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1 Introduction to neural networks

1.1 Abstract

Historically, the interest in neural networks has two roots, �rst is the desire to under-
stand the principles on which the human brain processes information, and the second
is the wish to build machines capable of performing complex tasks for which the se-
quentially operating, programmable computers conceived by von Neumann are not
well suited. Everyday observation shows that the modest brain of lower animals can
perform tasks that are far beyond the range of even the largest and fastest modern
electronic computer. A human can easily recognize faces, understand speech, or navi-
gate a room; whereas a supercomputer is not able to perform such tasks.
Because of many features they are claimed for like parallelism, robustness, and the
ability to learn from examples, neural networks promise to keep the dream of intelli-
gent brain-like machines alive, and to scape the deaden predicted by computer scientist
for conventionally programmed sequential computers.
The main problem which faces implementing such highly interconnected systems is the
realization of the connections between the neurons. The high 3 � D interconnection
density , and the high storage capacity of optics suggests that it may be a suitable tech-
nology for implementing very large neural networks which are impractical to simulate
or implement electronically. So we focused our investigation in this thesis on studying
the e�ects of the optical constraints on the performance of the simplest neural network
(the perceptron).
In this chapter we introduce brie
y the nerurobiological background of Neural Net-
works (NN), their abstract Model, the properties and promises, and the advantages
of optics to implement them. Finally, the motivation and structure of this thesis is
outlined.

1.2 Neurobiological background

The key to design of both neural networks and neurocomputers is understanding the
ways in which the brain uses biological neural systems for information processing. This
is far from understood, but it is useful to survey brie
y the current knowledge. The
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1 Introduction to neural networks

human brain is composed of 1011 single, interconnected cellular units , the neurons.
The detailed investigation of the internal structure of neural cells shows that all neu-
rons are constructed from the same basic parts, independent of their size, shape and
function. The neuron consists of an input part the dendritic arbor, a processing part
the soma and a signal transmitting part the axon. The size of a typical neuron is about
10� 18�m, while dendrites and axons have a diameter of a few �m. Such neuron is
illustrated in Fig.(1.1). The neurons communicate via synapses, which are the points
along the axon of the pre � synaptic neuron at which it can communicate the outcome
of the computation that has been performed by the soma to the dendriticarbor or even
directly to the soma of the post � synaptic neuron. Each neuron receives some 104

synaptic inputs from the axon of the other neurons. Various signals are transmitted
either electrically or chemically.
In the state of inactivity the interior of the neuron is negatively charged against the
surrounding, the resting potential is about �70mV . This resting potential is caused
by a de�ciency of positive ions in the protoplasm which is supported by the imperme-
ability of the cell membrane for positive ions.
Electrical transmission is based on an electrical discharge which starts at the cell body
soma which acts as a kind of summing device that adds the depolarizing e�ects of its
various input signals and then sends it down the axon to the various synaptic connec-
tion. Signals arriving from the synaptic connections causes a transient weakening, or
depolarisation of the resting potential.
The chemical transmission takes place when the spike signal arrives at the presynaptic
nerve terminal, where special substances called neurotransmitter are liberated in tiny
amounts. The neurotransmitter molecules travels across the synaptic cleft reaching the
post-synaptic neuron or muscle �ber within 0:5ms. The Post-Synaptic Potential(PSP)
defuses toward the soma where all the inputs from all the pre-synaptic neurons con-
nected to the post-synaptic one are summed. This changes the permeability of the cell
membrane of the post synaptic neuron so that it becomes permeable for positive ions.
If the induced polarization potential is positive the synapse is termed excitatory . If it
is negative, the synapse is called inhibitory . If the total sum of the PSP's arriving
within a short period surpasses a certain threshold, which is the level at which the
post synaptic potential becomes unstable against depolarizing ionic current 
ows, the
probability for the emission of a spike becomes signi�cant. This threshold is tens of
millivolts and hence a number of inputs are required in order to produce a spike. After
the emission of a spike, the neurons needs time to recover. There is a period of 1-2
milliseconds in which the neuron is not able to emit another spike, no matter how large
the depolarizing potential may be. This period is the refractoryperiod of the neuron.
It sets the maximal spike frequency at 500-1000 per second. Yet the brain is capable of
solving diÆcult problems of vision and language in about half a second (i.e. 500 mil-
liseconds). This is particularly surprising given that the respond time of single neurons
in the brain is in millisecond range. So the incredible complexity of the human central
nervous system, rests not so much in the complexity, the high speed and diversity of
single nerve cells, which is quite limited, as in the vast number of its constituent units,
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1.3 Arti�cial neural networks

Figure 1.1: Schematic representation of a neuron (After P. Peretto, unpublished)

i.e. of the neurons and their mutual connections.

1.3 Arti�cial neural networks

Many concept and terms in the �eld of NN are motivated from neurobiology. However,
the models considered by physicists, computer scientists, and statistical scientists are
so much simpler than its biological example, that any serious comparison is mislead-
ing. Therefore they are often referred to as Arti�cial Neural Networks (ANN). Gross
simpli�cation are made with respect to the neurons, the number of di�erent types of
neurons, the manner the neurons are connected and the way they transmit signals, but
a great deal of terminology that one encounters, comes from neurophysiology.

In mathematical terms a neural network is de�ned as a directed graph with the follow-
ing properties.
The nodes of the graph are the processing units of the NN, the neurons. The links are
represented by a number of input lines which connect the neurons to each other. In
Fig.(1.2) the links are depicted with incoming arrows. Each input channel is a combi-
nation of a dendrites and a synapse. The input channels are activated by the signals
they receive from other neurons. A state variable Si is associated with each node i,
which determine whether a neuron is active or not in the deterministic case, and gives
the probability of its activation in the case of stochastic neurons.
A real valued weight wik is associated with each link (ik) between two nodes i and
k. The numerical value of wik is the synaptic eÆcacy which determines the amount
of post-synaptic potential that would be added to the neuron i if channel k were acti-
vated. The values of wik may be positive (excitatory) or negative (inhibitory), whereas
wik equals zero, if the connecting channel between the neurons i and k is not acti-
vated. A real valued bias #i is also associated with each node i. A transfer function
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1 Introduction to neural networks

fi(fSkg; fwikg; #i) is de�ned for each node i, which determines the state of the neuron
as function of its bias, of the weights of its incoming links, and of the nodes connected
to it by these links. The neuron operates as follows:

� At any given moment some of the logical inputs are activated.

� The soma receives an input PSP which is in the �rst order approximation the
linear sum of the synaptic eÆcacies wik each multiplied by the corresponding
state variable of those channels arriving at that neuron. In other words, denoting
the PSP at neuron i by hi, we can write

hi =
NX
j=1

wijSj: (1.1)

where N is the number of pre-synaptic neurons.

� The PSP is compared to the threshold value of neuron i and the output channel
is activated if it exceeds the threshold. Otherwise it is not.

At a given moment the actual state of the NN is made up of the states of all its
neurons, and it changes either syncronically or assyncronically according to an update
algorithm.
The topology (link map) of the graph, which de�nes which neurons are connected by a
synapse, is called the architecture of the NN. The most common architectures are the
fully-connected Hop�eld model and the fully-connected Multilayer Perceptron (MLP).
See Fig(1.2) for an illustration of these architectures. The Hop�eld model contains
cycles, whereas the MLP does not; for this reason, the former type is called recurrent ,
as opposed to feed forward to the latter.
We can distinguish the neurons according to their location in the graph. Some neurons
are identi�ed as input neurons, their states are the numerical representation of the
actual input to be processed, e.g. the key pattern in the case of an associative memory.
Some neurons are identi�ed as output neurons, their states represent the output �nally
generated by the NN. Neurons that are neither output nor input neurons are called
hidden neurons.
ANNs are being applied more and more for tackling numerous problems in another way
than, or in combination with existing algorithms (see the literature on engineering with
ANNs). The way that ANNs handle information is di�erent from that of computers.
In a von Neumann computer each byte of information is stored in one particular place
an can be perfectly retrieved with the knowledge of its address. If one removes a small
piece of information from the computer, all the information that this area contains is
completely lost. The elementary processing time is of the order of Nano seconds, but
only one operation (or few for parallel processors) can be done per time unit.
In a neural network, the information is spread over the whole network, or at least over
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1.4 What do neural networks promise?

Figure 1.2: Neural network architectures. (a) Hop�eld model, (b) Multilayer perceptron (After
[15])

a large fraction of it. If one removes a small piece of information from the network (by
dilution of some its weights for example) only an equally small piece of information
is lost. In the real brain this happens constantly, because neurons die all the time,
and nevertheless we are able to remember things. The information is retrieved (not
always perfectly) by its content (this is called associative memory). This means that
one has to present a part of the information to get back the whole information. The
elementary processing time is of the order of milliseconds, but the processing is done
massively parallel.
The associativity and the spreading of information over the neural network give it an
enormous robustness against malfunctioning of some of its neurons, and the parallel
processing makes it much faster than conventional computers for tasks like vision,
motor control and decision on the basis of incomplete or noisy data. On the other
hand, for high precision arithmetic and perfect storage and retrieval of information,
the von Neumann computer is superior. So, ANNs are probably not going to replace
computers, but are complementary devices that are applicable to other problems.

1.4 What do neural networks promise?

Neural networks exhibit many properties analogous to the brain: association, general-
ization, parallelism, learning, robustness, universality and 
exibility.
Association ANNs are able to match input patterns to output patterns, as with a
content-addressable memory.
Parallelism ANNs are inherently parallel, whereas most standard algorithm are not.
NN �t better to existing general-purpose parallel hardware than standard algorithm
do, and new special-purpose parallel hardware is easier to design for NN than for stan-
dard algorithm.
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1 Introduction to neural networks

Learning Learning in ANNs occurs by adjusting the network parameters (the weights)
so that the NN do well on the presented set of training patterns. Learning allows a
neural network to discover patterns and their relationships, and to organize itself to per-
form associations. This capability has major implications: the ability to solve problems
whose rules are diÆcult to formulate and to solve on von Neumann computer machines,
and the ability to extract from large data sets with numerous variables both statistical
models and knowledge-based rules. Learning in ANNs is performed by determining
the network parameters (the weights) due to a learning algorithm after presenting a
training set.
Universality It is proved that Neural Networks are universal in this sense: in prin-
ciple for every boolean function there is neural network which emulate this function
(McCulloch and Pitts 1943). ANNs are thus capable of computing any task a digital
computer can, and more generally, ANNs can approximate any function arbitrarily
accurate (Hecht-Nielson,1989, 1990)[47]. The latter result is based on Kolmogorov's
theorem on the representation of functions of many variables by superposition of func-
tions of one variable(Kolmogorov, 1957)[46].
Robustness Robustness in NN is a consequence of the well balanced distribution of
the learnt information on all the weights of the NN, so that neither a single data item
nor a single code word dominates the operation of the NN. A single error will decrease
the performance only slightly. This is in sharp contrast to the operation of digital
microprocessors, for which a single error (uncorrelated) bit error or a single code word
will destroy the operation in most cases.
Flexibility In neural networks has a number of manifestations. Networks can adjust
to changing environment through learning, this reduces the need for reprogramming.

1.4.1 The generalization ability of NN

The deep intention of training neural networks is not only to recall and store informa-
tion, but also to process new inputs that were never learned. In other words we would
like to make the neural network able to generalize or to extract information hidden in
the training set. Experience has shown that NN, often succeed in this task, but not
always, and sometime only to a certain degree. The response to the question, whether
there is anything mystical about the ability of trained ANNs for generalization, is no.
The generalization ability of NN is a direct consequence of the laws of statistics and
probability. For a given amount of information fed into the network it will most likely
choose the generalization that has the greatest probability of being realized.
Anshelevich et al. found by applying tools of information theory to investigate the
behavior of NN that as a result of learning the correct response to P patterns, the
network aquires �PN0 log2 q bits of information, where q is the probability of correct
response in any one of the N0 output neurons.
In order to provide the network with suÆcient information to learn any particular
algorithm it is capable of performing, the network must be trained with at least
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1.5 Why optical neural networks?

P� = 1

N0

logC: (1.2)

input patterns where C the capacity of a neural network is the total number of di�erent
input-output mapping it can represent by appropriate selection of its weights.
The statistical approach to learning and generalization in NN has also been studied
in detail by S. Solla and collaborators, Seung Sompolinsky [10], who have developed
an explanation of the rather strange behavior of learning curves (the generalization
error often drops suddenly to zero after a long period of slow progress) on the basis
of thermodynamical concepts. There are many circumstances why ANNs may fail
to generalize. If the new and previously unknown input deviate too much from the
examples used in the learning phase the ANNs may not be able to generalize to the
new input. The number and manner of presentation of the training set for a given
task plays also an essential role on how fast the task can be learned. Generally the
information needed to reach good generalization must not lie hidden to deep in the
form of the learning example.
We must also refer to the fact that generally valid statements about the ability of
neural networks to generalize are diÆcult because the generalization of a given set of
examples is never unique. We should note, to understand generalization in the sense
of the human ability to generalize is misleading.

1.5 Why optical neural networks?

The biggest problem which faces all implementation of neural networks and all other
kinds of massively parallel systems is the realization of the connection channels. A
Hop�eld network with 1000 neurons needs a 5 � 105 connection channels. Simulation
in software using sequential or parallel computation or dedicated special-purpose mul-
tiprocessor systems is the only way to implement such highly connected systems on
electronic systems.
But there are a lot of limitations set by physics for electronic implementations of neural
networks. These stem from the fact that electrons are the information carriers in such
systems. Electrons are charged particles with a mass, thus they repel one another, and
we need energy to accelerate them because of their mass. Due to the fact that they
are fermions, they also can not be simultaneously in the same quantum state ( for
ex.they can not take simultaneously the same space ). The e�ects of these properties
on the highly integrated electronics is, electrons must be con�ned to wires to get them
from one place to another reliably. They have lower speed compared to the speed of
light, and its transport requires high energy consumption. Very high speed electronic
machines use additional power to provide speed and have elements located very close to
one another to limit the transmission time. In this case the technology for transferring
heat out of the system is also a limiting factor.
These limits are not relevant for Photons as information carriers. Photons belong to a
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1 Introduction to neural networks

class of particles called bosons. They are uncharged, massless particles. Consequently,
light beams may pass through one another without distorting the information carried.
Essentially all the strength and weakness of optics comes from this observation. Due
to this facts it is possible to realize free space optical connections which allow to ex-
haust all the advantages of optics. Moreover free space optical connections are inherent
parallel. Another advantage of optics over electronics is that optics can operate at an
average energy per calculation that is less than the theoretical minimum for the most
eÆcient electronic logic gate. Due to these properties of light, optical computers can
feature massively parallel interconnections that are impossible physically and energet-
ically with electronics. Optical approaches also show great promise for satisfying the
performance requirement of large neural network models. The parallelism, the high
3 � D interconnection density , and the high storage capacity of optics suggests that
it may be a suitable technology for implementing very large neural networks which are
impractical to simulate or implement electronically. On the other hand neural networks
are the best example of all optical computing paradigm which uses the advantages of
optics.

There are four main arithmetic operations in conventional neural networks: multiplica-
tion, addition, subtraction and nonlinear thresholding. The optics can provide analog
multiplication and addition in real time, while nonlinear thresholding can be performed
by an optical modulator. Implementation of subtraction in an optical neural network
is a key issue. Coherent and incoherent techniques di�er markedly.
In the recent years there has been considerable interest in the optics community in the
optical implementation of the vector-matrix multiplication which is the most comput-
ing intensive operation in Neural networks. Incoherent optoelectronic implementations
of matrix vector multipliers with nonlinear electrical feedback were used to demonstrate
that imperfect analog hardware worked surprisingly well in the robust environment of
a neural network. Goodman studied a �rst implementation of a vector-matrix multi-
plier, which was based on classical refractive optics [26]. Psalties and Farhat utilized
the architecture of Goodman to implement an optical Hop�eld network [25].
Holographic association with coherent light can be combined with optical nonlineari-
ties with the nonlinear thresholding capabilities of an optical spatial light modulator
to implement image association. Volume holograms can be repetively exposed to a
number of Bragg angel multiplexed connectivity patterns to produce a holographic
interconnection matrix.

1.6 Motivation and structure of the thesis

The study of neural networks with local constraints on the coupling strengths is well
motivated from both biological and applications point of view. It is very implausible
to assume a biological mechanism which preserves in�nite precision of truly continuous
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1.6 Motivation and structure of the thesis

wij, and it is therefore interesting to study the e�ect of some coarse graining of synaptic
eÆcacies, for example by encoding the information using a �nite number of discrete
values. Likewise, in hardware implementations it is simpler to realize networks wherein
the couplings are restricted to discrete values such as wij = 0;1 (connected or not),wij =
�1, or more generally wij restricted to some set of discrete values. But above all this
thesis is motivated by the attempts of the optic group at the department for computer
science V, University of Mannheim, to implement a hybrid opto-electronical neural
network. Within this project a holographic vector-matrix-multiplier (VMM) has been
studied by (Dietrich, 1995)[3].
A vector-matrix-multiplication can be carried out completely in parallel by storing
the matrix elements (weights of the NN) in holograms with a limited number of grey
values (Goodman et al.,1978; Shamir et al. 1989) [50]. Due to the robustness of
Neural networks discussed already, we expect this limitation to be not that severe.
Robustness together with parallelism makes it possible for Neural networks to exploit
the huge computing power of optical VMM. Despite general prospects being good,
many questions must be investigated to design a hybrid optoelectronic neural network
which successfully embeds the optical VMM: which NN architecture �ts best to the
optical hardware? Which training algorithm can be used, if we want to implement the
training process optically? Which holographic material �t best to solve the problem
of storing the weights in the case of o�-line trained NN? Which (non-neural) pre- or
post processing supplements the NN best? Which processing steps must be realized
in hardware (optical or electronical) and which steps can be realized in software (on
a host computer) in order to optimize the whole system? In this thesis we focus our
investigation on one of these questions, namely on studying the dependence of the
performance of a simple perceptron, measured in terms of generalization and training
errors, on the number of allowed discrete values for the synaptic weights (there are
2p allowed values for a bit precision of p), and on the training set size. The network
we chose to look at is the simple perceptron, because it is the simplest architecture
of neural networks to be implemented optically, and the simplest for the theoretical
investigation by means of statistical mechanical tools. The perceptron is the simplest
feed-forward network. This network consists of one input layer of N units that may
take real or boolean values and a single boolean output. Since the simple perceptron
embodies most of the general principles involved in this class of parallel architecture,
results obtained by investigating this network should be generally applicable to other
more complex networks. Our starting point is the teacher pupil paradigm and methods
developed by using statistical mechanical tools to study complex spin systems.
Chapter 2 deals with the optical implementation of the simple arithmetic operations,
and the vector matrix multiplier.
In Chapter 3 we introduce the general statistical mechanical framework for systems
with adjustable parameters exhibiting the ability of learning a rule from examples, the
concept of de�ning a rule, and the formalism of learning a rule.
Some thermodynamical variables are introduced such as the free energy which serves
as the generating function for various quantities characterizing training. In particular,
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1 Introduction to neural networks

thermodynamic relations which link the training error, the volume in parameter space
associated with a given error, and the generalization error are explained. The replica
method which is a commonly used technique to perform the average over examples is
brie
y outlined.

Chapter 3 shows that statistical mechanics is a useful tool to analyze learning for dif-
ferent reasons. One is that many algorithms are stochastic and correspond exactly to
Langevin or Glauber dynamics on a noisy energy landscape. Another reason for using
statistical mechanics is that learning is essentially a problem of statistical inference and
�ts naturally into the same mathematical framework. A paradigm normally used for
studying the generalization ability, the teacher pupil paradigm, has been introduced.
The replica method, which is a technique commonly used to perform the average over
the random examples is also introduced.
In Chapter 4 we de�ne the simplest neural network, the simple perceptron, which
is the subject of our investigation. We summerize a number of sophisticated learning
algorithms for the perceptron and explain some of the exactly solved models.
In Chapter 5 the general framework of statistical mechanics is applied to the case of
learning a rule at �nite temperature. In our speci�c model a pupil perceptron, whose
weights are restricted to discrete values, is trained to infer a rule presented by a teacher
perceptron with continuous weights. The pupil is trained on P = �N random input
examples whose components take the values �1 with equal probability, and the gen-
eralization error is measured by the average disagreement between the respond of the
pupil and that of the teacher on examples drawn from the same distribution as the
training examples.
The replica trick and the saddle point method are used for evaluating the free energy.
We �nd that the order parameters are the so called Edwards-Anderson parameter (this
will be explained in Chapter 5), and a new quantity R the average overlap of the the
ensemble of trained pupil perceptrons with the teacher perceptron. The replica sym-
metric ansatz is used and its stability is determined.
In the space of the relative number of examples, and the temperature the three im-
portant lines, the De Almeida-Thouless, the Gardner-Derrida, and the critical lines,
have been calculated for the case of 1 bit and 5 bit synaptic depthes. The De Almeida-
Thouless set the boundary for the area in the phases pace with stable solutions with
respect to replica symmetry breaking. The Gardner-Derrida sets the boundary in the
phase space where the saddle point equations become singular. The critical line sets
the boundary for the existence of a numerical solution for the saddle point equations.
The generalization error is also calculated, in the replica symmetric case, as a function
of the relative number of examples � for di�erent bit precisions and with a constant
temperature which is a measure for the intensity of noise in the learning process. We
studied also the evolution of the generalization curve as a function of the training
temperature for a constant �. The dependence of the training error on the stability
constant is investigated for the two extreme cases of 1 bit and 5bit.
In Chapter 6 we are going to describe the simulated annealing algorithm and its im-
plementation in the case of learning binary random input output patterns produced
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1.6 Motivation and structure of the thesis

by a teacher perceptron with continuous weights which has to be learnt by a pupil
perceptron with discrete weights.
InChapter 7 The generalization as well as the training curves, obtained by the simula-
tions, will be studied as a function of the training set size with a given allowed synaptic
depth and compared to the results produced with tools of statistical mechanics.
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2 Optical neural networks

2.1 Introduction

The potential advantages of using optics in the implementation of neural networks are
well known and stem, as we have mentioned in the last chapter, from the capability
of optics for 3-D, high density interconnections and analog data storage, as well as
rapid multiplication and addition of analog signals. These are, in addition to the non-
linear thresholding, the main arithmetic operations in a conventional neural network.
The optics can provide analog multiplication and addition with a very high speed (real
time), while nonlinear thresholding as well as the transfer function can be implemented
by utilizing a nonlinear optical e�ect, or can be realized electronically. Such implemen-
tation which utilizes optical and electronical elements are referred to as hybrid NN. In
principle, we can distinguish between two kinds of optical Neural networks implementa-
tions. Some optical neural networks combine the learning and recall (data processing)
in the same hardware. These can be very powerful, but they are also very diÆcult to
realize. In [27] Psaltis and Wagner presented a new approach to learning in multilayer
optical neural network based on holographically interconnected nonlinear devices. The
proposed network can learn the interconnection that form a distributed representation
of a desired pattern transformation operation.
Other optical neural networks do the learning o�-line in a digital computer and embody
the learned weights in a hologram. These are simpler and therefore likely to be used
sooner. Figure (2.1) shows schematically how such an implementation works. In the
recall phase (in the case of a simple perceptron), the hologram will be illuminated by
a light beam which is modulated corresponding to the activity of the input patterns.
The input pattern is then multiplied by the appropriate values of weight matrix repre-
sented by the hologram. An anisotropic lens system at the output will then form the
output vector representing the corresponding output, which is detected by a variable
time CCD camera. The interaction between the hologram and the illuminating light
beam represents the information processing of the NN. In the electronical implementa-
tion the output of the output neurons is calculated sequentially, whereas in the optical
implementation the output is performed parallel because the light beams may pass
through one another without distorting the information carried. For high-order neu-
ral networks, fully parallel implementations have been reported that use holographic
lenslet arrays and spatial light modulators . Nevertheless, the limited di�raction ef-
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Figure 2.1: Schemata of a hybrid neural network

�ciency of the replicating optics and the lack of contrast and controllability of the
spatial light modulators used seemed to prohibit the implementation of large scale
optical connections by this method.

In this chapter we introduce, how can we implement the important arithmetical opera-
tions optically and we will review some of the methods to implement the vector matrix
multiplication optically.

2.2 Optical numerical processing

An electromagnetic wave can be determined by three parameters its amplitude, its
phase, and its 3-D wavenumber

~Aei(
~k~r��): (2.1)

When a wave passes though a medium, all these parameter can be in
uenced. When
light passes through a transparency, its amplitude is multiplied at each point by the
transmittance of the transparency which is normally a real and positive number � 1.
The transmittance might be complex, i.e., it might also produce a phase change. Now
it is clear that we are able to implement themultiplication by a number smaller than
1 optically.
It is also possible to realize the multiplication by numbers � 1, but this needs a very
sophisticated optics and an additional light source (because of the energy conservation
law). But this is not necessary for neural networks, because common scale can be
absorbed in scale of threshold, we can map all the weights on the interval [0,1]. Ad-
dition is accomplished by modulating two separate light beams, and then combining
them with a beam splitter. A beam splitter is actually just a semi transparent mirror.
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2.3 Implementation of the vector-matrix multiplier

In this case what it does is to let one beam (modulated by f1) through, and break
the other (f2). Thus the output contains both. If the light is coherent, the complex
amplitudes are added up. This is another way to say the beams interfere. In the case
of incoherent light, the intensities of the beams are summed.
Implementation of subtraction in optical neural networks is a key issue. A fully coher-
ent optical system can subtract signals directly, using di�erences in the phase or path
length, of the optical beams. The trade-o� of this method is that the system must
keep relative path lengths stable to less than a wavelength. In addition the phases
of components in the system must be accurately controlled. An incoherent system is
more robust in terms of stability, position accuracy requirements and noise immunity.
Signals are typically encoded in light intensities. This provides only real, non-negative
quantities. But it is also very important to be able to realize negative values of the
weight matrix optically to perform a general vector- matrix multiplication optically.
Two ways have been suggested to solve this problem. The �rst method was introduced
by White and Gaul�eld [53]. The weight matrix w can be written as a di�erence of
two positive valued Matrix w+ and w�,

w = w+ �w+: (2.2)

In this case the vector matrix multiplication can be accomplished by performing two
vector matrix multiplications with positive weights and then perform the di�erence
electronically or optically.

wy = w+y �w+y: (2.3)

The second method is based on performing the sum w� of the weight matrix w and a
matrix M, whose coeÆcient are built of the largest value of the weight matrix mij =
jwijjmax. Then the vector matrix product wy can be calculated as a subtraction of a
positive vector matrix product w�y and the weighted sum jwijjmax

P
yi of the vector

components.
wy = w�y � jwijjmax

X
i

yi: (2.4)

2.3 Implementation of the vector-matrix multiplier

Matrix operations are the computationally most intensive and the simplest operation
needed in a neural network to compute the weighted sum of the input vector for further
processing. A lot of research has been done to develop special purpose architecture that
will compute these operations more eÆcient than serial digital electronic computers.
Special purpose optical systems are also being considered. The optical implementa-
tion of a parallel, real time vector matrix multiplier is straightforward , as shown in
Fig(2.2) . The information content of an input vector is represented by a phase or
amplitude modulated light signal obtained from an array of LEDs: so that the light
intensity issuing from LED number i is proportional to the ith component of the input
vector. Using the light intensity to represent data have the drawback to be limited
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Figure 2.2: Vektor-Matrix- Multiplier with Gray value matrix

to data with positive real values. The matrix could be represented by a spatial light
modulator (SLM) a hologram or a spatial light rebroadcaster (SLR). For the SLM im-
plementation, the SLM is divided into N2 small squares. The transmittance of square
i; j is proportional to the matrix element aij. An astigmatic lens spreads the light from
each LED onto the corresponding column of the gray values matrix represented by the
transparency. Thus the intensity of the light passing through the square i; j is propor-
tional to aijxj. Another astigmatic lens collects the light from whole row, and focuses
it onto the corresponding detector which could be a photodiode or a CCD-element.
Here the conversion into an electronic signal could be carried out. The intensity of the
light falling on the detector number i is then proportional to

PN
j aijxj. Therefore the

output of the detector array represents the product vector (a �x). A striking feature of
the above con�guration is that all the N2 scalar multiplications are done in parallel.
This results in very high speed. It has been demonstrated that the multiplication of a
100 element vector by a 100� 100 matrix may be done in 20ns [55]. The throughput,
however may be limited if the matrix is to be changed.
By using holograms to store the matrix, on illumination of the hologram with a

collimated beam, the light beam will be, dependently to the type of the �rst order
di�raction, made to represent the matrix pattern. Later investigation have shown that
holographic mapping elements are the most promising candidate for implementation of
an interconnection matrix because of the large storage capacity possible in the volume
of a crystal and the dynamic response possible with a photorefractive crystal. One of
the most important impediments to holographic neural networks is holographic cross
talk which arises from an e�ect known as Bragg degeneracy. Left uncompensated, this
crosstalk results in large distortion in the e�ective interconnection weights.
The simple perceptron is the simplest neural network which can be implemented opti-
cally, here we need to record only one hologram to represent the weight matrix. Also
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Figure 2.3: Vektor - Matrix - Multiplier with Hologram as a storage for the weight vector

multilayer perceptron could be realized with utilizing volume holograms or cascaded
holograms.
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3 Introduction to statistical mechanics

Neural networks have achieved many successes, but their underlying theory remains
diÆcult to formalize. The theory of learning in neural networks has bene�tted from an
interplay of ideas that come from various scienti�c �elds. This includes Computer Sci-

ence, Mathematical Statistics, Information Theory and Statistical Physics. But even
the most advanced statistical theory which has been applied, Vapnik-Chervonenkis the-
ory, also known as VC theory, has been unable to do much more than place rigorous
bounds on their success, and then only for the simplest networks.
Statistical mechanics has been found to be a good tool for studying neural networks.
This stems from the analogy between a neural network and a system of atomic mag-
netic dipoles or spins, which has been pointed out by William Little. By denoting
the two possible states of a neuron by the variables si = +1 (active neuron) and
si = �1 (resting neuron) the analogy between spin systems and NN becomes obvious.
This analogy became especially fruitful because of the advances achieved over the last
decade in understanding the thermodynamic properties of disordered systems of spins,
the so called spin glasses.
Hop�eld (1982)[45] realized that the dynamic of the whole neural network can be inves-
tigated using statistical mechanic, if the states of neurons can take just two values, the
weights are symmetrical (wij = wji), and the states of the neurons change asyncroni-
cally. Under these circumstances it is possible to de�ne an energy for the network. The
weights of the network can then be adjusted so that pre-chosen con�gurations of the
network are �xed points of the networks dynamics. These �xed points would be related
to memories in real, biological networks. A basic characteristics of memory networks
is the limit of capacity, that is the maximal number of patterns they can store. It has
been shown by using tools of statistical mechanics that, if the original Hebbian rule
is applied to a system of N neurons, the capacity is asymptotically proportional to
N logN , or,with an error tolerance smaller than 1%, it was shown by K�uhn et.al.[49] to
be � 0:138N . On the other hand the optimal capacity has recently been found to be
2N for the case of directionally independent synapses, allowing asymmetric coupling
parameters.
Learning and generalization has also been a subject of intensive interest. A statistical
mechanics approach to learning from examples was �rst proposed by Carnevali and
Patarnello [30], and further elaborated by Kinzel and Opper [32] followed by Tishby
[10], Solla and Levin [33] Del Giudice, Franz,Virasoro, and Hansel and Sompolinsky
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3 Introduction to statistical mechanics

who applied spin glass theory to study perceptron learning of a classi�cation task
[34]. Instead of rigorous bounds, the new theory is able to make precise quantitative
predictions for the typical behavior of speci�c learning models, and has solved prob-
lems which have been outstanding in the machine learning community for many years.
More importantly, statistical mechanics gives insights into practical applications. New
techniques for learning may be motivated by exploiting advanced statistical physics,
particularly that of spin glasses.

3.1 The formalism of learning

The natural method of programming a conventional sequential computer is to write
an algorithm, which consists of a list of instructions that have to be performed by
the computer. This method implies severe limitations in the case of problems for
which there is no exactly de�ned algorithm. However Neural networks can be used
successfully to solve such problems, because they can learn from examples, that are
pairs of questions and correct answer. The purpose of learning is to design a network
such that if the states of the nodes in the input layer are set equal to a question, the state
of the output neurons will become equal to the correct answer. This problem is quite
di�erent from that of storing memories, because answer and question are related to
each other by a rule, and because we are trying to deduce the answer to new questions,
rather than just recall the answer to old ones.
Learning a rule by Neural networks is achieved by adjusting their weights according to
a learning algorithm such that it performs well on the training set. If the examples in
the training set are not independent and comprises knowledge about some rule which
relates inputs to outputs, the NN can infer this rule from the data. This capability
of NN is called the generalization ability. To design a network just from question and
answer pairs is called supervised learning, because it requires a teacher, knowing the
rule which gives the correct answer to the example questions. In this case the learning
algorithm has to minimize some cost function E, which is a measure of the discrepancy
between the answer of the network and the desired answer.
We can illustrate the learning process geometrically as follows. Suppose that we have
P example questions, for each we know the corresponding answer. The known question
and answer examples form the training set. Each example places a constraint upon the
places in rule space where the true rule B must lie (see Fig(3.1)), this region is called
the version space. After seeing P examples, the region in which B must lie is reduced
to a region in the rule space around the true rule.
Let the rule to be learned is de�ned by the weight vector B. The four planes D1; ::;D4

are constraints on B in Fig(3.1) from examples 1 to 4, and each forces the weight
vector of the learning network to lie on the undashed side of the plane. Note that
the plane D5, from some example 5, adds no new information since planes D1; ::;D4

already constrain the weight vector to an area agreeing with example 5: example 5 has
not reduced the version space.
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Figure 3.1: .

A rule for which a network in the learner space exists which will give the correct answer
to all possible questions is called learnable. Conversely, a rule which no network in the
learner space can learn exactly is called unlearnable. In this case, no such network
exists, either because of architectural constraints or because of the presence of noise in
the data. This case has been considered by several authors. Particularly relevant works
are [28], which show that even with noisy data the underlying rule can be reproduced
exactly.However, sometimes one would like also to �nd a classi�cation of input patterns
without knowing the answer of a teacher. In such a situation the input patterns must
have a structure which the student network has to �nd out. This kind of learning is
called unsupervised learning.

3.1.1 De�nition of a rule

A rule de�nes a relationship between two variables X and Y . In the terminology of
learning theory we call X the question, and it is a vector of (usually) high dimension; Y
is called the answer, and it is a vector (usually of much smaller dimension). The most
general way to describe the relationship between question and answer is a conditional
probability law P(y jx ), which gives the relative frequency that the random variable Y
takes the value y given that the random variable X takes the valuex.
The rule can also be a deterministic law which associates an answer Y to the question
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Figure 3.2: .

X so that.

Y = V(X ) (3.1)

Thus the variable X is an element of the question space, Y of the answer space and
V of the rule space. The rule may also be encoded in the data sample, which is
a set of P independent examples f(�1; �10); (�2; �20); :::; (�P ; �P0 )g, which comprises the
empirical knowledge about the rule. Thus, each example consists of a question and
its corresponding answer. In real-world problems the data is obtained by repeated
measurements. The noise in the data represents some measure in the inaccuracy of
these measurements. This accuracy together with the size of the training set determine
how well the training set conveys knowledge about the underlying rule.
As an example for a deterministic rule we de�ne a linearly-separable rule as one of the
form

V(X ) = sgn(
1p
N
B:X � �) (3.2)

Where B is any vector in the weight space. We show in Fig.(3.2) a section of the N
dimensional question space containing vector B, which is normal to plane C. Questions
falling onto the same side of C as the positive direction of B, such as �1; �2 will be
answered by +1, and others which fall onto the other side of C will be answered by -1,
so that the question space is divided by the plane C which is de�ned by the rule.
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3.1 The formalism of learning

3.1.2 The teacher pupil problem

The teacher pupil method is a natural approach to study the properties of neural net-
works and especially their generalization ability, if we want to get general information
about their behavior independent of a special training set.
For a given architecture, a teacher network is de�ned by �xing its weights according
to some distribution. Many distributions are conceivable, but zero-mean symmetric
distributions are often used in the �rst step.In order to represent typical cases of an
ensemble of rules of a given kind, the values of the weights are �xed to random values.
The teacher NN realizes a function, which represents the rule to be learned.
The training set is generated by feeding questions drawn from some other distribution
as input into the teacher. The update algorithm is applied to compute the correspond-
ing output. This output is the answer to be recorded together with the question, as
one example of the training set.
A pupil network with architecture identical or a bit di�erent from that of the teacher

network is trained on the training set. In order to get results independent of the speci�c
realization of the random variables in the previous steps teacher's weights, questions

in the training set, pupil's weights averages over the underlying distributions are per-
formed.
For theoretical work on the generalization ability of neural networks, the teacher-pupil
problem is as essential as the problem of storing entirely random examples (random
questions and random answers) for theoretical work on memorization. The teacher
pupil problem is advantageous regarding numerical studies too.
For any kind of learner considered, a particularly important question to be answered
is how many examples are required for training to achieve good generalization, i.e.
successfully learning the rule and not the training sample. Therefore, the dependence
of the training and generalization errors which are a measure of the deviation of the
pupil's output from the teacher's output on the training examples and on new examples
which have not been learnt before, on the training set size is in the focus of our study.
To summarize established results, we sketch prior the theory involved.

3.1.3 Formalism of learning from examples

Let us characterize the output of a NN by the symbol � = �(w; �), with input vector
� and the synaptic weights w.
The goal of learning is to �nd a set of weights w� such that �(w�; �) best approximates
(or exactly realizes) some target rule �Æ(B; �) de�ned by a teacher with weight vector
B.
In order to measure the deviation of the network output from the teacher's output on
a given input �, we introduce an error measure �(w;B; �). It should be zero if pupil
and teacher give the same answer to the question �, and positive everywhere else. The
most obvious choice for � is the binary measure � 2 f0; 1g. The square error is also a
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common choice for �.
�(w;B; �) = (�(w; �)� �Æ(B; �))2 (3.3)

as in nonlinear regression. We may de�ne the training energy as

Et(w; f��g;B) =
PX
�=1

�(w;B; ��) (3.4)

which is the sum of the errors on the whole training set of examples (��; ��Æ ), with
� = 1; :::;P. The inputs �� are chosen at random from the input space according to
some a priori normalized measure d�(�). Learning is then accomplished by minimizing
the energy, for example by gradient descent.

@w

@t
= �rwEt: (3.5)

The partial derivative in Eq.(3.5) is with respect to the time.

Gradient descent schemes have been criticized because they tend to become trapped in
local minima of the training energy. There is also another potential problem with the
training energy: it measures the network's performance on a limited set of examples.
The true goal of supervised learning is to �nd a student network which performs well
on all the question space, not just on the training set. A good measure for the average
disagreement between teacher's and the pupil's answers on the whole question space is
the generalization error, which is de�ned as follows

�(w;B) =
Z
d�(�)�(w;B; �): (3.6)

The integration over the normalized measure d�(�) represents averaging over the dis-
tribution of the questions. �(w;B) is a measure of how good the pupil with weight
vector w is in reproducing the teacher with weight vector B.
For a given distribution of the training set questions � is a function of the learning
algorithm generating the pupil network w, the number of examples introduced to the
pupil to learn from and the distribution from which the questions have been taken.
The average generalization error is then given by

�g = hh�(w;B)iwiB: (3.7)

where the bracket h:::iB refers to the average over the distribution from which the
teacher has been chosen, and h:::iw indicates an average over the distribution of the
pupils.
If almost any realization of the teacher and of the training set give the same result for
�g is called self-averaging.
Like the gradient descent algorithm, any training algorithm determines some trajectory
in the weight space. The performance of a training algorithm can be monitored by
following the generalization and training errors as functions of time.
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3.2 Learning at �nite temperature

3.2 Learning at �nite temperature

For physicists the learning proccess of a neural resembles the dynamic of a physical
system evolving according to an energy. The space of weights can be explored by
considering a stochastic learning process using any observable energy E. For continuous
weightsw and a di�erentiable energy function learning can be accomplished by allowing
the weights to evolve according to a Langevin dynamic (Langevin 1908; Itzykson and
Drou�e, 1989) which has the same form as the dynamics of a physical system in the
limit of high viscosity

@w

@t
= �rwE(w; :::)�rw(V (w)) + �(t): (3.8)

where the dots in E(w; :::) stands for the dependence of the energy on the teacher's
weight vector, the training set, or something else. Possible assumption about the a
priori distribution and constraints on the range of the weights w can be included in
the term V (w)which depends only on the weights and does not depend on the examples.
�(t) is a white noise term with variance

h�i(t)�j(~t)i = 2TÆijÆ(t� ~t): (3.9)

T is a parameter which should denote a physical temperature at which the student
network operates. As we can see the energy may increase occasionally due to the in
u-
ence of this parameter on the dynamics of the NN. Whereas the �rst two terms in Eq.
(3.8) tends to decrease the energy. At T = 0, the noise term drops out, leaving only
a simple gradient descent equation. Gradient descent training algorithm are known
for their drawback of becoming trapped in local minima of the energy surface, so that
adding thermal noise is a successful way to prevent being trapped in local minima.
In simulated annealing algorithms for optimization problems the temperature is de-
creased slowly so that at T � 0 the system settles to a state with energy near the
global energy minimum. Thermal noise could play the same role in the present train-
ing dynamics. In fact it may help to prevent the system from overtraining, namely
�nding an accurate �t to the training data at the expense of good generalization abili-
ties. A training temperature is particularly important when trying to learn unlearnable
rules.
For discrete w or a non di�erentiable energy function, one can use a discrete time
Metropolis Monte Carlo dynamics, similar to that used in simulating Ising systems
[39] .
One can now study the training process after the stochastic dynamic in Eq.(3.8) was
applied for a long time t. Independently of the initial conditions of Eq. (3.8) at t = 0,
for t !1 Eq. (3.8) generates a Gibbs distribution over the space of solutions.

P (w)dw = Z�1e��(E(w;:::))d�(w): (3.10)
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d�(w) = dwe��V (w): (3.11)

The variance of the thermal noise in the training algorithm is considered in � which is
the inverse of the temperature T of the Gibbs distribution T . � determines the extent
to which we are allowed to explore the weight space during the training: � !1 forces
the system into the minimum of E, � ! 0 open the whole phase space. In general �
determine the training error we tolerate.

T = ��1: (3.12)

The normalization factor Z is the partition function

Z =
Z
d�(w) expf��E(w)g: (3.13)

If the energy E used in Eq.(3.13) is the training energy, then in the limit � !1, Z is
dominated by the w with minimal training error.
The contribution of V (w) is incorporated into the normalized measure in weight space
d�(w). For a w which is equally likely to be in any direction and whose magnitude
is �xed to one, the measure on the weight space is just d�(w) = dwÆ(w � w � 1).
Similarly for Ising weights, if any combination of weights is a-priori equally likely, it is
d�(w) = dw

Q
i[
1
2
Æ(wi � 1) + 1

2
Æ(wi + 1)].

The powerful formalism of equilibrium statistical mechanics may now be applied to
calculate thermal averages, i.e., averages with respect to the distribution of weights
P (w). They will be denoted by h� � �iT . In the thermodynamic limit, such average
quantities yield information about the typical performance of a network independent of
the initial conditions of the learning dynamics. Thermal averages of other observables
are performed if the logarithm of the partition function Eq.(3.13) is calculated, for
example

Et = hE(w)iT = �@ lnZ
@�

: (3.14)

By introducing an additional, auxiliary term into the energy

E(w)! E(w) + h�g(w;B): (3.15)

where the auxiliary �eld h will be set later to zero, we could calculate the thermal
average of the generalization energy

h�g(w;B)iT = � 1
�

@ lnZ

@h
: (3.16)

We could also calculate the expectation value of any quantity by changing the coeÆcient
of h, provided we are able to evaluate that coeÆcient as a function of w.
Even after the thermal average is done, there is still a dependence on the training
set. Since the examples have been chosen randomly and then �xed, they represent a
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3.2 Learning at �nite temperature

quenched disorder. Thus to calculate the typical behavior we must perform a second
average over the distribution of the training examples. This is denoted by hh�ii �R Q

� d�(�
�).

The free energy F and entropy S of the network are then given by

F (P; T ) = �T hhlnZii: (3.17)

S(P; T ) = �
Z
d�(w)hhP (w) lnP (w)ii: (3.18)

where P is the number of training examples. The entropy is an important extensive
variable, it measures the number of states accessible by the dynamics for a given tem-
perature in the discrete case; additionally it gives (except for an o�set) the information
content of the Gibbs distribution . The free energy F and the entropy are related by
the identity:

F = Et � TS: (3.19)

Knowing F , Et can be calculated as follows

Et =
@�F

@�
: (3.20)

and the entropy is given as a partial derivative of F:

S = �@F
@T

: (3.21)

The average generalization and training errors are given by

�g = hhh�(w;B)iT ii; : (3.22)

�t = P�1hhhE(w;B)iT ii: (3.23)

The above results will be exact in the thermodynamic limit, i.e. when the number
of degrees of freedom, namely the total number of independently determined synaptic
weights N of the network, approaches in�nity. For the limit N !1 to be well de�ned
we note that the problem at the hand as well as the network architecture allow for
a uniform scale up of N . However the results obtained in the thermodynamic limit
should provide a good approximation of to the behavior of networks with a �xed large
size.
As we have seen above, calculating the average of logarithms of the partition function
is the key to calculate many other quantities, but this is not simple for any temperature
and sample size. The replica method is the technique commonly used to perform such
averages. In what follows we will introduce this method.
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3.3 The replica method

As we have seen in the last section, the free energy is a key quantity which generates
the moments of the Gibbs distribution. If this quantity is known for any realization
of the training set, then the other thermodynamic quantities can be calculated from
it. In order to perform the average of the free-energy over the random variables, the
replica method is the technique commonly used. It was �rst developed for analyzing
rubber elasticity by Edwards [35] and then applied to study highly frustrated magnetic
systems called spin glasses by ( Edwards and Anderson and many others). E.Gardner
[37] reapplied it to analyze the student space of NN.
The replica trick is used in cases in which averaging of the partition function is easer
to perform, but that of the free-energy, the logarithm of the partition function Z, is
diÆcult. This would be typically the case if the random variables appear in the energy
linearly or quadratically, or if they appear uncorrelated at di�erent sites. The replica
method is based on the representation of the logarithm in terms of a power function
through the identity

hhlnZii = lim
n!0

lnhhZnii
n

: (3.24)

It implies that in order to obtain the average of lnZ one can average Zn. Now averaging
over an integer power of Z is not much more complex than the task of averaging Z
itself. But the hitch is in taking the limit. The average can be performed for any
integer n, but not for n = 0. One must interpret the procedure to be a calculation
of the average of the right hand side as a function of n, and then the limit is reached
by analytic continuation. Provided that there is no phase transition for any �nite n,
this procedure should give the correct result [38]. The formal aspects of this analytic
procedure leave much to be desired, but this does not render the technique any less
useful. One notes that Zn is itself like a partition function of n identical copies of
the original system which, for any given set of the random variables, do not interact.
These are called replicas. They come about in the following way. If the energy of the
system is the training energy

Et(w; f��g;B) =
PX

�=1

�(w; ��;B) (3.25)

One can write

hhZnii =
Z
(

nY

=1

d�(w
))hhexpf��X
�;


�(w
; ��;B)gii (3.26)

=
Z
(

nY

=1

d�(w
)) expf��H(fw
g)g: (3.27)
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where 
 in Eq.(3.27) is the replica index, and H the e�ective Hamiltonian in the
replicated space. It is given by

H(fw
g) = � 1
�
ln

"Z
d�(�) expf��X


�

�(w
 ; ��)g
#
: (3.28)

d�(�) is the normalized distribution from which the questions are chosen. Once the
average over the random variables has been carried out, the various replicas of the
system begin to interact. In the cases of interest it will turn out that the Hamiltonian
Eq.(3.28) depend on the replicated weights w
 only through the order parameters of
the form

q

` =
1

N
w
 �w
`: (3.29)

R
 =
1

N
w
B: (3.30)

and the partition function can be written in terms of a multiple integral over these
order parameters. The integral in Eq.(3.27) will be evaluated in the thermodynamical
limit N !1 by the saddle-point method, which requires to minimizing a free energy
function (with respect to the order parameters of the system) derived fromH(fw
g). In
fact one must perform two limits n ! 0 (from the analytic continuation) and N !1
(from the thermodynamic limit). In principle one should take n ! 0 �rst and then
N ! 1. Particularly, however, these limits can only be performed by reversing the
order of the limits. Another point that may cause problems, is that one must make
some assumption about the order parameters. By the symmetry of di�erent replicas,
one expects the values of di�erent order parameters are invariant under permutations
the replica; this assumption is called replica symmetry (RS). As we will see in the
following chapters, for some thermodynamical systems this (RS) must be given up at
least in some region of the �; T parameter space, and more complicated structure of
the order parameter must be used to reach better results.

3.4 The high temperature limit

A simple and interesting limit of the learning theory is that of high temperature. Using
a cummulant expansion we can write the free energy Eq.(3.17) as a power series in �,
with coeÆcients that are functions of P

N
�. The zeroth order term of this expansion

is the high temperature limit. This term represents the non random part of the free
energy, which does not couple di�erent replicas (see Sompolinsky et.al.[10],1990). In
this limit the energy can simply be replaced by its average �(w;B), and the 
uctuations
ÆE due to the �nite sample of the training set can be ignored. Hence the equilibrium
distribution of weights is given by

P0(w) = Z�10 expf��P�(w;B)g: (3.31)
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and the partition function reduces to

Z0 =
Z
d�(w) expf�N���(w;B)g: (3.32)

The expressions above show that for � ! 0 the limit is only de�ned if � ! 1
leaving �� constant. In this limit all thermodynamical quantities, including the average
training and generalization errors, are functions of the e�ective temperature T

�
. It is

known that by the high temperature limit in statistical mechanics all states of the
system becomes equally likely, regardless of the energy. But here the simultaneous
�!1 guarantees nontrivial behavior, so that as the e�ective temperature T

�
decreases,

the network approaches the optimal ground state weight vector w� which minimizes
�(w). � here is given by P = �N . The properties of the system are determined by
the dependence of the entropy on the generalization error. A very important feature
of learning at high temperature is the lack of overtraining. One measures overtraining
by the di�erence between the expected training and generalization errors, i.e., �g � �t.
From Eq.(3.31) and the de�nition of �g and �t it follows that �g = �t in the high T limit.
Of course the price that one pays for learning at high temperature is the necessity of
a large training set, as � must be at least of order T .

3.5 The annealed approximation

In the annealed approximation(AA), the average of the logarithm of the partition
functionZ is replaced by the logarithm of the average of Z, resulting in the annealed

free energy.
Fan = �T lnhhZii: (3.33)

Falk (1975)has pointed out that the annealed free energy is a lower bound for the
correct free energy, this is due to the convexity of the logarithm function. But the
minima of the annealed and quenched free energies are not always at the same place,
thus they do not always lead to the same equilibrium results. Seung, Sompolinsky and
Tishby [10] have pointed out that this approach is the exact theory for a dynamical
process where both weights and the examples are updated according to a stochastic
dynamic similar to Eq.(3.8), involving the same energy function. Because the AA
reduces to the high-temperature limit for T !1, it is valid for high temperature. It
is a more powerful approximation than the high-temperature in that it predicts some of
the e�ects of quenched disorder, but its predictions cannot be guaranteed to be exact at
�nite temperature generally, regarding both generalization and training errors. With
respect to the generalization error, the AA correctly predicts the asymptotic behavior
when � !1 if either the rule is realizable by the pupil or the pupil NN has a single
boolean output [10].
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4 The perceptron

4.1 De�nition

The perceptron(Rosenblatt, 1962)[57] consists of N input nodes and one output node,
and a transfer function between input and output.
A perceptron is de�ned through the fact that its output depends only on the local �eld
h�. The output is given by

�o = f(h�) (4.1)

The local �eld is given as follows

h� =
1p
N

NX
i=1

��i wi �  (4.2)

where �� represents the input vector, w the weight vector and,  is a constant threshold.
The factor 1p

N
appears in Eq.(4.2) to keep the local �eld of order one.

The sum in Eq.(4.2) is over all N values of i. The variables  and fwig completely
de�nes the perceptron's action.
If the state of the output is restricted to be �1, we might chose the function f so that

�o = sgn(
1p
N

NX
i=1

��i wi �  ) (4.3)

The perceptron in which �o is restricted to be�1 is called a binary perceptron. Choosing
f(x) = x so �o may take any real value, makes the system a linear perceptron (Herz et
al., 1991)[56].
If each component of the weight vector wi can take any real value subject to the
normalization condition

P
iwi

2 = 1, we call the perceptron spherical ; if it is restricted
to be �1, the resulting perceptron is called Ising. Thus for example an Ising binary

perceptron has a �1 output and the components of the w are also �1. The spherical
and Ising constraint are the upper and lower extremes of the w-space. Of the two, the
Ising case is the most instructive because in real networks engineering restrictions are
likely to lead to quantized weights.
Notice that the output, �o, of the perceptron is invariant under the transformations

wi ! �wi; 8i (4.4)
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Figure 4.1:

�i ! ��i; 8i (4.5)

 ! �� (4.6)

for any positive value of � and �. These are the gauge freedom of the percepton.
Normally the � gauge is �xed so that

w:w = N (4.7)

It is clear that a perceptron can learn only linearly separable problems, Eq.(4.3).
The space of possible spherical w is the unit N-sphere. If the perceptron is Ising, then
w lies on one of the corners of a unit N-cube.
An easy way to visualize the action of a perceptron is from a schematic diagram,
Fig.(4.1) of the N-dimensional input space, which is all the possible con�guration of
the nodes in the input layer. The vector B is shown in this space, and is perpendicular
to the (N � 1) dimensional hyperplane C, which is displaced from the origin by a
distance �. Only input con�gurations, such as r1, which fall on the same side of C as
the direction of B have a positive 1p

N

PN
i=1 riBi � � and will cause the output �o to

be set to +1. Throughout the rest of this work the perceptron is further restricted to
� = 0, so that C passes through the origin.

4.2 Results for perceptron learning

4.2.1 The Boolean perceptron

For the Boolean perceptron, the transfer function is

f � sgn (4.8)
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4.2 Results for perceptron learning

The generalization error for an isotropic distribution of the questions gets

�g(w) =
1

�
arccos(R) (4.9)

where R is the average overlap between teacher's and pupil's weight vectors. �g(w) is
the probability that the teacher and pupil disagree. This relation gets evident (Hertz
et al.,1991) by a geometrical argument, noting that arccos(R) is the angle between the
teacher and pupil weight vector, if the pupil weights vector is exposed to the same
spherical constraint as the teacher.

4.2.2 Boltzmann algorithm

The gradient descent algorithm, which leads to the Gibbs distribution after long time,
is denoted Boltzmann algorithm.The asymptotic behavior of the generalization error
for �!1, is obtained by the replica method [10](Seung et al., 1992). For a �nite
temperature, the approach to perfect learning is algebraic,

�Boltz � 1

�
; �!1 (4.10)

At zero temperature, the decay is (see [28])

�Boltz (T = 0) � 0:652

�
+O(��2); �!1; (4.11)

The annealed approximation yields the correct power law, but does not predict the pre
factor correctly(1 instead of 0:625 for T = 0).

4.2.3 Maximum stability algorithm

The contribution to the training error from an example � is 1 if, and only if the
pupil gets the example wrong. However, it is possible to make this contribution more
sophisticated by relating it to a physical quantity which measures the certainty with
which the student gets the question right. With ��t the respond of the teacher and h�

the local �eld of the pupil we can de�ne the overlap

�� = ��t h
� (4.12)

�� is called the stability. It measures the certainty with which the student gets the
questions right. �� � 0; 8� guarantees zero training error. Geometrically �� is the
distance between the weight vector of the pupil perceptron w and the boundaries set
by the example �� on the version space (this is a hyperplane D� which is perpendicular
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4 The perceptron

to ��).
It is plausible that requiring � � � with

� = min
�

��; (4.13)

will be advantageous for the generalization ability, because this requirement pushes the
weight vector w of the pupil into a reduced volume in the version space towards the
weight vector of the teacher. Clearly as the value of � rises, the volume available for w
decreases until at some value of � it shrinks to a point: the w� vector with the max-
imum stability, �max.This is the maximum stability algorithm, MSA. The asymptotic
behavior of the MSA obeys the same power law as the Boltzmann algorithm, however
with a slightly di�erent pre factor. A Replica symmetric ansatz yields [32]

�MSA � 0:57

�
; �!1: (4.14)

For known maximal stability � = maxwmin� �
�, the MSA can be implemented through

the Langevin dynamics (see chapter 3) at zero temperature by using the training energy

EMSA(w; �) =
X
�

�(�� ��t h�): (4.15)

This is equivalent in the zero temperature limit to analyze explicitly the fractional
volume of the student space embedding every input-output con�guration with a sta-
bility larger than �. Meier and Fontanari [48] have recently extended this analysis to
minimizing energies of the form

Er =
X
�

(�� ��)r�(�� ��); r = 0; 1; 2 (4.16)

For r=0 this reduces to EMSA. They found that, always selecting the best value for �,
�g(�) decreases faster as r is increased beyond 0.
Numerical solutions show that even the original (zero stability/ online) perceptron al-
gorithm performs comparably well.

4.2.4 The Bayes algorithm

There is an optimal information-theoretic prescription for predicting the answer to new
questions from known examples. Using the Bayes theorem (see[20]), we can calculate
the posterior probability of any given rule having generated the training set. The
information-theoretic (Bayesian) prediction of the answer to new example is the one
which maximizes the posterior probability.

The probability that the Bayes algorithm gives a wrong answers to a new example,
�Bayesg (��), is the probability that the true rule B lies in one of the regions of version
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4.2 Results for perceptron learning

space with a di�erent answer to the question. The average Bayesian generalization
error, �Bayesg , is the average of �Bayes(��) over the distribution of (��). Regarding infor-
mation theory, the Bayes algorithm is optimal in predicting answers to new examples
based on known examples.
Opper and Haussler show that the Bayes algorithm can be approximated by a NN with
one hidden layer of n (n odd) neurons. The hidden neurons are trained independently
using the Boltzmann algorithm, and the output neuron computes the majority (i.e.
the weights from the hidden neurons to the output neurons are �xed to 1), such an
architecture is called committee machine. They prove that in the limit of large n, the
average generalization error �n of this NN converges to the average error of the Bayes
Algorithm, �n ! �Bayes for n!1. Note that �1 = �Boltz.
Assuming that the distribution of the rules d�(B) and d�(�) are such that the weighted
inputs to the hidden neurons obey the central limit theorem, and further replica sym-
metry, Haussler and Opper found the following relation

�Bayes(�) =
1

�
arccos

s
cos

1

�
�Boltz(�): (4.17)

between the error of the Bayes algorithm and that of the Boltzmann algorithm. The
asymptotic development for large �,i.e. small generalization error, is

�Bayes(�) � 1p
2
�Boltz(�); �!1 (4.18)

For � = 0, �Bayes(0) = �Boltz = 0:5, i.e. random guessing as expected, and for small �
the approach to 0.5 is

�Bayes(�) � 0:5�
q
�(0:5� �Boltz(�)); �! 0: (4.19)

Using the results for the Boltzmann algorithm with uniform spherical distribution of
both the questions and the teacher weights (Gy�orgyi, 1990b), they �nally obtain the
asymptotic behavior of the learning curve to be

�Bayes � 0:44

�
; �!1: (4.20)

Starting from random guessing at � = 0, the Bayes algorithm improves with in�nite

slope (0:5 � �Bayes(�) �
q
(2�
�3
); � ! 0) whereas for the Boltzmann algorithm this

improvment is only linear in �(0:5� �Bayes(�) � 2
�3
�; �! 0).

4.2.5 The Hebb algorithm

The Hebb algorithm is the simplest strategy to correlate the output of the teacher and
that of the pupil. The Hebb algorithm constructs the weight vector of the pupil from
the trainig examples so that
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wi =
1

N

PX
�

��0 �
�
i

(4.21)

It is clear that the components of examples in the direction of the teachers weight
vector will add constructively to w. For a speci�c form of the teacher (each value
of the teacher's weights occurs with identical frequency) the generalization error is
calculated to be [21]

�Hebb(�) =
1

�
arctan

r
�

2�
: (4.22)

The result does not depend on the speci�c form of the teacher (as long as the central
limit theorem can be applied), as an alternative derivation based on geometrical signal-
to-noise argument shows Watkin et al. [20].
Asymptotically, the generalization error of the Hebb algorithm is

�Hebb � 1p
2��

; �!1; (4.23)

The Hebb algorithm is simple, but the w it generates has a �nite training error �t. It
rises from zero to a peak at � � 4, but then tends to �Hebb, and together they tend
to zero as � ! 1 (when w ! B). The rise and fall of �t is not typical of other
algorithm; typically �t either remains zero or rises monotonously. These results can
be understood as follows, For a small � the training set is learned by memorization
without understanding the rule. This memorization gets harder for large � because
of the well known limitation of the storage capacity of the Hebb rule. For large �,
the pupil gets more and more aligned with the teacher weight vector, i.e. the pupil
understands the rule presented by the teacher. The training error approaches the
generalization error, because the training set is too large to memorize, and both the
training and generalization error approach perfect learning / 1p

2��
.

4.3 Learning a rule with an Ising perceptron

4.3.1 learning a realizable rule with an Ising perceptron

If there exist a weight vector in the pupil's weight space, which can learn the rule
generated by the teacher perfectly, we call such a rule realizable. If both the weights of
the teacher and that of the pupil are restricted to �1, the pupil is able to learn the rule
produced by the teacher perfectly. At zero temperature and zero stability the annealed
approximation and the replica symmetric approach were analyzed by Gy�orgyi, Seung
et. al [29]. We �rst report on the replica symmetric results. For � < �th � 1:245
the replica symmetric free energy has two minima, a result �rst derived by Gardner
and Derrida, one at an overlap with the teacher R = 1 and the other at 0 < R < 1.
The solution at 0 < R < 1 has the lower free energy and is therefore the equilibrium

40



4.3 Learning a rule with an Ising perceptron

solution. For � < �th there are many pupils with zero training error, and most of them
have an overlap with the teacher 0 < R < 1. As � is increased beyond �th, the solution
at R = 1 becomes the absolute minimum, however the solution with 0 < R < 1 persists
until the spinodal point �RSsp � 1:49 is reached.
For �th < � < �RSsp stochastic algorithms which iterate from a random initial con�gu-
ration (R � 0) will not converge to the global minimum of the free energy, but become
stuck in one of the meta-stable states. This part of the phase diagram is interpreted
as a spin glass phase [31], rich in meta-stable states. Regarding the analysis of the
spin glass phase, the assumption of replica symmetry must be given up. This leads to
replica symmetry breaking RSB, which results in a more complicated analysis and less
transparent interpretation.
Seung , Sompolinsky and Tishby have analyzed the �rst step replica symmetry breaking
[10] in accordance with the Parisi theory. For small enough temperature they found a
meta-stable phase. The thermodynamic transition temperature is still at �th � 1:245,
whereas the spinodal line indicating the disappearance of the spin-glass phase is shifted
to �RSBsp � 1:63.

4.3.2 Learning an unrealizable rule with an Ising perceptron

Seung, Sompolinsky and Tishby [10] have analyzed the case of an Ising perceptron
learning a spherical perceptron. Here each of the components of the teachers weight
vector B is drawn from a Gaussian distribution with variance one and zero mean, which
means that on average B is constrained to lie on the N-dimensional unit sphere. The
pupil's weights are taken to be wi = �1. For any �xed temperature, according to
the replica symmetric theory, the asymptotic dependence of the generalization error
on the number of examples is of the form �g � �min � 1

�
which is as slow as the

Hebb learning of a learnable rules. The annealed approximation fails completely by
predicting �g � �min � ��2 dependency.
Seung, Sompolinsky and Tishby showed [10] that in the case of using the training
energy as the quantity to be minimized, �g does not have a monotonic dependence
upon the training temperature. If one employs the optimal training temperature at
each value of �, then learning becomes asymptotically faster, �min � �g � ��

4

5 .
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5.1 Introduction

This chapter deals with the analytical investigation of learning a linearly separable rule
produced by a simple perceptron (a teacher) by another simple perceptron (pupil). The
weights of the pupil are restricted to discrete values with some synaptic depth, also
referred to as synaptic precision, whereas the weights of the teacher can take any real
value satisfying the spherical constraint Eq.(5.2).
As we have mentioned in the last chapters, the range and precision of weights in hard-
ware implementations may limit neural network performance and applications, when
trained to learn a rule produced by a continuous weighted teacher. Thus we will specif-
ically focus on the investigation of the e�ects of the precision of discrete weights of a
simple perceptron on its performance. In particular we study the dependence of the
learning curves of a simple pupil perceptron with discrete weights, on the size of the
training set at a �nite training temperature, on the temperature with a constant train-
ing set size, and on the number of allowed discrete values of the weights ( there are 2L

allowed values for a synaptic precision of L.). The de'Almeida Thouless, stability line,
and the Gardner Derrida line will be also studied.
By learning curves we refer to a plot of the average generalization and training errors
on the size of the training set for a given number of allowed values of the weights.
A proper treatment of learning from examples requires the use of sophisticated tech-
niques from statistical mechanics of disordered systems. Since we are dealing with the
simplest neural network, this task can be analyzed analytically by extending Gardner`s
formalism (Gardner 1988, Gardner and Derrida 1988). Gardner showed that the crit-
ical storage capacity of a perceptron can be deduced when the fractional volume in
phase space of the weights wij, within which the conditions for learning or storing the
presented pattern are valid, shrinkes to zero.
Gardner's work e�ectively decouples the question of the existence of solutions from
the problem of actually producing such solutions using a speci�c learning algorithm.
Following Gardner we use the methods of statistical physics discussed in chapter 3,
the replica trick and the saddle-point method, to calculate the learning curves of our
model.
The microscopic states of our system are given by the weights w. We assume that the
examples presented to the learning network, to be referred to as the pupil, are drawn
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from another single-layer perceptron, which is called the teacher. The training exam-
ples are the quenched variables which introduce the disorder in the system, and over
these random variables the average will be taken. Another average must also be done.
This is the average over the probability distribution of the teacher's weight vector B,
which is assumed to be Gaussian in our case.
Because we are interested in typical results independent of a special choice of the train-
ing examples, we focus on the case of independent uniformly distributed random binary
f�1g input-output training examples.

5.2 The formalism

Throughout this thesis we will be concerned with a perceptron of N input neurons
described by the N -dimensional vector �, with components �i 2 f�1g; i = 1; :::; N:
There is only a single output �0 which is given by

��0 = sgn(B:��) (5.1)

where the scalar product B:� of the two N dimensional vectors is de�ned by B:� =
1p
N

P
i Bi�i.

We assume the student will learn from a stream of P = �N input output examples
(�1; �10); (�

2; �20); :::; (�
P ; �P0 ), where the inputs �

� = (��1 ; �
�
2 ; :::; �

�
N) are drawn at random.

The outputs ��0 are assumed to be generated (computed) by a single-layer perceptron
(the teacher). Each ��j is chosen independently and randomly from the set f�1g with
equal probability prob(1) = prob(�1) = 1

2
.

The vector B in Eq.(5.1) is the weight vector of the teacher. The components of B take
their values from the real numbers. The weight vector B in our model will be chosen
to satisfy the spherical constraint

1

N

X
i

B2i = 1: (5.2)

The response of the student perceptron to an input �� is similarly given by

�� = sgn(
�): (5.3)

where 
� is referred to as the local �eld and is given by


� =
1p
N

X
i

(wi:�
�
i )


�0 =
1p
N

X
i

(Bi:��i ) (5.4)
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The weights w of the pupil in Eq.(5.3) take their values from the set


w � fw0; :::; wLw
g: (5.5)

Here Lw is the number of possible values and is sometimes referred to as the synaptic

depth (continuous weights have in�nite synaptic depth). For a precision of L bits there
are 2L allowed di�erent values for the weights. If we include the zero in the allowed
values we have then 2L + 1 allowed values.
To �x the weights w1; :::; wLw

we divide the interval of allowed weight range
[�range; range] into equal pieces after the following rule

wi = �range+ i

2L�1
: (5.6)

where i takes the values i 2 f0; :::; 2Lg. Because of the scaling invariance of the per-
ceptron, see chapter 4, we take the interval [�range; range] equal to [�1; 1].
From the examples we want to construct a weight vector w that will �nd the correct
answer ��+10 to a random new question ��+1. The chance that the answer will be correct
is the generalization ability G. Clearly a randomly chosen w will give G = 1

2
, if 
�+10

has an equal chance of being �1. The goal of the training process is to minimize the
generalization error de�ned as �g = 1�G, which, as we have pointed out in chapter 3,
is not necessarily equivalent to minimizing the number of training examples that the
perceptron gets wrong.
Fig(5.1) shows the projection of the N-dimensional space onto a two-dimensional hy-
perplane containing the weight vector of the pupil w and that of the teacher B, which
lie on the N-sphere centered at the origin and are perpendicular to planes A and C,
respectively. The hyperplane D, composed of all N-vectors whose overlap with B is R,
intersects the unit N-sphere on an N-1 dimensional sphere, whose projection into the
plane of the diagram is the solid part of the line D. It is clear from the diagram that
the radius of the small sphere is just sin(�). To within a constant the entropy of the
spherical perceptron is the logarithm of the area of this surface. Random examples lie
randomly on the surface of the N-sphere and it is clear that in the case of both Ising
and spherical perceptrons, the generalization function G , is the proportion of the area
of the N-sphere in the regions E and H. Thus,

G(R) = 1� �

�
= 1� cos�1(R)

�
: (5.7)

It has been pointed out that this geometrical formulation relies upon the components
of B being chosen independently from distributions whose �rst moment is zero and the
second moment is of order 1.
Another quantity of interest is the training error which characterizes the performance
of the network with a weight vector J on examples from the training set, and is usually
taken to be of the form
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Figure 5.1: .

E(w; f��g) =
PX
�=1

�(w; ��): (5.8)

where the speci�c choice of the error function �(w; ��) is up to the trainer. f��g in
Eq.(5.8) refer to the ensemble of training examples (from now on we are going to drop
the dependence of the training energy on the training set f��g.
In order to describe the error function for a perceptron type architecture it is useful to
de�ne the variable

��(w; ��; ��0 ) = sgn(
�0 )

� (5.9)

Analytical calculations have been done for the following error functions, which have
been well known for many years. The �rst one is the Gardner and Derrida error
measure,

�GD(��; �) = �(����): (5.10)

Where �(x) = 0 or 1, if x � 0 or x � 0, this error function does not give rise to a
gradient-descent learning algorithm, as it is piecewise constant. Obviously the choice
for � = 0 correspond to counting the number of missclassi�ed patterns. Moreover the
GD error function can be minimized using simulated annealing.
The second function normally used in the letriture is the perceptron function which
has also been studied by Meir and Fontanari [48]

�P (��; �) = (����)�(����) (5.11)

while the third interesting one is the relaxation function
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�(��; �) = (����)2�(����) (5.12)

The learning algorithm corresponding to the choice Eq.(5.11) is just the celebrated
perceptron learning algorithm (performed in batch mode), while that corresponding to
Eq.(5.12) is the relaxation algorithm, introduced by Agmon [40]as a method to solve a
set of linear inequalities, and later generalized by May [41] to include the parameter �.
In fact these authors were concerned with the on-line version of the learning process,
where the weight adaptation is made after each pattern presentation. The relaxation
Algorithm has also been studied in the context of neural networks by Anlauf and Biehl
[42]. Meir and Fontanari [48] found that as long as the number of training examples
is not large, so that the training error is zero, all three functions produce identical
results. The di�erence between them becomes apparent when the training error is
nonzero. The error function of our model is de�ned as follow:

�(��; �) = j����j�(����) (5.13)

In contrast to Gardner's error measure, the error measure in Eq.(5.13) and Eq.(5.11)does
not count only the misclassi�ed patterns, but every misclassi�ed training pattern con-
tribute to the training error with a corresponding weight, in our case this weight is
j���j.
Since the only information available to us is the training error we would like to consider
the space of all networks of a given training error E(w). As we have seen in chapter 3,
the Langevin dynamics, after it has been applied for a long time, de�nes a probability
distribution of networks over the space of solution. This distribution is given by the
standard Gibbs distribution over the space of networks with temperature T = 1

�
.

P (w) = Z�1 exp
�
��E(w)

�
: (5.14)

where the partition function Z is given by

Z =
X
fwjg

exp
�
��X

�

�(��; �)
�
: (5.15)

Note that at zero temperature, � !1, only those networks with minimal training er-
ror contribute to the partition function. In contrary to the case of continuous pupil and
continuous teacher we may have here many pupil perceptrons with minimal training
error, because we restricted the weights to be discrete. Also, because we are dealing
with a pupil percepton with discrete weights, the integral over the weight space in the
de�nition of the partition function has been replaced by a sum over all allowed weight
con�gurations of the pupil.
Now after de�ning the partition function Eq.(5.15) of our system we can set out to
evaluate the average free-energy which is the key to calculate the thermodynamical
quantities interesting for us, such as the training error, the generalization error,and the
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entropy.
As explained previously, the training patterns are randomly drawn from the set f�1g
and hence introduce a disorder into the system. As we are not interested in the cal-
culation of the free energy for a speci�c set of training examples, statements must be
derived which are typically valid on the average if a set of patterns is selected arbitrar-
ily out of a huge ensemble of patterns. So the average with respect to the probability
distribution of the random training examples must be calculated. The mathematical
problem we are faced with at this stage is the calculation of the average free-energy
density in the thermodynamic limit N ! 1. Since the free-energy is related to the
logarithm of the partition function, averaging over the training example is a very de-
manding task, complicated by the fact that the partition function Z stands in the
argument of a logarithm. The replica trick, which has been discussed in chapter 3, will
be used to calculate the average free energy. In what follows we will see on our speci�c
model in the course of evaluation of the free energy, how one can gain information about
the average generalization- training error, entropy and many other thermodynamical
quantities.

5.3 The replica approach

As mentioned before the real problem is the evaluation of the quenched free energy,
which requires the calculation of the logarithm of the partition function averaged over
the distribution of the training examples.
To perform this calculation we use the replica trick discussed in chapter 3
Using the replica trick the problem of calculating the free-energy (logarithm of the
partition function) is converted to averaging that of a power of the partition function
as

hhlnZii = lim
n!0

lnhhZnii
n

: (5.16)

By introducing the double bracketshh:::ii we have indicated that we are interested in
the average over an ensemble of training patterns (�1; �10 ); (�

2; �20); :::; (�
P ; �P0 ). We have

to average n copies of the partition function over the same set of patterns.
The expression for Zn in Eq.(5.16) of course can be computed only for positive integer
values of n. In order to employ Eq.(5.16) we have to evaluate for these values and
then perform an analytic continuation to arbitrary real values. Finally the limit n! 0
can be performed. In order to proceed we follow a common strategy in the physics
literature, by �rst calculating the thermodynamical limit (N !1) in Eq.(5.16) and
then taking the limit n ! 0. In principle one should take the limit n ! 0 �rst and
afterwards N ! 1. Practically, however, it is often more convenient to reverse the
order of the limits. While this interchange of limits has been shown to be valid for the
spin-glass problem, we do not know of any arguments for its validity in general. But
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5.3 The replica approach

it turns out that most of the times this should not be a source of troubles .
Now we can explicitly work out the evaluation of the average of the replicated partition
function hhZnii over the patterns. The replicated partition function has the following
form

hhZnii = hhX
fwa

i
g
expf��

PnX
�;a

�(��
a � �)gii�: (5.17)

Where a is the replica index a = 0; :::; n, and energy function �(x) is de�ned in
Eq.(5.13). � is called the stability parameter which controls the basin of attraction
for the �xed points of the system. Thus � biases the trainingalgorithm to favor net-
works less sensitive to e�ects of noise in the training data. Meir and Fontanari found
that it is advantageous to set � � 0 for small training set size, but keeping � positive
gives a poor asymptotic behavior. It is therefore interesting to chose an optimal �opt(�)
in such a way that for every � the generalization error is minimized.
Since summation is a linear operation, it commutes with the averaging procedure,
which acts directly on the summand leading to

hhZnii = X
fwa

i g
hh
PnY
�a

exp
�
� ��(sgn(
�0 )
�a )

�
ii�: (5.18)

The average over the distribution of the examples is equivalent to an average over
the 
�a . Because we are dealing with the case of independent uniformly distributed
random binary input-output training examples, we can deduce by use of the central-
limit theorem in the limit of an in�nite system (N !1) that the �elds 
�a are Gaussian
variables. So the average over the patterns ��i turns into a Gaussian average over 
�a
with a zero mean and correlation de�ned by the correlation matrix C. The probability
distribution of 
�a has the following form

P (
�a ) =
1p
2�n

(detC)�
1

2 exp
�
� 1

2

X
ab


�aCab
�1
�b

�
(5.19)

P (
�a ) =
Z Y

a

(
dxa

2�
) expf�1

2
(x; Cx) + i(
; x)g (5.20)

where (x; Cx) =
P

ab x
aCabx

b; (
; x) =
P

a 
ax
a. The correlation matrix C is de�ned by

the relations h
�a i = 0, h
�a
�b i = Æ��Cab. It is given as follows

C00 =
1

N

X
j

B2j = 1

C0a =
1

N

X
j

Bjwa
j = Ra

Cab =
1

N

X
j

wa
jw

b
j = qab (5.21)
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Clearly Ra represents the overlap between the replicated weight vector of the pupil and
that of the teacher. Because the weight vector of the teacher is a normalized vector,
Rap
qaa

gives cos(�), the angle between teacher's and pupil's weight vectors of the replica

with index a. The generalization error of the perceptron depends only on its overlap
with the teacher, and it is related to Ra as follow

�ga =
1

�
arccos(

Rap
qaa

): (5.22)

where the index a refers to one of the n replica of the system. The generalization error
goes to zero as the angle between the student and the teachers weight vectors vanishes.
Perfect learning corresponds to an Rap

qaa
= 1 which is equivalent to � = 0. In the

replica symmetric approximation, where the parameters qab; qaa; Ra are assumed to be
independent on the replica index, R has the simple meaning of being the expected value
of the overlap with the teacher. We introduce also the set of 1

2
n(n� 1) parameters qab

which are the mutual overlap between the weight vectors realized in the replica copies
a and b (corresponding to the Edward-Anderson parameters in the spin-glass case).

qabp
qaa

p
qbb

is cos(�ab) where �ab the angle between the weight vectors wa and wb for

di�erent replicas a, b. qaa is proportional to the length of the weight vector of replica
a. The coupling between di�erent replica comes from the fact that the same patterns
put constraint on the local �elds 
�a . The latter are essentially Gaussian variables.
This is the reason why only the second order correlation between the replicas enter the
calculation and no coupling between three or higher orders in the w0s appear. For the
same reason, only the �rst two moments of the probability distribution of the input
pattern matter.
Due to the fact that all the patterns are chosen independently everything decouples
in the patterns, and as we average over these patterns, we get in Eq.(5.18) P times
the same term. We can replace in Eq.(5.18) hhQP

�=1 :::ii with
QP
�=1hh:::ii = hh:::iiP and

drop the index �.
The correct thermodynamic limit requires that the energy function and the entropy
are extensive variables, i.e., proportional to N. From the correct scaling of the entropy
and energy with N it turns out that the number of examples should scale as

P = �N (5.23)

where the proportionality constant � remains �nite as N grows. From now on we work
with � instead of P. Using these facts we can write the average in equation Eq.(5.18)
in the following form

hhY
�a

exp(���(sgn(
�0 )
�a ))ii� = I�:N : (5.24)

With I
I = hhY

a

exp(���(sgn(
0)
a))ii
a (5.25)
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5.3 The replica approach

Using the distribution for 
a de�ned in Eq.(5.19), and (5.20) we can write Eq.(5.25) as
follows

I =
Z nY

a=0

dxap
2�

Z nY
a=0

d
ap
2�

exp
�
� 1

2
(x; Cx) + i(
; x)� �X

a

�(sgn(
0)
a)
�
: (5.26)

I =
R1
0

d
0p
2�

R Qn
a=1

d
ap
2�

R Qn
a=0

dxap
2�
exp

�
:
�
+
R 0
�1

d
0p
2�

R Qn
a=1

d
ap
2�

R Qn
a=0

dxap
2�
exp

�
:
�

exp
�
:
�
= exp

�
�1
2
x20�

nX
a=1

Rax0xa�1
2

X
a;b

qabxaxb+i
0x0+i
X
a


axa��
X
a

�(sgn(
0)
a)
�

(5.27)
Now we perform the integration over x0 in Eq.(5.26); the linear contribution is x0(i
0�P

aRaxa). After performing the integration over x0 Eq.(5.26) takes the following form

I =
Z 1

�1
D
0p
2�

Z 1

�1

Y
a=1

dxap
2�

Z 1

�1

Y
a=1

d
ap
2�

exp
�
� 1

2

X
a;b

(qab �RaRb)xaxb

� ij
0j
X
a

xaRa + i
X
a


axa � �
X
a

j�� 
aj�(j�� 
aj)
�

(5.28)

=
Z 1

�1
D
0p
2�

Z 1

�1

Y
a=1

dxap
2�

� Z �

�1

Y
a=1

d
ap
2�

exp
�
� 1

2

X
a;b

(qab �RaRb)xaxb �

ij
0j
X
a

xaRa + i
X
a


axa � �
X
a

j�� 
aj
�
+

Z �1

�

Y
a=1

d
ap
2�

exp
�
� 1

2

X
a;b

(qab � RaRb)xaxb �

ij
0j
X
a

xaRa + i
X
a


axa

��

To impose the de�nition of the 1
2
n(n � 1) combinations a � b qab, the nqaa and Ra in

Eq.(5.29) we use following the representations of unity

1 =
Z 1

�1
dqabÆ(qab � 1

N

X
j

wa
jw

b
j)

1 =
Z 1

�1
dqaaÆ(qaa � 1

N

X
j

wa
j
2) (5.29)

1 =
Z 1

�1
dRaÆ(Ra � 1

N

X
j

Bjwj)

(5.30)

To proceed further we introduce the conjugate variables q̂ab; q̂aa and R̂a and use the
Fourier representation of the Æ � function

Æ(qab � 1

N

X
j

wa
jw

b
j) =

Z 1

�1
dq̂ab

1

2�i=N
exp(Nq̂ab(qab � 1

N

X
j

wa
jw

b
j))
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Æ(qaa � 1

N

X
j

wa
j
2) =

Z 1

�1
dq̂aa

1

2�i=N
q̂aa exp(Nq̂aa(qaa � 1

N

X
j

wa
j
2)) (5.31)

Æ(Ra � 1

N

X
j

Bjwja) =
Z 1

�1
dR̂a

1

2�i=N
exp(NR̂a(Ra � 1

N

X
j

Bjwa
j ))

This leads to

hhZnii =
Z Y

a

dqaadq̂aa
2�i=N

Z Y
a<b

dqabdq̂ab
2�i=N

Z Y
a

dRadR̂a

2�i=N

exp
�
�N

�X
a

qaaq̂aa �
X
a<b

qabq̂ab +
X
a

RaR̂a

��

�X
wa
j

Y
j

exp
�X

a

q̂aa(w
a
j )

2 +
X
a<b

q̂abw
a
jw

b
j +

X
a

R̂aw
a
jBj

�

� exp
�
�N ln I

�
(5.32)

All the terms containing wa
j in Eq.(5.32) factorize in the index j. As we evaluate the

sum over the wa
j 's we get N times the same term. So we can replace

Q
j

P
wa
j
with

(
Q
a

P
wa)N , this leads to the G2 given in Eq.(5.36). Equation Eq.(5.32) can be written

in a compact form as follows

hhZnii =
Z Y

a

dqaadq̂aa
2�i=N

Z Y
a<b

dqabdq̂ab
2�i=N

Z Y
a

dRadR̂a

2�i=N
exp fN(G)g : (5.33)

Since our results are relevant only in the thermodynamical limit, we must consider our
system in the limit N !1. In this limit we can perform the saddle point integration
to evaluate the integral over the order parameters in Eq.(5.32). The integral can be
approximated with the value of the integrand in its maximum. So we have to look for
a set of real order parameters (qaa; q̂aa; qab; q̂ab; Ra; R̂a) that maximizes G and then we
get a set of equation by demanding the �rst derivative of G with respect to the order
parameters to be zero.
G is de�ned as follows

G = G1 +G2 +G3: (5.34)

The functions G1; G2, andG3 are given by the following equations

G1 = �
X
a

q̂aaqaa �
X
a<b

q̂abqab �
X
a

RaR̂a: (5.35)

G2 =

*
ln
X
wa

exp

8<
:
X
a

q̂aa(w
a)2 +

X
a<b

q̂abw
awb +

X
a

R̂aw
aB
9=
;
+
B
: (5.36)

G3 = � ln I: (5.37)

The function G2 is referred to as the weight term because it depends explicitly on the
constraints on the weight vector of the pupil and on the distribution of the teachers
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weights vector, but it depends weakly on the constraints on the local �eld through the
saddle point values of the conjugate variables. As we have mentioned in the introduc-
tion to this chapter, in order to get typical results, we have to average not only over
the distribution of the random training examples but also over the distribution of the
teacher's weight vector which is assumed to be Gaussian. This average is denoted by
h:::iB in Eq.(5.36).
G3 contains only order parameters with a clear physical interpretation. The depen-
dence on the temperature, the chosen error function, the number of training examples
and constraint on the local �elds, is contained in G3 which is referred to as the �eld
function. G3 depends also implicitly through the saddle point values of the physical
variables on the constraints on the weights.

5.4 The replica symmetric ansatz

To proceed further, it is required to obtain the saddle-point equations for general n
and then take the limit n ! 0. This procedure is in general very complex. In order
to make progress, however, it has been customary to make an ansatz concerning the
solution of these equations. In particular the most commonly used replica-symmetric

assumption is just that all the variables take on values invariant under permutation of
the replica,i.e.,

qaa = q0; qab = q

q̂aa = E; q̂ab = F

Ra = R; R̂a = R̂ (5.38)

This idea comes from the fact that all replicas are a priori totally equivalent, because
they are copies of the same system. If the order parameters are self-averaging they
should be the same for all replica indices. This holds for order parameters with one
replica index. However if the phase space is not connected and convex the replica
symmetric approximation is not correct for order parameters with two replica indices.
In that case we have to consider di�erent stages of replica symmetry breaking RSB.
How this can be understood physically will be discussed at the end of this chapter.
The saddle-point is de�ned by the following equations

@G

@q0
= 0;

@G

@R
= 0;

@G

@R̂
= 0

@G

@E
= 0;

@G

@F
= 0;

@G

@q1
= 0 (5.39)

In order to evaluate the derivatives we need explicit expressions for the functions G1; G2

and G3 in the limit n! 0.
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In this limit and using the replica symmetric ansatz we can rewrite G1 in the following
form,

G1 = �n
�
Eq0 � 1

2
Fq1 + R̂R

�
: (5.40)

To evaluate G2, the sum
P

a<bw
awb in Eq.(5.36) can be rewritten as

P
a<bw

awb =
1
2
((
P

a w
a)2 �Paw

a2) this leads to

G2 =

*
ln
X
wa

exp

(
(E � 1

2
F )
X
a

(wa)2 +
1

2
F (
X
a

wa)2 +BR̂
X
a

wa

)+
B

(5.41)

Now we can use the following Gaussian integration formula to linearize (
P

a w
a)2.

exp(ax2) =
Z dzp

2�
exp(�z

2

2
�
p
2axz): (5.42)

With (x =
P

a w
a) we can bring Eq.(5.36) in the following form

G2 =

*
ln
Z
DzX

wa

exp

(
(E � 1

2
F )
X
a

(wa)2 + (
p
Fz + BR̂)X

a

wa

)+
B

(5.43)

=

*
ln
Z
Dz

"X
w

exp
�
(E � 1

2
F )(w)2 + (

p
Fz + BR̂)w

�#n+
B

n!0� n

*
ln
Z
DzX

w

exp
�
(E � 1

2
F )(w)2 + (

p
Fz + BR̂)w

�+
B
: (5.44)

For Gaussian distributed B and z, (
p
Fz+BR̂) is also a Gaussian distributed variable

with �2 = F + (R̂)2 Using this fact we can write Eq.(5.43) as follows

G2 = n
Z
Du lnX

w

exp
�
(E � 1

22
F )w2 +

q
(F + R̂2)uw

�
: (5.45)

To �x the values of q1; q0 we have to evaluate the function G3 de�ned in Eq.(5.37)
which is somewhat laborious. G3 contains an n-dimensional Gaussian integration.
Substituting the replica symmetric order parameters in Eq.(5.37) leads to

G3 = � ln
Z
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Z Y
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dxap
2�

"Z �

�1
d
ap
2�

exp

(
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2
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1
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X
a

xa)
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i
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a

xa(j(
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)##

(5.46)
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Here we used the identity
P

a<b xaxb =
1
2
((
P

a xa)
2 �Pa x

2
a) as in the case of G2. The

integration over xa is also unpleasant because, owing to the squared sum term in the
exponent, the integrals do not decouple. However, with the introduction of an auxil-
iary variable z and the Gaussian linearization according to Eq.(5.42), we can get rid of
the o�ending term and factorize the xa integrals. This leads to the following form forG3

G3 = � ln
Z
D
0

Z
Dz

"Z dxp
2�

"Z �

�1
d
p
2�

(5.47)

exp
�
�1
2
(q0 � q1)x2 + i(

q
q1 �R2z + 
 � j
0jR)x� �j(�� 
)j

�
+

Z 1

�

d
p
2�

exp
�
�1
2
(q0 � q1)x2 + i(

q
(q1 � R2)z + 
 � abs(
0R))x

�##n

In the limit n! 0 G3 can be further simpli�ed using

ln
Z 1

�1
Dz�n(z) = ln

Z 1

�1
Dzen ln� � ln

Z 1

�1
Dz(1 + n ln�)

= ln(1 + n
Z 1

�1
Dz ln�) � n

Z 1

�1
Dz ln�) (5.48)

Now we can perform the integration over x which is a gaussian one. The integral over
the gaussian measure is

R1
�1Dz = 1 so G3 takes the form

G3 = n�
Z
Du

Z
Dz ln

2
64Z �
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q
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 � jujR+
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1
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2 )375(5.49)

In a compact form we can write Eq.(5.49) as follows

G3 = n�
Z
Du

Z
Dz ln fI1 + I2g (5.50)

where I1; I2 are given by the following equations

I1 =
Z 1
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q
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>:�
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 � jujR+
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The remaining integration in Eq.(5.52) and Eq.(5.51) over 
 is also an unpleasant one
since the boundary does not extend to in�nity. Using the following de�nition H(x) =
1p
2�

R1
x exp(�1

2
t2

2
), which is related to the complementary error function erfc(x) =

1�erf(x) by H(x) = 1
2
erfc( xp

2
), we can write Eq.(5.52) Eq.(5.51) in the form

I1 = H

0
@�� jujR+

q
(q1 � R2)q

(q0 � q1)

1
A (5.53)

I2 = exp
�
1

2
�2(q0 � q1)� �

q
(q0 � q1):t�

�
(1�H(t� � �

q
(q0 � q1))) (5.54)

t� in Eq.(5.54 is given by

t� =
�� jujR+

q
(q1 �R2)q

(q0 � q1)
(5.55)

Demanding the �rst derivative of G with respect to the order parameters and their
conjugate parameters to be zero we can obtain the saddle point equations:

@G

@E
= 0;=) q0 = h[w2]i (5.56)

@G

@F
= 0;=) �1

2
q1 = �1

2
h[w2]i+ 1

2

1q
(F + R̂2)

h[w]i = 2h[w]2i (5.57)

@G

@R̂
= 0;=) R =

R̂q
(F + R̂2)

hu[w]i = R̂(q0 � q1) (5.58)

In Eq.(5.56), (5.57), and (5.58) [x] is an abbreviation for

[x] =

P
w x exp

�
(E � 1

2
F )w2 +

q
(F + R̂2)uw

�
P

w exp
�
(E � 1

2
F )w2 +

q
(F + R̂2)uw

� ; (5.59)

and hi stand for

hxi =
Z
Dux (5.60)
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The saddle point equation for F;E and R are given as follows
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�nally

@G

@R
= 0

R̂ = �
Z
Du

Z
Dz[:::]�1(juj+ Rzp

q1 � R2
)

(
� exp

�
1

2
�2(q0 � q1)� �

q
(q0 � q1)t�

�

(1�H(t� � �
q
(q0 � q1)))� 1q

2�(q0 � q1)
expf�1

2
(t� � �

q
(q0 � q1))2g+

1q
2�(q0 � q1)

exp(�1
2
t�2)

)
: (5.63)

In Eqs. (5.61), (5.62), and (5.63) [...] stands for the argument of the logarithm ln[:::]
in G3 Eq.(5.49). Equations Eq.(5.56), (5.57), (5.58) (5.61), and Eq.(5.62) are solved
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numerically. The stability of the solutions against replica symmetry breaking will be
discussed in the next section. As we can see, these equations become singular for
q1 = q0. So we have determined the boundary in the �; T space where this happens.
There is also another boundary in the �; T space, where we could not get numerical
solutions for these equations, because q0 � q1 becomes too small so that some terms
in the equations diverge. By determining the value of R at the saddle point we can
calculate �g as a function of the training set size �, the temperature T , and the synaptic
depth Lw.

5.5 Results within the replica symmetric assumption

5.5.1 The three lines of interest

The AT line and the replica symmetry breaking
As we have mentioned above, the calculation of the integral in Eq. (5.32) in the limit
N !1 was performed by the saddle point method. Since we are performing a saddle
point integration over qab; Ra; ::: , we are looking for the overall maximum of G. This
requires that the 
uctuations of G with respect to small local variations of qab; qaa; Ra

and their conjugate order parameters must be negative around a stable solution (valid
solution).
Often one �nds that the RS solution becomes unstable at low temperature, and hence
invalid. In the phase space (�; T ), the line at which the instability appears is known
as the Almeida Thouless line (AT-line). This instability implies the onset of replica
symmetry breaking RSB. To �nd solutions beyond this line we have to break the replica
symmetry. The onset of RSB is characterized by a change of sign in at least one of the
eigenvalues of the stability matrix, the second derivative matrix of G with respect to
qab; qaa; Ra; q̂ab; q̂a; R̂a . The stability matrix can be represented schematically, in view
of the saddle point equations, in block form as follows

H =

0
B@ A �

�T B

1
CA (5.64)

The upper left block contains the matrix A of the second derivatives of G with respect
to qab; qa; Ra, the lower right block B contains those with respect to the conjugate pa-
rameters q̂ab; q̂aa; R̂a, while � contains derivatives with respect to the order parameters
as well as to their conjugates. The Matrix A, B, � are given in Appendix A.
Since the symmetry properties of the second derivative matrix are similar to those in
the mean-�eld model of the Ising spin glass, the stability analysis here follows that of
de Almeida and Thouless for the spin glass model [43]. Following [44] we can determine
the eigensystems of A and B by considering three classes of eigenvectors
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� eigenvector invariant under permutation of all replicas

� eigenvector invariant under permutation of all replicas but 1,

� eigenvector invariant under permutation of all replicas but 2,

After investigating the eigensystem of A we found:
There are two eigenvectors which are invariant under permutation of all replicas, these
are given by

�l0 ! ~x0
l �

0
B@ ~�0

l

~�0
l

1
CA ; (l = 1; 2) (5.65)

we denote by �l0 the corresponding eigenvalues. The eigenvalue equations for the �l0
are given in Appendix A.
The eigenvectors, which are invariant under permutation of all replicas but one, are
given by the following equation

�l1(r)! ~x1
l(r) �

0
B@ ~�1

l(r)

~�1
l(r)

1
CA ; (l = 1; 2); r = (1; :::n� 1) (5.66)

The corresponding eigenvalues �l1(r) are with degeneracy (n � 1) (n is the number
of replica). The eigenvalue equations are also given in Appendix A. The third kind
of eigenvectors are those which are invariant under permutation of all replicas but 2.
They are given by

�2(t)! ~x2(t) �
0
B@ ~�2(t)

~0

1
CA ; (t = 1; ::;

1

2
n(n� 3)) (5.67)

The eigenvalue �2(t) is
1
2
n(n�3) times degenerate. The equation for determining �2(t)

is given in Appendix A.
Similarly the eigensystem of B is 1

2
n(n�1)+2n dimensional and B can be diagonalized

with the following eigen vectors

�k0 ! ~yk0 �
0
B@ ~�k0

~Æk0

1
CA ; (k = 1; 2) (5.68)

�k1(r)! ~yk1(r) �
0
B@ ~�k1(r)

~Æk1 (r)

1
CA ; (k = 1; 2); r = (1; :::n� 1) (5.69)

�2(t)! ~y2(t) �
0
B@ ~�2(t)

~0

1
CA ; (t = 1; ::;

1

2
n(n� 3)) (5.70)
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The eigensystem of B has the same structure as that of A. The �k0; �
k
1(r); �2(t) are

the corresponding eigenvalue system to the eigenvector system ~yk0 ; ~y
k
1(r); ~y2(t). For a

better understanding please read appendix A. If we look at the eigenvalue equations
in Appendix A we can see that in the limit n ! 0 the eigenvectors ~yk1(r); ~x

l
1(r) and

the corresponding eigenvalue equations reduce to that of ~yk0(r); ~x
l
0(r) and �

k
0; �

l
0 respec-

tively. Since these describe 
uctuations within RS, the only eigenvalues involved in the
stability against RSB are �2; �2. As shown in appendix A, it suÆces to look at the sign
of the so called replicon eigenvalue �R to determine the stability of the RS solution
with respect to RSB-
uctuations. �R is given as follows

�R = �2�2 � 1 (5.71)

This follows from the properties of the matrix �; �T . For a stable solution �R must be
negative. The limit of stability is given by �R = 0, this condition de�nes a function
in the parameter space TAT (�), which is the AT-line. In Figs.(5.3), (5.2) we show the
AT-line for the case of 5 bit. As we can observe for a �xed � and T > TAT (�) the
RS-solutions are stable with respect to RSB, which means that the high temperature
phase indeed possesses the assumed replica symmetry. However, as the temperature is
decreased leaving � �xed, the RS solutions become unstable below TAT (�). The fact
that the replica symmetric solution is unstable with respect to 
uctuations towards
RSB indicates that the replica assumption on the independence of the order parame-
ters and their conjugates on their replica index is too simple. The assumption comes
from the idea that all replicas are a-priori equivalent, because they are copies of the
same system, i.e. every replica represents a randomly picked solution out of the weight
space. If the order parameters are self-averaging they should be the same for all replica
indices. This seems to hold for the order parameters with one replica index . However
if the weight space is not connected and convex, the replica symmetric approximation
is certainly not correct for order parameters with two replica indices.
The onset of the RSB signals the occurrence of a spin glass phase. Formally, the spin
glass phase is characterized by a non trivial dependence of qab; q̂ab on the replica in-
dices. Physically, the spin glass phase is signaled by the existence of many degenerate
ground states of the energy (or free energy) which are well separated in the con�gura-
tion space. The di�erent values of qab; q̂ab represent the distribution of overlaps among
pairs of these ground states. Furthermore, these degenerate ground states occupy dis-
connected regions in the con�guration space that are separated by energy barriers that
diverge with N. Such behavior leads to anomalously slow learning dynamics. Thus RSB
is undesirable with respect to the existence of a good algorithm to �nd the optimal
weights.
These results di�er from the results found for the continuous perceptron where the RS
solution is stable for every � and T [29]. Therefore the RS solution is thought to be
exact in this case. RSB is a known phenomenon in the case of discrete weights, here
the possible weights are restricted to a discrete set of points. RSB occurs because in
the version space there are disconnected clusters of these allowed points of the pupil's
weight vector. Seung Sompolinsky and Tishby [10] have observed similar e�ects of
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Figure 5.2: The AT-line for the case of 1bit
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Figure 5.3: The AT-line for the case of 5bit

RSB by investigating the case of both the boolean and the linear binary perceptons
learning a rule produced by a continuous weighted teacher.

The GD line: Solving the saddle point equations resulting from setting the derivatives
of G with respect to the order parameters and their conjugates to zero, we �nd that
for a �xed � and T > TGD(�) the equations possess solutions with q1 < q0. For a �xed
�, q1 ! q0 as T ! TGD(�). At a temperature Tn(�) > TGD(�) , q0 � q1 becomes too
small that terms in the saddle point equations which contain q1�q0 in the denominator
become too large. For T < Tn(�), numerical solutions with available double precision
arithmetic are no longer feasible.
At TGD(�), q1� q0 becomes zero, and the saddle point equations become singular. The
fact that q0�q1 = 0 at TGD(�) can be understood as follows: The subspace of solutions
shrinks until it contains only one solution, so that the overlap between two di�erent
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replicas becomes the same as the length of the weight vector of the optimal solution.
The same happens for the spherical pupil perceptron with continuous weights when
q1 ! 1 ( in this case the length of the weight vector of the optimal solution is equal
to the length of the teacher's weight vector, which is set to be

p
N). In this case,

we are sure that at the end of this shrinking we remain with a pupil that learnt the
rule, because the subspace of solutions is continuous and convex and is embedded
in a continuous and unbounded surroundings of candidate matrices for the weights.
However, for a perceptron with discrete weights, when this shrinking happens we are
no longer con�dent that at the end of this shrinking process we remain with a weight
vector which has learnt the training examples and satis�es the constraints on the
weights.

In Figs.(5.4),(5.5) the upper line represents the Tn(�). Above this line it is still possible
to �nd numerical solution for the saddle point equations. The accuracy in determining
this line depends on the algorithm used to determine the solution of the saddle point
equations and on the numerical accuracy used to �nd the solutions. We utilized the
Broydn Algorithm which is normally used to �nd the solutions of nonlinear equation
systems. The calculations has been performed with double precision arithmetic. The
line below presented in Fig.(5.4),(5.4) is the Gardner Derrida line which supply the
boundary in the �; T space where our replica symmetric equations become singular,
and thus determine the lower boundary of meaningful phase space.
The GD-line has been determined by solving the saddle-point equations numerically
for a �xed � at high training temperature where (q0 � q0 > 0, and then repeating
the procedure for lower temperature which leads to decreasing values of (q0 � q1), this
allows extrapolation for (q0� q1)! 0, thereby determining the temperature for a �xed
� at which the equations become singular (TGD(�)).
This behavior has been already observed for systems with continuous weights by Gard-
ner and Derrida [36] in the context of random mapping and by Gy�orgi and Tishby
[29]in the context of learning from examples with noisy input patterns. Because in
both cases they dealt with continuous weights this transition has been observed when
q1 ! 1.
As we can see in Fig.(5.2), the GD-line is below the AT-line for the case of 1 bit
synaptic depth, this means that the GD-line is not stable with respect to RSB. But in
the case of 5Bit (see Fig.(5.2)) the GD-line remains below the AT-line until the point
(T = 0:68; � = 24:5) is reached. At (T = 0:68; � = 24:5) the AT-line intersects the
GD-line. For T > 0:68 and � > 24:5 the RS solution become stable for all the points
on the TGD(�). This suggests that the e�ects of RSB become less severe as � becomes
larger. Fig.(5.6) show the case of 1Bit, here the TGD(�)- and the TAT (�)-line diverge
as �!1, this implies that, in contrast to the case of 5 bit, for any �xed temperature
the GD-line remain unstable. This means the system never escapes from spin glass
phase for T = TGD even as �!1. This suggests that the 
uctuations in the training
energy do not necessarily shrinks as � increases.
To �nd the asymptotic behavior of the GD-line analytically with respect to large �, we
must develop the saddle point equations for large �, but the equations are too complex
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Figure 5.4: Phase diagram in the (�; T ) plane for the case of 1bit. The upper line marks Tn(�) line
below which no numerical solution could be found. The line below marks the Gardner Derrida line

to �nd a simple asymptotic dependence of the GD-line with respect to large �.
The ZE-line: In the previous subsection we presented the AT line as a boundary
for accepting the replica symmetric solutions of the saddle-point equations. However,
solutions with negative entropy can not represent a physical system, thus they can not
be accepted as good solutions. From the de�nition of the entropy, positive entropy
indicates that the number of solution that obey the constraints imposed on the weights
is exponential in N , while negative entropy implies that there will be no valid solutions
in the thermodynamic limit. Thus we can accept only solutions above the stability
boundary, the AT line, and with entropy> 0. The line TZE(�), referred to as the zero
entropy line, sets the boundary for physical solutions. Since the zero entropy line is
easier to calculate than the AT-line, one can (in cases where the AT-line is diÆcult
to estimate) rely on it to �nd the location of the RSB region. We found that for all
studied synaptic precisions the entropie of the found solutions is a positive quantity.
The entropy has also been found to be positive on the Tn(�) line. But on the TGD
the entropy must be negative, because on the TGD line the volume of solutions of the
saddle point equations shrinks to zero. So we can conclude that the TZE(�) must be
in the region between Tn(�) and TGD(�).

5.5.2 The learning curves

The performance of the pupil during training is usually summarized in so called learning
curves. These curves describe the evolution of the generalization and training errors
either as a function of the size of the training set size � or of the noise level T of
the training process. Obviously all curves will depend parametrically on the synaptic
depth Lw.
Because of the weight mismatch between the teacher and the pupil the optimal weight
vector w� is reached only in the limit �!1. This is true at all temperatures. Thus
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Figure 5.5: Phase diagram in the (�; T ) plane for the case of 5bits. The upper line marks the Tn(�)
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the minimal generalization error is achieved in the limit �!1.
Using the de�nitions of the training error function �t and that of the generalization
error �g we can show that �t(T; �) � �g(T; �) for all T and � (see [10]). As the number
of examples increases for �xed T the di�erence �t(T; �) � �g(T; �) decreases and goes
towards zero, which implies that �g ! �min and �t ! �min as �!1.
The minimal generalization error achieved for the boolean perceptron in the limit
�!1, is

�min =
1

�
arccos(R1) (5.72)

where R1 is the maximal overlap of teacher's and pupils weight vectors. For each
allowed synaptic depth, R1 is given by,

R1 =
Z
dBP (B) sup

wi

X
i

Biwi

=
Z
dBP (B)X

i

w�
i
Bi (5.73)

where P (B) is the distribution of the teacher's weights, and supwi
denotes the supre-

mum of
P

i Biwi over all allowed values for the weights.
Since the aim of learning is to minimize the generalization error it appears necessary
to explore parts of the parameter space other than the one with the minimal training
error. That is achieved in a statistical sense, if the temperature is kept �nite. As we
have seen in chapter 3 the Gibbs distribution is a stationary state of the Langevin
dynamics, with the training error as the drift potential. The temperature in that
case is proportional to the variance of the noise. One of the most important facts is
that learning at �nite temperature is possible and sometimes advantageous (see [10]).
Sometimes, even when the generalization error increases with T it may be pro�table
in certain circumstances to train the system at �nite T because convergence time may
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be prohibitively long at T = 0. This is particularly true in our highly nonlinear model
with discrete weights.
By solving the saddle point equations for a �xed temperature, we have found that
for any �nite T , the generalization error is a monotonically decreasing function of the
training set size �. In Fig.(5.8) we plotted the generalization error against � at T = 0:4,
and = 1 for a synaptic depth of 1, and 5 bit. Surprisingly at small �, i.e. for � < �t, the
generalization error at �xed T is an increasing function of the synaptic depth, whereas
at � > �t it becomes a decreasing function of the synaptic depth, as expected.
As we can observe in Fig.(5.8) the generalization curves end at an �n(T; Lw) which
represents the point where no numerical solutions could be found with the used nu-
merical tools. So to �nd the asymptotic behavior of the generalization curve at a �xed
T when � ! 1, we have to �nd a good �t for the generalization curves in Fig.(5.8).
As we can see in Fig.(5.9) for �xed T and synaptic depth, the generalization error goes
as 1p

�
towards the optimal value �optg (T; Lw) (this represents the limit of the �t curves

as � ! 1). �optg (T; Lw) is a monotonically decreasing function of the temperature T
and the synaptic depth Lw. So to achieve a better generalization ability, it is always
advantageous to train our perceptron at a law temperature, but at the cost of the
training time.
For a �xed � the generalization error falls monotonically with T as can be seen in
Fig.(5.10). Here too, we have the points 1

Tn
(�; Lw) where no numerical solutions can

be found. So to �nd the asymptotic behavior of the generalization curve at �xed �
when T ! 0, we have to �nd a good �t for the generalization curves. By �tting the
generalization curves at �xed �, we found that the generalization error goes as

p
T

towards �optg (�; Lw) as T ! 0 see Fig.(5.10). In Fig.(5.12) we show the generalization
curve for the case of 1 bit and 5 bit. These curves have been calculated along the
Tn(�) line. The generalization error along the Tn(�) line has been found to be too
high compared with the optimal generalization error plotted in Fig.(5.11) for di�erent
synaptic depth. The optimal generalization curves in Fig.(5.11) have been estimated
by plotting �optg (�; Lw) as a function of � for the corresponding synaptic depth. Be-
cause of the complex form of the saddle point equations, it is very diÆcult to �nd the
asymptotic behavior of the generalization error with respect to the number of training
examples analytically. Motivated by the results found for the continuous perceptron
which predict 1

�
dependence for the generalization curve, we found also inverse power

�t for the optimal generalization curves calculated for the cases of 2, 4, and 5 bit see
Fig.(5.11).

In Fig.(5.15) we plotted the training error against �.There is a critical value �c which
marks the loading capacity, i.e., the point up to the examples are memorized perfectly.
Above �c the training error increases, and approaches from below the same limit as
the generalization error, i.e. �t approach �min, as expected, from below as �!1.
In Fig.(5.14)we plot the dependence of the generalization error on the number of allowed
weight values. This curve has been obtained by estimating the asymptotic limit of
�optg (�; Lw) for �!1 and then plotting this limit against Lw, the number of allowed
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Figure 5.8: Generalization error vs. � for 1bit and 5bit, T=0.4, 1
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Figure 5.12: Generalization error along the Tn(�) line for a synaptic depth of 1bit and 5bits

weights. �optg (�; Lw) � 0:3033 1
Lw

has been found to be a good �t for the dependency
of generalization error on Lw. If we used 8 bit to represent the weight matrix by the
optical implementation of the vector matrix multiplier, the generalization error is only
about 8:103 smaller than generalization error in the case of 5 bit.

5.5.3 Calculating �c

In order to calculate �c, we have to determine the volume in the pupil's weight space
for which the training examples are learnt without error. This volume is given by

V =
Y
�

X
wi

�(�� ��0
1

N

X
i

wi�
�
i ) (5.74)
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Figure 5.13: The optimal generalization error for a synaptic depth of 5bit
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Figure 5.14: The optimal generalization error vs. the number of allowed weight values
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Figure 5.15: The optimal training error for a synaptic depth of 5bit
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5 Theoretical investigation

The typical volume is calculated as before by averaging over the distribution of the
disorder produced by the examples. The saddle point equations for q0; q1 and R does
not change when we set T = 0 because G1 and G2 are only implicitly dependent on
the temperature. In the limit T = 0 the equations for R̂; F and E are given as follows

R̂ = � �p
2�

Z
DuDzf� jujp

q0 � q1 �
Rz

sqrtq0 � q1
p
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gexp
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2�
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(
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(q0 � q1)
)
exp �A2

2
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By solving the saddle point equations we found:
There is a critical �c which marks the loading capacity. As � ! �c the volume of
solutions with zero training error shrinks to zero. For � > �c no solutions exists for
the saddle point equations. So the training error begins to increase beyond zero for
� > �c . Although this �c does not mark a transition to optimal generalization it give
a reasonable scale for the decrease of �g. has been found to be �c = 2:7; 2:3; 1:6; 1:1; 0:7
for 5; 4; 3; 2; 1 bit respectively.

5.5.4 Training with non zero stability �

In the error measure we used, we have introduced the stability parameter � which
biases the training algorithm to favor networks less sensitive to the e�ects of noise in
the training data. This helps to absorb the performance 
uctuations of the optical
elements representing the patterns and the weights. Tuning of � allows us to �nd an
optimal � so as to minimize the generalization error for �xed � and T . In Figs.(5.16),
(5.17) we plot the generalization error against � for �xed values of T and � for the
case of 1bit and 5bits. As can be seen in the �gures the generalization error is not a
monotonically decreasing function of �. For every � and T there is an optimal value
�opt which minimizes the generalization error. For � > �opt the generalization error
begins to increase. At a constant temperature, the optimal value of � is a decreasing
function of the training set size �. In Fig.(5.18) we plot the optimal � against � at
T = 1 for the case of 1bit.
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5.5 Results within the replica symmetric assumption
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Figure 5.16: Generalization error vs. � for 1bit, T=0.1 and T=1., �=2
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Figure 5.17: Generalization error vs. � for 5bit, T=0.1, �=2
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6 Simulated annealing as a training

strategy for discrete NN

Training a neural network with discrete weights belongs to the class of hard optimiza-
tion problems referred to as NP-complete problems. NP stands for nondeterministic
polynomial. This implies that the computational e�orts grow exponentially with the
size of the system. The discrete perceptron is a benchmark problem for the develop-
ment and study of this kind of hard optimization problems, because it is simple in
formulation and an objective comparison with theory is possible. A variety of learning
rules have already been applied to the problem of training discrete Neural networks,
this include the clipping of the weights of a continuous-valued perceptron, techniques
from classical (deterministic) non-linear optimization theory, gradient descent, simu-
lated annealing and an adaptive genetic algorithm. Of these the last two show the
most potential. The adaptive genetic algorithm of K�ohler consists of two parts. The
�rst part, �nds the best partial solutions and ranks them according to a simple op-
timization procedure and represents these solutions by `genes'. The second part, the
genetic section, fabricates new genes by splicing and combining the �ttest successive
genes from the old gene pool. These operations are repeated a prescribed number of
times until perfect solutions are found or it takes O(N3) computations to �nd an op-
timal solution. Although the adaptive genetic algorithm has the advantage of being
able to mix information from di�erent partial solutions, it still has a distinct drawback
in that there is no straightforward method which guarantees to reach the optimal so-
lution. Simulated annealing is now a well established statistical technique for tackling
such hard optimization problems, and unlike other heuristic methods it is not problem
speci�c. In what follows we are going to describe the simulated annealing algorithm
and its implementation in the case of learning binary random input output patterns
produced by a teacher perceptron with continuous weights which has to be learnt by a
pupil perceptron with discrete weights.

6.1 Implementation of simulated annealing

A strategy, which has been applied to the solution of combinatorial optimization prob-
lems with great success, is the gradual simulated annealing. For example the method
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6 Simulated annealing as a training strategy for discrete NN

of simulated annealing has been used successfully to �nd the optimal arrangement of
integrated electronic circuits on semiconductor chips.
The concept of annealing is derived from material science, where it is used to describe
the process of eliminating lattice defects in crystals by a procedure of heating, followed
by slow cooling to room temperature.
If some material are cooled rapidly from the molten phase, its atoms are often cap-
tured in energetically unfavorable locations in the lattice. Once the temperature has
dropped far below the melting point, these defects survive forever, since any local re-
arrangement of atoms costs more energy than is available in thermal 
uctuations. The
atomic lattice thus remains caught in a local energy minimum. However, the thermal

uctuations can be enhanced if the material is reheated until energy consuming local
rearrangements occur at a reasonable rate. The lattice imperfection starts then to
move and annihilate, until the atomic lattice is free of defects except for those caused
by thermal 
uctuations. These can happen gradually if the temperature is lowered
so slowly that the thermal equilibrium is maintained at all times during the cooling
process.
More precisely, in a mathematical language, the problem of optimizing by simulated
annealing consists in minimizing a cost function de�ned on some discrete con�guration
space. The con�guration space of the system is endowed with transformation rules
which correspond to a class of local energy changes, E ! E + �E. These transfor-
mations allow a controlled random walk in the con�guration space which samples it
according to the Gibbs probability distribution; the walk in the con�guration space
is usually generated by the Metropolis Algorithm. Metropolis et.al. in the early days
of scienti�c computing introduced a simple algorithm that can be used to provide an
eÆcient simulation of a collection of atoms in equilibrium at a given temperature. In
each step of this algorithm, an atom is given a small random displacement and the
resulting change in the energy, �E is computed. If �E � 0, the displacement is ac-
cepted, and the con�guration with the displaced atom is used as a starting point for the
next step. The case where �E � 0 is treated probabilistically that the con�guration is
accepted with the probability P (�E) = exp(��E

T
). Like most iterative improvement

schemes, the Metropolis algorithm proceeds in small steps from one con�guration to
the next, but the temperature keeps the algorithm from getting stuck by permitting
uphill moves. The essential question by simulated annealing is to introduce a cooling
schedule, which starts from some initial temperature, T0, and progressively cooling
through a sequence of partial equilibration, T0 � T1 � T2:::, until an optimal solution
has been reached or until the system freezes. Although in outline this seems to go
straight-forward, in practice performance of the annealing algorithm is sensitive to the
particular choice of the cost function , cooling schedule, the way of transformation from
a system state to the next and other adjustments. Indeed given the freedom in possible
parameterizations, devising a good annealing algorithm is somewhat of an art. The
numerical e�orts of this method grow like a moderate power of the number dimension
of the problem to be optimized, so that problems with quite large values of N can
be treated successfully. The question of practical consequence concerns - what is the
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6.2 The Metropolis algorithm

most e�ective strategy given �nite computing time? How can we utilize these ideas
on the problem of learning a rule by a Neural network? As we have seen in chapter
3, the problem of learning a rule can be established by exposing the learning network
to a stream of of P = �N learning input output examples. The outputs are produced
by a network called the teacher. The learning network (the pupil) has to adapt its
weights according to a training algorithm so that it gives the right output to a given
input. This is equivalent to a walk in the weight space until the system settles in a
minimum of a cost function de�ned on the con�guration space which measures the rate
of incorrect combination of a training example and its corresponding output.
In the language of simulated annealing the cost function is identi�ed with the energy
function E, and the con�guration space is identi�ed with the microstate of a statistical
mechanical system which are de�ned by the di�erent weight vectors the system can
take.
In the present context a lattice defect corresponds to the incorrect combination of an
training example and the corresponding output.

6.2 The Metropolis algorithm

We implemented the simulated annealing using the metropolis method of [2]. First the
costs (energy) of a network with randomly initialized weights w is the training energy
given in chapter 4. It is calculated using the following equation:

E =
�NX
�

j����j�(����) (6.1)

The �-function gives 1 as a result for positive arguments and 0 else. Weight changes
are applied to �nd the network con�guration with the lowest cost. Changes that lower
the costs are always accepted whereas those that raise them are accepted with a certain
probability dependent on the temperature . The acceptance probability is given by the
following equation

acceptance probability = exp(
��E
T

): (6.2)

where �E = (Eaft �Ebef) describes the costs di�erences between the new and the old
weight con�guration. By accepting weight con�gurations with higher costs the system
is given the chance to leave local minima. By lowering the temperature the probability
of their acceptance decreases causing the system to strive for a minimum.
The following parameters of the simulated annealing algorithm have to be adjusted:

� parameter n of cost function

� initial temperature

� cooling schedule
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6 Simulated annealing as a training strategy for discrete NN

� step size of temperature changes

� number of weight changes per connection and temperature step

� mechanism of weight changes

� termination criteria

The parameter n of the cost function From the examined values of the parameter
n (n=0,1,2) n=1,2 were found to make sense, whereas n=0 leads the system to freeze
at all temperatures [7] The results represented in this thesis have been obtained by
setting n = 1 in the cost function of equation Eq.(6.1).
The initial temperature To de�ne an appropriate initial temperature we started
with a fairly high value and observed the acceptance rate during the annealing pro-
cess. The acceptance rate is calculated as a ratio between the number of accepted
Monte Carlo steps and the whole number of Monte Carlo steps. Both the number of
steps which minimize the cost function and are accepted with probability P=1, and
the number of steps which increase the cost function and are accepted with a smaller
probability than one contribute to the number of accepted MCS. A usual starting tem-
perature of T0 = 10 has been proven to be too high for our simple network. Steps in
the simulated annealing algorithm which increase the cost function have a high prob-
ability at this temperature so that every state of the system is accessible. Preliminary
examinations have shown that the cost function could not be reduced at this temper-
ature. A continuously movement towards a minimum of the energy function could not
be observed. This behavior of the system gave a sign for the good choice of the starting
temperature. The choice of the parameter depends on the problem to be optimized.
For a starting temperature near T0 = 0:3 the cost function for the simple perceptron
showed a constant movement towards a minimum despite temporary increases. We
inferred from these results that the starting temperature could be chosen as low as
T0 = 0:3 resulting in an acceptance rate of 0.1. The number of Monte Carlo steps per
weight shows us how many times every weight has been changed at some temperature,
thus it is a measure for the time needed by the system at this temperature to reach
thermal equilibrium. The number of MCS per weight is very intrinsic for the qual-
ity of the results. The size of temperature changes in the cooling schedule depends
on the number of MCS per weight. If we have a large number of MCS per weight
we can take bigger steps in the cooling schedule. Some investigations for �T = 0:01
and �T = 0:005 and 10 MCS showed that �T = 0:01 is enough for reaching optimal
results. For �T = 0:005, despite of the high computing time, we have reached no
improvement in the performance.
cooling schedule Regarding actual cooling schedule, there is until now no consensus
on how to determine the optimal form. At any rate there seems to be some measure of
qualitative agreement(for hard-optimization problems) that the schedule should have
rapid cooling at high temperature followed by a slow gradual decrease at lower tem-
peratures. A scheme based on the criterion of constant entropy production has been
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6.2 The Metropolis algorithm

proposed by Nulton and Solomon. However it has the drawback that the density of
states must be known beforehand or somehow approximated. Previous investigations
showed that using a reciprocal schedule

1

T
 1

T
+ a (6.3)

resulted only in more computational expenditure compared to the linear schedule

T  T ��T (6.4)

with �T = 0:01 used in our simulations.
The weights The weights of the pupil are real numbers and their values were calcu-
lated by equally dividing the interval [-1,1] by the number of approved discrete weight
values n = 2L which varies with the synaptic depth L. The allowed weights can be
calculated as a function of n as follows

wi = �1 + i

(n� 1)
(6.5)

After initializing the connection strengths with random values drawn from the pool
of allowed weight values, changes were applied in cyclic order. The mechanism to
determine the new values for the weights is di�erent from that for binary perceptron.
In contrast to the case of a binary perceptron we have for n � 2 many allowed values
for the weights so that the weight changes cannot be established only by 
ipping the
weights from -1 to 1 or vice versa. The weight changes can be established in two ways,
the �rst is to choose a random index for a component of the vector where we have
stored the allowed weights, this component is then the new weight. The second way is
to take the nearest allowed value to the value of the weight which has to be changed
at a certain cycle.
The number of Monte Carlo steps per weight The number of Monte Carlo Steps
(MCS) denotes the number of weight changes per temperature and connection. Its
value depends on the number of input nodes and was �xed to 20MCS times 100 input
nodes.
Termination criteria The algorithm terminated when

� the problem has been learned with zero training error.

� zero temperature has been reached.

� the acceptance rate dropped below 0.01.

The training set The binary learning patterns were generated by creating a real val-
ued random number 2 [0; 1] using a random number generator. If this number were
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6 Simulated annealing as a training strategy for discrete NN

smaller than 0.5 the value were set to -1 otherwise to 1.
To exclude in
uence of coincidence we averaged over 50 randomly chosen pupil con-
�gurations and newly initialized training patterns for every pupil. We additionally
established a pocket mechanism where the best temporary solution were stored. The
costs of the �nal solution were compared to those of the pocket solution and the cheaper
one stated the actual solution.
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7 Simulation results

In order to demonstrate the validity of our results we compare the theoretical predic-
tions with computer simulations. In the simulations we investigated the case of pupil
perceptrons with N = 100, N = 200, and synaptic depth of L = 1; 2; 3; 4; 5; 8. The
components of the weight vector of the teacher are continuous valued numbers. They
have been chosen randomly from the interval [�1;+1]. The simulations were performed
by averaging over 50 pupils.
The patterns used for the training are independent uniformly distributed random bi-
nary f�1g input-output training examples. The dependence of the generalization and
training errors on � has been studied for a given synaptic depth. We used simulated an-
nealing as a training algorithm because training a neural network with discrete weights
belongs to the class of hard optimization problems referred to as NP-complete prob-
lems.
Because the simulated annealing Algorithm is a very computing intensive algorithm, we
tried to reply the question: whether we could obtain comparable results with Monte-
Carlo simulations at a constant temperature T = 0. The simulated annealing results
will be compared with results obtained by another known training algorithm for dis-
crete weighted neural networks, namely training with direct clipping the components
of the teacher's weight vector to the nearest allowed discrete weight value. To be able
to compare results obtained by the analytical investigation, which are valid only in the
thermodynamical limit N !1, with the simulation results, we studied the in
uence
of the network size on the generalization curve for perceptrons with 100, and 200 input
neurons. 7

7.1 Discrete perceptron - simulated annealing

7.1.1 Learning and generalization errors

Increasing the number of allowed weight values gives the pupil's weight vector the
possibility to have a greater overlap with the continuous weight vector of the teacher,
and hence to have a smaller generalization error. This behavior is observed for the

7The simulations have been done by Ste�en Schwember in the frame of a diploma thesis which has
been supervised by me as a part of my thesis.
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7 Simulation results

Synaptic depth Fit function Asymptotic limit

1 bit 0:181 + 0:155
�

0.181 (0.18)

2 bit 0:072 + 0:246
�

0.072 (0.09)

3 bit 0:034 + 0:398
�

0.034 (0.044)

4 bit 0:016 + 0:515
�

0.016 (0.022)

5 bit 0:012 + 0:541
�

0.012 (0.01)

Table 7.1: Functional dependence of the generalization error on � for di�erent synaptic depth;
Fit with a power-function after including only the last 30 values; between brackets we listed the
generalization error obtained by directly discretizing the weights.

generalization curves in �gures (7.4), (7.5), (7.6), (7.7), (7.8). The generalization er-
ror decreases as expected when the bit precision of the pupil increases. To �nd the
functional dependence of the learning curves on the number of training patterns for
di�erent bit precisions, we �tted the learning curves with an inverse power function of
�. This has been motivated from some results found for di�erent training algorithms in
the case of a teacher-pupil problem, where both perceptrons (teacher and pupil) have
continuous weights. A dependence of the form � � 1

�
has been found for many of these

algorithms (see [10]). The found functional dependence of the generalization error for
di�erent bit precisions are listed in the table [7.1]. In table [7.1] we listed the limit of
the �t functions for �!1. The generalization error estimated by directly discretizing
the weights is also listed between brackets for the corresponding bit precision in table
[7.1].
With the method of directly discretizing the weights of the teacher, namely setting ev-
ery component of the teacher's weight vector equal to the nearest allowed discrete value
in the interval [�1;+1], we can �nd a good pupil with discrete weights. One might
suspect the pupil found by this method is the optimal discrete pupil. This is true for
the binary pupil perceptron. But for higher synaptic depths, directly discretizing the
weights determines a pupil's weight vector with a similar length to that of the teacher,
but not the one with the largest overlap R, which is crucial for a good generalization.
(see �g (7.1),(7.2),(7.3)).

The approximation of the generalization curve with an inverse power function is bad,
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7.1 Discrete perceptron - simulated annealing
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Figure 7.1: In the case of a binary pupil the directly discretized pupil is the optimal one.
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Figure 7.2: In the case of higher synaptic depth there exists pupils weight vectors with a smaller
generalization error than the one found by directly discretizing the weight vector of the teacher(case
A).
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Figure 7.3: In the case of higher synaptic depth there exists pupils weight vectors with a smaller
generalization error than the one found by directly discretizing the weight vector of the teacher (case
B).
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7 Simulation results

if we take all the calculated points. But if we take only the last 30 points we get
a better approximation for the asymptotic behavior. This is very important for the
comparison with theoretical results, because these are correct for large � (in the case
of L � 1 the RS solutions are stable for large �). The asymptotic behaviour in the
case of a teacher-pupil with continuous weights which predict a 1

�
dependence has been

also con�rmed in our results.

As we can see in �gure (7.4), the �t curve approximates the behavior of the whole
generalization curve in the case of 1bit very well. while for higher synaptic depth, the
�t with an inverse power function is not so good in approximating the behavior of the
generalization curve for small �.
As we can see in �gures(7.4), (7.7), (7.8)the generalization curves for 1,4,5 bit goes
asymptotically toward the generalization error calculated by directly discretizing the
weight of a pupil with continuous weights. But in the case of 2 and 3 bits (Fig.(7.5),(7.6))
the generalization curves fall a little bit below that calculated by directly discretizing
the weight vector of the teacher. This con�rms the expectation that there exists some
pupil weight vectors which have a greater overlap with the weight vector of the teacher
than that obtained in the direct discretized case, and that �min, the asymptotic limit,
is smaller than the generalization error calculated by direct discretizing the weights of
the pupil. This tendency can be observed for the synaptic precisions of 1,4,5, if we look
at the asymptotic limits of the �t curves listed in table[7.1]. For all synaptic precisions
listed in table [7.1] the asymptotic limit is smaller than that for the direct discretized
case (the values between brackets).
Simulated annealing is able to �nd these pupils with better generalization ability than
the direct discretization method, if we use a large enough training set and a large
enough number of MCS per weight. And thus it is better than the directly discretizing
algorithm. But if the training set is smaller than �N = 10N the direct discretizing al-
gorithm leads to pupils with smaller generalization error than the simulated annealing
algorithm.
In the case of a continuous pupil-teacher problem we can get, with a suitable training
algorithm, a training error equal to zero for every �. In our case where the pupil is
constrained to discrete weights, it is not possible to �nd a pupil with zero training
error as � increases (because the rule the pupil has to learn is not perfectly learnable
with discrete weights). This means with a growing number of training examples it
becomes diÆcult to �nd a hyperplane which separates the example space linearly with
the allowed discrete weights. Thus the training error begins to increase at a critical �c
and and is expected to move towards �min.
To show that the training error increases with increasing � we calculated for N = 100
belated additional points for � = 20; 30, and 50. The obtained training error support
our hypotheses that the training error for large � increases. However, from the results
listed in table (7.2) which summerizes the functional dependence found for the training
error as a function of �, one would expect that the training and generalization errors
go asymptotically to di�erent �min as � increases. The asymptotic limit found for the
training curves for large � is always smaller than the limit found for the generalization

82



7.1 Discrete perceptron - simulated annealing

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

G
en

er
al

is
ie

ru
ng

sf
eh

le
r

alpha

1bit / Kurvenfit des Generalisierungsfehlers

Figure 7.4: Fit curve of the generalization error for 1bit, N=100; Fit with a power-function after
including only the last 30 points.

curves for the corresponding synaptic depth. The reasons for this discrepancy could
be the small number of calculated points which makes it diÆcult to �nd a good �t.
The �t of the training error curves with an inverse power function are shown for the
di�erent synaptic depth in Figures (7.9), (7.10),(7.11). The �ts become worse with
increasing synaptic depth for small � (this is expected because the training error van-
ishes for � < �c). For the case of 5 bit, we could not �nd a good �t.
Because the theoretical results obtained with the tools of statistical mechanics are rel-
evant only in the thermodynamical limit where the number of input neurons goes to
in�nity, N ! 1, we have investigated the e�ect of the number of the input neurons
by studying a pupil with 200 input neurons. No signi�cant di�erence has been found
for the learning curves in comparison with the case of 100 input neurons. Fig.(7.12)
supports this statement. We have not investigated networks with more than than 200
input neurons, because a very high computing time is required to investigate larger
networks.

7.1.2 Monte-Carlo simulations at T=0

The simulated annealing algorithm is very computing intensive algorithm because of
the Monte-Carlo simulations at di�erent temperatures. The questions which arises is
whether we could obtain comparable results with Monte-Carlo simulations at a constant
temperature T = 0. Here we use a higher number of Monte-Carlo-Steps (MCS) per
weight than in the case of simulated annealing. We used Monte-Carlo-simulations at
T = 0 with 700 MCS per weight. The weights are changed cyclically and are given
new values from the setof allowed weights values corresponding to the allowed synaptic
depth. From the Figs.(7.13),(7.14), (7.15), we can observe that the generalization
error obtained with simulated annealing for the same number of training patterns is a
bit smaller than that of Monte-Carlo simulation at zero temperature T = 0. Monte-
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Figure 7.5: Fit curve of the generalization error for 2bit, N=100; Fit with a power-function after
including only the last 30 points.
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Figure 7.6: Fit curve of the generalization error for 3bit, N=100; Fit with a power-function after
including only the last 30 points.
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Figure 7.7: Fit curve of the generalization error for 4bit, N=100; Fit with a power-function after
including only the last 30 points.
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Figure 7.8: Fit curve of the generalization error for 5bit, N=100; Fit with a power-function after
including only the last 30 points.
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Figure 7.9: Fit curve for the learning error for 1bit, N=100; Fit with power - Function.
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Figure 7.10: Fit curve for the learning error for 2bit, N=100; Fit with power - Function.
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Figure 7.11: Fit curve for the learning error for 4bit, N=100; Fit with power - Function.
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Figure 7.12: comparison of the Generalization error for perceptrons with N=100 and N=200 input
neurons
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Synaptic depth Fit-function Asymptotic limit

1 bit 0:14� 0:23
�

0.14 (0.185)

2 bit 0:055� 0:17
�

0.055 (0.071)

3 bit 0:027� 0:1
�

0.027 (0.034)

4 bit 0:014� 0:024
�

0.014 (0.022)

Table 7.2: Functional dependency of the learning error on � for di�erent synaptic depth; Fit with a
power-function after including only the the last 30 points; The asymptotic limit of the generalization
error is presented between brackets.

Carlo simulation accepts only weight changes which reduces the cost function, energy
function, so it is in this case not possible to avoid local minima of the system. Thus
we would expect that the di�erence of the two algorithms, Monte-Carlo simulation at
zero temperature and simulated annealing, must be larger than the di�erence observed
in Figs. (7.13),(7.14), (7.15). Because of the very small di�erence we could conclude
that the simple perceptron has only few number of local minima which do not a�ect
the generalization error calculated by averaging over many pupil perceptrons. The
replica theory predicted for a pupil with continuous weights a generalization error of
� = 0:07 for a training set of 10�. Monte-Carlo simulation at zero temperature and
simulated annealing lead to pupil perceptron with the same generalization error for the
discrete perceptron in the case of synaptic depth of 5bit. Simulated annealing requires
a higher computing time than Monte-Carlo simulation at T = 0 because Monte-Carlo
simulation does not need a cooling procedure. Thus it is advantageous to utilize Monte-
Carlo simulation in training a simple perceptron with discrete weights, if we have a
large enough training set.
We expect that Multilayer perceptrons with discrete weights have much more local
minima than the simple perceptron, so it is better to use simulated annealing for its
training because training with �nite temperature allows us to avoid local minima. In
this case training at T = 0 with Monte-Carlo simulation is not recommendable.
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Figure 7.13: Learning and generalization errors vs. � for a pupil trained with simulated annealing
and Monte-Carlo simulations; 1bit synaptic depth, N=100, averaged over 50 pupils. Monte-Carlo
simulations at T=0 with 700 MCS .
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Figure 7.14: Learning and generalization errors vs. � for a pupil trained with simulated annealing
and Monte-Carlo simulations; 4bit synaptic depth, N=100, averaged over 50 pupils. Monte-Carlo
simulations at T=0 with 700 MCS .
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Figure 7.15: Learning error vs. � for a pupil trained with simulated annealing and Monte-Carlo
simulations; 5bit synaptic depth, N=100, averaged over 50 pupils. Monte-Carlo simulations at T=0
with 700 MCS.
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8 Conclusion

The optical implementation of neural networks can be realized by storing the weights
in holograms with a limited number of gray values. Motivated by this fact, we focused
our investigation in this thesis on analyzing the dependence of the generalization and
training errors of a simple perceptron with discrete weights, on the training set size,
and on the number of allowed discrete values (there are Lw = 2L allowed discrete values
for a bit precision of L).
Our starting point is the teacher pupil paradigm which is a natural approach to study
the properties of neural networks and especially their generalization ability, if we want
to get general information about their behavior independent of a special training set.
The teacher is a single-layer perceptron. The components of the teacher's weight
vector are continuous valued numbers from the Interval [-1,+1]. The pupil is also a
single-layer perceptron whose weight vector is only allowed to have discrete equidis-
tant values spanning the interval [-1,+1]. The pupil was trained to learn the rule
produced by the teacher by exposing it to a stream of �N input output examples
(�1; �10); (�

2; �20); :::; (�
P ; �P0 ), where the inputs �

� = (��1 ; �
�
2 ; :::; �

�
N) are chosen to be ran-

dom, and the outputs are generated by the teacher. This problem has been investigated
analytically and by computer simulations. For the analytical investigation we used so-
phisticated techniques of statistical mechanics, which have been originally developed to
study complex spin systems. Statistical mechanics is a useful tool to analyze learning
in ANNs for di�erent reasons. One is that many algorithms are stochastic and corre-
spond exactly to Langevin or Glauber dynamics on a noisy energy landscape. Another
reason for using statistical mechanics is that learning is essentially a problem of statis-
tical inference and �ts naturally into the same mathematical framework.
By utilizing the replica trick, the replica symmetric ansatz and the saddle point method
we obtained the saddle point equations, which describe the behavior of the learning
system in the thermodynamical limit.
By determining the learning curves, we have shown that restricting the weights of the
pupil to discrete values makes the rule produced by the continuous teacher unlearn-
able. This means that there is no pupil with discrete weights which can learn the rule
perfectly. This is in contrast to the case of pupil with continuous weights which would
learn the teacher's rule with a suitable training algorithm, after a training with a large
enough training set. For the case of binary pupil learning a rule produced by a binary
teacher Gy�orgy(1990) and Seung et al (1991) found that there is a discontinuous tran-
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8 Conclusion

sition to perfect generalization at � = 1:245. This is not the case here. There is no
discontinuous transition to perfect learning. By solving the saddle point equations for
a �xed temperature, we have found that for any �nite T , the generalization error is a
monotonically decreasing function of the training set size �. Analogous behavior was
found for the dependence of the generalization error as a function of the temperature
for a �xed �. The generalization error has been found to go as 1p

�
and
p
T towards

the optimal values �optg (T; Lw) and �
opt
g (�; Lw) as � ! 1 or T ! 0, respectively. We

found that �optg (�; Lw) behaves as an inverse power function of �. This has been also
predicted for the case of a continuous pupil learning a continuous teacher. The di�er-
ence between the two cases is that �optg (�; Lw) has a non zero asymptotic limit �optg (Lw)
as � ! 1. Whereas, the optimal generalization error curve of the continuous pupil
goes towards 0 as �!1. �optg (Lw) is found to behave as an inverse power function of
the number of allowed weights Lw. This is the most important result of this thesis for
the implementation of neural networks. Since the constraints imposed by the optics
for the implementation of neural networks allow a maximal precision of 6 bit, we can
see that 5 bit are enough to get a generalization error of about only 1%. If we used 8
bit to represent the weight matrix by the optical implementation of the vector matrix
multiplier the generalization error is only about 8:10�3 smaller than generalization er-
ror in the case of 5 bit.
The optimal training error curve has also been studied for the case of 5 bit. We
found that there is a critical value �c which marks the loading capacity, i.e., the
point up to which the examples are memorized perfectly. �c has been found to be
2:7; 2:3; 1:6; 1:1; 0:7 for 5; 4; 3; 2; 1 bit synaptic depth, respectively. Above �c the train-
ing error increases, and approaches the same limit as that of the generalization error,
i.e. �t approaches �

opt
g (Lw), as expected, from below as �!1. Although this critical

�c does not mark a transition to optimal generalization, it gives a reasonable scale for
the decrease of �g with respect to �. This �c is greater than the capacity calculated for
the discrete perceptron for random pattern which has a maximum of 2N in the case of
the continuous perceptron.
The in
uence of the stability parameter � on the performance has been found con-
structive as expected. Tuning of � allows us to �nd an optimal � so as to minimize the
generalization error for �xed � and T . For � > �opt the generalization error begins to
increase. �opt is found to be a decreasing function of the training set size �, when T
is �xed. The stability parameter � biases the training algorithm to favor networks less
sensitive to the e�ects of noise in the training data. This helps to absorb the perfor-
mance 
uctuations of the optical elements representing the patterns and the weights
in the optical implementation of neural networks.
By solving the saddle point equations, we found that for a �xed � and T > TGD(�)
the equations possess solutions with q1 < q0. For a �xed �, q1 ! q0 as T ! TGD(�).
At a temperature Tn(�) > TGD(�), q1 � q0 becomes so small that terms in the saddle
point equations which contain q1 � q0 in the denominator very large. For T < Tn(�),
numerical solutions with available double precision arithmetic are then no longer fea-
sible.
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At TGD(�), q1 � q0 becomes zero, and the saddle point equations become singular.
The fact that q0 � q1 = 0 at TGD(�) can be understood as follows: As q1 ! q0 the
subspace of solutions shrinks until it contains only one solution, so that the overlap
between two di�erent replicas becomes the same as the length of the weight vector
of the optimal solution. At this point the saddle point equations become singular.
In contrast to the case where the pupil perceptron can take continuous weights, the
replica symmetric solution has been found to be unstable with respect to small local
variations of the order parameters and their conjugate variables in some regions in the
�; T phase space. The so called replicon eigenvalue �R determines the stability bound-
ary of the RS solution with respect to RSB-
uctuations. The limit of stability is given
by �R = 0. This condition de�nes a function in the parameter space TAT (�), which is
the De Almeida Thouless line. Above this line the replica symmetric solution is stable,
so the RS assumption is exact in the high temperature phase. Below the AT-line the
replica symmetric solutions are unstable with respect to 
uctuations towards replica
symmetry breaking. This fact indicates that the assumption of independence of the
order parameters and their conjugates on their replica index is too simple. The onset
of the RSB signals the occurrence of a spin glass phase. Formally, the spin glass phase
is characterized by a non trivial dependence of the order parameters on the replica
indices. So to �nd stable and exact solutions in the region where the RS is broken,
we have to make another assumption about the dependence of the order parameters
and their conjugate variables on the replica index. This has not been investigated in
this work, because the saddle point equations become so complicated that no numer-
ical solution could be found even for the one step RSB. The occurrence of the spin
glass phase indicates that many degenerate ground states of the energy exists which
are well separated in the con�guration space. Furthermore, these degenerate ground
states occupy disconnected regions in the con�guration space that are separated by
energy barriers that diverges with N. This leads to anomalous slow learning dynamics.
The Tc(�) and the TGD(�) for the case of 1 bit synaptic depth are below the TAT (�)
line which imply that the solutions at Tc(�) and TGD(�) are unstable with respect to
RSB. This means the system never escapes from the spin glass phase even as �!1.
In contrast, for a synaptic depth of 5 bit the TGD(�) intersects the TAT (�) at the point
(T = 0:68; � = 24:5). This implies that for (T > 0:68; � > 24:5) all the points on the
Tc(�) the RS solution become stable. This suggests that the e�ects of RSB become less
severe, as � become larger. This suggests that the 
uctuations in the training energy
do not shrink as � increases.
For all studied synaptic precisions the entropy is a positive quantity. The entropy is
also positive at the Tc(�) line. At the TGD(�) the entropy becomes negative, because
the volume of solutions shrinks to zero, so the zero entropy line must be in the area
between Tc(�) and TGD(�).
Because the RS picture is not quantitively accurate in the whole �; T space, we tried
to con�rm our results with computer simulations. The results for � = 0 have been
con�rmed semiquantitatively with computer simulations.
Because training a neural network with discrete weights belongs to the class of hard op-
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timization problems referred to as NP-complete problems, we used simulated annealing
as a training algorithm, which is now a well established statistical technique for tack-
ling such hard optimization problems. In the simulations we have investigated the case
of pupil perceptrons with N = 100, N = 200, and synaptic depth of L = 1; 2; 3; 4; 5; 8.
We found also here that the generalization error is a decreasing function of � and Lw.
The 1

�
dependence of the generalization error, which is found in the theoretical investi-

gation, is con�rmed here by the simulations. For all the investigated synaptic depths,
we found a good 1

�
�t curve for the generalization error. If we compare the curves

of di�erent synaptic depth we observe that we need a smaller training set to obtain
a certain generalization error, if we used a higher precision. The di�erence between
the theoretical � ! 1 limits for the generalization error and the simulation limits
are in the 0:15% range. The limits obtained by directly clipping the weight vector of
the teacher to the nearest allowed discrete weight vector are for the synaptic depths of
2; 3; 4 as expected higher than those obtained theoretically or by simulated annealing.

The e�ect of the network size on the generalization curves has been found to be very
small. No signi�cant di�erence has been found between the generalization curve for
the case of 100 input neuron and that for 200 input neurons. We have not investigated
networks with more than than 200 input neurons, because a very high computing time
is required to investigate larger networks.
The Monte-Carlo simulations at a constant temperature T = 0 have shown that the
generalization error in this case is only a little bit higher than that obtained by simu-
lated annealing. Because of the very small di�erence we could conclude that the simple
perceptrons have only few number of local minima which do not a�ect the average gen-
eralization. Simulated annealing requires a higher computing time than Monte-Carlo
simulation at T = 0, because T = 0 Monte-Carlo simulation does not need a cooling
procedure. Thus it is advantageous to utilize such Monte-Carlo simulation in training
a simple perceptron with discrete weights, if we have a large enough training set.

There are also many open question for which there was not enough time to be studied.
What is the in
uence of the Neural network architecture on the network performance if
the synaptic depth is limited? How robust are optical neural networks against accuracy

uctuation which can happen by storing its weights in holograms? How do neural
networks with discrete weights operate on real data?
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9 Zusammenfassung

Aufgrund der Geschwindigkeit und der wechselwirkungsfreien �Uberlagerung von Pho-
tonen wird der optischen Implementierung neuronaler Netze immer mehr Aufmerk-
samkeit gewidmet. Eine der m�oglichen Implementierungsformen kann realisiert wer-
den indem man die Gewichte in Hologrammen mit limitierter Anzahl von Graustufen
speichert. Motiviert durch diese Tatsache, haben wir uns in dieser Arbeit auf das
Analysieren der Abh�angigkeit des Generalisierungs- und Trainingsfehlers eines sim-
plen Perceptrons von der Anzahl der Trainingsmuster und der Anzahl der erlaubten
diskreten Gewichte (es gibt Lw = 2L erlaubte Gewichtswerte f�ur eine synaptische Tiefe
von L) konzentriert. Unser Ausgangspunkt ist das Lehrer-Sch�uler Paradigma, welches
ein nat�urliches Werkzeug darstellt, um Eigenschaften neuronaler Netze zu studieren,
insbesondere ihre Generalisierungsf�ahigkeit, wenn wir unabh�abgig von einem speziellen
Trainingsset allgemein g�ultige Informationen �uber ihr Verhalten erhalten m�ochten.
Der Lehrer ist ein simples Perceptron dessen Gewichtsvektorkomponenten reelle Zahlen
aus dem Intervall [�1;+1] sind. Der Sch�uler ist auch ein simples Perceptron, dessen
Gewichte nur equidistante diskrete Werte aus dem Intervall [�1;+1] annehmen d�urfen.
Der Sch�uler lernt die von dem Lehrer hergestellte Regel, indem man ihm eine Train-
ingsmenge von Input-Output Mustern zur Verf�ugung stellt. Dieses Problem wurde
analytisch untersucht und mit Computersimulationen best�atigt. Die analytische Un-
tersuchung wurde mit Hilfe von Techniken aus der statistischen Mechanik, die ur-
spr�unglich f�ur die Untersuchung von komplexen Spin Systemen entwickelt worden
sind, durchgef�uhrt. Statistische Mechanik ist aus verschiedenen Gr�unden eine hilfreiche
Technik, um das Lernen neuronaler Netze zu untersuchen. Einer dieser Gr�unde ist, da�
viele der Algorithmen einer Langevin oder Glauber Dynamik �uber einer Energieland-
schaft entsprechen. Ein anderer Grund f�ur die Anwendung statistischer Mechanik ist,
da� das Lernen bei neuronalen Netzen urspr�unglich ein Problem statistischer Folgerung
ist, was in demselben mathematischem Rahmen passt.
Bei der Anwendung des Replica Tricks, des Replica symmetrischen Ansatzes, und
der Sattelpunktmethode haben wir die Sattelpunktgleichungen, die das Verhalten des
Sch�ulers im thermodynamischen Limes beschreiben, abgeleitet.
Die Einschr�ankung der Gewichte des Sch�ulers auf diskrete Werte macht die von dem
Lehrer produzierte Regel nicht perfekt erlernbar. Dies bedeutet, da� es keinen Sch�uler
mit diskreten Werten gibt, der diese Regeln perfekt erlernen kann. Im Gegensatz dazu
kann ein Sch�uler mit kontinuierlichen Gewichten, wenn er mit einem entsprechend
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9 Zusammenfassung

gutem Trainingsalgorithmus trainiert wurde, nachdem man ihm eine ensprechend gro�e
Anzahl von Trainingsmustern pr�asentiert hat, die vom Lehrer produzierte Regel per-
fect lernen. Bei der Untersuchung der Learningskurven ( Generalisierung- und Train-
ingskurve) haben wir festgestellt, da� kein diskontinuierlicher �Ubergang zum Perfekten
Lernen statt�nden kann, wie es der Fall ist wenn sowohl Lehrer als auch Sch�uler nur
diskrete Gewichte annehmen d�urfen. Nach der L�osung der Sattelpunktgleichungen
haben wir festgestellt, da� f�ur eine konstante Temperatur der Generalisierungsfehler
eine monoton fallende Funktion der Anzahl der Trainingsmuster ist. Der General-
isierungsfehler geht in diesem Fall wie 1p

�
asymptotisch gegen ein von der Temperatur

und der Bittiefe abh�angiges Optimum �optg (T; Lw). Ein analoges Verhalten haben wir
f�ur die Abh�angigkeit des Generalisierungsfehlers von T bei konstanten Muster Anzahl
beobachtet. In diesem Fall geht der Generalisierungsfehler wie

p
T asymptotisch gegen

�optg (�; Lw). �optg (�; Lw) hat, im Gegensatz zum Fall eines Kontinuierlichen Sch�ulers,
einen von Null verschieden limes �optg (Lw), wenn �!1. �optg (Lw) ist auch eine monoton
fallende Funktion von Lw. �

opt
g (Lw) gehet wie 0:3033

1
Lw

gegen Null, wenn Lw !1. Das
ist das wichtigste Resultat dieser Arbeit im Hinblick auf der optischen Imlementierung
neuronaler Netze. Dieses Ergebniss zeigt, da� aufgrund der bei h�oherer Bittiefe gro�en
Anzahl der zum Training des Netzes zur Verf�ugung stehenden diskreten Gewichten
generalisiert das neuronale Netz umso besser, je h�oher die Pr�azision gew�ahlt wird. Je-
doch werden die Verbesserungen beim �Ubergang von einer Bit Tiefe zur n�achst h�oheren
immer geringf�ugiger. Der Vergleich zwischen dem Fall von 5 und 8 Bittiefen l�a�t fast
keinen Unterschied erkennen. Demzufolge sollte die durch die optischen Randbedin-
gungen auf 6bit eingeschr�ankte Pr�azision das Generalisierungsverhalten des Netzes bei
gen�ugend gro�em Trainingssatz nur wenig einschr�anken.
Die Wirkung des Stabilit�atsparameters � auf dem Generalisierungsfehler wurde auch
untersucht. Die Einf�uhrung eines von Null verschiedenen � kann hilfreich sein, um
m�ogliches Rauschen sowohl an den Gewichten als auch an den Trainingsmustern zu
absorbieren. Wir haben, wie erwartet gesehen, da� ein von Null verschiedenes � con-
structive auf dem Generalisierungsfehler wirkt. Bei der richtigen Einstellung von �
k�onnen wir einen optimalen Generalisierungsfehler f�ur feste � und T bei einer �opt er-
reichen. F�ur � > �opt der f�angt Generalisierungsfehler an zu steigen. F�ur eine feste
Bittiefe ist �opt eine monoton fallende Function des Trainingssatzes �.
Es hat sich gezeigt, da� die Sattelpunkt Gleichungen im bestimmten Bereichen des
�; T Raumes singul�ar werden. Die singularit�atsgerenze wird als TGD (Gardner Der-
rida) Linie bezeichnet. F�ur Tn > TGD k�onnten wir mit der benuzten double precision
Arithmetik keine numerischen L�osungen mehr �nden.
Die Untersuchung der Stabilit�at der L�osungen der Sattelpunktgleichungen bez�uglich
kleine Fluktuationen der Ordnungsparameter hat gezeigt, da� L�osungen in der hoch
Temperatur Phase stabil sind f�ur alle Bittiefen. Aber sobald die Temeratur einen Wert
TAT (�; Lw) erreicht, werden die L�osungen der Sattelpunktgleichungen instabil im Hin-
blick auf Replica Symmetrie Brechung. Dies deutet auf dem Eintritt einer Spin Gals
Phase, die auf einer nicht trivialen Abh�angigkeit der Ordnungsparameter von dem
Replica Index hindeutet. Im Falle einer 1 Bit synaptischen Tiefe bleiben alle L�osungen
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auf der TGD, und Tn instabil auch f�ur grosse �. Im Gegensatz dazu werden L�osungen
auf den Linien TGD, und Tn f�ur eine synaptische Tiefe gr�osser als 1 Bit, stabil f�ur eine
Trainingsmenge, die grosser als �(T; Lw) ist. Wir haben festgestellt, da� die Entropie
der L�osungen an den Linien TAT und Tn positive ist. Jedoch auf der TGD muss sie neg-
ative sein, da an dieser Linie der L�osungsraum auf 0 schrupmft. So die Zero Entropie
Linie muss zwischen Tn und TGD sein.
Diese Resultate wurden semiqualitativ mit Simulationen best�atigt. Die Simulationen
wurden durchgef�uhrt mit Simulated Annealing als Trainingsalgorithmus. Die funk-
tionale Abh�angigkeit des Generalisierungsfehlers von der Trainingssatzgro�e wird beim
Trainieren mit Simulated Annealing und diskreten Gewichten auch, wie in der The-
orie vorausgesagt wurde , durch eine Funktion � 1=� approximiert. Dies stimmt
mit der f�ur das kontinuierliche Zwei-Perzeptronen Szenario von der Theorie f�ur einige
Lernverfahren vorhergesagten 1=� Proportionalit�at f�ur gro�e � �uberein. Trotz Ein-
schr�ankung auf diskrete Kopplungen �andert sich also das asymptotische Verhalten des
Generalisierungsfehlers nicht. In den Simulationen haben wir Sch�uler Perceptronen
mit N = 100, und N = 200. Die Erh�ohung der Anzahl der Eingangsneuronen f�uhrte
zu keinen signi�kanten Aussagen bzgl. der Skalierung von Lern- und Generalisierungs-
fehler mit der Netzgr�o�e. Der Untersuchung noch gr�osserer Netze sind zeitliche und
rechentechnische Grenzen gesetzt.
Da der Simulated Annealing Algorithmus sehr rechenaufwendig ist, wurden Monte -
Carlo - Simulationen bei T=0 durchgef�uhrt, um abzusch�atzen, inwieweit damit �ahnliche
Ergebnisse erzielt werden k�onnen. Bei gleich gro�em Trainingssatz liegen die Fehler
beim Lernen und Generalisieren geringf�ugig �uber den mit Simulated Annealing erre-
ichten. In den Monte - Carlo - Simulationen mu� aber kein Abk�uhlungsschema einge-
halten werden, so da� sie wesentlich schneller eine diskrete L�osung �nden. Kann das
Problem also mit einem Simple Perzeptron gel�ost werden und ist eine ausreichende
Anzahl an Trainingsmstern vorhanden, so w�aren sie das Mittel der Wahl. Da in den
Monte - Carlo - Simulationen nur die Kosten verringernde Schritte akzeptiert werden
kann der Algorithmus bei mehrschichtigen Netzen leicht in einem lokalen Minima ve-
harren. Hier erreicht man mit Simulated Annealing sicher bessere Resultate.
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Appendix A: The Replicon Eigenvalue �R 7

The onset of RSB is signaled by a change of sign in at least one of the eigenvalues of
of the stability matrix. Speci�cally, the spectrum of the stability matrix, the second
derivative matrix of the free energy, should be evaluated at the replica symmetric values
of the order parameter and their conjugate parameters. To check the local stability of
the RS-solution against RSB-
uctuation, it will be shown that it is enough to check
the sign of the so called replicon eigenvalue (�R).
The stability matrix can be represented schematically, in view of in block from as follow

H =

2
64 A X

X
T

B

3
75 =

2
666666664

A
22

A
21

1Id 0

A
21T

A
11

0 X
11

1Id 0 B
22

B
21

0 X
11T

B
21T

B
11

3
777777775
; d =

1

2
n(n� 1): (10.1)

with

A22
ab;cd �

@2G

@qab@qcd
(a < b; c < d = 1; : : : ; n); (10.2)

B22
ab;cd �

@2G

@q̂ab@q̂cd
(a < b; c < d = 1; : : : ; n); (10.3)

A11
a:i;b:j �

@2G

@f ia@f
j
b

(a; b = 1; : : : ; n; i; j = 1; 2); (10.4)

B11
a:i;b:j �

@2G

@f̂ ia@f̂
j
b

(a; b = 1; : : : ; n; i; j = 1; 2); (10.5)

X11
a:i;b:j �

@2G

@f ia@f̂
j
b

(a; b = 1; : : : ; n; i = 1; 2; j = 1; 2); (10.6)

7This appendix follows calculations done by J. van Mourik
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A21
ab;c:j �

@2G

@qab@f
j
b

(a < b; c = 1; : : : ; n; i = 1; 2); (10.7)

B21
ab;c:i �

@2G

@q̂ab@f̂ ic
(a < b; c = 1; : : : ; n; i = 1; 2); (10.8)

where G is given in Eq.(5.34), and f ia and f̂
i
a are the order parameters involved in the

saddle point integration, with only one replica index (Ra, qaa and R̂a, q̂aa ).
Here a runs over the replicas, while i labels the type of order parameters that we
consider (e.g. f̂ 1a � R̂a and f̂

2
a � q̂aa).

In the RS-saddle point all the replicas are totally equivalent. Hence the elements of

A
22
and B

22
take only three values

A22
ab;cd =

8>>>>><
>>>>>:

P j a = c and b = d;

Q j b = c; anda 6= d

R j a 6= c; d and b 6= c; d;

(10.9)

B22
ab;cd =

8>>>>><
>>>>>:

P 0 j a = c and b = d;

Q0 j b = c; anda 6= d

R0 j a 6= c; d and b 6= c; d;

(10.10)

Furthermore we get

A11
a:i;b:j =

8><
>:
Kij j a = b;

Lij j a 6= b;
(10.11)

B11
a:i;b:j =

8><
>:
K 0

ij j a = b;

L0ij j a 6= b;
(10.12)

X11
a:i;b:j =

8><
>:

Vij j a = b;

Wij j a 6= b;
(10.13)

A21
ab;c:i =

8><
>:
Ci j c = a or c = b;

Di j c 6= a and c 6= b;
(10.14)

B21
ab;c:i =

8><
>:
C 0
i j c = a or c = b;

D0
i j c 6= a and c 6= b;

(10.15)
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We now determine the eigensystems of A and B separately. Following [43], we consider
three classes of eigenvectors and their corresponding eigenvalues

� eigenvectors invariant under permutations of all replicas,

� eigenvectors invariant under permutations of all replicas but 1,

� eigenvectors invariant under permutations of all replicas but 2.

The order ofA is 1
2
n(n�1)+2n. Since the matrix is real symmetric, this is the number

of linearly independent eigenvectors to be found.
The eigenvectors ~x of A have the form

~x =

0
BBBBB@
f�abg
f"1ag
f"2ag

1
CCCCCA ; (a < b = 1; : : : ; n); (10.16)

where f�abg and f"iag are column vectors with 1
2
n(n� 1) and n elements respectively.

� First we consider normalized vectors ~xl0 with elements given by:

�ab = c0 and "ia = ci; (8a < b = 1; : : : ; n): (10.17)

These vectors span a (3)-dimensional invariant subspace and therefore yield (3) eigen-
vectors. For such a vector the eigenvalue equation can be written as

c0(P � �+ 2(n� 2)Q+
1

2
(n� 2)(n� 3)R) +

2X
i=1

ci(2Ci + (n� 2)Di) = 0;

c0((n� 1)Cj +
1

2
(n� 2)(n� 1)Dj) + cj(Kjj � �+ (n� 1)Ljj) (10.18)

+
2X
i6=j

ci(Kij + (n� 1)Lij) = 0; (j = 1; 2):

This gives (3) eigenvalues and corresponding eigenvectors

�l0 ! ~x0
lT � (~�lT0 ; ~"

lT
0 ); (l = 1; 2; 3): (10.19)

With ~xT we mean now a vector, i.e. the transposed of the column vector ~x. Note that
since these vectors are invariant under any permutation of the replica indices, they
describe 
uctuations within RS and not 
uctuations towards RSB.
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� Next we consider normalized vectors ~xl1 of the form

�ab = c0; (a or b = �) and �ab = d0; (a; b 6= �);

"ia = ci; (a = �) and "ia = di; (a 6= �): (10.20)

these vectors span a n(3)-dimensional invariant subspace and therefore yield n(3) eigen-
vectors, including those already obtained. To ensure orthogonality to the eigenvectors
~xl0, we take c

0 = (1 � 1
2
n)d0; ci = (1 � n)di, and the eigenvalue equation can then be

rewritten as

c0(P � � + (n� 4)Q� (n� 3)R) + 2
2X

i=1

ci(Ci �Di) = 0;

c0(n� 2)(Cj �Dj) + cj(Kjj � �� Ljj) (10.21)

+
2X
i6=j

ci(Kij � Lij) = 0; (j = 1; : : : ; 2):

This gives (3) eigenvalues with degeneracy (n� 1) and corresponding eigenvectors

�l1 ! ~xlT1 (r) � (~�lT1 (r); ~"lT1 (r)); (l = 1; : : : ; 3); (r = 1; : : : ; n� 1): (10.22)

� Finally, we take normalized vectors ~x2 of the form

��� = c0; ��a = ��a = d0; (a 6= �; �); �ab = e0; (a; b 6= �; �)

"ia = di; (a = � or �) and "ia = ei; (a 6= �; �): (10.23)

Orthogonality to the eigenvectors already found, imposes the conditions
di = ei = 0; (i = 1; : : : ; 2) and c0 = 2 � n)d0 = 1

2
(2 � n)(3 � n)e0. The eigenvalue

equation can then be rewritten as

�2 = P � 2Q+R; (10.24)

with degeneracy 1
2
n(n� 3) and corresponding eigenvectors
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�2 ! ~xT2 (t) � (~�T2 (t);~0
T ); (t = 1; : : : ;

1

2
n(n� 3)): (10.25)

Combined the eigensystems of A reads

8>>>>><
>>>>>:

�l0 ! ~xl0 �
�
~�l
0

~"l
0

�
; (l = 1; : : : ; 3);

�l1 ! ~xl1(r) �
�
~�l
1
(r)

~"l
1
(r)

�
; (l = 1; : : : ; 3); (r = 1; : : : ; (n� 1));

�2 ! ~x2(t) �
�
~�2(t)
~0

�
; (t = 1; : : : ; 1

2
n(n� 3)):

(10.26)

Similarly the order of B is 1
2
n(n� 1)+2n and B can be diagonalized with eigensystem

8>>>>><
>>>>>:

�l0 ! ~yk0 �
�
~�k
0

~Æk
0

�
; (k = 1; : : : ; 3);

�k1 ! ~yk1(r) �
�
~�k
1
(r)

~Æk
1
(r)

�
; (k = 1; : : : ; 3); (r = 1; : : : ; (n� 1));

�2 ! ~y2(t) �
�
~�2(t)
~0

�
; (t = 1; : : : ; 1

2
n(n� 3)):

(10.27)

- Now we note the important fact that in the limit n! 0, the eigenvectors ~xl1(r)(~y
k
1(r)),

the corresponding eigenvalue equation and thus the �l1(�
k
1), reduce to ~x

l
0(~y

k
0) and �

l
0(�

k
0).

Since these describe 
uctuations within RS, the only eigenvalues involved in the sta-
bility against RSB are �2 and �2.

- A second important fact is that the whole procedure is dependent on the structure
of A and B only, and not on the speci�c values of their elements. So we have

8>>>>>>>>>>>><
>>>>>>>>>>>>:

~�2(t) � ~�2(t)

~�2(t) ? ~�l0; ~�
k
0;

0
BBBBB@
t = 1; : : : ; 1

2
n(n� 3)

r = 1; : : : ; (n� 1)

l = 1; : : : ; 3; k = 1; : : : ; 3

1
CCCCCA

~�2(t) ? ~�l1(r); ~�
k
1(r):

(10.28)

So far, we have examined A and B separately. Now we will show that in analyz-
ing the full stability matrix H, in the limit n! 0 no mixing between the eigenvectors
corresponding to 
uctuations within RS and those describing RSB-
uctuations, occurs.
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The transformation matrices that diagonalize A and B are orthogonal matrices with
the eigenvectors as columns

UA �

2
666664
�2 j �01

| |

0 j "01

3
777775 UB �

2
666664
�2 j �01

| |

0 j Æ01

3
777775 : (10.29)

We now apply the following transformation matrix on H

U =

2
64 UA 0

0 UB

3
75 : (10.30)

Using (B.29), this gives

U
T
HU =

2
666666664

�21Ic 0 1Ic 0

0 DA 0 MRS

1Ic 0 �21Ic 0

0 M
T

RS 0 DB

3
777777775
; (c =

1

2
n(n� 3)); (10.31)

where DA and DB are diagonal matrices with the eigenvalues �l0; �
l
1 and �k0; �

k
1 re-

spectively on the diagonal andMRS is a n(3)�n(3) dimensional matrix which couples
the 
uctuations within the RS-subspace of A and B

MRS = �
T

01�01 + "T01X
11
Æ01: (10.32)

We see that the RSB-eigenvalue equation simpli�es to

(�2 � �)(�2 � �)� 1 = 0: (10.33)

This gives us two 1
2
n(n� 3)-fold degenerate eigenvalues

�� =
1

2
(�2 + �2 �

q
(�2 � �2)2 + 4 ): (10.34)

Since �+ > ��, the sign of the product of these two eigenvalues determines the stability
against RSB. This is the so-called replicon eigenvalue

�R � ���+ = �2�2 � 1: (10.35)
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remark:
In fact the result for the decoupling of the RS- and RSB-
uctuations is more general.
Take

H =

2
64 A X

X
T

B

3
75 =

2
666666664

A
22

A
21

X
22

X
21

A
21T

A
11

X
12

X
11

X
22T

X
12T

B
22

B
21

X
21T

X
11T

B
21T

B
11

3
777777775
; (10.36)

with A
22
;A

21
;A

11
; B

22
;B

21
;B

11
and X

11
as in (B.2-B.8) and

X22
ab;cd �

@2g

@qab@q̂cd
(a < b; c < d = 1; : : : ; n); (10.37)

X21
ab;c:j �

@2g

@qab@f̂ ic
(a < b; c = 1; : : : ; n; i = 1; : : : ; 2); (10.38)

X12
a:i;cd �

@2g

@f ia@q̂cd
(a; c < d = 1; : : : ; n; i = 1; : : : ; 2): (10.39)

Since we have from (B..29), that �
T

2X
21
= 0 and X

12
�2 = 0, we get

U
T
HU =

2
666666664

�21Ic 0 MRSB 0

0 DA 0 MRS

M
T

RSB 0 �21Ic 0

0 M
T

RS 0 DB

3
777777775
; (c =

1

2
n(n� 3)); (10.40)

with

MRSB = �
T

2X
22
�2;

MRS = �
T

01X
22
�01 + �

T

01X
21
Æ01 + "T01X

12
�01 + "T01X

11
Æ01: (10.41)

So the eigenvalues determining the stability against RSB-
uctuations can be obtained
from the simpli�ed eigenvalue equation
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2
64 �21Ic MRSB

MRSB �21Ic

3
75� �1I2c = 0; (c =

1

2
n(n� 3)): (10.42)

It is clear that the decoupling of the eigenvalue equations concerning RS- and RSB-

uctuations can easily be generalized to any model with n2 order parameters with
two replica indices and n1 order parameters with one replica index. Technically the
essential points are

� 1) The eigenvectors (and corresponding eigenvalue) invariant under permutations
of all replicas but one, reduce to the 
uctuations within RS for n! 0.

� 2) The columns of matrices of the form

Xab;c =
@2G

@uab@vc
; (a < b; c = 1; : : : ; n); (10.43)

are vectors of length 1
2
n(n�1) and are invariant under permutations of all replicas

but one (the column index). Consequently they are orthogonal to the ~�2(t); (t =
1 : : : ; 1

2
n(n� 3)) for all n.

Following [44] we can determine the eigensystems of A and B separately for any order
of RSB, by considering the same three classes of eigenvectors as before. Unlike in the
RS-saddle point, the structure of each of the eigenvectors will be dependent on the
explicit values of the elements of A and B respectively and not only on their structure.
This will cause a complicated coupling between the 
uctuations in both blocks, and an
analytic evaluation becomes very soon an infeasible task. However, due to point 2),
in the calculation of the eigenvalues of the combined system, the 
uctuations of the
third class still decouple from the 
uctuations of the �rst and the second class. For the
models with spherical couplings and no dilution, we are left with only one set of order
parameters (qab), so in principle following [44] one can calculate the stability for any
order of RSB.
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