

=2

+ < 8, V3 (000 (2)) & >,R,.) (5.11).

But this expression vanishs on J (0B) since a4 5)(z) is anti-symmetric and - as a conse-
quence of o4( 1)| 508y = 0 - it is also covariantly constant under the fields €; | 7(98), which are
vector fields along the boundary. We remark that in general It # n but §Z,( 5 (@i)|ss = 0
guaranties that A.(J)(f) = Aq(J)(R) for any field fi normal to J(9B). m

With that result on the existence of a symmetric Cauchy stress tensor Ka( J) the central
assertion, we made in section 2, is proven. A local so(n) invariance, as assumed by Noll’s
working axiom (2.7), would directly yield the symmetry of A,(J), but the global invariance
(2.9) - and in consequence (5.3) - just gave the integrated symmetry result (5.5) and thus

the construction, above was needed. Similar arguments as used in the proof are reputed to
be due to Belinfante [MPP].




It is now is a matter of routine, to derive the balance law of angular momentum. We take

U C U, C B as in section 4 and construct the virtual displacement as

C-q forqe J(U)
Li(q) = { Ce-q for g€ JUAD) (5.12).
0 for ¢ € J(B\U,)
Here C'-¢ denotes the action (2.5) of some constant matrix C € so(njonqe J(B)C R™

and C¢ means a so(n)-valued function, which is such that LE becomes smooth. Since

grad(C-¢q) = C and KQ(J) 1s symmetric we derive in analogy to (4.7) :

F[J)(LE) = / trace(xa(.])-grad(ée-q))/Lmn

JUAD) (5.13)

= - / < KQ(J)ﬁ,C“q >Rn pRr~ + ofe)
J(8U)
for any U C B with 1 now denoting the unite normal field along J(8U). In the limit € — 0

this yields the usual form for the balance law of the angular momentum in equilibrium.

6. Remarks on the Constitutive Theory

Considering the Euclidean group as a symmetry in continuum mechanics also allows to
face the constitutive question of the theory. This concerns the functional form of the stress
tensor and means to figure out which mathematical information about the embedding
J is necessary to determine &(J ) or K.a(J ), respectively, and which is redundant. First
we observe that taking E(B,R™) as the configuration space of the system is a primary
- physically fundamental - constitutive assumption. For more general theories, e.g. for
Cosserat media or for systems with defects, the virtual work in the form (2.3), depending
only on the embedding J, will not yield a proper description.

To investigate the effect of the E(n)-symmetry on the constitutive question, we remark
the tree different tensorial pictures for the stress. First there is the description in terms of
the 1°* Piola-Kirchhoff stress, given by a IR "-valued one form

a(J): TB — R™ (6.1),

which we derived in section 4. As a (1,1)-type two point tensor, having one leg in B and one

in JR™ it should transform like a vector under the E(n)-action (2.4) on an embedding J.
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Second we worked in the spacial (Eulerian) picture by performing an inverse Piola trans-

formation on the stress form a(J) which yields the tensor
A.(J)=AF - a(J)odJ! (6.2).

This is a proper tensor on J(B) C R"™ and should transform tensorial under the group
E(n). Third we can introduce the material (Lagrangian) picture, which is the most appro-
priate one to investigate the constitutive question. To do so we pull back the 1°¢ Pjola-
Kirchoff tensor a(J) under the embedding J and obtain the 2"¢ Piola-Kirchhoff stress
tensor Aq(J) given by

dJ o Ax(J) = a(J) where Ao(J):TB — TB (6.3).

By the symmetry of KQ( J) it also can be chosen symmetric. Since the Euclidean group
acts on the configuration space E(B,IR™) only via a transformation in the ambient space
R", it should not touch Aa(J) which is a proper tensor on the body B. Hence the 274
Piola-Kirchhoff stress should behave as a scalar under the E(n)-action.

To make this explicite we investigate Noll’s axiom of material frame indifference of forces

(2.6), claiming that the forces densities (®(J),%(J)) obey a vectorial transformation law

¢(9rnlJ]) =R2(J) and  (gmnlJ]) = Re(J) VgrT) € E(n)  (6.4)

under the action of the Euclidean group. In the virtual work approach this axiom appears
quite naturally : Since the virtual work is defined as a linear functional on T;E(B,R"),
it transforms 'under the canonical lift [AbMa] of the E(n)-action (2.4) from the manifold
E(B,IR") to its co-tangent bundle T*E(B,IR"™). By definition (2.3) this functional F[J]
has a kernel, induced from the force densities ®(J) and ¢(J) by the fixed scalar product
<;>Rn. In consequence these force densities have to transform under the tangential lift
of (2.4), saying they have to transform like vectors in IR ™.

By construction then also the stress form a(J) obeys a vectorial transformation law in its
IR"-argument under the e(n)-action on E(B,R") and the axiom of the frame indifference

of forces (6.4) becomes, written in terms of the 2m4 Piola-Kirchhoff tensor :

Aa(9r,plJ]) = Aa(J)  Vg(r.R) € E(n) (6.5).

To obtain from this invariance the proper constitutive description for the stress we note,
that (6.5) makes that the 274 Piola-Kirchhoff tensor into a (tensor-valued) functional on the
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quotient E(B,IR")/E(n), cf. [Bi]. Due to the product structure of the Euclidean group we
again can investigate the translational and rotational part of the E(n)-action in sequence.

Considering the translation group IR" there is the natural identification
EB.R")/R"={dJ|Je€ E(B,R")} (6.6)

where d is the exterior derivative acting on E(B,R"), which is an open subset of
Q°(B;IR"). Hence an element of E(B,R")/R" is to be indentified with the differen-
tial of an embedding. With the same argument as used for (4.10), that differential dJ
corresponds to the deformation gradient. For the rotational symmetry we then introduce
the Green deformation tensor as the pull-back of the scalar product <, >R~ under the

embedding J, defined explicitely by

C;:TBxTB — R

(6.7).
CyX,Y)=<dIX,dJY >r» VX,Y €TTB

It is a matter of routine, cf. [HuMa], to prove from (6.5) that the 2™¢ Piola Kirchhoff stress
tensor Aq4(J), is a functional of the deformation tensor C; only. So we may set in abust of
notation Aa(J) = Aa(C) for the stress considered in the material ’picture as a functional
on E(B,IR"™)/E(n). Hence we obtain as the final result concerning the principle of virtual

work :

Theorem 5

Let a system in continuum mechanics be determined by an E(n)-invariant virtual work
in the sense of (2.3), (2.6) and (2.9). Then an embedding J describes an equilibrium

configuration of the system, iff the work integral

F[J)(A) = /(Aa(CJ) : DA) 1B | (6.8)
B
vanishs for all virtual displacements A € T;E(B,IR"). Here C; is the Green deformation
tensor, D) denotes the symmetric part of the tensor dJ 1o dA on TB and A,(Cy) is the
274 Piola-Kirchhoff tensor.

Let us finally examine our results in the light of another standard approach to physical
systems with symmetries. Therefore we specialize the treatment to a Lagrangian formula-

tion, which it contained in our setting by considering the virtual work functional F;(A) to
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be the Frechet derivative of a (static) Lagrangian functional

Fy(J)(A)=DL(J)A)  where L(J):/l:(J)ug (6.9).
B

‘Such an approach is equivalent to the consideration of the special case of a hyperelastic
medium in continuum mechanics.

Symmetries of a Lagrangian (field) theory may be studied by means of Noether’s theorem
[Noe], which claims that each symmetry of £ yields some conserved quantities. For an ap-
plication to the Euclidean symmetry in elasticty we refer to [HuMa], where it is shown that
Noether’s conserved quantities for the E(n)-action in elasticity correspond to the existence
of a symmetric stress tensor .Za( J). Hence for the hyperelastic case Noll’s result may be
understood as an application of Noether’s theorem. We note, however, that assuming an
E(n) invariant Lagrangian (6.9) means to investigate a local symmetry, in contrast to our
global treatment. ‘
Equivalent to using Noether’s theorem is ~ under certain assumptions ~ the momentum
- map technique [AbMa] in symplectic geometry. There the existence of conserved quantities
in consequence of a symmetry is expressed as a constraint on the phase space of the system.
The constraint subset C is determined from the momentum map of the given symmetry
group G and the content of the Marsden-Weinstein reduction [MaWe] is to observe the
quotient C/G as a symplectic manifold. Furthermore all physical investigations for a G-
invariant system reduce to studies on that the reduced phase space.

Applied to our treatment of elasticity, the constraint for the Euclidean group action turns
out to be the invariance (2.9) of the virtual work under rigid motions. The explicite con-
struction of the coresponding momentum map will be given elsewhere (BiSc]. The dis-
cussions on Noll’s theorem in section 4 and 5 then show that the constraint set ¢ can
be represented by the space of all symmetric tensors over J(B), considered as functionals
over the configuration space E(B,IR™). On the other hand the transformation properties
for the stress tensor, which were presented in this section, e.g. the relation (6.5), express
the fact, that the proper reduced phase space is by C /E(n). In the material description
this manifests itself in the fact, that the (symmetric) 2”4 Piola-Kirchhoff stress tensor is
functional dependent on the embedding J only via the deformation tensor Cj.
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