
REAL TIME RENDERING OF DEFORMABLE

AND SEMI-TRANSPARENT OBJECTS

BY VOLUME RENDERING

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universit�at Mannheim

vorgelegt von

Dipl.-Ing. Amel Guetat

aus Tunesien

Mannheim, 2008

Dekan: Professor Dr. Matthias Krause, Universit�at Mannheim

Referent: Professor Dr. J�urgen Hesser, Universit�at Heidelberg

Korreferent: Professor Dr. Reinhard M�anner, Universit�at Heidelberg

Tag der m�undlichen Pr�ufung: 30. Juni 2008

i

Abstract

Volume rendering is one of the key technique to display data from diverse application
�elds like medicine, industrial quality control, and numerical simulations in an ap-
propriate way. The current main limitations are still the inadequate rendering speed
and the limited
exibility of the most e�cient algorithms. In this dissertation, we
developed three new algorithms for the acceleration of direct volume rendering and
volume deformation. The �rst algorithm consists on a �rst step, on the reimplementa-
tion of the existing preintegration volume rendering approach, where the gray values
between two sampling points change linearly, by considering the correct not simpli�ed
volume rendering integral, i.e, considering the attenuation factor as well as the shad-
ing function during the precompuation process. On a second step, we extended our
algorithm to quadratic and higher order polynomial model. The preintegration speed
for linear model is increased by a factor of 10. The second algorithm accelerates shear
warp and ray casting process. While acceleration techniques like space leaping and
early ray termination are e�cient when rendering volumes with most of the voxels are
mapped either opaque or transparent, encoding coherence appeared more e�cient for
rendering semi-transparent volumes. It's an approach for coding empty regions to a
coherency encoding that can describe regions where the opacity changes linearly. We
reimplemented this technique using a volume graphics library (VGL). We improved
it by using the preintegration technique to evaluate opacity and shading inside the
coherent region. We achieved a speedup of up to a factor of 3. The third algorithm is
for volume deformation. The applied technique is the ray deformation where the vol-
ume deforming and the volume rendering are incorporated into a single process. This
is implemented in our approach, by combining the Free Form Deformation (FFD) and
inverse ray deformation. Unlike the previous implementation, our opacity and shad-
ing calculation are based on the preintegration technique which allows us to handle
di�erent lengths of the sampled intervals in the polyline segments which approximate
the deformed ray.

Key Words:Volume rendering, Volume deformation, Pre-integration, Ray cast-
ing, Shear warp, Free Form Deformation, Coherence encoding.

iii

Acknowledgements

First and foremost I should thank my supervisor Prof. J�urgen Hesser not only for
all that I have learned from him during my PhD program at the Institute of Com-
putational Medicine (ICM), but also for his full support in every aspect as a great
supervisor. There is no need to mention that a big part of this thesis is the result of
joint work with him.

I am deeply grateful to Prof. Reinhard M�anner the head of the Chair of Com-
puter Science V at the University of Mannheim and the director of the Institute of
Computational Medicine (ICM), for providing me a very good working environment.

I would like to thank all my colleagues at the ICM for providing a good working
atmosphere, and for the good time to relax from the work.

I wish to extend my warmest thanks to Christiane Glasbrenner, Andrea Seeger
and Dina Goerlitz who have helped me with the administration e�ort, and to Christof
Poliwoda from Volume Graphics for supplying me with his library which I have used
during my work at the ICM.

I wish to thank my family: my sister Henda and my parents, Abdelmejid and
Noura for their prayers and their encouragements throughout my graduate work in
Germany. I thank them for their love, their support, and their con�dence throughout
the past twenty-eight years. I dedicate this work to them, to honor their love, patience,
and support during these years.

Finally, I wish to express my loving thanks to my husband Skander who supported
me in my work whenever he could.

My work at ICM was supported in part by a graduation scholarship after the
national graduating promotion law (LGFG). I would like to express my gratitude for
their support.

v

Table of Contents

Title 1

i

Abstract iii

Acknowledgements v

Table of Contents vii

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Outline . 3

2 Background of Volume Graphics 5

2.1 Introduction . 5

2.2 Volumetric Data . 5

2.2.1 Volume Data Acquisition . 5

2.2.2 Volume Data Representation 6

2.2.3 Volume Resampling . 6

2.2.4 Volume Visualization . 8

2.3 Volume Rendering . 10

2.3.1 Transport Theory of light . 11

2.3.1.1 Radiant Energy . 11

2.3.1.2 Absorption, Emission, and Scattering 12

2.3.1.3 Equation of transfer 12

2.3.1.4 Boundary Conditions 14

2.3.1.5 Integral form of the equation of transfer 14

2.3.2 Volume Rendering Equation 15

vii

CONTENTS

2.3.3 Shading with the Phong Model 18

2.3.3.1 Ambient Re
ection 19

2.3.3.2 Di�use Re
ection . 19

2.3.3.3 Specular Re
ection 21

2.4 Conclusion . 22

3 Volume Rendering Algorithms 23

3.1 Introduction . 23

3.2 Volume Rendering Process . 23

3.2.1 Compositing Formula . 24

3.3 Volume Rendering Algorithms . 25

3.3.1 Ray-Casting . 25

3.3.2 Shear Warp . 26

3.4 Volume Rendering Acceleration Methods 27

3.4.1 Early Ray Termination . 27

3.4.2 Space leaping . 28

3.4.3 Coherence Encoding . 29

3.5 Conclusion . 30

4 Software 31

4.1 Introduction . 31

4.2 Volumes Representation . 31

4.3 Rendering Kernel . 32

4.3.1 The VGL Ray tracing Kernel 34

4.3.2 The VGL Direct Rendering Kernel 34

4.4 Volume Ray tracing plug-in module 35

4.5 Conclusion . 36

5 Pre-Integrated Volume Rendering 37

5.1 Related Work . 37

5.1.1 Volume Rendering Integral 37

5.1.2 Prior work about pre-integration 38

5.1.3 Basic Algorithm . 40

5.2 Linear Gray Value Model . 43

5.2.1 Opacity Evaluation . 43

5.2.2 Ambient Re
ection . 45

5.2.3 Di�use Re
ection . 46

5.2.4 Specular Re
ection . 48

5.2.5 Integration Length . 49

viii

CONTENTS

5.2.6 Realization . 50

5.2.6.1 Incremental Algorithm for Generating LUT for Lin-

ear Model . 51

5.2.6.2 Algorithmic Complexity 54

5.3 Quadratic Case . 54

5.3.1 Motivations . 54

5.3.2 Strategy . 55

5.3.3 Opacity Calculation . 55

5.3.3.1 Case I: b0 � 0 . 56

5.3.3.2 Case II: b0 2]� 2D0; 0[. 57

5.3.3.3 Case III: b0 � �2D0 58

5.3.4 Re
ection Calculation . 60

5.3.4.1 Case I: b0 � 0 . 60

5.3.4.2 Case II: b0 2]� 2D0; 0[. 60

5.3.4.3 Case III: b0 � �2D0 60

5.3.5 Realization . 62

5.3.5.1 Implementation of the Opacity LUT 63

5.3.5.2 Implementation of the Re
ection LUT 64

5.3.5.3 Algorithmic Complexity 64

5.4 Extension to Cubic or Higher-Order Polynomials 65

5.5 Shading . 66

5.5.1 Shading for Linear Gray Value Model 67

5.5.2 Shading for Quadratic Gray Value Model 67

5.5.2.1 Determination of Sf and Sb 67

5.5.2.2 Determination of R 67

5.6 Results . 68

5.6.1 Algorithmic Performance . 68

5.6.1.1 Linear Look-up-table Generation 68

5.6.1.2 Quadratic Look-up-table Generation 70

5.6.1.3 In
uence of Distance Parameter 71

5.6.1.4 In
uence of the Parameter R 71

5.6.2 Image Quality . 75

5.6.2.1 Linear Look-up-table Generation 75

5.6.2.2 Quadratic Look-up-table Generation 76

5.6.3 Discussion and Analysis: Optimization of the LUT size . . . 79

5.7 Conclusion . 84

ix

CONTENTS

6 Coherence Encoding 85

6.1 Introduction . 85

6.2 Accelerating Shear Warp . 88

6.2.1 Implementation of earlier shear warp algorithm for parallel pro-

jection . 88

6.2.2 Accelerating Shear Warp by Coherence Encoding 91

6.2.3 Implementation . 92

6.2.4 Results . 97

6.3 Accelerating Ray Casting . 101

6.3.1 Existing ray casting acceleration methods 101

6.3.2 Accelerating Ray-Casting by Coherence Encoding 102

6.3.2.1 The Taylor Expansion based Extended Distance Cod-

ing (EDC) . 105

6.3.3 Implementation . 107

6.3.4 Results and Analysis . 112

6.4 Conclusion . 119

7 Rendering Deformed Objects 120

7.1 Introduction . 120

7.2 Related Work . 120

7.3 Mathematical Background . 123

7.3.1 Parametric representation of objects 123

7.3.2 B-splines . 123

7.3.2.1 The knot vector . 124

7.3.3 De Boor Algorithm . 125

7.3.4 Tri-variate Tensor product B-spline 125

7.4 Free Form Deformation (FFD) . 127

7.5 Ray casting in deformed space . 130

7.5.1 Coe�cient Polynomial Determination 132

7.5.2 Polyline Segment Estimation 135

7.6 Implementation . 135

7.6.1 Opacity Calculation . 137

7.6.2 Shading . 138

7.6.3 Algorithm's complexity . 139

7.6.4 Optimization . 139

7.7 Results . 140

7.8 Conclusion . 143

x

CONTENTS

8 Conclusion 144

8.1 Summary of Contributions . 145

8.2 Future Work . 148

A Algorithms 150

Bibliography 158

xi

List of Figures

2.1 Example Grid Types . 7

2.2 Tri-Linear Interpolation . 8

2.3 Visualization Process . 9

2.4 Light-material interaction . 13

2.5 Discretizing the ray trajectory. 17

3.1 The four basic steps of volume rendering: (1)Ray-casting (2)Sampling

(3)Shading (4)Compositing . 24

3.2 Shear-Warp transformation for parallel projection 27

3.3 Each voxel contains a number that identi�es its distance to the next

opaque voxel. 29

4.1 VGLSampleGrid Class . 32

4.2 VGL rendering kernel . 33

5.1 Scheme of the parameters determining the color and opacity of the i-th

ray segment.(By Engel [9]) . 42

5.2 Incremental calculation of the color by compositing 53

5.3 Variation of h when b0 � 0 . 57

5.4 Variation of h when b0 2]� 2D0; 0[. 58

xii

LIST OF FIGURES

5.5 Variation of h when b0 � �2D0 . 59

5.6 Approximation of a cubic curve by a quadratic one 66

5.7 Relation between the preintegration time and the LUT size (Blue

curve) and a �t of a quadratic function to it (Red curve). 69

5.8 Relation between the preintegration time and the LUT size (Blue

curve) and a �t of a cubic function to it (Red curve). 71

5.9 Relationship between the LUT size in distance parameter direction and

the linear LUT pre-integration time 72

5.10 In
uence of the R parameter number nR on the pre-integration time

en seconds . 72

5.11 Image quality: (a) represents an image rendered with logarithmic sub-

division of R. (b) represents an image rendered with nR = 400 73

5.12 Relation between image error and the LUT resolution (Blue curve),

for linear gray value model and a �t of a quadratic function to it (Red

curve). 76

5.13 Images rendered using di�erent resolutions for linearly pre-integrated

lookup tables:Image a corresponds to resolution 32.Image b corresponds

to resolution 64.Image c corresponds to resolution 128.Image d corre-

sponds to resolution 256 . 77

5.14 Images rendered using di�erent resolutions for quadratically pre-integrated

lookup tables:Image a corresponds to resolution 32.Image b corresponds

to resolution 64.Image c corresponds to resolution 128.Image d corre-

sponds to resolution 256 . 78

xiii

LIST OF FIGURES

5.15 Relation between image error and the LUT resolution (Blue curve), for

quadratic gray value model and a �t of a quadratic function to it (Red

curve). 79

5.16 In
uence of the volume size on the resulting image quality for both

opaque (below) and semi-transparent (above) data sets. 80

5.17 In
uence of the volume transparency on the resulting image quality for

di�erent data sets. 81

5.18 In
uence of volume transparency and size parameters on pre-integrated

LUT dimension. 83

5.19 In
uence of the LUT size on the image error for a semi-transparent

teapot (256� 256� 256 voxels) data set. 83

6.1 Ray tracing of hierarchical enumeration 86

6.2 The 3 data structures of the run-length-encoded volume 89

6.3 O�sets stored with opaque pixels in the intermediate image scanline . 90

6.4 Traversal of voxel and image scanlines: resampling and compositing

only performed when voxels in run are non-empty and pixels in the

intermediate image are non-opaque 90

6.5 Linearization of the opacity curve along a voxel scanline: the x axis

represents the gray values along a voxel scanline and f(x) represents

the opacity function. The black curve is the continuous opacity transfer

function. The red curve de�nes the piecewise opacity function acquired

by connecting the sample values (red dots) obtained by linearization

of the continuous function . 92

xiv

LIST OF FIGURES

6.6 The voxel array after coding distance: only the boundary voxels (yel-

low) of the coherent region (green) are saved on the voxel array . . . 94

6.7 Traversal of two adjacent voxel scanlines 96

6.8 Number of saved data . 97

6.9 The in
uence of encoding error . 98

6.10 The in
uence of encoding error.Image a is the reference image rendered

without coherence encoding.Image b,c,d are images rendered with co-

herence encoding using an error threshold value respectively equal to

0:2; 0:5 and 1 . 99

6.11 The in
uence of encoding error.Image a is the reference image rendered

without coherence encoding.Image b,c,d are images rendered with co-

herence encoding using an error threshold value respectively equal to

0:2; 0:4 and 0:5. 100

6.12 Approximating the voxel opacity value curve by piecewise linear segments103

6.13 Coherence encoding for ray-casting: for each voxel, the shortest coher-

ent distance is fetched among all possible directions and saved 104

6.14 The class SampleGridCoherence for encoding coherence distances . . 109

6.15 Ray-casting algorithm with Coherence Encoding and Pre-Integration 110

6.16 Rendering Process . 111

6.17 Rendering opaque engine with coherence encoding 113

6.18 Rendering opaque engine with coherence encoding and pre-integrated

technique . 114

6.19 Rendering semi-transparent engine with coherence encoding 116

xv

LIST OF FIGURES

6.20 Rendering semi-transparent engine with coherence encoding and pre-

integrated technique . 117

6.21 In
uence of encoding error on rendering performance for di�erent tech-

niques and data sets: (a)opaque engine(128 � 192 � 256 voxels) ren-

dered using only coherence encoding, (b)semi-transparent engine(256�
256 � 128 voxels) rendered using only coherence encoding, (c)opaque

engine(128� 192� 256 voxels) rendered using coherence encoding and

pre-integration technique, (d)semi-transparent engine(256� 256� 128

voxels) rendered using coherence encoding and pre-integration technique118

7.1 Deformation by inversely deforming rays. (a) Deformed primitive, in

undeformed space. (b) Undeformed primitive, in its undeformed coor-

dinate system, showing path of ray (By Barr [1]) 122

7.2 Ray de
ector. (a) Locate a ray de
ector at the right side of a hexahe-

dron (2D draft). (b) The ray trajectories are deformed within the ray

de
ector. (c) The visual e�ect. (By Kurzion [33]) 122

7.3 The De Boor Algorithm for a quadratic B-Spline segment 126

7.4 FFD deformation. (a)Parallelepiped Grid. (b) Initial position. (c)

Deformed FFD grid. (d) Deformed Object 130

7.5 The Polynomial data structure to de�ne the domain D 132

7.6 Approximation of Deformed Ray by Polyline 133

7.7 Local curvature estimation (By Chen [24]) 134

7.8 The process of transforming a deformed ray in polyline, given an error

threshold . 136

7.9 Ray Casting in deformed space . 137

xvi

LIST OF FIGURES

7.10 Rendering of deformed and undeformed opaque volume data sets: (a)

The deformed engine. (b) The undeformed engine. (c) The deformed

Boston Tea pot CT. (d) The undeformed Boston Tea pot CT. 141

7.11 Rendering of deformed and undeformed semi-transparent Boston Tea

pot CT volume data set: (a) The deformed Boston Tea pot CT. (b)

The undeformed Boston Tea pot CT. 142

xvii

List of Tables

5.1 Relationship between LUT computation time and linear pre-integrated

lookup table dimension n. 69

5.2 Comparing computation time in second for n�n quadratic pre-integrated
lookup table. 70

5.3 Comparison between two di�erent approaches for the subdivision of

the R range and their in
uences on the lookup table generation speed 74

5.4 Integration accuracy of our linear pre-integration approach: the image

error is de�ned by the average error metric 75

5.5 Integration accuracy of our quadratic pre-integration approach: the

image error is de�ned by the average error metric. 76

5.6 In
uence of the LUT dimensions on the Image error. 82

6.1 Rendering parameters for opaque data sets rendered with our algorithm113

6.2 Rendering parameters for semi-transparent data sets rendered with our

algorithm . 115

7.1 Rendering time of deformed volume data sets 143

xviii

List of Algorithms

1 A(a,b): Accumulated opacity . 44

2 Get Linear Color: Incremental algorithm for generating lookup tables

when the gray value model is linear 53

3 Calculate Coherence(�rled; l): Pseudo code for encoding coherency in

voxel scanline: First, the algorithm calculates the distance where the

error is still below a threshold. Then, it saves for each voxel in between

the two boundaries of the linearized scanline part, its coherence distance 95

4 Tayloredc: The pseudo-code for the Taylor expansion based EDC algo-

rithm: the input to this algorithm is a classi�ed discrete volume data

set vol. The output is a volume data set having the same size as vol

and containing the coherence encoding distances. 109

5 Encode Coherence: Encoding Coherence Method 111

6 lookdis(float x; float y; float d; int �i): The lookdis procedure 115

7 FFD(P; u; v; w): Evaluation of the tri-Variate B-Spline Tensor product

by de Boor algorithm . 127

xix

LIST OF ALGORITHMS

8 Get Polyline Segment: Pseudo-Code for Polyline Segment Evaluation.

The inputs of this algorithm are the maximum allowed segment length

and the undeformed ray ray. The output is the polyline segment

Poly Seg of length seglength. 136

9 Get opacity quad: The pseudo code for the quadratic opacity lookup

table generation's algorithm. The input of this algorithm is the opacity

transfer function . 150

10 The pseudo-code for the att quad algorithm: The inputs of this algo-

rithm are the gray value i, a constant M already calculated and the

opacity transfer function stored in material. The output is the opacity

value at the gray value i . 155

11 Pseudo code for the opt algorithm: The inputs of this algorithm are the

gray value t, a constant M already calculated and the opacity transfer

function stored in material. The output is the opacity value at the

gray value t . 156

12 Get opacity(VGLSampleMaterial�material; transfert�tfo): the opac-

ity lookup table for linear gray value model. The inputs are the opacity

transfer function. The output is the opacity LUT. 157

xx

Chapter 1

Introduction

Volume visualization is very important for understanding the real world and getting

information from it. It helps us to understand complex 3D data. That data can

be obtained by di�erent techniques. An example is the complex simulations for

estimating wind resistance over the surface of a car. Another example is the geological

research, in which acoustic waves generated by an arti�cial explosive are sampled and

used to produce 3D maps of geological structures below the surface of the earth.

Another typical example is the medical �eld, medical imaging technologies such as

magnetic resonance (MRI) and computed tomography (CT) can produce a sequence

of 2D slices which forms a 3D volume containing detailed representations of internal

organs, allowing doctors to make a diagnosis without invasive surgery. The method

which allows to reveal the information embedded in the tomography images is called

volume rendering.

The current main limitations of the existing volume rendering algorithms are the

inadequate rendering speed due to the huge size of the volume data.

1

CHAPTER 1.1. MOTIVATION

1.1 Motivation

One main motivation of this work is to avoid artifacts in rendered images, due to

volume data sets mapped with complex transfer functions. A pre-integration volume

rendering technique [10] is a solution for such problem. It assumes a linear distribution

of gray values between two consecutive slices, calculates the pre-integrated volume

rendering integral for each possible combination in the transfer function and save

the results in a lookup table. In our work, we give a comprehensive approach which

describes the precomputation without simpli�cations and where the normals depend

on the opacity instead of the gray values. We achieved a speedup of up to a factor

of 3. We also extended this technique to quadratic, and higher-order polynomial

model for the change of the gray values between two sample points. The second

motivation of this work is to support applications where one deals with data sets that

are acquired from objects with complicated inner structures. In order to see both,

inner structures and their relation to the outer shape of the object, one typically

uses semi-transparency. However, with this parameter setting, one has to take into

consideration that the overall performance of the rendering system drops dramatically.

In order to overcome this problem, a coherency encoding approach [5] was suggested

to describe regions where the opacity change linearly. This can give a considerable

speedup of up to a factor of 2. A �rst prototype showed that this approach is feasible

in principle but provides no real-time encoding and visualization. In order to solve

this problem, we proposed to combine the coherence encoding approach with the

pre-integrated volume rendering to evaluate opacity and shading inside the coherent

region. We achieved a speedup of up to a factor of 3. The third main motivation is that

we are able to render deformed volumes that occur in all cases where one performs

2

CHAPTER 1.2. THESIS OUTLINE

numerical simulations e.g. in computational
uid dynamics, structural mechanics

etc. For example medical training system where the physician can perform a virtual

operation that is such real-looking that during the intervention one cannot distinguish

between reality and simulation. The applied technique is the ray-deformation concept.

This concept has, in principle, demonstrated to work but there are still many open

problems for their real usage. The �rst is the signi�cant overhead to transform the

local image gradient according to the deformation �eld. We overcome this problem

by considering a polynomial approximation of the deformed ray. We also remedied to

the problem of opacity compensation for volume change by evaluating the opacities

directly from the opacity lookup tables calculated for di�erent distances, in the pre-

integrated preprocessing step.

1.2 Thesis Outline

The work presented in this thesis is distributed over �ve main parts:

Chapters 2-4 belongs to the �rst part, where chapters 2 and 3 present the results

of a thorough investigation into the current trends in volume graphics and volume

rendering. Chapter 4 gives an overview about the software used for our development

namely the Volume Graphics Library (VGL).

The second part consists on the chapter 5, where we developed the improved pre-

integration technique. We �rst implemented it considering no simpli�cation for vol-

ume rendering integral and for di�erent sampling interval distances. We further ex-

tended this technique to quadratic and higher order polynomial model for gray value

change inside the volume data.

The third part which is the chapter 6 is about encoding coherence in volume data.

3

CHAPTER 1.2. THESIS OUTLINE

In a �rst step, we implement the existing technique on the shear warp algorithm,

considering two voxel scanlines simultaneously when marching through the volume.

In a second step, we apply the coherence encoding technique to the ray casting algo-

rithm. For that purpose, we �rst evaluated for each voxel in the volume its coherence

distance, using a Taylor-expansion based spatial coherence method and the result

is saved in a 3D array data structure. In a second step, we address those spatial

coherence information to encode coherency along the ray traversal. And we directly

retrieve opacity and shading values in the coherent regions from the pre-integrated

lookup tables with the corresponding distances.

The fourth part is the chapter 7. It addresses the volume deformation algorithm. We

�rst gave an overview about the theoretical background of the deformation method.

Further, we developed the deformation method which combines inverse ray defor-

mation with the uniform B-spline representation of the free form deformations. We

optimize the existing method by approximating the deformed ray by a piecewise sec-

ond degree polynomial calculated explicitly thanks to the quadratic uniform B-spline.

This will avoid us recalculating at each time the FFD transform which is time consum-

ing task. Another improvement is for opacity compensation. After the deformation,

the density within the volume is changed, therefore the opacity value of the sample

points should be corrected to re
ect the change of volume density. We addressed this

problem by reading directly the correct opacity value in the pre-integrated opacity

lookup table calculated in a preprocessing step and corresponding to the new sampling

interval distance of the deformed ray.

To close, a brief summary of the undertaken work is given in the last part repre-

sented by the chapter 8.

4

Chapter 2

Background of Volume Graphics

2.1 Introduction

For the analysis and interpretation of eventual information contained within a volume

data set, the exploration of the data is required. This is achieved by volume visu-

alization techniques. Volume visualization is a process of transforming information

into a visual form enabling the user to observe the information. It is concerned with

volume data representation, modeling, manipulation and rendering. In this chapter,

we begin with an introduction to volume data and then a description of the volume

visualization process.

2.2 Volumetric Data

2.2.1 Volume Data Acquisition

Volume data can be acquired either by sampling, simulation or modeling techniques.

For example, a sequence of 2D slices obtained from Magnetic Resonance Imaging

(MRI) or Computed Tomography (CT) is 3D reconstructed into a volume model for

5

CHAPTER 2.2. VOLUMETRIC DATA

medical examination or surgery. CT is also used for non-invasive inspection of me-

chanical parts. Similarly, confocal microscopes produce data sets which are visualized

to study the morphology of biological structures. In computational
uid dynamics,

the result of simulation are often visualized as volume data for analysis and veri�ca-

tion.

2.2.2 Volume Data Representation

Mathematically speaking, volumetric data is typically a set S of samples (x; y; z; v),

representing the value v of some property of the underlying object at the 3D location

(x; y; z). The value v can represent one or a group of measurable properties like

density, color, heat or pressure. A volume is exactly such a 3D model and it stores

the contents of a 3D object by a 3D lattice of points. The element of the 3D lattice

is called voxel and stores v. The voxels are typically de�ned on a regular grid, a 3D

array in computer memory. For this reason, S will be referred to as the array of values

S(x; y; z). Alternatively, either rectilinear, curvilinear(structured), or unstructured

grids are employed(Figure 2.1). An unstructured or irregular volume is a collection of

cells whose connectivity has to be speci�ed explicitly. These cells can be of arbitrary

shape such as tetrahedron, hexahedron or prism.

2.2.3 Volume Resampling

The array S only de�nes the value of some measured property of the data at discrete

locations in space. To determine values at arbitrary sample points location, volume

resampling is needed. It consists on applying some interpolation function to S. There

are many possible interpolation functions. The simplest one is the nearest neighbor

6

CHAPTER 2.2. VOLUMETRIC DATA

Figure 2.1: Example Grid Types

interpolation, it has the order zero: the value at any location in R3 is simply the value

of the closest sample to that location. This interpolation method is known for its low

computational complexity but on the other hand, a low quality image results. A �rst

order interpolation method can also be used, known as trilinear interpolation. With

this interpolation function, the value v is assumed to vary linearly along directions

parallel to one of the major axes. Let the point P lie at location (xp; yp; zp) within a

voxel de�ned by samples V000; V100; V010; ::::etc::::V111. For simplicity, let the distance

between samples in all three directions be 1. The value at position P within the cube

will be denoted vp, as shown in �gure 2.2 and is given by:

vp = V000(1�xp)(1� yp)(1� zp)+V100xp(1� yp)(1� zp)+V010(1�xp)yp(1� zp)+

V001(1�xp)(1�yp)zp+V101xp(1�yp)zp+V011(1�xp)ypzp+V110xpyp(1�zp)+V111xpypzp.
Higher-order interpolation functions can also be used like cubic spline interpola-

tion. The cubic spline interpolation is a piecewise continuous curve, passing through

each of the values in the array. There is a separate cubic polynomial for each interval,

each with its own coe�cients. The value of a sample point x 2 [xi; xi+1] is given by:

Si(x) = ai(x� xi)
3 + bi(x� xi)

2 + ci(x� xi) + di.

7

CHAPTER 2.2. VOLUMETRIC DATA

Figure 2.2: Tri-Linear Interpolation

Together, these polynomial segments are denoted S(x): the spline. Four coe�-

cients for each interval are required to de�ne the spline S(x).

2.2.4 Volume Visualization

Over the years, many techniques have been developed to visualize 3D data. Volume

visualization is used to create images from scalar and vector data sets de�ned on

multiple dimensional grids, i.e., it is the process of projecting a multidimensional

(usually 3D) data set onto a 2D image plane to gain an understanding of the structure

contained within the data.

The typical volume visualization process can be described with �gure 2.3. First,

8

CHAPTER 2.2. VOLUMETRIC DATA

Figure 2.3: Visualization Process

data acquisition is performed either via empirical measurement or computer simula-

tion to obtain a raw data which have to be preprocessed for use. Data preprocess-

ing describes any type of processing on raw data which is transformed into a for-

mat(volume data) that will be more easily and e�ectively processed for the purpose

of the user. There are di�erent methods used for preprocessing, including sampling,

which selects a representative subset from a large population of data, scaling the

data for a better value distribution and denoising, which removes noise from data.

Therefore, the volume data is classi�ed. Classi�cation is the process of mapping the

scalar values in the volume to primary colors and opacities. This is usually de�ned

using an RGBA transfer functions. The settings of the color and opacity depends on

the information the user want to reveal. After classi�cation, the volume is rendered

and �nally displayed. In the next section, we describe in details the volume rendering

9

CHAPTER 2.3. VOLUME RENDERING

process.

2.3 Volume Rendering

Volume rendering is a technique for displaying volumetric data sets, especially 3D

scalar data �elds, to model and understand the natural scenes containing clouds, fog,

ames and so on. In order to get most realistic results, it is important to model these

features correctly. In this thesis, we consider the reconstruction of images of some

scenes as it would be recorded by a photographic camera. This can be completely

described by the known physical laws of optics. In order to simulate this process,

one has to calculate the radiation �eld as it would be produced by a real scene.

Thereby, things will be much easier if one ignores the wave character of light and

its two possible states of polarization. In fact, this approximation is most often used

in praxis. Neglecting these e�ects we are dealing with geometrical optics in contrast

to physical optics of light. Considering the approximation of geometrical optics, the

interaction of light with surfaces and volume elements can be completely described

within the framework of linear transport theory [4, 3]. In the �rst part of this section,

we will discuss the basics of this theory. In the second part, we will subsequently

discuss various techniques for solving the central equation of transport theory, the

equation of transfer. Di�erent solution techniques directly translate into di�erent

rendering algorithms which will be discussed later, in the next chapter.

10

CHAPTER 2.3. VOLUME RENDERING

2.3.1 Transport Theory of light

The interaction of light with surfaces and volume elements [30, 50, 32] is properly

described by methods of radiation transport theory. In the following, we discuss the

basis of radiation transport theory and the derivation of the equation of transfer.

2.3.1.1 Radiant Energy

Radiometry deals with the description of light on a transport theoretic level. We

note that light can also be measured using the techniques of photometry which deals

with brightness as perceived by the human eye rather than the absolute power. In

computer graphics, we are interested in the measurement of the intensity of the light

instead of the number of photons. Using intensity, I(~x; ~n; �) completely describes the

radiation �eld at any point ~x, giving both its distribution in angle and frequency. Of

course, the radiation �eld has also a time dependance but here, we will assume the

radiation �eld to be time independent, because the photon
ow in a limited space is

assumed to reach equilibrium almost instantaneously due to the large velocity of light.

The amount of radiant energy �E, traveling in time dt within a frequency interval d�

around � through a surface element da into an element of solid angle d
 in direction

~n, is given by:

�E = I(~x; ~n; �)cos#dad
d�dt (2.3.1)

Here # is the angle between ~n and the normal on da. More formally, the intensity

I is also called radiance. It is the power density transmitted by the photons at the

position ~x in direction ~n, and it is measured in units of Watt per meter squared per

solid angle per frequency (Wm�2sr�1).

11

CHAPTER 2.3. VOLUME RENDERING

2.3.1.2 Absorption, Emission, and Scattering

When radiation passes through material, it undergoes several changes. First, an

amount of energy is generally removed from a beam of intensity I(~x; ~n; �). We de-

scribe this loss due to the absorption in terms of absorption coe�cient �(~x; ~n; �).

It is composed of a true absorption coe�cient �(~x; ~n; �) and a scattering coe�cient

�(~x; ~n; �):

� = �+ �: (2.3.2)

This energy when passing through a volume element of length ds and cross area da,

is given by:

�Eab = �(~x; ~n; �)I(~x; ~n; �)dsdad
d�dt: (2.3.3)

Second, energy can be emitted and this can be described by the emission coe�cient

�(~x; ~n; �). This coe�cient is composed of a thermal part or source term q(~x; ~n; �) and

a scattering part j(~x; ~n; �):

� = q + j: (2.3.4)

The total emission coe�cient is de�ned in such a way, that the amount of radiant

energy within a frequency interval da emitted in time dt by a volume element of

length ds and cross section da into a solid angle dn in a direction ~n is:

�Eem = �(~x; ~n; �)dsdad
d�dt: (2.3.5)

2.3.1.3 Equation of transfer

The change of the intensity due to absorption and emission, is described by the

equation of transfer. Considering the volume element in �gure 2.4, the di�erence

12

CHAPTER 2.3. VOLUME RENDERING

Figure 2.4: Light-material interaction

between the amount of energy emerging at position ~x+ d~x and the amount of energy

incident at ~x must be equal to:

I(~x; ~n; �)� I(~x+ d~x; ~n; �)dad
d�dt =

��(~x; ~n; �)I(~x; ~n; �) + �(~x; ~n; �)dsdad
d�dt (2.3.6)

By writing dx = nds, we immediately obtain the time independent equation of

transfer:

~n � rI = ��I + �; (2.3.7)

where we have used the directional derivative:

~n � rI = nx
@I

@x
+ ny

@I

@y
+ nz

@I

@z
= lim�s!0

I(~x)� I(~x+ ~n�s)

�s
(2.3.8)

13

CHAPTER 2.3. VOLUME RENDERING

2.3.1.4 Boundary Conditions

Like for other di�erential equations, we have to specify some boundary conditions, to

completely describe the radiation �eld. Let us describe what happens at the surfaces

S. For opaque surfaces, they are assumed to be a surface emitter E. We have then

the following explicit boundary condition:

I(~x; ~n; �) = E(~x; ~n; �); ~x 2 S (2.3.9)

where ~n always points into the volume. Explicit boundaries are independent of I

itself. In contrast, implicit or re
ecting boundary conditions are de�ned by:

I(~x; ~n; �) =

Z Z
k(~x; ~n0; ~n; � 0; �)I(~x; ~n0; � 0)d
0d� 0; ~x 2 S (2.3.10)

where k is the surface scattering kernel.

Thus, these boundary conditions leads to the well-known rendering equation, as

pointed out by Kajiya [30].

2.3.1.5 Integral form of the equation of transfer

Let us now integrate equation 2.3.7 along a ray. First, we notice that the operator

~n �r is the directional derivative along a line ~x = ~p+s �~n, with ~p being some arbitrary
reference point. Thus, the equation of transfer 2.3.8 can be rewritten as:

@

@s
I(~x; ~n; �) = ��(~x; ~n; �)I(~x; ~n; �) + �(~x; ~n; �); (2.3.11)

The optical depth between two points ~x1 = ~p+ s1 � ~n and ~x2 = ~p+ s2 � ~n is de�ned

as:

14

CHAPTER 2.3. VOLUME RENDERING

��(~x1; ~x2) =

Z s2

s1

�(~p+ s0 � ~n; ~n; �)ds0 (2.3.12)

Notice that equation 2.3.11 has an integrating factor e��(x0;x) and thus can be

written as:

@

@s
(I(~x; ~n; �)e��(~x0;~x)) = �(~x; ~n; �)e��(~x0;~x) (2.3.13)

By integrating, we get:

I(~x; ~n; �)e��(~x0;~x) � I(~x0; ~n; �) =

Z s

s0

�(~x0; ~n; �)e��(~x0;~x
0)ds0 (2.3.14)

This equation can be considered as the general formal solution of the equation of

transfer. It states that the intensity of radiation traveling along ~n at point ~x is the sum

of photons emitted from all points along the line segment ~x0 = ~p+s0 �~n, attenuated by
the integrated absorption of the intervening material, plus an attenuated contribution

from photons entering the boundary surface when it is pierced by that line segment.

2.3.2 Volume Rendering Equation

From the above equation 2.3.14, we can obtain the famous volume rendering equation,

which is the basis for all volume rendering. For this purpose, di�erent assumptions

are stated to solve this equation.

First, according to the emission-absorption model [39, 34, 26], scattering is ignored.

Then the emission coe�cient is equivalent to: � = q. Similarly, the so-called low-

albedo model is used to only consider the � coe�cient in the absorption term i.e � = �.

Second, because no mixing between di�erent frequencies is possible, we can assume

15

CHAPTER 2.3. VOLUME RENDERING

that the emission and the intensity do not depend on the frequency �. Finally, we

choose a di�erent set of variables by replacing ~x and ~n by s. The equation of transfer

in integral form is then:

I(s) = I(s0)e
��(s0;s) +

Z s

s0

q(s0)e��(s
0;s)ds0 (2.3.15)

with optical depth

�(s1; s2) =

Z s2

s1

�(s)ds (2.3.16)

Equation 2.3.15 is the volume rendering equation: The intensity measured at po-

sition s is composed of the intensity of the background I(s0), given by the boundary

conditions, that is reduced by the absorption between s0 and s. The second com-

ponent is re
ection, i.e. at each point s0, the amount q(s0) is re
ected to the viewer

direction and this light is absorbed from s0 to s.

The volume rendering equation is solved numerically by discretizing along the ray

path with sample points sk. We divide the range of integration into n intervals as

shown in �gure 2.5, then the intensity at position sk is obtained from the intensity

sk�1 by substituting s0 in equation 2.3.15 by sk�1:

I(sk) = I(sk�1)e��(sk�1;sk) +
Z sk

sk�1

q(s)e��(s;sk)ds (2.3.17)

Let we introduce the following substitutions:

�k = e��(sk�1;sk) (2.3.18)

16

CHAPTER 2.3. VOLUME RENDERING

Figure 2.5: Discretizing the ray trajectory.

and

bk =

Z sk

sk�1

q(s)e��(s;sk)ds (2.3.19)

�k and bk are respectively the transparency and the color of the material in between

the interval [sk�1; sk]. Transparency is de�ned between 0 and 1. Usually we can use

the opacity denoted by � and de�ned by: �k = 1� �k.

Thus, the intensity at a sample point sn can be written as:

I(sn) = I(sn�1)�n + bn = (I(sn�2)�n�1 + bn�1)�n + bn = :::

=
nX

k=0

bk

nY
j=k+1

�j; (2.3.20)

We also can rewrite this formula by:

I(sn) =
nX

k=0

bk

nY
j=k+1

1� �j; (2.3.21)

17

CHAPTER 2.3. VOLUME RENDERING

We thus end up with a formula that describes in a recursion equation how to

generate an image, given the physical values on the sample points of the rays. This

formula will be used in the next chapter to derive the implementations of volume

rendering. To evaluate the ray intensity using the equation 2.3.21, the usual way is

to use the rectangle rule. In case where the absorption and emission coe�cients are

explicitly described by a polynomial of certain degree, we can exploit this by using a

higher order quadratic polynomial [26].

In volume rendering, the scalar values associated to each voxel are mapped to

the parameters in the physical model like the absorption coe�cient and the emission

function. Opacity is obtained by mapping the scalar values of the voxels via a user

de�ned opacity transfer function, while the contribution part of the emission namely

the color is usually determined using a shading function. In the next section, we

describe how simulate the illumination of light in volume.

2.3.3 Shading with the Phong Model

Illumination models simulate the interaction of the light with the objects. We dis-

tinguish two types of illumination model. On one hand, the local illumination model

characterizes the contribution from the light that starts from a light source and is

re
ected on a surface. This means, the shading of any surface is independent from

the shading of other surfaces. On the other hand, the global illumination model

which adds to the previous one the light re
ected from other surfaces to the current

surface. This is by consequence more physically correct model and produces more

realistic images but it is also more computationally expensive. In volume rendering,

the local illumination model is preferred since the purpose is to display the shape of

18

CHAPTER 2.3. VOLUME RENDERING

objects in volume data set rather than a correct phot-realism [22]. In fact, that was

the assumption during generating the volume rendering equation. Phong re
ection

model is an illumination and shading model developed by Bui Tuong Phong [44]. It

can produce a certain degree of realism by combining di�use, specular and ambient

light at a given point. We discuss these three types of re
ection on the following.

2.3.3.1 Ambient Re
ection

Ambient re
ection is a gross approximation of multiple re
ections from indirect light

sources (e.g. the surfaces of walls and tables in a room that re
ect o� the lights from

light sources). Ambient re
ection produces a constant illumination on all surface,

regardless of their orientation. The intensity of ambient re
ection is proportional to

the local properties of the object,which is modeled by a constant Ka 2 [0; 1], called

ambient re
ection coe�cient. If we denote the intensity of the ambient light by Ia,

the intensity of the ambient re
ection is then given by:

Iamb = KaIa (2.3.22)

2.3.3.2 Di�use Re
ection

Di�use re
ection is the uniform re
ection of light with no directional dependence

for the viewer. It originates from light coming directly from a source to a surface

and then re
ected to the viewer. The di�use re
ection is governed by the Lamberts

law [60]. The intensity of the re
ected light is proportional to the dot product of

the surface normal and the light source direction, simulating a perfect di�user and

yielding a reasonable looking approximation to a dull, matte surface. The di�use

19

CHAPTER 2.3. VOLUME RENDERING

re
ection is then:

Idiff = KdIi(~N � ~L) (2.3.23)

whereKd is the di�use re
ection coe�cient, Ii is the light reaching the local surface

element. We assume that light source is in�nitely distant so that Ii is constant for

every voxel. ~L is the unit direction vector from the position of the considered point

on the surface to the point light source. ~N is the unit normal vector of a surface. It

is parallel to the local gradient of the voxel scalar value g(x; y; z):

~N(x; y; z) =
rg(x; y; z)
jrg(x; y; z)j (2.3.24)

Often, the gradient is approximated using the central di�erence gradient operator:

rg(x; y; z) =
1

2
[g(x+ 1; y; z)� g(x� 1; y; z)]~i

+
1

2
[g(x; y + 1; z)� g(x; y � 1; z)]~j

+
1

2
[g(x; y; z + 1)� g(x; y; z � 1)]~k (2.3.25)

Since gradient estimation is computational expensive, instead of estimating the

gradient on the
y, usually it is precomputed for each voxel and saved with it. This

method necessitates a large memory space. To overcome this problem, Lacroute [34]

proposed to precompute gradient vectors and encode them into a look up table which

is indexed with a convenient integer.

20

CHAPTER 2.3. VOLUME RENDERING

2.3.3.3 Specular Re
ection

Specular re
ection is when the re
ection is stronger in one viewing direction, i.e.

there is a bright spot, called a specular highlight. This is readily apparent on shiny

surfaces. For an ideal re
ector, such as a mirror, the angle of incidence equals the angle

of specular re
ection. Therefore, if ~R is the direction of specular re
ection and ~V is

the direction of the viewer, then for an ideal re
ector the specular re
ection is visible

only when ~V and ~R coincide. For real objects (not perfect re
ectors), the specular

re
ectance can be seen even if ~V and ~R do not coincide, i.e. it is visible over a range

of a values � (or a cone of values). The shinier the surface, the smaller the � range

for specular visibility. So a specular re
ectance model must have maximum intensity

at ~R, with an intensity which decreases as � increases. In the Phong illumination

model, this is modeled by a power n of the scalar product between ~V and ~R. The

specular re
ection is then written as:

Ispec = KsIi(~V : ~R)
n (2.3.26)

where Ks is the specular coe�cient and n is the shininess exponent of the material.

Hence, the whole Phong illumination formula is:

I = Iamb + Idiff + Ispec; (2.3.27)

When we have color representation as RGB values, the equation 2.3.27 is calculated

individually for R,G and B wave lengths.

21

CHAPTER 2.4. CONCLUSION

2.4 Conclusion

In this chapter, we discussed the basis of volume rendering algorithms. We �rst

presented the volume visualization process and then, we derived the volume rendering

equation from the transport theory of light. We also discussed important aspects in

volume rendering namely the shading operation.

In the next chapter, we will discuss in detail some algorithms for volume rendering

and techniques to optimize them.

22

Chapter 3

Volume Rendering Algorithms

3.1 Introduction

In this chapter, we �rst describe the volume rendering process. Then, we present

two important algorithms for volume rendering namely the ray-casting algorithm

and the shear warp algorithms. Finally, we discuss techniques for acceleration and

optimization of volume rendering algorithms.

3.2 Volume Rendering Process

As illustrated in �gure 3.1, the volume rendering process consists of three main ren-

dering phases [57]. Starting from a projection plane subdivided into screen pixels,

a viewing ray is casted into the virtual scene, through each pixel. Each ray is then

sampled at equidistant points, called sample points. The gray value of each sample

point is interpolated using the gray values of the voxels in its neighborhood in the

data set. After interpolation, gradients are estimated with the central di�erence gra-

dient operator. In a second phase, using the Phong shading calculation, each sample

point is assigned an intensity re
ected into the direction of the observer. Finally, the

23

CHAPTER 3.2. VOLUME RENDERING PROCESS

Figure 3.1: The four basic steps of volume rendering: (1)Ray-casting (2)Sampling
(3)Shading (4)Compositing

third phase consists on compositing, for each ray, all contributions, by using the over

operator. We discuss in more detail this phase in the following section.

3.2.1 Compositing Formula

Let us �rst recall the volume rendering recursive formula:

I(sk) = I(sk�1)(1� �k) + bk (3.2.1)

And noting I(sk�1) by Cin, I(sk) by Cout, and the light that is re
ected from a voxel

by bk = �kCk, the equation 3.2.1 can be rewritten as:

Cout = Ck�k + (1� �k)Cin (3.2.2)

To abbreviate this formula, the over operator is introduced, we obtain:

Cout = CkoverCin (3.2.3)

24

CHAPTER 3.3. VOLUME RENDERING ALGORITHMS

3.3 Volume Rendering Algorithms

Di�erent direct volume rendering techniques (DVR) are introduced in the literature.

In this chapter, we focus on the ray-casting approach as well as the shear warp

algorithm.

3.3.1 Ray-Casting

Ray-casting is a famous volume rendering approach to produce high image quality

[36]. It is an image based volume rendering technique, since the traversed order of the

related voxels is determined by the pixels on the projection plan. The volume data

set in ray-casting algorithm is viewed from a viewpoint through a view plane. From

the view point, the ray-casting algorithm shots a ray through each pixel of the view

plane into the volume. If the casted ray does not intersect the volume, it is simply

skipped and the corresponding pixel is assigned with a default color usually black.

Otherwise, the ray is sampled using trilinear interpolation from the voxels values of

the volume. Each sample is then classi�ed using transfer functions de�ned by the

user. Finally, the samples are shaded and composited to the image plane as shown

in �gure 3.1.

The main disadvantage of the ray-casting is its computational cost due to the ren-

dering process namely the shading calculation and the trilinear interpolation. Never-

theless, it exists di�erent methods to accelerate ray-casting like early ray termination,

space leaping and coherence encoding. These methods will be discussed in more de-

tails later in this chapter.

25

CHAPTER 3.3. VOLUME RENDERING ALGORITHMS

3.3.2 Shear Warp

The shear warp algorithm is one of the fastest algorithms for volume rendering. It was

developed by Cameron and Undrill [2] and further popularized by Lacroute and Levoy

[34]. In a preprocessing step, after the classi�cation step, the shear warp algorithm

computes, for each principle view direction, the run-length-encodings of the voxel

data based on the opacity values. After that and before rendering step, the viewing

matrix V is factorized into two matrixes: a shear matrix S and a warp one W and

such as V = W � S. Then, the principle viewing axis is determined from V and the

run-length-encoding is computed. Further, the volume is sheared parallel to the set of

slices that is most perpendicular to the viewing direction and then the sheared slices

are resampled and composited into an intermediate image in a front to back order.

During rendering, two adjacent runs are traversed simultaneously and the volume can

be resampled using 2D interpolation. Space leaping is achieved e�ciently thanks to

the run-length array of the voxel scanlines. Each time, a non-transparent voxel is

encountered in one of the two runs, two cases are possible. If the corresponding pixel

in the intermediate image is not already opaque, it is updated. Otherwise, early ray

termination is applied by skipping all the adjacent opaque pixels and the dynamic

run-length-encoded data structure of the intermediate image is updated. Finally,

after rendering all the slices, the intermediate image is warped into the �nal image

using a 2D a�ne transformation (see �gure 3.2).

The shear-warp algorithm is relatively fast in software at the cost of less accurate

sampling which results in lower image quality compared to ray-casting. Accelera-

tion methods for ray-casting such as early ray termination, space leaping, coherence

encoding and pre-integrated volume rendering technique [56] can also be applied to

26

CHAPTER 3.4. VOLUME RENDERING ACCELERATION METHODS

Figure 3.2: Shear-Warp transformation for parallel projection

shear-warp algorithm.

3.4 Volume Rendering Acceleration Methods

To achieve higher speed in volume rendering algorithms, many acceleration techniques

have been proposed which can be achieved by either algorithmic improvement such

as coherence acceleration using spatial data structures and exploiting homogeneity

inside the volume, or parallelization. In the following, we begin with the standard

techniques and then discuss further improvements.

3.4.1 Early Ray Termination

Early ray termination (ERT) is an acceleration technique for volume rendering. For

the ray-casting algorithm, the ray is traced in front-to-back order and is terminated

as soon as the accumulated ray opacity reaches a threshold close to full opacity. Then

27

CHAPTER 3.4. VOLUME RENDERING ACCELERATION METHODS

the rest of the voxels which would have been reached by the ray should be occluded

and need not be rendered. The goal of this optimization technique is to eliminate

samples in occluded regions of the volume, and thus saving the number of opaque

voxels. Levoy [36] reports that a ray caster rendering medical data sets with early

ray termination using a threshold of 95% could achieve speedups of 1:6� 2:2�.

3.4.2 Space leaping

Space Leaping [63] is an e�ective branch of acceleration techniques for volume ren-

dering. It is a method which provides an e�cient traversal of the volume by skipping

the empty spaces. A wide range of approaches for space leaping have been proposed

such as:

� spatial subdivision: a hierarchical representation(e.g. octree, pyramid) of the

volume which split this later into uniform regions that can be represented

by nodes in a hierarchical data structures to skip the empty space when ray

traversal[36]. A problem with this approach is the ine�cient traversal of the

data compared to regular volume traversal.

� Parallelization [29],[19].

� Distance coding [64].

In the following, we will not give an exhaustive overview of all techniques. We rather

focus on the class of space leaping techniques which are related to our work namely

space leaping which relies on a distance coding. Before rendering the volume, for each

voxel, the distance to the next voxel having a gray value exceeding a given threshold

(opaque), in its 3D neighborhood is determined and is stored in an extra distance

28

CHAPTER 3.4. VOLUME RENDERING ACCELERATION METHODS

Figure 3.3: Each voxel contains a number that identi�es its distance to the next
opaque voxel.

data set with the same size as the volume. Those distances are view independent (see

�gure 3.3).

This preprocessing technique called distance coding is well suitable for ray-casting.

It has been adapted, in another way, by Lacroute [34] to accelerate the shear-warp

algorithm. In the shear-warp algorithm, the volume is encoded with run-lengths

code. This structure is used when traversing the volume in a storage order, to skip

the empty voxels in the volume scanlines i.e the opaque voxels are not composited.

More details about this approach will be discussed in chapter 6.

3.4.3 Coherence Encoding

Further optimizations use not only transparent but also constant opacities [14] or

extend this approach to linearly changing opacities [5]. The idea is to encode in a

modi�ed distance data set a measure of local linearity of the opacity function. And

during rendering process, instead of saving all voxels which lie on a linear region,

on term of opacity value, only the voxels at the boundary are saved and the opacity

29

CHAPTER 3.5. CONCLUSION

values of the voxels in between are obtained by linear interpolation. This approach

was adapted for both ray-casting and shear-warp algorithm. We later focus on this

acceleration method and improve the existing algorithm.

3.5 Conclusion

In this chapter, we presented two relevant volume rendering algorithms namely the

ray-casting which achieves high quality images, and the shear-warp algorithm known

for its higher speed performance. We then made a survey of some acceleration tech-

niques such as early ray termination which terminates the ray when the accumulated

opacity reaches a certain prede�ned threshold, space leaping which skips over the

empty voxels on the volume, and coherence encoding which allows to encode the

linearity inside a volume. In the next chapter, we will present and develop further

a technique which deals with the quality improvement of volume rendering, that is

pre-integrated volume rendering technique.

30

Chapter 4

Software

4.1 Introduction

In this chapter, we present the software development environment used in our further

implementation: the volume graphics library (VGL). VGL is a C++ class library

which enables developers to create rendered images of voxel data in an OpenGL [42]

environment combined with OpenGL rendered geometry. We choose VGL as software

development environment for our work, due to its rendering facilities and the shortest

development and rendering time it provides, in addition to the possibility of creating

sample images of any 3D volume data.

4.2 Volumes Representation

Volumes in VGL are represented with the class family "grid of sampled data", where

VGLSampleGrid (see �gure 4.1) is the base class which de�nes an API to store and

access data which is organized as multidimensional array (grid). VGLSampleGrid

supports up to 4 dimensions.

In our implementation, we use VGLSampleGrid and its derived classes namely

31

CHAPTER 4.3. RENDERING KERNEL

Figure 4.1: VGLSampleGrid Class

VGLSampleGridData to store volume data (voxel).

4.3 Rendering Kernel

As shown in �gure 4.2, the VGL rendering kernel consist of two distinct parts: �rst the

VGL ray-tracing kernel, and second the VGL direct rendering kernel. They not only

di�er by their particular rendering approach, but also in their basic characteristics,

depending if they are ray-tracing or direct rendering plug-in modules. The rendering

kernel is designed to run in an OpenGL environment. VGL needs a valid OpenGL

context for rendering in most cases, because the ray-tracing results as well as the

direct rendering results will be sent to the OpenGL pipeline.

In the following, we give an overview about both kernels, even we are more inter-

ested in the former, since its the one we consider for our development.

32

CHAPTER 4.3. RENDERING KERNEL

Figure 4.2: VGL rendering kernel

33

CHAPTER 4.3. RENDERING KERNEL

4.3.1 The VGL Ray tracing Kernel

The ray-tracing kernel will be used to render all objects which have one of the ray-

tracing plug-in modules installed. The ray-tracing plug-in modules provide the func-

tions to calculate one single ray, and the ray-tracing kernel is responsible to prepare

the ray-tracing process (for example, to consider clipping), to schedule the ray-tracing

tasks (including multiprocessor support with load balancing), and to send the results

to the VGL feedback bu�er and to the OpenGL output bu�er. The ray-tracing plug-

ins have the great advantage that they support all rendering features including all

types of light sources, shadow generation, arbitrary clipping, full mixing of all ray-

traced objects, and full
oating point ray-tracing calculations for best image quality,

combined with achievable interactive performance on standard PCs. On the other

hand, the ray-tracing plug-ins may be slow, in particular if all sophisticated rendering

features are utilized.

4.3.2 The VGL Direct Rendering Kernel

The direct rendering kernel will be used to render all objects which have one of the

direct rendering plug-ins installed. Direct rendering plug-ins are responsible for the

complete rendering process of a single object, and will send their result to the target

OpenGL bu�er directly. VGL will call the direct rendering plug-in functions for the

appropriate render object either before the ray-tracing kernel starts execution, or after

the ray-tracing result has been sent to the OpenGL output bu�er. Direct rendering

plug-ins have the great advantage that they can utilize special rendering algorithms

and hardware support which does not �t into the ray-tracing environment.

34

CHAPTER 4.4. VOLUME RAY TRACING PLUG-IN MODULE

4.4 Volume Ray tracing plug-in module

VGL uses plug-in technology at several places. Plug-in modules are dynamically

linked libraries (in our case, *.dll �les since we work in the Windows XP platform),

which are loaded at runtime to provide additional functionality. In this section, we

particulary give an overview of the Volume Ray tracing module since we use it further

in our implementations.

The volume ray tracing plug-in module can render volumetric data with an ar-

bitrary opacity and color mapping, using a standard sampling-based integration ap-

proach. All ray tracing features are supported, including semitransparent volume

areas, and correct mixing of semitransparent areas with other ray tracing results.

VGLRayVolPhong class is the plug-in which implements the ray tracing of volumetric

data with a standard sampling based volume rendering approach. For each ray which

is requested from the VGL ray tracing kernel, the following tasks will be executed:

1. Upon request from the VGL ray tracing kernel, the next sampling position at

the ray will be calculated.

2. Upon request, the Phong lighting equation is integrated along the current in-

terval between two subsequent sampling positions. The calculation includes

support for all types of light sources, support for (optional) gradient normaliza-

tion, and support for shadow generation.

3. The previous steps are repeated until the ray terminates.

35

CHAPTER 4.5. CONCLUSION

4.5 Conclusion

In this chapter, we introduced the VGL class library as background for our devel-

opment environment, as well as the plug-in module VGLRayVolPhong which is the

core of the ray tracing module. We further use this plug-in when implementing the

preintegration technique, the coherence encoding and the visualization of deformable

volumes on ray casting algorithm.

36

Chapter 5

Pre-Integrated Volume Rendering

5.1 Related Work

5.1.1 Volume Rendering Integral

The transport theory of light [30, 50, 32] is the basis for many volume rendering

methods and results in the following volume rendering integral:

I =

Z B

0

q(x(t)) e��(0;t)dt: (5.1.1)

I is the intensity at the position B (B is the location of the background), along a

ray x(t), in three-dimensional space . With q being the re
ection function and � , the

optical depth de�ned as

�(t1; t2) =

Z t2

t1

�(t) dt; (5.1.2)

where � is the opacity function. For numerical evaluation, this integral de�ned on the

interval [0; B] is further subdivided into small not necessarily equidistant subintervals

[tk; tk+1]; k = 0; : : : ; N � 1, where t0 = 0 and tN = B. This results in the well known

recursive compositing formulae:

~Ck = ~Ck�1 + (1� ~�k�1) Ck;

~�k = ~�k�1 + (1� ~�k�1) �k; k = 1; : : : ; N � 1; (5.1.3)

37

CHAPTER 5.1. RELATED WORK

where ~Ck is the pixel color, and the voxel color Ck is de�ned as:

Ck =

Z tk+1

tk

q(t) e��(tk;t)dt; (5.1.4)

Further, ~�k is the pixel opacity, and the voxel opacity �k is

�k = 1� e��(tk;tk+1): (5.1.5)

Finally ~C0 = C0; ~�0 = �0 and ~CN�1 = I.

5.1.2 Prior work about pre-integration

Di�erent strategies for numerically solving the volume rendering integral (5.1.1) were

discussed by Max [40]. His idea was to precompute and tabulate the inde�nite render-

ing integral between values de�ned at the vertices of the polyhedra for the projection

method, assuming that the density scalar function varies linearly along the ray. Im-

provements were further discussed by Williams et al [61]. They calculated the volume

rendering integral cell by cell assuming that the transfer function varies piecewise lin-

early along a ray segment within each cell. Later, simpli�cations were derived by Stein

et al [62]. They developed a faster but less accurate method, where they assumed

the opacity varies linearly along the ray segment and assumes the color is constant

equal to the average of the color at the front and the back of the ray segment. This

was not correct, since the opacity along a ray segment hides the far color more than

the near one, but was much quicker to evaluate. Roettger et al [49] applied this tech-

nique as an enhancement to the Projected Tetrahedra algorithm using 3D texture

hardware for enabling the use of arbitrary transfer functions and for rendering iso-

surfaces without reconstructing them geometrically. Compared to Stein, Roettger et

al developed a scheme to approximate (5.1.1) for di�erent sampling distances which

38

CHAPTER 5.1. RELATED WORK

allows to pre-integrate the contribution of the volume rendering integral within the

considered interval by a 2D LUT instead of a 3D LUT.

Engel et al [10] named this technique pre-integration and extended it by comput-

ing the colors in the same way as Roettger et al but considering their modulation by

di�use and specular shading. For the normals, they average the normals of the two

subsequent sampling points under consideration. However, to accelerate the compu-

tation of the pre-integration tables, they hold the distance between sample points

constant and neglect the attenuation within the segment intervals. Later improve-

ments [47] consider an optimized LUT-generation and �nal rendering using 2D texture

hardware. Later, Roettger et al [48] improved the algorithm by super-sampling and

accurate clipping in order to achieve a better image quality. An application of pre-

integration to Shear Warp type algorithms was suggested by Schulze et al [52], they

rendered slabs between adjacent slices instead of individual slices using a bu�er slice

to store interpolated scalar values of the back slice, and stored the result into a 2D

lookup table considering a constant distance d. They improved image quality at the

expense of the algorithm performance. Lum et al [38] improved the pre-integration

for lighting by linearly interpolating the lighting in the front and back sample points

which is a correct method for di�use shading but only an approximation for the spec-

ular contribution. Further suggestions were given for computing the pre-integration

LUTs. [41] restricted to piecewise linear transfer functions which allows to precom-

pute a pre-integration tables being independent on the classi�cation. The approaches

so far approximate the volume rendering integral by simplifying the shading, partially

ignoring self-shadowing, and assuming linear changes of the scalar function between

two sample points.

39

CHAPTER 5.1. RELATED WORK

In the following, a comprehensive approach is given which describes the precompu-

tation without simpli�cations and where the normals depend on the opacity instead

of the gray values. We further show that for linear, quadratic, and higher-order

polynomial models, for the change of the gray values between two sample points, a

pre-integration on a set of 2D LUTs is possible, which can be computed in a short

time. Further, numerical analysis give indicators for �nding suited sizes of the LUTs.

5.1.3 Basic Algorithm

The form of the volume rendering integral (5.1.1) is not useful for the visualization

of a continuous scalar �eld g(~x), because the calculation of the color and opacity

coe�cients is not speci�ed. This calculation includes two main calculation steps.

First, the classi�cation which maps the scalar values g = g(~x) to color function

c(g) and opacity function �(g). The second step is the shading calculation, i.e, the

color contribution of a point in space. In [9], Engel assumed the scattering part in

equation (5.1.1) depending on the color classi�cation function c(g). Therefore, the

volume rendering integral can be rewritten as:

I =

Z B

0

c(g(~x(t))) exp(�
Z t

0

�(g(~x(t0))) dt0)dt: (5.1.6)

A numerical integration is required to evaluate this volume rendering integral. The

most common one is the calculation of a Riemann sum for N equal ray segments of

length D = B=N (see �gure 5.1). This approximation in volume rendering integral is

not su�cient when considering complex transfer function, and results in artifacts due

to the problem of high Nyquist frequencies of c(g(~x)) and �(g(~x)). To overcome this

limitation, Engel et al [9] split the pre-integration classi�cation into two integrations:

one for the continuous scalar �eld g(~x) and one for the transfer functions c(g) and

40

CHAPTER 5.1. RELATED WORK

�(g). The Nyquist frequency for the sampling of the continuous scalar �eld g(~x),

along a viewing ray, is not a�ected by the transfer functions. As shown in �gure

5.1, for the pre-integrated classi�cation, the sampled values de�ne a one dimensional,

piecewise linear scalar �eld. The volume rendering integral for this piecewise linear

scalar �eld is e�ciently computed by one table lookup for each linear segment. This

lookup table depends on three parameters:

1. The scalar value at the entry of the sampling interval, Sf = g(~x(tk)),

2. The scalar value at the end of the sampling interval, Sb = g(~x(tk+1)),

3. The sampling interval length D := tk+1 � tk.

Thus, the opacity function �k and the color function ck, of the k � th segment can

be respectively written by:

�k = 1� exp(�
Z tk+1

tk

�(g(~x(t)))dt)

� 1� exp(�D
Z 1

0

�((1� w)Sf + wSb)dw) (5.1.7)

and

ck =

Z tk+1

tk

c(g(~x(t)))

� exp(�
Z t

tk

�(g(~x(t0)))dt0)dt

� D

Z 1

0

c((1� w)Sf + wSb)

� exp(�D
Z w

0

�((1� w0)Sf + w0Sb)dw0)dw (5.1.8)

Thus, pre-integrated classi�cation allows sampling a continuous scalar �eld g(~x)

without the need to increase the sampling rate for any non-linear transfer function.

41

CHAPTER 5.1. RELATED WORK

Figure 5.1: Scheme of the parameters determining the color and opacity of the i-th
ray segment.(By Engel [9])

Finally, to accelerate pre-integrated lookup table generation, Engel et al [9] assumed

a constant sampling distance D, and neglect the attenuation within a ray segment.

These simpli�cations lead to the following equations of the opacity and color function:

�(Sf ; Sb; D) = 1� exp(� D

Sb � Sf

Z Sb

Sf

�(s))ds) (5.1.9)

and

c(Sf ; Sb; D) =
D

Sb � Sf

Z Sb

Sf

c(s)ds (5.1.10)

In the following, we describe how pre-integrated volume rendering can be realized

using the correct non-simpli�ed volume rendering integral, i.e., considering the at-

tenuation factor as well as the shading function during the precomputation process.

In the �rst part, we assume that the gray values vary linearly between sample points

42

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

along the rendering interval, considering the ambient, di�use and specular re
ections

respectively. Then, an approach to deal with di�erent sampling distances is shown

and �nally we describe the details of implementation of the LUTs for this linear

model. In the second part, we extend our method to quadratic models and �nally

to cubic and higher order polynomials. In the remainder of this section, we assume

the scattering part in equation (5.1.4), depending on the color classi�cation function

c(g) and the gradient of the opacity classi�cation function �(g) where g(~x(t)) is the

gray value of the point ~x at position t of the ray. We further denote g(~x(t)) by g(t).

Thus, q(t) := q(c(g(t)); ~r(�(g(t)))), whereby q is any re
ection function, in our case

the Phong illumination model [44]. We also assume the opacity function in equation

(5.1.2), depending on g(t), i.e., �(t) := �(g(t)).

5.2 Linear Gray Value Model

The linear model, where the gray values between two sampling points change linearly,

is the most simple model describing a sampled scalar function. For rendering, we

consider the Phong illumination model for shading, where the gradients are computed

from the opacity function �. In this section, we will �rst calculate the opacity function

along a sampling interval, then we will evaluate all three components of the Phong

model, separately.

5.2.1 Opacity Evaluation

We �rst remind the expression of the opacity integral, within a sampling interval of

length D:

� = 1� exp(�
Z D

0

�(g(t))dt) (5.2.1)

43

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

A reformulation of the gray values function g(t) = t(Sb � Sf)=D + Sf , as well as a

variable substitution s := g(t) lead to the following expression of �:

� = 1� exp(� D

Sb � Sf

Z Sb

Sf

�(s)ds)

= 1� exp(� D

Sb � Sf
(

Z Sb

0

�(s)ds�
Z Sf

0

�(s)ds)) (5.2.2)

To speed up the evaluation of this expression, we �rst precompute, for each gray value

s 2 [0; N � 1], the integral A(s) =
R s
0
�(s0)ds0. This integral is easily computed in

practice, as the scalar values s are usually quantized. The result is therefore, stored

into a 1D LUT of size equal to 32 bits� 256 = 1KB. Thus, the expression of � can

be written as:

� = 1� exp(� D

Sb � Sf
(A(Sb)� A(Sf))) (5.2.3)

The pseudo-code of the function calculating A is given in the algorithm 1.

Algorithm 1 A(a,b): Accumulated opacity

A(0) = 0;
for s = 1 to N do
A(s) = A(s� 1) + (a[s� 1] � s+ b[s� 1]� 0:5 � a[s� 1])

end for

In the pseudo-code of A, a[s� 1] and b[s� 1] are the coe�cients of the piecewise

linear opacity function within the interval [s � 1; s]. They are obtained from the

opacity TF values at s�1 and s. Finally, for each distance D, we compute � between

Sf and Sb and store it into a 2D LUT. The pseudo-code of the algorithm calculating

the opacity � is described by the algorithm 12 (see Appendix A).

44

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

5.2.2 Ambient Re
ection

The ambient contribution of the volume rendering integral between two sample points

including self-shadowing and having a linear gray value model for the scalar function

reads:

Ca = Ka

Z D

0

c(g(t)) exp(��(0; t))dt; (5.2.4)

where Ka is the ambient re
ection coe�cient, D is a constant sampling distance (i.e.,

D := tk+1 � tk, where tk is the parameterized location of the sample point). Let us

reformulate this integral by formulating the linear function g(t) as a function of the

gray values of the interval boundaries Sf ; Sb at tk+1 and tk as:g(t) = t(Sb�Sf)=D+Sf .

Using the variable substitution s := g(t), we obtain:

Ca = Kad exp(!(d; Sf))

Z Sb

Sf

c(s) exp(�!(d; s))ds

= Kad exp(!(d; Sf))

Sb�1X
i=Sf

Z i+1

i

c(s) exp(�!(d; s))ds (5.2.5)

where

d =
D

Sb � Sf
:

and

!(d; s) = d

Z s

0

�(s0)ds0:

In the original pre-integrated technique, the attenuation within a ray segment was

neglected [10]. In our approach, we do not consider this approximation. Our idea is

to generate the �nal 2D LUT from precomputed 1D LUT. Thus, let us consider for

each gray value i 2 [0; N � 1] and a given value of d the function Ca de�ned by:

Ca(i; d) =

Z i+1

i

c(s) exp(�!(d; s))ds: (5.2.6)

45

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

To evaluate Ca, we will �rst calculate Ca(i; d) for each i value and store the results

into a lookup table of entries i and d. From these LUTs, a 2D LUT depending on the

sampling distance D and having as entries Sf and Sb is generated. In case where Sf

and Sb are not whole numbers, we perform, during rendering, a bilinear interpolation

between the four nearest neighbors of a non-integer gray value, within the LUTs.

5.2.3 Di�use Re
ection

Now, let us discuss the di�use re
ection. The respective part of the rendering integral

is:

Cd = Kd

Z D

0

c(g(t))(~r�(g(t)) � ~L) exp(��(0; t))dt; (5.2.7)

where "�" denotes the scalar product. If the expression in the parenthesis can be

computed via a LUT, we obtain a vector that only needs to be multiplied by the

light direction ~L which will be evaluated during shading and thus the result can be

computed directly. Unfortunately, this expression not only depends on the front and

back gray value, which would lead to a 2D LUT, but it also depends on the gradient

of the opacity function. Earlier versions used not the opacity but the gray value

and there the gradient direction remains constant and thus simpli�es the situation.

However, this choice has practical disadvantages like incorrect shading results when

choosing arbitrary opacity functions. Therefore, we still remain on the physical basis

that the normal of a surface depends on the opacity function. Let us try to evaluate

46

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

the gradient ~r�(g(t)) as:

~r�(g(t))i=1::3 = (
@�

@g

~@g

@ti
)(g(t))

=
@�

@g

~
(
@g

@t
)i(g(t))

=
@�

@g
(g(t)) � ~rg

=
@�

@g
(g(t)) � ~N (5.2.8)

Thus, we can rewrite the equation (5.2.7) as:

Cd = Kd(~N � ~L)
Z D

0

c(g(t))
@�

@g
(g(t)) exp(��(0; t))dt: (5.2.9)

~N is constant over the integration area since g is linear. Its value is determined

during rendering. The same variable substitution cited in the ambient re
ection

transforms the above equation (5.2.9) to:

Cd = Kdd (~N � ~L) exp(!(d; Sf))
Z Sb

Sf

c(s)
@�

@s
(s) exp(�!(d; s))ds:

= Kdd (~N � ~L) exp(!(d; Sf))
SbX
Sf

Z i+1

i

c(s)
@�

@s
(s) exp(�!(d; s))ds:(5.2.10)

As explained for the ambient re
ection, we �rst precalculate the 1D LUTs that store

for every gray value i 2 [0; N � 1]:

Cd(i; d) =

Z i+1

i

c(s)
@�

@s
(s) exp(�!(d; s))ds: (5.2.11)

The di�erence with Ca(i; d) is that we multiply by the term
@�
@s
(s). Since we assume the

opacity transfer function being piecewise linear, i.e., the opacity function being linear

47

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

between two consecutive gray values, @�
@s
(s) is therefore constant for each s 2 [si; si+1].

According to this, we can generate the 1D LUTs without problems. The di�use 2D

LUTs are �nally generated as described for the ambient re
ection. During shading,

we have only to lookup the 2D di�use LUTs, to deduce the corresponding integral

value of the current sampling interval and multiply it on the
y by the scalar product

between ~N and ~L.

5.2.4 Specular Re
ection

Finally, let us discuss the case for specular re
ection. The respective part of the ray

integral is:

Cs = Ks

Z D

0

c(g(t))(~r�(g(t)) � ~H)n� exp(��(0; t))dt: (5.2.12)

where ~H is the halfway vector and n� is the specular exponent. Given the notations

mentioned before, we transform the above formula to:

Cs = Ks(~H � ~N)n�
Z D

0

c(g(t))(
@�

@g
(g(t)))n� exp(��(0; t))dt (5.2.13)

After variable substitution, we arrive at:

Cs = Ks(~H � ~N)n�d exp(�!(d; Sf))
Z Sb

Sf

c(s)(
@�

@s
(s))n� exp(�!(d; s))ds (5.2.14)

As for the di�use re
ection, we precompute the 1D LUTs with a single di�erence

which is storing (@�=@s(s))n� instead of (@�
@s
(s)). Thus, the equation (5.2.14) can be

evaluated by �rst computing the following integral:

Cs(i; d) =

Z i+1

i

c(s)(@�=@s(s))n� exp(�!(d; s))ds: (5.2.15)

Then, the equation (5.2.14) can be stored (up to ~N and ~H) into 2D LUTs as before.

We notice that a change on the specular exponent n� leads only to update the specular

48

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

2D LUTs, without any need to precompute the tables related to ambient and di�use

re
ection.

5.2.5 Integration Length

Up to this point, we have seen that the Phong shading approach is compatible with

the pre-integration technique, using as many 1D LUTs as necessary to generate 2D

LUT for every re
ection part of the shading illumination model. There is therefore

only one free parameter that has not been considered yet, i.e., the sampling distance

D. The volume rendering integral (5.1.1) can be rewritten for D = 1, by a variable

substitution z = t=D:

I = D

�Z 1

0

q(c(h(z)); ~r�(h(z))) exp(�D
Z z

0

�(h(z0))dz0)dz
�

(5.2.16)

where h(z) = g(Dz). As can be seen, this substitution does not help much since

the scaling factor D also appears in the exponential. However, we could consider the

class of integrals:

T =

Z 1

0

q(c(h(z)); ~r�(h(z))) exp(�D
Z z

0

�(h(z0))dz0)dz: (5.2.17)

Earlier papers considered the absorption part only after having computed the con-

tribution for the considered integral and therefore the length of the integral had no

consequence on the computation. In our case, however, we want to consider the

length of the integral as well. Since there is no linear and no polynomial relationship

of the integral value I on D, the only way to overcome this problem is by storing for

di�erent integration lengths as well, increasing the size of the LUTs. However, since

the D-fold exponential factor leads only to subtle changes, only a few sample values

are necessary whereas the rest can be obtained by dedicated interpolation. This is

49

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

done by a logarithmic mapping of the thickness D, as suggested by Kraus in [31].

The dimension of the LUT in ~D direction is decomposed into intervals [dj; dj+1] such

as dj := 2j and j 2 [jmin::jmax]. Thus, the values of dj cover the whole range of [0; D].

So, for each dj, a 1D LUT for C(i; dj); i 2 [0; N�1] is generated, where N is the LUT

size. Another alternative would be to compute LUTs for small intervals only, D < 1.

The size of the intervals is chosen such that a linear or spline interpolation between

them gives accurate enough results for any D in between the discrete choices, then,

we can handle large D values by compositing a number of small intervals one after

the other.

5.2.6 Realization

Earlier in this section, we introduced the strategy for generating the lookup tables to

store the opacity and re
ection values for Phong shading. Now, we will describe how

to realize that. The �rst step to generate the lookup tables, was to precalculate 1D

LUT to store respectively, for the ambient, di�use and specular re
ection the values

of the equations (5.2.6), (5.2.11) and (5.2.15). For simplicity, we will consider for this

section, the case of the di�use re
ection lookup table generation. The other re
ection

types can be obtained by deduction. For this, let us consider the equation (5.2.11).

Since Cd(i; d) is a continuous function, a dedicated sampling for generating a suited

LUT is required. Since we assumed the color transfer function being piecewise linear,

the Trapezoid rule for numerical integration is then a good choice to approximate

Cd(i; d). In equation (5.2.11), let:

fd(s) = c(s)
@�

@s
(s) exp(�!(d; s)); s 2 [si; si+1]: (5.2.18)

50

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

c(s) is obtained by linear interpolation between c(si) and c(si+1).
@�
@s
(s) is constant

within the interval [si; si+1], since the opacity transfer function is assumed to be

piecewise linear. Finally, the value of exp(�!(d; s)) is obtained by:

exp(�!(d; s)) = 1� LIN(opacity[j][0][si]; opacity[j][0][si+1]; h) (5.2.19)

where opacity is the already generated opacity LUT, and j the corresponding index

for the distance d. LIN here, designs the linear interpolation function. Once the

1D LUT are generated, we can deduce the �nal 2D LUT by using an incremental

algorithm. The details of the implementation of this algorithm are described in the

following section. Later, we refer to the 1D LUT as color1d.

5.2.6.1 Incremental Algorithm for Generating LUT for Linear Model

The goal of our algorithm is to generate, for the di�erent sampling distances we

considered, 2D LUT which store for each couple of gray values Sf and Sb, at the

entry and exit point of a sampling interval, the re
ection contribution in between. As

we mentioned in the section 5.2.5, let decompose the range [0; D] in intervals [dj; dj+1]

such as: dj := 2j and j 2 [jmin::jmax]. First, Let us remaind the equation (2.3.17) in

chapter 2:

I(si) = I(si�1)e��(si�1;si) +
Z si

si�1

q(s)e��(s;si)ds (5.2.20)

By introducing the substitutions given in equations (2.3.18) and (2.3.19), the equation

(5.2.20) can be rewritten by:

I(si) = I(si�1)�i + bi (5.2.21)

Interpreting in equation (5.2.21):

51

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

� �j and bj as being respectively, the transparency and the color in between the

gray value interval [g � 1; g]

� I(si�1) as Cj�1(g � 1): the re
ected intensity (here shading color) at distance

dj�1

� and I(si) as Cj(g): the re
ected intensity at distance dj,

one can write the following recurrence relation:

Cj(g) :=

(
0 ifj < jmin

Cj�1(g � 1)�j + bj 8j 2 [jmin::jmax]
(5.2.22)

First, we initialize all re
ection values for d = 0 to zero. Then, we start generating

the 2D LUT in d direction for Sb = Sf . For this case, the results are generated

analytically as mentioned before and are stored into a temporary array Temp of size

jmax� jmin+1. Therefore, we keep Sf constant, increment Sb and repeat the process

until Sb = N (N the total size of the 2D LUT). Finally, we increment Sf and the

same procedure is reiterated until Sf = N . Given the recurrence relation (5.2.22), we

generate all the re
ection values Cj(b) for j 2 [jmin::jmax]. The calculation of Cj(b)

involves the evaluation of:

1. �j obtained from the opacity LUT at dj between Sb�1 and Sb by:

�j = 1� opacity[j][b� 1][b] (5.2.23)

2. bj read from the already precomputed 1D LUT color1d described in the previous

section.

bj = color1d[j][b] (5.2.24)

52

CHAPTER 5.2. LINEAR GRAY VALUE MODEL

Figure 5.2: Incremental calculation of the color by compositing

3. Cj�1(g � 1) read from the temporary array Temp.

Finally, we save the calculated value Cj(g) on Temp[j +1], as shown in �gure 5.2. A

pseudo-code of our incremental algorithm is given in algorithm 2.

Algorithm 2 Get Linear Color: Incremental algorithm for generating lookup tables
when the gray value model is linear

for Sf = 0 to N do
for Sb = Sf to N do
if Sf = Sb then
for j = jmin to jmax do
Evaluate analytically color([j][Sf][Sb]);
Temp[j + 1] = color[j][Sf][Sb];

end for
else
for j = jmin to jmax do
color[j][Sf][Sb] = composite(color1d[j][b]; T emp[j + 1]);
Temp[j + 1] = color[j][Sf][Sb];

end for
end if

end for
end for

53

CHAPTER 5.3. QUADRATIC CASE

5.2.6.2 Algorithmic Complexity

Let nd being the number of distances interfering with the color LUT generation of size

n � n. The above described algorithm requires, for each axis dj, nd multiplications

and additions. Thus, along the axis Sb, the number of operations needed is: nd � i

such as: Sb 2 [n � i; n] with i 2 [0::n � 1]. Finally, along the axis Sf , the number

of operations required is:
Pn�1

i=0 ndi = nd
n(n�1)

2
� n2. Therefore, the complexity of

our incremental algorithm is O(n2). Thus, our algorithm is better than the O(n3)

Lum's algorithm [38]. In addition, we perform the computations for di�erent interval

lengths. Thus, we addressed the problem of table generation speed. It is important

that the computation of the lookup tables be e�cient so that the transfer function

may be interactively modi�ed.

5.3 Quadratic Case

5.3.1 Motivations

Most techniques for the visualization of volume data require appropriate modeling.

Exact analytic solution cannot be calculated, but approximated. The pre-integration

technique has eliminated many of the rendering artifacts that arise from slicing the

volume but it assumes a linear progression of the scalar values between two sample

points along the ray. This assumption does not match the quadratic behavior of the

scalar values. For this reason, we propose to extend the pre-integration technique

for quadratic polynomials. In this section, we present a new model of reconstruction

of volume data, namely the quadratic model: we approximate the density function

by a piecewise quadratic polynomial. Therefore, we can expand the pre-integration

technique, for g(t) being a second degree polynomial, i.e, g(t) = at2 + bt + c. In

54

CHAPTER 5.3. QUADRATIC CASE

addition, we select the opacity function and the color transfer function being piecewise

quadratic.

5.3.2 Strategy

Our goal is to precompute opacity and re
ection values for quadratic density model,

and store the results into a LUT that can be updated in short time. Unlike the linear

case, the volume rendering equation is now depending on one more parameter. This

is due to the three coe�cients present in the density function. Thus, the volume

rendering expression depends on four parameters a; b; c and D. This would lead to

a four dimensional lookup table, which is computationally expensive and memory

consuming. Hence, the idea is to decrease the dimension of the LUT by minimizing

the number of involved parameters. We address this problem by performing a variable

substitution to reduce the number of parameters, while using the same strategy used

for the linear model to deal with the distance length parameter. In the next section,

we describe how is that possible. We start by the opacity calculation, then the

re
ection evaluation for Phong shading.

5.3.3 Opacity Calculation

The opacity function � is de�ned as:

� = 1� exp(�
Z D

0

�(g(t))dt): (5.3.1)

In the following, for simplicity, we only develop the case where a > 0. The case where

a < 0 can be deduced by simple analogy. Under this assumption, the equation (5.3.1)

can be rewritten, by a variable substitution z = t=R, as:

� = 1� exp(�R
Z D0

0

�(h(z))dz): (5.3.2)

55

CHAPTER 5.3. QUADRATIC CASE

where R = 1=
pj a j and D0 = D=R. By noting b0 = bR, h(z) is such as: h(z) =

z2+ b0z+ c. The dependency of h(z) on R is problematic. Let us discuss the issues to

this problem according to the values of a. First, we choose a threshold " so that: if

a < ", the opacity value is obtained by looking up into the 2D LUT opacity generated

for the linear case, otherwise, we have to evaluate the equation (5.3.2). Let de�ne �

being:

� =

Z D0

0

�(h(z))dz (5.3.3)

Therefore, evaluating (5.3.2) means calculating �. Applying directly the variable

substitution s = h(z) to the integral � leads to wrong results because of the lacking

bijectivity of h due to the possible existence of an extremum in h(z). Let denote this

extremum if it exists by M = h(�b0=2) = c � b02=4. Therefore, depending on the

value of b0, we distinguish three possible cases for computing �:

8>><
>>:

b0 � 0;

b0 2]� 2D0; 0[;

b0 � �2D0.

5.3.3.1 Case I: b0 � 0

As shown in the �gure 5.3, h is monotonous and then a variable substitution s = h(z)

can be applied, we obtain therefore:

� =

Z Sb

Sf

�(s)

2
p
s�M

ds =

Sb�1X
i=Sf

Z i+1

i

�(s)

2
p
s�M

ds (5.3.4)

Further, �i is de�ned as:

�i =

Z i+1

i

�(s)

2
p
s�M

ds (5.3.5)

We evaluate the term �i by the Simpson rule, since we are considering that the opacity

varies piecewise quadratically inside the sampling interval. Thus, we need three values

to approximate the opacity function in this region: �(i� 0:5); �(i) and �(i+ 0:5).

56

CHAPTER 5.3. QUADRATIC CASE

Figure 5.3: Variation of h when b0 � 0

5.3.3.2 Case II: b0 2]� 2D0; 0[

For this case, as shown in �gure 5.4, � has to be divided into two parts:

� =

Z �b0=2

0

�(h(z))dz +

Z D0

�b0=2
�(h(z))dz (5.3.6)

The variable substitution s = h(z) leads for the �rst subintegral, to z = �b0�2ps�M
2

and for the second subintegral, to z = �b0+2ps�M
2

. Now, � can be rewritten as:

� =

Z M

Sf

�(s)

�2ps�M
ds+

Z Sb

M

�(s)

2
p
s�M

ds

=

Z Sf

M

�(s)

2
p
s�M

ds+

Z Sb

M

�(s)

2
p
s�M

ds

'
Sf�1X

i=E(M)

�i +

Sb�1X
i=E(M)

�i (5.3.7)

Where E(M) is the ceiling function of the variable M , because i should be a discrete

number. The �rst two terms of this equation are computed in the same way as

57

CHAPTER 5.3. QUADRATIC CASE

Figure 5.4: Variation of h when b0 2]� 2D0; 0[

described for case I.

For the case where M < 0, and since �(s) is not de�ned for s < 0, we solve this

problem by setting the negative part of the curve to zero. � is then equivalent to:

� =

Sf�1X
i=0

�i +

Sb�1X
i=0

�i (5.3.8)

5.3.3.3 Case III: b0 � �2D0

As shown in the �gure 5.5, h is also monotonous and then a variable substitution

s = h(z) can be applied, we obtain therefore:

� =

Z Sb

Sf

�(s)

�2ps�M
ds = �

Sb�1X
i=Sf

Z i+1

i

�(s)

2
p
s�M

ds (5.3.9)

We notice that this equation is no other than the equation 5.3.4 multiplied by �1.
For all the cases described above, the value of the opacity � is de�ned such as:

58

CHAPTER 5.3. QUADRATIC CASE

Figure 5.5: Variation of h when b0 � �2D0

� = 1� exp(�R�): (5.3.10)

Since � depends on the parameters Sf ; Sb and M . Or,

M = c� b02=4

= Sf +
1

4
(
Sb � Sf �D02

D0) (5.3.11)

Thus, � depends on Sf ; Sb; D
0 and R. Therefore, to store the opacity values, we will

create a 2D LUT depending on D0 and R. For this reason, the D0 and R range have

to be discretized. As described in the last section, for the distance length, we use

a logarithmic mapping to cover the range of these both parameters. Sf and Sb are

chosen to be whole numbers, and in case where not, we perform during rendering, a

bilinear interpolation between the four nearest neighbors of a non-integer gray value,

within the LUTs.

59

CHAPTER 5.3. QUADRATIC CASE

5.3.4 Re
ection Calculation

Under the same notations and by a variable substitution z = t=R, equation (5.1.1)

can be rewritten, at t = D, as:

I = R

�Z D0

0

q(c(h(z)); ~r�(h(z))) exp(�R
Z z

0

�(h(z0))dz0)dz
�
: (5.3.12)

By applying the variable substitution s = h(z) to equation (5.3.12), we obtain the

following three cases:

5.3.4.1 Case I: b0 � 0

I = R

Z Sb

Sf

q(c(s); ~r�(s))
2
p
s�M

exp(�R
Z s

Sf

�(s0)

2
p
s�M

ds0)ds: (5.3.13)

5.3.4.2 Case II: b0 2]� 2D0; 0[

I = R

Z Sf

M

q(c(s); ~r�(s))
2
p
s�M

exp(�R
Z Sf

s

�(s0)

2
p
s�M

ds0)ds

+R exp(�R
Z Sf

M

�(s0)

2
p
s�M

ds0)[
Z Sb

M

q(c(s);r�(s))
2
p
s�M

exp(�R
Z s

M

�(s0)

2
p
s�M

ds0)ds]: (5.3.14)

5.3.4.3 Case III: b0 � �2D0

I = �R
Z Sb

Sf

q(c(s); ~r�(s))
2
p
s�M

exp(R

Z s

Sf

�(s0)

2
p
s�M

ds0)ds: (5.3.15)

Let us �rst consider the ambient re
ection part, we replace on equation (5.3.12),

q(c(h(z)); ~r�(h(z))) by Kac(h(z). We calculate I for each (R;D0) and store it

into a 2D LUT. For the di�use re
ection part, we replace on equation (5.3.12),

q(c(h(z)); ~r�(h(z))) by Kdc(h(z))
@�
@h
h(z)(~N � ~L). ~L does not depend on h, thus it

60

CHAPTER 5.3. QUADRATIC CASE

can be removed out of the integral I. However, the presence of ~N is problematic,

since ~N depends on g. We solve this problem by considering ~N being linear over the

integration area (g is quadratic). Therefore, 9 ~A; ~B 2 R3 such as:

~N = ~Az + ~B (5.3.16)

Thus, the di�use re
ection part of the ray integral is de�ned by:

Cd =

Z D0

0

Kdc(h(z))
@�

@h
h(z)((~Az + ~B) � ~L) exp(�R�(0; z))dz (5.3.17)

It can be rewritten by:

Cd = KdR(~A � ~L)
Z D0

0

zc(h(z))
@�

@h
(h(z)) exp(�R�(0; z))dz

+ KdR(~B � ~L)
Z D0

0

c(h(z))
@�

@h
(h(z)) exp(�R�(0; z))dz: (5.3.18)

Therefore, the integral (5.3.18) can be sampled (up to ~A, ~B and ~L), in two 2D

LUT. ~A, ~B, and ~L are evaluated, during rendering, in this way:

� ~A = (~rb� ~rf)=D0

� ~B = ~rf

� and ~L the light direction.

where ~rb and ~rf are respectively the gradients at Sb and Sf .

Let us now discuss the case for specular re
ection. We replace on equation (5.3.12):

q(c(h(z));r�(h)) = Ksc(h(z))(
@�

@h
h(z))n�(~N � ~H)n�

where n� is the specular exponent. ~H is independent of h, thus it would be interesting

if we could separate it from the rest of the integral. However, the presence, here, of the

61

CHAPTER 5.3. QUADRATIC CASE

specular exponent n� is problematic. We try to overcome this di�culty by applying

the following transform:

(~N � ~H)n� = ((~B + ~Az) � ~H)n� (5.3.19)

= (~B � ~H + z ~A: ~H)n�

= (~B � ~H)n�(1 + z
~A � ~H
~B � ~H)n�

Let us abbreviate (~B � ~H)n� by the scalar u and (
~A� ~H
~B: ~H

) by the scalar v. Then we have

(~N � ~H)n� = u(1+ zv)n� and u is now a multiplicative scalar value that can be shifted

out of the rendering integral. Thus, for each sampled value vj of v, we compute the

integral and tabularize it into a 2D LUT. Thus, the specular re
ection part of the

ray integral can be written as:

Cs = KsRu

Z D0

0

c(h(z))(1 + zRv)n�(
@�

@h
h(z))n� exp(�R�(0; z))dz (5.3.20)

Therefore, the integral (5.3.20) can be stored (up to ~A; ~B and ~H) into 2D LUT

depending on (u; v).

5.3.5 Realization

In this section, we �rst show how to generate the opacity LUT, and further the

re
ection LUT. In the second part, for simplicity, we will consider only the di�use

re
ection. The ambient and specular LUT can be implemented in a similar way. Here,

we consider the gray values vary quadratically between two sample points, a Simpson

rule (order 4) for numerical integration of the subintegral within the sampling interval,

is by consequence exact.

62

CHAPTER 5.3. QUADRATIC CASE

5.3.5.1 Implementation of the Opacity LUT

In the previous section, we showed that the opacity � depends, in addition to the

gray values at the extremities of a sampling interval, on the parameter R and D0. We

also discussed, in the section 5.2.5, how to sample the distance length range. Here,

we use the same strategy to sample the range of the parameters R and D0, i.e, we

use a logarithmic mapping for sampling. Thus, let Rmax being the maximum possible

value for R. We sample the interval [0; Rmax] on nr subintervals such as:

[0; Rmax] =
nr�1[
k=0

[Rk; Rk+1] (5.3.21)

And let D0
max being the maximum possible value for D0. We sample the interval

[0; D0
max] on nd subintervals such as:

[0; D0
max] =

nd�1[
j=0

[D0
j; D

0
j+1] (5.3.22)

Now, let N being the LUT size. Therefore, our algorithm for generating the opacity

LUT is the following: For each pairs (Rk; D
0
j) and (Sf ; Sb), such as Sb � Sf , we

calculate the value of b0. Thus, we know which case, from the 3 ones described

previously, has to be considered. Therefore, we evaluate �i. The evaluation of �i

involves the access of the opacity transfer function lookup table, to get �(s); s 2
[i; i+1]. In our case, VGLSampleMaterial contains mapping parameters from sample

(voxel) values to material features like opacity, ambient color, di�use color, specular

color, specular exponent. While the sample (voxel) data type can be chosen freely, the

resulting material features are always represented with 32 bit
oating point values.

The normal range for typical material features like colors is between 0:0 (no intensity)

and 1:0 (full intensity). Thus, we lookup the VGLSampleMaterial to get respectively

63

CHAPTER 5.3. QUADRATIC CASE

�(i � 1); �(i) and �(i + 1). Since we assumed the opacity function being piecewise

quadratic, we use the de Casteljau's algorithm to get �(s). The pseudo-code of the

function implementing the calculation of � is described in algorithm 11(see Appendix

A). Once �i evaluated for each i 2 [Sf ; Sb] (e.g in the case I and case II), the results

are summed up and stored into the opacity LUT (see pseudo-code of algorithm 9 in

Appendix A).

5.3.5.2 Implementation of the Re
ection LUT

In this part, we restrict ourselves to the re
ection LUT implementation. The approach

is similar to the opacity LUT generation. The major di�erence is the value of �i. It

depends now on the color function c. As we explained for the calculation of the opacity

�, we lookup the VGLSampleMaterial to get respectively the colors c(i� 1); c(i) and

c(i + 1). Since we assumed the color function being piecewise quadratic, we use the

de Casteljau's algorithm to get c(s). In addition, �i depends on the exponential

term: exp(�R R sup
inf

�(s0)

2
p
s�M ds0), where the values of inf and sup varies according to

the considered case (I or II or III). The exponential term is calculated directly from

the already generated opacity 2D LUT, as described in the following equation:

exp(�Rk

Z sup

inf

�(s0)

2
p
s�M

ds0) = 1� opacity[Dj][Rk][inf][sup]: (5.3.23)

Once �i evaluated for each i 2 [Sf ; Sb] (e.g in the case I and case II), the results are

summed up and stored into the re
ection LUT.

5.3.5.3 Algorithmic Complexity

In our quadratic pre-integration technique for ray casting algorithm, the lookup tables

are generated directly from the density values and the parameter R. Let nR being

64

CHAPTER 5.4. EXTENSION TO CUBIC OR HIGHER-ORDER
POLYNOMIALS

the number of the considered parameters R. Thus, we calculate the integral for all

possible entries in an n� n� nR look-up-table in O(n3) time.

5.4 Extension to Cubic or Higher-Order Polyno-

mials

The assumption that the scalar values between two sample points along the ray

progress quadratically does not match the actual cubic behavior of the scalar values.

For this reason, we propose to extend the pre-integration technique for cubic polyno-

mials. The idea is to determine a polynomial of degree three between the entry and

the exit point of a sampling interval. We �rst study the variations of g, if it has a

point of in
ection, then we split the sampling interval, during rendering process, into

two subintervals. Therefore, on each subinterval, we approximate g by a quadratic

function such as we can use the already described quadratic model to evaluate the

rendering interval result on each subinterval. Finally, we do compositing to get the

�nal result along the whole sampling interval. Notice here that the length of the

subintervals is arbitrary and depends on the corresponding cubic polynomial. This

problem is solved by the use of di�erent distance length as described before. Since,

when applying this approach, there is no limitation on the polynomial degree, we

can extend this technique still for higher-order polynomials, proceeding as for cubic

polynomials, i.e., we split the actual sampling interval into subintervals where we

approximate the corresponding piecewise gray value function by a quadratic model.

The partition into subintervals is based on the extrema position of the considered

polynomial. Then, for each subinterval, we determine the volume rendering integral,

by looking into the already precomputed quadratic 2D LUT. Finally, we composite

65

CHAPTER 5.5. SHADING

Figure 5.6: Approximation of a cubic curve by a quadratic one

the sub-results to get the �nal result.

5.5 Shading

We now describe the rendering process for the ray casting algorithm using the pre-

integrated technique. First, the user sets the opacity and color transfer function as

well as the shading function, in our case the Phong illumination model. Given this

information, the pre-integrated lookup tables are generated in a preprocessing phase,

as described above. Then, during the rendering process, two di�erent strategies are

adopted, based on the degree of the chosen gray value model.

66

CHAPTER 5.5. SHADING

5.5.1 Shading for Linear Gray Value Model

To evaluate shading for the linear model, we �rst determine, for a given sample

interval, its sampling distance as well as its gray values at the boundaries which are

obtained by trilinear interpolation. We then use these three values to lookup into the

desired pre-integrated lookup table such as the opacity lookup table and one or more

among the precalculated re
ection lookup tables.

5.5.2 Shading for Quadratic Gray Value Model

In order to evaluate shading for quadratic gray value model, we need to determine,

at each sampling interval of distance D, the gray values Sf and Sb at its extremities,

as well as the parameter R described previously.

5.5.2.1 Determination of Sf and Sb

Since we assumed the gray value being piecewise quadratic, the use of a quadratic

spline interpolation function is an appropriate way, to compute Sf and Sb.

5.5.2.2 Determination of R

We have R = 1=
pjaj, where a is such as: g(t) = at2 + bt+ c. Thus, to determine R,

we �rst, have to evaluate the quadratic polynomial coe�cients. For that, let Sm being

the gray value at the middle of the sampling interval. The value of Sm is obtained

similarly to Sf and Sb, i.e, by quadratic spline interpolation. Then, we consider the

following equation system:8>><
>>:

g(0) = c = Sf ;

g(D) = aD2 + bD + c = Sb;

g(D=2) = aD
2

4
+ bD

2
+ c = Sm.

(5.5.1)

67

CHAPTER 5.6. RESULTS

By solving this system, we obtain the polynomial coe�cients values and deduce the

value of R. Then, if a < ", we read the opacity and re
ection values of the current

sampling interval from the lookup tables generated for g being linear. Otherwise, we

lookup into the opacity LUT generated for quadratic model, to get the opacity value

inside the sampling interval and into the re
ection LUT to get the color value for

ambient, di�use or specular re
ection. Finally, we sum up the di�erent color values

to obtain the Phong shading result.

5.6 Results

The proposed pre-integrated volume rendering algorithm was implemented on a com-

puter which runs under Windows XP on a 1700MHz Intel Pentium(M) with 1.5 GB

of RAM and which has an ATI MOBILITY FIRE GL T2 graphics card, using C++

and VGL (www.volumegraphics.com) as underlying library. For our experiment, we

choose 8 bit data sets: the Bonsai (CT) of size (256� 256� 256 voxels), the Engine

(CT) of size (256 � 256 � 128 voxels) referred by Engine 1; and the Engine (CT) of

size (128� 192� 256 voxels) referred by Engine 2.

5.6.1 Algorithmic Performance

5.6.1.1 Linear Look-up-table Generation

For the linear gray value model, the proposed method for pre-integrated volume ren-

dering uses three-dimensional lookup tables to store ambient, di�use, specular re
ec-

tion and opacity. The entries of each lookup table depend on three values: the entry

and exit density values and the length between them. Since the lookup tables have to

be recomputed whenever the transfer function changes, the interactivity is a relevant

factor in the pre-integration algorithm. As shown in the table 5.1, in comparison to

68

CHAPTER 5.6. RESULTS

Gray model n Preprocessing time (s)
32 0.01

Linear 64 0.05
128 0.2
256 0.791

Table 5.1: Relationship between LUT computation time and linear pre-integrated
lookup table dimension n.

Figure 5.7: Relation between the preintegration time and the LUT size (Blue curve)
and a �t of a quadratic function to it (Red curve).

standard numerical pre-integration [9], our proposed pre-integration precomputation

achieves a speed up of approximately 10 times, without use of hardware accelera-

tion. Figure 5.7 shows that the preprocessing time is a quadratic function of the

lookup table resolution, which validate the computed complexity of our linear prein-

tegrated approach, namely O(n2). The smaller the dimension n, the faster is the

pre-integration algorithm.

69

CHAPTER 5.6. RESULTS

Gray model n Preprocessing time (s)
32 7.611

Quadratic 64 30.013
128 119.953
256 496.594

Table 5.2: Comparing computation time in second for n�n quadratic pre-integrated
lookup table.

5.6.1.2 Quadratic Look-up-table Generation

For the quadratic gray value model, our proposed method for pre-integrated volume

rendering uses three-dimensional lookup table to store ambient, di�use and opacity

and four-dimensional lookup table to store specular re
ection. In addition to the entry

and exit density values and the sampling interval distance, the three-dimensional

lookup tables depend also on R de�ned in section 5.3. The specular lookup table

depends in addition to those three parameters, on v as demonstrated in section 5.3.4.

In our case, the rendering is performed using a ray-casting algorithm. Thus, a constant

sampling interval length is used. The large dimension of the specular lookup table,

which results in high computation time, prevents our algorithm from achieving good

performance. Thus, we will not consider, in the following, the computation time due

to the specular part. For the rest of the tables, when a change on the re
ection

coe�cient (ambient,di�use) occurs, only an update of the concerned lookup table

is necessary. Thus, the updating time is minimized. Even those simpli�cations,

comparing to the linear model, the preprocessing time for the quadratic gray value

model is still higher as shown in table 5.2. Figure 5.8 shows that the preprocessing

time is a cubic function of the lookup table resolution, which validate the computed

complexity of our quadratic preintegrated approach, namely O(n3).

70

CHAPTER 5.6. RESULTS

Figure 5.8: Relation between the preintegration time and the LUT size (Blue curve)
and a �t of a cubic function to it (Red curve).

5.6.1.3 In
uence of Distance Parameter

For the third parameter of pre-integrated lookup tables, i.e., the sampling interval

distance D, the number of the distances to be considered depends on the volume

rendering algorithm. For example, for the ray casting algorithm, the sampling dis-

tances along the ray are constant, thus one need only a 2D pre-integrated lookup

table with the third parameter being constant. For the projected tetrahedra algo-

rithm, D 2 [0::
p
3], therefore one has to consider di�erent sampling distances as we

discussed earlier in this chapter. In �gure 5.9, we show how the number of the con-

sidered distances in
uences the pre-integration time for a 2562 pre-integrated lookup

table.

5.6.1.4 In
uence of the Parameter R

Let us now discuss the range of the parameter R = 1=
pj a j. Our experiments showed

that jaj 2 [0::amax] with amax = 55:23. In section 5.5.2, we assumed that under a

71

CHAPTER 5.6. RESULTS

Figure 5.9: Relationship between the LUT size in distance parameter direction and
the linear LUT pre-integration time

Figure 5.10: In
uence of the R parameter number nR on the pre-integration time en
seconds

72

CHAPTER 5.6. RESULTS

Figure 5.11: Image quality: (a) represents an image rendered with logarithmic sub-
division of R. (b) represents an image rendered with nR = 400

73

CHAPTER 5.6. RESULTS

Subdivision approach Time (s)
10 5.698
30 24.726
50 28.441

Sampling using nR steps 80 45.516
100 56.942
200 119.381
400 225.594

Logarithmic 4.076

Table 5.3: Comparison between two di�erent approaches for the subdivision of the R
range and their in
uences on the lookup table generation speed

certain threshold value ath of a, the density function g is assumed linear. Thus, if

a 2 [0; ath], there is no need to lookup into the quadratic pre-integrated LUT, to

get the corresponding opacity and re
ection values. Otherwise, if a 2 [ath; amax],

i.e, R 2 [0:134::7:76], we can suppose that R 2 [Rmin; Rmax] with Rmin = 2�3 and

Rmax = 23. Thus, the quadratic pre-integrated lookup tables have to cover the whole

range [Rmin::Rmax]. For that, we consider a logarithmic subdivision of the parameter

R, as we did for the interval length. Another alternative is to subdivide the R range

in equal subintervals. We tested both approaches and as shown in �gure 5.10 and

table 5.3, we found out that the logarithmic subdivision gives a faster lookup tables

generation than the second approach and this for a better image quality (see �gure

5.11).

74

CHAPTER 5.6. RESULTS

Gray model n Image Error (%) Image No
32 0.1624 5.13.a

Linear 64 0.108 5.13.b
128 0.0678 5.13.c

256 (Image reference) 5.13.d

Table 5.4: Integration accuracy of our linear pre-integration approach: the image
error is de�ned by the average error metric

5.6.2 Image Quality

To numerically evaluate the image quality as function of the lookup table size, we use

the average error metric as used by Danskin and Hanrahan [8], given by:

Errim =

PN�1
i=0

PM�1
j=0 j Ir(i; j)� I(i; j) jPN�1
i=0

PM�1
j=0 Ir(i; j)

� 100% (5.6.1)

where Ir(i; j) is a pixel value in the reference image which in our case corresponds to

an image rendered with lookup table of size 256 � 256; I(i; j) is a pixel value in the

image rendered with lower lookup table resolution; N and M are image dimensions.

5.6.2.1 Linear Look-up-table Generation

Table 5.4 shows that the image quality of our algorithm is a�ected by the lookup

table resolution used during the pre-integration algorithm. Figure 5.12 shows that

image error increases with smaller table.

During rendering phase, whenever one or both gray values at the extremities

of a sample interval [tk; tk+1] fall between two entries of the pre-integrated LUT, a

bilinear interpolation between four adjacent values of the table is necessary to get

the approximated opacity or re
ection value for the interval [tk; tk+1]. Hence, we

deduce that large table sizes are desirable because the larger the table, the smaller

75

CHAPTER 5.6. RESULTS

Figure 5.12: Relation between image error and the LUT resolution (Blue curve), for
linear gray value model and a �t of a quadratic function to it (Red curve).

Gray model n Image Error (%) Image No
32 0.68 5.14.a

Quadratic 64 0.27 5.14.b
128 0.0844 5.14.c

256 (Image reference) 5.14.d

Table 5.5: Integration accuracy of our quadratic pre-integration approach: the image
error is de�ned by the average error metric.

such interpolation error will be. By consequence, a higher resolution lookup table

results on a better image quality.

5.6.2.2 Quadratic Look-up-table Generation

To achieve better results, we can decrease the lookup tables resolution. The relation

between the image quality and the LUT size is shown in the table 5.5. As for the linear

gray value model, the �gure 5.15 explain that the image error decreases whenever the

LUT resolution increases.

76

CHAPTER 5.6. RESULTS

Figure 5.13: Images rendered using di�erent resolutions for linearly pre-integrated
lookup tables:Image a corresponds to resolution 32.Image b corresponds to resolution
64.Image c corresponds to resolution 128.Image d corresponds to resolution 256

77

CHAPTER 5.6. RESULTS

Figure 5.14: Images rendered using di�erent resolutions for quadratically pre-
integrated lookup tables:Image a corresponds to resolution 32.Image b corresponds to
resolution 64.Image c corresponds to resolution 128.Image d corresponds to resolution
256

78

CHAPTER 5.6. RESULTS

Figure 5.15: Relation between image error and the LUT resolution (Blue curve), for
quadratic gray value model and a �t of a quadratic function to it (Red curve).

5.6.3 Discussion and Analysis: Optimization of the LUT

size

Earlier in this section, we described the in
uence of the LUT size on our algorithmic

performance and image quality. In this part, we generate a model to �nd out the

optimal LUT size given a volume data set.

In our experiment, we considered three opaque and semi-transparent data sets.

Our goal is to set a relationship between data sets parameters and the optimal LUT

size for preintegration. For our analysis, we consider two properties, namely the size

and the transparency of the data sets. In the following, we will �rst discuss the size

parameter, then the transparency one. Let us consider the three data sets of di�erent

sizes and the same transparency property, i.e, opaque or semi-transparent. Figure

5.16 shows that, for an image error threshold equal to 0:5%, bigger data sets converge

faster to the optimal LUT size, in case of semi-transparent objects, while the opposite

79

CHAPTER 5.6. RESULTS

Figure 5.16: In
uence of the volume size on the resulting image quality for both
opaque (below) and semi-transparent (above) data sets.

situation occurs in case of opaque objects, i.e, smaller data sets converge faster than

bigger ones. Let us now vary the transparency of the data sets, while keeping the

same size. According to �gure 5.17, we notice that the semi-transparent bonsai needs

less sampling distance (32) than the opaque one (96). For engine data sets, both

semi-transparent and opaque engine converge to the same optimal LUT size (32).

We now interest in the LUT size as function of both the size and the transparency

parameters. For this purpose, we consider as size parameter the 3D data set size in

80

CHAPTER 5.6. RESULTS

Figure 5.17: In
uence of the volume transparency on the resulting image quality for
di�erent data sets.

81

CHAPTER 5.6. RESULTS

LUT ST Opaque Opaque ST Opaque ST
size Teapot Engine 1 Engine 2 Engine2 Bonsai Bonsai
16 2,3605 2,0314 1,1328 3,5821 0,1364 1,6031
32 0,4312 0,1396 0,3224 3,358 0,02 0,4897
64 0,3461 0,1394 0,1973 1,2248 0,0035 0,2945
128 0,1105 0,1838 0,0951 0,1775 0,00062474 0,1479

Table 5.6: In
uence of the LUT dimensions on the Image error.

bytes and as transparency parameter the mean of the opacity function.

m =
1

b� a
�
Z b

a

f(x)dx (5.6.2)

By using the di�erent data sets we listed above, we obtain from the values in the

table 5.6, the function f(x; y) = z with x being the object size, y the transparency

parameter and z the corresponding LUT size. Figure 5.18 shows the behavior of

this function. To test the obtained function, we consider a semi-transparent teapot

(arti�cial CT) of size (256 � 256 � 256 voxels) and by numerical integration, we

calculate the corresponding optimal LUT size for this data on MATLAB.

Z = interp2(x; y; z; 16777216; 0:1404)

The obtained result is 128 which �t well with the result obtained in the �gure 5.19.

Thus, we have derived a function which depends on two data set parameters and

returns the optimal pre-integrated LUT size. Thus, one can accelerate the LUT

generation time by choosing the adequate LUT resolution without a�ecting the image

quality.

82

CHAPTER 5.6. RESULTS

Figure 5.18: In
uence of volume transparency and size parameters on pre-integrated
LUT dimension.

Figure 5.19: In
uence of the LUT size on the image error for a semi-transparent
teapot (256� 256� 256 voxels) data set.

83

CHAPTER 5.7. CONCLUSION

5.7 Conclusion

In this part, it has been shown that the Phong shading can be integrated into the

pre-integrated volume rendering frame without any problems and without having any

approximations concerning the normal directions depending on the opacity and the

absorption being included in the formula. The shading result for any interval can be

obtained by dedicated compositing of pre-computed values read from the 2D LUTs.

Due to the pre-computation, shading calculations remain cheap and, therefore, they

can be applied to arbitrary complex scenes. As long as the shading can be applied,

and thus even more complex shading models are applicable without any performance

degradation during visualization. We also derived a model to determine the optimal

LUT size given a volume dataset.

84

Chapter 6

Coherence Encoding

6.1 Introduction

Fast volume rendering is today one of the major challenges of visualization. Because

of the large size of volume data, rendering is slow. However, there is generally a

high degree of similarity or spatial coherence in the data. In fact, in many data sets,

properties do not change drastically but rather in a smooth or continuous way. Thus,

exploiting coherence is one of the most e�cient techniques to accelerate volume ren-

dering. Coherence is based on the principe of locality, whereby parts do have the

same or similar characteristics. Di�erent types of coherence exist. [21] gives a good

survey of them. In this chapter, we limit ourselves to spatial coherence. Spatial tech-

niques seek to explore coherence within the data to accelerate rendering. In volume

data, they describe spatial homogeneity. These are a consequence of constant or slow

varying relationships in the spatial arrangement of data. For example, if one consider

the opacity property of the data, the coherence can be described by a constant re-

lationship, i.e, voxels, in a certain range, have the same opacity value, e.g, they are

either empty (emptiness) or homogeneous (homogeniety). Coherence can also be a

85

CHAPTER 6.1. INTRODUCTION

Figure 6.1: Ray tracing of hierarchical enumeration

slow varying relationship that can be expressed by linearity, i.e, it exists linear transi-

tion between opacity values of voxels in small neighborhood. Homogeneity in volume

data have been exploited in a variety of di�erent methods and techniques. Data can

be stored more e�ciently by eliminating redundancies thanks to coherence. In the

following, techniques and data structures for exploiting coherence in volume rendering

are described. Some speci�c data structures have been developed that are well suited

to exploit coherence properties. The most popular spatial subdivision technique is

that of the octrees [17, 51]. It describes an adaptive hierarchical subdivision of 3D

space. An octree can adjust the volume to varying levels of coherence by subdividing

incoherent regions further. This method was applied to ray casting volume render-

ing algorithm by Levoy [36](see �gure 6.1). In preprocessing, he uses an octree to

describe the empty regions in a volume. Then, during rendering, the ray is traced

through the octree using information within the nodes to skip over the empty vox-

els. Further, Subramanian [55] extended this technique to render e�ciently volumes

86

CHAPTER 6.1. INTRODUCTION

where the data of interest is distributed sparsely. He suggested that the computa-

tionally expensive traversal of the ray through the octree can be avoided by storing

the octree information at the empty voxels as uniformity information. In that way,

an additional value is stored into the empty voxels to indicate in which level of the

octree they are. This value is then used to cause the ray to skip to the next �rst voxel

beyond the uniform region. Subdivision techniques proceed top-down, subdividing a

given space into smaller subspaces. Those techniques produce good (non overlapping)

hierarchies but weak bounds. To overcome these disadvantages, further techniques

have been developed to encode homogeneity in volume data. Methods were discussed

by [63] in which additional data or the volume itself is used to store proximity
ags or

values which present distances which will enable an accurate ray traversal algorithm.

The distance values indicate how far a ray can jump without encountering an object.

These methods su�er from the fact that 3D preprocessing is required whenever a

change on the data occurs. Where most of the previous techniques were restricted to

ray casting, Lacroute [34] proposed a fast shear warp algorithm where in the prepro-

cessing step, the volume is encoded by run-lengths in voxel scanlines which is used

in the compositing step to skip empty voxels. His method made it possible to use

coherence in both voxel scanlines to implement space leaping and in the image to

implement early ray termination. All the approaches we have mentioned until now

exploit only one of the three aspects of coherency namely the emptiness. Further,

Freund et al [14] proposed a method which allows to encode both emptiness and

homogeneity on the voxels. However, their method needs to perform segmentation

in preprocessing step to determine homogeneity in the volume, which is a very time

consuming process. Recently, Chen [5] proposed a method to exploit linear coherence

87

CHAPTER 6.2. ACCELERATING SHEAR WARP

in volumes, in both shear warp and ray casting algorithm. In his new shear warp

algorithm, he used a simple ambient shading model and an intensity-interpolation

scheme (Gouraud shading). By consequence the images lack sometimes of liveliness.

As for the performance, it has been proved that although the preprocessing time is

faster, the rendering process is almost the same as in Volpack [34]. This chapter

describes the developments made in both shear warp and ray casting algorithm as

well as their implementation on the platform independent computer graphics library

VGL.

6.2 Accelerating Shear Warp

6.2.1 Implementation of earlier shear warp algorithm for par-

allel projection

In this section, we give an overview about the basic ideas of the original shear warp

algorithm [34], which we later develop in our new implementation. To exploit co-

herence on the shear warp algorithm, Lacroute [34] uses a run-length-encoding (see

�gure 6.2) to encode the volume data. The run-length-encoding is composed of three

data structures:

1. a run-length array to store the lengths of the empty and non-empty runs of

voxels within a voxel scanline. Opacity values are continuous from 0:0 to 1:0.

A value of 0:0 indicates a completely transparent, i.e, empty voxel, a value of

1:0 indicates a completely opaque voxel.

2. a voxel array where is stored the non empty voxels one by one. The empty

88

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.2: The 3 data structures of the run-length-encoded volume

voxels are not saved because they do not participate in the rendering process.

3. and �nally for each slice, a voxel slice pointer array with two entries, each

entry contains a pointer: the �rst one points to the �rst run-length for the slice

in the run-length array, and the second one points to the �rst non-empty voxel

of the slice in the voxel array.

Three precomputed run-length-encodings are used for each major axis if the viewing

direction changes considerable. Then, to take advantage of coherence in the image

space, run-length-encoding of the intermediate image is used. This data structure

is constructed dynamically during rendering. The run-length-encoding consists of

an o�set stored with each opaque pixel, i.e., each pixel whose opacity exceeds a

user speci�ed threshold. The o�set points to the next non-opaque pixel in the same

scanline, as shown in �gure 6.3. These o�sets are used during rendering to know how

89

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.3: O�sets stored with opaque pixels in the intermediate image scanline

Figure 6.4: Traversal of voxel and image scanlines: resampling and compositing only
performed when voxels in run are non-empty and pixels in the intermediate image
are non-opaque

much pixels have to be skipped in the current image scanline. By using both data

structures above and since the voxel scanlines in the sheared volume are aligned with

the pixel scanlines in the intermediate image, the rendering process is implemented

as given by the �gure 6.4. For each slice of the volume, the algorithm marches

simultaneously through the voxels and the intermediate image, in scanline order.

The run-length-array of the voxel data is used to skip transparent voxels, while the

run-length-encoding of the intermediate image is utilized to skip opaque pixels, using

the o�sets stored with the pixels. Only the non-transparent and visible voxels are

90

CHAPTER 6.2. ACCELERATING SHEAR WARP

shaded, resampled and composited.

6.2.2 Accelerating Shear Warp by Coherence Encoding

In the basic shear warp algorithm, in the rendering phase, the empty runs of voxels

are skipped (space-leaping), while the voxels in the non-empty runs are processed

one by one. Even this acceleration method works well for volumes where the voxels

are classi�ed so that they are mostly opaque or transparent, it is not the case for

volumes with many semi-transparent regions. To keep a high rendering speed for all

volume classi�cation functions, Chen [5] exploits two types of coherence in the voxel

data set, namely the homogeneity [14] and the linearity. In fact, some voxels in the

volume scanlines can have approximately the same opacity. The idea is to linearize

the opacity curve along the voxel scanline as shown in �gure 6.5. First, a maximal

allowed error is de�ned. Then, given this threshold of error, a distance value d for

each voxel is determined, within which the opacity curve can be approximated by a

linear function. For this purpose, we �rst implemented a function which determines

the linearization error Errlin between 2 voxels a and a+ d, given by:

Errlin(a; a+ d) =
d�1X
i=1

jopacity(a+ i)� (opacity(a) +
i

d
(opacity(a+ d)� opacity(a)))j

The �rst modi�cation is the additional coherence distance data stored in the voxel.

The second is that the number of the voxels saved in the voxel data array will de-

crease. In fact, we only have to save the boundary voxels of each linearized segment.

The voxels in between do not need to be saved, since we can obtain the required infor-

mation there for shading by a linear interpolation function that we have implemented.

This modi�cation in voxel array data leads in consequence to a modi�cation in the

voxel slice pointer array, precisely the pointer to the �rst voxel data in the voxel array.

91

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.5: Linearization of the opacity curve along a voxel scanline: the x axis
represents the gray values along a voxel scanline and f(x) represents the opacity
function. The black curve is the continuous opacity transfer function. The red curve
de�nes the piecewise opacity function acquired by connecting the sample values (red
dots) obtained by linearization of the continuous function

The run length array is kept unchanged. Those modi�cations being accomplished,

we obtain the new run length encoding with coherence. Thereafter, we used this new

run length encoding volume in the render process. We �rst experimented with this

implementation of the shear warp algorithm where the intermediate image scanline

is sequentially traversed with one voxel scanline and the second time with two voxel

scanlines at the same time.

6.2.3 Implementation

Comparing to the original implementation of the shear warp algorithm [34], some

modi�cations were introduced by Chen [5]. On one hand, he saved memory to store

the non-empty voxels: instead of storing the precomputed normals, the opacity and

92

CHAPTER 6.2. ACCELERATING SHEAR WARP

gray value for each voxel, he only stored the opacity value and the coherence distance

for each voxel in the voxel data array. The number of voxels inside the voxel data

array is also minimized since only voxels on the boundary of the linearized segment

are stored. The colors and opacities of the voxels in between are obtained by linear

interpolation. On the other hand, to accelerate rendering process, he adopted an

ambient light whose re
ection is proportional to the voxel opacity as shading function.

This simple light model was previously adapted on some existing rendering algorithm

[39]. Then, an intensity interpolation(Gouraud shading) is used to evaluate color

for each voxel. During the rendering process, this algorithm marches only through

one voxel scanline and the intermediate image scanline. In our implementation, we

adopt the coherence encoding considering two voxel scanlines in parallel, that means

two input scanlines are traversed and decoded simultaneously. Bilinear interpolation

between the two scanlines are used to evaluate the �nal color of the voxel to be

composited to the intermediate image. We �rst encode the coherence in a voxel

scanline, as shown in algorithm 3.

After encoding linearization, the voxel data stored in the voxel array changes

as shown in �gure 6.6. We only save the boundary voxels of each coherent re-

gion, with their calculated coherence distance. Thus, the number of saved voxels

decreases. During rendering process, two adjacent voxel scanlines are processed in

parallel. When a run of empty voxels is present in one of them, corresponding voxels

in the other voxel scanline as well as pixels in the intermediate image scanline are

simply skipped. Voxels in adjacent scanlines are also skipped whenever the corre-

sponding pixels in the intermediate image scanline are already opaque. Otherwise,

93

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.6: The voxel array after coding distance: only the boundary voxels (yellow)
of the coherent region (green) are saved on the voxel array

94

CHAPTER 6.2. ACCELERATING SHEAR WARP

Algorithm 3 Calculate Coherence(�rled; l): Pseudo code for encoding coherency in
voxel scanline: First, the algorithm calculates the distance where the error is still
below a threshold. Then, it saves for each voxel in between the two boundaries of the
linearized scanline part, its coherence distance

for i = 0 to l do
d = 0;
while (CalculateCoherence(rled; d) � Errlin and i < l) do
i++;
d++;

end while
d��;
for j = d to 0 do
distance(rled) = j;
rled+ = Byte per V oxel

end for
end for

when marching through non-empty runs of the two adjacent voxel scanlines, we con-

sider a run of voxels of length corresponding to the minimum of both run lengths.

Then, for each voxel present in one of both voxel scanlines, we check if it is saved or

not on the voxel array. If it is the case, the corresponding color and opacity of the

voxel are retrieved. Otherwise, the voxel is in the coherent region. Thus, a linear

interpolation between the two saved boundary voxels in the corresponding scanline,

is done to get the adequate color and opacity values. Thus, given four voxel data

and using the already calculated weights, which are constant because of the parallel

projection, we evaluate by bilinear interpolation the voxel data to be composited to

the corresponding pixel in the intermediate image scanline, as shown in �gure 6.7.

95

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.7: Traversal of two adjacent voxel scanlines

96

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.8: Number of saved data

6.2.4 Results

The statistics made on the engine data set with 2 classi�cations types (semi-transparent

and opaque) lead to the following results:

1. Less memory space used to store voxel data: (see �gure 6.8).

2. To numerically evaluate the image quality, we used metrics in terms of image

error. We simply used the root mean square (RMS) to determine this error and

as result we notice that there are no relevant changes in image quality for a

small error threshold as shown in �gure 6.9.

The in
uence of the coherence error on the image quality is re
ected by the curve

in �gure 6.9. We notice that, while increasing the coherence error, the image error

remains the same. This is due to the fact that the coherence error and the coherence

97

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.9: The in
uence of encoding error

encoded distance are proportional. Thus, raising the coherence error implies raising

the encoded distance. However, this distance can not increase inde�nitely due to the

presence of the empty runs in the voxels scanlines. Therefore, the coherence encoded

distance augments whenever the coherence error augments, until a new run of empty

voxels starts. Thus, on a certain stage, increasing the coherence error has no more

e�ect on the image error. Finally, this explains why the curve in �g 6.9 becomes

constant for high coherence error values.

The image quality of our algorithm is a�ected by the error threshold value used

during encoding the coherence in the shear warp algorithm. Figure 6.10 shows the

di�erence between images rendered with di�erent coherence encoding errors for the

opaque engine data set, while the �gure 6.11 shows the same but for the semi-

transparent engine data set.

98

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.10: The in
uence of encoding error.Image a is the reference image rendered
without coherence encoding.Image b,c,d are images rendered with coherence encoding
using an error threshold value respectively equal to 0:2; 0:5 and 1

99

CHAPTER 6.2. ACCELERATING SHEAR WARP

Figure 6.11: The in
uence of encoding error.Image a is the reference image rendered
without coherence encoding.Image b,c,d are images rendered with coherence encoding
using an error threshold value respectively equal to 0:2; 0:4 and 0:5.

100

CHAPTER 6.3. ACCELERATING RAY CASTING

6.3 Accelerating Ray Casting

6.3.1 Existing ray casting acceleration methods

Ray casting is known for being the best method for rendering high quality images.

Unfortunately, this process is time consuming and very expensive. This is due to the

huge number of rays to be shot and the exhaustive computation needed for trilinear

interpolation when resampling and Phong shading calculation. Thus, many strategies

have been proposed, over the two last decades, to accelerate this algorithm. For this

purpose, exploiting coherence is undoubtedly, most often, the key to achieve fast and

e�cient ray-casting. Based on that, di�erent strategies have been proposed that can

be classi�ed into two groups. On one hand side, a group which aims to minimize

the number of rays to be casted; this can be realized either by adaptive sampling

[35, 36, 37], i.e., reconstructing an image with less samples in the image plane, or by

decreasing the amount of rays to be casted for each sample e.g shadows caches [43]. On

the other hand, a group whose goal is to improve the core of the ray-casting algorithm

such that the rays can be processed faster, to accomplish this objective, a di�erent

number of data structures has been used to speed up this process[18] such as Bounding

Volume Hierarchies (BVH), grids, octrees and Binary Space Portioning (BSP)[23].

Recent work has focused on kd-trees [13]. In [59], Wald et al exploit coherence

by processing packets of rays in parallel. Using this approach, they decrease the

algorithm computational time using SIMD instructions on multiple rays in parallel,

reduce memory bandwidth by requesting data only once per packet and increase cache

utilization at the same time. Exploiting the coherence in a packet of rays has yield

further improvement in Multi-Level ray tracing algorithm [46], where a bounding

101

CHAPTER 6.3. ACCELERATING RAY CASTING

frustum drives the kd-tree traversal of rays in bulk instead of considering each ray

separately. While those techniques, namely ray packets, frustum testing, were only

available for unstructured grids, they were recently extended to uniform grids by [58].

Our goal in this chapter is to take advantage from spatial coherence on uniform grid

by exploiting the coherence regions in a semi-transparent objects.

6.3.2 Accelerating Ray-Casting by Coherence Encoding

We have seen in the previous section that we can accelerate shear warp algorithm

by exploiting the voxel's opacity linearity in voxel scanline direction which corre-

sponds to one of the three principal axis. We can extend this principle for exploiting

coherence in ray-casting by considering that the voxel values change linearly in all

directions. This allows to reduce the sampling rate along the ray by using a coherence

distance which corresponds to the interval of coherence along the ray [5]. As shown

in the �gure 6.12 by [5], inside the linear segment, i.e., the coherent region of the

ray path, the normals are constant; therefore, instead of sampling the ray between x0

and x0 + d, we only have to consider the voxel values at the boundaries. In fact, for

opacity estimation during rendering, instead of calculating the opacity value for each

sample in the linear segment using the trilinear interpolation, we save time by only

achieving linear interpolation between the two boundary voxels. This, on one hand,

on the other hand, for evaluating the Phong shading model, the fact that the nor-

mals are constant inside those coherent regions is helpful. In fact, the Phong shading

depends on three vectors namely the light vector
�!
L , the normal vector ~N and the

viewer direction ~V . When the light source can be considered far enough and since

the view direction is the same for a given ray as well as the normal inside the linear

102

CHAPTER 6.3. ACCELERATING RAY CASTING

Figure 6.12: Approximating the voxel opacity value curve by piecewise linear segments

segment, then the shading value for this coherent region is the same, by consequence

it can be assimilated to one of the boundary shading values. This allows to save many

operations for shading calculation which is one of the most computational tasks in

ray-casting rendering process. The coherence is encoded in shear warp algorithm

by only considering the marching direction of the voxel traversal, thus, the view de-

pendence for coherence encoding is no problem because when rendering, the volume

is always shared and composited parallel to one of the three major axes. However,

encoding coherence for ray-casting is problematic due to the arbitrary directions of

the viewing rays casted through the volume. Since the encoding coherence must be

view independent, a minimum coherence distance among all the possible view direc-

tions, which pass through each voxel, have to be calculated and stored (see �gure

6.13). During rendering, when a ray passes through a voxel, the related distance

103

CHAPTER 6.3. ACCELERATING RAY CASTING

Figure 6.13: Coherence encoding for ray-casting: for each voxel, the shortest coherent
distance is fetched among all possible directions and saved

coding is read out and used to determine the position of the next sample point which

corresponds to the limit of the coherent region along the ray. Thus, the shading

calculations for the samples in between are minimized. Chen [5] proposed a linear

interpolation to get the information for the samples inside the coherent region, while

we use the pre-integrated lookup tables to get directly the opacity and color inside the

coherent region of a certain length. For e�ciency's sake, the local coherence distance

value is stored in a 3D array which is of the same size as the volume, so that both the

coherence distance and the voxel access have the same addressing. In our algorithm,

since we are using the VGLSampleGridData type to save the volume data set, a new

grid of the same type and size is created to store the distance coding for each voxel in

the volume. The coherent encoding is in fact similar to the distance coding for space

leaping. The later is also encoded view independently with only di�erence that we

104

CHAPTER 6.3. ACCELERATING RAY CASTING

consider empty regions instead of coherent regions which is a special case of coher-

ence. The distance from each empty voxel to the nearest non-empty voxel is fetched

by approaches like the two pass morphological �ltering algorithm [27] and saved in a

3D distance array. These distances values are later used in the ray-casting algorithm

to skip empty spaces. For calculating the coherence distance encoding (EDC), there

exist di�erent strategies. The brute force EDC searches all possible ray directions for

the shortest coherence distance. This method was showed as being too expensive due

to the huge number of considered ray directions. An improvement of this algorithm

was given by [6], considering only 26 searching directions instead of all possible ray

directions. These directions correspond to the connecting directions between a voxel

and its 26 neighboring voxels, which are either axis parallel or diagonal. This algo-

rithm realized much better performance than the brute force EDC algorithm but the

image quality was not guaranteed because of the risk of missing tiny details when the

encoded coherence distance increases. Chen [5] addressed this problem by using the

Taylor expansion based EDC, described in the following.

6.3.2.1 The Taylor Expansion based Extended Distance Coding (EDC)

The main idea of ray-casting rendering with coherence encoding is to assign for each

voxel in the volume, a view independent maximal spatial coherence distance. That

means, along any ray direction, the integral of the di�erence between the opacity

curve and its approximation by a line is less then a prede�ned error threshold ". This

leads to the following formula:

d = maxfl 2 R+j
Z l

0

j f(x~L)� (ax+ b) j dx � ";

8~L 2 R
3; k~Lk = 1; a =

f(l~L)� f(0)

l
; and b = f(0)g (6.3.1)

105

CHAPTER 6.3. ACCELERATING RAY CASTING

This formula is depending on both the considered direction and the size of the linear

domain. Considering each ray direction, which passes through each voxel in the

data, is problematic due to the exhaustive combination checking of view directions.

Thus, it would be interesting if the calculation of the encoded distance could be

expressed independently of the view direction. This can be achieved by applying the

Taylor expansion to formula 6.3.1. For simplicity, we �rst consider f as 1D function.

In 6.3.1, a can be approximated by the local gradient which is given by the �rst

order di�erential value of the function f . According to the Taylor formula [20], if

f 2 C2(R) is de�ned on a bounded interval, then f can be approximated, in the local

neighborhood of x = 0, by a linear function:

f(x) = f(0) + xf 0(0) +R(x) (6.3.2)

With the remainder

R(x) =
x2

2
f"(�); � 2 [0; x]: (6.3.3)

Approximating the parameter a in 6.3.1 by f 0(0), we obtain:

jf(x~L)� (ax+ b)j = jf(x~L)� (x � f 0(0) + f(0))j = x2

2
jf"(�)j (6.3.4)

In addition

9xmax; 8� 2 [0; x]; jf"(�)j � jf"(xmax)j (6.3.5)

Thus, 6.3.1 can be rewritten with:

d = maxfl 2 R+j
Z l

0

x2

2
jf"(xmax)jdx � "g (6.3.6)

Here, in 6.3.6, the coherence distance does not depend anymore on the ray directions.

It is only determined by the maximal second-order di�erential value and the size of

106

CHAPTER 6.3. ACCELERATING RAY CASTING

the coherent region. Thus, given 6.3.6, the encoded coherence can be calculated as

follows:

Error(l) =

Z l

0

jR(x)jdx �
Z l

0

x2

2
jf"(xmax)jdx =

l3

6
jf"(xmax)j: (6.3.7)

For a prede�ned user coherence error Errlin, this leads to:

Error(l) � l3

6
jf"(xmax)j � Errlin: (6.3.8)

Therefore the maximal coherence distance is given by:

l � 3

s
6Errlin

jf"(xmax)j (6.3.9)

We then extend the result for 3D functions, we obtain:

l � 3

s
6Errlin

jfxx"(~xmax) + fyy"(~xmax) + fzz"(~xmax) + fxy"(~xmax) + fxz"(~xmax) + fyz"(~xmax)j

Thereby, the local coherence error depends only on the prede�ned user linearization

error Errlin and the second order di�erence value at each voxel.

6.3.3 Implementation

Before rendering volume with ray-casting based coherence encoding, we �rst compute

and save the coherence encoding distances for each non-empty voxel, using the Taylor

Expansion method described above. The algorithm for computing the coherence

distance is mainly composed of three steps. First, we evaluate for each non-empty

voxel in the volume, its maximum local coherent distance, which is its distance to the

nearest empty voxel on its neighborhood. We then, save it in a distance grid with the

same size as the volume. Second, for each non-empty voxel, we compute according

107

CHAPTER 6.3. ACCELERATING RAY CASTING

to equation 6.3.10, the candidate coherence distance obtained by the maximum local

coherence distance:

l(x; y; z) :=

8<
:

3

q
6Errlin

jf"(x;y;z)j if f"(x; y; z) 6= 0

maxdis otherwise
(6.3.10)

where

f"(x; y; z) = fxx"(x; y; z) + fyy"(x; y; z) + fzz"(x; y; z) + fxy"(x; y; z) + fxz"(x; y; z) + fyz"(x; y; z)

The resulted values are saved in a temporary bu�er with the same size as the volume.

Finally, a
ood-�ll process is used to compare, for each non-empty voxel, its candidate

coherence distance value l read from the bu�er, with all distance values d on the

3D-l neighborhood. Then whenever d is higher than l, d is putted to l, otherwise

the original value is preserved. The pseudo-code for this algorithm is showed in

algorithm 4. To convenably store the coherence distances for each voxel in the volume

data, it is necessary to use the same data structure used to save the volume, so that

we can access each voxel and its corresponding coherence distance with the same

coordinates. For this purpose, we adopt the VGLSampleGridData class provided by

the VGL library. We �rst create a class SampleGridCoherence (see �gure 6.14)

which allows us to calculate the coherence distances for each voxel in the volume

and save them into a 3D data structure for further access. Then, we apply the

coherence encoding technique to the ray-casting rendering algorithm. In the previous

work of Chen [5], encoding coherence during rendering consisted on reading color

and opacity information for both voxels at the boundary of the coherence sample

interval, then for each sample in between calculating shading information by linearly

interpolating between the boundary voxels and apply compositing. In our algorithm,

we will improve this part by applying the pre-integration technique to the rendering

108

CHAPTER 6.3. ACCELERATING RAY CASTING

Algorithm 4 Tayloredc: The pseudo-code for the Taylor expansion based EDC
algorithm: the input to this algorithm is a classi�ed discrete volume data set vol.
The output is a volume data set having the same size as vol and containing the
coherence encoding distances.

fallowed mistakeg
static float ErrMaxLin = ERRMAX;
f�rst step: get the distances of all non-transparent voxels to the nearest transparent
one, using the same algorithm like in the space leaping part of the calculationg
f�ll the matrix with maximal values but only non-transparent voxelsg
maxvalue(vol;maxdist;material);
fget the distance values for all non-transparent voxelsg
caldis(vol;material;mindist);
fcheck the distances of all non-transparent voxels to the borders of the volume �leg
borders(vol;material);
fsecond step: Formula 6.3.10g
fa temporaryDistanceBu�er is used in this step.g
VGLSampleGridData tmpDisBuffer(VGL TYPE UINT8; VGLSampleGridSize(dx; dy; dz));
fthird and last step: merge the two distance matrixesg
merge(tmpDisBuffer; vol;material);
return true;

Figure 6.14: The class SampleGridCoherence for encoding coherence distances

109

CHAPTER 6.3. ACCELERATING RAY CASTING

Figure 6.15: Ray-casting algorithm with Coherence Encoding and Pre-Integration

process as shown in �gure 6.16. Instead of linearly interpolating sampling in the

coherence interval and compositing them one by one, thanks to the pre-computed

pre-integration lookup tables, we only have to read the gray values at the front and

back samples of the coherence interval, as well as the coherence distance, and plug

them into the LUT to get directly the shading results for this interval (see �gure

6.15). This is possible, since as we explained in the last chapter, we precompute the

LUT for di�erent distances.

In the following, algorithm 5 shows the pseudo-code for the methodEncodeCoherence()

mentioned in the �gure 6.16.

110

CHAPTER 6.3. ACCELERATING RAY CASTING

Figure 6.16: Rendering Process

Algorithm 5 Encode Coherence: Encoding Coherence Method

end = ray:end;
t = ray:current[0];
distance = SampleGridCoherence:disdata[t];
if distance > 2 then
t+ = distance � ray:rayOneV oxelDistance
if t � end then
t = end;

end if
ray:current[1] = t;

end if

111

CHAPTER 6.3. ACCELERATING RAY CASTING

6.3.4 Results and Analysis

We experimented the ray-casting algorithm with two acceleration methods: �rst using

only coherence encoding and second combining both coherence encoding and pre-

integrated volume rendering technique. We compared the performances and image

qualities between both approaches. All experiments were carried out by using half

of the voxel size as the sample unit to avoid artifacts as suggested by [32]. In order

to �nd what kind of data type is best accelerated by our methods, we considered

two classi�cation types namely opaque and semi-transparent objects. As data set for

our experiment, we chose tow engine data set of size respectively 256 � 256 � 128

voxels and 128� 192� 256 voxels, both are 8 bit data. To compare the performance

we use two metrics: the rendering time and the percentage of samples saved. While

the rendering time is computer platform dependent, the samples saved are not. The

percentage of samples saved is given by the following formula:

SamplesSaved(%) =
Totalsamples�Newsamples

Totalsamples
� 100 (6.3.11)

where Totalsamples is the initial samples number and Newsamples is the number

of samples after applying encoding coherence method.

Table 6.1 contains the experimental results for the two acceleration methods. The

results are obtained by using the opacity transfer function that makes the volumes

opaque. The rendering times listed in table 6.1 show that for both algorithms: coher-

ence encoding that we later reference to as technique I and pre-integrated rendering

combined with coherence encoding that we later reference to as technique II, the ren-

dering time is a decreasing function of the error tolerance and the number of saved

112

CHAPTER 6.3. ACCELERATING RAY CASTING

Image Dataset Error Saved Rendering
No + technique Tolerance Samples (%) Time (s)

6.17.a 0 0; 001 1; 392
6.17.b Opaque Engine CT 5 0; 381 1; 382
6.17.c 128� 192� 256 8bit 5:5 1; 050 1; 372
6.17.d + coherence encoding 6 1; 058 1; 352
6.18.a Opaque Engine CT 0 3; 124 3; 9
6.18.b 128� 192� 256 8bit 1 3; 921 3; 8
6.18.c + coherence encoding 1:5 6; 352 3; 4
6.18.d + pre-integration 2 9; 470 3; 2

Table 6.1: Rendering parameters for opaque data sets rendered with our algorithm

Figure 6.17: Rendering opaque engine with coherence encoding

113

CHAPTER 6.3. ACCELERATING RAY CASTING

Figure 6.18: Rendering opaque engine with coherence encoding and pre-integrated
technique

114

CHAPTER 6.3. ACCELERATING RAY CASTING

Image Dataset Error Saved Rendering
No + technique Tolerance Samples (%) Time (s)

6.19.a 0 3; 127 16; 6
6.19.b Semi-Transparent Engine CT 5 3; 228 15; 8
6.19.c 256� 256� 128 8bit 6 3; 242 14; 73
6.19.d + coherence encoding 7 3; 256 14; 25
6.20.a Semi-Transparent Engine CT 0 2; 823 5; 789
6.20.b 256� 256� 128 8bit 5 2; 834 5; 538
6.20.c + coherence encoding 10 2; 875 5; 288
6.20.d + pre-integration 14 2; 908 5; 227

Table 6.2: Rendering parameters for semi-transparent data sets rendered with our
algorithm

samples is an increasing one, as illustrated in �gure 6.21.a and 6.21.c. When compar-

ing between the results of the two rendering techniques for opaque data set, unlike

one can expects, the rendering time in technique II is slower than in technique I even

the use of the pre-integrated volume rendering technique. This is in fact due to two

reasons: �rst, the bilinear interpolation to obtain the color and opacity results and

second, the presence in the shading function of a function lookdis (see procedure 6)

which have to look for the corresponding input to the pre-integrated lookup tables as

well as the values to interpolate in between. Thus, since for the opaque data set, the

presence of coherent regions is rare, the consuming time due to those two factors is

not attenuated.

Procedure 6 lookdis(float x; float y; float d; int �i): The lookdis procedure

i = log(d) � ln2;
x = P2[i];
y = P2[i+ 1];

Table 6.2 contains the experimental results for the technique I an II. The results

115

CHAPTER 6.3. ACCELERATING RAY CASTING

(a) (b)

(c) (d)

Figure 6.19: Rendering semi-transparent engine with coherence encoding

116

CHAPTER 6.3. ACCELERATING RAY CASTING

(a) (b)

(c) (d)

Figure 6.20: Rendering semi-transparent engine with coherence encoding and pre-
integrated technique

117

CHAPTER 6.3. ACCELERATING RAY CASTING

(a)

(b)

(c)

(d)

Figure 6.21: In
uence of encoding error on rendering performance for di�erent tech-
niques and data sets: (a)opaque engine(128 � 192 � 256 voxels) rendered using
only coherence encoding, (b)semi-transparent engine(256 � 256 � 128 voxels) ren-
dered using only coherence encoding, (c)opaque engine(128� 192� 256 voxels) ren-
dered using coherence encoding and pre-integration technique, (d)semi-transparent
engine(256�256�128 voxels) rendered using coherence encoding and pre-integration
technique

118

CHAPTER 6.4. CONCLUSION

are obtained by using the opacity transfer function that makes the volumes semi-

transparent. The rendering times listed in table 6.2 show that for both algorithms,

the rendering time is a decreasing function of the error tolerance and the number of

saved samples is an increasing one, as illustrated in �gure 6.21.b and 6.21.d. Unlike the

case where the data set was opaque, we notice here that our algorithm is accelerated

by the pre-integrated technique by factor of approximatively 3. This is due to the

larger coherent distance present during shading.

6.4 Conclusion

In this chapter, we �rst implemented the shear warp algorithm with coherence en-

coding. We further applied the coherence encoding acceleration technique to the

ray-casting algorithm: in a �rst step, we implemented using the VGL, the Taylor

expansion based extended distance coding, which calculates for each voxel in the

volume a view independent distance coherence. In a second step, we reimplement

the ray-casting algorithm process accelerated by coherence encoding as well as pre-

integrated volume rendering technique and we achieved a speed up of factor 3 for

semi-transparent objects due to the large coherent regions they present.

119

Chapter 7

Rendering Deformed Objects

7.1 Introduction

In this chapter, we present a method to render deformed objects. We �rst introduce

the previous work related to this �eld, then we give an overview about the math-

ematical background of the deformation tools used further in our implementation,

precisely the Free Form Deformation (FFD). Afterwards, we describe how ray cast-

ing is applied to deform object in 3D space. Later, we present the changes and the

optimizations provided to the current implementation state. Finally we show the

corresponding results.

7.2 Related Work

Di�erent approaches for describing volume deformation involves volume morphing

[12, 25, 28, 54], a technique used to generate smooth object transformation. This de-

formation technique is however not automatic. It consists on selecting landmarks in

both original and target object, which are used later to calculate the transformation.

Another deformation techniques are the geometrically based deformation model and

120

CHAPTER 7.2. RELATED WORK

the physically based deformation model. In the following, we shortly mention �rst

some models for physically based deformation, then we describe in more details the

previous work in geometric based deformation. In physically based deformation, a

physical model is applied for the full object. The computations can include spring-

like models [45, 15], continuum models [16], �nite element methods [7] or landmark

deformations [11]. In geometrically based deformation, typical volume deformation

consists on deforming the object in a �rst step and then rendering the deformed ob-

ject. Barr [1] did the �rst work on object deformation. He developed new hierarchical

solid modeling operations, which simulate 3D transformations of geometric objects.

He found out that the normal vector of an arbitrarily deformed smooth surface can

be calculated directly from the surface normal vector of the undeformed surface and a

transformation matrix, and call this the normal vector transformation rule. The lim-

itation to his technique is that it is not very suitable for realize complex deformation

schemes. For deformation in ray casting algorithm, he proposed the idea of inverse ray

deformation which consists on combining both deformation procedure and rendering

process. As shown in �gure 7.1, the deformation can be achieved either by intersect-

ing the deformed primitive by the incident ray, or by intersecting the undeformed

primitive by the twisted ray. This idea was further adopted by Kurzion and Yagel

[33]. They introduced the concept of ray de
ectors for deforming volume data sets

during the rendering stage by deforming viewing rays using de
ectors. A de
ector is

a gravity vector, positioned in space, that bends all rays passing through its de�ned

area of in
uence as shown in �gure 7.2. In order to generate a local deformation, all

sight rays are transformed in a direction opposite to that of the desired visual e�ect.

121

CHAPTER 7.2. RELATED WORK

Figure 7.1: Deformation by inversely deforming rays. (a) Deformed primitive, in
undeformed space. (b) Undeformed primitive, in its undeformed coordinate system,
showing path of ray (By Barr [1])

Figure 7.2: Ray de
ector. (a) Locate a ray de
ector at the right side of a hexahedron
(2D draft). (b) The ray trajectories are deformed within the ray de
ector. (c) The
visual e�ect. (By Kurzion [33])

122

CHAPTER 7.3. MATHEMATICAL BACKGROUND

Later, Chen [24] used the inversely deformed rays to produce the expected de-

formation e�ect by using a uniform spline grid based free form deformation scheme.

In our object deformation algorithm, we will also use inversely deformed rays by

integrating some optimizations to Chens work.

7.3 Mathematical Background

7.3.1 Parametric representation of objects

The easiest way to deform an object is to use a parametric representation. In order

to change the shape of a parametric curve, it's su�cient to move one or several of its

control points. The original and the deformed curve have then the same resolution.

7.3.2 B-splines

Given m + 1 knots ti with t0 � t1 � : : : � tm, a B-spline curve of degree p (order

k = p+ 1) can be de�ned in terms of a set of control points ~Pi(i = 0; 1; 2:::n) such as

m = n + p + 1. In essence, each control point in
uences the shape of a local part of

the curve. The curve is de�ned by the following equation:

~S(t) =
nX
i=0

~Pibi;p(t) , t 2 [t0; tm] (7.3.1)

Basically, this is a summation of the blending function bi;p(t) and the control points

~Pi. The blending function of degree p can be de�ned using the Cox-de Boor recursion

123

CHAPTER 7.3. MATHEMATICAL BACKGROUND

formula:

bi;0(t) :=

(
1 if ti � t < ti+1

0 otherwise

bi;p(t) :=
t� ti

ti+p � ti
bi;p�1(t) +

ti+p+1 � t

ti+p+1 � ti+1
bi+1;p�1(t): (7.3.2)

Due to the spline locality property, the equation (7.3.1) gives:

~S(t) =
i0X

i=i0�p
~Pibi;p(t) , t 2 [ti0 ; ti0+1] (7.3.3)

7.3.2.1 The knot vector

We distinguish three types of knot vectors. First, the Uniform knot vectors: these

are knot vectors for which

ti+1 � ti = constant;8i

For example:

[1; 2; 3; 4; 5; 6; 7; 8]

[0; 1; 2; 3; 4; 5]

[0; 0:25; 0:5; 0:75; 1:0]

Second, the Open Uniform knot vectors: these are uniform knot vectors which have

k equal knot values at each end:

ti = t1; i � k

ti+1 � ti = constant; k � i < n+ 2

ti = tk+(n+1); i � n+ 2

For example:

[0; 0; 0; 0; 1; 2; 3; 4; 4; 4; 4] (k = 4)

[1; 1:::::::1; 0:1; 0:1; 0:1; 0:3; 0:5; 0:7; 0:7; 0:7; 0:7; 0:7] (k = 5)

And �nally the Non-uniform knot vectors. This is the general case, the only constraint

being the standard ti � ti+1;8i. For example:

124

CHAPTER 7.3. MATHEMATICAL BACKGROUND

[1; 3; 7; 22; 23; 23; 49; 50; 50]

[1; 1; 1; 2; 2::::::; 6; 6; 7; 7; 7]

[0:2; 0:7; 0:7; 0:7; 1:2; 1:2; 2:9; 3:6]

7.3.3 De Boor Algorithm

The de Boor's algorithm, described in this paragraph, is a procedure which e�ciently

evaluates the expression for equation (7.3.3). It provides a fast and numerically stable

way for �nding a point on a B-spline curve. The algorithm is described below:

Given

8>><
>>:

u 2 [ui0 ; ui0+1]

and

Pi;0 = ~Pi;8i = i0 � p; :::; i0

We calculate

Pi;k = (1� �k;i)Pi�1;k�1 + �k;iPi;k�1; k = 1; : : : ; p; i = i0 � p+ k; : : : ; i0

with

�k;i =
u� ui

ui+p+1�k � ui
:

Then

S(u) = Pi0;p (7.3.4)

The de Boor algorithm is illustrated by the �gure 7.3.

7.3.4 Tri-variate Tensor product B-spline

Tri-variate Tensor product B-spline is simply an extension of B-spline curve to the

3D space, and for a degree p in each parametric axis, and over a knot sequence

125

CHAPTER 7.3. MATHEMATICAL BACKGROUND

Figure 7.3: The De Boor Algorithm for a quadratic B-Spline segment

U = fuig; V = fvjg and W = fwkg, is de�ned by the following equation:

F (u; v; w) =
X
i

X
j

X
k

Pi;j;kBi(u)Bj(v)Bk(w) (7.3.5)

To evaluate this function, we use the de Boor Algorithm. In fact, equation (7.3.5)

can be rewritten by:

F (u; v; w) =
X
i

Bi(u)[
X
j

Bj(v)[
X
k

Bk(w)Pi;j;k]] (7.3.6)

Let

Qi =
X
j

Bj(v)[
X
k

Bk(w)Pi;j;k];

Qj =
X
k

Bk(w)Pi;j;k

and Qk = Pi;j;k

(7.3.7)

126

CHAPTER 7.4. FREE FORM DEFORMATION (FFD)

Then

Qi =
X
j

Bj(v)Qj

and F (u; v; w) =
X
i

Bi(u)Qi

By consequence, for each i; j; k, we start by storing Pi;j;k in Qk, then evaluating Qj

with the de Boor algorithm as described in 7.3.4, we do the same with Qi and �nally

we calculate the result F (u; v; w). This process is illustrated by the pseudo-code given

in the algorithm 7.

Algorithm 7 FFD(P; u; v; w): Evaluation of the tri-Variate B-Spline Tensor product
by de Boor algorithm

fP: the control points arrayg
fu, v, w are the local coordinates of the current pointg
for i = i0 � p to i0 do
for j = j0 � p to j0 do
for k = k0 � p to k0 do
Qk = Pi;j;k;

end for
Qj = Boor(Qk; Bk(w));

end for
Qi = Boor(Qj; Bj(v));

end for
F (u; v; w) = Boor(Qi; Bi(u));
return F (u; v; w);

7.4 Free Form Deformation (FFD)

The FFD is a method based on B-Splines technique to deform objects. It was �rst

proposed by Slenderer and Parry [53], and it consists on a space mapping in terms of a

Tri-Variate tensor product B-splines and the deformation procedure is the following:

127

CHAPTER 7.4. FREE FORM DEFORMATION (FFD)

1. The object is embedded in a parallelepiped region of space. Then, a local

coordinate system is imposed such as for any point ~P inside the parallelepiped:

~P = ~O + u~U + v~V + w ~W (7.4.1)

Where (~O; ~U; ~V ; ~W) is the local coordinate system. The local coordinate (u; v; w)

of ~P are found by the following calculation:

u =
(~V � ~W) � (~P � ~O)

(~V � ~W) � ~U

v =
(~U � ~W) � (~P � ~O)

(~U � ~W) � ~V

w =
(~U � ~V) � (~P � ~O)

(~U � ~V) � ~W
(7.4.2)

Thus, 8~P in the region, we have: 0 � u � 1; 0 � v � 1; 0 � w � 1.

2. A grid of control points fPijk; 0 � i � l; 0 � j � m; 0 � k � ng is imposed in

the parallelepiped such as:

Pijk = ~O +
i

l
~U +

j

m
~V +

k

n
~W (7.4.3)

3. For a chosen degree p of B-Splines, the knot numbers can be determined by the

formula:

m = n+ p+ 1 (7.4.4)

where m is the knot number, n is the number of control points and p is the

128

CHAPTER 7.4. FREE FORM DEFORMATION (FFD)

curve degree. Thus, the knot vectors can be initialized with:

~U = fu0; u1; u2; :::; ul+p+1g
~V = fv0; v1; v2; :::; vm+p+1g
~W = fw0; w1; w2; :::; wn+p+1g

(7.4.5)

In our case, we use Uniform Quadratic B-splines which is su�cient to achieve

C1 continuity.

4. To deform the object or part of it, the following steps are necessary:

� To move the control points to their new position: Pijk �! P 0
ijk, according

to a transformation function.

� To determine the local coordinate (u; v; w) of a given point P and its knot

index (i0; j0; k0) such that:

u 2 [ui0 ; ui0+1]; v 2 [vj0 ; vj0+1]; w 2 [wk0 ; wk0+1]: (7.4.6)

� To calculate the coordinate of the deformed point by the following formula:

PFFD(u; v; w) =
i0X

i=i0�p

j0X
j=j0�p

k0X
k=k0�p

P 0
ijkBi(u)Bj(v)Bk(w): (7.4.7)

Where Bi(u),Bj(v) and Bk(w) are quadratic B-spline basis function. We

notice that moving a control poin has only a locally e�ect based on the

B-spline degree, which is an advantage comparing to the original FFD

method based on Bzier curve where the deformation was global and then

needs more computations.

129

CHAPTER 7.5. RAY CASTING IN DEFORMED SPACE

Figure 7.4: FFD deformation. (a)Parallelepiped Grid. (b) Initial position. (c) De-
formed FFD grid. (d) Deformed Object

7.5 Ray casting in deformed space

In ray casting, inverse ray deformation is a suited method to produce deformed images

by bending the rays casted through the undeformed object. The idea of this technique

is straightforward: the volume is embedded into a FFD grid. Then, during rendering,

each casted ray is deformed according to the tri-variate tensor product B-splines given

in equation (7.4.7), and inversely transformed to its �nal state. The inverse deformed

point set of the ray Pinv(i); i = 0; 1; 2:::n is de�ned by:

~Pinv(i) = ~P (i)� [~Pffd(i)� ~P (i)] = 2~P (i)� ~Pffd(i); (7.5.1)

Where ~P is the point on the undeformed ray and ~Pffd its image by the FFD trans-

form on the deformed ray. Therefore, given the inversely deformed ray, this one is

approximated by a polyline which is subdivided into polyline segments. Each polyline

segment is then handled as a normal ray. In the following, we discuss in details each

step of the deformation procedure. In a preprocessing step, we initialize the FFD

system: given the size of the 3D object to be rendered, we create a 3D lattice: the

130

CHAPTER 7.5. RAY CASTING IN DEFORMED SPACE

FFD grid which embeds the volume. Then, a local coordinate system is imposed

on the FFD grid, as described in equations 7.4.2, a grid of control points is created

according to equation 7.4.3, and the knot vectors are initialized as shown in 7.4.6.

The number of control points as well as knot vectors are de�ned by the deformation

degree as de�ned in equation 7.4.4. Further, we de�ne the deformation by moving

the control points using a transformation function de�ned by the user. To implement

the above described process, we create a class named FFD. Once the FFD system

initialized, during the rendering process, whenever a ray is casted, a new domain is

created, it consists on the 3D space delimited by the knot points which surround

the ray start point. In addition, we know that in this domain, referred to later by

D, the deformed ray obtained by the quadratic B-splines basis function, represents

a second degree polynomial. Thus, let ts being the start point of the new ray and

~Ps = (us; vs; ws) being the corresponding point on the local coordinates system of the

FFD grid such as ~Ps 2 D = [ui0 ; ui0+1] � [vj0 ; vj0+1] � [wk0 ; wk0+1]. And let te being

the intersection between the ray and D, i.e. the cubic box limited by the planes:

x = ui0 ; x = ui0+1 and y = vj0 ; y = vj0+1 and z = wk0 ; z = wk0+1, and such as te 6= ts.

Let te being represented by ~Pe in the local coordinate system. Given ~Ps and ~Pe, we

distinguish two cases: if ~Ps is not deformed, then the line segment delimited by ~Ps

and ~Pe is not deformed and represents a new polyline segment that is rendered as

a normal ray. However, if ~Ps is deformed i.e. one of the 27 control points in its

neighborhood is deformed, then the deformed ray embedded into the domain D is

delimited by the points given by the inverse deformation transform of respectively ~Ps

and ~Pe. Since a spline is a curve that is piecewise pth degree polynomial, therefore,

according to equation 7.3.1, this curve must be equal to a polynomial of degree at

131

CHAPTER 7.5. RAY CASTING IN DEFORMED SPACE

Figure 7.5: The Polynomial data structure to de�ne the domain D

most p. In the next section, we see how to evaluate such polynomial. To encapsulate

the information related to each domain D, we create the data structure Polynomial

whose members are: an array containing the quadratic polynomial coe�cients, the

start and end point of the domain, situated on the undeformed ray, a
ag deformed

which indicates if the domain is deformed or not and �nally the start and end point,

on the 3D space, delimiting the piecewise deformed ray. A description of this struc-

ture is shown in �gure 7.5 . Thus, the idea is to evaluate explicitly each piecewise

quadratic polynomial which de�nes the deformed ray inside D. For this purpose, the

quadratic polynomial's coe�cients are determined as described in the following.

7.5.1 Coe�cient Polynomial Determination

Let (u; v; w) the corresponding local coordinates of t, a sample point on the ray, then

it exists A;B;C 2 R3 such as:

F : [ts; te] ! R3

t ! At2 +Bt+ C

132

CHAPTER 7.5. RAY CASTING IN DEFORMED SPACE

Figure 7.6: Approximation of Deformed Ray by Polyline

We determine A;B;C by solving the following system:0
BB@

F (ts)

F (th)

F (te)

1
CCA =

0
BB@

t2s ts 1

t2h th 1

t2e te 1

1
CCA �

0
BB@

A

B

C

1
CCA (7.5.2)

Where th = (ts+ te)=2. Then, the obtained quadratic polynomial is approximated by

polyline segments as shown in �gure 7.6. Therefore, given the quadratic polynomial,

our goal is to approximate it by polyline segments to be rendered further. For the

polyline segment evaluation, Chen [24] selected a proper point set so that the dis-

tance from any point of the continuous ray to the polyline does not exceed a de�ned

threshold distance d, and this, using the curvature based metric. This method con-

sists on assuming ~Pn�1 ~Pn, in �gure 7.7, being the polyline segment selected in the

last step and then selecting the next polyline segment ~Pn ~Pn+1 with the longest pos-

sible length in order to save the deformation computation for the points in between.

133

CHAPTER 7.5. RAY CASTING IN DEFORMED SPACE

Figure 7.7: Local curvature estimation (By Chen [24])

This technique necessitates the estimation of the local curvature of the deformed ray,

by computing two quadratic polynomials interpolating the three points ~Pn�1,~Pn and

~Pn+1. This method requires a loop function which ensures that the length l of a

polyline segment can be written as (see �gure 7.7):

r �
r
r2 � (

l

2
)2 � d (7.5.3)

Thus, l satis�es the condition:

l � 2
p
2rd� d2 (7.5.4)

where r is the local curvature radius. This loop involves the FFD transform compu-

tation at each step, to evaluate ~Pn+1. This task is a huge time consuming. To remedy

to this inconvenient, we use the polynomial coe�cients instead, to calculate at each

loop step the deformed points coordinates. The estimation of the polyline segment is

straightforward:

134

CHAPTER 7.6. IMPLEMENTATION

7.5.2 Polyline Segment Estimation

In case of a deformed ray in the region D, given the second degree polynomial coe�-

cients, we apply the FFD transform to the start point ts mentioned above to obtain

the origin of the new polyline segment. Then, we have to look for the other extremity

of the polyline segment. For that, we �rst de�ne a maximum allowed error errmax as

well as a maximum allowed length for a segment polyline Max Seg Length. Then,

we suppose the segment length equal to Max Seg Length and evaluate the error be-

tween the considered part of the deformed ray represented by a curve and the polyline

segment, by calculating the area in between as shown in �gure 7.8. If this error is

below the prede�ned maximum allowed error, then the polyline segment is equal to

what we have supposed, otherwise we suppose the new polyline segment equal to the

old one divided by two and so on until the error condition is satis�ed and whenever

the segment length is beyond a prede�ned minimum segment lengthMin Seg Length

that we choose equal to half of the voxel unit. The approximation of the deformed

ray by a polyline segment is described by the pseudo code given in algorithm 8.

After handling all the polyline segments in the current domain, we redo the same

processing, considering the end point of the last domain as the start point of the new

domain, and this until the end of the ray. All this process is described by the activity

diagram illustrated by �gure 7.9.

7.6 Implementation

Now that we can obtain a polyline segment, each segment of the polyline is still

treated as a segment of a normal ray. But three modi�cations are made to enable

135

CHAPTER 7.6. IMPLEMENTATION

Figure 7.8: The process of transforming a deformed ray in polyline, given an error
threshold

Algorithm 8 Get Polyline Segment: Pseudo-Code for Polyline Segment Evaluation.
The inputs of this algorithm are the maximum allowed segment length and the un-
deformed ray ray. The output is the polyline segment Poly Seg of length seglength.

VGLieee32 Err;
VGLieee32 t;
repeat
seglength� = 0:5;
t = ray ! currentT [0] + seglength;
Err = get error(t; ray ! currentT [0]);

until ((Err > err max) and (Seg Length > Min Seg Length) and (t <
poly domain! end));
if (t >= poly domain! end) then
t = poly domain! end;
VGLVector3f r; p;
calc poly(t; Poly Seg ! curr pt[1]);

end if
ray ! currentT [1] = t;
Poly Seg ! rayDirection = Poly Seg ! curr pt[1]� Poly Seg ! curr pt[0];
Poly Seg ! rayStart = Poly Seg ! curr pt[0];
return true;

136

CHAPTER 7.6. IMPLEMENTATION

Figure 7.9: Ray Casting in deformed space

correct shading. One modi�cation is for correct shading calculation, the two others

for opacity compensation. After the volume is deformed, the intensity distribution

within the deformed object is changed.

7.6.1 Opacity Calculation

The opacity per unit length along the deformed ray should be then compensated.

The volume change, that a FFD imposes, is given by the Jacobian of the FFD [1, 53].

Let assuming that before deformation, the local absorption coe�cient at a sample

point is k, then the sample point opacity is given by:

�orig = 1� ek:�s; (7.6.1)

137

CHAPTER 7.6. IMPLEMENTATION

where �s is the sampling space. Then, if we denote the determinant of the Jacobian

matrix of the deformation function by Jac, the local absorption coe�cient become

k=Jac. Thus, the opacity of the deformed sample become:

�def = 1� ek:�s=Jac = 1� (1� �orig)
1=Jac; (7.6.2)

The other opacity compensation is for the mismatch of the deformed polyline length

to the standard sample unit. For this opacity correction, Chen [24] recalculates

the opacity at the deformed sample point by evaluating the ratio between the actual

sample interval and the standard sample space, in addition to the last modi�cation. In

our implementation, we avoid this additional computation, using the pre-integration

lookup tables. In fact, we can get the opacity values by accessing the 2D lookup

tables for all the possible sampling distance lengths as mentioned in chapter 5.

7.6.2 Shading

We now discuss shading in deformed space. We know that Phong shading model

requires the normal vectors at each sample point, to be calculated. As for the opacity,

when the object is deformed, the surface normal is also changed. Barr [1] derived that

the normal vector transformation rule involves the inverse transpose of the Jacobian

matrix, and can be expressed as follow:

~n(~P 0) = Jac:(Jacobian�1)T~n(~P) (7.6.3)

where ~n(~P) is the normal vector at the undeformed point ~P and ~n(~P 0) is the normal

vector at the transformed position of the point ~P . We evaluate the jacobian matrix,

using the de Boor algorithm as described earlier in this chapter. Unlike Chen [24]

138

CHAPTER 7.6. IMPLEMENTATION

who evaluated the jacobian matrix for each sample in the deformed space by deform-

ing three extra points in the neighborhood of the sample point, in our deformation

approach, since we assume that the deformation is linear for a given polyline segment,

then instead of evaluating the jacobian matrix for each sample point, we do this only

once for each polyline segment.

7.6.3 Algorithm's complexity

Over our program, two main functions contribute on the determination of the com-

plexity of our algorithm. First, when creating a new domain via the New Domain

function mentioned in �gure 7.9, we invoke a function named Boor (see algorithm 7)

which calculates the Tri-variate b-spline tensor product using the de Boor algorithm.

The complexity of this function depends only on the B-spline degree p and is O(p4).

In a second place, we also need for the shading correction, the evaluation of the ja-

cobian matrix. This is done whenever a new polyline segment is created and consists

on the calculation of the partial derivatives of the deformation function. Like for the

previous function, its complexity function depends only on the b-spline degree p and

is O(p4).

7.6.4 Optimization

As for the ray casting algorithm mentioned in chapter 6, the same acceleration meth-

ods can still be applied to the ray casting in deformed space. We cite the early ray

termination, the space leaping, the coherence encoding. The only restriction is that

due to limited length of the polyline segment, both space leaping and coherence encod-

ing should be stopped whenever the end of the current polyline segment is reached.

139

CHAPTER 7.7. RESULTS

Comparing to Chen [24] , we introduce to our implementation the pre-integration

technique so that we can handle any sample interval length without problem.

7.7 Results

For our experiment, we use di�erent volume data sets, namely the Engine (128�192�
256 voxels), the Boston Teapot CT (2562�178 voxels) and the Engine CT (2562�128

voxels). All volume objects are 8bit data sets. We rendered the volume objects with

di�erent opacity transfer function, we choose the opacity transfer functions so that

the volumes are opaque or semi-transparent. Images in �gures 7.10 and 7.11 are

examples of ray casting results of our algorithm.

As reported by Chen [24], the shading adjustment is very important for the correct

display of the deformed shapes of volume objects. We therefore consider the shading

adjustment for all our rendered images. In table 7.1, we give the rendering time needed

for rendering deformed volumes. Comparing to the previous work of Chen [5], we

achieve for the same volume size, better performance results. In fact, for example for

a semi-transparent data set of size 67 Mb, we accomplish a speed up of factor ' 1:99.

This is due to the use of the pre-integration technique for the opacity compensation, as

well as the approximation of the deformed ray by an explicit polynomial which allows

us to save the computation time due to the extra calculations needed to determine

the normal vectors. These calculations consist on deforming three adjacent points

for each sample point i.e. applying three times the FFD transform to calculate the

normal transform matrix.

Nevertheless, the rendering time for deformed objects remains higher than the

time needed for render undeformed objects. This is due to the extra calculations

140

CHAPTER 7.7. RESULTS

Figure 7.10: Rendering of deformed and undeformed opaque volume data sets: (a)
The deformed engine. (b) The undeformed engine. (c) The deformed Boston Tea pot
CT. (d) The undeformed Boston Tea pot CT.

141

CHAPTER 7.7. RESULTS

Figure 7.11: Rendering of deformed and undeformed semi-transparent Boston Tea
pot CT volume data set: (a) The deformed Boston Tea pot CT. (b) The undeformed
Boston Tea pot CT.

142

CHAPTER 7.8. CONCLUSION

Data set Size (voxels) Rendering time (s)
Engine (opaque) 128� 192� 256 9:413� 0:3

Engine (Semi-transparent) 11:89� 0:2
Boston Tea pot CT (opaque) 2562 � 178 10:45� 0:2

Boston Tea pot CT (Semi-transparent) 9:52� 0:1
Engine CT (opaque) 2562 � 128 12:41� 0:3

Engine CT (Semi-transparent) 19:25� 0:2

Table 7.1: Rendering time of deformed volume data sets

needed to determine the polyline segments. Even we use the acceleration techniques

for ray casting, their e�ect remains limited because of the restricted length of the

polyline segment.

7.8 Conclusion

In this chapter, we implemented a new method to render deformed objects. For

that, we used the inverse ray deformation approach, it consists on deforming the ray

casted into the volume data set and approximating it by a polyline segments which

are rendered as normal rays. To accelerate our algorithm, we exploit coherency inside

the volume and used pre-integrated technique for opacity compensation. We achieved

a speed-up factor of up to 1:99 times, comparing to Chen[5] results. However, the

computation time remains higher comparing to undeformed volume rendering case

because of the restricted lengths of the polyline segments.

143

Chapter 8

Conclusion

Volume rendering is a technique which allows the visualization of volumetric data sets

in order to extract information from them for further understanding and manipulation

and this in di�erent �elds. The complexity of the transfer function, however can

results in artifacts in image quality. In addition, the huge size of practical volume

data sets or their semi-transparent aspect leads to a high computational volume

rendering time.

To recapitulate from Chapter 1, the main objectives of this work were:

1. To design, specify and implement the pre-integrated volume rendering technique

without simpli�cation of the original rendering integral and this in �rst step for

a linear gray value model and further for higher order polynomial one.

2. To implement and improve the existing coherency acceleration technique using

the volume graphics library VGL for both shear-warp and ray casting volume

rendering algorithms.

3. To develop advanced spline-based-ray-deformation approach which allows to

144

CHAPTER 8.1. SUMMARY OF CONTRIBUTIONS

overcome the current limitations of the approach, i.e the excessive cost for

computing the corrected image gradient by using the derivative of the spline-

approximation.

In addition to these main objectives, a number of secondary objectives were de-

cided upon. A summary of contributions made by this thesis and an evaluation of

how well the initial objectives were met, now follows.

8.1 Summary of Contributions

A thorough background review of volume graphics was given in Chapter 2 as well

as an introduction to the volume rendering technique which laid the groundwork for

the subsequent volume rendering algorithms chapter. Chapter 3 then introduced the

reader to the �eld of volume rendering and gave a detailed insight into the volume

rendering algorithms we are interested in, and the related existing volume render-

ing acceleration methods. Further, chapter 4 presented the software development

environment used in our implementation: the volume graphics library (VGL).

The �rst major objective was met in chapter 5 where a new pre-integrated volume

rendering technique which extended the existing approach, has been developed. Our

approach was based on the correct not simpli�ed volume rendering integral, i.e. we

considered that the normals depend on the opacity instead of the gray values. We

also precompute the lookup tables for all Phong shading re
ection model namely the

ambient, di�use and specular re
ection. In addition, for our program, we consider

di�erent sampling interval distances for the lookup tables, so that it can be applied not

only for ray casting algorithm but also to other volume rendering techniques where

145

CHAPTER 8.1. SUMMARY OF CONTRIBUTIONS

the sampling distance is not always constant, as for projected tetrahedra volume

rendering algorithm, for coherence encoding or deformed objects. In our approach,

we considered di�erent gray value models: while previous work consider only a linear

gray value model, we extended the existing pre-integrated volume rendering technique

to quadratic and higher-order interpolation. For the linear case, we apply for the

lookup table computation an incremental algorithm which allowed to calculate the

lookup tables for di�erent re
ection model and di�erent sampling distance lengths.

We achieved a speed-up of factor of up to 10 times. We also compared the image

quality results as well as the performance of our algorithm for di�erent lookup table

resolutions. We noticed that we can decrease the table sizes without a�ecting too

much the image quality and thus minimizing the preprocessing time. This is more

interesting when it is about the quadratic gray value model, since the time required

for this case is higher than for the linear one, due to the dependency of the volume

rendering integral in one addition parameter that we noticed by R. Thus, we achieved

appealing image quality results for both interpolation models as well as an important

speed up factor for the linear case. Then, we presented a new model which allows

to determine the optimal LUT size for a given volume data set. However, our pre-

integrated volume rendering for quadratic model has one limitation concerning the

computation of the lookup tables for specular re
ection. In fact due to the specular

exponent present in the shading expression related to this part, we could not e�ciently

separate the halfway vector
�!
H from the volume rendering integral, thus increasing

the lookup table parameters for specular re
ection to four which drastically increase

the computation time. Resolving this problem remains an open point.

The second major objective was met in chapter 6 where we implement and improve

146

CHAPTER 8.1. SUMMARY OF CONTRIBUTIONS

the existing coherence encoding approach. We �rst extended the coherence encoding

technique to the shear-warp algorithm developed by Chen [5] by considering two voxel

scanlines simultaneously when marching through the volume. In a second part, we

applied coherence encoding to the ray casting algorithm. We �rst implement the

Taylor Expansion based Extended Distance Coding (EDC) on the Volume Graphics

Library, to calculate the coherence distance, view independently, for each voxel on

the volume. Then we compare two algorithms that we have developed, one is using

coherence encoding for volume rendering, the other combines both coherence encoding

and pre-integrated technique in order to handle di�erent coherent interval lengths.

We noticed that for semi-transparent objects, we can achieve a speedup of factor up to

3. We achieved good images quality for both opaque and semi-transparent volumes.

We also showed the in
uence of the encoding error on the image quality as well as

on the algorithm performance. We �nd that whenever the error threshold increases,

the image quality decreases but smoothly while the number of saved samples increase

which explain the faster volume rendering time.

The third and last major objective of this thesis was met in chapter 7 where we

developed more the ray-casting algorithm for deformed objects. We �rst gave an

overview about the related work in this �eld and presented the mathematical back-

ground of the used techniques. Then, we used the inverse ray deformation technique

to deform volumetric objects. We apply this technique to the ray-casting algorithm

by bending the casted rays into the volume, instead of reconstructing the intermedi-

ate deformed object, thus avoiding the computational cost due to this operation and

saving the extra memory which would be used to store the intermediate deformed

volume. We used the free form deformation technique based on the uniform B-spline

147

CHAPTER 8.2. FUTURE WORK

basis functions. In Chen's implementation, the viewing rays are adaptively divided

to match the local deformation amplitude. This involves the calculation of the lo-

cal curvature which requires many FFD transform computations when calculating

the next position on the deformed ray. This task is time consuming. To overcome

this problem, we use the property that the B-spline curve is a piecewise curve with

each component a curve of degree p of the B-splines. Thus, we approximate each

piecewise quadratic curve of the deformed ray by a polynomial by minimizing the

distance in between. Unlike Chen, we explicitly apply the polynomial coe�cients to

get the next position on the deformed ray, saving the computations cost due to this

operation. We also developed a shading calculation approach in the deformed space.

We implement the true Phong shading in our method by backward transforming the

normal vectors into the original volume space. This operation requires the Jacobian

matrix evaluation. In his deformation approach, Chen [24] evaluated the Jacobian

matrix for each sample in the deformed space by deforming three extra points in the

neighborhood of the sample point. Unlike him, we calculate the Jacobian matrix only

once for each polyline segment, since we assume the deformation being linear within

a polyline segment. In addition, we compensate the opacity for the mismatch of the

deformed polyline length to the standard sample unit, by using the pre-integration

lookup tables to handle di�erent segment lengths. Our experimental results showed

that we can provide an additional speedup factor of 1:99, comparing to Chen.

8.2 Future Work

Further developments could be investigated in this work. First, to accelerate the

pre-integrated lookup tables generation for the quadratic gray values model and to

148

CHAPTER 8.2. FUTURE WORK

establish a suitable model to describe the specular re
ection in this case. Second, the

implementation of the coherency acceleration on consumer graphics cards. Consumer

graphics cards allow to render objects faster than a CPU, due to the high internal

memory bandwidth and processing power. The graphics cards would have the ad-

vantage that both CPU and graphics accelerator could work in parallel on a uni�ed

memory architecture for data exchange persuading many optimization options. Fi-

nally, in our deformation approach, the control points are moved by space function.

This could be extended to an interactively deformation process.

149

Appendix A

Algorithms

Algorithm 9 Get opacity quad: The pseudo code for the quadratic opacity lookup
table generation's algorithm. The input of this algorithm is the opacity transfer
function

VGLieee32 res;

VGLieee32 t = 0:0;

VGLieee32 alpha;

VGLieee32 d;

VGLieee32 h;

VGLieee32 inf ;

VGLieee32 sup;

VGLieee32 samplingdist;

VGLieee32 M ;

VGLindex f; b;

VGLieee32 rvalue;

150

for i = 0 to DIS do

samplingdist = P2[i� (DIS � V AR POW)];

for r = 0 to R FIELD do

d = samplingdist� P2[4� r];

for sf = 0 to N do

for sb = sf to N do

f = LUT STEP � sf ;
b = LUT STEP � sb;
alpha = (b� f)=d� d;

M = f � (0:25 � alpha � alpha);
res = 0:0;

if IsZero(alpha) then

fIn this case the integral is not de�ned on sfg
inf = f + IN INT STEP ;

sup = f + 1:0;

for kk = 1 to INT STEP do

t = inf + kk � IN INT STEP ;

res+ = opt(M; t;material);

end for

res+ = 0:5 � (opt(M; inf;material) + opt(M; sup;material));

res� = IN INT STEP ;

for i = f + 1 to b do

res+ = att quad(M; i;material);

end for

151

else

falpha 6= 0g
fWe have two case according to the value of alpha:g
fcase 2 :The quadratic function has a minimum, so we have to split the

interval of integration into two parts, because the quadratic function on

each subinterval admit a di�erent discriminant.g
if alpha < 0:0 then

VGLieee32fb =M ;

VGLindexfbindex;

if fb < 0:0 then

fComputation of the part from zero to f:g
for i = 0 to f do

res+ = att quad(M; i;material);

end for

fComputation of the part from zero to b:g
for i = 0 to b do

res+ = att quad(M; i;material);

end for

else

fbindex = (VGLindex)ceil(fb);

fComputation of the fractional part:g
if !IsZero(fbindex� fb) then

if abs(fbindex� fb) >= EPS then

h = (fbindex� fb) � IN INT STEP ;

152

inf = fb+ h;

sup = fbindex;

for kk = 1 to INT STEP do

t = inf + kk � h;
res+ = opt(M; t;material);

end for

res+ = 0:5 � (opt(M; inf;material) + opt(M; sup;material));

res� = h;

end if

fComputation of the part from fbindex to f:g
for i = fbindex to f do

res+ = att quad(M; i;material);

end for

res� = 2:0;

fComputation of the part from f to b:g
for i = f to b do

res+ = att quad(M; i;material);

end for

else

if abs(fbindex� fb) >= EPS then

inf = inf = fb+ IN INT STEP ;

sup = fbindex+ 1:0;

h = (sup� inf)=(INT STEP � 1);

for kk = 1 to INT STEP do

153

t = inf + kk � h;
res+ = opt(M; t;material);

end for

res+ = 0:5 � (opt(M; inf;material) + opt(M; sup;material));

res� = h;

end if

end if

for i = fbindex+ 1 to f do

res+ = att quad(M; i;material);

end for

res� = 2:0;

fComputation of the part from f to b:g
for i = f to b do

res+ = att quad(M; i;material);

end for

end if

else

fcase 1 : The quadratic function is monotonous and has a unique

discriminantg
for i = f to b do

res+ = att quad(M; i;material);

end for

end if

end if

154

VGLieee32 sol = P2[r � 4] � res;
OPAC TAB[i][r][sf][sb] = OPAC TAB[i][r][sb][sf] = 1:0� exp(�sol);

end for

end for

end for

end for

return true;

Algorithm 10 The pseudo-code for the att quad algorithm: The inputs of this
algorithm are the gray value i, a constant M already calculated and the opacity
transfer function stored in material. The output is the opacity value at the gray
value i
VGLieee32 res;
res = opt(M; i;material);
res+ = 4:0 � opt(M; i+ 0:5;material);
res+ = opt(M; i+ 1:0;material);
res� = h6;
return res;

||||||||||||||||||||||||

155

Algorithm 11 Pseudo code for the opt algorithm: The inputs of this algorithm are
the gray value t, a constant M already calculated and the opacity transfer function
stored in material. The output is the opacity value at the gray value t

VGLieee32 res;
VGLieee32 f0;
VGLieee32 f1;
VGLieee32 f2;
VGLindex i;
VGLieee32 tn;
tn = t+ 0:5;
i = (VGLindex)(tn);
if i = 0 then
f0 = material! getLUTItem(VGL MATERIAL OPACITY; 1);
f1 = material! getLUTItem(VGL MATERIAL OPACITY; 0);
f2 = material! getLUTItem(VGL MATERIAL OPACITY; 1);

else if i = N � 1 then
f0 = material! getLUTItem(VGL MATERIAL OPACITY; N � 2);
f1 = material! getLUTItem(VGL MATERIAL OPACITY; N � 1);
f2 = material! getLUTItem(VGL MATERIAL OPACITY; N � 2);

else
f0 = material! getLUTItem(VGL MATERIAL OPACITY; i� 1);
f1 = material! getLUTItem(VGL MATERIAL OPACITY; i);
f2 = material! getLUTItem(VGL MATERIAL OPACITY; i+ 1);

end if
tn = tn� i;
res = 0:5 � (f2 + f0)� f1;
res � = tn � tn;
res + = (tn � (f1� f0));
res + = (0:5 � (f1 + f0));
res = = 2:0 � sqrt(t�M);
return res;

156

Algorithm 12 Get opacity(VGLSampleMaterial�material; transfert�tfo): the
opacity lookup table for linear gray value model. The inputs are the opacity transfer
function. The output is the opacity LUT.

VGLieee32 alpha;
VGLieee32 tmp;
VGLieee32 fact;
VGLindex sf; sb;
int j = 0;
VGLieee32 d = 2j�(DIS�V AR POW); fd is the sampling distanceg
for j = 0 to DIS do
for b = 0 to N do
for f = 0 to b do
tmp = 0:0;
alpha = 0:0;
sf = LUT STEP � f ;
sb = LUT STEP � b;
if f = b then
tmp = �d �material! getLUTItem(VGL MATERIAL OPACITY; sf);
alpha = 1:0� exp(tmp);
opacity[j][f][b] = alpha;

else
tmp = tfo! att[sf]� tfo! att[sb];
fact = d=(sb� sf);
tmp� = fact;
alpha = 1:0� exp(tmp);
opacity[j][f][b] = opacity[j][b][f] = alpha;

end if
end for

end for
d� = 2:0;

end for

157

Bibliography

[1] A.H. Barr, Global and local deformations of solid primitives, Proceedings of the

11th annual conference on Computer graphics and interactive techniques (1984),

21{30.

[2] GG Cameron and PE Undrill, Rendering volumetric medical image data on a

SIMD-architecture computer, Proceedings of the Third Eurographics Workshop

on Rendering (1992), 135{145.

[3] K.M. Case and P.F. Zweifel, Linear transport theory, Addison-Wesley Pub. Co

Reading, Mass, 1967.

[4] S.S. Chandrasekhar, Radiative Transfer, Courier Dover Publications, 1960.

[5] H. Chen, Fast volume rendering and deformation algorithms, Ph.D. thesis, De-

partment of Mathematics and Computer Science, University of Mannheim, Ger-

many, September 2001.

[6] H. Chen, J. Hesser, B. Vettermann, and R. M�anner, An Adaptive Distance-coding

Based Volume Rendering Accelerator, Proceedings of the 1st International Game

Technology Conference, Hongkong (2001).

[7] Y. Chen, Q.H. Zhu, A. Kaufman, and S. Muraki, Physically-based animation of

volumetric objects, Computer Animation 98. Proceedings (1998), 154{160.

158

BIBLIOGRAPHY

[8] J. Danskin and P. Hanrahan, Fast algorithms for volume ray tracing, Proceedings

of the 1992 workshop on Volume visualization (1992), 91{98.

[9] K. Engel, M. Kraus, and T. Ertl, High-quality pre-integrated volume render-

ing using hardware-accelerated pixel shading, Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS workshop on Graphics hardware (2001), 9{16.

[10] K. Engel, M. Kraus, and T. Ertl, High-quality pre-integrated volume render-

ing using hardware-accelerated pixel shading, 2001 SIGGRAPH / Eurographics

Workshop on Graphics Hardware (New York, NY, USA), ACM Press, 2001, pp. 9

{ 16.

[11] S. Fang and R. Srinivasan, Volumetric CSG{A Model-Based Volume Visualiza-

tion Approach, Proceedings of the 6th International Conference in Central Eu-

rope on Computer Graphics and Visualisation (1998), 88{95.

[12] S. Fang, R. Srinivasan, R. Raghavan, and J.T. Richtsmeier, Volume morphing

and renderingAn integrated approach, Computer Aided Geometric Design 17

(2000), no. 1, 59{81.

[13] T. Foley and J. Sugerman, KD-tree acceleration structures for a GPU raytracer,

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-

ics hardware (2005), 15{22.

[14] J. Freund and K. Sloan, Accelerated volume rendering using homogeneous region

encoding, Proceedings of the 8th conference on Visualization'97 (1997).

[15] H. Geyer, A. Seyfarth, and R. Blickhan, Spring-mass running: simple approxi-

mate solution and application to gait stability, J. Theor. Biol 232 (2005), no. 3,

315{328.

[16] S. Gibson and B. Mirtich, A survey of deformable modeling in computer graphics,

MERL, TR-97 19 (1997).

159

BIBLIOGRAPHY

[17] AS Glassner, Space subdivision for fast ray tracing, Tutorial: computer graphics;

image synthesis table of contents (1988), 160{167.

[18] A.S. Glassner, An Introduction to Ray Tracing, Morgan Kaufmann, 1989.

[19] V. Goel and A. Mukherjee, An optimal parallel algorithm for volume ray casting,

The Visual Computer 12 (1996), no. 1, 26{39.

[20] M. Grigoriu, Stochastic Calculus: Applications in Science and Engineering,

Birkhauser, 2002.

[21] Meister Eduard Gr�oller and Werner Purgathofer, Coherence in computer graph-

ics, Tech. Report TR-186-2-95-04, Institute of Computer Graphics and Algo-

rithms, Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vi-

enna, Austria, 1995.

[22] T. G�unther, C. Poliwoda, C. Reinhart, J. Hesser, R. M�anner, HP Meinzer, and

HJ Baur, VIRIM: A Massively Parallel Processor for Real-Time Volume Visu-

alization in Medicine, development 6 (1995), no. 7, 8{9.

[23] V. Havran and J. Bittner, LCTS: Ray Shooting using Longest Common Traversal

Sequences, Computer Graphics Forum 19 (2000), no. 3, 59{70.

[24] H.Chen, J.Hesser, and R.Mnner, Ray casting free-form deformed-volume objects,

The Journal of Visualization and Computer Animation 14 (2003), 61{72.

[25] T. He, S. Wang, and A. Kaufman, Wavelet-based volume morphing, Visualiza-

tion, 1994., Visualization'94, Proceedings., IEEE Conference on (1994), 85{92.

[26] H.C. Hege, T. H�ollerer, and D. Stalling, Volume Rendering: Mathematical Models

and Algorithmic aspects, ZIB, 1994.

[27] J. Hesser, The VIRIM Project: Design and Realization of a Real Time Direct

Volume Rendering System for Medical Applications, VDI-Verl, 2000.

160

BIBLIOGRAPHY

[28] J.F. Hughes, Scheduled Fourier volume morphing, Proceedings of the 19th annual

conference on Computer graphics and interactive techniques (1992), 43{46.

[29] S.U. Jo and C.S. Jeong, A Parallel Volume Visualization Using Extended Space

Leaping Method, Proceedings of the 5th International Workshop on Applied Par-

allel Computing, New Paradigms for HPC in Industry and Academia (2000),

296{305.

[30] J.T. Kajiya, The rendering equation, International Conference on Computer

Graphics and Interactive Techniques, 1986, pp. 143{150.

[31] Martin Kraus, Wei Qiao, and David S. Ebert, Projecting tetrahedra without ren-

dering artifacts, VIS '04: Proceedings of the conference on Visualization '04

(Washington, DC, USA), IEEE Computer Society, 2004, pp. 27{34.

[32] W. Krueger, The application of transport theory to visualization of 3d scalar data

�elds, Proc. IEEE Visualization (1990), 273{280.

[33] Y. Kurzion and R. Yagel, Space deformation using ray de
ectors, Proc. the 6th

Eurographics Workshop on Rendering (1995), 21{32.

[34] P. Lacroute and M. Levoy, Fast Volume Rendering Using a Shear-Warp factor-

ization of the Viewing Transform, Proc. SIGGRAPH, 1994, pp. 451{458.

[35] M. Levoy, Display of surfaces from volume data, Proc. IEEE Computer Graphics

and Applications 8 (1988), no. 3, 29{37.

[36] M. Levoy, E�cient ray tracing of volume data, ACM Transactions on Graphics

(TOG) 9 (1990), no. 3, 245{261.

[37] M. Levoy, Volume rendering by adaptive re�nement, The Visual Computer 6

(1990), no. 1, 2{7.

161

BIBLIOGRAPHY

[38] E. Lum, B. Wilson, and K. Ma, High-quality lighting and e�cient pre-integration

for volume rendering, Proceedings of the Joint Eurographics-IEEE TVCG Sym-

posium on Visualization 2004, 2004.

[39] N. Max, Optical models for direct volume rendering, IEEE Transactions on Vi-

sualization and Computer Graphics 1 (1995), no. 2, 99{108.

[40] N. Max, P. Craw�s, and P. Hanrahan, Area and volume coherence for e�cient

visualization of 3d scalar functions, Proc. IEEE Symposium on Volume Visual-

ization, vol. 24, 1990, pp. 27{33.

[41] K. Moreland and E. Angel, A fast high accuracy volume renderer for unstructured

data., VolVis, 2004, pp. 9{16.

[42] J. Neider, T. Davis, and M. Woo, OpenGL. Programming guide, Addison-Wesley

Reading, Mass, 1997.

[43] A. Pearce and D. Jevans, Exploiting shadow coherence in ray tracing, Graphics

Interface 91 (1991), 109{116.

[44] B.T. Phong, Illumination for computer generated pictures, Communications of

the ACM 18 (1975), no. 6, 311{317.

[45] X. Provot, Deformation constraints in a mass-spring model to describe rigid cloth

behavior, Graphics Interface 95 (1995), 147{154.

[46] A. Reshetov, A. Soupikov, and J. Hurley, Multi-level ray tracing algorithm, Pro-

ceedings of ACM SIGGRAPH 2005 24 (2005), no. 3, 1176{1185.

[47] S. Roettger and T. Ertl, A two-step approach for interactive pre-integrated volume

rendering of unstructured grids, Proceedings of the 2002 IEEE symposium on

Volume visualization and graphics (Piscataway, NJ, USA), IEEE Press, 2002,

pp. 23 { 28.

162

BIBLIOGRAPHY

[48] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser, Smart hardware-

accelerated volume rendering, Proceedings of the symposium on Data visuali-

sation 2003 (Aire-la-Ville, Switzerland, Switzerland), Eurographics Association,

2003, pp. 231 { 238.

[49] S. Roettger, M. Kraus, and T. Ertl, Hardware-accelerated volume and isosurface

rendering based on cell-projection, Proc. IEEE Vis 2000 (Washington, DC, USA),

IEEE Computer Society, 2000, pp. 109 { 116.

[50] P. Sabella, A rendering algorithm for visualizing 3D scalar �elds, International

Conference on Computer Graphics and Interactive Techniques, vol. 22, 1988,

pp. 51{58.

[51] H. Samet and RE Webber, Hierarchical data structures and algorithms for com-

puter graphics. I. Fundamentals, Computer Graphics and Applications, IEEE 8

(1988), no. 3, 48{68.

[52] J. P. Schulze, M. Kraus, U. Lang, and T. Ertl, Integrating pre-integration into

the shear-warp algorithm, Proceedings of the 2003 Eurographics/IEEE TVCG

Workshop on Volume graphics (New York, NY, USA), ACM Press, 2003, pp. 109

{ 118.

[53] Thomas W. Sederberg and Scott R. Parry, Free-form deformation of solid geo-

metric models, SIGGRAPH Comput. Graph. 20 (1986), no. 4, 151{160.

[54] A. She�er and V. Kraevoy, Pyramid coordinates for morphing and deformation,

3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Pro-

ceedings. 2nd International Symposium on (2004), 68{75.

[55] KR Subramanian and DS Fussell, Applying space subdivision techniques to vol-

ume rendering, Visualization, 1990. Visualization'90., Proceedings of the First

IEEE Conference on (1990), 150{159.

163

BIBLIOGRAPHY

[56] J. Sweeney and K. Mueller, Shear-warp deluxe: The shear-warp algorithm revis-

ited, Proc. of the symposium on Data Visualisation, 2002, pp. 95{104.

[57] B. Vettermann, J. Hesser, R. M�anner, H. Singpiel, and A. Kugel, Implementa-

tion of Algorithmically Optimized Volume Rendering on FPGA-Hardware, IEEE

Visualization (1999), 13{16.

[58] I. Wald, T. Ize, A. Kensler, A. Knoll, and S.G. Parker, Ray tracing animated

scenes using coherent grid traversal, ACM Transactions on Graphics (TOG) 25

(2006), no. 3, 485{493.

[59] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, Interactive Rendering with

Coherent Ray Tracing, Computer Graphics Forum 20 (2001), no. 3, 153{165.

[60] T. Whitted, An improved illumination model for shaded display, International

Conference on Computer Graphics and Interactive Techniques (2005).

[61] P. Williams and N. Max, A volume density optical model, Proceedings of the

1992 workshop on Volume visualization (New York, NY, USA), ACM Press,

1992, pp. 61 { 68.

[62] P.L. Williams, N.L. Max, and C.M. Stein, A high accuracy volume renderer for

unstructured data, IEEE Transactions on Visualization and Computer Graphics

4 (1998), no. 1, 37{54.

[63] R. Yagel and Z. Shi, Accelerating volume animation by space-leaping, Visualiza-

tion, 1993. Visualization'93, Proceedings., IEEE Conference on (1993), 62{69.

[64] K.J. Zuiderveld, A.H.J. Koning, and M.A. Viergever, Acceleration of ray-casting

using 3D distance transforms, Proceedings of Visualization in Biomedical Com-

puting 1808 (1992), 324{335.

164

