
Tightly-Coupled and Fault-Tolerant
Communication in Parallel Systems

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Dipl.-Inf. David Christoph Slogsnat

aus Heidelberg

Mannheim, 2008

Dekan: Prof. Dr. Matthias Krause, Universität Mannheim
Referent: Prof. Dr. Ulrich Brüning, Universität Heidelberg
Koreferent: Prof. Dr. Reinhard Männer, Universität Heidelberg
Tag der mündlichen Prüfung: 4. August 2008

Abstract
The demand for processing power is increasing steadily. In the past, single processor archi-
tectures clearly dominated the markets. As instruction level parallelism is limited in most
applications, significant performance can only be achieved in the future by exploiting par-
allelism at the higher levels of thread or process parallelism. As a consequence, modern
“processors” incorporate multiple processor cores that form a single shared memory multi-
processor.
In such systems, high performance devices like network interface controllers are connected
to processors and memory like every other input/output device over a hierarchy of periph-
eral interconnects. Thus, one target must be to couple coprocessors physically closer to
main memory and to the processors of a computing node. This removes the overhead of
today’s peripheral interconnect structures. Such a step is the direct connection of Hyper-
Transport (HT) devices to Opteron processors, which is presented in this thesis.
Also, this work analyzes how communication from a device to processors can be optimized
on the protocol level. As today’s computing nodes are shared memory systems, the cache
coherence protocol is the central protocol for data exchange between processors and
devices. Consequently, the analysis extends to classes of devices that are cache coherence
protocol aware. Also, the concept of a transfer cache is proposed in this thesis, which
reduces latency significantly even for non-coherent devices.
The trend to the exploitation of process and thread level parallelism leads to a steady
increase of system sizes. Networks that are used in such large systems are very susceptible
to both hard and transient faults. Most transient fault rates are constant per bit that is stored
or transmitted. With increasing system sizes and higher clock frequencies, the number of
faults in time increases drastically. In the end, the error rate may rise at a level where high
level error recovery becomes too costly if lower layers do not perform error correction that
is transparent to the layers above. The second part of this thesis describes a direct intercon-
nection network that provides a reliable transport service even without the use of end-to-
end protocols. Also, a novel hardware based solution for intermediate routing is developed
in this thesis, which allows an efficient, deadlock free routing around faulty links.

Zusammenfassung
Der Bedarf an Rechenkraft von Computer-System wächst ständig. Insbesondere auf dem
Massenmarkt wurde dieser in der Vergangenheit vor allem durch Einprozessorsysteme
gedeckt. Die parallele Abarbeitung von Operationen ist dabei ein wesentlicher Faktor zur
Geschwindigkeitssteigerung. Da die Parallelität auf Instruktionsebene in den meisten
Anwendungen sehr beschränkt ist, sind weitere Leistungssteigerungen nur möglich, wenn
auch die Parallelität auf Prozess- und Thread-Ebene genutzt wird. Daher bestehen heutige
Prozessor-Chips meist aus mehreren Prozessor-Kernen, die einen gemeinsamen Speicher
mit einem globalen Adressraum nutzen.
In solchen Systemen sind hochperformante Netzwerkschnittstellen genauso über eine Hier-
archie von Verbindungsnetzwerken und Bussen mit dem System verbunden wie klassische
Eingabe/Ausgabe Geräte. Um die Kommunikationsleistung zwischen Prozessor und
Netzwerkschnittstelle zu verbessern, ist es erforderlich diese Verbindungsstruktur zu opti-
mieren. Ein solcher Ansatz ist die Entwicklung von Geräten, die über das HyperTransport
Protokoll direkt mit dem Prozessorchip verbunden werden können. Eine Umsetzung dieses
Konzeptes wird in dieser Arbeit vorgestellt.
Darüber hinaus werden in dieser Arbeit weitere Möglichkeiten zur Verbesserung der Kom-
munikation untersucht. In heutigen Computersystemen ist das Cache-Kohärenz Protokoll
das zentrale Protokoll, welches den Datenaustausch zwischen den Kernkomponenten des
Rechners regelt. In dieser Arbeit werden Klassen von Geräten vorgestellt, die direkt als
Kommunikationspartner an diesem Protokoll teilnehmen. Als bedeutende Neuerung wird
außerdem das Konzept des Transfer Caches in dieser Arbeit entwickelt und vorgestellt,
welches die Kommunikationslatenz zwischen Gerät und Prozessor bedeutend verbessert.
Die bessere Ausnutzung der Parallelität auf der Ebene von Prozessen und Threads führt
außerdem zu ständig komplexer werdenden Systemen. In Netzwerken, die solche Systeme
verbinden, muss mit dem häufigen Auftreten von statischen und transienten Fehler gerech-
net werden. In einem solchen System können die Fehlerraten dabei auf ein solches Maß
steigen, dass eine ausschließlich in höheren Softwareebenen erfolgende Fehlerbehandlung
sehr ineffizient wird. Mit einer Fehlerbehandlung direkt in Hardware kann dieses Problem
umgangen werden. In diesem Sinne beschreibt der zweite Teil dieser Arbeit ein fehlertol-
erantes Verbindungsnetzwerk, welches eine fehlertolerante Übertragung auf der Ebene 8b/
10b kodierter serieller Links sicherstellt. Eine weitere Komponente des Protokolls ist ein
neuartiger hardwarebasierter Mechanismus, der über ein "intermediate routing" eine effi-
ziente und blockierungsfreie Lösung darstellt, um Pakete um fehlerhafte Komponenten
herumzuleiten.

I

Contents

CHAPTER 1 Introduction 1

1.1 The Extoll Project .4
1.2 Physical Implementation .6
1.3 Graphical Representations .7
1.4 Methodologies .9
1.5 A Theoretical Model for cHT/HT Performance .11

CHAPTER 2 Communication in Parallel Computers 13

2.1 Caches .13
2.2 Parallel Computing Architectures .15

2.2.1 Communication Paradigms .20
2.2.2 Remote Load/Store .21
2.2.3 Put/Get .22
2.2.4 Send-Receive .23

2.3 Device Integration Design Space .24
2.3.1 Process-Device Interaction .26
2.3.2 Device Virtualization. .30

2.4 Cache Coherence for Shared Memory Systems .32
2.4.1 Consistency Models for Shared Memory .33
2.4.2 Cache Coherence Protocols .35
2.4.3 Broadcast Protocols .37

2.4.3.1 MOESI .39
2.4.3.2 MESIF .42

2.4.4 Directory-Based Protocols. .45
2.4.5 Serialization of Conflicting Accesses .49

2.5 Introduction to x86 Systems .54
2.5.1 Intel Xeon Architecture .54
2.5.2 AMD .57

2.6 Examples of Parallel Systems .58
2.6.1 Sun UltraSPARC T2 .58
2.6.2 Cray T3E .60
2.6.3 Cray XT3 and XT4 .61
2.6.4 IBM BlueGene/L .63

II
2.6.5 NIs on Standardized Peripheral Interfaces . 64

CHAPTER 3 Improving Device to Processor Communication 65

3.1 HyperTransport Devices and Accelerators . 66
3.1.1 The HyperTransport Protocol . 67
3.1.2 I/O in HTX Systems . 70
3.1.3 Ordering in PIO. 71
3.1.4 Ordering PIO Write Requests . 73
3.1.5 Ordering PIO Read Requests . 76
3.1.6 Potential Incremental Solutions . 76

3.2 The Space of Analysis . 76
3.2.1 Latency-Sensitive Data . 76
3.2.2 Buffering . 78
3.2.3 Feasible Solutions . 80

3.3 Memory and Interconnect Bottlenecks . 81
3.3.1 Influence of the Cache Coherence Protocol . 85
3.3.2 Summary . 87

3.4 Devices at the Coherent Interconnect . 88
3.4.1 Devices with Coherent Caches . 89

3.5 The Performance of Coherent Transfers. 92
3.5.1 Devices with Coherent Caches . 94

3.5.1.1 Off-SOC Devices . 98
3.5.1.2 Devices with Caches in SOCs. 100

3.5.2 Devices with a Coherent Memory Controller . 101
3.6 Transfer Cache . 103
3.7 Results. 106

3.7.1 Conclusion . 106
3.7.2 Related Work . 109

CHAPTER 4 HT and cHT Prototypes 111

4.1 The HT Core and Interface . 112
4.1.1 Results . 115

4.2 The Coherent HT Infrastructure . 117
4.2.1 The Coherent Fabric . 117
4.2.2 Units and Crossbars. 118
4.2.3 cHT/nHT Bridge . 119

III
4.2.4 Cache Design .120
4.2.5 Transparent Memory Controller in the Device .123

4.3 Summary .123

CHAPTER 5 Suggestions for Direct Processor Cache Access 125

5.1 The Design Space .126
5.1.1 Device - Thread - Processor Relations .127

5.2 DCA for HyperTransport. .130
5.2.1 Indirect Cache Access via Prefetch Hint .130
5.2.2 Direct Cache Access .131

5.3 Related Work. .135

CHAPTER 6 Reliability in a Direct Interconnection Network 137

6.1 Faults .138
6.1.1 Units. .139
6.1.2 Soft Error Nature and Rates. .140
6.1.3 Error Correcting and Detecting Codes .143
6.1.4 SEU Tolerant Design. .146
6.1.5 Retransmission Endpoints .149
6.1.6 Serial Transmission .150
6.1.7 Faults in Regular Networks .154

6.2 The Extoll Network .156
6.2.1 Packet and Flit Protocol. .159

6.3 Extoll Link Error Correction .160
6.3.1 The Physical Link .161
6.3.2 Protocol Encoding for Serial Links .162
6.3.3 The Logical Link Layer: the Link Port .164
6.3.4 Temporary or Permanent Link Failure .168
6.3.5 The Extoll Switch .172
6.3.6 The High Availability Port .173
6.3.7 Barrier .174
6.3.8 The Network Port .176

6.4 On Chip Protection .177
6.5 Summary .179

CHAPTER 7 Conclusion 181

IV
APPENDIX A Acronyms 185

APPENDIX B Bibliography 189

APPENDIX C List of Figures 205

INTRODUCTION 1
1 Introduction

The demand for processing power is increasing steadily. In many application fields, there
can never be enough computing power. Simulations in the field of engineering, like virtual
crash tests, or in the field of bioinformatics, as protein folding, are examples for applica-
tions that require enormous computing power. But even consumer PCs continue to demand
for more and more computing power.
Moore’s Law, predicting that the performance of microprocessors doubles about every 18
months, has proven to be true in the past, and will most likely stay true for the near future.
One contributing factor to this performance increase are technological improvements.
However, the direct influence of technology on computing performance is limited. Archi-
tectural improvements are another main source for sustained performance improvements.
In the past, single processor performance has been in the main focus for computer architec-
ture. But even in this case, the exploitation of parallelism at instruction level is a key ele-
ment.
As instruction level parallelism is limited in single processor applications, further perfor-
mance increases can only be achieved by exploiting parallelism at the higher levels of
thread or process parallelism. As a consequence, modern “processors” incorporate multiple
processor cores that together form a single shared memory multiprocessor. While the archi-
tecture of the processor cores does not fundamentally differ from the architecture of single
processors, architectural research must optimize communication among the processors.
In large parallel systems, which are typically message-passing multicomputers, a network
interface controller connects the individual nodes to the network. Classically, the network
interface controller is connected to its home node like every other input/output device over
a hierarchy of peripheral interconnects. While this is an appropriate solution for slow
devices like hard disks, it has become a significant bottleneck for network interface control-
lers (NIC) and coprocessor devices like field-programmable gate arrays (FPGA).

INTRODUCTION2
Thus, one target must be to couple coprocessors physically closer to main memory and to
the processor of a computing node. This removes the overhead of today’s peripheral inter-
connect structures. Such a step is the direct connection of HyperTransport (HT) devices to
Opteron processors. The development of a HyperTransport intellectual property (IP) core
and the integration into an FPGA coprocessor environment is part of this thesis.
Additionally, the classical assumption that a computing node consists of a single processor
with memory and I/O components is outdated. Multi-core processors have turned every
computing node into a small-scale shared memory system. The trend towards higher paral-
lelism is obvious: dual core processors are standard even for consumer PCs, and all major
vendors are currently introducing four or eight core processors. Research prototypes of
multi-socket systems feature up to 80 cores on a single die. Today’s network interface
architectures do not consider this fact sufficiently.
One area that is being investigated is the virtualization of network interfaces, which pro-
vides direct access from the user space to a device for multiple processes and threads at the
same time. However, little research has been performed so far to analyze new mechanisms
of low-level data transport between devices and processors in these systems. Almost all
data transport in a shared memory system is controlled by the cache coherence protocol,
which ensures that conflicts of parallel access to the same data objects are resolved. Cache
coherence protocols thus determine how efficient and fast data transport in these systems
is. Traditionally, NICs and coprocessors are connected to the system over noncoherent pro-
tocols, and thus are unaware of the coherence protocol. As a result, processors cannot hide
latency by caching device memory that is accessed using programmed I/O (PIO). The
second way of data transport from device to processor is direct memory access (DMA).
Here, the device writes data into coherent main memory, which allows processors to cache
this data. However, this path includes write and read accesses to DRAM, and thus exhibits
a relatively high latency.
Thus, another target of this thesis is to analyze how this communication path can be
improved to exhibit lower latencies. Two types of latency are relevant: a processor’s read
access latency to data that has previously been produced by the device affects the through-
put of the processor. The other important latency is the overall latency of data transport
from device to processor, which is important if the process is waiting for the respective data.
The analysis extends to classes of devices that take part in the cache coherence protocol.
Among those are devices with coherent caches, and devices that provide a coherent
memory view on device memory. Besides a potential increase in performance and effi-
ciency, coprocessors may functionally benefit from coherent caches.
The growing demand for computing power and the exploitation of thread and process level
parallelism does not only increase the size and complexity of single computing nodes. Net-

INTRODUCTION 3
works of such nodes, mainly supporting message passing, are also increased in their size.
The most prominent example is the IBM BlueGene system, featuring 106,496 computing
nodes connected over a 3D torus direct interconnection network.
Such large networks are very susceptible to faults. Failures that occur in hardware can be
classified into hard failures, where the hardware of a system is physically broken, and tran-
sient faults. In a transient fault, the information that is stored in a system is altered, for
example due to radiation or Gaussian noise on a channel. Within the last years, transient bit
faults have maintained an almost constant fault rate per bit that is stored in static random
access memory (SRAM) or transmitted over cable. With an ever increasing complexity and
size of computers, the likelihood of transient bit fault per system is increasing steadily. To
keep the availability of parallel computers at a high level, error correction and fault-toler-
ance are becoming a more and more important issue. In the end, the error rate may rise at a
level where high level error recovery becomes too costly if lower layers do not perform
error correction that is transparent to the layers above.
In any cable based network, link bit faults and complete link failures due to hard faults are
the most frequent faults. In particular if direct-current-free (DC-free) high-speed serial
transmission is used, coding for error correction and detection is difficult. A fault-tolerant
network protocol is presented in this thesis. In contrast to state-of-the-art network protocols,
errors are corrected directly by hardware on the link and network levels. On the link level,
control information is protected using error correcting codes, while data is retransmitted in
the case of errors. Besides the correction of erroneous bits and packets, another important
topic in direct interconnection networks with a regular topology is that faulty links destroy
the regularity of the topology. In this case, nodes become unreachable if deadlock-free rout-
ing mechanisms are used that have been optimized for the specific topology. A novel hard-
ware based solution for intermediate routing is developed in this thesis, which allows an
efficient, deadlock free routing around faulty links.
The result is a direct interconnection network that provides a reliable transport service even
without the use of end-to-end protocols.
The outline of this thesis is as follows. Chapter 2 summarizes the state of the art in parallel
computer architecture, and thus is the foundation for the subsequent chapters. Chapter 3
analyzes device to processor communication in HyperTransport based direct network
NUMAs. Proposed improvements include devices that take part at the coherent HT proto-
col, and the completely new concept of a transfer cache. HyperTransport-based prototypes
that realize the concepts are described in Chapter 4. A potential future improvement for
device to processor communication are direct cache access mechanisms. An outlook on
these is given in Chapter 5. With Chapter 6, the focus switches to the other side of the NIC:

INTRODUCTION4
the interconnection network. Transient faults that occur in such networks are analyzed, and
a fault-tolerant network protocol for Extoll is described. Chapter 7 concludes this work.

1.1 The Extoll Project
The Extoll project from the University of Mannheim combines different new methodolo-
gies in SAN communication into one network. Extoll is based on the Atoll network
[26][27]. Just like Atoll, Extoll combines both the network interface and a part of the net-
work into a single chip. Although centralized switch resources are supported, Extoll is
designed as a direct network. Every NIC has a crossbar and 6 bidirectional network links,
thus, a 3D torus topology is recommended for Extoll.

Figure 1-1. Block diagram of the Extoll NIC

The following aspects of Extoll are improvements to Atoll, and at the same time new con-
tributions to the design of efficient SANs:
• Closer coupling of NIC, processors and memory. The design space analysis for such a

closer coupling is performed in Chapter 3, the specification of the current implementa-
tion is described in Chapter 4.

• A virtualization of the NIC to allow direct user-level communication for a high number
of processes or threads at the same time [121].

nHT
core

nHT
Xbar

Functional
Unit 0

Functional
Unit n

High
Availability

Port

Multicast
Port

Network
Port 0

Network
Port 3

Barrier
Unit

Extoll
Xbar

Link
Port 0

Link
Port 5

i
n
t
e
r
c
o
n
n
e
c
t Extoll Links:

9 bit parallel LVDS
 or 8b/10b coded serial

transmission

16 bit
HyperTransport

link

Host interface:
Datapath: 96bit control/64bit data

packets
NI controller:

Datapath: 64 bit words
Network:

Datapath: 18 bit phits

INTRODUCTION 5
• Improved routing schemes in the network, including a mechanism for congestion
avoidance [123].

Improved fault tolerance, including link-level error detection and retransmission of packets
and link-level forward error correction of control flits. The High Availability Port (HAP)
allows a rerouting of packets in the case of temporary or permanent hardware failures. The
Extoll network itself, and in particular fault tolerance in the network, are described in
Chapter 6.
The actual network interface controller logic is implemented in a set of functional units
(FU) that execute communication instructions. One communication paradigm in Extoll is
message based communication with short messages that are smaller than one cacheline.
This communication mechanism is implemented in the non-virtualized ULTRA functional
units, which will be described later in more detail.
The other communication paradigm in Extoll is communication in a fully virtualized
device. It allows a large number of processes and threads to access a device directly using
user-level-communication. Here, send-receive and put/get communication is supported. A
superscalar functional unit executes the communication instructions. Multiple such units
may be used in implementations to parallelize work. It is still a topic of research how an I/
O memory management unit (IOMMU) and translation lookaside buffers (TLB) are inte-
grated into Extoll to allow an efficient translation of virtual into physical addresses. A con-
text cache keeps the most recently used contexts for the processes, which are loaded into
the FUs on a user process request.
The right hand side of Figure 1-1 implements the Extoll interconnection network. The net-
work port is the instance that translates packets into and from the network protocol format.
Virtual channels and lanes are used to decrease the impact of head of line blocking and to
avoid deadlocks in the system [123].

Figure 1-2. Ultra NIC

Extoll supports a direct interconnection network (IN) by integrating a crossbar-based
switch for a 3D torus network. Such a direct IN provides distributed routing resources. This

nHT
core

nHT
Xbar

Ultra
unit

Network
Port

Extoll
Xbar

Link
Port 0

Link
Port 1

9 bit parallel LVDS
16 bit

HyperTransport
link

INTRODUCTION6
means that the routing resources automatically scale with the number of nodes in the net-
work. Between every two crossbars, a credit based flow control is used.
Current Implementation. The first offspring of the Extoll project is the design depicted in
Figure 1-2. This is also the design which is used for the optimizations using a coherent pro-
tocol. With only two links, it looks more like a conventional NIC that requires centralized
switching resources. The Ultra unit is the only functional unit. In ULTRA communication,
a process sends a message by writing the message to the device using PIO writes. On the
receive side, ULTRA writes messages into a user-space queue in main memory using a
DMA write.

Figure 1-3. The HTX board

1.2 Physical Implementation
The hardware platform for the Extoll NIC prototype is the HTX board [128]. It contains an
HyperTransport expansion (HTX) connector and a Virtex-4 FX FPGA which can be pro-
grammed via JTAG or USB. For communication, six small form factor pluggable (SFP)
serial transceivers are on the board that are connected to the high-speed serial transceivers
of the FPGA, featuring bit rates of up to 4 Gbit/s. Alternatively, the board can be equipped
with two bidirectional parallel connectors. The HTX-Board can be plugged into any moth-
erboard providing an HTX slot. The initial verification has been performed using the Iwill
DK8-HTX motherboard, equipped with two AMD Opteron 246 processors.

INTRODUCTION 7
1.3 Graphical Representations
Design space diagrams. An important goal of this work is to analyze and explain design
spaces and design choices. A graphical representation of different computer architectures
is the design space diagram (see Figure 1-4), which has been introduced by Sima [4]. The
diagram shows the different aspects in the design space, as well as the design choices for
every such aspect.

Figure 1-4. Design space diagram

Flow diagrams. In modern NUMA architectures, nodes are interconnected through a
packet-based direct network. Every transaction on the system consists of a sequence of
packets that is exchanged between a number of master and slave devices. Flow diagrams
are being used to visualize the path of packet flow, as shown in Figure 1-5. Most diagrams
refer to the packet flow in Opteron based systems that are interconnected with a coherent
HyperTransport fabric. As the coherent HyperTransport (cHT) protocol is confidential,
flow diagrams are based on publicly available information only [108][44].
Cache coherence state diagrams. Cache coherence protocols can be seen as state
machines. When describing them, there are two alternatives: in every protocol, every
memory location is in a determined state. For example, the state may be invalid, that means
not being cached at all. So, one way of describing the protocols is to describe how this
global state of a memory location is affected by the cache actions.
The second way of describing the protocols is from the cache viewpoint: every cacheline
entry in a cache is in a determined state too. The protocols can therefore be described by
showing how these states are affected by the cache actions. State diagrams, as shown in
Figure 1-6 and Figure 1-7, are a good way to describe these state transitions. Separate state
diagrams are required for the caches that issued a request and those caches which are snoop-
ing the request. To be able to describe a protocol this way, by convention both a present

aspect 1 aspect 2

design space of sth.

choice 1 choice 2

INTRODUCTION8
cacheline entry with the state invalid and a non-present cacheline entry will be called
invalid.

Figure 1-5. Flow diagram

Figure 1-6. MESI state diagram for a requesting cache

CPU - processor/cache
MC - memory controller
Dev - device
Br - I/O bridge

Actors:

MC
CPU1
CPU2
Dev

P DoneCPU
Read

CPU MCPR

RR

Read

P -probe request
C2D - change to dirty
Write

Requests:

PR - probe response
RR - read response
Done

Responses:

Packets:

M

S

I

E

Read Hit

Read Hit,
Write Hit

Read Hit

Exclusive Read Miss

Write Hit

Write Miss

Shared Read Miss

Write Hit

shared Snoop response from
other processors

INTRODUCTION 9
Figure 1-7. MESI state diagram for a snooping cache

1.4 Methodologies
New designs or design variants of a device in a computer system must be evaluated for their
benefits and in particular for their performance. As the performance of a device usually
depends on the hardware and software of the whole system, this evaluation is a complex
task. The methods for the exploration of a system are shown in Figure 1-8.
The idea for a specific design can be expanded to a theoretical model. In this model, the
performance of the system’s inherent mechanisms can be estimated. Usually, only worst-
or best-case estimations can be made in complex systems. A theoretical model cannot
deliver good results for complex traffic patterns which influence transactions in the system
in the form of background traffic. The theoretical model is based on assumptions about the
behavior of system components. If these assumptions are right, a theoretical model can be
efficiently used to estimate at least the order of magnitude of the performance of the choices
in the design space.
An architectural simulation is an effort to increase the precision of performance estimates
for a design. In the best case, the simulation is a cycle-accurate one-to-one image of the sys-
tem, so that simulation results match results in the real system. At the same time, a simula-
tion environment is usually being implemented faster than the real device or a prototype,

M

S

I

E

snooped Write

Snooped Read

snooped Write

snooped Read

snooped Write

snooped Read

writeback Cacheline has to be
written back to memory

writeback

writeback C

writeback C
Cacheline has to be
written back to memory
or to requesting cache

INTRODUCTION10
and changes to the system as part of a design space exploration are possible with less effort.
Nevertheless, architectural simulation is not free of problems:
• The only way to ensure the correctness of a simulator is to verify it against the real sys-

tem - which is difficult if the system does not exist yet.
The implementation of a simulation framework is very time-consuming, with limited reuse
potential for the actual system implementation. This may increase the time-to-market for a
product significantly. Thus, simulators are often being reused to reduce this problem.

Figure 1-8. Design exploration design space

Besides these general problems, the computer architecture research community faces addi-
tional problems:
• Frequently used simulators like RSIM [16] simulate older architectures, it is thus not

clear how mechanisms would behave in modern systems. As many of these simulators
simulate processor instruction sets that aren’t used any more, it is difficult to compile
applications for use with the simulator. As a result, a small set of older benchmarks is
being run on the simulators. Again, it is questionable whether this is good practice.

• Most scientific publications do not give many details about what functionality has been
implemented in the simulator. Also, the source code is usually not contributed to the
community. This prevents other researchers from verifying and comparing results.

• Also, publications frequently do not describe a feasible hardware implementation of
proposed new features. Thus, assumptions that have been made about the hardware
implementation cannot be verified. Also, it is not clear how feasible and expensive a
hardware implementation would be. Due to the intrinsic differences between software
and hardware design, computer architects with little knowledge and experience in hard-
ware design are likely to make false assumptions in this field.

Although architectural simulations are a very powerful tool in general, these deficiencies
reduce the significance of simulations as performed and presented in today’s research com-

system exploration

theoretical architectural prototype
model simulation implementation

growing confidence

INTRODUCTION 11
munity. Under these circumstances, it is not clear why most simulations that are performed
are more accurate than a “order of magnitude” estimation made based on a good theoretical
model. Although the experienced computer architect can avoid most of the above men-
tioned problems, the lack of an up-to-date simulation framework and a both critical and sup-
portive community is a major problem.
A prototype implementation is the only bullet-proof exploration and verification tech-
nique. However, the development of the prototype is very expensive and time consuming.
Thus, prototypes are not well suited for the exploration of a multitude of different design
choices. If the prototype does not run at the same speed as the final product, for example
because it is implemented in an FPGA, while the product is supposed to be an application
specific integrated circuit (ASIC), performance of the final system must be extrapolated
from the prototype performance.
Due to the problems of simulation frameworks described above, this thesis combines the
usage of a theoretical model with prototype implementations. Assumptions about the per-
formance of subcomponents are mostly based on implementations in the prototype system,
and therefore ensure that the theoretical model can be safely applied for the comparison of
design space alternatives. The following subsection details these system parameters.

1.5 A Theoretical Model for cHT/HT Performance
The in-depth analysis of efficient data transport from device to processor in Chapter 3 is
performed for directly interconnected NUMA systems that are interconnected using the
HyperTransport protocol. The model considers the influence of all components of the HT
fabric, as well as attached memory and caches. The HT components are the switches, links,
coherent caches, coherent memory controllers and I/O bridges as depicted in Figure 2-28
on page 57. Processor core internal paths are not considered.
Actions that take place in these components have a certain latency, the relevant ones are
depicted in Figure 1-10. Except for the memory access delay, all latencies depend on the
clock frequency of the HT fabric, only the DRAM latency is fixed. The parameters in the
table are given for HT1000 and are derived from the FPGA prototype implementations.
Virtual-cut-through routing is being assumed in the cHT network.
Figure 1-9 shows an example calculation of a processor’s coherent read access to memory
that is homed on the same node, and no other cache holds the respective cacheline. The
resulting value is best-case. In a real system, background traffic and congestion will nega-
tively influence this latency.

INTRODUCTION12
Figure 1-9. Four-node example

Figure 1-10. System parameters for HT1000

Opteron Opteron

Opteron Opteron

DRAM DRAM

DRAM DRAM

MC
CPU1
CPU2
CPU3

P DoneCPU0
Read

CPU0 MCPR

RR

Read to local memory with probe broadcasting:

LatencyRead txbar max tm txbar+ tprobeg 2 2tlink 3txbar+() tpm tprobec+ + +,()+ 114ns= =

Name Abbrev. Latency in ns
Memory Access Delay tm 45 Read delay of memory controller

including DRAM latency
Probe Hit Delay tph 4 Probe requests hits in probed

cache. Cache must deliver data
Probe Miss delay tpm 2 Probe requests hits in probed

 cache. Probe response must be
sent

Probe generate delay tprobeg 2 Time to generate a probe
broadcast or a directed probe

Probe collect delay tprobec 2 Time to process responses after
last response has been received

Response processing delay trpr 4 Time to process a read
response containing data

Link delay tlink 21 One-way latency of HT links
Xbar delay txbar 4 Delay of HT Switch
Bridge delay tbr 4 Delay of cHT/HT bridge

COMMUNICATION IN PARALLEL COMPUTERS 13
2Communication in
Parallel Computers

This chapter summarizes the state of the art in parallel computer architecture, and thus is
the foundation for the subsequent chapters.
After a short overview about caches in Section 2.1, an introduction to parallel computers is
given in Section 2.2, including an overview about the communication patterns in parallel
systems. Section 2.3 analyses the design space of network interface (NI) locations within a
node. This work concentrates on a realization of tightly-coupled NIs and devices under con-
sideration of the cache coherence protocols in shared memory nodes. Therefore, Section 2.4
discusses cache coherence protocols in depth.
The prevalent type of computing nodes are based on the x86 architecture, which is mainly
due to the good price to performance ratio of these off-the-shelf systems. Section 2.5 intro-
duces such server systems. Section 2.6 gives an overview of parallel systems that have been
implemented in order to illustrate of the most important mechanisms in parallel architec-
tures.

2.1 Caches
The memory hierarchy in a single processor system consists of the register file at the top of
the hierarchy, followed by a number of levels of caches. At the bottom of the hierarchy,
there is the main memory. This hierarchy is depicted in Figure 2-1. As can be seen from the
figure, speed and size of a memory component are contrary to each other: large memory
components are generally slower than smaller ones. Thus, the only reason to use caches is
to hide the latency and bandwidth restrictions of main memory accesses.

COMMUNICATION IN PARALLEL COMPUTERS14
The terminology used in this thesis is as follows: Every location in a cache can hold a datum
called cache block. Usually, such a cache block consists of multiple data words. Many cur-
rent processors have a cache block size of 64 bytes. The term cacheline is frequently used
as a synonym for cache block. It is not only used for the cache block located in the cache,
but also when such a datum is transferred in the system.

Figure 2-1. The memory hierarchy of the Intel Itanium processor [5]

The second component belonging to a cacheline is the control field. It holds information
about the current state of the cacheline, for example its cache coherence protocol state (see
Chapter 4.3). The union of cacheline, tag and control field is called cache entry.
A cacheline is indexed by a part of the address. The higher part of the address, which is not
used for indexing, has to be saved in a tag field with the cacheline, so that cachelines can
be uniquely identified. The group of cache blocks that can be accesses with the same index
is called a set. If the number of cache blocks in a set is 1, the cache is called a direct mapping
cache. If all cache blocks are in one single set, the cache is called fully associative cache.
In all other cases, the cache is called an n-way set-associative cache, where n specifies the
number of cache blocks per set.

Register

Level 1 Cache

Level 2 Cache

Level 3 Cache

Memory

System Bus

Processor Package
Processor

Size

16 KB Instr.
16 KB Data

96 KB

4 MB

2 KB

Load Latency

2 Cycles

6 Cycles

21 Cycles

1 Cycle

>50 ns>4 GB

COMMUNICATION IN PARALLEL COMPUTERS 15
2.2 Parallel Computing Architectures
The interface between every shared memory node and the rest of the system is called the
network interface controller (NIC). The communication patterns for which a NIC should be
optimized strongly depend of the architecture of the parallel computer. This chapter will
thus briefly describe the different types of parallel computer architectures, thereafter, the
communication paradigms of the most common systems are described.
Flynn’s taxonomy [3] distinguishes computer architectures by looking at the parallelism
in the data and instruction streams. Four classes exist: Single Instruction - Single Data
(SISD), Single Instruction - Multiple Data (SIMD), Multiple Instruction - Single Data
(MISD) and Multiple Instruction - Multiple Data (MIMD). Although this classification
scheme is still in use, it has some major weaknesses: The class of MISD systems has never
really been populated. The original proposal of the sequential von Neumann computer [1]
[2] is a typical SISD system. Due to the trend towards multi-core processors and simulta-
neous multi threading, the class of SISD systems is emptying.
Arrays of processing elements are a typical example for SIMD architectures. Most present
parallel systems are MIMD computers. An MIMD computer usually consists of a number
of processing units working independently of each other, each with its own instruction and
data stream. MIMD architectures are more versatile than SIMD architectures, since they are
not reduced to one single stream of instructions. Therefore, MIMD architectures can gen-
erally exploit more parallelism. MIMD architectures can be differentiated into shared
memory and message passing architectures. This distinction is based on the hardware
mechanisms of communication. It does not specify the communication paradigm that is
used by user applications, as this may be different than the mechanism that is used in hard-
ware.
Sima’s taxonomy [4] classifies parallel architectures into data parallel architectures and
function-parallel architectures. Data parallel architectures are vector, associate and neural,
SIMD and systolic processors. Functional-parallel architectures can be distinguished based
on the level of parallelization. Instruction-level parallelism (ILP) can be exploited within
every single processor by means of pipelining, superscalar designs or very-long-instruc-
tion-word (VLIW) processors. According to Sima, the process-level and thread-level par-
allel architectures combined form the same class as MIMD.
Shared Memory Architectures. In a shared-memory architecture, every processor is con-
nected to every memory via the system interconnect. Although the physical memory mod-
ules may be distributed throughout the system, they form one global memory space which
can be addressed by all processors.

COMMUNICATION IN PARALLEL COMPUTERS16
Figure 2-2. Classification of parallel architectures according to Sima

A closer evaluation of shared memory systems reveals different access models: the uniform
memory access model (UMA), the non-uniform memory access model (NUMA), and the
cache-only memory access model (COMA), as shown in Figure 2-3.
UMA architectures consist of n processors and m physical memories. Processors are inter-
connected with all memories so that processors can access all memories in the very same
way. In particular, access latencies and bandwidths are the same for every processor-
memory path. The scalability of this topology is limited: with a growing number of proces-
sors and memories, the complexity of the interconnect is increasing as well. Thus, larger
systems will exhibit higher memory access latencies.
In NUMA architectures, physical memory is assigned to every processor, which this pro-
cessor can access directly without having to use the global system interconnect. To access
any other memory, the system interconnect has to be used. Thus, accesses to the local

Parallel Architectures (PA)

Data-parallel architectures Function-parallel architectures

SIMD,

ILP:

Thread-levelProcess-level Instruction Level
 PAPA PA

vector architectures,
et al.

MIMD

Shared memory Distributed memory
multiprocessor multicomputer

Pipelining,
VLIWs

Superscalarity

COMMUNICATION IN PARALLEL COMPUTERS 17
memory will typically exhibit a lower latency than global accesses. Also, the bandwidth to
the local memory may be higher.

Figure 2-3. UMA, NUMA and COMA architectures

The motivation for NUMA systems is that in most parallel applications, the largest part of
the accessed memory is privately used by one thread, only a part of the memory is really
shared among threads. If the operating system in a NUMA machine allocates the memory
of a process or thread on the same processor as the process or thread is running on, most

P1 P2 P3 P4 Pn

M1 M2 M3 M4 Mm

Processors

Memories

System Interconnect

P1

M1

System Interconnect

P2

M2

P3

M3

local memory access

global memory access

System Interconnect

P

C

D

P

C

D

P

C

D

P

C

D

UMA

NUMA

COMA

COMMUNICATION IN PARALLEL COMPUTERS18
memory accesses of the processes or threads should target the local memory. As a result,
NUMA systems are much better scalable. Firstly, a larger system interconnect affects only
a part of all memory accesses. The latency and bandwidth of local memory accesses is inde-
pendent of the system size. Secondly, the load on the system interconnect is much lower.
The third category of shared memory systems are COMA architectures, in which all mem-
ories are converted to caches. A memory word in a cache-only architecture does not have a
permanent home address in one of the memories. Instead, it can be in any of the caches at
any time. Particularly, it can be in more than one cache at a time. Processors have direct
access only to the local caches. The access on memory words residing in a remote cache is
performed implicitly by the cache-coherence mechanism.
Another criterion for shared memory system is the one of symmetry. In a symmetric mul-
tiprocessor (SMP), all processors do have the same capabilities including I/O access and
running the operating system. In asymmetric multiprocessing, processors are designated to
special purposes: Master processors are able to execute the operating system and to perform
I/O. Slave processors cannot perform I/O access, but only execute code under supervision
of the master processors.
Often, shared memory systems use a hierarchy of interconnects, and may use different
coherence mechanisms at the different interconnect levels. The NUMA implementations
ExtendiScale [108], AzuzA [98] or Dash [97] show that significantly more has to be done
at the interface between nodes and the network than just routing. Optimizations include for
example remote caching, address remapping and probe filtering. Thus, such a system will
comprise a shared memory network interface controller (SM-NIC). The fundamental dif-
ference between NIC and SM-NIC is that a NIC has to be addressed explicitly, while com-
munication over the SM-NIC happens implicitly based on the address of requests.
Distributed Memory Architectures. The architecture of a distributed-memory system is
depicted in Figure 2-4. In this type of system, memory is not globally shared. Instead, the
system consists of so called nodes, which consist at least of one processor, local memory
and an interface to the interconnection network. For inter-node communication, messages
are passed between the nodes. The nodes of such a system are computers acting autono-
mously. Therefore, these systems are also called multicomputers.
Today, most large parallel systems are distributed memory architectures. However, the
nodes typically consist of small UMA or NUMA shared memory multiprocessor systems.
Cluster computers that are constructed using off-the-shelf AMD or Intel processors (see
Section 2.5) and SAN interconnection networks (see Section 2.6.5) are typical examples for
this type of system. In these systems, any communication with other nodes requires explicit
communication with the NIC.

COMMUNICATION IN PARALLEL COMPUTERS 19
Figure 2-4. Distributed memory architecture

A NIC is required due to the fundamental differences between intra-node and inter-node
interconnects. A node can be integrated in a small physical space, i.e. on board level. Com-
munication paths on chip are in the range of micrometers, off-chip in the range of centime-
ters. In contrast, the interconnect between the nodes has to connect nodes that may be
meters apart from each other, connected by cables instead of traces on a printed circuit
board (PCB). Particular problems are:
• The high latency of the transmission over longer distances requires sophisticated flow-

control mechanisms over every single cable.
• Bandwidth in the interconnect is limited, due to the high costs of adding bandwidth

compared to on-chip or on-board interconnects. Thus, congestion and the need for
node-to-node flow control are a serious issue.

• A significant bit error rate requires such errors to be corrected, using retransmissions or
forward error correction. Also, a large network must cope with the failure of compo-
nents, as cables and nodes.

Thus, the separation into a node with network interface controller, and the interconnection
network between the nodes is very useful.

Message Passing Interconnection Network

P1
Nodes

M1

In
te

rfa
ce

Node 1

P2

M2

In
te

rfa
ce

Node 2

Pn

Mn

In
te

rfa
ce

Node n

local memory access

message for inter-node
communication

COMMUNICATION IN PARALLEL COMPUTERS20
2.2.1 Communication Paradigms
A different point of view on this problem simply distinguishes communication primitives
that may be present in such a system, which are:
• Remote memory access using remote load/store operations,
• Message passing using a send-receive semantic,
• Remote memory access (RMA) using a put/get semantic.

Figure 2-5. Goals of all communication paradigms

Remote loads and stores and the RMA mechanism are both one-sided communication
mechanisms. This means that only one process is actively participating in the communica-
tion. Thus, this kind of requests always involves access to remote memory: communicating
processes are coupled by using shared memory. In contrast, message passing using a send-
receive semantic is a two-sided communication mechanism, as both communication pro-
cesses are involved. A system may support both message passing and shared memory
mechanisms at the same time.

Figure 2-6. Aspects of communication paradigms

Figure 2-5 shows the general goals of all communication paradigms. It depends on the
application rather than on the specific paradigm how these goals are weighted. The para-

communication paradigms

low high efficient usage of
system resources

fault-tolerance

goals

bandwidthlatency
security

communication paradigms

notification of synchronizationblocking
completionbehavior

granularity

COMMUNICATION IN PARALLEL COMPUTERS 21
digms differ in the aspects shown in Figure 2-6. The next three sections will analyze the
paradigms with regard to these aspects.

2.2.2 Remote Load/Store
The remote load/store mechanism is the type of communication that is used in shared
memory systems. It is based on load and store instructions of the processor instruction set.
Typically, there is no differentiation between remote and local instructions, so that they are
treated the same way as every other load instruction.
A processor’s load instruction classically loads one value from memory into one register, a
store instruction stores the content of one register to memory. Thus, load and store instruc-
tions work on one single processor-native data object that typically has a size of 32 or 64
bits. Vector instructions may work on larger data types. However, current implementations
in processors as the different types of SSE [23] or AltiVec [24] support only up to 128bit
loads and stores. If such an instruction misses in a cache, the cache will create a read or
write request with the size of a cacheline in this cache to the next level in the memory hier-
archy.
A remote read/write may thus use the cacheline size of the last cache hierarchy, or a multi-
ple of it. The largest unit of data transport is used for virtual shared memory (VSM) sys-
tems. These are message-passing based distributed memory systems that emulate remote
loads and stores in software. Due to the high overhead for remote memory accesses in these
systems, the granularity of remote accesses is typically one page [25].
Remote loads and stores are blocking operations. A load that has been issued blocks until
the response data arrives. In particular, a thread or process cannot be retired. However, the
processor may execute other instructions if they do not have data dependencies with the
stalled load, and if this does not violate memory ordering constraints.
Similarly, a store may block other memory requests. Most memory consistency models
employ strict ordering among stores.
Shared memory programming models as OpenMP [75] may allow a differentiation of
remote and local memory. Thus a compiler can optimize parallel code by inserting early
prefetch instructions for remote memory loads. A manual optimization by the programmer
would also build up on prefetch instructions. A prefetch instruction is basically a hint to
load a specified memory block into the cache in a non-blocking way. However, finding the
right point in time for a prefetch is difficult. If a prefetch is started too early, a succeeding
write to the address by another processor will lead to an invalidation of the cache entry that
has been allocated by the prefetch, which results in the same situation is if no prefetch had
been executed. In the worst case, a prefetch is executed at the same time while another pro-

COMMUNICATION IN PARALLEL COMPUTERS22
cess is writing to the same memory location. In this case, the write is delayed, as the
prefetch of the cacheline cancels the writer’s write permission to the cacheline temporarily.
The notification of completion happens implicitly, due to the blocking behavior of loads
and stores.
In a shared memory system, the cache coherence protocol makes changes to shared data vis-
ible to the whole system immediately. Thus, a certain grade of synchronization is already
performed by the underlying hardware. However, many applications require mutual exclu-
sions to access critical sections of the parallel application.
A non-coherent implementation of remote loads/and stores is possible as well. In this case,
changes become only visible if they are written back using a remote store, and cached
copies are invalidated. An application of this scheme are systems with a very relaxed order-
ing scheme, as for example transactional memories [8].

2.2.3 Put/Get
Communication using put and get operations is often called remote memory access (RMA)
communication. In analogy to the remote load operation, a get request is used to access
remote memory. However, there is a number of fundamental differences to the load opera-
tion:
The most fundamental difference is that put and get operations do not operate on processor
registers, but on main memory or a dedicated set of registers that is not part of the processor
register set. For example, implementations of MPI [73] and the Extoll put/get unit use main
memory. The T3E (see Section 2.6.2) uses a set of memory-mapped device registers.
Put and get can be implemented as non-blocking operations. The request for a get starts the
operation that is performed asynchronously to the process. Before the process can access
data that has been transferred using a get, it has to check for completion of the operation.
The third and last difference is that the put/get semantic does not support an automatic hard-
ware coherence. Instead, this must explicitly be managed by the application.
The notification of completion may occur in three different ways, depending on the imple-
mentation. One possibility is a blocking put/get operation, which only returns if the opera-
tion completed. A second possibility is a nonblocking get, where read accesses to the local
get destination are blocked until data is available. Such a mechanism is implemented in the
T3E (see Section 2.6.2). The third and most popular solution is a test for completion that is
performed by the user process. An MPI implementation will typically be based on notifica-
tions of completion, which are inserted by the device into a notification queue that resides
in main memory. The process then has to check this queue to retrieve the status of the oper-
ation.

COMMUNICATION IN PARALLEL COMPUTERS 23
For a get operation, a notification is generated if all data has been written to the requestor’s
destination. For a put operation, there are two points in time at which a notification may be
generated. A first notification may be generated if all user memory that relates to a specific
put operation can safely be reused by the requester. The second notification is generated if
the put operation completed at the target, so that it is globally visible.
The synchronization in the RMA scheme can be done using mutual exclusions. MPI, for
example, uses the notion of memory windows. A window is a part of the address space that
is accessible via puts and gets by remote processes. These windows can be locked explicitly
for mutually exclusive access. Another method of synchronization is the use of epochs. An
epoch is framed by a barrier at the beginning of the epoch and a barrier when the epoch
ends. A process enters a barrier operation only if all puts and gets it has issued in the previ-
ous epoch, i.e. since the last barrier, have finished. So, puts and gets from different epochs
cannot collide.

2.2.4 Send-Receive
In the send-receive scheme, a processes explicitly send messages to other processes. The
target process can obtain the message data by an explicit receive operation. Thus, send-
receive is a two-sided communication mechanism. Besides the two sided scheme, message
passing communication may also support n-sided communication using broadcast, multi-
cast and other collective operations. The send-receive paradigm offers a wide variety of
operations that differ in their behavior. User-level libraries as MPI offer the whole variety
of function calls to the user.
The standard send and receive functions are blocking. The send function returns if the mes-
sage has been successfully send from the sending processes perspective. This means, that
the user can safely reuse buffer space that contains the message data. It does not mean that
the message has arrived on the remote node. A receive function returns after the message
has been received. Nonblocking send and receive functions may return immediately, the
user application has to explicitly check if the operation succeeded before accessing the
respective data. Another type of send is the synchronous send. This function only returns if
the receive operation for that message has been called.
The underlying hardware does not have to directly implement all these sending mecha-
nisms, instead they can be emulated. A nonblocking send function can be implemented in
the message passing library using a blocking send hardware mechanism: first, all message
related user data is copied into a buffer. Then, a separate thread performs the actual block-
ing send operation. Synchronous sends are usually implemented using a rendezvous proto-
col. The sender first sends a request to the receiver, when the receiver calls the

COMMUNICATION IN PARALLEL COMPUTERS24
corresponding receive operation, it sends back an acknowledgement. Only after this
acknowledgement has been received, the sender may start sending the actual message.
In order to uniquely identify messages, they carry a user-application tag and information to
distinguish processes.
Efficient implementations of the send-receive make use of nonblocking send-receives, as
this allows the overlapping of communication and synchronization. Also, blocking sends
and receives are prone to race conditions that may lead to deadlocks. Thus, in the general
case, the NIC has to generate a notification that is checked explicitly by the user application.
As the synchronization is explicitly performed by the send and receive operations, no other
mechanisms are used to synchronize bidirectional communication. For global synchroniza-
tion, barriers may be used.

2.3 Device Integration Design Space
This chapter analyzes at which locations in a node a NIC or SM-NIC may be located. The
overview presented in Figure 2-7 makes use of the same scheme that originally has been
introduced by Bruening [28].
The closest coupling can be reached if the NIC is integrated into the processor core. Exam-
ples for such implementations are the iWarp [11] and Transputer [12] computers, as well as
a suggestion by Henry & Joerg [83]. Communication in these systems is performed by writ-
ing to or reading from a special set of registers. In these implementations, the register set is
connected to the network over a FIFO queue. A general problem with these approaches
occurs if packets arrive that are destined to a process other than the one that is currently
loaded in the processor. Gang scheduling together with draining the network on every pro-
cess switch is used in most such closely coupled systems to resolve this problem. Henry &
Joerg suggest to interrupt the currently active process and to schedule the process that is the
destination for the packet. Also close to the processor core are NICs that are attached to the
cache interconnect, as the *T [94] for example.
While such a close coupling of computation and communication may be desirable, it is very
difficult to propose realistic implementations. The cache interconnect and the processor
core of commercial processors are usually neither physically or legally accessible. They are
within the processor chip, confidential, proprietary, not compatible with other processors
and also may change frequently.
The coherent processor interconnect is the typical network interface location for shared
memory systems that have a global memory address space. Supercomputers in the early and
mid nineties were frequently of that type [99]. One major vendor of this type of systems has

COMMUNICATION IN PARALLEL COMPUTERS 25
been Sun Microsystems, an overview of their system architectures is given in [15]. Another
prime example of shared memory systems is the Dash architecture [97], a more recent
example is the Horus chip of the Extendiscale architecture [108]. *T-Voyager acts like a
snooping processor at the processor interconnect to allow coherent shared memory commu-
nication between nodes.
This processor interconnect is also the closest location to the processor that is physically
accessible, as it is designed to support inter-chip communication. It is also less confidential.
Some message passing NICs, as in the PowerManna [76] or in the T3E were attached to this
interconnect as well. They implement the functionality of I/O devices.

Figure 2-7. Device integration design space

The I/O bus is the standard interface for devices, including NICs and accelerators. I/O buses
like PCI Express are standardized, and available on different platforms. Thus, there are
numerous examples for such systems, as the Cray XT3 and XT4. Also, I/O buses allow the
development of NICs that may be used in all host systems that support the I/O bus. Exam-
ples for such NICs are Atoll, Infinipath, Myrinet and Quadrics.
The MEMOnet NIC architecture [77] is one of the few examples for a memory controller-
attached NIC. This architecture shall leverage the fact that a processor can access memory
with higher bandwidth and lower latency than a device connected over a PCI bus. The

N
I
C

I/O
Bridge(s)

Processor
Core

Memory/
Directory
Controller

L2 Cache

NIC

Cache Interconnect

Processor Interconnect

I/O Bus

NIC

NIC

NIC Integration into processor:
iWarp, Transputer, nCube

Integration at L2 cache interconnect:
*T

Integration at processor interconnect:
Cray T3E, *T Voyager, PowerManna
Extendiscale, AzuzA

Integration behind memory controller:
DimmNET
Integration at I/O bus:
Cray XT4, Infinipath, Myrinet,
Quadrics, Atoll

Processor

Northbridge

COMMUNICATION IN PARALLEL COMPUTERS26
MEMOnet NIC is implemented on a DIMM. Besides the NIC itself, SDRAM memory is
also included on the DIMM.
The sending of a message to the NIC makes use of the PIO mechanism: A send memory
region maps to the DIMM module. The processor writes message header and data to this
region. Thus, as for any PIO operation, the memory region must be uncacheable so that
writes are directly written to the memory controller and thus to the memory module.
A serious problem of this architecture is the passive nature of memory modules. The NIC
cannot issue interrupts. The receive process can only work as follows: Messages that have
been received are written to the SDRAM that is embedded on the memory module. A pro-
cess can then access the received data just as it would for a classical memory-mapped PIO
device.
Analysis in this work. Due to the low feasibility of processor integrated NICs, this work
focuses on NIC implementations on the I/O bus and the processor interconnect. Also, it
focuses on the integration into a node that is a small-scale shared memory system. This is
due to the fact that such systems just recently started to prevail on the market, as technolog-
ical and architectural solutions to increase the performance of single processor cores have
been exploited. Section 2.4 will describe shared memory systems in detail, as this is the
basis to analyze integrations of devices in such systems.

2.3.1 Process-Device Interaction
Most of today’s architectures know two different basic types of memory: main (physical)
memory and I/O memory.
Traditionally, I/O space can be accessed by device drivers and the operating system, lever-
aging the PCI software model. This model is used by virtually all of today’s devices, as in
PCI-X, PCI-Express (PCIe), HT2 and HT3 devices. In the user space communication
scheme, I/O space is mapped into the virtual memory space of applications. This avoids
operating systems calls and memory copy operations between user and operating system
memory spaces.
Process-device interaction can be differentiated into synchronization and data communica-
tion. There exists a very typical basic scheme of communication between process and
device. To submit a job to a device, the process inserts a job descriptor into a dedicated
queue. This queue is necessary to decouple the operation of processor and device. The job
descriptor may contain all data that is required for the device to process the job. It may also
be the case that the job descriptor contains direct or implicit pointers to additional data
required for the job. In any case, this is a classical producer-consumer situation. Synchro-
nization in this process is necessary to determine the fill level of the queue.

COMMUNICATION IN PARALLEL COMPUTERS 27
Communication in the other direction, i.e. from device to process, works the very same
way. This path may be used for example to submit the result of a job that has been previ-
ously issued to the device. In a network interface device, data that has been received from
the network is forwarded this way.
For data communication in today’s x86 systems, there exist two mechanisms, which both
include the required synchronization:
Programmed Input/Output (PIO). In this communication pattern, data is moved between
applications and devices by explicitly performing processor memory operations. Before
moving data to a device, the processor has to check whether the device is capable to hold
the data. If there is enough free space, data is written by I/O writes into the address space
of the device. Address bits of the device address space may be used to submit additional
control information to the device. For example, one bit of the address might be used to mark
the end of a data packet. Data transfer in the other direction is performed in a similar fash-
ion. First, the process checks for new data by performing I/O reads to a status register. If
this is successful, the processor can issue subsequent I/O reads to read the data from the
device. This interface is called register-mapped interface.
Direct Memory Access (DMA). Data is not copied by the processor, but by a DMA engine
that is external to the processor. Usually, the DMA engine is part of the device. For proces-
sor to device communication, a job descriptor that specifies source and target of the copy
operation must be set up by the processor. Then the processor triggers the DMA engine,
which is typically done using an I/O memory access to a register of the DMA engine. A
typical location for the job descriptors is a queue in main memory. For data transport in the
other direction, the device performs the DMA and creates a notification that is also in main
memory. The processor uses PIO accesses to check for new entries in the queue. This inter-
face is a descriptor-based interface.
It can be noted that both communication methods currently rely on PIO concerning the syn-
chronization of data transport. In essence, there are three basic types of data movement
used:
• Synchronization using I/O read and write accesses from processor to device
• PIO data transport between processor and device
• DMA data transport between device and memory
A fourth possibility is not used in the classical approach, but will be introduced in the fol-
lowing sections:
• Synchronization over memory

COMMUNICATION IN PARALLEL COMPUTERS28
Queue Organization. In order to decouple the producer and the consumer of data, buffers
are required. The hardware representation is a first-in-first-out (FIFO) buffer. This structure
cannot be implemented efficiently in software, where data always resides in main memory.
Therefore, pointer-based wrap-around queues as shown in Figure 2-8 are used.

Figure 2-8. Pointer-based wrap-around queue

The basic pointer scheme has the disadvantage that pointers have to be exchanged between
consumer and producer for every access to the queue. Queue pointers are usually commu-
nicated using memory operations to memory-mapped I/O space of the device.
Improvements to the scheme are depicted in Figure 2-9. Lazy pointers improve the enqueue
operation: for an enqueue, it is sufficient to know that enough free space is in the queue. It
is not necessary to know the amount of free space precisely. Thus the producer has a copy
of the read pointer that is potentially stale. This copy has to be updated only if the free space
in the queue is under a certain threshold. For the write pointer, the lazy pointer does not
work. Not updating the write pointer means that the consumer is not notified of new entries
in the queue, which results in a higher latency.
Another improvement are valid bits that are embedded in every queue entry. The software-
based approach, which is implemented in the *T-ng [95] for example, embeds valid bits in
the data object that represents a queue entry, i.e. the valid bits are part of the queue payload.
Thus, the processor can read a queue entry speculatively, and determine whether the entry
is valid or not. In one scheme, a bit with the value ‘0’ means invalid, ‘1’ valid. The producer
sets this bit to ‘1’ in every entry it enqueues, the consumer has to reset this bit to ‘0’ after it

Upper bound

Lower bound

Write pointer at queue tail

Read pointer at queue head

Producer writes

Consumer reads

Queue

Valid entries

Enqeue:
if ((tail +1) mod queuesize != head)
{
 enqueue message at tail
 tail = (tail + 1) mod queuesize
}

Dequeue:
if (tail != head)
{
 dequeue message from head
 head = (head + 1) mod queuesize
}

COMMUNICATION IN PARALLEL COMPUTERS 29
has consumed the entry. In this scheme, the consumer does not need to observe the write
pointer at all. The drawback of this approach is that the consumer has to write to the queue
entry, causing additional memory traffic. Sense reverse avoids this problem by changing
the meaning of the sense reverse bit for every pass through the queue, so that the bits in the
entries do not have to be changed.
A general drawback of software-based valid bits is that they consume entry payload. This
may not be a major problem if the queue entries are control information, but it may be a
severe limitation if queue entries contain payload data.
Hardware-interpreted valid bits have been implemented for example in the Cray T3E (see
Section 2.6.2 on page 60). The advantage of hardware-interpreted bits is that they allow
advanced notification mechanisms, as explained in the next paragraphs. Also, they do not
reduce the payload that can be used by software.

Figure 2-9. Queue synchronization design space

Process Notification (see Figure 2-10). A process has to be notified that a queue entry has
been added by a device, and thus should check queue pointers or valid bits. Most devices
use interrupts for signaling to the processor. However, today’s interrupt mechanisms only
signal that something happened, they do not carry any information about what happened in
a device. Interrupts are signaled to a processor, which usually calls the interrupt handler of
the operating system or the device driver. Thus, interrupt signaling involves a much higher
latency than polling mechanisms and is less useful for tightly coupled coprocessors.
In the polling scheme, a process is continuously reading on a synchronizing data structure,
as a queue pointer for example, to detect a change. The downside of this method is that the
process occupies processor resources, and may cause traffic on the path between processor
and device. Another option is to suspend the execution of the thread until a change

queue synchronization

pointers lazy
pointers

valid bits

hardware software
interpreted interpreted

COMMUNICATION IN PARALLEL COMPUTERS30
occurred. In the Cray T3E, a load to a memory location whose hardware valid bit is ‘0’
stalls, thus stalling the process. However, the processor is blocked by the process. SMT pro-
cessors as the Sun T2 (see Section 2.6.1) or HEP [32] avoid this blocking, as the processor
resources are still available for the other threads running on the processor.

Figure 2-10. Consumer process notification design space

The ATOLL NIC [26] [29] introduced a mechanism to mirror device registers into main
memory, so that a process can access those instead of the real device registers. Coherence
is maintained by updating the main memory image, called replicator page, periodically. The
main advantage of this method is that a polling process will only access the cache instead
of continuously generating I/O traffic. A very crucial issue is the update frequency. A low
frequency increases the latency until a process gets hold of a value change of a device reg-
ister. A high frequency in the best case has the same latency as a PIO access, but will gen-
erate unnecessary bus traffic.

2.3.2 Device Virtualization
Virtualized devices allow user-space access to the device for multiple processes at the same
time. Three major challenges have to be solved:
• How is the context of a process, i.e. status registers and queues handled, and where is

the home of these data structures?
• How can requests from processes be controlled so that they do not overflow the device?
• How can the device reliably protect processes from each other?

consumer process notification

active passive

polling
interrupts

process

direct, as e.g.

process

in multithreaded
architectures

COMMUNICATION IN PARALLEL COMPUTERS 31
If a virtualized device supports a large number of contexts, the corresponding data struc-
tures cannot efficiently be held on the device. A solution to this is to make main memory to
the home of all context information. The device caches these contexts.
At the same time, it must be ensured that device buffers do not overflow with requests from
different processes. To allow processes to determine whether they can submit a request to
the device, an submission of such a request must be an atomic operation as read-modify-
write. Many systems do not support these operations on the I/O bus. A conditional store
buffer [124][120] is an alternative to implement an atomic access to buffers on a virtualized
device. Information about the request is encoded in the address bits of a read request to
device I/O space. The device answers with a read response, which contains information
whether the request insertion into the buffer was successful or not.

Figure 2-11. Address decoding for a read request to a conditional store buffer in Extoll [121]

The requesting process can be identified if a process or context ID is encoded in the read
request as well. Processes are protected from each other if only that memory-mapped I/O
space is mapped into process memory that corresponds to the assigned process ID. An
example for such an encoding is the one used in Extoll, as shown in Figure 2-11. It uses 16
bit of the address to decode the virtual process identifier (VPID), and additional 12 bit to
decode the command which should be enqueued.
A more detailed description of these problems and possible solutions in the context of
Extoll is given in [121].

COMMUNICATION IN PARALLEL COMPUTERS32
2.4 Cache Coherence for Shared Memory Systems
The most important aspect of shared memory systems is the single address space view. A
differentiation of the memory access models UMA, NUMA and COMA has already been
performed in Section 2.2.1. Other important aspects, shown in Figure 2-12, will be
described in the following sections.

Figure 2-12. Design space of shared memory computers

A key point is the memory consistency model of a system. The memory consistency model
defines how operations on memory that are performed by one processor in a shared memory
system affect the memory as seen by the other processors in the system. The consistency
model requires some form of serialization of simultaneous memory requests to the same
address.
Processors in shared memory systems usually have private caches. If a processor modifies
a cached line, a mechanism is required that keeps these caches coherent. These aspects will
be analyzed in detail in the next sections.
Another important criterion is the topology of the interconnect between processor caches
and memory. In principle, any type of interconnection network may be used. Bus-based
interconnection networks have been very common in the past. Very small scale system may
use a single bus as interconnect, while larger systems may use multiple parallel or hierar-
chical buses, as for example in the NEC AzuzA [98] and Sun’s XDBus architecture [14].
Broadcast-based cache coherence protocols can be implemented on buses easily. However,
both broadcast protocols as well as busses generally do not scale well. In contrast, the scal-
ability of switched interconnection networks is much better. Today, there is a clear trend
towards direct networks of NUMA nodes, as depicted in Figure 2-13.

shared memory computers

single address space

UMA, NUMA, COMA

switched

interconnect

bus

cache coherence
memory access

see 2.2.1

protocol

see 2.4.5

network
hierarchical

serialization

see 2.4.2, see 2.4.1

memory
consistencytopology

2.4.3 and 2.4.4

COMMUNICATION IN PARALLEL COMPUTERS 33
Hierarchical combinations of different interconnection networks are possible as well. For
example, the Dash [97] shared memory computer connects clusters of 4 processors with a
bus, while the clusters are interconnected using a 2D torus direct network.

Figure 2-13. Common topologies for small scale shared memory computers

2.4.1 Consistency Models for Shared Memory
In order to develop parallel applications for shared memory systems, programmers need a
solid idea of how memory behaves with respect to reads and writes to memory addresses.
The memory consistency model of a system is the set of rules that a system employs on
memory accesses.
Strict consistency is the most stringent model of memory consistency. It requires that every
read or write must be globally visible before any other read or write can be issued. Thus, it
imposes a static ordering of memory accesses of all processors. Such a system would not
require any other mechanism for synchronization, as it is synchronous by compile time.
However, is not applicable to multiprocessor systems at all, as they gain from issuing and
executing operations independently of each other.
A realistic model of consistency in multiprocessor systems is the model of sequential con-
sistency. The original definition from Lamport [55] is: “A system is sequentially consistent
if the result of any execution is the same if any operations of all the processors were exe-
cuted in some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.” A more handy definition has been
derived by [56]:

Processor

Memory

BUS

Cache

Processor

Cache

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Processor

Cache

X

Memory

(a) single bus-based UMA (b) direct network NUMA

COMMUNICATION IN PARALLEL COMPUTERS34
“A system is sequentially coherent if the following conditions are true:
(A) All processors issue memory accesses in program order.
(B) If a processor issues a STORE, then the processor may not issue another memory access
until the value written has become accessible by all other processors.
(C) If a processor issues a LOAD, then the processor may not issue another memory access
until the value which is to be read has both been bound to the LOAD operation and become
accessible to all other processors.”
The classical consistency model is sequential consistency. However, modern processors
may issue instructions out of order and speculatively, which suggests the same for read
operations. Section 3.1.2 shows that the standard memory type of AMD Opteron processors
does not perform any ordering among reads. Reads may also pass writes if they do not go
to the same address. Systems with consistency models that are weaker than the sequential
consistency model are called relaxed consistency models. A summary of possible relax-
ations and their implementations is given in [57]. A commonality between all those optimi-
zations is that they do not reorder reads and writes that go to the same destination.
In the weakest consistency models, no ordering constraints at all are applied to memory
operations per se. Ordering and thus consistency can only be maintained using synchroni-
zation primitives as fences. One of those models is weak consistency [58], an improved def-
inition is given by Gharachorloo [59]:
“(A) before an ordinary load or store access is allowed to perform with respect to any other
processor, all previous synchronization accesses must be performed, and
(B) before a synchronization access is allowed to perform with respect to any other proces-
sor, all previous ordinary load and store accesses must be performed, and
(C) synchronization accesses are sequentially consistent with respect to one another.”
Obviously, weak consistency can emulate sequential consistency by performing an explicit
synchronization after every memory access. The idea of weak consistency is nevertheless
to perform synchronization on a coarse grain level. Thus, it is well suited for systems were
a fine grain synchronization is to expensive, as in SANs or LANs. For example,
MPI[73][74] uses a weak consistency model for its RDMA protocol.
Transactional memory coherence and consistency [117][118] is an approach to raise the
level on which consistency is performed from instructions to transactions. A transaction is
a block of instructions that is executed and completes as an atomic unit. Among transac-
tions, sequential consistency is maintained. Only if a transaction completes, the changes it
made to memory are made globally visible by broadcasting these changes to all other pro-
cessors. If another processor detects a change of a memory location that is used by that pro-

COMMUNICATION IN PARALLEL COMPUTERS 35
cessor, it must roll back and reprocess the current transaction. A transaction may only
complete if all previous transactions completed. Although the idea of hardware-based trans-
actional memory systems is relatively old, intense research only started within the last
years.

2.4.2 Cache Coherence Protocols
In a shared memory system, multiple caches may hold copies of the same memory location
at the same time. A basic requirement of all consistency models is that caches do not hold
different values for the same memory location at the same time. The point in time at which
this is guaranteed for a memory operation is called the commit point of the operation. The
mechanism that ensures that is called the cache coherence protocol.

Figure 2-14. Design space of cache coherence protocols

Invalidate vs. Update protocols. Inconsistencies between caches may occur only when at
least one processor writes to a memory location, either into its own cache or back to main
memory. If the same location is cached in other caches, a cache coherence protocol must
ensure that these caches do not keep the old value of the memory location. There are two

cache coherence protocols

cache to cache treatment of

none
(writeback)

modified

transfers

cachelines
all cached
cachelines

protocol
implementation

software based hardware based

broadcast hybrid/ directory
based

protocol type

based hierarchical

conflicting copies

invalidate update

COMMUNICATION IN PARALLEL COMPUTERS36
possible ways to ensure this: One solution is that all other caches have to invalidate their
copies before a processor is allowed to write to a memory location. The mechanism how
this is done depends on the cache coherence protocol. One possibility is to explicitly send
invalidation messages to all other caches that may have the memory location cached.
Instead of invalidating other cache entries, these entries might as well be updated with the
new data. The advantage of this method is that a subsequent read from the remote proces-
sors will result in cache hit instead of a miss. In a bus-based system, this is can be imple-
mented easily, as all caches snoop the bus and can copy the updated value into their caches.
However, the scalability of other topologies would be smashed if these updates would have
to be broadcast to every node. Update protocols have a second problem: a processor does
not write cachelines, but words of a much finer granularity, as for example 32bit. Theoret-
ically, every such small grain writes would have to trigger an update of the cacheline. A
write-buffer mechanism could be used to perform updates at a cacheline granularity.
For these reasons, basically all cache coherence protocols are invalidation-based protocols.
Mukherjee [112] started with an analysis of how prediction mechanisms may be used to
control update mechanisms. This research is being continued by other groups [114] [115]
[116]. As prediction is speculative, all such protocols are based on invalidation-based pro-
tocols.
CC protocols and memory coherence. A processor that maintains sequential ordering
among writes can only execute a write when the previous write has committed, i.e. it has
been observed globally. A necessary condition, and usually also a sufficient one, is that all
caches have seen the write. Thus, the cache coherence protocol must acknowledge that a
memory operation has been seen by all caches to the requesting cache. Only then a cache is
capable of putting the respective memory coherence model into effect.
Another requirement of memory consistency models is that a write transaction on the coher-
ent interconnect appears to be an atomic operation. To be more precise, it is sufficient for
the sequential consistency model and all derived models of consistency that operations to
the same location appear to be atomic. Writes to different memory locations from different
processors do not have to appear atomic among each other.
If operations on the same memory location were not atomic, two writes from different pro-
cessors to the same memory location at the same time could cause an inconsistent state of
the respective cachelines. In an update-based cache coherence scheme, this could result in
different caches holding different values for the same memory location at the same time. In
an invalidation-based protocol, it could result in the invalidation of both writes, thus rees-
tablishing the previous value of the memory location, which is not legal either. As a write
operation may cause communication among multiple caches, the memory controller and a

COMMUNICATION IN PARALLEL COMPUTERS 37
directory, it is by no means a true atomic access. Chapter 2.4.5 will show how this problem
may be resolved.
Cache to cache transfers. If a processor requests a memory location that is cached as mod-
ified in another cache, this modified value has to be transported to the requester. One pos-
sible solution is a write-back of the dirty line back to memory, so that the memory can
satisfy the read request. A faster solution is the direct cache-to-cache transfer of the modi-
fied line that is started by the probe. Depending on the protocol, an additional write-back
may also be triggered.
Another possible improvement is a direct cache to cache transfer of unmodified cachelines.
The reason to do so is that a remote cache can access data much faster than the memory
controller that has to access slow DRAM memory. On the other hand, there is no guarantee
at all that the requested memory location can be delivered by a cache.
To achieve the lowest memory access latency in all cases, cache coherence protocols that
support cache to cache transfers may request the memory location from the physical main
memory at the same time when sending out the probes. As it is not known if the DRAM
access is required, and if it contains the recent value at all, this memory access can be seen
as a speculative memory access. In case a cache could deliver the data, a special memory
cancel packet may be send to the memory controller to stop the memory access. In contrast,
a non-speculative memory access is given if the memory access occurs after it has been
found out that remote caches cannot satisfy the request. This can be determined by the probe
responses in broadcast based protocols, or by a directory lookup in directory based proto-
cols.

2.4.3 Broadcast Protocols
Broadcast-based cache coherence protocols are a natural choice for shared memory com-
puters that are interconnected with a single bus. Write access to a bus is granted to at most
one bus master at a time, while all other endpoints on the bus listen to the transaction of the
bus master. This is precisely a broadcast communication pattern.
In such a bus-based system, a coherent cache has to snoop on all memory requests on the
bus. The cache has to check whether it caches the same memory location. In the case of a
possible coherence conflict, the cache has to respond on the bus within a certain timeframe
to resolve this problem. Thus, broadcast-based cache coherence protocols in a bus based
system are also called snoopy protocols.
In all other topologies than a bus, a broadcast must be implemented explicitly by sending
broadcast messages to every cache. Due to network contention, it is difficult to guarantee
that all caches can respond to a broadcast within a fixed, short period of time. Therefore,

COMMUNICATION IN PARALLEL COMPUTERS38
every cache has to send a response, no matter if it detects a conflict or not. The requesting
cache has to collect all responses before it may proceed.

Figure 2-15. Influence of the interconnect topology on broadcast based protocols

The most basic cache coherence protocol would allow a memory location to be cached by
at most one cache at the same time. The most significant problem of this protocol is that
processes or threads that run on different processors in a shared memory system often share
read-only memory, as for example program code. In this case, the simple protocol would
be highly inefficient, as the ownership of the cacheline would have to toggle with every
access in case more than two processors access the cacheline at the same time.
Thus, the simplest protocol that has been used in systems allows shared reading. It is imple-
mented in the MSI protocol, named after the three states in which a cache entry may be:
• Invalid: The cache entry is not valid.
• Shared: The cache entry is valid; the respective cacheline may be shared with other

processors. The cacheline is unmodified, i.e. it contains the same data as the corre-
sponding memory location. Before writing to a cacheline in the shared state, other
entries in other caches have to be invalidated.

• Modified: The cacheline contains data that has been written by the processor. The cor-
responding memory location has not been updated yet and therefore does not hold the
actual value. The cacheline is exclusively held by this cache, therefore read and write
operations can be performed on this line without notification of the other processors. If
the cache decides to evict the cacheline, it has to be written back to memory.

The MESI protocol improves the MSI protocol by adding the exclusive state. It is one of the
most popular protocols. For example, it is implemented in Intel’s IA-32 and IA-64 proces-
sors [70]. The exclusive state is used to indicate that the respective cacheline is exclusively
cached by the processor, but, in contrast to the modified state, unmodified. This reduces

interconnect
topology

bus other

snoopy explicit
protocol broadcasting

COMMUNICATION IN PARALLEL COMPUTERS 39
snooping or probing traffic for data that is not shared between caches: a processor can write
to a cacheline that is in exclusive state due to a previous read, and thus silently change the
state to modified without notifying other caches. In order to decide whether a cacheline
should be allocated as exclusive or as shared upon a read miss, different read or prefetch
instructions may be supported by the processors. A read_exclusive, sometimes also called
read_with_intend_to_modify, may be used instead of a “standard” read if the processor
intends to write to the cacheline soon. A good choice for the standard read is to allocate the
cacheline in the shared state if others share it, and otherwise on exclusive state. A
read_shared may also be beneficial in some systems.
These instructions have their equivalent in the bus or interconnect protocol:
• A read_exclusive will be issued for the respective instruction, or for a write miss.
• A read_shared will be issued for the respective instruction, or for a read miss in the

instruction cache.
• For all other read misses, a standard read will be issued.
The MERSI protocol, which is implemented in the IBM PowerPC 970 [72], is another
improvement to the MESI protocol. Upon a read request, it allows to transfer a shared,
unmodified cacheline directly between caches. The motivation to do so is that a cache’s
access time is significantly lower than the one of main memory DRAM. For not wasting
bandwidth, the MERSI protocol ensures that at most one cache is delivering a cacheline in
such a transfer, even if it is cached in multiple caches. The most recent reader of a shared
cacheline will hold the line not in the shared state, but in the recent state. Only the cache
that has the line in the recent state may forward the cacheline to the requester, after that, it
has to change the state to shared. The reason why the most recent reader of the cacheline is
the one that has to forward the data is the assumption of temporal locality: the most recent
reader is also assumed to evict the cacheline after the caches that read the line before. If the
most recent reader of the cacheline evicts the line, a subsequent read miss from any proces-
sor to the same address will have to fetch the data from memory, even though the cacheline
may be present in the shared state in some caches.
In the following, two other improvements of the MESI protocol will be described in detail,
the MOESI and the MESIF protocols.

2.4.3.1 MOESI
MOESI is an extension of the MESI protocol, and being used by AMD in their AMD64
architecture processors [20]. The five states of a cache entry are modified, owned, exclusive,
shared, and invalid.

COMMUNICATION IN PARALLEL COMPUTERS40
The global state of a memory location in MESI corresponds substantially with the states of
the respective cache entries. The global states of MESI, which also exist in MOESI, are:
• invalid, i.e. not present in any cache,
• modified exclusive, i.e. present in exactly one cache in the modified cache entry state,
• unmodified shared, i.e. present in one or more caches in the shared cache entry state,
• unmodified exclusive, i.e. present in exactly one cache in the exclusive cache entry

state.
MOESI adds a new global state, which does not correspond directly with the cache entry
state, but with a combination of two cache entry states:
• modified shared. The location is present in exactly one cache in the owned state, and in

any number of caches in the shared state at the same time.

Figure 2-16. MOESI state diagram for a requesting cache

M

S

I

E

Read Hit

Read Hit,
Write Hit

Read Hit

Exclusive Read Miss1/

Write Hit

Write Miss

Shared Read Miss2/

Write Hit

O

Read Hit

Write Hit

shared Snoop response from
other processors

1: The cacheline is fetched from memory.
2: The cacheline is fetched from memory if it is
shared unmodified, and send from another cache
if it is shared modified.

Read as exclusive Miss

Read as shared Miss

COMMUNICATION IN PARALLEL COMPUTERS 41
So, MOESI can share a cacheline among caches that is modified. In contrast to the MESI,
protocol, a modified cacheline does not need to be written back to memory in order to share
the memory location. The owned state has been introduced to mark exactly one cache entry
that the respective cache it is the one who must forward the line in the case of subsequent
read request from other nodes. Also, it must write the line back to memory if the cacheline
is evicted.

Figure 2-17. MOESI State diagram for a snooping cache

The description of the MOESI protocol from the requester’s viewpoint, as depicted in
Figure 2-16, is as follows:
• Read Hit: No coherency actions have to be taken.
• Read Miss: if there are other caches in the states exclusive, shared or modified, the

cacheline goes from invalid to shared, otherwise it goes to exclusive. If another cache is
in exclusive, this other cache goes to shared too; if another cache is in modified, this
other cache goes to owned.

M

S

I

E

snooped Read(E)

Snooped Read(S)

snooped Read(E)

snooped Read(S)

snooped Read(E)

snooped Read(S)

O

snooped Read(S)

snooped Read(E)

writeback

Cacheline has to be writ-
ten back to memory or to
the requesting cache

writeback

writeback

forward
Cacheline has to be for-
warded to requesting
cache

forward

forward

COMMUNICATION IN PARALLEL COMPUTERS42
• Write Hit: The master’s new state is modified. If the cacheline has been in exclusive or
modified, no coherency bus transactions have to be done. If the cacheline has been in
shared or owned, all other caches in state shared have to be invalidated.

• Write Miss: The cacheline goes from invalid to modified. All other caches holding this
line go to invalid.

Figure 2-17 shows the state transitions of snooping caches.

2.4.3.2 MESIF
The MESIF protocol has been suggested by Intel [62]. Basically, it is an improvement of
the MERSI protocol. MERSI allowed only the forwarding of unmodified cachelines.
MESIF allows the forwarding of both modified and unmodified data.

Figure 2-18. MESIF state diagram for a requesting cache

M

F

I

E

Read Hit

Read Hit,
Write Hit

Read Hit

Exclusive Read Miss1

Write Hit

Write Miss

Shared Read Miss2/

Write Hit

S

Read Hit

Write Hit

shared Snoop response from
other processors

1: The cacheline is fetched from memory.
2: The cacheline is fetched from memory if it is
shared unmodified, and send from another
cache if it is shared modified.

Read as exclusive Mi

Read as shared Miss

COMMUNICATION IN PARALLEL COMPUTERS 43
In the case of forwarding a modified cacheline, the line is simultaneously written back to
memory, so that MESIF does not have to distinguish between modified shared and unmod-
ified shared: there is only the latter global state. In all other respects, the F state behaves
exactly like the R state: the most recent requesting cache has the cache entry in F state, all
other sharers in S.

Figure 2-19. MESIF state diagram for a snooping cache

The description of the MESIF protocol from the requester’s viewpoint, as depicted in
Figure 2-18, is as follows:
• Read Hit: No coherency actions have to be taken.
• Read Miss: if there are other caches holding the line in any state, the cacheline goes

from invalid to forward, otherwise it goes to exclusive. If another cache is in exclusive,
this other cache goes to shared. If another cache is in forward, this other cache goes to
shared, and forwards the line to the requesting cache. The same applies if another cache
is in modified, additionally, the cacheline is written back to memory.

M

S

I

E

snooped Read(E)

Snooped Read(S)

snooped Read(E)

snooped Read(E)

snooped Read(S)

F

snooped Read(E)

writeback
Cacheline has to be writ-
ten back to memory

forward
Cacheline has to be for-
warded to requesting
cache

forward

snooped Read(S)
forward

writeback

forward

forward

forward

snooped Read(S)
forward

COMMUNICATION IN PARALLEL COMPUTERS44
• Write Hit: The requester’s new state is modified. If the cacheline has been in exclusive
or modified, no coherency bus transactions have to be done. If the cacheline has been in
shared or forward, all other caches holding the same cacheline have to be invalidated.

• Write Miss: The cacheline goes from invalid to modified. All other caches holding this
line go to invalid.

Figure 2-19 shows the state transitions of snooping caches. It can clearly be seen that the
idea of the protocol is to forward data directly from cache to cache if possible. On the other
hand, it ensures that at most one processor is forwarding data
Hierarchical Buses. The scalability of a bus is very limited. As the available bandwidth of
a bus is constant, the per-processor bandwidth decreases with a larger number of proces-
sors. Hierarchical snoopy buses are a better scalable solution, but only if the traffic on the
individual bus segments of the hierarchy can be reduced. The two-level hierarchy of the
NEC AzuzA [98] is an example of such a system (see Figure 2-20). The addresses of all
memory requests on the local buses are broadcast on the system address bus. The system
address controllers (SAC) listen to all these addresses. The SAC incorporates a snoop filter,
so that snoop requests are only forwarded to the local bus if there is any chance that one of
the processor’s caches holds the requested memory block.

Figure 2-20. Hierarchical snoopy-bus NUMA system

Address network

Data crossbar chip

SAC

C
P

U

C
P

U

C
P

U

C
P

U

SAC

C
P

U

C
P

U

C
P

U

C
P

U

SAC

C
P

U

C
P

U

C
P

U

C
P

U

SAC

C
P

U

C
P

U

C
P

U

C
P

U

M
em

M
em

M
em

M
em

COMMUNICATION IN PARALLEL COMPUTERS 45
2.4.4 Directory-Based Protocols
Directory-based cache coherence has been proposed by Censier & Feautrier in 1978 [65],
even before bus based coherence was introduced. In such a protocol, a directory keeps track
of the state of memory blocks. The directory contains the state of every block that is cur-
rently being cached, and information about which processors have copies of that memory
block in their caches, and in which state it is.
Generally, directory lookups replace broastcasts. For example, a read_exclusive request
from a cache upon a cache miss will cause a lookup. If the lookup shows that no other cache
holds a copy of the memory location, the requester can allocate the cache entry in the exclu-
sive state. If the directory entry shows that other caches hold the same location, invalidation
messages will be send to those caches. If another cache holds a modified copy of the cach-
eline, it must also be notified to forward this line.

Figure 2-21. Design space of directory cache coherence protocols

The design space of directory cache coherence protocols is shown in Figure 2-21.
The set of states. Theoretically, directory protocols can work if the state of a memory loca-
tion is held in the directory only. However, this would mean that a cache has to perform an
directory access every time it wants to change the state. Therefore, the state is included in
the cache entries as well. Generally, it must be ensured that directory and cache entry state
are consistent. Some inconsistency may be allowed: A cache entry may transition from the
exclusive state to a modified state without requesting the update from the directory, which
would involve communication latency in the memory access. As well, a cache may evict a

directory protocols

organizationlocation entry
type

fully dynamic

switch level

granularityset of
states

centralizeddistributed

full directorycache only
=>sparse
directory

mapped pointer
allocation

at directory

directory
caching

none
controller

limited
pointer dir.

COMMUNICATION IN PARALLEL COMPUTERS46
cacheline in a non-modified state without updating the directory. This reduces traffic for
cache evictions. On the other hand, it increases traffic in the case another cache wants to
acquire the same memory location later on, as an invalidation has to be sent to the first
cache. Usually, only a small fraction of the memory locations that a processor caches is
shared and written to by processes, so that this strategy usually leads to an overall decrease
of traffic
The MESI state set is well suited for the use with directories and has frequently been imple-
mented, for example in the Dash system [97]. If the protocol allows caches to silently tran-
sition from E to M, the directory does not need to distinguish between both states, but only
knows the MSI state set.
Instead of the MESI state set, the MOESI state set might be used as well as a basis for direc-
tory-based protocols. For cache to cache forwarding of unmodified cache lines, extensions
like MERSI and MESIF are not required. A node that should forward a cacheline could just
be selected from the list of nodes in the directory. A variety of selection criteria could be
used. For example, the most recent requester could be chosen, if it is marked in the directory
entry. Another criterion could be to select a cache that is close to the original requester.
Location. As there is exactly one directory entry for every (cached) memory block, the
directory should be placed at the respective memory controller. Most shared-memory mul-
tiprocessors use distributed memory. In such an architecture, distributed directories should
be used: to every physical memory component, a directory is attached that contains the
directory information regarding the memory component.

Figure 2-22. Directory contents in a full mapped directory. There is a bit for every cache, stating
whether the memory block is cached by that cache (bit=1) or not (bit =0)

Data
Data
Data
Data

Data

Memory Blocks Directory Contents

S 1 0 10 0

n bit entries for n caches

memory block state {M,S,I}

COMMUNICATION IN PARALLEL COMPUTERS 47
Organization of Directory Entries. Depending on the way this information is held by the
directory, directories can be divided into three classes:
• Fully-Mapped Directories [65]: in a directory of this type, the directory information for

a memory block has a bit for every processor cache in the system (see Figure 2-22).
This is an inexpensive and fast solution for small scale multiprocessor systems. For
systems with a higher number of processors, the directory becomes quite large. Another
drawback is that the maximum number of processors is determined by the directory
structure. As a result, full mapped directories do not scale well.

• Limited (Pointer) Directories [68] are similar to full-mapped directories. They differ in
so far that they have entries for a fixed number n of caches, which may be smaller than
the total number of caches in the system. Therefore bit flags are not unique and have to
be replaced with pointers to caches. For example, the directory might support 128 pro-
cessor caches, which would require 7 bit pointers. The directory might now have 8
pointer entries, resulting in a memory use of 7*8=48 bit to store the pointers, compared
to 128 bit for a full-mapped directory. In this example, only 8 caches can share a spe-
cific cacheline. If a 9th cache requests to share it too, one of the other caches has to
invalidate the cacheline.
These directories overcome the problem of a directory line getting too large in large
systems. However, they do have a scaling problem too, since the number of caches that
can hold a memory block simultaneously is fixed by the directory line size.

• Dynamic Pointer Allocation Directories [69] work with pointers as well. But instead of
storing them in a fixed number of fields, they are stored in a dynamic list. The space for
storing list elements can be shared among all memory block entries. There is more
overhead both in the directory logic and the directory memory space, although memory
space is much more efficiently used since it can be shared among all memory blocks.
This is the most flexible model.

Organization of the directory. A full directory implementation has one entry for every
memory block. A scalable solution would be to keep the directory in main memory. On the
other hand, the access to the directory is timing critical. Thus, the directory should be imple-
mented in a fast memory technology, and be implemented on the same chip as the memory
controller. This limits the scalability of the memory size of a node.
An idea to decrease the size of a full directory is to increase the memory block size of direc-
tories to a multiple of the cacheline size. However, the larger the memory block size
becomes, the more drastic is the effect of false sharing: if one processor writes to a memory
location, all cached copies of the memory block will have to be invalidated.

COMMUNICATION IN PARALLEL COMPUTERS48
In contrast, a sparse directory [66] keeps directory information only for a part of the
memory blocks. Due to the limited size of processor caches, only a small fraction of main
memory is cached at the same point in time. It is sufficient to have directory entries for those
memory blocks that are currently cached. A sparse directory is build like a cache without a
back-up store. Every entry in the cache consists of an address tag and the directory entry
itself. If a directory entry does not exist for a memory location, the memory block is
uncached. If a new entry is allocated, an old entry has to be removed, which is selected by
a cache replacement mechanism as in any other cache. However, a replacement means that
the respective cachelines have to be invalided. Also, the cacheline may have to be written
back if it is dirty.
For a system with a central directory, the number of entries in the directory must be at least
the same as the accumulated number of entries in the system’s caches. This theoretically
limits the scalability of the number of processors in the system, but a central directory is
very limited in its scalability anyway.
Systems with distributed directories have the potential to scale better. If every distributed
part of the directory would have to be able to hold the status of all cache entries of all in the
system, this would destroy the scalability. Thus, the size of the distributed directories must
be fixed. This is not a problem in itself: if a system is scaled up in a smart fashion by increas-
ing the number of processors, memory controllers and (distributed) directories, the number
of memory accesses per memory controller should not increase significantly. In particular,
the number of memory blocks per directory that is cached does not necessarily increase.
While a sparse directory significantly reduces the number of entries that have to be stored,
the number of bits to store per entry increases, as a tag has to be stored with every entry. An
example of a central, sparse directory is the Intel Xeon architecture (see Section 2.5.1).
Caching. A full directory that is implemented in slow memory may be cached directly at
the directory controller [67]. Another way to speed up directory lookups upon a memory
operation of a processor would be to cache directory entries close to the processor. This is
difficult, as such directory caches must be kept coherent with the main directory. An inter-
esting approach are switch directories [119], which are used to speed up cache to cache
transfers. In a directly interconnected NUMA architecture, every switch has a small direc-
tory. The state of the directory is maintained by keeping track of memory requests and
responses that cross the switch. Requests from caches are sent to the main directory. If there
is a hit in any of the switch directories in the path, this directory may redirect the request to
a cache that holds the cacheline, so that a cache-to-cache transfer of this cacheline is sped
up.

COMMUNICATION IN PARALLEL COMPUTERS 49
2.4.5 Serialization of Conflicting Accesses
Cache coherence protocols as presented above ensure that caches can be kept consistent.
They do that by giving only one cache write access to the same memory location at a time,
and invalidating cached copies that hold old values of a memory location. Also, these pro-
tocols support sequential consistency, if every component acknowledges invalidation
requests and a processor waits for arrival of all those acknowledgements before issuing sub-
sequent memory accesses. However, one problem has not been discussed yet: what happens
if two or more processors access the same memory location at the same time?

Figure 2-23. Conflict caused by simultaneous access to the same memory location

Assume for example a 2-node direct network system, using a MESI cache coherence pro-
tocol. Both processors have the same memory location L not cached yet. If one processor
P0 decides to obtain an exclusive copy, it sends an invalidation message to P1. Upon the
receipt of the acknowledgement, the cache of P0 gets its exclusive copy. However it might
also be the case that both processors decide to obtain an exclusive copy of L at about the
same time, as shown in Figure 2-23. P0 sends an invalidation request at t=0, P1 at t=1, so
that both requests overlap due to the latency of the network. Both processes will have to
acknowledge the requests immediately in order to avoid a deadlock. If both processors con-

Processor

Cache

X

Memory

Processor

Cache

X

Memory

P0 P1

L: i L: iInv.

Inv.

Ack.

Ack.
L: e

L: e

t=0

t=1

t=2

t=3

t=4

t=5

COMMUNICATION IN PARALLEL COMPUTERS50
tinue to pursue their requests, both will have an exclusive copy of the request at the same
time, which is an inconsistent state.
Conflicts may always occur when at least one of the simultaneous requests tries to acquire
a cacheline in exclusive state. Depending on the protocol and the implementation details,
conflicts may also occur in other cases.

There are two very different approaches how such conflicting accesses can be treated. One
solution introduces a centralized serialization of all requests to the same memory location.
A request may only proceed beyond the serialization point if all previous requests to the
same location finished, i.e. have been globally observed. The other possible solution is to
allow such conflicting accesses, but to resolve conflicts if they occur. Figure 2-24 shows an
overview about which strategy may be used in which system.
Conflict Avoidance. In bus-based systems, a central serialization is intrinsic to the system.
Even if memory accesses are issued at the very same time by different processors, they will
have to compete for bus arbitration. Depending on the arbitration policy, one of the requests
will “win” and go first. The other processor’s cache snoops on the address of this request,
and thus can determine that is not allowed to issue the request until the request for the first
processor has completed.
Other network topologies do not have such a serializing characteristic. A solution to this
problem is a central instance that every request to a memory location has to pass. It keeps
track of memory operations that did not commit yet. If an operation to the same memory
location arrives, it is queued and will only be handled if the previous request committed.
In directory-based system, a request from a cache will always go to the respective directory
first. Thus, the directory is a point where serialization of accesses to the same memory loca-
tion can be performed by buffering incoming requests until all previous requests to the same
memory location have completed. If the directory is distributed throughout the system, the
ordering point is distributed just the same way.

COMMUNICATION IN PARALLEL COMPUTERS 51
Figure 2-24. Treatment of conflicting accesses

In systems that implement an explicit broadcast, ordering can be done the same way at the
memory controller. In MOESI, a cache does not broadcast invalidations directly to other
caches. Instead, it sends a request to the memory controller. The memory controller queues
these requests, and issues the invalidation requests only if there is no active request to the
same memory location. Acknowledgements may be sent to the original requester directly,
in order to reduce the waiting time for this processor. In this case, the requester has to notify
the memory controller that the request completed. For example, AMD Opteron processors
use this method.

protocol type

broadcast based directory based

direct network

topology

bus

conflict treatment

explicit serialization of conflict resolution

snooping-based

conflicting accesses

explicit serialization of
conflicting accesses

serialization

abort and retry
conflicting access

graceful
resolution

resolution type

COMMUNICATION IN PARALLEL COMPUTERS52
Figure 2-25 (a) and (b) show the respective flow of packets. An important characterization
criterion for these protocols is the maximum number of hops that have to be taken on the
path from the processor’s request until the processor gets all required replies. The serializa-
tion based broadcast protocol requires three hops to be taken. A directory based protocol
will also require three hops if it has to send directed probes to caches. Otherwise, it is a two
hop protocol.
Conflict Resolution. Another strategy is to allow conflicts, but to resolve them when they
occur. The idea is to speed up accesses for which a conflict does not occur. The resolution
of a conflict, however, will usually be more expensive in terms of latency. So conflict res-
olution may offer benefits over conflict avoidance if conflicts occur only for a small fraction
of all memory accesses.
Figure 2-25 (c) shows how a read access without conflicts may look like. All requests can
be sent out in parallel, without having to take an extra hop to the memory controller. This
may reduce latency compared to the serializing solution. If a conflict occurs, it will be
detected from at least one of the conflicting requesters. A conflict occurs if the requester
gets probes from another cache for the same memory location for which an own request is
currently active. After it has been detected, there are different ways how a conflict may be
resolved. In the decentralized solution, every processor that sees a conflict could for exam-
ple abort its memory request, and start the request over again after a short waiting period.
This mechanism is similar to the store conditional instruction (STWCX) of the PowerPC
processor architecture [71]. A conditional store is executed only if since the last load and
reserve instruction (LWARX), requests to the same address have not been observed on the
processor bus. However, in the case of cache conflict resolution, aborts and restarts of
memory request should be done in hardware, transparently to the software. If both request-
ers observed the conflict, they will both restart their requests. In order to avoid these
requests to collide again, they should not restart the request immediately, but e.g. with a
random delay.
In the case of the MESI protocol, this method works as described above. Forwarding pro-
tocols as MOESI are more challenging: a dirty copy of the requested memory block may be
transmitted to the requester that detected a conflict. Thus, the request cannot be simply
aborted. Instead, it must be assured that the dirty copy does not get “lost”, and in particular,
that it reaches the other requester in the conflict, as it may not have detected the conflict and
thus needs the dirty copy.

COMMUNICATION IN PARALLEL COMPUTERS 53
.

Figure 2-25. Transfers for a read_exclusive request for different conflict treatment strategies

Hum et al. [63] propose a mechanism as in Figure 2-25 (d) for the MESIF protocol. Here
the conflict is not resolved by canceling the current request. Instead, every requester reports
the conflict to the other requesters. This assures that all know of the conflict, as it may be
the case that only one detected it. The basic idea is as follows: any node that wants to obtain
a cacheline in an exclusive state must read it using the port_read_invalidate_line (PRIL)
command, even if it has been cached before in the shared state. If the requested memory
block is being cached in a remote cache Cr in a state that allows forwarding, this cache will
forward the line to the first request it received. Thus, one of the requesters is the winner Cw,
which may use the cacheline. The loosing requester Cl will be blocked, as Cr does not
answer any requests to the memory location until Cw acknowledges to Cl that potential con-
flicts have been resolved. Before doing so, Cw will report the conflict to the memory con-

(a) directory-based
Done

DIR/CPU0 DIR/
Read_exclusive

CPU0
Data

(b) broadcast-basedCPU0 MC
Read_exclusive

with serialization and

Invalidation Bcast

CPU0
Done

MC

Data

(c) broadcast-based
with speculative

CPU0

MC
Read_exclusive

Invalidation Bcast

CPU0

Data
memory access

CPU0 MC
Read

Invalidation Bcast

CPU0 CPU0
Data

(d) broadcast-based
with non-speculative
memory access

MC MC

MC

speculative memory
access

COMMUNICATION IN PARALLEL COMPUTERS54
troller, which thus can defer memory requests that might come from Cl. Also, the memory
controller will advise Cw to forward the cacheline to Cl and invalidate it in Cw.
Similarly, if no cache can forward the data, a winner will get a read response from the
memory with the valid data. Again, the memory will advise Cw to forward the cacheline to
Cl. The read request from Cl will not be answered with delivering the data, but with a noti-
fication that Cw will deliver the data.
There is also a variant of this protocol [64], in which the winner is not allowed to use the
data. Instead, it is stored in a buffer. The memory controller then decides about the order in
which the caches are served with the data.

2.5 Introduction to x86 Systems
The market for high-performance processors is dominated by x86-architecture processors
from Intel and AMD. Like a perpetual motion machine, their large market share yields a
good performance to price ratio, which again leads to a large market share.
Intel’s x86 architecture is very conservative: the northbridge is an external chip to the pro-
cessor, the interface is based on a snoopy-bus protocol. On the other hand, Intel has a unique
technological advantage. As a result, Intel can integrate more SRAM memory on chip,
which allows the integration of larger caches as well as the implementation of directories.
AMD’s architecture is different. The integration of the northbridge functionality into the
processor chip, and an efficient, serial HyperTransport protocol between chips allow the
construction of glueless NUMA shared memory systems. Both architectures will be pre-
sented in the following two sections.

2.5.1 Intel Xeon Architecture
The block diagram of a typical Intel Xeon dual processor system is shown in Figure 2-26.
For example, the Bensley platform integrates two Xeon 5000 processors and the 5000x
northbridge chipset. Processor and northbridge are connected over the Intel Front Side Bus
(FSB). Both FSBs are independent buses and connected to a switch in the northbridge. The
FSB consists of a parity protected 64 bit wide data bus, and a 36 bit wide address bus. With
a data rate of up to 1333MHz, the raw bandwidth of the data bus is 10.5 GByte/s. The
address bus has half the data rate, and thus has a peak bandwidth of 3 GByte/s.

COMMUNICATION IN PARALLEL COMPUTERS 55
Figure 2-26. A 2-processor Intel Xeon system

The Bensley platform integrates a coherence directory, called snooping filter, in the north-
bridge chip. The directory holds entries for all memory blocks that are cached in the system,
i.e. it is a sparse directory. The directory has a size of 1 MB, and is organized in two affinity
groups, which each consist of 8 kilo sets that are 16-way each. The pseudo-LRU algorithm
is used as replacement policy. If a new entry is allocated in the directory, it will be allocated
in the affinity group that is assigned to the processor from which the memory request was
issued. Thus, the affinity group implicitly encodes the processor cache that caches the
memory block. This saves one bit per directory entry (see Figure 2-27).
A directory lookup including ECC check is done within one clock cycle. Every lookup is
followed by a write to the directory. Either, a new line is allocated, or the pseudo-LRU bits
are updated. The directory is clocked with 533 MHz, which means that the directory can
perform 267 MLUU (Mega Look-Up Update) Operations per second, which fits to the
incoming request rate of 267 MHz.
The directory can hold information for up to 16 MB of processor cache. To support larger
caches or a larger number of processors, the size of the directory scales with the total

COMMUNICATION IN PARALLEL COMPUTERS56
amount of processor cache in the system. Announced have been the Cranberry Lake plat-
form, which supports 2 Xeon 5000 processors with 24MB cache, and the Caneland plat-
form, supporting 4 Xeon 7000 with 64MB total cache [54].

Figure 2-27. Snoop filter entry format and address partitioning [38]

COMMUNICATION IN PARALLEL COMPUTERS 57
2.5.2 AMD
The AMD Opteron architecture is designed to build up small-scale NUMA systems. It
employs a direct network architecture. Every node integrates processor cores, caches, cHT
routing resources and the northbridge on one single chip, as shown in Figure 2-28.

Figure 2-28. 2nd and 3rd generation AMD Opteron processors

The number of HyperTransport links and processor cores per chip depends of the processor
generation. The third generation Opteron, codenamed Barcelona, supports up to four cores
and four HT links as well. HyperTransport links can be configured to be either coherent
links to connect other processors, or noncoherent links. In this case, the HT link interface
functions as an I/O bridge. An integration of more cores is foreseeable: an 8-core processor,
codenamed Sandtiger, is announced for 2009.
Figure 2-29 shows the topology for an 8-chip system, based on 2nd generation Opterons
that support up to three HT links. As the broadcast-based MOESI coherence protocol sig-
nificantly increases the latency of memory accesses for networks with a larger diameter, 2-
and 4-chip systems prevail. The Opteron system architecture, and in particular the integra-

AMD Dual Opteron processor

memory controller

AMD64
CPU core

Hypertransport

L1 I
cache

L1 D
cache

L2 cache

AMD64
CPU core

L1 I
cache

L1 D
cache

L2 cache

System Request Queue

Crossbar

Memory

AMD Dual Opteron processor

memory controller

AMD64
CPU core

Hypertransport

L1 I

L2 cache

System Request Queue

Crossbar

Memory

L1 D

L3 cache

AMD64
CPU core

L1 I

L2 cache

L1 D

AMD64
CPU core

L1 I

L2 cache

L1 D

AMD64
CPU core

L1 I

L2 cache

L1 D

COMMUNICATION IN PARALLEL COMPUTERS58
tion of devices, will be evaluated in detail in the next chapter. Intel is developing a very sim-
ilar NUMA processor interconnect, called CSI or QuickPath [43].

Figure 2-29. An 8-node Opteron topology

2.6 Examples of Parallel Systems
The following sections detail some other very interesting architectures. They are good
examples to demonstrate state of the art parallel computing. The following systems will be
described: the Sun UltraSPARC T2, Cray T3E, XT3 and XT4, and the IBM BlueGene/L.
Additionally, network interfaces that are connected over standardized peripheral interfaces
will briefly be described.

2.6.1 Sun UltraSPARC T2
Multithread architectures as the HEP [32] and Tera [33] supercomputers exploit thread
level parallelism (TLP). The UltraSPARC T2 processor [17] [18] is the most recent com-
mercial implementation of a TLP-exploiting processor.
As shown in Figure 2-30, the T2 features 8 processor cores with L1 caches. In every core,
8 different strands can be loaded at the same time; two of these may run simultaneously.
Every core has two integer pipelines, one floating point and one memory pipeline. The exe-
cution of strands is switched every cycle using a last-recently-issued policy. Only those
strands are considered that are marked as available. A strand may become unavailable for
different reasons, the most important one is an L1 cache miss. A strand becomes available
again as soon as the event is resolved.
The L1 cache consists of an 18 kByte, 8-way set associative instruction cache with a cach-
eline size of 32 byte, and an 8 kByte, 4-way set associative data cache with a cacheline size
of 16 byte.

Opteron OpteronOpteron Opteron

Opteron OpteronOpteron Opteron

DRAM DRAM DRAM DRAM

DRAM DRAM DRAMDRAM

I/O

I/O

COMMUNICATION IN PARALLEL COMPUTERS 59
A remarkable difference to most other architectures are the L2 caches. They are not located
at the processor core, but at the memory controllers and hold entries of the memory range
of the respective memory controller. Every of the four memory controllers, called memory
control unit (MCU), has two sets of L2 cache. Thus, coherence does not need to be main-
tained among the larger L2 caches, but only between each of the L2 caches and the smaller
L1 caches. A directory-based protocol is being used, the directory controller is located at
the L2 cache. The total size of the L2 caches is 4 MByte. All sets are 16-way set associative
with a cacheline size of 64 bytes. The cache hit delay is 26 cycles for data and 24 cycles for
instructions. L2 and L1 caches are interconnected by two unidirectional 8x8 crossbars.
Arbitration prioritizes the oldest requests.

Figure 2-30. The Sun UltraSPARC T2 processor [17]

The System Interface Unit (SIU) is the interface to I/O devices. It directly interfaces the L2
caches. However, writes are bypassed directly to the DRAM controller. A packet based pro-
tocol with credit based flow control is used between SIU and I/O components, which are 2
integrated 10 GB Ethernet MACs and one x8 PCI express link.

COMMUNICATION IN PARALLEL COMPUTERS60
All parts of the chip above the system interface unit are in the core clock domain of 1.5
GHz. The SIU has a 350 MHz interface to the I/O modules. The T2 protects memory and
datapaths outside of the processor core with parity bits.

Figure 2-31. The Sun T2 die with an area of 342 mm2

2.6.2 Cray T3E
The Cray T3E [84] was the successor of the T3D and has been presented in 1996. It con-
nects up to 2048 processing elements (PE) using a direct interconnection network with a 3D
torus topology. Routing in this network is fully adaptive and minimal path [85]. As depicted
in Figure 2-32, every PE consists of one DEC Alpha 21164 processor, up to 2 GB local
memory, control logic and a router for the interconnection network.
The T3E is a not a true distributed shared memory system: A processor can directly access
only its local memory. However, a global shared memory view allows the processor to
access remote memory using put/get semantics. All communication is done using the so-
called E-registers, a set of 512 user and 128 system registers that are part of the control logic
of a PE. In contrast to the local memory, which may be cached by the processor, these reg-
isters are memory mapped I/O space to the processor, and thus uncacheable. Puts and gets
can be initialized by writing the respective command to the E-register file. One parameter
is the E-register which is the local source for a put or the local target for a get. The remote
address is specified using an address index, which will be used to lookup the global virtual
address and also the logical PE number, which then is used for a lookup in the routing table.

COMMUNICATION IN PARALLEL COMPUTERS 61
Upon arrival of a request on a remote PE, the global virtual address is translated into a local
physical address.
Both puts and gets can work on 32bit and 64 bit words or on vectors of 8 of these words
with an arbitrary stride. The result of a put will be placed in the specified E-register. As long
as the put does not complete, the register is marked “invalid”. A load operation from the
processor on an invalid register will stall until the register content is available. It is assumed
that 128 E-register are sufficient to generate enough overlap to be able to utilize the full
maximum PE-to-PE bandwidth.

Figure 2-32. T3E PE Block diagram [84]

With a mechanism that is also based on the E-registers, it is also possible to send and receive
messages. There is also a hardware barrier mechanism: Instead of a dedicated barrier net-
work as in the T3D, barrier messages are sent as packets in a dedicated virtual channel over
the interconnect fabric. Every PE has 32 Barrier synchronization units (BSUs). Every such
unit can implement a node in a barrier tree. A register within the BSU indicates which net-
work directions are children to the tree, and whether the local PE is a child. If the BSU is
not the root node, it also contains the direction of the parent node in the tree. The BSU also
keeps track of which child nodes have entered the barrier. If all child nodes entered, a cor-
responding message is sent to the parent node. As soon as the root node has been reached,
completion messages are multicast downwards the tree.

2.6.3 Cray XT3 and XT4
Cray calls the XT3 [91] and XT4 [92] systems to be successors of the T3E, and indeed, the
system architecture is very similar. As in the T3E, a direct network with a 3D torus topology
connects up to 30508 compute PEs in both systems. From the available documentation, the
only difference between both systems seems to be that the SeaStar 2 interconnect of the

COMMUNICATION IN PARALLEL COMPUTERS62
XT4 offers a higher bandwidth than the SeaStar interconnect of the XT3. So, while the
remainder of the section describes the XT4, most facts also apply to the XT3.
Every PE consists of an AMD Opteron processor with up to 8GBytes of local memory. A
SeaStar chip is directly connected to the processor over a non-coherent HyperTransport
link. With a width of 16 bit and a clock of 800MHz, it offers a bidirectional bandwidth of
6.4Gbyte/s. Additionally to the compute PEs, a system may contain service PEs, which may
be configured to provide login, I/O, system or network services. The operating system on
the compute PEs is a UNICOS/Ic microkernel, Linux is running on the service PEs.

Figure 2-33. XT4 processing element block diagram [92]

The block diagram of the SeaStar2 chip, shown in Figure 2-34, resembles very much the
diagrams of the dedicated NICs presented in Section 2.6.5. And indeed, it is not build to
support a fine-grain, hardware-based communication scheme known from the T3E, but to
support the MPI 2.0 [74] and SHMEM software libraries. I/O is done using the Lustre clus-
ter file system [93].

COMMUNICATION IN PARALLEL COMPUTERS 63
Figure 2-34. Cray SeaStar2 block diagram [92]

2.6.4 IBM BlueGene/L
The IBM BlueGene/L [101] is designed for high numbers of computing nodes. The cur-
rently fastest supercomputer in the world is a 106,496 node BlueGene system [99]. These
nodes are interconnected by three dedicated networks [100]. The most important network
is a 3D torus network with virtual cut-through, adaptive routing. This network is used for
point-to-point message passing between the nodes. Deadlocks are avoided by the use of
four virtual channels. Every hop in the network adds a latency of 100 ns, the unidirectional
bandwidth of every of the six links of a node is 1.4 Gb/s. A barrier network is implemented
with four global OR structures over all nodes. A collective network allows to statically built
up a broadcast topology which may be used for one-to-all and all-to-one communication
patterns. As the collective network interface of every node has three bidirectional links, a
natural choice for this network is a binary tree.
Every node of the system, as depicted in Figure 2-35, hosts two PowerPC 440 processors
that have been enhanced with an additional floating point unit.

COMMUNICATION IN PARALLEL COMPUTERS64
Figure 2-35. BlueGene/L node architecture

2.6.5 NIs on Standardized Peripheral Interfaces
In contrast to the full system solution, many networks are built up by equipping standard
computers with a network interface adapter at a standard peripheral interface. PCI Express
is by far the most frequently used interface. Such NI adapters either connect to a Gigabit
Ethernet, 10 Gigabit Ethernet or Inifiniband network [90], or to one of the few proprietary
networks as Extoll, Quadrics [88] or Myrinet [87]. In their functionality, they are very sim-
ilar to the Cray SeaStar NIC (see Section 2.6.3), for example.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 65
3 Improving Device to
Processor
Communication

This chapter analyzes device to processor communication in HyperTransport based direct
network NUMAs. Compared with processor to device communication, the device to pro-
cessor direction suffers from the following problems:
• While a processor can directly communicate to a device, there is no mechanism for a

device to directly notify a thread from a device in an efficient way.
• Section 3.1 shows that data transport to the processor using PIO reads has a much

worse performance than PIO writes. The latency of a data transport using DMA is also
not optimal, as this mechanism involves slow DRAM accesses.

Besides these inefficiencies, memory and I/O bottlenecks further increase the impact of
communication latency between device and processor. A tighter coupling of device and
processors is thus required. This tighter coupling must be carried out on a physical level,
e.g. by system-on-chip integration. As well, a closer coupling on the protocol level is
required.
This chapter focuses on the evaluation of coherent devices, i.e. devices that take part in the
cache coherence protocol. Only little research has been carried out in this area in the past,
so that the evaluation in this thesis is a major contribution to the scientific community.
Another significant contribution is the concept of the transfer cache, which is being devel-
oped in this chapter.
The remainder of this chapter is organized as follows: The classical PIO access to a device
is analyzed in Section 3.1. Section 3.2 will give an overview of the design space for
improvements. Section 3.3 discusses memory and interconnect bottlenecks, and shows why

IMPROVING DEVICE TO PROCESSOR COMMUNICATION66
an on-chip integration of latency sensitive devices is necessary. The design space for coher-
ent devices is analyzed in Section 3.4. Section 3.5 examines the performance of these
devices, while Section 3.6 presents the transfer cache, a caching solution for non-coherent
devices.

3.1 HyperTransport Devices and Accelerators
The various offsprings of the PCI protocol have for a long time been the standard for con-
necting devices, including accelerators and network interface controllers. After the PCI and
PCI-X protocols, PCI Express is the currently predominating protocol.
Usually, peripheral devices are connected to the processor over one or more bridges, which
may be implemented in separate chips, called the chipset. AMD Opteron processors cur-
rently provide the potentially best connection to devices, as they integrate the northbridge
functionality into the processor chip (see Figure 3-1). Thus, devices and accelerators may
be directly connected to the processor over a HyperTransport link. This decreases the
number of crossed chip boundaries to the minimum. Additionally, it avoids the latency that
is introduced by the HT-to-PCI Express bridge, which is mainly caused by protocol conver-
sions and synchronization between the different clock domains.

Figure 3-1. Comparison of HTX and PCI Express connections to the processor

AMD Dual Opteron processor

memory controller

AMD64
CPU core

Hypertransport

L1 I
cache

L1 D
cache

L2 cache

AMD64
CPU core

L1 I
cache

L1 D
cache

L2 cache

System Request Queue

Crossbar

Memory

HT to PCIe
Bridge

PCIe slots

HTX slot

HyperTransport
I/O Bridge

HT/cHT links

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 67
Opteron processors can use up to four HT links for cache-coherent communication between
different processors in multiprocessor systems. In this case, they use the cache-coherent HT
protocol, which is not part of the public HT specification, but AMD proprietary and confi-
dential. To connect devices or other bridges to the processor, the respective HT links are
configured to be non-coherent and thus use the open HyperTransport specification. In this
case, the HT link within the processor has to translate accesses from the noncoherent
domain into the coherent domain and vice versa. By doing so, every such noncoherent HT
link has the functionality of an I/O bridge. Due to the similarity of non-coherent and coher-
ent HT protocols, protocol conversion and synchronization overhead can be minimized.
Thus, the direct connection of HyperTransport devices and accelerators to an Opteron pro-
cessor, also referred to as direct connect architecture (DCA), is the best possible solution to
connect to the processor via an I/O bus. The following sections will analyze the HT con-
nection using a theoretical model, while Section 4.1 will give details about the physical
implementation.

3.1.1 The HyperTransport Protocol
HyperTransport is a packet-based communication protocol for data transfer. There are three
versions of HyperTransport: HT 1.05 has been developed in 2001, and was updated by HT
2.0 in 2004. In April 2006, HT 3.0 [47] has been defined as the next successor. Current
Opteron processors follow the HT 2.0b specification [46], HT 3.0 devices or systems are
not available yet. Therefore this work focuses on the implementation of an HT 2.0b device.
Additionally to the HyperTransport specification, the precise behavior and in particular the
initialization of HT devices in Opteron based systems is specified by AMD [22].
A HyperTransport link consists of two sets of unidirectional signals. Each set can be distin-
guished into three signal types: CAD (command, address, data), CTL (control) and CLK
(clock). The CAD lines are used to transport command and data packets, while the CTL line
distinguishes between command and data packets on the CAD lines. The HT protocol sup-
ports CAD buses with a width of 2, 4, 8, 16 or 32 bit. The width of the CAD bus is usually
called the width of the HT link. If more than 8 CAD lines are used per link and direction,
every group of 8 signals has its own CLK signal. These groups of signals are synchronously
transmitted with the source associated CLK signal. This means that one CLK and its asso-
ciated group of CAD signals must be routed with equal length traces in order to minimize
skew. The data transferred on the CAD bus is 32bit aligned, independently of the bus width.
All transferred packets have at least a size of one doubleword, i.e. 32bit. HT 2.0 allows fre-
quencies from 200MHz to 1.4GHz. Current Opteron processors use link widths of 16 bit
and frequencies of up to 1GHz. In Opteron systems, all devices start at power up of the
system with 200MHz and 8bit wide links. The BIOS checks the capabilities of all devices

IMPROVING DEVICE TO PROCESSOR COMMUNICATION68
by accessing the HT register space of each device, and sets new values for frequency and
width for every link according to the capabilities of the two devices that share the link. After
that, it forces a re-initialization of all HT devices to establish the new parameters.
HyperTransport topologies consist of three different device types, which are distinguished
by their connection to other HT devices (see Figure 3-2). Generally, HyperTransport
devices are connected in chains. There can be up to 32 devices in one single chain. Different
chains can be connected with each other by HyperTransport bridges. The top of a chain is
always a bridge. Caves have a single link, thus they form the lower end of an HT chain. Tun-
nels have two links and are connected at least with the upstream link with one device, or
with both links to different devices.

Figure 3-2. HyperTransport topology [51]

In order to decouple response from their requests, the packets are transferred in split phase
transactions. This basic function is shown in Figure 3-3 with an example of read and write
operations. A transfer always starts with a control packet. Three types of control packets
can be distinguished: information, request, and response packets. Information packets are
used for flow control and synchronization. Request packets initiate a transaction. Response
packets contain the answer to a corresponding request. Control packets have a size of 4 or
8 bytes or, if they use addresses of 64bits instead of 40bit addresses, the extended format
with a size of 12 bytes. If a transfer contains payload data, the next data packet which is sent
on the link belongs to this packet. A data packet can have a maximum size of up to 64 bytes.
Sending other control packets during a stream of data packets at every 32 bit boundary is

upstream

{HT Con-
nection

downstream

HT-HT
Bridge

MemoryHost
Bridge

HT TunnelHT Tunnel

CPU

HT Cave HT Cave

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 69
allowed, but only if this control packet is not followed by data. Otherwise it could not be
possible to determine which control packet the data belongs to. This mechanism makes it
possible to send urgent control packets with priority.
Packets travel in different virtual channels in order to avoid deadlocks. Within these chan-
nels, all data packets move along with the control packets. The virtual channels are classi-
fied into three sets: posted requests, non-posted requests, and responses. Posted requests do
not get a response packet from the receiver. Non-posted requests always need a response to
complete the outstanding transaction. However, these sets are not totally independent of
each other, as there is the option to order non-posted requests and responses in relation to
posted packets on a packet by packet basis.

Figure 3-3. HyperTransport read and write request packet flow

Comparison with PCI Express. Brian Holden [45] [50] showed that the HyperTransport
protocol offers significantly lower latencies than PCI-Express. This is due to the fact that
PCI-Express uses a small number of high-speed serial lines, instead of a larger number of
lines with reduced frequencies as HT. This high-speed serialization and de-serialization
process together with DC-free 8b/10b coding generates significant latency.

HT Requester

Read Request:

Time to proc-
ess request

}

Write Request:

Time to proc-
ess request

HT Target

HT Requester HT Target

HT Requester HT Target

HT Requester HT Target

}Response Packet Data Packet

Request Packet

Data Packet

Response Packet

Request Packet

IMPROVING DEVICE TO PROCESSOR COMMUNICATION70
Figure 3-4. HyperTransport and PCI Express packet formats [49]

3.1.2 I/O in HTX Systems
Memory types. The AMD 64bit architecture specification [20] differentiates memory into
six subtypes (see Figure 3-5). The classical I/O memory is of type uncached (UC), having
the highest ordering restrictions for both reads and writes. “Reads from, and writes to, UC
memory are not cacheable. Reads from UC memory cannot be speculative. Write-combin-
ing to UC memory is not allowed. Reads from UC memory cause the write buffers to be
written to memory and invalidated.” The second type of memory that is often used for I/O
memory is write-combining memory (WC). It has a more relaxed ordering scheme, reads
do not automatically cause the write buffers to be written out. It further improves write per-
formance by combining stores to the same memory block in a buffer, so that they can be
written out on the interconnect in a single access. There are several occasions when the
buffer will be written back, the most important ones being writes to WC memory outside of
the memory block of the buffer, and UC memory reads. Reads from WC memory can be
speculative.
Main memory is usually cacheable memory of type write-back (WB), allowing speculative
reads. There are no ordering constraints between different reads. Reads may also pass write
accesses, if not destined to the same address. Stores of the processor will be written to the
cache. Writes to the physical memory only occur if a modified cacheline is evicted. In con-
trast, writes in a write-through (WT) memory will update the main memory always, as well
as the cacheline. Allocation of new cachelines does not occur for WT writes. Write-pro-
tected (WP) memory is the third type of cacheable memory.
All memory types have in common that writes are committed only in order.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 71
Figure 3-5. Memory accesses and memory types in the AMD 64bit architecture [20]

3.1.3 Ordering in PIO
Ordering in interconnects is a key issue, as it can directly impact the performance of the
interconnect. The following paragraphs detail ordering for PIO accesses to memory-
mapped I/O devices. Any processor in an Opteron-based x86 system may issue write and
read requests to any device outside of the coherent HT fabric, thus including any non-coher-
ent HT devices. The immediate destination for such requests is the particular I/O bridge that
connects to the device. The I/O bridge then has the responsibility to forward the request to
the device. Different ordering mechanisms are used for the coherent and the noncoherent
HT links.
Ordering in noncoherent HT. In the nHT domain, ordering can be established quite eas-
ily. By default, ordering is performed as follows: Packets within every virtual channel (VC)
are ordered among each other. Also, packets of the non-posted virtual channel may not pass
packets of the posted channel. As read requests and non-posted write requests travel in the
non-posted VC, while posted writes travel in the posted channel, this has the following
implications:
• Read requests are ordered among each other.
• Non-posted write requests are ordered among each other.
• Posted write requests are ordered among each other.
• Read requests cannot pass any write request.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION72
• Non-posted write requests cannot pass posted write request.
• Posted write requests may pass both read requests and non-posted write requests.
In system, non-posted writes can be observed in the configuration phase of the system, i.e.
during the boot up phase. In normal operation, posted writes are used. However, the north-
bridges may be configured to support legacy ISA devices. The use of posted writes in com-
bination with non-posted reads on the HT bus leads to an ordering scheme which matches
the ordering requirements of the UC memory type of the AMD 64bit architecture specifi-
cation, except for the fact that nHT imposes ordering among read requests.

Figure 3-6. Device access using memory-mapped I/O in Opteron systems

Ordering in the coherent HT. How exactly routing of I/O requests is done in cHT is out
of the scope of this thesis, mainly because the cHT protocol is confidential. Nevertheless,
it is sufficient to say that cHT does not apply ordering constraints between VCs in the fab-
ric, for the sake of better performance of the interconnect. Also, the nHT ordering solution
is useful for the nHT chain topology, but may not work in the switched cHT fabric support-
ing arbitrary topologies.

I/O
Bridge(s)

Processor
Load/Store Unit

Memory
Controller/
Directory

cHT
network

System request interface

Device

CacheWC
buffer

(1) Write request (2a) response

(2b) posted write request

I/O
Bridge(s)

Processor
Load/Store Unit

Memory
Controller/
Directory

cHT
network

System request interface

Device

CacheWC
buffer

(1) Read request

(2) response

(1) Write request

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 73
Instead, ordering in the cHT fabric can only be established using an end-to-end protocol.
Therefore, all requests in cHT have to generate a response, including requests in the posted
VC. If a processor wants to ensure that a request r1 should commit before request r2, it will
have to wait for the response of r1 before issuing r2. Theoretically, this is a much more
promising way to establish ordering, as it allows processors to order only those accesses
that really require ordering. The disadvantage is, however, that a series of ordered accesses
cannot be simply streamed out as it is possible in nHT. Instead, every access can only be
issued to the fabric if the previous response arrived, which may decrease the bandwidth
available to the device significantly.
Figure 3-6 shows how cHT and nHT ordering play together for a read and a posted write
request. End-to-end ordering is performed between processors and I/O bridges within the
cHT domain. In the case of a read, end-to-end ordering is performed between processor and
the device.

3.1.4 Ordering PIO Write Requests
The performance impact of ordering for a sequence of ordered accesses from a processor to
a bridge in the cHT domain can be calculated. All calculations assume virtual cut through
routing, which implies that the response to a packet can be generated just after receiving the
header. Packet header sizes are neglected. The system parameters as introduced in
Section 1.5 are used, the relevant ones are repeated in Figure 3-7:

Figure 3-7. System parameters

The round-trip latency, which is the time it takes after starting to send a packet till the
response is received, is:

where hops is the number of hops between processor and bridge. The time in HT cycles to
inject a packet into the HT network depends on the packet size and the link width per
clock cycle w:

Name Abbrev. Latency in ns
Response processing delay trpr 4 Time to process a read

response containing data
Link delay tlink 21 One-way latency of HT links
Xbar delay txbar 4 Delay of HT Switch

trtl 2hops txbar tlink+() txbar trpr+ +=

sp

tinj
sp
w
----=

IMPROVING DEVICE TO PROCESSOR COMMUNICATION74
In ordered accesses, the next packet can be injected at time after the pre-
vious packet. Obviously, there is only an ordering impact on performance if . In this
case, the effective send bandwidth of the link used in the transfer is decreased by a factor
of :

Assumed that the processor does not buffer requests that it committed to the fabric1, the
time the processor is occupied with the sending process is increased by the same factor:

Figure 3-8 shows the effect for and for different packet sizes and different number
of hops between processor and bridge. The performance decrease for streams of small
packet sizes is dramatic. For a direct connection, only packets with a size of 32 byte or more
can fully saturate the link. The direct connection performs much better than the one- and
two hop configurations, as all communication is done within one chip. For reference, the
diagram also shows how 128byte packets would perform, however, this packet size is not
supported by the HyperTransport protocol.

Figure 3-8. Relative performance for streams of different packet sizes

1. As described later in this chapter, this assumption is valid for current Opteron processors.

tgap max tinj trtl,()=
tinj trtl≤

tinj trtl⁄

BWeff
tinj
trtl
-------BWinj=

teff
trtl
tinj
-------tinj trtl= =

BWeff teff

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 16 32 64 128

packet payload in bytes

%
 o

f t
he

or
et

ic
al

 p
er

fo
rm

an
ce

0 Hops

1 Hop

2 Hops

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 75
Impact of bridge behavior. Up till now, the response processing delay was considered
to be a fixed, small number. This behavior corresponds to a queue in the bridge of indefinite
size. In reality, may be influenced by the following issues:
• The device may temporarily not be capable to consume or process the packet.
• The link speed between bridge and device may be smaller than the one in the cHT fab-

ric.
• Background traffic, i.e. packets that are send to the bridge by other processors.
• Buffer space in the bridge. Buffers within the bridge can generally reduce the impact of

above problems.
Device and application behavior determine whether a device may temporarily not be capa-
ble to process packets. There is no direct influence of the interconnect, however, buffers
anywhere in the path between bridge and device may help to relieve temporary problems.
Of course, the maximum bandwidth between a single processor and the device cannot be
increased, but the processor could be done with the sending process earlier, thus decreasing
the negative impact on . In essence, such a buffer would decouple processor and device
during a data transfer. The buffer must be located after the ordering point in the bridge.
is only improved if the response is sent immediately, buffering within the write-request-
response loop would not have an impact on as long as a strict ordering scheme of writes
is used.
If the link between bridge and device is slower than the link between processor and bridge,

 may also increase. In current systems, 1GHz links in the cHT domain and 400MHz
links to the device are popular. Large enough buffers within the bridge could thus signifi-
cantly reduce the impact on processor execution time for writes.
To find out about buffer sizes, the following experiment has been performed in an 9th gen-
eration Opteron-based system with a directly connected nHT device: the device is config-
ured to not react on write request, but to leave them in the HT queues, so that no credits are
send back. Then a sequence of write requests is issued to different address locations within
the BAR address range of the device. The processor stalled when trying to do the 16th write.
At the same time, the HT queue in the device contained 14 entries. This means, that there
is virtually no queue space in the bridge. As a result, it can be noted that buffer space should
be introduced into the bridge to improve processor execution times for I/O accesses.
Further improvements in performance for write requests with smaller sizes or from proces-
sors farther away from the bridge could probably only be made if ordering is handled dif-
ferently, or if ordering is weakened.

trpr

trpr

teff
trpr

trpr

trpr

IMPROVING DEVICE TO PROCESSOR COMMUNICATION76
3.1.5 Ordering PIO Read Requests
I/O read accesses suffer from the same problem as writes. However they are even more
affected, as the ordering point is the device, and thus the round-trip latency of a read access
is even higher. A theoretical analysis of this problem, as performed in the previous section
for write access, shall be waived. However, the performance has been measured in the real
system and is described in Chapter 4.1.1.

3.1.6 Potential Incremental Solutions
The currently used workaround to cope with the bad PIO performance is to reduce PIO
accesses as possible. Instead data is transferred using DMA. A DMA mechanism also has
the advantage that main memory can be used as buffer space, which is significantly larger
and better scalable in size than device memory. Also, main memory is cacheable.
To raise the PIO read performance, a processor could read larger chunks from device
memory that is marked prefetchable. In analogy to the write buffers, a read buffer could be
used to read cacheline sized blocks. This could improve PIO read performance signifi-
cantly.

3.2 The Space of Analysis
This section analyzes the design space for devices at the coherent processor interface or
below. Two key issues have to be solved in this analysis: which data is sensitive to latency,
and how can a low latency be reached? The latency depends on how data is buffered on the
path between producer and consumer. The location and size of buffers thus is the second
important topic.

3.2.1 Latency-Sensitive Data
Communication from a device to a process can be considered to be a stream of data. There
is at least one stream from the device to every process that uses the device. An important
consideration is how these streams of data are organized, and how and where the streams
can be buffered. The previous chapter showed that queues are a very important form of
communication between NIC and processor. Thus, in most cases the communication
streams will be organized as queues. However, non-queue-based data streams, as in the put/
get communication mechanism, can also be observed.
An important question is: which data streams or parts of data streams are sensitive to
latency and thus require an improvement in performance? Two types of latency can be dis-

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 77
tinguished: the latency of the data-transport from device to processor when the processor is
already waiting for it, either actively using polling or passively as in multithreaded archi-
tectures. The other type of latency is the read access latency to data that has been made
available by the device.

Figure 3-9. Latencies

The overall device to processor latency is a so called startup latency, as it occurs only once
for every block of data (see Figure 3-9). For large blocks of data, it composes only a fraction
of the total latency, and thus can be neglected. For small data blocks, this latency becomes
the most significant latency in the transfer.
The latency of processor read accesses to data that already has been made available by the
device is important because this latency increases processor execution time and thus
decreases processor throughput. If DMA accesses are performed by the device, the read
access latency equals the physical main memory access latency. The figure shows that the
use of larger data packets to transport data to the processor has the potential to decrease the
overall latency, as fewer memory requests are required to obtain a fixed sized block of data.
In contrast to the device to processor latency, the read access latency can be hidden. The
prefetch engines of processors can detect access patterns to memory when they have a fixed
stride, and in particular if they have a unit stride. Start-up latency occurs when the first cach-

Ready Data

Processor

Device

Read Get & process Data Read Get & process Data

Read Latency Read Latency

One read Subsequent reads may
follow

Ready Data

polling Get & process Data Read Get & process Data

Polling Latency Read Latency

One read Subsequent reads may
follow

Processor

Device

Time

(a) processor reads after data is ready

(b) processor is polling

IMPROVING DEVICE TO PROCESSOR COMMUNICATION78
elines are read until the prefetch logic starts prefetching. Thus, latency can be hidden for
larger objects, but small data objects to which reads cannot be predicted do not profit at all.
An intermediate conclusion is that both the device to processor latency and the processor
read latency should be minimized for small data objects.
In a modern NIC like Extoll, the relevant data structures that profit from a latency reduction
are:
• Descriptor and notification queues. Entries in these queues are typically not larger than

one cacheline.
• Fast and small grain communication mechanisms, as for example small grain send/

receive as used in the Extoll Ultra mechanism. While this mechanism is queue-based,
non queue based mechanisms as a fine grain put/get mechanism could profit as well.

In applications that are sensitive to end-to-end communication latency between nodes in the
system, queues will typically be empty or almost empty, as processors are waiting for
entries to be placed in the queue. In this case, device to processor latency is critical. If
throughput is more important than end-to-end communication latency, the read latency
should be minimized.
The fact that only small data objects must have low latency, and that these will typically be
consumed soon from the queue is an excellent basis for optimizations. It opens up the pos-
sibility to implement fast data buffering solutions without excessive hardware overhead.

3.2.2 Buffering
To decouple the execution of processor and device, there must be buffering capabilities in
between the communication partners. The design space of such buffers is shown in
Figure 3-10. With such buffers, the latency of a communication between device and pro-
cessor depends on the access latency of the memory technology, as well as on the logical
and physical location of the buffer.
The logical location determines which address or register space the buffer belongs to. Buff-
ers that are logically placed in the device are accessible from the processor using memory
accesses to the memory-mapped device. Besides the classical I/O device memory, a coher-
ent device may exhibit the memory range as coherently cacheable.
A system’s physical main memory is not only the largest memory in a system, it is also the
one that scales best. A logical placement in the system’s physical main memory thus has
the big advantage that it allows buffered streams to inexpensively grow in size. This is par-
ticularly useful for NICs that are using lossless networks, as a full receive side buffer in one
of the NICs will cause congestion in the network. Also, data structures for virtualized

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 79
devices supporting the simultaneous direct user-level access of hundreds or thousands of
threads may need the size and scalability of physical main memory.
For the physical implementation, two options can be distinguished: implementations in
small-capacity, fast memory technologies as SRAM, or ones in higher latency, high capac-
ity memory technologies as DRAM. Physical main memory is slow DRAM, all other buffer
implementations use faster memory. However, slower memory technologies typically offer
more capacity than faster ones.

Figure 3-10. Buffer design space

The physical location of buffered data may be anywhere on the path between device and
processor. However, the logical location may reduce the number of choices. All logical
locations have their natural physical locations. For the logical locations in physical main
memory or in a coherent device memory, caching is possible. Caches may improve perfor-
mance as fast memory technologies can be used due to their relatively small size. Also, a
good placement of caches may improve access latency. In the best case, the use of caches

buffers

logical location

processor

physical location

main

caches

physical
implementation

register file

physical

memory

device
memory fast: slow:

memory

device processor
cache cache

specialized
cache

processor
register file

SRAM, registers DRAM
main

of data

device
memory

and/or directly
attached memory

IMPROVING DEVICE TO PROCESSOR COMMUNICATION80
avoids any DRAM accesses in the timing critical path between device and processor, and
performs DRAM accesses only for victim writebacks, or if queues grow large.
The cache can be implemented in the device that provides data to the requesting processors
via a direct cache-to-cache transfer. Another option is to stream data into the processor’s
cache that is likely the one that will work in that data. Chapter 5 will give an outlook about
this approach. A third possibility is the use of other caches, as e.g. dedicated message
caches or the transfer cache proposed in this work.

3.2.3 Feasible Solutions
Based on the previous two subsections, the following conclusions can be drawn that guide
the development of improved mechanisms:
• Queue-based communication must be supported. Other mechanisms can and should be

supported as well.
• Support for efficient, low latency data transport between device and processor if the

queues are filled sparsely.
• At the same time, queues should be allowed to grow large, which means their home

should be physical main memory.

Figure 3-11. NIC locations

Cache
cHT to

HT bridge

Processor
Core

Memory/
Directory
Controller

L2 Cache

NIC

Cache Interconnect

cHT Processor Interconnect

NIC
Possible views:
-coherent memory controller
-coherent cache

Classical I/O device view

Forward cache

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 81
Two suggested architectures place a coherent device at the coherent processor interconnect
(see Figure 3-11). The first one is a device that acts as a coherent memory controller, i.e.
queues are located in device memory. The second suggestion is a device with a device
cache. The logical home for queues is physical main memory. A third suggestion also
homes queues in physical main memory and adds a special transfer cache to the memory
controller. As DMA is currently the best method to transfer data from device to processor,
all solutions have to compare with a corresponding DMA solution.
The fourth potential solution is to stream data directly into the processors caches. This
approach exhibits some problems that are not present in the other solutions. One major
problem that occurs in multiprocessor systems is how the target cache can be identified.
Chapter 5 provides an outlook on direct cache access mechanisms.

3.3 Memory and Interconnect Bottlenecks
The memory bottleneck is well known [7]. It is less commonly known that the interconnect
between chips in computers has become a similar bottleneck. This chapter demonstrates the
impact on small-scale NUMA systems, and concludes with a recommendation for tighter
system-on-chip (SOC) integration.
Memory and I/O bottlenecks. Gordon Moore’s prediction [106] that the number of tran-
sistors that can be placed economically onto a single chip doubles every two years still
holds true. This leads to a continuous increase in processor performance. Figure 3-12 shows
that the theoretical peak performance in million instructions per second (MIPS) has
increased thousand fold within the last 15 years. This theoretical peak performance is not a
good measure for the real systems performance, as it is influenced by the memory and I/O
subsystem as well as by the utilizable parallelism of applications. It is, however, a good
measure to show the capabilities of the processor core itself.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION82
Figure 3-12. The development of processor speeds of x86 processors

In contrast, I/O buses have doubled their performance only every 36 months [103].
Figure 3-13 shows that the maximum bandwidths of DRAM memories and I/O buses1 have
increased by a factor of ten within the last ten years. Compared to the increase in processor
speed within the same time period, the performance gap increased tenfold!
Besides bandwidth, latency is another important performance criterion for memories and I/
O buses. The figure shows that the random access latency increases similarly to the band-
width, although the increase is less stable. The development of the latency of a direct chip-
to-chip I/O link is more difficult to trace. Usually, target latencies are not part of the spec-
ification, but are considered implementation details. The latency of a direct link of a chip-
to-chip interconnect is composed of the following parts:
• The time for the physical transmission of signals between two chips. As this time only

depends on the distance of the chips, it remains constant.

1. Only PCI-derivatives have been used, as they are the de-facto standard I/O bus.

100

1000

10000

100000

1000000

1990 1992 1994 1996 1998 2000 2002 2004 2006

Year introduced to market

M
IP

S

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 83
• Processing on transmit and receive side scales with technology. There is no room for
architectural improvements to reduce latency. Instead, the pin count limitation of pro-
cessors led to a development of I/O interfaces that use high-speed serial transmission.
This adds even more latency, caused by the de-/serialization, 8b/10b encoding, scram-
bling, error correction and detection steps that have to be performed.

Thus, the scalability of the link latency is very limited with current technologies. Technol-
ogies as proximity communication [107] might resolve such restrictions in the future.
The processor Interconnect. An all-embracing comparison of processor interconnect per-
formance is difficult, as these interconnects are usually confidential. Generally, these inter-
connects are subject to the same technological conditions as I/O interconnects. A case in
point is a comparison of the latencies in processor clock cycles for the Motorola 68030 pro-
cessor, released in 1987, and one of today’s Opteron processors. The 68030 accessed
DRAM memory over a bus interconnect. The latency for a DRAM read operation consisted
of 3 processor clock cycles for the bus arbitration, and additional 5 clock cycles until the
DRAM delivered the requested data. In contrast, a point-to-point HT link has a latency of
at least 60 3GHz Opteron clock cycles, the DRAM access accounts for at least 120 clock
cycles. To send the response back to the processor, additional 60 clock cycles pass.

Figure 3-13. The development of DRAM memory and I/O bus speeds

Memory and I/O hierarchies. Memory technologies that are currently being used allow
the integration of fast SRAM memory on CMOS logic processes. The downside is that

0.1

1

10

100

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year introduced to market

G
B

/s

0

0.005

0.01

0.015

0.02

0.025

0.03

1/
ns

Memory Bandw idth

I/O Bandw idth

Reciprocal Memory
Latency

IMPROVING DEVICE TO PROCESSOR COMMUNICATION84
SRAM cells consume a large real estate. Thus, SRAMs have only small storage capacities.
DRAM, on the other hand, can be integrated much denser, but access latencies are high.
Also, few solutions exist to integrate DRAM into logic processes. The solution to this is the
use of a memory hierarchy, as explained previously in this work.
Figure 3-14 shows the latency of memory requests, separated into the impact of memory
and interconnect technology. It shows that the performance difference in terms of latency
between the hierarchical levels are of the same magnitude for both memory and intercon-
nect technology, with the exception of the lowest level in the memory hierarchy.

Figure 3-14. Read access latency, depending on memory and interconnect technology

The usage of a memory hierarchy aims to reduce both interconnect and memory latency by
placing fast caches close to the processors. This works well in particular if memory accesses
are predictable and thus may be prefetched.
Figure 3-15 displays the access latency of DRAM memory in dependence of the distance
between requestor and memory in an HT network in hops. Cache coherence mechanisms
are not considered, the diagram simply shows the latency of the interconnect and the latency
of the DRAM access itself. The access latency of the DRAM is the limiting factor only if

Register

Cache

Memory
Controller w/ DRAM

Access latency of
memory technology

1 processor clock cycle

<20 processor clock
cycles, depending on size

>40ns

Local
module

On same SOC

Off chip

Access latency of
interconnect technology

1 processor clock cycle

<20 processor clock cycles

>40ns

Disc >1ms System Area Network >1us

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 85
the memory request’s source is on the same chip. As soon as chip boundaries have to be
crossed, the interconnect latency is larger than the DRAM access latency.

Figure 3-15. Overall DRAM read access latency in Opteron system relation to number of hops to
take

3.3.1 Influence of the Cache Coherence Protocol
If the coherent fabric that connects processors and memories spans over multiple chips, the
interconnect latency also impacts broadcast based cache coherence protocols. Figure 3-16
shows the latencies that are observed for a processor read access on physically local
memory in the NUMA-type of system that is assumed in this work. Even in the two proces-
sor configuration, which is the smallest configuration where probes have to cross chip
boundaries, the latency of the probing over the interconnect is worse than the DRAM
latency and thus affects overall latency slightly. For larger configurations, the probing
latency is clearly dominating the overall memory access latency.
In a three hop coherence protocol, as analyzed here, the latency of a memory access to
remote memory is increased by the time the request travels to the remote memory control-
lers. In two-hop protocols, this does not happen, but the latency of a read to local memory
will be about the same as in the three hop protocol, as the hop from a processor to a local
memory controller has a relatively low latency.
Thus, an effective solution for both types of protocols must take the broadcasting of probes
out of the critical path of the memory access. Directories are a way to do so by decreasing

0

50

100

150

200

250

0 1 2 3

Number of Hops

La
te

nc
y

(n
s)

Interconnect

DRAM Access

IMPROVING DEVICE TO PROCESSOR COMMUNICATION86
the number of probes that have to be sent out. In the best case, probing has not to occur at
all for a memory access, thus decreasing the overall latency of the memory access drasti-
cally for a 4 processor system. A directory also decreases traffic on the interconnect, and is
less vulnerable to congestion in the interconnect.

Figure 3-16. Latency of a read operation on physically local memory with broadcast based
coherence

The theoretical results from Figure 3-16 can also be observed in the real system. An evalu-
ation of the memory bandwidth on a dual-socket Opteron system using the STREAM
benchmark [110] has been performed. The dual processor performance has been measured
by starting one STREAM process and using the “numa tools” [109] to bind the process and
its memory to the same node. The single processor performance has been measured by
removing one processor. This evaluation showed that the memory bandwidth that is
reported by the benchmark drops by 5% to 7% for the two processor system.
Thus, the usage of a directory to reduce memory latencies becomes beneficial even for
small-scale NUMA systems.
Also, a tighter integration of the system will reduce the radius of the coherent fabric, and
thus generally decrease the latency of coherence protocols.

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 2 4

n u m b e r o f p r o c e s s o r s in t h e s y s t e m

m
em

or
y

re
ad

 d
el

ay
 (n

s)

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Processor

Cache

X

Memory

Configurations

1 Processor 4 Processors2 Processors

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 87
3.3.2 Summary
The best possible solution to reduce the communication latency is the integration of all per-
formance critical components of a system into a single system-on-chip (SOC). Off-chip
communication should be avoided just as DRAM accesses are avoided. The Sun T2 is such
a system that leads the way for a tight physical integration of processors, memory, and NIC.

If multiple such SOCs are interconnected to build up a shared memory system, the commu-
nication latency impact of broadcast-based coherence protocols should be avoided even for
small-scale systems. Instead, coherence on a chip-to-chip level should be maintained using
directory based protocols.
Only such devices should be integrated into the SOC that are used widely and where low
access latency is required. Traditionally, only network interface controllers belong to this
class. However, one can imagine that FPGA or GPU coprocessors may become popular as
well.
Thus, the remainder of this chapter will analyze the integration of a NIC device into such a
SOC. As the transition to such a system should rather be an evolutionary process than a rev-
olution, it will also be analyzed how mechanisms would perform in traditional systems.
Problems of SOC integration. A SOC integration does not come for free. In the following,
problems are discussed that are in the way of such a solution:
• Limited on-chip resources. NIC buffers and directories need memory, which is expen-

sive both in terms of silicon area and power consumption. As long as this problem is
not solved by the use of new memory technologies as Z-RAM [34], it may be necessary
to use NICs with lower buffer requirements.

• Reduced Yield. Additional functionality on a chip increases the die size. The larger the
size of a die, the higher is the probability of faults on the die. This will always lead to a
decreased yield.

• Reduced Modularity. Traditional systems allow replacing or recombining of parts of
the system as needed if these parts are implemented on different chips. For example, for
x86 processors several northbridges and southbridges exist that may be developed at
different points in time. On a SOC, such a functional part is not a chip, but an IP block
on the single die. That means that a part of the system can only be exchanged by modi-
fying the whole system. The reduced modularity may also increase the risk: if one IP
block of a SOC fails, it may turn the whole system useless.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION88
• Pin Limitation. Complex designs like SOCs will usually be limited by the number of
available pins. A NIC requires a number of pins for communication, these must be
taken away from other components on the chip. A potential solution may be the sharing
of pins for different functions. For example, one of the HyperTransport links of an
Opteron could be shared, so that either the HT link can be used, or the integrated NIC.

• Multi-SOC systems. It is very likely that such SOCs will be used to build up larger
shared memory systems. Not much will be won if this system does not decrease inter-
chip communication significantly. Processor cores should preferably use local memory,
and inter-chip probing must be decreased with directories for example. As well, proces-
sors should use the local NIC device for best performance. Of course, this also changes
thread scheduling policies. Threads should preferably be scheduled to a “home node”.

3.4 Devices at the Coherent Interconnect
A processor interconnection network in a small-scale shared memory multiprocessor
system usually distinguishes three main classes of ‘clients’ that are attached to the network.
One client is a processor core with its associated caches. Usually, the processor core and the
caches share one common interface to the network, called the system request interface
(SRI). An SRI may also be shared among multiple processor cores, which is in particular
the case if these cores share a cache. An SRI has master functionality in the classical sense:
it may issue coherent and noncoherent read and write requests, and collects the associated
responses. The SRI is also target for probe requests, and must respond to these.
The coherent memory controller is the classical slave device: it responds to memory
requests. In the analysis performed here, it is also responsible for generating probe requests.
A cache coherence directory is, from the interconnect’s viewpoint, part of the memory con-
troller, as it is simply a means to reduce probing traffic.
I/O bridges are the third kind of clients. Like an SRI, a bridge must be able to create coher-
ent and noncoherent requests as a consequence of requests on the I/O interconnect side.
From the coherent interconnect’s viewpoint, it is the target for memory requests to I/O
devices, and the source of responses. In contrast to the coherent memory controller, it does
not generate probe requests, as memory behind the bridge, and thus on the I/O bus, is non-
coherent by definition. In essence, an I/O bridge’s functionality from the coherent intercon-
nects viewpoint is a subset of the combined functionality of SRI and memory controller.
Accordingly, Figure 3-17 shows the possible views of a device that is attached to a coherent
interconnect. (a) is a non-coherent device that is connected as an I/O device. The views of

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 89
a device as a memory controller or a cache are depicted in (b) and (c). A device might as
well be a combination of these views.
Functionality. A coherent device may use a cache that is kept coherent by the hardware
protocol. The possible benefit of such a cache in a networking device is being discussed in
Section 3.4.1. However, this thesis will focus on performance improvements.

Figure 3-17. Views of a device in a coherent processor interconnection network

Performance Improvements. The coherent protocol allows other mechanisms of data
buffering and transport between device and processor than pure I/O protocols. This may
allow faster or more efficient data transport. In particular, the over-all latency for data trans-
port between device and processor register may be decreased. As well, the read latency of
the processor on such data may be lower, thus increasing processor throughput. An analysis
of the different design choices is done in Section 3.5.

3.4.1 Devices with Coherent Caches
Processors benefit from caches because of the spatial and temporal locality of a program’s
memory accesses. For most programs, it can be observed that after any access to memory,
there is a high probability that a nearby memory is accessed very soon. Therefore it is
advantageous to fetch a larger memory block upon a load request from a processor and to
store it in a cache frame. Subsequent accesses to this block will hit in the cache and thus
have a much lower latency than an access that has to be forwarded to physical main mem-

(a) (b) (c)

CacheI/O
Bridge(s)

Processor

Memory
Controller/
Directory

cHT
network

Cache

Memory
Controller/
Directory

Device

Processor

Memory
Controller/
Directory

cHT
network

Cache

Device

Processor

Memory
Controller/
Directory

cHT
network

Cache

Device

IMPROVING DEVICE TO PROCESSOR COMMUNICATION90
ory. In the optimal case, the whole working set of an application fits completely into the
cache. In this case, cachelines do not get evicted from the cache, all accesses to the memory
will hit in the cache after the very first access to the respective memory block.
Besides the reduction of read latency, caches also improve the write behavior. In a write-
back cache, a memory location that is repeatedly written to by a processor will just update
the cache. An access to the physical main memory occurs only on an eviction of the cach-
eline. This saves bandwidth both on the system interconnect and the memory controller.
Devices may display a similar spatial and temporal locality for their memory accesses.
However, there may be a difference in granularity of those accesses. While general purpose
processors usually only support load and store operations with a size of up to 128bit,
devices are optimized for their specific tasks and thus may support memory accesses that
are much larger. The impact of this difference can be made clear with the example of a
linear access to subsequent memory addresses. In a processor, a case in point for this behav-
ior is the instruction cache. Here, a cache clearly improves read latency: loops in the instruc-
tion stream lead to a good temporal and spacial locality of instruction references.
A typical example of a device that is accessing memory is a NIC that is reading a memory
area in order to transmit it over the network. As the NIC knows the size of the transfer
beforehand, it can directly fetch the memory area using overlapping memory accesses in an
optimal way. In this example, there is also no temporal locality of this data, as it will not be
used by the NIC again. A caching of such data in the NIC would not introduce any benefit.
A NIC’s memory accesses to other data structures show access patterns that can be
improved by caching them on the device. In the case of Extoll, virtual device contexts and
associated data structures that reside in main memory should be cached on the device.
Cache Coherence. The important question is how a device cache is being kept coherent
with the system. Noncoherent devices cannot take part at the hardware cache coherence
protocol. With noncoherent devices, coherency can only be maintained explicitly by soft-
ware. If devices are part of the coherent domain, caches may be kept coherent by the hard-
ware protocol.
The design space of device cache coherence is presented graphically in Figure 3-18. If data
is not shared between device and system, it is obviously not necessary to maintain any
coherency at all. However, such private data does not need to reside in system memory.
Instead, it could be stored in memory directly attached to the device. This would not only
result in lower memory access latencies, but also avoid the occupation of system intercon-
nect and memory. Thus, it can generally be assumed that most of the memory a device will
cache is indeed shared.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 91
Figure 3-18. Coherence of device caches

If shared data is cached, the only solution that is possible for non-coherent devices is that
coherence is managed by software on the host system, usually this is done on an API or
driver level. No matter how this is implemented in detail, if a processor writes to a memory
location that might be cached in a device, it has to either invalidate or update the respective
cache entry in the device. If the same quality of consistency should be achieved that is used
within the system, software will have to wait for a response before it can proceed. The
device, on the other hand, simply has to move data out to the coherent domain if it is written
by the device. An option for this are write-through caches. As a result, maintaining coher-
ence is expensive for modified data that might be cached, but it imposes no overhead at all
for all other accesses.
In contrast, broadcast based hardware cache coherence protocols do not provide a good dif-
ferentiation between data that might be cached somewhere else and data that is not cached
somewhere else. For all accesses, there is a certain amount of overhead introduced by the
coherence protocol. However, this overhead is much smaller than with software based
coherence schemes.

data sharing

shared not shared or
read-only

caching

on device caching

no caching

coherency

managed explicitly
and manually by SW

HW-based coherence
protocol

no coherence
required

coherence, but device
outside of

coherent domain

hybrid solution

IMPROVING DEVICE TO PROCESSOR COMMUNICATION92
In comparison of both mechanisms, software based coherence performs better if the
memory region that might be cached in devices is very limited. It performs better if the
coherence scheme can be relaxed. Hardware based schemes are to be preferred if the
memory region that might be cached is larger.

3.5 The Performance of Coherent Transfers
This section analyzes the design space for coherent devices in terms of latency improve-
ments. The analysis focuses on the device-to-processor communication path. It compares
the latencies that can be expected using coherent devices with the performance of DMA.
The main question is: how fast can a cacheline, which is the smallest granularity of data in
a coherent environment, be transmitted? Such a cacheline may be of any of the data types
that require a low latency transmission, as described in Chapter 3.2.2.
Figure 3-19 shows the flow diagram for device to processor communication using conven-
tional DMA. A write access by a device is followed by a read request from a processor to
the same memory block.
The timing between both accesses depends on the notification mechanism (see
Section 2.3.1) that is being employed. The lowest latency can be achieved if the data that is
written contains information about its validity, as valid bits for example, and the process is
polling on it. In this case the processor is polling on the line in the cache. The write request
by the device causes an invalidation probe to be sent to this cache. After the cacheline has
been invalidated, the next processor read causes the line to be fetched from memory. The
second dependency between both requests occurs at the memory controller. Here the read
request is queued until the previous write request finishes. This has to be done to maintain
coherence, as explained in Section 2.4.5 on page 49.
If interrupts are used to signal a new queue entry, there is a significant time interval between
both accesses, caused by the delay introduced by the interrupt handling mechanisms. In this
case, the overall latency of the data movement from device to processor is determined by
the interrupt mechanism and can hardly be optimized using coherent data transport mecha-
nisms. Here, another number is more interesting: the latency of the processor’s read.
Some assumptions have to be made regarding the behavior of the memory controller. A
classical memory controller works on request after request. It may reorder accesses to
memory internally to optimize access to the banks, but a read-after-write hazard is avoided
only by forcing the write to memory before reading the address. This mechanism is
employed in the SUN T2, for example. It is a very inefficient mechanism. Its performance
influence is particularly bad with high background traffic, as a read request may have to

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 93
wait a significant amount of time until the previous write to the same address has been per-
formed. But even in the absence of background traffic, this may affect latency. In these
cases, this work will also present the timing for a memory controller in which such data is
being forwarded to respond to the read request earlier.

Figure 3-19. DMA transfer by device with subsequent processor access

Another assumption has been made regarding the target memory controller for DMA
accesses. The following comparison assumes that the target memory controller for device
memory accesses is always the memory controller that is local to the processor, i.e. within
the same NUMA node. The reason to do so is that this is the best case in the DMA scheme.
It is a feasible assumption for modern virtualized accelerator devices that provide direct

Dev
Write

MC

CPU1

CPU2

CPU3

SourceDone
Br

Write

MC MCBr

MC
CPU1

CPU2

CPU3

P

PR

SDCPU
Read

CPU MC

P

RResponse

PR

invalidation triggers read

read request waits until
previous request is done

if process is polling

Dev
Write

MC

CPU3

SourceDone
Br

Write

MC MCBr

MC

PR

SDCPU
Read

CPU MC

RResponse

P

without directory

with directory, line cached in CPU3

IMPROVING DEVICE TO PROCESSOR COMMUNICATION94
user-space access: Every thread may have its own queues in its own memory range, which
may be allocated on the same node on which the thread is running.

3.5.1 Devices with Coherent Caches
The first variant of a device that uses the cache coherence protocol is a device with a coher-
ent cache. In a queue-based communication scheme, the queue’s home is main memory.
However, if the device inserts a new entry into the queue, this element is not copied to
DRAM using a DMA mechanism. Instead, it is allocated in the device’s cache. The entry
must be allocated in a modified state, as the value is different from the value in DRAM, and
copies of this cacheline in other caches must be invalidated. A subsequent read request from
a processor will cause the cacheline to be forwarded from the device’s cache to the proces-
sor’s cache. The corresponding flow diagram is depicted in Figure 3-21. The idea behind
this mechanism is that an access to a cache’s fast on-chip SRAM is much faster than DRAM
accesses that are performed in the DMA scheme.

Figure 3-20. Design space for device cache implementation to speed up queues

In the following, the design space of such implementations (see Figure 3-20) is analyzed.
Cache Organization. A cache can be organized as an explicit set of queues, just as it would
be implemented in a memory-based scheme. A suggestion for such an implementation are
„cacheable queues“[10]. As already outlined in Chapter 3.2.2, dedicated queue structures
are less advantageous for the use in virtualized devices. Also, the implementation of such
queues as a coherent memory controller, as described in Section 3.5.2, is more promising.
Therefore, the following paragraphs will focus on the second choice: an implementation as

device cache

Replacement Set of Cached GranularityTransparency

organization

dedicated queues based on CAM cache

Policy cacheline states objects

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 95
a CAM-based cache. Such a cache may be used not only for queues, but other data transfers
as well.

Figure 3-21. Caching instead of DMA transfer

Cache replacement policy. A device that caches data for its own use may use the same
replacement policies as a processor. However, this is different for queue mechanisms.
Queue entries will never be read by the device, and they will be read only once by the pro-
cessor in most cases. Thus, cachelines should be evicted as soon as a read access by a pro-
cessor has been seen. New cache blocks are allocated using empty, i.e. invalid, cache
entries. Nevertheless, depending on the associativity of the cache, it may happen more or
less easily that an empty cache frame cannot be found for a line. Now, there are two choices:
either the cacheline bypasses the cache and is directly written to main memory. Or, an entry
in the cache is replaced. Assuming that a small number of queues is cached, a replacement

Dev
C2D

MC

CPU1

CPU2

Dev

Dev MC

MC

CPU1

CPU2

Dev

P

PR

SDCPU
Read

CPU MC

P

PR

RR

invalidation triggers read
if process is polling

read request waits until
previous request is done

Dev
C2D

MC

CPU3

Dev MC

MC

DevP

SDCPU
Read

CPU MC

RR

P PR

without directory

with directory, line cached in CPU3

IMPROVING DEVICE TO PROCESSOR COMMUNICATION96
means that entries that are close to the head are being replaced by tail entries. In the worst
case, all process reads would be served from main memory, as they are being evicted from
the cache before they can be read by the processor.
Bypassing means that the heads of the queue stay in the cache and are not replaced, so that
at least a part of the processor read requests could be served from the device cache. On the
other hand, a scheme without replacement may leave stale entries in the cache, for example
if a receiving process terminates before reading the entry.
Generally, the efficiency of these mechanisms depends on the number of applications that
are communicating with the device, the cache size, and the communication pattern. The
communication pattern directly influences queue sizes and residence time in the cache.
Thus, it is difficult to predict which of the mechanism performs better. This can only be
found out with an evaluation in the system.
Cacheline states. In order to allow a cache to cache forwarding of the cacheline in a
MOESI based system, it must be allocated on the M state. A subsequent read-exclusive
request from a processor would cause the devices cache to forward the value to the
requester and invalidate its copy. If the subsequent read is a read-as-shared request, it would
cause the device’s cacheline to change the state to O, and establish a shared copy in the pro-
cessor’s cache. In the case of a device-to-processor queue, there is no use for the cacheline
any more, so that the cacheline may be evicted as soon as it changes its state to O.
An alternative for the device is to always transfer ownership by signaling in the read
response to the requesting cache that the new cacheline state must be M. This frees the
device from a writeback of the cacheline. However, the original MOESI and MESIF proto-
cols do not support this.
Cached Objects. As explained in Section 3.2.2, only some data structures need to be made
available with a low latency. Only those should be cached, all other data should bypass the
cache and be written to main memory. This avoids that relevant cachelines are squeezed out
of the cache, and also keeps the cache as small as possible. The question how data can be
distinguished into worthy of caching and not worthy of caching on the device leads to the
question of how transparent a device cache should be.
Transparency. In a device or accelerator context, it is beneficial if the cache is transparent
to the device itself. In this case the cache is only part of a specific interface, and can easily
be replaced by a different interface without the need to change the structure of the device
itself. In a fully transparent design, the question what should be cached can only be deter-
mined at the cache, for example using address-based prediction [112]. If the constraint of a
totally transparent cache is weakened, such a decision can be made at the level of a func-
tional unit in the device. The most basic implementation is a single cache hint bit, stating if

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 97
the cacheline should be cached or not. Such a hint is the hardware equivalent to prefetch
instructions of a processor, which also allows to define the caching behavior for individual
cachelines.
Granularity of cached objects. As data transport for coherent communication is always
performed by transferring cachelines, lowest latency can always be reached by aligning
data structures as queue entries to cacheline boundaries. If a queue entry has a smaller size
and thus does not fill out an entire cacheline, there will be a gap between entries. Of course,
a queue entry is allowed to have a size of multiple cachelines as well.
A device cache may cache other structures than queues as well. For example, received data
for get operations can be cached. If this data is not aligned to and sized as cachelines, there
is a problem, as the remaining part of an incomplete cacheline may contain valid user data
that must not be overridden. Thus, the memory block must be read from the coherent sys-
tem, before the device’s data can be inserted to the cacheline. This is not very efficient in
terms of latency and hardware complexity of the device cache. Thus, such unaligned or
miss-sized data should be written to the memory controller instead of being cached by the
device.

Figure 3-22. Configurations with coherent device caches

non-coherent configurations

coherent configurations

HT link
cHT link

Mem

Dev

P0 P1 MemMem

Dev

P0

Mem

Dev

P1 P1 Mem

Mem P2 P3 Mem

Mem

Dev

P0 P1 Mem

Mem P2 P3 Mem

Mem

Dev

P0 P1 Mem
Mem

Dev

P0

IMPROVING DEVICE TO PROCESSOR COMMUNICATION98
In the following two sections, the performance of device to processor transfers of such
coherent device caches will be analyzed for off-SEC and on-SOC devices.

3.5.1.1 Off-SOC Devices
Figure 3-22 shows configurations of one, two and four node system topologies that have
been evaluated, the respective latencies are given in Figure 3-23.
In the single node configuration, the coherent cache has a worse performance than the DMA
scheme. This is due to the fact that the coherent domain now crosses chip boundaries, which
increases probing latency drastically compared to the single processor system, where prob-
ing occurs on chip. Also, the single node configuration is the only one in which buffer-for-
warding in the memory controller has a positive effect.
Thus, coherent devices should always be integrated into the coherent fabric so that they do
optimally not increase the depth of a invalidation broadcast tree, measured in the number
of hops. The topologies for two and four node systems thus have been chosen to be optimal,
assuming that every NUMA node has three coherent links available. To have a fair compar-
ison between protocols without the influence of the topology, the same dense topology has
been applied for the noncoherent device.
With an optimal topology, the dual NUMA node configuration performances are equal. The
latencies for the probe broadcasts are the same, and so are the polling and memory access
latencies. Differences can only be observed if the topology is not selected in an optimal
way. In the noncoherent example, P1 observes a higher polling latency if it is not directly
connected to the device.
In the quad node configuration, probing latency is much higher than DRAM access latency
and clearly dominates timing. Here, the cache-transfer mechanism is faster: if data comes
from memory, the processor has to wait for all probes before it can use the respective data.
If a processor receives a read response from a cache, it can immediately use the data. As the
device is connected to the processors so that is has only 1-hop distance to every CPU,
latency is lower as if the CPU has to wait for every devices response, due to the fact that
there exist 2-hop connections between processors.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 99
Figure 3-23. Performance of off-SOC device with coherent cache

Influence of a coherence directory. A directory may reduce the latency of memory
accesses if the latency of the probing is higher than the latency of the DRAM access. This
is due to the fact that using a directory, probes may be avoided at all in the best case.
In the topologies that are discussed here, only the four node topology displays a probing
latency that is significantly higher than the DRAM access latency. In the best case, i.e. the
accessed memory is on the same node as the processor, and no other processor is caching
the line, performance increases up to the performance of the single node system.
Thus, the presence of a directory may improve performance, but will not make a direct
cache to cache transfer more efficient.
What would the use of MESIF change? The implementation is analyzed for the MOESI
protocol. In MOESI, a request is sent to the memory controller first for every memory
access. This is avoided in the MESIF protocol, so that a cache to-cache transfer generally

quad node NUMA system

0

50

100

150

200

250

300

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

Non-coherent Coherent w ith cache

dual node NUMA system

0

50

100

150

200

250

300

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

Non-coherent CPU 1 Non-coherent CPU 2 Coherent w ith cache

single node NUMA system

0

50

100

150

200

250

300

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

Non-coherent Non-coherent buffered Coherent w ith cache

IMPROVING DEVICE TO PROCESSOR COMMUNICATION100
has a lower latency. This work assumes a best-case DMA, i.e. that DMA memory is on the
same chip as the processor that is requesting it. In this case, the overhead for this first hop
is relatively small, so that a coherent cache in a MESIF system would not perform signifi-
cantly better. However, MESIF would avoid a performance decrease in case the processor
is not on the same chip as the memory controller.

3.5.1.2 Devices with Caches in SOCs
If a device is integrated onto the same chip as processor and memory, the situation is dif-
ferent. The device cache can be accessed with a low latency, as no chip boundaries have to
be traversed. An on-SOC device with a coherent cache decreases latency drastically. In par-
ticular, the processor read latency would decrease by a factor of four (see Figure 3-24).
In contrast, if classical DMA is used, processor read latency does not improve compared to
an external device. The polling latency would decrease by about 20% compared to the off-
SOC solution.

Figure 3-24. CPU read latency for on-SOC devices with a cache

The model that has been used for calculation assumes that the SOC features multiple pro-
cessor cores with either separate or shared caches. Cache coherence is maintained by a
broadcast or directory based protocol. If the number of caches that has to be kept coherent
is relatively small, these design choices influence the latency of the transfer only margin-
ally, assumed that contention is being neglected.
SOCs that integrate a number of processor cores, memory controller and a networking
device are frequently used for processors that target networking applications, as for exam-

0

10

20

30

40

50

60

70

80

90

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

Non-coherent Non-coherent buffered Coherent w ith cache

Cache

Processor

Memory
Controller/
Directory

cHT
XBar

Cache

Device

System on chip

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 101
ple the XLR processor family from Raza Microelectronics, which features up to 8 multi-
threaded processor cores, DDR2 memory controllers and two 10Gbit Ethernet devices
[104]. Another example is the Sun T2 (see Section 2.6.1).
Multi-Chip environments of SOCs. In a multi-chip environment, every chip has a device
instance. Even if the processor core and the cache that communicate with each other are on
the same chip, the performance gain would be nullified if communication involves inter-
chip probing. With the use of directories for the main memory, latency can be maintained
at the same level as in a single SOC system.

3.5.2 Devices with a Coherent Memory Controller
A very different approach is a device that acts as a coherent memory controller. As in PIO,
data flows from the device to the processor through read accesses to device memory. How-
ever, the processor’s performance on cacheable memory is higher.
Another improvement over PIO are better premises for efficient consumer process notifi-
cation (as introduced in Section 2.3.1). If valid bits are used for queue synchronization, a
processor using PIO on uncachable memory has to continuously poll on the device mem-
ory, both wasting process and interconnect bandwidth. Using a coherent memory controller
in the device, the processor polls on the cache, not occupying any interconnect bandwidth.
A processor instruction that waits until a cacheline with a certain address is invalidated
externally could even save processor resources, which is particularly useful for SMT archi-
tectures.

Figure 3-25. Design space of coherent memory on the device

The design space for devices with coherent memory controllers is shown in Figure 3-25.
Organization. This work focuses on a queue-based communication between processor and
device. This means, that the coherent memory controller implements physical memory for
these queues. RMA operations that target memory that is homed in another memory con-
troller are thus not supported. Nevertheless, a device acting as a coherent memory controller
does have applications in other fields, as for example shared memory controllers as Exten-

device coherent memory

Physical memoryTransparency
implementationto device

Organization Directories

IMPROVING DEVICE TO PROCESSOR COMMUNICATION102
diScale [108], transactional memories or simply memory that is implemented in a different
technology, as FLASH memory for example.
The physical memory implementation. As explained earlier, DRAM technology
accounts for a large part of memory access latency, and thus should be avoided in the com-
munication path between device and processors. Thus, a fast memory technology as embed-
ded SRAM or ZRAM should be used if performance improvements are the goal. Another
choice may be slower but larger memory, as external SRAM or DRAM, in combination
with a transparent cache on the device.
The performance for a device using a fast embedded memory is shown in Figure 3-26. As
expected, a speed-up cannot be achieved for off-chip devices. The on-chip solution shows
a latency decrease by a factor of four in both the polling latency and processor read access
latency.

Figure 3-26. Latency of a device acting as coherent memory controller

 (b) on chip device

0

20

40

60

80

100

120

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

DMA DMA buffered Direct memory

(a) off chip device

0

20

40

60

80

100

120

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

DMA Direct memory

Processor

Memory
Controller/
Directory

cHT
XBar

Cache

System on Chip

Coh MC

Device

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 103
Multi-chip systems. So far, these numbers are for a one chip solution. In a multi-chip sys-
tem, communicating processor cache and device should be on the same cache to achieve
best latencies. Even in this case probing over chip boundaries would destroy the perfor-
mance benefit. In a small device memory, the implementation of a directory is not very
expensive and solves this problem.

3.6 Transfer Cache
The previous approaches showed that a performance gain with coherent devices can only
be achieved for systems on a chip. External coherent devices suffer from the fact that in a
transaction, chip boundaries have to be crossed multiple times. In contrast, a DMA transfer
crosses the boundary only once, as it pushes the data to memory.
Thus, an improvement for external devices is to move only the device cache into the pro-
cessor chip, and leave the device off the processor chip. Thus, a chip boundary has to be
crossed only once.

Figure 3-27. Design space for transfer caches

Location. In a multi-chip system, data can be cached in a coherent cache in the processor
node to which the device is connected. Or, it can be cached at the node that is the home to
the respective memory address, as shown in Figure 3-28. In this case, the cache can be
implemented either as a coherent cache or behind a memory controller. As requests in a
MOESI system are always directed to the memory controller first, an implementation in the
same node is suggestive.

transfer cache

Coherence stateLocation
handling

device cacheOrganization What to cache
considerations

see 3.5.1

IMPROVING DEVICE TO PROCESSOR COMMUNICATION104
Figure 3-28. Transparent caching in memory controller of home node

Organization. The transfer cache can be implemented as any of the types presented in
Section 3.5: as a coherent memory controller, or as a coherent cache. While the coherent
cache can be used for all purposes, the memory controller implementation is rather limited.
On the other hand, it is more efficient if a request is directly served by a memory controller,
rather than forwarding the request to the cache. A combination of the advantages of both
methods is a cache in the main memory controller that is transparent to the coherence pro-
tocol. Due to the transparency, the access pattern of such a transfer cache is the same as for
a DMA access (see the flow diagram in Figure 3-19).
For such a cache, the considerations about device caches from Section 3.5.1 hold valid.
However, there is a difference regarding the coherence state of cacheline:
State of the cachelines. A transparent cache within the memory controller must be kept
coherent with the main memory. This can be done easily if the cache does not contain older
values of a cacheline than physical main memory. Also, dirty entries must be marked so that
they are written back eventually.
In a broadcast based protocol, this consistency scheme would work, but also would be inef-
ficient. A processor cache reading a line that is present in the transparent cache will receive
the response that contains the data very soon, but must wait until all probe responses arrive
before it can forward data to the processor. Thus, the beneficial effect of a fast cache would
be reduced. As a solution, a transparent cache should contain directory information for all

Processor

Memory
Controller/
Directory

cHT
XBar

Cache

Processor chip

Cache

Processor

Memory
Controller/
Directory

cHT
XBar

Cache

Device

Processor chip

Cache

Transparently cached
in home node

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 105
cached lines. Depending on the size of the system and the type of directory, the size of the
required field is relatively small compared to the cache entry itself.
For the transfer cache suggested here, coherence state information can be encoded implic-
itly. A cacheline is filled by a normal DMA access from a device. All processor caches have
to evict this line from their caches. As described in Section 3.5.1, a subsequent read hit in
the transfer cache should lead to the eviction of the cacheline from the transfer cache. Thus,
the presence of a cacheline in the transfer cache implies that the line is modified and not
cached elsewhere. Then, probing does not need to occur upon a read request to that line.
What to cache. For the transfer cache, the differentiation between data that should be
cached and other data is even more important than for a cache on the device. A large part
of all write requests to the memory controller will be victim write-backs from the proces-
sor’s caches. Those must not be cached, as this would pollute the cache.
Data can be distinguished at two locations: either in the transfer cache, or by the device. In
the transfer cache, the decision can be made based on the source of the request, which will
be an I/O bridge, and the address, either by a table-lookup or prediction. Besides the ques-
tion whether such mechanisms have the desired effect, they add significant logic overhead
into the path of every write request to the memory controller.

Figure 3-29. Transfer cache latencies

Thus, I suggest using the same methodology as for the device integrated cache: the func-
tional units of the device determine what data should be cached. This information must be
transmitted to the memory controller with the write requests. The most simple “cache hint”
is a one bit field in the HT packet.

 (b) on chip device

0

20

40

60

80

100

120

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

DMA DMA buffered Cached memory

(a) off chip device

0

20

40

60

80

100

120

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

DMA DMA buffered Cached memory

IMPROVING DEVICE TO PROCESSOR COMMUNICATION106
Figure 3-29 shows the transfer cache latencies. Processor read accesses to the cache have
about the same latency as the other on-chip coherent solutions. This latency stays the same
for the off chip implementations as well. Polling latency can be decreased by ~40% for the
off-chip implementation, and ~50% for on-chip implementations.
An interesting system for a transfer cache implementation is the Sun T2. A device’s write
requests in the T2 pass a level of cache on their way to the home memory controller: the L2
cache. Instead of building a dedicated transfer cache, the general purpose L2 cache might
be used to cache such transfers.

3.7 Results

3.7.1 Conclusion
Off-chip devices. Both coherent queue-based device implementations show no perfor-
mance benefit for an off-chip device. This analysis assumed the same link speeds for all
links. In reality, a device may not be able to run at the same link speed as the processors.
This would further decrease the performance of coherent solutions!

Figure 3-30. Latency summary for on-chip devices

Another important consideration is that such a cache-coherence device may increase the
diameter of the coherent fabric. Thus, probe-broadcast may take longer, thus increasing the
latency of every memory request in system. If the device is connected over a slower link,

0

10

20

30

40

50

60

70

80

90

CPU Read Access Latency Polling Latency

La
te

nc
y

(n
s)

DMA DMA buffered Transfer cache Direct memory Coherent w ith cache

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 107
or cannot keep pace with the number of incoming probes, this may have a severe impact on
system performance. However, a device acting as a coherent memory controller without a
coherent cache does not need to receive probes. Here, only asymmetric probing is required.
All in all, cache coherent interfaces cannot be recommended for external devices that imple-
ment queue based interfaces. This is in contrast to previous research done by Mukherjee [9]
in 1998. The prime reason for this is that Mukherjee assumed memory latencies to be 3x the
one-way hop latency (120 ns vs. 40 ns), while the factor is ~2 today.
The proposed transfer cache is the only solution to significantly decrease latencies for
device to processor communication for off-chip implementations. It does not increase the
diameter of the coherent network, and implicitly includes coherence state information.
SOC devices. Figure 3-30 shows the latencies for a SOC implementation on the device. A
device with a coherent memory space offers the lowest latencies.
The only disadvantage of such devices is that this interface is less universal, as only a rela-
tively small amount of memory can be implemented on devices. Caching, in contrast, is
more universal, as it allows caching of the complete main memory range of the system.
Device caching and a transfer cache have about the same performance in a chip SOC.
In a multi-SOC-chip environment, access latencies stay the same for direct memory
devices, if processor memory and device are on the same chip and directories are being used
to maintain coherence. If processor, device and memory controller are distributed on differ-
ent chips, latencies mainly depend on the number of hops between processor, device and
memory controller that are in the critical path. Table 3-1 shows the number of hops, which
can directly be obtained from the respective flow diagrams. If processor, device and
memory controller are distributed randomly in the system, direct memory has the lowest
number of hops to take, followed by the transfer cache, traditional DMA and the device
cache.

Table 3-1. Number of hops in the critical path between device and processor

hops processor read polling

DMA without (with)
directory

3 (2) 4

Direct Memory 2 3

Transfer Cache 2 4

Device Cache 3 5

IMPROVING DEVICE TO PROCESSOR COMMUNICATION108
The decision making process to select the architecture with the lowest latency is shown in
Figure 3-31. A short summary of the conclusions follows:
• External coherent devices do not decrease the latency of device to processor communi-

cation. In contrast, coherent caches in devices may significantly slow down all memory
accesses of the system. Only a transfer cache improves performance of external
devices.

• A system-on-chip implementation of processor and device is inevitable to reach lowest
latencies. In this case, all mechanisms that have been analyzed in this thesis offer a sig-
nificant performance improvement over classical DMA.

• For SOCs in which processor cores communicate with devices on the same SOC, the
direct memory mechanisms clearly offers the lowest latency.

All in all, the concept of the transfer cache as proposed in this work is particularly promis-
ing. Besides the performance advantages, devices can stay outside of the coherent domain.
In practice, getting access to the proprietary, non-standardized coherent protocols may be
difficult. Another point is that the cache hints that are embedded in the request packets can
be used for direct processor cache access (DPCA) mechanisms as well. Thus, these mech-
anisms can be compatible with each other. An outlook on DPCA solutions is given in
Chapter 5.

Figure 3-31. Decision process for coherent devices

Support off-chip
devices?

Interface mapable to
device memory?

Small memory
requirements?

no

Yes

yes

Transfer cache

Coherent device
memory controller

yes

Choice of Transfer
cache or device

cache

no

no

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 109
3.7.2 Related Work
This section summarizes related work to coherent device interfaces or SOC integration that
has not been presented as a complete system in Chapter 2.
SOC integration. [80] compares the placement of an Ethernet NIC on-die in a single pro-
cessor system with classical off-die approaches. The finding that an on-die NIC has a
slower performance than an off-die NIC cannot be explained by the authors. A second sug-
gested architecture streams all received data of the NIC into the processors L2 cache,
although the mechanism how this is supposed to work is not described.
[83] proposes a register-mapped interface to message-passing NICs. Besides an implemen-
tation in the register file of a processor, implementations as an either on- or off-chip cache
are proposed. In both cases, a bus is assumed as interconnection network between processor
and caches.
Coherent Devices. Except for coherent shared memory systems, coherent NICs are not
commonly used. Muckherjee [9] presented and simulated so called “cacheable queues”,
which are very similar to the device cache and coherent memory device solutions presented
in this work. Muckherjee analyzes systems where device and processor are on different
chips, and finds that coherent transfers are faster than conventional DMA. This is in contrast
to this thesis. This difference can clearly be traced back to the worsening of interconnect
and memory bottlenecks.
A device based on the idea of Muckherjee is the JNIC prototype system of a 10 GBit Ether-
net NIC [89]. JNIC onloads much of the protocol processing overhead to one of the general
purpose processors in the system. Queues that reside in the coherent memory of the device
are for communication between the hardware and the software part of the NIC.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION110

HT AND CHT PROTOTYPES 111
4HT and cHT Prototypes

This chapter describes the specification and implementation of coherent HyperTransport
(cHT) and noncoherent HyperTransport (nHT) solutions for the Extoll NIC. The focus of
this chapter lies on the noncoherent and coherent infrastructures that handle the data
exchange between device and the other components of the system.
The first section of this chapter describes the specification and implementation of a Hyper-
Transport core to utilize the direct connect architecture as described in Section 3.1. A direct
connection to an Opteron processor is achieved by mapping the core on the HTX board. The
current implementation of the nHT Extoll NIC is the Ultra NIC, as depicted in Figure 4-1.

Figure 4-1. Ultra NIC

Section 4.2 details the coherent HyperTransport interface for Extoll, which is based on the
ideas of devices with a coherent cache or a coherent memory controller, as developed in
Section 3.4 and Section 3.5.

nHT
core

nHT
Xbar

Ultra
unit

Network
Port

Extoll
Xbar

Link
Port 0

Link
Port 1

9 bit parallel LVDS
16 bit

HyperTransport
link

HT AND CHT PROTOTYPES112
4.1 The HT Core and Interface
The HyperTransport core has two different interfaces: On the one side are the HyperTrans-
port send and receive links, as specified in the HyperTransport protocol. On the other side,
there is the application interface, which allows FPGA designs to access the HyperTransport
core. This interface consists of three queues in each direction, one for every virtual channel.
Applications can access these using a valid-stop synchronization mechanism. Control and
attached data packets can be delivered simultaneously over the 160-bit-wide interface (96
bit to handle extended control packets, 64 bit for data packets).

Figure 4-2. Block diagram of the nHT core [51]

With a maximum HT link width for Opteron systems of 16 bit, the performance of the link
depends mainly on the link clock frequency. One limiting factor is the speed of the serial I/
Os. In the FPGA used on the HTX boards, they limit the speed to 400-MHz DDR, thus
HT400. Xilinx serializer/deserializer (SERDES) blocks parallelize/serialize the link by a
factor of four, so that the frequency of the internal core clock is 200 MHz, and the data path

ISERDES SYNC
REORDER

HT_CLK_U

REFCLK

OSERDES

CREDIT

INIT

CRC

CONFIG

DECODE
BUFFER

OUTPUTGEN

GEN

BUFFER

16

2
CAD_L32

CTL

WR_EN

CTLFAST

32CAD_U
CTL

VALID_U

6

SHIFTOUT

8SHIFTIN

CTRL 96

18

REL_EN

CREDIT_FREE
CREDIT REMOTE

DATA

CMD

12

6

64

96

ENABLE

CRC
64

INIT_IN
INIT_OUT

TYPE

RESPONSE

3

64

BYTE
READ
WRITE

16

2

CAD_INIT
CTL_INIT

CAD
CTL

CRC CHECK

4

4

3x

64
4

32
4

64
4

PWROK
RESET_N

CAD
CTL

HTCLK

CAD
CTL

HTCLK

CAD_U32

HT_CLK_L

BITSLIP

RELEASE

UPPER

UPPER

SYNC
REORDER
LOWER

32CAD_L
VALID_L

WR_EN

CRC CHECK
LOWER

BS

RCLK

RCLK
DB4

CORE_CLK
LINK_FREQ

DEC
UPPER

DEC
LOWER

LINK_WIDTH

STOP_OUT

DATA 64

DIR_CONF 7

CONFIG

ERROR

NP/P/R

IGNORE_C

IGNORE_D

6SHIFTOUT
6 EMPTY

NP_C
P_C
R_C

NP_D
P_D
R_D

NP_C
P_C
R_C

NP_D
P_D
R_D

96

96

96

96

96

96

64

64

64

64

64

64

REFCLK

SHIFT_CONF 7

ORDER 3

3ORDER

HT
interface

A
pplication interface

HT AND CHT PROTOTYPES 113
has a width of 64 bit. The SERDES blocks are controlled by a “bitslip” module to generate
proper alignment to 32-bit boundaries.
An important constraint is to process this data stream with the lowest number of pipeline
stages and reasonable resource requirements.
Scalability and portability. The HT core is implemented in the Verilog hardware descrip-
tion language. This makes the design easily portable to other platforms, as FPGAs or ASICs
from other vendors. Only device- or process-specific hard macro blocks have to be
exchanged. These are SRAMs, DLLs or PLLs, I/O cells and the serializers and deserializ-
ers.
The scalability of HT core implementations in FPGAs to higher HT link clock frequencies
is limited (see Figure 4-3). Faster I/O cells are already available in the newest generation
devices, but the maximum internal clock speed is unlikely to scale up by the same factor.
Thus, FPGA implementations of an HT core for higher link clock frequencies require a
completely new design of the core, with a higher parallelization degree. The downside of
this is a significantly increased complexity, which increases the number of utilized FPGA
resources and the length of pipelines. It is also questionable if applications in an FPGA
could take advantage of the resulting high bandwidth.

Figure 4-3. Scalability of the HT core

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200 1400

HT link speed

co
re

 c
lo

ck
 fr

eq
ue

nc
y

(M
H

z)

FPGA
implementation

ASIC
implementation

HT core on Xilinx Virtex-4 Current AMD Opteron processors

HT AND CHT PROTOTYPES114
Significant performance improvements can only be expected if ASIC are used instead of
FPGAs. ASIC implementations in modern process technologies with internal clock fre-
quencies of 500 or 600MHz are very feasible. Thus, the current design is the perfect choice
for FPGA implementation and verification of high-speed designs that will be implemented
in an ASIC, as the HT core is the same for both. If different core architectures would be
used for different implementations, an FPGA-based verification could not prove that the
ASIC implementation works.

Figure 4-4. Command packet format at application interface

The application interface. The 96 bit sized on-chip control packet is basically the same as
the largest HT control packet, which is an extended packet that uses 64 bit addresses. 8 bits
of redundant information have been removed and are used for an internal tag (marked green
in Figure 4-4). Associated data is transmitted 64 bit parallel.
As in Extoll, most devices will have to connect multiple internal units to the HyperTrans-
port interface. A crossbar is the most universal switching structure, as it allows multiple
concurrent transactions. The Extoll on-chip HT crossbar is such an implementation that is
based on the HT protocol [122] and is directly connected to the HyperTransport core.

SrcTag[4:0]

01234567bit Tine

0

1

2

3

4

5

6

7 Addr[39:32]

Addr[31:24]

Addr[23:16]

Addr[15:8]

SeqID[3:2]

Addr[47:40]

Addr[55:48]

Addr[63:56]

Length[2:0] StateHint[1:0]Rsv

8

9

10

11

PassWD SeqID[1:0] UnitID[4:0]

Mask/Count[3:2]

Addr[7:2] Mask/Count[3:2]

Compat

command type reservedD_att BAR

HT AND CHT PROTOTYPES 115
4.1.1 Results
The resource requirements of the 16bit HT400 core implementation on a Xilinx Virtex-4
FX 60 are shown in Table 4-1. The hardware latency of the crossbar is 12 internal clock
cycles for the inbound path from link to application interface, and 6 cycles for the outbound
path.

Performance in the system. The 16bit HT400 core has been evaluated [127] in the system
described earlier in this chapter. PIO accesses from the process to the device are one type
of transaction. For write accesses, the memory type “write combing” has been used, which
combines stores to subsequent addresses into one write access with the maximum size of
64bytes. For these writes, the sustainable bandwidth is 874 MB/s.
For read accesses, both the bandwidth and latency can be measured. The latency is 39 HT
core clock cycles, which corresponds to 195 ns. For read accesses, only 32 bit read accesses

Table 4-1. HT core resource requirements in a Virtex-4 FX 60 FPGA

Resource absolute relative

Logic Slices 5,222 20%

Look-up tables 6,371 12%

Flip-flops 2781 5%

FIFO16/
RAMB16s

33 14%

DCMs 3 25%

ISERDESs 10 1%

OSERDES 9 1%

Table 4-2. Hardware latencies of the core

Direction
Clock
Cycles

Delay@
HT200

Delay@
HT400

Delay@
HT1000

In 12 120 ns 60 ns 24 ns

Out 6 60 ns 30 ns 12 ns

HT AND CHT PROTOTYPES116
can be observed. This of course implies that larger processor reads result in a fairly high
latency, as e.g. an 128 bit read is executed using 4 individual ordered 32 bit reads, resulting
in a latency of 780 ns. The bandwidth for reads is thus quite low: 20 MByte/s.
The second type of accesses are those initiated by the device: DMA operations. The achiev-
able bandwidth depends on the HT packet size. Using the largest HT packet size of 64 bytes,
write bandwidth goes up to 1410 MB/s, while read bandwidth is 1040 MB/s.
Performance of the Ultra NIC. The Ultra unit targets low latency communication with
small messages. Figure 4-5 shows the half round trip latency, measured with the NetPIPE
benchmark. The latency seen on the Extoll API level is below 1 , which is an excellent
result when compared to other NICs [125]. These are the results of an PFGA prototype
design with an HT200 core and an internal clock frequency of only 100MHz. Due to tech-
nical difficulties, Ultra has net been evaluated using the HT400 core. However, significant
performance improvements can be expected.

Figure 4-5. Ultra ping-pong latencies in a two-node network [125]

All in all, the HT core successfully exploits the potential of the used FPGA in terms of band-
width, latency and resource utilization. Offering an HT400 connection, and thus a bidirec-
tional bandwidth of 3.2 GByte/s, the HT core can be used for more than just prototyping.
The performance is sufficiently good to serve as a production coprocessor board as well.

μs

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 4 8 16 32

ha
lf

ro
un

d-
tri

p
la

te
nc

y
 in

 u
se

c

message size in bytes (log)

NetPIPE (ping pong)

OpenMPI over Ultra2

Ultra2 API
;

HT AND CHT PROTOTYPES 117
4.2 The Coherent HT Infrastructure
The guiding idea of the coherent device infrastructure is that the noncoherent Extoll device
should be able to use the coherent communication mechanisms that have been described in
the previous chapter. At the same time, changes to the Extoll core should be as minimal as
possible.
While the previous chapter showed that performance increases cannot be expected from an
implementation in an external device, such an implementation is the only way to proof that
the mechanism works.
A second thought is that the cHT infrastructure should be designed in such a way that other
applications may be using it, and in particular those that intrinsically need a coherent
memory view. Such applications are in particular NI devices that provide a coherent shared
memory view of the system, or testbeds for transactional memory systems.
This section describes the coherent solutions that have been proposed and analyzed in
Section 3.4 and Section 3.5: a coherent device cache and coherent device memory space by
embedding a transparent memory controller.

4.2.1 The Coherent Fabric
Figure 4-6 shows a block diagram of the coherent HyperTransport device infrastructure.
The coherent device fabric is organized very similar to that of an Opteron northbridge. The
cHT crossbar is the central unit in the coherent part, over which all other components get
connected with each other. The configuration of the coherent part, and in particular the con-
figuration of the routing tables, is done using the same set of configuration registers as
Opteron northbridges. Due to the similarities with a Opteron northbridge, changes in the
BIOS can be kept at a minimum.
As specified by AMD [22]1, a maximum of four HT units IDs per NUMA node exist. Indi-
vidual generations of Opteron processor may have restrictions about the functionality of
units. In the 9th generation Opteron’s used in this project, unit IDs are: “0” for I/O bridges,
“1” and “2” for processors/caches, and “3” for coherent memory controllers.

1. All following details about AMDs architecture are also taken from this document.

HT AND CHT PROTOTYPES118
Figure 4-6. The coherent device infrastructure

4.2.2 Units and Crossbars.
As cHT units, the following types of units exist: a cHT/nHT bridge, a cache, and a coherent
memory controller. Not all units have to be present, instead, they may be combined with
each other depending on the requirements of the specific application. All these units have a
noncoherent HT Crossbar compatible interface to the application side. This allows to imple-
ment noncoherent devices behind the coherent part.
The need for two crossbar switches. The coherent fabric has two crossbar switches, that
are relatively close to each other. Every crossbar has a latency of three clock cycles and also
introduces some wiring complexity. This may be a problem especially for implementations
on FPGAs, where routing resources are limited. However, the following advantages clearly
outweigh the disadvantages of having two crossbars:
• In order to keep changes to the noncoherent functional units as small as possible, their

on-chip nHT interface should not be changed. Thus, the nHT crossbar is essential to
connect the various functional units, and thus is required.

nHT
Xbar

cHT
XbarcHT core

I/O Bridge

Coh. cache

N.a.

Memory Ctrl.

Non-coherent deviceCoherent fabric

Functional
Unit n

Functional
Unit 0

Max. 4
coherent units

Embedded SRAM
/external xRAM

HT AND CHT PROTOTYPES 119
• The previous chapter showed that a coherent fabric should be as densely interconnected
as possible. A cHT crossbars opens up the possibility of adding more cHT links to the
device. While an implementation in the HTX slot does currently not allow the use of
more than one link, implementations in the processor socket could easily do so.

The interface between cHT crossbar and the coherent units is just as specified by the cHT
protocols.
The noncoherent HT crossbar routes requests based on the address. Thus, every unit at a
switch port that may be target of requests has a unique address space. Responses are routed
based on the SourceTag field in the HT packet. The coherent memory controller can be inte-
grated just the same way. For an access to the coherent cache, the cache access (C_acc) bit
must be set, as this overrides address based routing. Thus, the command packet forward
must contain the C_acc bit in the tag.

Figure 4-7. Coherent cache-aware command packet format at the nHT crossbar.

4.2.3 cHT/nHT Bridge
The cHT/nHT bridge allows noncoherent device functionality without any changes in the
device behind the coherent fabric or the corresponding software. Due to the similarities
between cHT and nHT protocols, the essential functionality is small.
Accesses from the coherent domain may can only be noncoherent read and write requests.
The bridge translate these from the cHT protocol to the nHT protocol, and vice-versa for

SrcTag[4:0]

01234567bit time

0

1

2

3

4

5

6

7 Addr[39:32]

Addr[31:24]

Addr[23:16]

Addr[15:8]

SeqID[3:2]

Addr[47:40]

Addr[55:48]

Addr[63:56]

Length[2:0] StateHint[1:0]Rsv

8

9

10

11

PassWD SeqID[1:0] UnitID[4:0]

Mask/Count[3:2]

Addr[7:2] Mask/Count[3:2]

Compat

command type res.D_att BAR C_acc

HT AND CHT PROTOTYPES120
responses from the device. For some requests, the bridge also has to send a response back
to the requester in the coherent fabric.
Device-initiated sized read or sized write requests to the coherent domain must be for-
warded into the coherent domain. This includes a routing table lookup. For reads, the bridge
will not only get a read response, but also has to collect probe responses. For writes, order-
ing must be maintained. Thus, write requests are only forwarded if all previous writes have
been acknowledged.

4.2.4 Cache Design
There are 2 potential applications for a coherent device cache. A general data cache, as dis-
cussed in Section 3.4.1 on page 89, and a queue cache. A general cHT data cache has been
implemented [129]. Only small modifications are required to use this cache as a queue
cache. The following section gives a brief overview about the cache implementation and
modifications that are required for a queue cache.
For a general cache, the following transactions go over the coherent interface:

1. Read requests due to misses in the cache, and corresponding read and probe responses.
2. Change to dirty request due to a write hit to a non-exclusive cacheline, or due to the

new allocation of a complete cacheline.
3. Write requests due to cache evictions of modified data.
4. Probing requests caused by accesses of remote processors or devices. These must be

answered by either a probe response or a read response with the cacheline data.
Transactions 1 through 3 are all initiated by the device. Only transactions type 4 is initiated
externally. In a queue cache, transactions as in 1 do not occur. Mechanism 2 takes place
when new entries are inserted into the queue by the device. Data is transported to the pro-
cessors caches via 4. Write-backs, item number 3, occur if a processor reads a queue entry,
but the obligation to write the dirty cacheline to memory does not move to the processor
cache.
Figure 4-8 shows the top level diagram. Two units can access the cache data. The probe
handler is responsible for all requests from the outside. Its main task is to answer incoming
probe requests either with probe responses, or with read responses.
The cache logic module is responsible for all requests that originate from the device. It is
organized as a pipeline and can thus process multiple requests simultaneously (see
Figure 4-9). The XBar input stage obtains control packets over the nHT crossbar. In the
next pipeline stage, a cache lookup occurs. As the cache may be busy with other requests,
this operation may stall for some clock cycles. Depending on the type of request and the hit/

HT AND CHT PROTOTYPES 121
miss information from the cache, the cache FSM unit schedules the request to the next pipe-
line stage.
Upon a read hit, the direct response unit will generate a response. For a read miss, the
request store unit will generate a request on the cHT side, and also allocate an entry in the
request queue and in the cache. The allocation of a new cache entry may evict another entry.
If this entry is modified, it is written back to main memory by the CacheLineAdmin unit.
Responses to these requests arrive at the request match unit, which matches the request with
the entries in the request queue. Then, the cache store unit writes the entry to the cache and
at the same time forwards the response the requester on the nHT side.

Figure 4-8. Cache top level diagram [129]

A write hit will be forwarded to the cache store unit, which inserts the data into the cache-
line. If the state of the cacheline is not an exclusive one, the CacheLineAdmin stage must
send invalidations to all other caches. In this case, the cache entry is marked “busy” and
may not be used unit all caches have acknowledged.
A write miss will generally bypass the cache and proceed directly to the CacheLineAdmin
stage. An exception are write misses that write a complete cacheline of data. As for a read
miss, a cache entry has to be allocated. After that the CacheStore unit writes the data into
the cacheline. The CacheLineAdmin unit must also generate invalidations on the coherent
HT.

CACHE MEMORY

CACHE
LOGIC

ROUTING
LOOKUP

PROBE
HANDLER

NONPOSTED

POSTED

RESPONSE

NONPOSTED

RESPONSE

PROBE

RESPONSE

POSTED

nHT interface

cHT interface

HT AND CHT PROTOTYPES122
It requires two modifications to turn the cache into a queue cache:
• As analyzed in Section 3.5.1 on page 94, it depends on factors like cache size and the

number of queues in the system whether cacheline replacement or bypassing should be
used. Thus, the cache should support both methods. The mode can be selected by the
device driver by setting a field in the configuration register space of the cache. This can
happen anytime during normal operation.

• Upon an external read via a probe request, the cacheline should be evicted from the
cache.

Figure 4-9. Block diagram of the cache logic module [129]

Ultra Implementation with coherently cached queues. The only modification to the
Ultra unit when it is used with the coherent cache to implement cacheable queues is that it
must set the C_acc bit for such data that should be cached in the device. As Ultra is designed
for low-latency, fine-grain communication, all received data and the corresponding control
data are ideally cached. Thus, the Ultra receiver must set C_acc for all writes of such data
to efficiently make use of the queue cache.

Request Store

Cache Line Admin

C
ache FSM

XB
A

R
 Input Stage

Request Match Cache Store

Src Done

Direct Response

Write Stage

Cache Memory

Arb.

nHT interfacecHT interface

nHT control packet

flow control

nHT data packet

flow control

nHT control & data packet

flow control

nHT control & data packet

flow control

R
equest Q

ueue

HT AND CHT PROTOTYPES 123
4.2.5 Transparent Memory Controller in the Device
The memory controller provides a coherent memory space to the host system. A top level
block diagram is shown in Figure 4-10. It is designed for a data communication from device
to the host system as described in Section 3.5.2. The device needs write access to the
memory space, while the host system should obtain both read and write access. An addi-
tional write access for the device makes the memory controller a much more universal mod-
ule.
Requests to the memory space by the host behave just exactly like requests to the system’s
coherent memory. The device driver controls which memory regions reside on the on-
device memory and which reside on the system’s main memory, and configures address
registers in the functional units correspondingly. For the functional units of the device, the
on-device memory controller is fully transparent. The FUs simply perform memory
accesses, which will be routed by the crossbar either to the host bridge or to the on-chip
memory.

Figure 4-10. Coherent memory controller

4.3 Summary
This chapter detailed the implementation of the noncoherent HyperTransport core, which
is the heart of the direct connect architecture. Performance results are excellent, and very
promising for faster implementations of the core. The HT core implementation is already
being used for both research and production systems.

Network
handler

SRAM
Memory

Port 0
cHT core

Queue interface

Port 1 Host
handler

Ordering
unit

Directory

Coherence
manager

HT Xbar
interface

HT AND CHT PROTOTYPES124
This chapter also specified the coherent environment and its components. A full specifica-
tion is essential to prove the functionality and has been performed with success. Also, the
coherent HT core, the cHT crossbar, and the coherent cache have been implemented and
tested in the FPGA prototype system. As predicted in Chapter 3, the performance of an
external coherent device is worse than for noncoherent devices, especially if the link to the
device is a only an HT400 link. Thus the coherent framework will not be used for an FPGA
production system. However, it is an excellent testbed for the verification of ASIC-imple-
mented coherent designs, and for the research on coherent networks in SOCs.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 125
5 Suggestions for Direct
Processor Cache Access

This chapter provides an outlook on direct processor cache access (DCA) architectures.
DCA has the same goal as the transfer cache that has been proposed in Chapter 3: data that
is written by the device and will very soon be consumed by a processor is cached in order
to minimize access latencies. DCA moves the cache much closer to the processor, as it uses
the standard data caches of the processor. Thus, the read access latency that occurs when a
processor reads this data is further reduced. In contrast, significant reductions of the overall
latency of a transfer between device cannot be expected when compared with the coherent
solutions and the transfer cache as presented in Chapter 3. Just as in the other mechanisms,
DCA must occur in a cache coherent fashion, which cost some time.
Nevertheless, the reduction of the processor read access latency that DCA brings is signif-
icant for overall application performance [40].
Many considerations that have been made for the coherent device cache and the transfer
cache in Section 3.5.1 and Section 3.6 hold true for DCA as well. This includes the types
of data that should generally be cached, and which component of the system can best decide
this.
However, two key challenges have to be solved to enable DCA architectures. The first one
occurs in multiprocessor systems, where the right target processor has to be identified. The
second one is the development of a data transport mechanism into the processor caches.
Section 5.1 first shortly describes the design space. Then, the design space is narrowed
down by creating a mapping from device contexts over processes to processors, and ana-
lyzed in Section 5.1.1. Section 5.2 proposes four alternative mechanisms how DCA could
be implemented in a HyperTransport based system that uses an IOMMU.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS126
5.1 The Design Space
The most important design aspects of direct processor cache access mechanisms as shown
in Figure 5-1 shall be briefly discussed.
Initiation. A DCA is per definition triggered by the producer of data, i.e. the device. How-
ever, the device does not necessarily need to be the initiator for the actual transfer of data.
For example, the device may send a prefetch hint message to the processor. The processor
then can decide to actively pull the respective data into the cache. If the device is the initi-
ator, it pushes data into the processor cache.
Mapping. A key problem for DCA mechanisms in multiprocessor systems is to identify the
right processor cache that should be the target for a DCA. Assuming virtualized devices,
the task is to map a device context to a thread. In a second step, the processor must be iden-
tified which executes this thread. Other information besides the device context, as for exam-
ple the source of a message may be included in the mapping process as well.
Theoretically, address based mapping can be used instead of context based mapping. In this
case, large address mapping tables must be maintained.

Figure 5-1. Design aspects of DCA mechanisms

The Location of mapping resources can be at the device, at the I/O bridge for noncoherent
devices, or at the memory controller. A device based mapping has the advantage that map-
ping resources scale with the number of devices. The interconnect to the device, as Hyper-
Transport for example, must support DCA packets.
If the mapping is performed by the bridge, most details of the DCA protocol may be hidden
from the device, which increases inter-platform compatibility. DCA mapping could be inte-
grated into existing data structures, as the I/O memory management unit (IOMMU). An
IOMMU may allow a device to perform the address translation itself using an IOTLB. Sim-
ilarly, the device could be allowed to perform the mapping using the same TLB.

direct processor cache access

processorinitiation
mapping

location of flexibility
mapping resource of mapping

target cache

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 127
Flexibility. A process or thread may be statically bound to a processor. In this case, the
mapping does not have to be changed during lifetime. However, it may be disadvantageous
if the process can never be scheduled to a different processor. If processes are allowed to
be scheduled to other processors, mapping tables must be updated. Also, there is a penalty
for every such processor switch, as the newly assigned processor has a cold cache. Thus,
even for a dynamic scheduling of threads, processor switches should be avoided.
Target Cache. As a target cache, any of the data caches that is associated with the target
processor can be used. In some systems, multiple processor cores share a level of cache. For
example, four-core Opteron processors share an L3 cache. If this L3 cache is selected as a
target cache, a process does not need to be bound to a single processor core. Instead, it has
to be bound to the group of cores, on which it can be scheduled freely.

5.1.1 Device - Thread - Processor Relations
In a symmetric multiprocessor environment, DCA is complicated by the fact that a thread
typically may be scheduled to any processor of the system. However, DCA can only work
if this processor can be identified. This chapter discusses how a device context, a thread and
the processor can be associated with each other.
A device context may be a real, explicit context, as in the virtualized Extoll architecture. In
devices where no explicit context exists, it can be implicitly given by the information in a
packet header. For TCP/IP packets, the combination of the target TCP port and target IP
address may define such a context.
Every device context is mapped to a single process exclusively. The relation between con-
text and thread is not bijective: a process may use several contexts at the same time.
The device-thread relation. When analyzing how incoming requests are distributed to
processes or threads in the system, two application models have to be considered. One pos-
sibility is that a number of different and independent processes is running in the system. As
a process can only run one processor at a time, a binding between a device context and a
process may thus explicitly define the processor which is assigned to the process.
The second application model is a number of worker threads that are used to process
requests. There are no differences between the worker threads, any thread may work on any
request that is coming in from the network. This type of application is typical for commer-
cial workloads as web servers and database servers. In a socket based environment, every
worker thread has an exclusive set of ports that it uses to work on incoming requests. This
port has been assigned to the thread when the socket based connection was established.
Thus, there exists a device context to thread relation as well.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS128
The thread-processor relation. If a process is in execution on a processor, there is a
clearly defined relation between the thread and the processor. In particular, a thread can
determine the current processor on which it is running. However, this is not sufficient for a
implementation of DCA. Packets for a process may arrive as well while the process is not
in execution.
In essence, DCA requires a thread-processor relation that does not change frequently. This
is the case if the operating system’s scheduler avoids to shift threads between processors.
Besides DCA, there are other potential benefits of such a policy. In a NUMA system, it is
advantageous if a thread is running on the same die that holds the processes memory (see
Section 3.3). Also, if a thread has been de-scheduled only for a short period of time, a part
of the current working set of the thread may still be present in this processor’s cache. A
rescheduling to the same processor can thus significantly decrease the start-up penalty that
is caused by a cold cache. Under Linux, the kernel-level “numalib” library and the
“numactl” tool [109] give users explicit control over the allocation of memory and proces-
sors. Using these functions, a process can for example be bound to a specific processor so
that it executes only on this processor. It also can be bound so that it executes preferably on
this processor.
As the operating system or the thread itself know the processor that is currently assigned to
the process, this information can easily be communicated to create a context-thread-proces-
sor relation.
A different approach is to create a direct context-processor relation. Such a solution is
implemented with the Receive Side Scaling (RSS) [39] mechanism. Intel claims [37] that
the distribution of incoming packets to processors is one of the large bottlenecks in TCP/IP
processing using modern 10GbEthernet NICs. RSS specifies a way how a processor can
determine the target processor that has to process an incoming packet. This is done by com-
puting a hash function on certain parts of the packet header, including source and destina-
tion IP addresses. Source and destination port may also be part of the address. The hash
result is used to select a target processor over an indirection table in the device. The inten-
tion of RSS is not to fill the processor’s cache, but to send a directed interrupt to the pro-
cessor. However, this mechanism can be used for DCA purposes just as well, and in
particular, both applications may work very well together.
Mapping in virtualized environments. A context-thread-processor mapping is trivial for
non-virtualized devices, as the number of contexts and threads is one. In a virtualized
device, some form of table must be present, which is indexed with the context identifier and
returns the related processor ID. Several logical locations of this table are possible. The pro-
cessor ID field may just be integrated into the context information. Another location may
be the data structures that are used by the IOMMU.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 129
One of the main tasks of the IOMMU is to map virtual device addresses that a device is issu-
ing to physical addresses. IOMMUs for x86 have been suggested by both AMD [42] and
Intel [41]. In these architectures, the IOMMU manages a device table1. The entry of such a
table holds, as the most important value, the root pointer of the page table that is used for
address translation.
One useful application of this model is to give a virtual device the opportunity to access the
address space of a process using process virtual addresses, i.e. the virtual address space of
the processor and the device are identical. This can be accomplished if every virtual device
has a device entry in the device entry table of the IOMMU, and the page table root pointer
points to the page table root of the process. In this usage model, a processor ID or CPU ID
field could be integrated into the device table entry, as shown in Figure 5-2. In contrast to
other solutions, this solution could not only work in cases where the device decides based
on it’s functionality if a memory access should use DCA. It is also possible to use a memory
mapping by marking pages table entries as DCA-enabled pages.
In the case that a device uses an IOTLB to cache translations from the IOMMU page tables,
the device should cache the processor ID as well in order to avoid an IOMMU lookup.

Figure 5-2. A potential integration of a CPU ID filed in a device table entry, based on the AMD
IOMMU specification [42]

1. While both architectures are very similar to each other, they use different naming conventions. Here AMD’s
naming conventions will be used.

CPUID

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS130
5.2 DCA for HyperTransport
The analysis performed above sufficiently shows on what a DCA transport protocol may
build upon. Methods have been proposed in which the device or the IOMMU have the
knowledge which processor will access the data.
Now, suggestions for DCA data transport mechanisms for the coherent HyperTransport
network are presented. The next subsection introduces an indirect cache access mechanism,
where the data is prefetched by processor logic based on prefetch hints of the device or
IOMMU. Thereafter, three mechanisms for a push-style data transport into a processor’s
cache are presented. All three mechanisms require some packet format changes to existing
packets and new commands for control packets. Drafts of these modifications will be pre-
sented, except for the Write Allocate (WRA) packet, as this is a packet of the coherent HT
protocol, and the presentation in this work might violate non-disclosure agreements.

5.2.1 Indirect Cache Access via Prefetch Hint
This solution reuses the prefetching logic that is implemented in processors. Usually, these
prefetching engines are triggered by regular accesses to data like burst and strides. Now,
this prefetching engine is triggered by the device, which sends a prefetch hint to the proces-
sor.

Figure 5-3. Indirect cache access via prefetch hint

An important question is at what point in time the prefetch request is sent. Lowest latency
can be reached if the prefetch hint is sent directly after sending the write request. Theoret-
ically, there is the chance that the processor prefetches the line before the write request has
reached the memory controller. The most critical situation occurs if the line is already

Dev MCWR

PR

Directory clean

Dev MCWR Directory not clean/MC

CPU1
CPU2

CPU3

P
No directory

TD Dev SD
MC

CPU
PrefetchHint

TD Dev SD
MC

CPUPrefetchHint

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 131
cached, and the prefetch arrives before the invalidation from the memory controller. Exper-
imentation or simulation must be performed to determine the best strategy.

Figure 5-4. Sized-write payload for prefetch hint

In the case of the HyperTransport protocol, the prefetch hint packet can be a standard HT
sized posted write packet. Thus, changes to the HT protocol are not necessary. The packet
is targeted to processor address space, which may be integrated into the configuration
address space of the processor. The packet payload, shown in Figure 5-4, consists of a
single 64bit word, which must contain the address of the cacheline. The remaining space
can be used for a coherence state hint and a length-field to allow prefetch hints for multiple
consecutive cachelines at once:
• StateHint[1:0]: Hint to the processor in which state of the coherence protocol the line

should be fetched.
• Length[2:0]: If >0 number of following cachelines with subsequent addresses that

should be fetched as well.
• Addr[63:6]: Address of the cacheline that should be prefetched in a cacheline-sized

granularity.

5.2.2 Direct Cache Access
Direct access to the processor cache by the device without the use of prefetch hints promises
lowest latencies. However, in a system that uses the memory controllers to serialize simul-
taneous requests to the same memory address, any DCA transfer must also be subject to this
serialization process to avoid memory inconsistencies. A direct point-to-point transfer with-
out involvement of the memory controller is not allowed. The three following options
mainly differ in how they access the serialization point.

01234567bit time

0

1

2

3

4

5

6

7

Addr[39:32]

Addr[31:24]

Addr[23:16]

Addr[15:8]

Addr[7:6]

Addr[47:40]

Addr[55:48]

Addr[63:56]

Length[2:0] StateHint[1:0]Rsv

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS132
Figure 5-5. Cache update with parallel access to MC and CPU

Option one. The device sends an update directly to the target cache, and a validation
request to the memory controller at the same time (see Figure 5-5). The CPU collects both
the write_allocate (WRA) packet and all probe responses that are send to it due to the val-
idation request of the device. However, the matching of WRA and PR packets poses some
problems. First of all, probe responses are always generated as a direct or at least indirect
response to a request from the processor that will later receive the probe response. Thus,
matching can be done using a sequence identifier that has been assigned by this processor.
The scheme presented here is different, as the request is generated by the device. Matching
can only be performed if additional information is provided. Either the probe response must
carry the memory address in it’s header, which means a significant overhead. Alternatively,
it must contain both the devices ID and it’s sequence ID. Another issue is the size of the
matching queue: in order to avoid deadlocks, it must be large enough so that it never blocks
incoming requests. Due to these problems, this option is not a solution for DCA.

CPU1
CPU2

CPU3

P

SD
MC

PR

Dev

MC

WRA CPU

PR
Directory clean

Directory not clean/
Dev

MC

WRA CPU

Validate

Validate

No directory
TD

Dev

TD
Dev

SD
MC

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 133
Figure 5-6. Cache update with serial access to CPU and MC

Option two. An alternative is to send data to the target cache without notifying the memory
controller directly. The target cache then has to do just exactly the same as if the processor
had written to the cacheline: If the line is not in an exclusive or modified exclusive state, a
message has to be send to the memory controller, and eventually invalidation-probes have
to be sent to other caches. A flow diagram for this case is shown in Figure 5-6.
This mechanism provides the best possible performance in the case that the respective cach-
eline is already present in the target cache in an exclusive state, which may be caused by a
previous prefetch by the processor.
A critical issue regarding the latency of a DCA operation is that the processor is in the flow
path that makes the request globally visible. Considering that DCA is an speculative opti-
mization to speed up memory accesses that are likely to be performed in the future, it is
clear that requests from the processor should have priority over DCA requests. If this leads
to a situation in which DCA-initiated requests are queued at the processor, the time until the
request will be observed globally increases. As a result, the write bandwidth of the device
decreases if it performs write ordering.

Dev WR CPU
Validate

PR

CPU1
CPU2

CPU3

PMC CPU
SD

MC Write Miss &

Dev WR CPU
Validate PR

MC CPU
SD

MC Write Miss &

No directory
TD

Dev

TD
Dev

Dev WR CPU Write Hit
TD Dev

Directory clean

Directory not clean/

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS134
Figure 5-7. Cache update with serial access over MC and CPU

Option three. The memory controller is the target for the device’s writes, as in conven-
tional DMA. The memory controller then can update a processor cache, either with a direct
update, or with a prefetch hint. A benefit of this scheme is that processors are not required
to perform the requested updates to guarantee consistency.
For a mapping by the device, the format of write request packets must be modified, as it has
to include the target processor ID. Current HT packet headers do not provide sufficient
space for this field. In HT3-based systems, this can be done by introducing a new extension
packet. This extends HT control packets to a size of 96 bit for standard HT packets using
40 bit sized addresses, and to a size of 128 bit for HT packets using 64 bit sized addresses.
The extension has to be appended to the header only for such packets that should be for-
warded. A draft of such an extension is shown in Figure 5-8.
• StateHint[1:0]: Hint to the processor in which state of the coherence protocol the line

should be fetched.
• DCA Unit ID[7:0]: Unit ID of the DCA destination.

Figure 5-8. Proposed HT 3.0 packet extension for write packets with a cache hint

Dev MCWR CPU

PR

WRA Directory clean

Dev MCWR
CPUWRA Directory not clean/MC

TD
MC

TD
MC

CPU1
CPU2

CPU3

P

No directory

TD Dev SD
MC

TD
Dev SD

MC

01234567bit time

0

1

2

3 rsv.

DCA Unit ID[7:0].

01 Cmd[5:0]= 111110

StateHint[1:0]rsv.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 135
From this first analysis, option three seems to be the most advantageous solution. However,
future work must perform an in-depth analysis and comparison of these mechanisms.
Another consideration is to support processor-to-processor DCA with the same mechanism.

5.3 Related Work
A patent by Intel [61] describes the sketchy idea of a data structure that can be used for an
DCA mechanisms based on address ranges. This mechanism is embedded into an IOMMU-
like structure.
A dedicated network cache to speed up the receive operation in message passing NICs is
suggested in [78]. The cache is parallel to the normal data cache of the processor, and can
be accessed using special network_load and network_store instructions. Besides the mes-
sage data, a cache entry contains the message ID, which is used to unambiguously identify
the message and to bind it to it’s target address. Also, it contains the network tag and pro-
cess tag fields, which point to the respective network memory or process memory home
address of the cacheline. Before a process performs a receive operation on a message, the
memory tag is the valid pointer to the home address, after it has been received, the process
tag is the pointer to the message, and buffer space in the NIC can be freed. As all 3 tags have
to be searched associatively, the authors suggest an implementation as 3 different caches.
In multiprocessor environments, a message predictor [79] shall be used to find the appro-
priate processors cache.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS136

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 137
6Reliability in a Direct
Interconnection
Network

Direct interconnection networks are the state-of-the art network topology to interconnect
processors in small-scale shared memory multiprocessor systems. Besides small-scale sys-
tems, direct interconnects can also be applied to large networks, as for example in the Cray
XT3 and XT4 (see Section 2.6.3), IBM BlueGene (see Section 2.6.4) or Extoll, which all
employ a 3D torus topology.
Reliability of such large networks is of highest importance: either, because systems are used
in environments where failures are unacceptable, as for example in banks. Another reason
for the need for reliability is the sheer size of systems. The likelihood of most faults scales
with the system size. Thus, the mean time between failures may be reduced to a level where
a system may become useless. At the same time, a reliable network should be able to offer
lowest latencies and high scalability.
With Extoll, a network has been developed that provides a reliable service. The Extoll net-
work protocol significantly improves communication over high-speed 8b/10b encoded
serial links by providing a loss-less service. A significant improvement over state-of-the-
art protocols is in particular the development of a protocol that uses error correcting control
characters and link based retransmission.
A second significant improvement over state-of-the-art networks is a hardware imple-
mented mechanisms to allow deadlock-free routing in regular networks with faulty links.
This chapter describes the Extoll network and network protocol, focusing on how reliability
is achieved. Section 6.1 gives an overview about the design space for a reliable direct inter-
connect networks. Section 6.2 and Section 6.3 detail the Extoll network, focusing on the

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK138
fault tolerance for faults on the link. An outlook about on-chip mechanisms is given in
Section 6.4.

6.1 Faults
A fault is a defect or abnormal condition that potentially may lead to the failure of a system.
For example, a bit flip in a memory due to cosmic radiation is a fault. Not all faults turn into
an error, which is the invalid state of the system. If an error occurs which cannot be recov-
ered, the system has a failure.
Hardware faults, i.e. faults that are not caused by software behavior, can be categorized into
hard faults and soft faults. In a hard fault, the physical hardware is broken and does not
operate in the way it is supposed to. Typical hard faults in computer networks are power
failures of individual nodes and link cable faults.
Soft faults are transient faults. They affect only the information that is stored on the chip or
link. As soon as the system has been brought into a valid state, which in the worst case may
require a reset, it continues to operate normally.
Faults can be resolved at different levels. Hardware bit faults for example can be efficiently
corrected locally in hardware. Even some hard failures, as a defective memory cell, may be
resolved efficiently in hardware. Other faults must be treated on higher levels. In the end,
the highest tolerance against faults can only be achieved by high-level mechanisms as
checkpointing and redundant processes and nodes. However, there are strong reasons to
treat at least some faults directly in hardware:
• Methods like checkpointing or high-level redundancy are relatively expensive, even in

the absence of faults. If faults can be treated more efficiently on lower layers, the per-
formance/price ratio may be significantly better if the system relies on these mecha-
nisms and reduces high-level mechanisms.

• From Amdahl’s law, it follows that faults that occur frequently should be resolved
faster for a better system performance. The resolution of rare faults may be expensive
but still will not affect performance significantly. Due to the ever increasing system
sizes and speeds, in particular transient faults are becoming much more likelier, and the
need for an efficient resolution is increasing.

• The detection of a fault must occur in any case. Depending on the type of fault, the
immediate resolution in hardware may not cost significantly more.

Relevant faults that may occur in the Extoll network are:
• Transient faults with bit errors on the links. As long as components of the link do not

have design flaws, these faults have the characteristics of Gaussian noise.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 139
• Other transient faults on the links, e.g. burst errors when the bit synchronization at the
receiving side of a serial link is lost.

• Transient faults with bit errors on chip.
• Permanent faults of links, e.g. if cables are broken or accidentally unplugged.
• Permanent faults of Extoll chips. Except for the burn-in and wear-out phases, the only

relevant hard faults are power faults. These can efficiently be reduced by using redun-
dant power supplies. If a power failure still occurs, it will affect not only the Extoll
chip, but the entire node. Thus, such a failure must be resolved at a higher level. The
network only has to ensure that routing around the faulty components is possible.

6.1.1 Units
In contrast to the burn-in and wear-out phases, the failure rate for most components in a dig-
ital system during the useful life period is constant. The occurrence of failures in any system
or subcomponent is frequently measured as failures in time (FIT):

The reciprocal value of the failures in time is the mean time between failures (MTBF).
Together with the mean time to repair (MTTR), the availability of a system can be specified
as:

Besides the availability of a system, the correctness of results is an important property of a
system. This section aims to increase the availability of the system by increasing the MTBF
due to soft errors either in chips or on links, and at the same time to ensure correctness.
If the probability of errors depends on the amount of data that is processed or transmitted
rather than on the time that passes by, an error ratio is a better measuring unit than FIT. The
bit error ratio (BER) for the transmission over a physical media is such a parameter: it is the
ratio of erroneous bits per transmitted bits. More frequently, BER is translated as bit error
rate. This reflects the fact that bit errors are caused mostly by random noise. In such sys-
tems, the BER equals the bit error probability p(e). The BER can be converted to FIT if the
data frequency is known:

1FIT 1failure
109hours
------------------------=

Availability MTBF
MTBF MTTR+
---------------------------------------=

BER FIT
109 360⋅
---------------------- 1

FREQ
----------------⋅=

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK140
6.1.2 Soft Error Nature and Rates
Today, the most important source of soft errors on chips are cosmic particles. High energy
neutrons may produce ions when they hit silicon nuclei. These ions may change the charge
especially of reverse-biased junctions [146]. Figure 6-1 shows that the cosmic ray flux
increases with the height above sea level. Soft errors due to radiation thus increase by the
same amount.

Figure 6-1. Cosmic ray flux increases with the altitude [148]

Another source of ions are radioactive impurities in the packaging materials. The same
applies for solder bumps, although lead free solder has much lower impurities than leaded
solder. In the past, neutron interactions with borophosphosilicate glass (BPSG), a material
that has been used to form insulator layers, also were a source of ions.
Soft errors caused by radiation affect DRAM, SRAM, sequential and combinational logic.
In memories, more than one cell may be hit by a single event, causing a multi-bit error
[154]. Therefore, RAMs are usually organized so that physically adjacent cells are not log-
ical adjacent, so that only single bit errors occur per word.
Flip-flops and logic nets are also subject to soft faults caused by radiation. In logic nets,
such an event may cause a glitch. In sequential logic, the logic net drives one or more flip-
flops, either directly or indirectly over other logic nets. A fault only occurs if a flip-flop
samples the glitch. The strength of the glitch is determined by the capacitance of the net.
Timing critical paths are more affected. Currently, it is being assumed that the error rate in
static logic is significantly lower than for sequential logic.
The most interesting question is how the soft error rate will impact future chip designs.
Ever-shrinking geometries and voltages lead to lower charges in logic and memory. Thus,
an ion’s impact becomes more important. Against that works that logic elements occupy a
smaller area, which decreases the chance of a hit. Figure 6-3 shows how the soft error rates

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 141
for SRAM scale with technology. It shows a steady increase of the system SER, which is
mainly caused by the growing size of systems and a nearly constant bit SER. Hazucha et al.
[147] find a similar development, with a slight increase of bit SER by 18% per technology
generation. In contrast to SRAM or logic, the DRAM vulnerability is decreasing constantly
when measured per bit, as shown in Figure 6-2.
A 6 mm2 example in a modern 90nm logic CMOS process1 based on the vendors SER spec-
ifications shows that raw FIT rates are around 13 FIT/kbit for flip/flops, and around 8 FIT/
kbit for SRAM at an altitude of 300 m above sea level. Thus, for a chip with 10 kbit of flip-
flops and 32 kbit SRAM memory, the FIT rate is 385 FIT. In a system with 1000 chips, an
upset in the SRAM occurs every 3.85*104 hours, i.e. every 1.2 years.

Figure 6-2. Soft fault rate scaling for DRAM [146].

Figure 6-3. Soft fault rate scaling for SRAM [146]

1. Such data is strictly confidential. Thus, more details cannot be given here.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK142
Bit errors on paths between chips. Noise on cables or traces between chips can also lead
to soft errors. All components on the path between two chips have an influence on the error
rate: transmitters and receivers on the chip, the package, PCB traces, connectors and cables.
Thus error rates depend on the detailed configuration of the system and can only be
obtained by detailed measurements in the system [141]. Extoll is not limited to one such
configuration, instead, a variety of configurations is thinkable: electrical or optical high
speed serial transmission over cables, parallel electrical transmission using low-voltage
digital signaling (LVDS) or backplane transmission. Thus, it is sufficient to use the rule of
thumb estimation that raw bit error rates are in the order of 10 -12 to 10 -15 for cable based
transmission, as for example in an optical cable that is specified for up to 20 GBit/s [143].
With an BER of 10-15 on a single 10GBit/s link, a bit error will occur every 105th second,
i.e. ever 27 hours. A 1000-node 3D torus topology has 6000 unidirectional links, a link bit
error occurs every 16 seconds. Assuming that bit errors are unrelated, multi-bit errors in
data words are rather unlikely. With the same BER, the probability of a two bit error w=2
within a code word size of n=10 bit and ps=BER is:

In the above example, this occurs every 1.1 billion years. It can be concluded that single bit
error correction is essential for systems with a larger number of links. Double-or more bit
detection is not necessarily required when random bit faults are assumed.
Obviously, bit errors on the link are by orders of magnitude more frequent than SEUs on
chip. Error correction on links is in any case required. However, such rules of thumbs must
be treated with care.
Which faults turn to errors? A classification of the outcomes of a bit fault is shown in
Figure 6-4. This classification is a modified version of the classification introduced in
[149]. Not every fault leads to an error and failure of the system, even if it cannot be cor-
rected. Such a fault is called benign fault. An example for such an fault is a bit error in the
empty part of a FIFO queue. As such an empty entry will never be read and used, this fault
does not generate an error. If a faulty bit is used and the fault is relevant to the program or
application and cannot be corrected, an error occurs. Such errors can be classified into
detected errors, and errors that silently corrupt data.

p n
w⎝ ⎠
⎛ ⎞ ps

w 1 ps–()n w– 4,5 10 29–⋅= =

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 143
Figure 6-4. Classification of the possible outcome of soft bit faults

6.1.3 Error Correcting and Detecting Codes
Bit error detection and correction both rely on redundancy, i.e. they require additional
resources. For digital systems this implies that information in this system is represented, or
coded, in a redundant way. Depending on their capabilities, these coding schemes are called
error detection codes (EDC) or error correction codes (ECC).
A code consists of a set of code words. The number of bits in which two distinct code words
differ is called the Hamming distance (HD) of those words. Increasing the Hamming dis-
tance between two valid code words, and thus adding redundancy in the code, means that
an increased number of bits may change without flipping one code word into the other.

Faulty bit is used
and relevant?

Bit is protected?

yes

Detection & correction

no

Benign fault, no
error No error

Detected
unrecoverable

error

Detection

no

System or
application detects

problem?
yes

Silent data
corruption

no

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK144
Figure 6-5. Geometrical interpretation of Hamming distances

The minimum of the Hamming distances between every single pair of words in a code is
the minimal Hamming distance of a code, often simply called the Hamming distance of this
code. A code that is able to detect all errors with fe faulty bits must have a minimal Ham-
ming distance dmin of at least:

To correct a code word in which some bits have been altered, this erroneous word can be
mapped to the valid code word with the lowest Hamming distance. In a geometrical inter-
pretation, all words on the cloud around ay in Figure 6-5 will be mapped to this code word.
Thus, the minimum Hamming distance must be greater to assure that the clouds around dif-
ferent valid code words do not intersect with each other:

Often, codes are used that correct errors with up to fec faulty bits, while at the same time
detecting errors with fed>fec bits. The most popular codes from this group have single error
correction, double error detection (SECDED) capabilities. Although a dmin for this case is
usually not given in the literature, it can easily be constructed: In the first step, a SEC code
is constructed from the original code. In the second step, a single error detection (SED) code
is applied to the SEC code. Thus, the required Hamming distance is:

This approach to classify error correcting codes is very useful if errors that may occur in the
system are rare and by their physical nature limited to a fixed burst length. In particular,
single bit errors are a frequent phenomenon of errors in systems.
All error correcting codes have to introduce a minimum redundancy to reach a given dmin-
det or dmincorr. With a given code word length l, and the number of redundant positions k,

only detection

d(ay,az)

0 1 2 3 4

corrected to azcorrected to ay

possible

dmindet fe 1+=

dmincorr 2 fe⋅ 1+=

dmin fed fec–() 2 fec 1+⋅+ fed fec 1+ += =

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 145
the error correcting code will have the length n=l+k. The following equation shows how k
can be computed for a desired dmin. The derivation of this equation can be found for exam-
ple in [134].

Besides correcting all bit errors that are below the Hamming limit, codes differ in how good
the can detect and/or correct errors with a higher number of faulty bits. This is of impor-
tance for systems with other fault models, as burst faults for example.
While a large variety of error correcting or error checking codes exists, only a small selec-
tion adds little redundancy while at the same time having a low coding and checking com-
plexity. A low complexity is important for the implementation in timing critical hardware
components.
Hamming Code. The Hamming code is a linear block code, i.e. it encodes fixed length
channel words. It has a Hamming distance of dmin=3, and corrects single bit errors. The
number of check bits that are required can be determined by evaluating the equation above,
which simplifies to: . The extended Hamming code has a dmin=4 and adds the
capability to detect two-bit errors. The construction of these codes for a given l can be found
in the literature [134][135]. [142] shows that for a system with a purposely increased raw
BER of 3.2*10-9, Hamming coding increases the BER to 3.86*10-16.
Cyclic Redundancy Codes (CRC) are cyclic codes over the Galois field of two elements
GF(2). CRCs are used for error detection. The CRC algorithm can be described as a poly-
nomial division in GF(2). Binary data is represented as a polynomial, where the single bits
of the word are the coefficients. For example, the word ‘10011101’ is represented as
‘x7+x4+x3+x2+x0’. The data word u(x) is divided by a generator polynomial g(x). The
remainder of this division is the CRC value. This value is appended to the data word to form
a code word. A CRC check consists of a recomputation of the CRC of the data word part of
the code word, and a comparison with the CRC value in the code word.
A commonly used notation is CRCl, where l denotes the most significant term for which
the coefficient is 1. CRCs are capable to detect any burst errors where the distance between
the first and the last erroneous bit is smaller or equal to l.
Finding the best CRC polynomial and length for an application is generally difficult, as the
quality depends on the data word length and a Hamming distance requirements. Evaluations
of polynomials can be found in [136][137].
A straightforward hardware implementation of the CRC calculation is a linear feedback
shift register (LFSR) as shown in Figure 6-6. The drawback of this implementation is that

2k l k+
i⎝ ⎠

⎛ ⎞

i 0=

dmin 1–
2

∑≥

2k k≥ l 1+ +

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK146
only one bit of the data word can be shifted into the register at a time. Parallel implementa-
tions can be constructed by expanding the equations for multiple clock cycles [138], which
can be done automatically in the HDL code [139]. With additional parallel logic, the timing
critical path can be reduced to one XOR gate [140].

Figure 6-6. Linear feedback shift register for g(x) = x3 + x2 + 1 [139]

6.1.4 SEU Tolerant Design
On chip. Logic on a chip can be differentiated into control logic and data paths. The treat-
ment of bit faults that are caused by single event upsets is different for both types, as shown
in Figure 6-7. Control logic can be replicated on a module level. The most frequently used
replication is triple modular redundancy (TMR), which has originally been proposed by von
Neumann [144]. Here, three instances of a module work in parallel, and a “majority organ”
determines the output that is generated by the TMR block. If information redundancy is
used, fault checking and fault correction state machines can be constructed, for example
using Hamming-coded state vectors [145].
For data paths, a triple redundancy does not offer any benefits over a correction scheme like
Hamming, but requires significantly more resources. Thus, error correcting codes are usu-
ally employed to protect data paths. Theoretically, backwards error correction (BEC) pro-
tocols could be used in chip for communication between components that are protected
otherwise. In the general case, this would drastically increase communication protocol
overhead and lead to unpredictable latencies of data paths. At the same time, additional
buffers and acknowledgements cannot decrease resource utilization compared to FEC
mechanisms.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 147
Figure 6-7. Chip soft fault tolerance design space

Links. Soft fault correction on links is somewhat different. While the physical link itself is
always a data path without logic, data that is transmitted on the link can be distinguished
into payload data and link control information. Control information is such data that con-
trols the flow of payload data and thus determines the state of both the transmitting side and
the receiving side. For both, FEC and BEC mechanisms are possible, as shown in Figure 6-
8.
Both FEC and BEC mechanisms consume link bandwidth, the total occupied bandwidth for
FEC codes is the sum of the codeword length l and the number of redundant positions k:

For BEC mechanisms, a part of the overhead is caused be the retransmission and the trans-
mission of acknowledgements. However, for the low BERs that are present, the influence
of the retransmission can be neglected:

Thus, the overhead of both mechanisms depends only on the bits that are appended for cor-
rection and to acknowledge the reception. For very small l, for example a link character, an
correcting code typically has less overhead than a BEC approach, as the acknowledgement
will have about the same size l. As kFEC grows faster than kBEC with l, backward error cor-
rection will have less overhead for a large l. However, assuming 64byte data words, a FEC
using a Hamming code with kFEC=10 has still less overhead than a BEC with a parity bit
kBEC=1 and an acknowledge character size of 18 bits. But a FEC has some major limita-
tions:

on-chip soft fault tolerance

control logic data paths

modular redundancy information redundancy
e.g. triple redundancy

information redundancy

fault tolerant
state machines

forward error correction

NFEC l kFEC+=

NBEC l kBEC lAck+ +≈

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK148
• If a low latency hardware implementation is the goal, scalability of l is limited by com-
putational complexity. Also, a check can only be performed if all data of the code word
is present at the same time.

• FEC protocols cannot correct words that get lost either completely or partially, which
may happen in cable transmission.

• If line codes like 8b/10b are used, an FEC may be difficult or impossible to implement
(see Section 6.1.6).

As a result, BEC is being used for bit error correction in Extoll, while small control words
are protected using forward error correction.

Figure 6-8. Link soft fault tolerance design space

Besides the overhead on the link, backward error correction requires buffer space on the
transmit side of a link. The size of the retransmission buffers depends on the link round-trip
latency trt in clock cycles:

, with .
The propagation delay tpropagate depends on the length of the cable and the velocity of the
electrical or optical signal, which can be estimated to vsp=3.3ns/m. All other delays occur
on chip and are directly measured in clock cycles. Logic delays of the transmit and receive
side are summarized in tlogic. The length of a flit in clock cycles is tflit. On the receiver side,
the link may be busy, so that an acknowledgement may be inserted only after tinsert. In the

link soft fault tolerance

forward errorbackward error
correctioncorrection

(retransmission)

control information payload data

forward error protocol check with
correction

correction
(retransmission)

backward error

link-based
retransmission

trt 2 tpropagate tlogic+() tinsert tflit+ += tpropagate
vsignal

tcyc
---------------- lc⋅=

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 149
case of Extoll, acknowledgements may be inserted only in between flits, so in the worse
case tinsert= tflit.
The required size of buffer space is then trt times the width of the link. For an FPGA-based
Extoll implementation with serial links, tcyc=100ns, lc=20m, tlogic=24 cycles which is
mainly caused by the serial transceivers, tinsert = tflit = 32 cycles, trt = 140 cycles, so that
buffers must have a minimum size of 280 bytes, which corresponds to the size of 4.4 flits.

6.1.5 Retransmission Endpoints
A link-based retransmission protocol scales with the network size, as every link that is
added to the network brings all resources with it that are required to fully utilize the link.
Naturally, it protects only against errors on the link.

Figure 6-9. Retransmission in networks

In contrast, an end-to-end retransmission protocol covers the complete path between two
communicating nodes, and thus may protect against all types of errors on the path in
between. End-to-end retransmission can be either blocking or non-blocking.
A blocking retransmission delays the termination of a network transaction. Depending on
the type of transaction, this may delay communication processes. Nevertheless, it is fre-
quently being used, as no or little hardware is required to implement this protocol. The
Extoll functional units implement such an end-to-end acknowledgement, which can option-
ally be switched on.
A non-blocking retransmission between end nodes does not introduce this delay. It works
very similar to the link retransmission: in both protocols, transmitted data is buffered in a
dedicated buffer until the reception has been acknowledged. To fully utilize the bandwidth
of the network, buffers must be designed so that they can hide the round-trip latency to all
other nodes in the network. This includes link delays, on-chip delays, and delays through

Retransmission Endpoints

link basedend-to-end

non-blockingblocking

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK150
congestion. Thus, the scalability of this solution is limited: if the network is extended, buff-
ers must be sized up.
However, the biggest problem of end-to-end protocols are the acknowledgements. They
must carry a sequence ID, and must be routable. Thus, they are flits on its own, consuming
link and crossbar bandwidth. Thus, acknowledging flits is inefficient. Instead, packets are
acknowledged. For small packets, for which Extoll is optimized, this does not significantly
improve the situation. For larger packets, this increases the round-trip latency and thus the
required end-to-end retransmission buffer sizes for a non-blocking end-to-end retransmis-
sion protocol.
As a consequence out of these considerations, Extoll uses link-based retransmission.

6.1.6 Serial Transmission
The Extoll protocol is designed so that parallel and serial links are supported. In a parallel
link, data is transmitted over parallel lines. Additional lines carry control and clock signals.
In a serial protocol, these additional signals have to be multiplexed together with the data
signals onto one single line. Thus, a line code has to be used. The code must assure that there
are sufficient transitions between 0 and 1 in the transmitted code words.
Also a much higher data signaling rate is being used on serial links. This is done using AC-
coupled transmission. The generation of very low frequency patterns on the link must be
avoided. This is also called a direct current (DC) free transmission. This can be achieved
when the line coding ensures that the number of 0’s and 1’s is equal within a short time-
frame. The timeframe must be shorter than the controlling interval of the receiving ampli-
fier.
Another important issue in serial transmission is the alignment of the serial data stream to
word boundaries. Here a line code may provide alignment information in the code words.
The 8b/10b code has a set of comma symbols which can be used for alignment, due to their
unique bit patterns with respectively 5 consecutive 0’s or 1’s. However, there is no real need
for such comma symbols. The alignment must be found once at the initialization of the link.
Afterwards, it simply must be ensured that the clock is recovered properly. Thus, it is better
to find the alignment at link initialization using longer training patterns.
The standard line code for serial transmission is the 8b/10b transmission code [150], which
is being used for example in PCI Express, Infiniband, Gigabit Ethernet and HyperTransport
3.0.
In the 8b/10b code, an 8bit data word is translated into a 10 bit line code word, also called
character. The difference between the number of 0’s and 1’s is called the disparity of a code
word. Some 8 bit words have a translation with a disparity of zero. All others have two

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 151
translations: one with a disparity of +2, i.e. with six 1’s and four 0’s. The second translation
is the inverted code word, which then has a disparity of -2. The running disparity is the sum
of the disparities of all words that have been sent in the past. The running disparity will be
either +2, 0, or -2, i.e. the link is completely DC free in the long term. This can be achieved
in the coding step by selecting the code word with the inverse disparity than the current run-
ning disparity. Also, every two code words that are transmitted one after another will have
a maximum combined disparity of . Another feature of the code is that a sequence of
more than 5 1’s or 0’s cannot occur in any combination of code words.
Besides the 28 data words, there exist 12 control characters. The naming conventions for
data and control characters are D.x.y and K.x.y, with and . 8b/10b coding
is performed by coding the first 5 bits with 5b/6b coding, and the remaining 3 bits with 3b/
4b coding. X and y denominate the respective 5b/6b and 3b/4b characters. K.28.1, K.28.5
and K.28.7 are comma characters. They are the only ones with the sequence “1100000” and
“0011111” and thus can be used to align the serial stream to word boundaries.
In the context of fault tolerance, an important topic is how bit errors on the 10b characters
behave and how they can be detected at the receiver. Although the 8b/10b coding is widely
used, I could not find an in-depth analysis of the 8b/10b protocol in the presence of transient
bit faults in the literature. Thus, the following analysis is a significant contribution that
revalues the behavior of the 8b/10b protocol in the presence of faults.
Some errors in the 10b domain will turn characters into invalid characters. In this case, the
8b/10b decoder detects an out-of-table error. As a single bit error changes the disparity of
a code word, other single bit errors will be detected by the disparity check. However, the
disparity check may not precisely detect which character was the faulty one: characters with
a zero disparity delay the error detection. Also, multi bit errors, either within a single char-
acter or in adjacent characters, may not be detected by checking the disparity.
State of the art 8b/10b based transmission relies on the checks for out-of-table and disparity
errors. If an error occurs, a possible solution is to re-initialize the link, as for example
HyperTransport 3.0 does.
Hamming Distances of Control Characters. The set of control characters can be used to
encode protocol information. For fault tolerance, large Hamming distances are desirable.
However, Figure 6-10 shows that Hamming distances vary. An important character is
K.28.7, as this is the only character that cannot be turned into a data character by a single
bit error. A maximum sized set including K.28.7 that has a minimum Hamming distance of
3 and thus can correct single bit errors is {K.28.7, K.27.7, K.28.3}. This set is being used
in the Extoll protocol. If error correction among K characters does not play a role, a larger

2

0 x 31≤ ≤ 0 y 7≤ ≤

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK152
set with HD=2 can be constructed: {K.23.7, K.27.7, K.28.1, K.28.2, K.28.3, K.28.5,
K.28.6, K.29.7, K.30.7}.

Figure 6-10. Hamming distances of 8b/10b control characters in the 10b domain

General Fault Correction or Detection mechanisms. When fault detection or correction
methods like Hamming codes or CRCs are used for additional protection of transmitted
data, these can be applied either on the unencoded binary data, or on the line code (see
Figure 6-11). Checks then will be performed either in the 8b domain or in the 10b domain.

Figure 6-11. Error detection or correction for line codes

Checks in the binary coded domain. Systems usually perform error detection or correc-
tion in the normal binary coded domain. This is the most flexible solution, as the check may
be performed at any place in the normal binary coded domain. In particular, end-to-end
checks in software are possible. However, bit errors on the line code words may cause more
complex error patterns in the binary domain. Figure 6-12 shows that single bit errors on 10b
encoded words may cause bit errors of up to 5 bits in the 8b domain, even though the prob-
ability for 5bit errors to be generated is very low.
This means that an SEC code would have to provide a Hamming distance of 5+3=8: error
correction becomes very inefficient. Error detection also becomes less efficient. In particu-
lar, CRC checks on data that have been designed to reliably detect bit faults of up to n bits
may fail to do so. However, due to the burst error detection capability of CRCs, a 16 bit

K_23_7 'K_27_7' 'K_28_0' 'K_28_1' 'K_28_2' 'K_28_3' 'K_28_4' 'K_28_5' 'K_28_6' 'K_28_7' 'K_29_7' 'K_30_7'
K_23_7 0 2 4 5 3 3 4 5 3 4 2 2
K_27_7 2 0 4 5 3 3 4 5 3 4 2 2
K_28_0 4 4 0 3 1 3 2 3 1 2 4 4
K_28_1 5 5 3 0 2 2 3 2 4 1 3 3
K_28_2 3 3 1 2 0 2 3 4 2 3 5 5
K_28_3 3 3 3 2 2 0 1 2 2 3 5 5
K_28_4 4 4 2 3 3 1 0 1 1 2 4 4
K_28_5 5 5 3 2 4 2 1 0 2 1 3 3
K_28_6 3 3 1 4 2 2 1 2 0 3 5 5
K_28_7 4 4 2 1 3 3 2 1 3 0 2 2
K_29_7 2 2 4 3 5 5 4 3 5 2 0 2
K_30_7 2 2 4 3 5 5 4 3 5 2 2 0

error detection or correction

in line code after line code
domain decoding

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 153
CRC can detect all bit errors within adjacent 16bits, and thus detects all errors that occur
within two adjacent 10b characters. Thus, CRC calculation in the binary domain is still very
valuable.

Figure 6-12. 10b word pairs with a Hamming distance of 1 and their Hamming distances on the
8bit domain

Checks in the 10b domain. Error detection and correction in the 10b domain would cir-
cumvent the previously described problem of error multiplication. Basically, the design
space shows two potential approaches to do so:
• Error control bits may be inserted into the 10b stream after the 8b/10b encoder of the

sender. On the receiving side, these characters must be removed before feeding them
into the decoder. One proposal [158] is to add FEC bits in the 10b coded stream. In
order to not destroy the 8b/10b’s guarantees like DC-balance, every inserted FEC bit is
directly followed by its complement. They protect every 8 10b words using 8 FEC bits.
As the 8 complement bits are also included, the overhead of this mechanism in terms of
bandwidth is 17%. Error correction can only be performed in the 10b domain on the
complete block of 96 bits, which adds additional latency.
The insertion of a packet based CRC directly into the 10b domain would avoid the
problem of latency, and reduce the bandwidth overhead. In such a solution the CRC
must be extracted based on the protocol, which essentially means that the link port
logic must operate in the 10b domain. The 10b CRC calculation may protect packet
payloads better against multi-bit errors, but not control information that is outside of
packets.

• Error control information is inserted in the 10b domain as well, but in the form of valid
10b characters. The author tried to map a Hamming (7,4) code into 10b characters: this
is simply not possible due to the restrictions of the 10b coding space. A different
approach is to search the set of 10b characters for a set of characters that has a mini-
mum Hamming distance. Using a brute force search, a set of 16 D characters with a
minimum HD=4 has been found (see Figure 6-13). As there is no intrinsic logic func-
tion to correct errors, a lookup based decoding must occur.
The combination of this set of D characters with a set of K characters can be used to

HD>1
1 2 3 4 5 6 7 8

Number of 10b
word pairs* 141044 685 660 396 285 3 0 20** 8**

*= the two different encodings per character have been treated as different words
**= these pairs consist of one K and one D character each - faults thus can be distinguished by the protocol

HD in 8bit domain

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK154
construct control words with a large Hamming distance. This is done for the Extoll pro-
tocol (see Section 6.3.2). The set can be used to correct single bit errors in 10b charac-
ters.

Figure 6-13. Set of 16 D characters with a minimum HD=4

Alternatives. An alternative to 8b/10b is a combination of 64b/66b coding and scrambling,
which is being used in 10 Gigabit Ethernet. While it has less overhead than 8b/10b coding,
it also guarantees a transition between 0 and 1 only every 66 bit. By means of scrambling,
it is considered likely that there are enough additional transitions in the code words to
recover a clock, and also to be DC free. As a self-synchronous scrambler is being used, bit
errors in the 66b domain do not convert into multi-bit errors in the 64b domain. A coding
like 64b/66b is not considered for use in Extoll, as the minimum data unit on the link has a
size is 3x 64 bit. A different 64b/66b protocol could have been developed that does not have
this restriction. However, a 64bit code word width increases latency on the transmit side if
the internal with is much smaller. Also, more should be known about the reliability of such
a coding for use in a loss-less network. Due to the previously described problems with 8b/
10b coding and the overhead of 20% that is introduced by this coding, future work should
closer evaluate this type of coding.

6.1.7 Faults in Regular Networks
Routing in topologies like 3D tori is optimized for the specific topology. In particular, dead-
locks are usually avoided by restricting the number of allowed routes between nodes.
Figure 6-14 shows a network using dimension order routing in a 2D grid topology. In
dimension order routing, all routing steps into the X direction must be performed before any
routing step into the Y dimension is allowed. Thus, there is no legal path from the sending
node to the receiving one.

D_14_1 D_20_1 D_20_6 D_22_3 D_28_2 D_28_5 D_6_2 D_14_6 D_25_3 D_17_5 D_3_6 D_5_3 D_10_3 D_3_1 D_11_2 D_17_2
D_14_1 0 4 8 4 4 4 4 4 6 8 8 6 4 4 4 8
D_20_1 4 0 4 4 4 4 4 8 6 4 8 4 6 4 8 4
D_20_6 8 4 0 4 4 4 4 4 6 4 4 4 6 8 8 4
D_22_3 4 4 4 0 4 4 4 4 4 6 6 4 4 6 6 6
D_28_2 4 4 4 4 0 4 4 4 4 8 8 6 6 8 4 4
D_28_5 4 4 4 4 4 0 8 4 4 4 8 6 6 8 8 8
D_6_2 4 4 4 4 4 8 0 4 8 8 4 4 4 4 4 4
D_14_6 4 8 4 4 4 4 4 0 6 8 4 6 4 8 4 8
D_25_3 6 6 6 4 4 4 8 6 0 4 6 4 4 6 4 4
D_17_5 8 4 4 6 8 4 8 8 4 0 4 4 6 4 8 4
D_3_6 8 8 4 6 8 8 4 4 6 4 0 4 4 4 4 4
D_5_3 6 4 4 4 6 6 4 6 4 4 4 0 4 4 6 4
D_10_3 4 6 6 4 6 6 4 4 4 6 4 4 0 4 4 6
D_3_1 4 4 8 6 8 8 4 8 6 4 4 4 4 0 4 4
D_11_2 4 8 8 6 4 8 4 4 4 8 4 6 4 4 0 4
D_17_2 8 4 4 6 4 8 4 8 4 4 4 4 6 4 4 0

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 155
Figure 6-14. Deadlock-free routing violation due to link failure

One solution to this problem is to change the routing algorithm so that irregular topologies
are assumed. This usually results in a much lower performance throughout the network. In
large networks, there is a good likelihood that there is at least one failed link or node in the
system at any given time, so that the network will rarely work using the optimal routing
algorithm.
Caused by this problem, many techniques have been proposed to avoid this solution in
wormhole-routed networks. Instead, these techniques concentrate to allow packets on paths
that are affected by the failure to take paths through the network that violate normal routing
rules, but still do not cause deadlocks. Most route schemes introduce additional virtual
channels to allow to route around a fault [152][153][155]. These additional virtual channels
have the drawback that they require additional buffer capacity. Also, the complexity of vir-
tual channel handling in a switch is relatively high, as can be observed in the Extoll switch.
A different approach is to partition the path into as many partitions that every partition is
deadlock free in itself (see Figure 6-15). Packets are extracted from the network at every
node at a partition boundary, called intermediate node, before it is inserted again. As result,
the complete route is deadlock free as well. Multiple intermediate nodes may be used.
In a software-based solution [156], such packets are extracted at intermediate nodes by
writing them to the system’s main memory. Software must reinject these packets into the
network. Thus, this mechanisms has a relatively high latency. [157] proposes to use a set of
nodes that act as intermediate nodes only, called lamb nodes.

node

link

link failure

packet violating rout. algo.

packet following rout. algo.

truncated node

sender

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK156
Figure 6-15. Fault-tolerant routing over intermediate nodes

However, the software-based solution can be significantly improved, when the following
points are considered:
• In the case of static source path routing, complex routing decisions have not to be per-

formed at the intermediate nodes. Thus, the control logic can be implemented in the
NIC in hardware.

• It is not necessary to remove packets completely from the network. In particular, a
store-and-forward architecture is not required. Instead, an intermediate node can
directly forward a packet. Deadlocks can sufficiently be avoided if the tail of a packet is
removed from the network in the case the head of the packet blocks.

• Especially for small packets, fast NIC internal buffers may be used for extracted pack-
ets. If this buffer fills, the node’s main memory must be used to store extracted packets.
The on-chip buffer may hide the memory access latency completely in this case.

Such an hardware implementation is the HAP of Extoll, descried later in Section 6.3.6.

6.2 The Extoll Network
Extoll is a direct interconnection network (IN), and thus connects computing nodes in an
Extoll network without the need for centralized switches. With six bidirectional links per
node, the target network topology for Extoll is a 3D-torus, as shown in Figure 6-16. Extoll

node

link

link failure

packet after interm. node
packet following rout. algo.

target node
sender node
intermediate node

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 157
is based on the experiences made with the Atoll network [27], which is a direct IN with a
2D-torus topology. The advantage of direct INs is the good scalability of such a system: if
the number of nodes in a network is increased, buffering and switching resources automat-
ically increase by the same amount.

Figure 6-16. 3D-Torus topology

The Extoll network is optimized to achieve high bandwidths and low latencies for the trans-
fer of small packet sizes. Wormhole routing is being used in the network. In wormhole rout-
ing, a packet traverses the network in a pipelined fashion. Flow control is performed on
small blocks of data, called flow control digits (flit). Buffering in the network occurs only
on flit level. Buffering on packet-level, as in store-and-forward and virtual-cut-through net-
works, is not done.
Packets find their way through the network using source path routing. In contrast to table-
lookup-based routing schemes, the path through the network is determined by the source
node. Thus, routing is fixed, which is in contrast to adaptive routing schemes. The advan-
tage of source path routing is that routing decisions can be made extremely fast in every
switch. In a direct IN, this is of particular importance, as the number of switches on the path
of a message may become much larger than for topologies with centralized switches.
The network that is implemented in every Extoll chip is shown in Figure 6-17. At the heart
of the network is the Extoll switch, which is based on a unidirectional 12x12 crossbar. 6
ports of the switch connect to the link ports. Towards the functional units of the NIC, four
network ports translate between NIC and network protocols. A multicast port is used for

Node

X

Y

Z

bidirectional
Links

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK158
hardware-based support of multicast and broadcast packets. The high availability port
(HAP) is being used mainly to resolve problems that arise out of link failures.

Figure 6-17. A node of the Extoll network

Every packet’s payload starts with a routing string (see Figure 6-18). It consists of units that
have the size of physical transfer digits (phits), which is 16 bit. In standard source path rout-
ing, routing pits contain only the destination port of the next switch, and are striped of after
each switch. Extoll integrates a delta routing: every routing phit is valid for the number of
hops specified in the counter fields. In every switch, counters are decremented, and the phit
is only removed if both counters are zero. In a regular 3D torus topology and if link cables
are connected in a consistent fashion (e.g. positive X direction on port 7, negative X direc-
tion on port 8, positive Y direction on port 9, and so on) three routing phits are sufficient to
address 256,000 nodes. A fourth routing phit is needed to select the desired network port.
For deadlock avoidance in the network, two virtual channel groups can be used. Every of
these groups consists of 4 virtual channels (VCs) which may be used to reduce the impact
of head of line blocking.
Credit based flow-control is used between every two Extoll switches to avoid buffer over-
flows in the switches and to make buffer space guarantees for the different virtual channels.
Extoll is an input buffered switch, with a buffer capacity of 32 flits. This buffer size has
been selected so that two buffer slots are reserved for every VC, and a single packet stream
on one virtual channel can saturate the link [130].

Multicast
Port

High
Availability

Port

Network
Port 0

Network
Port 3

Barrier
Unit

Extoll
Xbar

Link
Port 0

NIC/
Host

Link PHY

Link PHYLink
Port 5

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 159
Parallel applications frequently use barriers to synchronize among the different threads or
processes. A hardware-based barrier mechanism has been integrated into Extoll. The barrier
unit supports up to 16 hardware barrier groups at the same time. Barrier information is mul-
tiplexed on the Extoll links.

Figure 6-18. Extoll packet and routing format

6.2.1 Packet and Flit Protocol
The Extoll has been optimized for small message transfer. Thus, the overhead for small
packets in the network must be as small as possible. A packet consists of the segments: rout-
ing, command and data. The packet injection and extraction points into and from the net-
work are the network ports.
The Extoll packet size does not have an upper bound defined by the protocol. It is left to
layers on top to specify a maximum transmission unit (MTU) if this should be desired. A
packet is transmitted with a sequence of flow control digits (flits), as shown in Figure 6-19.
A flit can hold up to 32 phits of payload. With a physical transfer digit (phit) size of 16 data
bits plus 2 control bits, the payload of one flit is 64bytes, which corresponds to the cacheline
size in most systems. Within the payload, transitions to the command and data sections are
marked with start-of-command (SOC) and start-of-data (SOD) phits. Every flit is framed
with start and end phits and a 16bit CRC. Although theoretically, a framing on the start of
a flit would be sufficient, the end-of-flit character provides additional security at little cost.
The first and last flits of a packet are marked with start-of-packet (SOP) and end of packet
(EOP) phits respectively. All other framing words in the flits are start-of-flit (SOF) and end-

SOP Routing SOC EOPCommand SOD Data
Extoll Packet

0

3
4

9
10

15

}
}
}

Destination
Port

Low-VC
Counter

High-VC
Counter

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK160
of-flit (EOF). The start phits include information about the virtual channel in which a flit
flows. Extoll supports 8 different virtual channels. The link protocol has been optimized to
provide maximum Hamming distances for this number of channels. It can be slightly mod-
ified to support more virtual channels, at the cost of a reduced Hamming distance. As all
flits of one packet flow in the same virtual channel, flits of different packets can be inter-
leaved in the links.

Figure 6-19. Extoll packet and phit framing

6.3 Extoll Link Error Correction
Extoll uses bidirectional links to connect nodes in the network (see Figure 6-20). This
allows to transmit flow control and retransmission protocol information backwards. The
link can be separated into a physical layer (PHY) and a logical link layer. Different physical
layers may be used for Extoll, although it is optimized for an 8b/10b-coded high speed serial
transmission.
The logical link layer, consisting of link in- and out-ports, multiplexes data streams from
the crossbar and the barrier module to the link, as well as credit information that comes from
the crossbar. The link layer is also responsible to correct errors on the link. In a classical
layered protocol, all link errors should be handled by the link port, and be transparent to the
switch layer of the network. Unfortunately, such a complete encapsulation can only be
implemented in a store and forward fashion. As Extoll is designed as a low latency network,
store and forward at every link port is not feasible. Thus, error correction by the link is not
fully transparent to the layers above.
The remainder of this section describes the mechanisms to correct errors on the links.

Routing EOFCRC

SOP Routing SOC EOPCommand SOD Data

SOP Command

SOF EOPCRCData

EXTOLL Packet

Link FLIT 1

Link FLIT 2

SOC SOD

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 161
Figure 6-20. A link between two nodes in the Extoll network

6.3.1 The Physical Link
The target link media for Extoll is a high-speed serialized optical transmission. The devel-
opment of a high-speed serial link PHY is complex and out of the scope of this work. How-
ever, experiences in the design of such links in OASE and with FPGAs [133] allow to
presume a general architecture of such a link, as depicted in Figure 6-21.

Figure 6-21. Functional block diagram of the PHY in the FPGA prototype

Such a link PHY performs a low-level initialization, which includes the use of training pat-
terns to align the 8b/10b decoder. The alignment will not be verified any more during
normal operation. The state of the link and errors in the 8b/10b decoder are signaled to the
link port. Expected errors on a serial link that are visible to the link port are:
• Transient, random single bit errors.

CableLink PHY

Link
In port

Link
Out portBarrier

Unit

Extoll
Xbar

Link PHY

Link
In port

Link
Out port Barrier

Unit

Extoll
Xbar

Optical/electrical
cable

Optical/electrical
cable

SFP
TransceiverOutput CellSerializer8b/10b

encoder

Link
Training

FSM

1
8

10

Data from
link port

SFP
TransceiverInput CellDe-

serializer
8b/10b

decoder

Link Check
FSM

18 10

Data to
link port

Control to/from
Link port

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK162
• Very long bursts of bit faults, e.g. if the receiver looses bit alignment.
• Permanent link failure, e.g. through an unconnected cable.
Errors of the latter kind can be detected by the physical link itself. However, it may take a
while until a receiver may take notice. Experiments showed that the high-speed serial trans-
ceivers of an FPGA detect this after a time period much longer than milliseconds. During
this period, arbitrary data is being forwarded to the link port. Thus, the link port must be
able to detect this situation early.
Parallel cabling is also supported in Extoll, although parallel cables are not considered to
be the link that will be used in production Extolls. Due to the much lower complexity, the
parallel link has also been used in the design and evaluation phase. The cabling technology
from Atoll has been reused for Extoll. An Atoll link cable is a 68 pin twisted pair cable.
Using source synchronous transmission, every direction of the link has eight data, one con-
trol and one clock line. An additional line per direction is used to detect whether a cable is
connected on the other end. Using DDR signaling, data frequencies of up to 300 Mbps have
been verified.
Expected faults on a parallel link that are visible to the link port are:
• Transient, random single bit errors.
• Static faults on one or multiple LVDS pairs that lead to constant or frequent bit errors.
• Permanent link failure, e.g. through an unconnected cable.
A link detection mechanisms based on the cable detect line and clock detection are used.
However, these mechanisms alone have turned out to be not sufficient for reliable link
detection. For example, static faults in LVDS pairs require testing at link initialization.
Thus, an initialization sequence has been developed [132], which is similar to the unitiza-
tion and training of a serial link. The following section will detail the coding for serial links.
If parallel links would be used in production systems, the coding would have to be adapted
to provide Hamming distances in the binary coded domain. Such a development is simple,
and thus is not presented here.

6.3.2 Protocol Encoding for Serial Links
Besides start and end characters, an Extoll protocol must support credits and acknowledge-
ments. These characters must encode additional information as e.g. the virtual channel
number, which must be bit error protected. Additionally, idle, retransmission and manage-
ment characters exist. As the number of K characters is by far not sufficient to encode these
Extoll control characters, a combination of K characters and the set of D characters with
HD=4 is used. This choice also fits well the Extoll phit size of two 8b/10b characters. To

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 163
avoid confusions between Extoll and 8b/10b characters, Extoll characters are referred to as
phits.
Encoding for single bit FEC. Section 6.1.4 shows that for control phits, FEC is suited
well. For packets, a retransmission based protocol is more efficient. As explained above,
forward error correction on 10b characters requires a lookup table. Here, a design choice is
whether one lookup occurs for a complete phit, or if the characters of the word are looked
up independently of each other. The size of the table is critical for the feasibility of an
implementation. The simplest implementation is a ROM, where the incoming phits or char-
acters are used as an address to read the corrected and 8b decoded value. For a lookup of a
20 bit phit, the table would have a size of at least , and thus is not realiz-
able. If the two10b characters are looked up separately, a single table with two read ports
and a size of is sufficient. However, the separate lookup requires that the
first and the second character position of the phit exhibit an individually. This
restricts the set of usable K characters to the set of {K.28.7, K.27.7, K.28.3}, which limits
the coding space for Extoll control phits. Figure 6-22 shows the Extoll control phits.

Figure 6-22. Extoll control phits

220 18bit⋅ 2MByte≈

210 9bit⋅ 1kByte≈
HD 3≥

Name Upper Byte Lower Byte Name Upper Byte Lower Byte
SOP_VC0 K_28_3 D_14_1 NACK0 K_27_7 D_3_1
SOP_VC1 K_28_3 D_20_1 NACK1 K_27_7 D_11_2
SOP_VC2 K_28_3 D_20_6 NACK2 K_27_7 D_17_2
SOP_VC3 K_28_3 D_22_3 NACK3 K_27_7 D_25_3
SOP_VC4 K_28_3 D_28_2 NACK4 K_27_7 D_17_5
SOP_VC5 K_28_3 D_28_5 NACK5 K_27_7 D_3_6
SOP_VC6 K_28_3 D_6_2 NACK6 K_27_7 D_5_3
SOP_VC7 K_28_3 D_14_6 NACK7 K_27_7 D_10_3
SOF_VC0 K_28_3 D_3_1 CREDIT0 K_28_7 D_14_1
SOF_VC1 K_28_3 D_11_2 CREDIT1 K_28_7 D_20_1
SOF_VC2 K_28_3 D_17_2 CREDIT2 K_28_7 D_20_6
SOF_VC3 K_28_3 D_25_3 CREDIT3 K_28_7 D_22_3
SOF_VC4 K_28_3 D_17_5 CREDIT4 K_28_7 D_28_2
SOF_VC5 K_28_3 D_3_6 CREDIT5 K_28_7 D_28_5
SOF_VC6 K_28_3 D_5_3 CREDIT6 K_28_7 D_6_2
SOF_VC7 K_28_3 D_10_3 CREDIT7 K_28_7 D_14_6
SOS K_28_7 D_10_3 EOP_ERR K_28_7 D_3_1
ACK0 K_27_7 D_14_1 EOF_ERR K_28_7 D_11_2
ACK1 K_27_7 D_20_1 EOP K_28_7 D_17_2
ACK2 K_27_7 D_20_6 EOF K_28_7 D_25_3
ACK3 K_27_7 D_22_3 RETRANS K_28_7 D_17_5
ACK4 K_27_7 D_28_2 IDLE K_28_7 D_3_6
ACK5 K_27_7 D_28_5 MNGT K_28_7 D_5_3
ACK6 K_27_7 D_6_2 SOD K_29_7 K_28_3
ACK7 K_27_7 D_14_6 SOC K_30_7 K_28_3

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK164
Multi-Bit errors. Due to the Hamming distance of 3, only single bit errors can be corrected.
Multi-bit errors within the same character may not be detected. The set of D characters with
HD=4 has SECDED capabilities.
While Section 6.1.2 shows that multi-bit errors within a 10b character are very unlikely, and
thus are not considered to occur by most system designers. Assumed they would occur, the
vast majority of multi-bit errors will be detected, either by the 8b/10b decoder or through
protocol checks. However, there are cases where a multi-bit error within a single character
leads to an undetectable error (see Figure 6-24). Multi-bit error detection on the Extoll con-
trol phits could be improved by doing only error checking instead of correction. The link
protocol does not have to be changed for this.
All in all, the Extoll link protocol encoding that has been proposed in this section provides
a reliable transmission of control information on links in the presence of single bit faults.
This avoids the loss of data and inconsistent states of the links, which may occur in other
state of the art implementations of 8b/10b encoded links. Single bit FEC for control infor-
mation is a significant improvement over state of the art 8b/10b protocols.

6.3.3 The Logical Link Layer: the Link Port
A link port consists of two parts: the link in-port as the receiver, and the link out-port as the
sender (see Figure 6-23). A central point in the link out port is the arbiter, which multiplexes
the link between packets from switch and barrier module, and control phits in a round robin
fashion. The buffer space which is used for the retransmission buffers is also used to buffer
incoming data streams. Therefore, barrier and switch have separate retransmission buffers.
The flit CRC is also recomputed and inserted into the flit here.
Link level error checking is performed by the link in-ports. Operation of the link can be dif-
ferentiated into the initialization phase and normal operation mode. Link port initialization
is started as soon as the physical link layer has successfully initialized. During initialization,
bit errors on the link can either be ignored or lead to a restart of the initialization. During
normal operation, a receiving link may be in any of the three super states: intra-flit, inter-
flit, and waiting-for-retransmission. The last possible state is link failed. These states are
from a theoretical point of view, an implementation will feature a much more detailed set
of states.
The inter-flit state is the typical state for an idle link. In this case, only IDLE phits cross
the link. It is also the default state after initialization. Other allowed phits in this state
besides IDLE are: SOP_VCx, SOF_VCx, SOS, ACKx, NACKx, RETRANS and CRED-
ITx. If any other phit is received in this state or the 8b/10b decoder signals an error that
cannot be corrected by the FEC mechanism, it can only be caused by an error on the link.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 165
In this case, the link port requests a retransmission from the sender. Although this is only
required in the case that a packet got corrupted, error detection mechanisms are more light-
weight if a retransmission is requested in any case. The reception of an SOP, SOF or SOS
phit leads to a transition into the intra-flit state, an detected error to waiting-for-retransmis-
sion.

Figure 6-23. The link port

During the intra-flit state, all data phits and SOC, SOD, EOP, EOF, EOP_ERR and
EOF_ERR control phits are allowed. If any other flit is received or the 8b/10b decoder sig-
nals an uncorrectable error, the flit in transition is terminated directly after the erroneous
phit with an end-error character. If the error occurs in the very first data phit of a flit, the
minimum size of 3 is violated. As the Extoll switch removes flits that are too small, it is not
necessary to fill the flit with dummy data to increase the flit size. If a CRC error is detected,
the end phit is replaced with an end-error phit in the same place. Erroneous flits that started
with an SOP or SOS will be concluded with EOP_ERR. This closes the virtual channel after
the flit, which is important as the routing string in the flit may be affected, and thus the
retransmitted flit must open the virtual channel. Erroneous flits that started with an SOF will

Deserializer
8b/10b

decoders

18 20

8b/10b
FEC

Decoder

Stripe IdlesSynchonization
FIFO

Protocol FSM

CRC
Check

Barrier

Xbar

Credits to Xbar

to barrier

to Xbar

18

18

Arbiter

Control

Phit Generator

Ack

Barrier
Buffer module

Xbar
Buffer module

To link encoders

from barrier

from Xbar

from Xbar

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK166
be concluded with an EOF_ERR, which keeps the virtual channel open for the retransmis-
sion of the flit and for following flits. An error also leads to the transition into the waiting-
for-retransmission state. Otherwise, the reception of an EOP, EOF, EOP_ERR or
EOF_error leads to a transition to the inter-flit state. To avoid oversized packets due to a
corrupted end of a flit, such flits will be truncated at the maximum allowed size and ended
with an error character.
If an uncorrectable error occurred, the current and all subsequent flits are ignored. It is a
necessity to ignore flits to maintain strict ordering among them. Only the other control char-
acters will be interpreted. If a RETRANS character is sampled, a transition into the inter-
flit-state, and thus normal operation, occurs. Protocol checking as described above has to
continue.
If multi-bit errors in single 10b characters are assumed to occur or forward error correction
is switched off, a major issue is that an erroneous control phit may be one of those that start
or end a flit. Thus, the state after the error can only be determined by looking at the phit that
follows the erroneous phit.
If any further error occurs between the first error and the starting retransmission, there is a
good likelihood that the physical link has a permanent problem that causes a burst error.
This may happen for example if the serial receiver has not detected yet that a cable has been
removed. Thus, a receiving link transitions into the link failed state, and waits for resolution
by the management software as described in Section 6.3.4.
The retransmission protocol. The retransmission protocol ensures that packets are not
corrupted. If the receiving side of a link detects an error that might possibly affect a phit like
described above, a retransmission request is sent to the sending side. All flits that are
received between the detection of an error and the start of the retransmission are ignored,
as this is the only way to guarantee that ordering among phits is being maintained. Theoret-
ically, it would be sufficient to maintain ordering only among flits of the same virtual chan-
nel. As the information about the virtual channel may be subject to link errors, all flits must
be retransmitted. The cost for the retransmission in terms of bandwidth and latency can be
neglected in any case, as retransmissions occur infrequently.
The basic idea is as follows: All flits that are transmitted over the link are also copied to a
retransmission buffer in the sending link. If the receiving part of the link positively
acknowledges the reception of a flit, the buffer space can be freed. If the acknowledgement
is a negative acknowledgement, the sending part will instead initiate a retransmission of all
flits in the retransmission buffer. The retransmission begins with a RETRANS phit. The
retransmission of the flits follows the same rules as the normal transmission of flits. In par-
ticular, retransmitted flits are also protected by the retransmission protocol.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 167
In order to allow the sending link to detect lost acknowledgements, an indirect relation of
acknowledgements to flits is introduced. Both sides of a link implement counters. On the
sending side, the counter is incremented for every flit that is sent. The receiver increments
it for every received flit. The acknowledgements ACK0...ACK7 and NACK0...NACK7
correspond to the counter values for the acknowledged flit in the receiving side of a link.
The size of the counters is a trade-off, as the available code space for control phits in the
10b domain is limited.
The following link errors can be corrected using the retransmission protocol:
• Bit errors in data flits and framing control phits.
• Loss of up to 7 ACKs in a row.
• Loss of an infinite number of NACK or RETRANS. Both are protected using time-out-

based resending of NACKS. If the retransmission does not start after the time-out
period, the NACK is being resent.

• The complete loss of flits can only happen in the case of a link failure. Thus, this case
does not need to be covered by the retransmission protocol, but will be covered by the
link failure resolution mechanism that is described in the next section.

Credit phits can be lost if a bit error occurs in a credit phit, as credits cannot be recovered
by the retransmission protocol. Although the loss of a single credit is not critical, it may
degrade performance. Thus, software must be notified in the event of unexpected phits on
the link via the Extoll register file, so that it can check the credits in the crossbars.
Using the protocol described here, a reliable and order-maintaining retransmission of phits
can be ensured in the case of bit errors in flit payloads.
Using FEC coded control phits, the protocol is highly reliable for the expected source of
error: rare, noise-induced single bit errors. For multi-bit errors in control phits, the vast
majority should be detected by out-of-table, disparity, or out-of-control-phit space checks.
The protocol can detect and resolve some of such undetected errors (see Figure 6-24). This
provides some additional security.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK168
Figure 6-24. Protocol detection of multi-bit errors in phits

6.3.4 Temporary or Permanent Link Failure
A link failure can have several reasons: cables that are accidentally removed, dysfunctional
cables or transmitters, or temporary problems like a lost bit alignment. In the classical layer
model, a temporary failure of a link may be considered to be resolved by the link layer. A
permanent link failure must be resolved by the network layer to re-establish a valid routing
in the system. As both faults can be resolved with similar resolutions, they will be described
here together.
In Extoll, a permanent link failure requires the modification of the static routing through the
network by the management software. As this process usually takes a while, the network
should continue to operate until new routing tables take effect, even though the perfor-
mance may be reduced. As Extoll shall be a lossless network, a requirement is that packets
and flits that are traversing a failing link do not get lost. Therefore, three key issues can be
identified when resolving a link failure:
• Packets that traversed the link while the fault occurred must be reassembled.
• All other packets that request the link later on must be rerouted.
• Routing tables must be modified to reflect the changed topology of the network.

from character to character
Always Detected by
 Protocol Check?

Minimum errornous
 bits in single character
 for non detectable error
(correction/detection) impact

SOP_VCy, SOF_VCy No 3bit, 4bit errors data corruption
SOS No 2bit, 3bit error data corruption
ACKn, NACKn, CREDITn,
EOX, IDLE Yes
ACKy, NACKy No 3bit, 4bit errors data corruption in case of retransmission
CREDITn No 2bit, 3bit error Xbar buffer overflow
EOx, IDLE, Sox Yes
SOP_VCx, SOF_VCx No 2bit, 3bit error data corruption
ACKn, NACKn, CREDITn,
EOX, IDLE Yes

EOx any Yes
ACKm, NACKn No 3bit, 4bit errors data corruption in case of retransmission
IDLE No 2bit, 3bit error Credit loss
SOP_VCy, SOF_Vcy, Eox Yes
CREDITy No 3bit, 4bit errors Xbar buffer overflow or data corruption
ACKn, NACKn No 2bit, 3bit error data corruption in case of retransmission
CREDITn No 3bit, 4bit errors Xbar buffer overflow or data corruption
SOP_VCy, SOF_Vcy, Eox Yes

Special Characters
SOC, SOD belong to CRC protected flit payload
MNGT, RETRANS reinitialization of link
D.x.y

IDLE

SOP_VCx, SOF_VCx

ACKy, NACKx

SOS

CREDITx

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 169
Immediate Reaction. The first two points are the immediate reaction on faults in order to
keep the network working. Figure 6-25 (b) shows the algorithm implemented in Extoll.
This is the one where most actions can directly be taken in hardware, and thus lowest laten-
cies can be expected. For reference (a) shows an implementation where the route of the
detour is handled by the management software.

Figure 6-25. Link failure treatment by the Extoll network (b) and software based alternative (a)

If a failure is detected, a re-initialization of the link can be tried, either by software or auto-
matically in hardware. Something which has to happen in hardware is to detour routing
requests from packets that are destined to the broken link to the HAP. This avoids that such
packets cause a head of line blocking, which soon can congest the whole network. This sit-

Link Failure
detected by link port

Reinitialization
successful?

no

Yes

yes

Reinitialize link on
PHY level

Synchronize state
of send and

receive link portsno

Detour new
requests to HAP

Reassemble
Packets after link

Reinject detoured
packets in HAP

(by management
software)

Reinject detoured
packets in HAP

(by management
software)

Remove Detour

Link Failure
detected by link port

Reinitialization
successful?

no

Yes

yes

Reinitialize link on
PHY level

Synchronize state
of send and

receive link ports

no

HAP automatically
forwards detoured

requests in HW

Reassemble
Packets after link

Continue detour...
Remove Detour

Detour new
requests to HAP

(a) (b)

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK170
uation is depicted in Figure 6-26, where packet p1 is stuck on a broken link and packet p2
is detoured to the HAP.

Figure 6-26. Scenario after a detected link failure

Further actions depend on whether the link has been successfully re-initialized. In the case
of a permanent failure the following steps have to be performed, which are all software con-
trolled over register interfaces to the network units:
• All packets that have been in transfer on the link have been split into a head and a tail,

which must be recombined. The tails are being extracted over a dedicated path to the
HAP. A loopback over the link port receive side and the crossbar is not possible, as the
crossbar may be blocked by packet heads that flow in the other direction: all virtual
channels and/or buffer space may be in use. Also, the number of the virtual channel
must be maintained, as this number is required in order to stick the right packet flows
together. The Crossbar would change the virtual channel of packets. Thus, a separate
data path is being used between HAP and link port. The tail will then be injected into
the receiver’s link port, so that the packets continue to flow through the network (see
Figure 6-27).
The correct joint between head and tail must be determined before the injection of the
tail. As the breaking link may have lost some acknowledges, the retransmission buffer
may hold some flits that already have been transferred correctly. These must be
removed from the tail. A network using sequence numbers in the flits could use those to
determine the joint. In Extoll, sending and receiving part of the link count a flit
sequence number when sending or receiving error-free flits. As flits are only lost on a
link failure, a comparison of the counters is sufficient to determine the joint.

Cable

Multicast
Port

High
Availability

Port

Network
Port 0

Network
Port 3

Barrier
Unit

Extoll
Xbar

Link
Port 0

NIC/
Host

Link
Port 5

Multicast
Port

High
Availability

Port

Network
Port 0

Network
Port 3

Barrier
Unit

Extoll
Xbar

Link
Port 0

NIC/
Host

Link
Port 5

Packet p1, tail Packet p1, head

Packet p2

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 171
Another consideration is how packet tails travel to the other link port. In an HPC cluster
environment, there is typically a second network, which can be used in this. It may also
be possible to use the Extoll network. However, it must be ensured that packet tails do
not get stuck at a link which is congested by the header of the same packet, as this
would result in a deadlock.

• Packets that have been detoured to the HAP will be reinjected into the network. As
ordering among packets is not required, reinjection can take place in parallel to the
recombination of messages on the link. In the currently implemented solution, the HAP
automatically looks up an alternative route to the neighboring node in a small lookup
table, and prepends this route to the original routing string of the packet. A manage-
ment software based solution would determine the target of the packet by analyzing the
routing string. The old routing string is replaced with a new routing string that avoids
the faulty link.

Figure 6-27. Packet tail extraction and injection due to permanent link failure

In the case of a temporary failure, the actions are different:
• As soon as the physical link is initialized again, transmission on the link can continue

as normal. Credits may have been lost, so that credits have to be recounted.
• The detour can be removed.
Long-term reaction. For a longtime reaction on a permanently failed link, routing tables
must be changed. The fast and efficient computation and distribution of routing tables may
be a difficult task, in particular as the network will have an irregular topology after a link

Cable

Multicast
Port

High
Availability

Port

Network
Port 0

Network
Port 3

Barrier
Unit

Extoll
Xbar

Link
Port 0

NIC/
Host

Link
Port 5

Multicast
Port

High
Availability

Port

Network
Port 0

Network
Port 3

Barrier
Unit

Extoll
Xbar

Link
Port 0

NIC/
Host

Link
Port 5

Packet p1, tail Packet p1, head

Packet p1,tail extraction Packet p1,tail injection

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK172
failure. A routing method for such network topologies using routing over intermediate
nodes has been developed in Section 6.1.7.

6.3.5 The Extoll Switch
An in-depth description of the crossbar can be found in [130] and [131]. Here, only fault
correction mechanisms are described.
Actions due to link layer fault correction. In a classical layered protocol, all link errors
should be handled by the link port, and be transparent to the switch layer of the network.
Unfortunately, such a complete encapsulation can usually be only implemented in a store
and forward fashion. As Extoll is designed as a low latency network, store and forward at
every link port is not feasible. As a result, the Extoll switch has to cope with the following
issues:
• Flits coming from the link ports may have a length of 3 instead of the minimum length

of 4 phits. The crossbar must extract and discard these phits. This solution reuses cross-
bar logic that discards empty routing phits due to the stripping of routing characters.

• Erroneous flits, marked with EOP_ERR or EOF_ERR, flow through the network. Flits
starting with SOF and ending with EOF_ERR simply follow the flow of the virtual
channel. Flits starting with SOP and ending with EOP_ERR may have a corrupt rout-
ing. They will be routed through the network until they hit a network port, or until all
routing characters have been stripped off, and thus can be discarded. A random bit error
in the routing sting may violate the rules of the deadlock free routing algorithm, and
thus such a packet may cause a deadlock. In the case of a deadlock, the flit will be in
the flit buffer of a switch in-port in one piece and wait for the grant of a virtual channel.
Extoll changes the destination port of such flits to the HAP, which never blocks. In the
HAP, the flit can be deleted.

• Credit re-count. In particular after a link failure, credits may have been lost. Software
must be able to stop individual link ports of a crossbar, read credit counts, and set credit
counters.

Switch level fault correction. On the switch level, the only fault that can happen in the
absence of bit errors on chip is a packet that requests an output port that is not available. A
port may not be available either because it does not exist in the physical implementation, or
because of an unconnected link cable or another failure on the link. Such packets will be
routed to the HAP and treated there. The switch detects both cases by checking availability
information from the link.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 173
6.3.6 The High Availability Port
The main task of the high availability port (HAP) is to resolve problems caused by tempo-
rary or permanent failure of the links. As already explained in the previous sections, the
HAP is being used to detour packets that request a link that is unavailable. Also, the HAP
is being used to extract and reinject packet tails respectively from and into the links. Both
events occur only until routing tables have been changed.

Figure 6-28. High Availability Port [131]

A third task is to improve routing in a regular network which has turned to a network with
an irregular topology due to link or node failures, as described in Section 6.1.7.
The HAP has three interfaces: to the Extoll switch, to the host via the HT interface, and to
the link ports (see Figure 6-28, where the direct interface to the link ports is not yet shown).
The HAP is virtual channel aware. It uses the same credit based input buffer as the crossbar.
Packets or flits from the network will stream into this buffer first. The further proceeding
depends on the type of the flit, which the HAP may determine by looking at sideband sig-
nals from the crossbar, and by interpreting the first routing phit:

Output
Control

HAP

18dout
dout_valid

SOF_out

VC_out
EOF_out
EOP_out

creditVC_in

credit_valid_in

EOF_E_out
EOP_E_out

SOP_out

din

din_valid

VC_in

EOP_E_in
EOF_in
EOP_in

creditVC_out
credit_valid_out

SOF_in

SOP_in

EOF_E_in

18

3

3

18

3

3

64

64fu_d

ht_d

56

18

56 56

18

18

18

Routing
Interpreter

96

96

14 14

1010

ht_ca

ht_stop_ca
ht_stop_d

ht_d_va

ht_ca_va

fu_ca

fu_d_va

fu_ca_va

fu_stop_ca

fu_stop_d

3

3

3

& &
&

3

56

3
3

3
8

3
mod. BigBen

Credit
Administration

Din Mux
and Regs

Fifo VC Counter

Fifo VC Counter

DMA
Write

DMA Write Control Fifo HAP
Core

DMA Write Fifo

DMA Read Fifo

data
con-
verter

Rerouting table
(write port

not illustrated)

DMA Read Control Fifo

DMA
Read

8
8

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK174
• If the HAP has been directly addresses, the first routing phit contains the HAP address,
as HAP routing phits are not consumed by the crossbar. If a HAP is directly addressed,
it must act as an intermediate node. Thus, such a packet will be forwarded to the out
port of the HAP. If the in-port buffer is full, it will be forwarded to the DMA buffers.
Succeeding flits of the same packet follow in this path. However, once a flit of a packet
has been written to host memory, all succeeding flits have to follow to maintain order-
ing among them.

• Packets that have been rerouted can be determined by sideband signals. A routing
lookup in the rerouting table occurs. Then the path is the same as for the previous type
of packets.

• Flits from the direct interface from the link ports are written into a dedicated host mem-
ory region via DMA.

• All other flits have been routed to the HAP as they end with an error phit. They will we
written into a separate DMA region as well.

Data that is written to the node’s main memory is stored in a raw format. To simplify
address handling, every burst of three consecutive 18 bit phits is stored in a 64 bit aligned
memory word.
The output control module multiplexes the interfaces to the crossbar between the different
packets that come from the input buffer or main memory. It uses round-robin arbitration
among those packets for which credits are available.
The DMA read buffer hides RAM read latency by reading head data as soon as DMA
queues in RAM contain valid entries.

6.3.7 Barrier
Extoll implements barrier logic in hardware [132]. All nodes that take part in a barrier
belong to the same barrier group. Extoll provides support for up to 16 barrier groups at a
time in the network.
Software that enters a barrier signals this via the register interface of the barrier module, and
also requests the status of a barrier there. Extoll barriers are tree-based, where the nodes of
the barrier tree are mapped onto the Extoll nodes.
To achieve lowest latencies, tree-node logic is independent of the Extoll crossbar switch.
However, barrier data is multiplexed on the Extoll links to avoid the cost of an extra barrier
network. Thus, the barrier logic can be seen as a second switch layer.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 175
As depicted in Figure 6-29, the barrier module hosts 16 barrier group units, i.e. one separate
unit for ever barrier group. The scalability of the number of barrier groups is only limited
by the hardware resources.

Figure 6-29. The barrier module [132]

The barrier input and output ports decode and encode the barrier messages into/from Extoll
packets. To distinguish them from normal, crossbar-routed packets, they start with the
Start-of-Special (SOS) phit. From the network protocol point of view, a barrier packet
behaves just the same way as crossbar packets. Theoretically, a barrier packet may span
over multiple flits. However, this is not required, barrier packets are minimum size packets
of 4 phits, as shown in Figure 6-30.
As barrier messages are Extoll packets, the same fault tolerance mechanisms that protect
other Extoll packets protect barrier packets. However, one difference exists: barrier packets
are not routable, and thus are not reroutable by Extoll hardware. If a link is marked as failed,
management software must be notified, which must then extract these flits and inject them
to the other end of the faulty link until it has changed barrier tree mapping.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK176
Figure 6-30. Extoll barrier packet format

6.3.8 The Network Port
The interface between NIC functional units and the network is the network port. The gen-
erator serializes the 64 bit data words from the functional units to the 18 bit wide phit for-
mat, breaks up data into flits and does the framing. At the interface to the network, it must
be virtual channel and credit aware.
The network port analyzer receives packets from the network. As the endpoint of a commu-
nication as seen by the network layer, the analyzer hides errors in the network from the
functional units.

Figure 6-31. Network Port Generator and Analyzer [126]

Impact of faults on the analyzer. In order to minimize latency and avoid a store-and-for-
ward implementation, the generator may brake up packets into flits arbitrarily. Packets will

Payload EOPCRCSOS
Extoll Barrier Packet

Barrier ID UP

DOWN

15
reserved

5 0126

Network Port - Generator Network Port - Analyzer
clk
res_n

dataHP2NP
frameHP2NP
sopHP2NP
eopHP2NP

validHP2NP
stopXBAR2NP

utilizationHP2NP

dataNP2XBAR
sopNP2XBAR

validNP2XBAR
stopNP2HP

sofNP2XBAR
eopNP2XBAR
eofNP2XBAR

clk
res_n

dataXBAR2NP
sopXBAR2NP
sofXBAR2NP
eopXBAR2NP
eofXBAR2NP
eop_eXBAR2NP
eof_eXBAR2NP
vchannelXBAR2NP
validXBAR2NP

flit_errorNP2HP

dataNP2HP
frameNP2HP
sopNP2HP
eopNP2HP

validNP2HP

creditVCNP2XBAR
creditVC_validNP2XBAR

stopHP2NP

64

2

4

18 18

3

64

2

3

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 177
be delivered to the receiving network port in the same way as they have injected by the
sender network port, with the following restrictions:
• Flits must have a minimum size of 4 phits, i.e. there must be at least one payload phit in

each flit. The maximum payload size, including SOC and SOD words, is 32 phits.
• Switches in the network may consume routing phits, these phits are removed from a

flit. Thus, the routing section of a flit shrinks with phit granularity. A flit that contains
routing only may be removed completely during its path through the network.

• To verify the command of a packet, the end character must be checked not to be an
EOP_ERR or EOF_ERR. To reduce the latency of this check, sender network ports
must end a flit as soon as the command frame ends.

• As a result of a link error, erroneous flits may continue to travel through the network
and arrive at network ports. Erroneous flits end with one of the two error fits:
EOP_ERR and EOF_ERR. A network port can simply ignore and discard both types of
erroneous flits, as a retransmission will follow up. A flit that is market as erroneous
may contain all types of errors. Particular errors are data bit errors, and wrong payload
sizes. Both EOP_ERR and EOF_ERR end phits may be present for those errors. A third
type of erroneous packets are misrouted packets. These start with SOP and end with
EOP_ERR.

The straight forward implementation of the network port is a store and forward architecture,
in which data is forwarded to the functional units only after it has been verified. This intro-
duces an additional latency that depends on the flit size. For maximum sized flits, this
latency sums up to ~30 clock cycles to the overall packet transmission latency.
An alternative implementation might speculatively forward data to functional units, and
verify or disapprove it later on. However, functional units must not change the state of the
system, unless it is recoverable, before the command has been verified. Otherwise, all types
of undefined and illegal behavior might occur.

6.4 On Chip Protection
The previous sections described how the Extoll network copes with link faults. Paths on
chips are not protected against bit faults with this protocol. To establish a protection against
transient bit errors, which is the relevant type of fault, several potential solutions exists.
This section shall give an outlook about the design space.
The most important question is whether error detection or correction is performed. As the
Extoll network shall be lossless even without an end to end retransmission protocol, error

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK178
correction is recommended. Figure 6-32 shows the design space, which also depends on the
granularity of protection.
Using a flit-based granularity, the space for the CRC phit which is being used for off-chip
error detection could be used for CRC on the chip as well. As the link out-port must recom-
pute the CRC to be able to differentiate between link errors and on-chip errors, this is also
the place where an on-chip CRC error is being checked. As the packet based CRC is already
being used, this solution has very low overhead and thus is the best option if error correction
is not required.

Figure 6-32. On-chip data path protection

For forward error correction, a general requirement is that a check is to be performed every
time data interpreted by control logic. In the Extoll network, phits that are interpreted are
control characters and routing phits. One solution is to protect the 16 bit wide data path
together with the predecoded control character signals with a Hamming code, which adds
5 control bits.
A different approach could use the CRC phit for a Hamming code over the complete flit.
Error correction can be done at the link out-ports: if an on-chip error is detected, the port
concludes the flit with an EOP_ERR or EOF_ERR, corrects the flit in the retransmission
buffer and retransmits it. Control phits can be protected by changing the coding to a Ham-
ming code instead of using the link protocol encoding. The only problem are routing phits,

on-chip soft fault tolerance

word width

detection,

granularity

flit based

detection scheme correction scheme

detectionECC ECC
e.g. parity bitusing CRC

correction scheme

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 179
which are interpreted and modified by the Extoll Crossbar. Future research may find a solu-
tion for this issue.
To achieve further improvements in reliability, protection of control structures like state
machines may be considered.

6.5 Summary
The Extoll protocol and control character encoding efficiently protects against all types of
link faults. Single bit FEC for control information is a significant improvement over state
of the art 8b/10b protocols. This avoids the loss of data and inconsistent states of the links,
which may occur in other state of the art implementations of 8b/10b encoded links. A cor-
rection of on-chip transient bit errors can be added.
The hardware-based routing over intermediate nodes provides a mechanism to improve
routing in regular networks with faulty links.
The direct overhead per flit is three phits. When maximum sized phits are used, this over-
head reduces the bandwidth that is available to 91.5%. In the backwards direction, acknowl-
edgements and credits are an additional overhead, reducing the effective payload
bandwidth to 85% of the raw link bandwidth. Besides the overhead that is introduced by the
protocol, line coding adds additional overhead. As 8b/10b coding itself has a 20% over-
head, the total effective payload bandwidth is 67%.
The closest competitor to the Extoll protocol is Infiniband, which is a lossy network. Com-
pared to framing in Infiniband, the flit framing of Extoll is only 2 bytes larger, as Inifiniband
uses single K characters for that.
The only significant difference in bandwidth between Extoll and Infiniband occurs for
larger packets: Infiniband sends packets in one piece, whereas Extoll partitions packets into
flits, which have to be framed individually. This is not caused by the fault tolerant protocol,
but by the general architecture of the network. Infiniband uses virtual cut-through routing,
while Extoll uses wormhole routing, which requires much less buffer space. If Extoll’s flit
size, and thus the buffers in Extoll, would be doubled to 128 bytes, efficiency would rise
from 85% to 92%.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK180

CONCLUSION 181
7Conclusion

The steady performance growth rate of computer systems can only be maintained in the
future by exploiting parallelism at the level of threads and processes. Parallelism requires
efficient and fast communication methods among the components of a system. One major
goal of this thesis was to research and find solutions to remove the performance bottleneck
of network interface controller to processor communication.
Besides the link bandwidth, the latency that is observed on this path plays a fundamental
role for overall system performance. This latency directly increases the overall communi-
cation latency between two nodes. Additionally, the access latency that is observed by the
processor affects the throughput of the processor adversely.
To achieve a significant decrease in latency at all, on-chip communication is mandatory.
Communication over chip boundaries is just as expensive in terms of latency as a DRAM
memory access. The integration of network interface, processor cores and memory control-
ler onto the same die will become even more important in the future, as the processor to I/
O performance gap is still widening.
A closer coupling has not only to occur on the physical level, but on the protocol level as
well. For processors, caching of data is one of the most crucial factors for processor perfor-
mance. For device to processor communication, caching of data is currently not employed.
A tighter integration of devices into the system must consider these protocols.
As most of today’s computing nodes are now shared memory multiprocessors, the essential
communication mechanism in today’s computing nodes is the cache coherence protocol. A
comprehensive and up-to-date description of shared-memory design space is given in this
work. Although explicit broadcast protocols in direct interconnect networks have changed
the conditions under which coherence protocols have to operate, cache coherent communi-
cation has not been a main focus of both researchers and authors in the last years. Thus, the
in-depth description of the state of the art for small scale shared memory systems is a pre-

CONCLUSION182
requisite for any further work in this area, and cannot be found in its up-to-dateness else-
where.
A first implementation of a closer coupling of device and processor is the HyperTransport
direct connect architecture, based on the HyperTransport IP core and the HTX board. The
HyperTransport IP core already has evolved from a research project to a product, and is
freely available under an open-source license. The coherent version of the core is distrib-
uted to licensees of the coherent protocol by AMD. Both cores find large interest in both
industry and academia. Thus, they are a significant practical contribution to the community,
leveraging research and design of coherent devices and coprocessors of different kinds.
Another contribution of this work is the evaluation of cache coherent devices, focusing on
the critical path of device to processor communication. Performance estimations in this
work are based on RTL implementations using the HyperTransport and coherent Hyper-
Transport interconnects. Compared to abstract, high level simulations, this guarantees a
solid quality of the results. Also, these prototypes verify the proper functioning of the pro-
posed concepts.
To the best of my knowledge, only Mukherjee [9] has proposed a similar architecture:
external coherent devices in bus-based systems. Mainly due to the widening processor-to-
memory and processor-to-I/O gaps, the situation has changed since then: performance
increases through coherent transfers cannot be expected for external devices. However, for
highest performance, devices and coprocessors must be integrated into the chip in a SOC-
like fashion. In this case, coherent devices exhibit a significantly improved performance
over classical DMA.
A completely new idea in this work, and thus a key contribution, is the transfer cache. It is
the only architecture of those that have been analyzed in this work that improves the pro-
cessor read latency even for external devices. Also, devices do not need to participate at the
coherence protocol. In practice, getting access to the proprietary, non-standardized coherent
protocols may be difficult due to legal and political reasons. Thus, the transfer cache is a
very promising concept, which fits particularly well with for example the Sun UltraSparc
T2 memory architecture, as the existing second level caches can be used as transfer caches.
Another option for future improvements are direct processor cache access mechanisms. The
placement of data directly into the processor caches leads to best processor read latencies.
Compared to NICs in the processor core or specialized network message caches, DCA is a
universal mechanism that can be used by all devices in the system. Such mechanisms have
virtually not been researched yet. The outlook presented in this thesis is an excellent starting
point for intense work on DCA mechanisms.

CONCLUSION 183
While the first part of this work deals with the optimization of device to processor commu-
nication, the second part concentrates on the opposite side of the NIC: the network itself.
Again, research in this field is driven by the growing exploitation of parallelism. Higher
parallelism leads to increased network sizes with larger numbers of nodes. For example, the
currently fastest supercomputer [99] has 106,496 computing nodes. At the same time, par-
allelism and complexity of the individual nodes are increasing as well. With growing
system sizes, the likelihood of faults per system is increasing. Transient bit faults on chips
become more significant. On links, both transient and permanent faults have always been a
problem. But not only the larger number of links increases fault rates. Transient fault rates
per time increase with higher link data frequencies. Such faults can now be considered to
be regular events, so that fault handling must be efficient and thus occur on the lower levels
of the network.
This work presents the fault tolerant Extoll network protocol, aimed to be used in small- to
large-scale direct interconnection networks. The protocol protects against transient faults of
the link that are due to Gaussian noise. Control information is protected using forward error
correction. Payload data is protected by a link-based retransmission protocol. Besides tran-
sient bit faults, the protocol protects against temporary and permanent link failures without
any loss of data. As a result, the Extoll link protocol is, to the best knowledge of the author,
the only successful implementation of a truly fault-tolerant network protocol based on 8b/
10b link coding. Under the constraints given by the 8b/10b protocol and Extoll network
requirements like small flit sizes and flit-based credits, the over-all maximum bandwidth
utilization of the Extoll protocol of 85% is the best that can be achieved to guarantee fault
tolerance. 8b/10b’s efficiency of 80% further reduces the bandwidth. Thus, future work
must evaluate closer how 8b/10b coding can be replaced, for example using mechanisms
that are based on scrambling.
The High Availability Port is another significant improvement of fault tolerance. It is the
first and only hardware-based routing mechanism that uses partitioned routing between
intermediate nodes. In every large network, there is a good chance that at least one link is
broken at any time. Thus, networks with a regular topology will in fact be irregular net-
works. The HAP allows an efficient and deadlock-free rerouting around faulty components,
while all packets that are not directly affected by the fault can continue to use optimal rout-
ing algorithms.

CONCLUSION184
All in all, this thesis developed new architectures and methods to solve two significant
problems of modern network interface controllers: a significant increase in the latency of
device to processor communication, and efficient and reliable error correction on network
links. For both areas, solutions have been developed and implemented that are already suc-
cessfully used in practice. As well, methods have been proposed and analyzed that may be
used in future systems.

185
AAcronyms

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BAR Base Address Register

BEC Backward Error Correction

BER Bit Error Rate, also Bit Error Ratio

CAM Content-Addressable Memory

cHT Cache Coherent HyperTransport protocol.

CMOS Complementary Metal–Oxide–Semiconductor

DC Direct Current

DCA Direct Processor Cache Access

DIMM Dual Inline Memory Module. A printed circuit board with a speci-
fied interface, typically holding a number of SDRAM chips.

DMA Direct Memory Access

ECC Error Correcting Code

FEC Forward Error Correction

FIFO First-In First-Out, a strategy for buffers

186
FIT Failures In Time

FLIT Flow-Control digIT, i.e. the smallest unit of flow control

FPGA Field-Programmable Gate Array

FU Functional Unit

HD Hamming Distance

HPC High Performance Computing

HT HyperTransport protocol. May be followed by a number that speci-
fies the maximum clock frequency in MHz.

HTX HyperTransport eXpansion, the standard for HT slots

IN Interconnection Network

IP Intellectual Property

LAN Local Area Network

MIPS Million Instructions Per Second

MMU Memory Management Unit

MTU Maximum Transmission Unit

nHT noncoherent HyperTransport, see HT.

NIC Network Interface Controller

NUMA Non-Uniform Memory Architecture

PCB Printed Circuit Board

PE Processing Element

PIO Programmed Input/Output

RMA Remote Memory Access

SAN System Area Network

SMP Symmetric Multiprocessor

187
SMT Simultaneous Multi-Threading

SO-DIMM Small Outline DIMM.

SRAM Static Random Access Memory

SRI System Request Interface

TCA Tightly Coupled Accelerator

TLB Translation Lookaside Buffer

VC Virtual Channel

VSM Virtual Shared Memory

ZRAM Zero Capacitor Random Access Memory

188

189
BBibliography

[1] J. von Neumann. First draft of a report on EDVAC. Technical Report, University of
Pennsylvania, 1945

[2] M. D. Godfrey, D. F. Hendry. The Computer as Von Neumann Planned It. IEEE
Annuals of the History of Computing. Vol. 15, No.1, 1993

[3] M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans. on
Computers C-21(9), pp. 938-960, September 1972.

[4] D. Sima, T. Fountain, P. Kacsuk. Advanced Computer Achitectures: A Design Space
Approach. Addison Wesley, 1997.

[5] H. Sharangpani, K Arora. Itanium Processor Microarchitecture. In IEEE Micro,
p.24-43, Sept.-Oct. 2000.

[6] X. Zang, A. Dasdan, M. Schulz, R. K. Gupta and A. A. Chien. Architectural adap-
tation for application-specific locality optimizations. In Proceedings of the 1997
IEEE international Conference on Computer Design, 1997.

[7] W. A. Wulf and S. A. McKee. Hitting the Memory wall: Implications of the Obvi-
ous. Computer Architecture News, 23(1), pp. 20-24, March 1995

[8] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C Koryrakis, K. Olukotun.
Transactional coherence and consistency: simplifying parallel hardware and soft-
ware. Micro, IEEE Volume 24, Issue 6, Nov-Dec 2004

190
[9] Shubhendu Sekhar Mukherjee. Design and Evaluation of Network Interfaces for
System Area Networks. PhD. Thesis, University of Wisconsin-Madison, 1998

[10] Shubhendu Sekhar Mukherjee, M. D. Hill. The impact of data transfer and buffer-
ing alternatives on network interface design. Fourth International Symposium on
High-Performance Computer Architecture, pp.207-218, 1-4 Feb 1998

[11] T. Gross, D. R. O’Hallaron. IWarp - Anatomy of a Parallel Computing System. MIT
Press, Cambridge, Massachusetts, 1998

[12] C. Whitby-Strevens. The Transputer. Proceedings of the 12th Annual International
Symposium on Computer Architecture (ISCA85), Boston, Massachusetts, U.S.,
June 1985

[13] Joseph Carbonaro and Frank Verhoorn. Cavallino: The Teraflops Router and NIC.
Hot Interconnects IV. pages 157 160, 1996

[14] Ben Catanzaro. Multiprocessor System Architectures. Prentice Hall, Englewood
Cliffs, NJ, 1994

[15] David Slogsnat. Simulation and Architectural Exploration of a Shared-Memory
Multiprocessor Node for Scientific Algorithms. Diploma Thesis, University of Man-
nheim, 2002

[16] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM reference manual, version 1.0.
Technical Report 9705, Rice University, 1997

[17] Sun Microsystems Inc. OpenSPARC™ T2 System-On-Chip (SOC) Microarchitec-
ture Specification. July 2007

[18] Sun Microsystems Inc. OpenSPARC™ T2 Core Microarchitecture Specification.
July 2007

[19] Harlan McGhan. Niagara2 Opens the Floodgates. Microprocessor Report, Decem-
ber 2006

191
[20] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming. Revision 3.11, 2005

[21] Advanced Micro Devices. Software Optimization Guide for AMD Family 10h Pro-
cessors. Revision 3.04, September 2007

[22] Advanced Micro Devices. AMD BIOS and Kernel Developer's Guide for the AMD
Athlon 64 and AMD Opteron Processors. Revision 3.3, 2006

[23] Wikipedia. Streaming SIMD extensions. Wikipedia Article, http://en.wikipedia.org/
wiki/Streaming_SIMD_Extensions, September 2007

[24] Wikipedia. AltiVec. Wikipedia Article, http://en.wikipedia.org/wiki/AltiVec, Sep-
tember 2007

[25] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. Dissertation,
Yale University, 1986

[26] Lars Rzymianowicz, Ulrich Brüning, Jörg Kluge, Patrick Schulz and Mathias
Waack. ATOLL: A Network on a Chip. Cluster Computing Technical Session (CC-
TEA) of the PDPTA'99 conference, in Las Vegas, June 28 - July 1 1999

[27] H. Fröning, M. Nüssle, D. Slogsnat, P. R. Haspel, U. Brüning. Performance Evalua-
tion of the ATOLL Interconnect. IASTED Conference, Parallel and Distributed
Computing and Networks (PDCN), Innsbruck, Austria, February 2005

[28] U. Brüning, W. Giloi. Future Building Blocks for Parallel Architectures. In Pro-
ceedings of the 2004 International Conference on Parallel Processing (ICPP04),
Montreal, Canada, 2004

[29] Lars Rzymianowicz. Designing Efficient Network Interfaces For System Area Net-
works. Dissertation, University of Mannheim, 2002

[30] Jon Beecroft, David Addison, David Hewson, Moray McLaren, Duncan Roweth,
Fabrizio Petrini, Jarek Nieplocha. QsNetII: Defining High-Performance Network
Design. IEEE Micro, vol. 25, no. 4, pp. 34-47, Jul/Aug, 2005

192
[31] Brightwell, Pedretti, Underwood. Initial performance evaluation of the Cray Sea-
Star interconnect. 13th Symposium on High Performance Interconnects, 17-19 Aug.
2005

[32] Smith, B. The architecture of HEP. On Parallel MIMD Computation: HEP Super-
computer and Its Applications, Ed. Massachusetts Institute of Technology, Cam-
bridge, MA, 41-55, 1985

[33] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The Tera computer system. SIGARCH Comput. Archit. News 18, 3b, Sep. 1990

[34] T. Halfhill. Z-RAM shrinks embedded Memory. Microprocessor Report,
www.MPRonline.com, 2005

[35] Intel. Intel® I/O Acceleration Technology. Technology Brief, www.intel.com/go/
ioat, 2006

[36] Intel. Intel® 82598 10 Gigabit Ethernet Controller. Product Brief, 2007

[37] Intel. Intel® QuickData Technology Extends Flexibility of I/O Acceleration. Tech-
nology@Intel Magazine, Volume 4, Issue 9, December 2006

[38] Intel. Intel® 5000X Chipset Memory Controller Hub (MCH). Datasheet, September
2006

[39] Microsoft. Scalable Networking: Eleminating the Receive Processing Bottleneck -
Introducing RSS. WinHEC, April 2004

[40] R. Huggahalli, R. Iyer, S. Tetrick. Direct Cache Access for High Bandwidth Net-
work I/O. In Proceedings of the 32nd Annual international Symposium on Com-
puter Architecture (June 04 - 08, 2005). International Symposium on Computer
Architecture. IEEE Computer Society, Washington DC, pp50-59, 2005

[41] Intel. Intel® Virtualization Technology for Directed I/O. Architecture Specification,
Revision 1.0, May 2007

193
[42] AMD. AMD I/O Virtualization Technology (IOMMU) Specification. Architecture
Specification, Revision 1.20, February 2007

[43] David Kanter. The Common System Interface: Intel's Future Interconnect. Real
World Technologies, http://www.realworldtech.com/includes/templates/arti-
cles.cfm?ArticleID=RWT082807020032, August 2007

[44] P. Conway, B. Hughes. The AMD Opteron Northbridge Architecture. IEEE Micro ,
vol.27, no.2, pp.10-21, March-April 2007

[45] Brian Holden. Latency Comparison between HyperTransport and PCI-Express in
Communications Systems. HyperTransport Consortium White Paper, November
2006

[46] HyperTransport Technology Consortium. HyperTransport I/O Link Specification
Revision 2.00b. Document #HTC20031217-0036-0009, 2005

[47] HyperTransport Technology Consortium. HyperTransport I/O Link Specification
Revision 3.00. Document #HTC20051222-0046-0008, 2006

[48] HyperTransport Consortium. HyperTransport EATX Motherboard/Daughtercard
Specification. www.hypertransport.org, 2004

[49] HyperTransport Consortium. The Future of High Performance Computing: Direct
Low Latency Peripheral-to-CPU Connections. www.hypertransport.org, November
2005

[50] Duncan Bees, Brian Holden. HyperTransport reduces delays in some applications.
EETimes 2004

[51] Alexander Giese. Development and Verification of a HyperTransport-Interface with
Optimizations for FPGA Environments. Diploma Thesis, Universität Mannheim,
2006

[52] PCI-SIG. PCI Express Base Specification 1.1. 2005

194
[53] PCI-SIG. PCI Express Base Specification 2.0. 2007

[54] Heise Newsticker. Neue Server Plattformen fuer zwei oder view Xeons. http://
www.heise.de/newsticker/result.xhtml?url=/newsticker/meldung/
88368&words=Clarksboro&T=clarksboro, April 2007

[55] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):241-248, Sep-
tember 1979.

[56] Christian Scheurich, Michael Dubois. Correct Memory Operation of Cache-based
Multiprocessors. In Proceedings of the 14th Annual International Sumposium on
Computer Architecture, pages 234/243, June 1987

[57] Sarita V. Adve, Kourosh Gharachorloo. Shared Memory Consistency Models: A
Tutorial. Computer, vol. 29, no. 12, pp. 66-76, Dec., 1996

[58] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiproces-
sors. Proc. 13th Int’l Symp. Comp. Arch., pp. 434-442, June 1986.

[59] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-Memory Multiproces-
sors. Proc. 17th Ann. Int'l Symp. Computer Architecture, 1990.

[60] D. Culler, J. Singh. Parallel Computer Archtecture. A Hardware/Software
Approach. Morgan Kaufman Publishers, 1999

[61] R. Madukkarumukumana et al. Performing Direct Cache Access Transactions
Based on a Memory Access Data Structure. WIPO patent, publication number WO/
2007/078958 , 2007

[62] H. Hum, J. Goodman. Forward State for use in Cache Coherency in a Multiproces-
sor System. WIPO patent, publication number WO 2004/060678 A2, July 2004

[63] H. Hum et al. Speculative Distributed Conflict Resolution for a Cache Coherency
Protocol. WIPO patent, publication number WO 2004/061677 A2, July 2004

195
[64] Beers, R. et al. Non-Speculative Distributed Conflict Resolution for a Cache Coher-
ency Protocol. US Patent No. 6,954,829 B2. October 2005.

[65] L. Censier, P. Feautrier. A new solution to Coherence Problems in Multicache Sys-
tems. In IEEE Transactions on Computers, C(27):1112-1118, December 1978.

[66] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements
for Scalable Directory-Based Cache Coherence Schemes. In International Confer-
ence on Parallel Processing, pages I:312--321, Aug 1990

[67] M. M. Michael, A. K. Nanda. Design and Performance of Directory Caches for
Scalable Shared Memory Multiprocessors. In Proceedings of the 5th international
Symposium on High Performance Computer Architecture, HPCA, 1999

[68] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Evalua-
tion of Directory Schemes for Cache Coherence. In Proc. of the 15th Znt. Sym. on
Computer Architecture, pages 280-289, May 1988

[69] Richard Simoni and Mark Horowitz. Dynamic Pointer Allocation for Scalable
Cache Coherence Directories. In Proc. of the Int. Sym. on Shared Memory Multi-
processing, pages 72-81, April 1991

[70] Intel. Intel® 64 and IA-32 Architectures Software Developer's Manual. Version 023,
2007

[71] IBM. PowerPC Architecture Book. Version 2.02, 2005

[72] IBM. IBM PowerPC 970FX RISC Microprocessor User’s Manual. Version 1.41,
November 2004

[73] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Available from http://www.mpi-forum.org/docs, 1995

[74] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. Available from http://www.mpi-forum.org/docs, 1997

196
[75] OpenMP Architecture Review Board. OpenMP Application Program Interface.
Version 2.5, Mai 2005

[76] P. M. Behr, S. Pletner, A. C. Sodan. PowerMANNA: a parallel architecture based
on the PowerPC MPC620. Proceedings of the Sixth International Symposium on
High-Performance Computer Architecture, HPCA-6. , pp.277-286, 2000

[77] Tanabe, N.; Yamamoto, J.; Nishi, H.; Kudoh, T.; Hamada, Y.; Nakajo, H.; Amano,
H. . MEMOnet: network interface plugged into a memory slot. Proceedings of the
IEEE International Conference on Cluster Computing, pp.17-26, 2000

[78] Khunjush, F. and Dimopoulos, N. J. . Lazy direct-to-cache transfer during receive
operations in a message passing environment. In Proceedings of the 3rd Conference
on Computing Frontiers (Ischia, Italy, May 03 - 05, 2006), ACM Press, New York,
NY, pp. 331-340, 2006

[79] Afsahi, A. and Dimopoulos, N. J. . Efficient Communication Using Message Predic-
tion for Cluster Multiprocessors. In Proceedings of the 4th international Workshop
on Network-Based Parallel Computing: Communication, Architecture, and Appli-
cations. Lecture Notes In Computer Science, vol. 1797. Springer-Verlag, London,
162-178, 2000.

[80] Binkert, N. L., Saidi, A. G., and Reinhardt, S. K. . Integrated network interfaces for
high-bandwidth TCP/IP. In Proceedings of the 12th international Conference on
Architectural Support For Programming Languages and Operating Systems (San
Jose, California, USA, October 21 - 25, 2006). ASPLOS-XII. ACM Press, New
York, NY, pp. 315-324, 2006

[81] L. Spracklen, S. G. Abraham. Chip Multithreading: Opportunities and Challenges.
In Proceedings of the 11th international Symposium on High-Performance Com-
puter Architecture (February 12 - 16, 2005). HPCA. IEEE Computer Society, Wash-
ington, DC, pp. 248-252, 2005

[82] Manolis Katevenis. Towards Light-Weight Intra-CMP Network Interfaces. Work-
shop on On- and Off-Chip Interconnection Networks for Multicore Systems, Stan-
ford, California, 6-7 December 2006

197
[83] D. S. Henry and C. F. Joerg. A tightly-coupled processor-network interface. In Pro-
ceedings of the Fifth international Conference on Architectural Support For Pro-
gramming Languages and Operating Systems (Boston, Massachusetts, United
States, October 12 - 15, 1992). R. L. Wexelblat, Ed. ASPLOS-V. ACM Press, New
York, NY, pp. 111-122, 1992

[84] S. L. Scott. Synchronization and communication in the T3E multiprocessor. SIG-
PLAN, pp. 26-36, Sep. 1996

[85] S. Scott, G. Thorson. The Cray T3E Network: Adaptive Routing in a High Perfor-
mance 3D Torus. HOT Interconnects IV, Stanford University, August, 1996

[86] Michael Schlansker, Nagabhushan Chitlur, Erwin Oertli, Paul M. Stillwell, Jr.,
Linda Rankin, Dennis Bradford, Richard J. Carter, Jayaram Mudigonda, Nathan
Binkert, Norman P. Jouppi. High-performance Ethernet-based Communications for
Future Multi-core Processors. Supercomputer Conference, SC07, November 2007

[87] C. Seitz, N. Boden, J. Seizovic, W.-K. Su. Myrinet: A Gigabit-per-second Local
Area Network. IEEE Micro, vol 15, no.1, pp 29-36, 1995

[88] F. Petrini, Wu-chun Feng; A. Hoisie, S. Coll, E. Frachtenberg. The Quadrics net-
work (QsNet): high-performance clustering technology. Hot Interconnects 9, 2001,
pp.125-130, 2001

[89] M. Schlansker, N. Chitlur, E. Oertli, P. M. Stillwell, Jr., L. Rankin, D. Bradford, R.
J. Carter, J. Mudigonda, N. Binkert, N. P. Jouppi. High-performance Ethernet-based
Communications for Future Multi-core Processors. Supercomputing Conference,
SC07, Nov 10-16, 2007

[90] Infiniband Trade Association. Infiniband Architecture Specification Volume 1.
Release 1.2, October 2004, and Infiniband Architecture Specification Volume 2.
Release 1.2.1, October 2006

[91] Cray Inc. Cray XT3 Datasheet. http://www.cray.com/products/xt3/index.html. 2005

[92] Cray Inc. Cray XT4 Datasheet. http://www.cray.com/products/xt4/index.html. 2006

198
[93] Lustre Wiki. http://wiki.lustre.org/

[94] Nikhil, R. S., Papadopoulos, G. M., and Arvind 1992. *T: a multithreaded massively
parallel architecture. In Proceedings of the 19th Annual international Symposium
on Computer Architecture (Queensland, Australia, May 19 - 21, 1992). ISCA '92.
ACM Press, New York, NY, 156-167, 1992

[95] Derek Chiou, Boon S. Ang, Arvind, Michael J. Becherle, Andy Boughton, Robert
Greiner, James E. Hicks, James C. Hoe. StartT-ng: Delivering Seamless Parallel
Computing. In Proceedings of EURO-PAR ’95, Stockholm, Sweden, 1995

[96] B. S. Ang, D. Chiou, D.L. Rosenband, M. Ehrlich, L. Rudolph, Arvind. StarT-Voy-
ager: a flexible platform for exploring scalable SMP issues. In Proceedings of the
1998 ACM/IEEE Conference on Supercomputing (San Jose, CA, November 07 -
13, 1998). Conference on High Performance Networking and Computing. IEEE
Computer Society, Washington, DC, pp. 1-13, 1998

[97] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop
Gupta, John Hennessy. The DASH Prototype: Implementation and Performance. In
Proceedings of the 19th International Symposium on Computer Architecture, pages
92-103, Gold Coast, Australia, May 1992

[98] F. Aono and M. Kimura. The AzusA 16-Way Itanium Server. In IEEE Micro Septem-
ber-October 2000, p.54-60

[99] TOP500 Supercomputer Sites, http://www.top500.org.

[100] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P.
Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken, M. Tsao, and P.
Vranas. Blue Gene/L Torus Interconnection Network. IBM J. Res. & Dev. 49, No. 2/
3, 265–276, 2005

[101] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.
Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview of the Blue Gene/L
system architecture. BM J. Res. & Dev. 49, No. 2/3, pp. 195-212, 2005

199
[102] M. Ohmacht, R. A. Bergamaschi, S. Bhattacharya, A. Gara, M. E. Giampapa, B.
Gopalsamy, R. A. Haring, D. Hoenicke, D. J. Krolak, J. A. Marcella, B. J.
Nathanson, V. Salapura, and M. E. Wazlowski. Blue Gene/L Compute Chip: Mem-
ory and Ethernet Subsystem. IBM J. Res. & Dev. 49, No. 2/3, pp. 255–264, 2005

[103] The HyperTransport Consortium. HyperTransport Technology I/O Link. White
Paper, July 2001

[104] Raza Microelectronics, Inc. XLR Processor Product Overview. May 2005

[105] U. Brüning. Lecture Notes for Computer Architecture I. University of Mannheim,
Germany, 2007

[106] Intel Corporation. Intel’s Official Moore’s Law Page. http://www.intel.com/technol-
ogy/mooreslaw/

[107] R. J. Drost, R. D. Hopkins, R. Ho, I. E. Sutherland. Proximity communication. IEEE
Journal of Solid-State Circuits, vol.39, no.9, pp. 1529-1535, Sept. 2004

[108] Newisys. ExtendiScale™ Technology: Large-Scale SMP Using AMD® Opteron™
Processors and Newisys® Horus ASIC. White Paper, 2006

[109] Andi Kleen. A NUMA API for Linux. Technical Report, 2004

[110] John McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. http://www.cs.virginia.edu/stream/

[111] S. S. Mukherjee and M. D. Hill. The Impact of Data Transfer and Buffering Alter-
natives on Network Interface Design. Proceedings of HPCA98, Feb. 1998

[112] S. S. Mukherjee, M. D. Hill. Using prediction to accelerate coherence protocols.
Proceedings of the 25th Annual International Symposium on Computer Architec-
ture, pp.179-190, 27 Jun-1 Jul 1998

[113] Manuel E. Acacio, José González, José M. García and José Duato. Owner Predic-
tion for Accelerating Cache-to-Cache Transfer Misses in cc-NUMA Multiproces-

200
sors. Proc. of the SC2002 High Performance Networking and Computing,
November 2002

[114] S. Kaxiras, C. Young. Coherence communication prediction in shared-memory mul-
tiprocessors. Sixth International Symposium on High-Performance Computer
Architecture, 2000. HPCA-6. Proceedings, pp.156-167, 2000

[115] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim, A. Ailamaki, B. Falsafi. Mem-
ory coherence activity prediction in commercial workloads. In Proceedings of the
3rd Workshop on Memory Performance Issues: in Conjunction with the 31st inter-
national Symposium on Computer Architecture (Munich, Germany, June 20 - 20,
2004). WMPI '04, vol. 68. ACM Press, New York, NY, pp. 37-45, 2004

[116] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki and B. Falsafi.
Temporal Streaming of Shared Memory. In Proceedings of the 32nd Annual interna-
tional Symposium on Computer Architecture (June 04 - 08, 2005). International
Symposium on Computer Architecture. IEEE Computer Society, Washington, DC,
pp. 222-233, 2005

[117] M. P. Herlihy and J. E. B. Moss. Transactional Memory: architectural support for
lock-free data structures. In Proceedings of the 1993 International Symposium on
Computer Architecture (ISCA), San Diego, CA, May 1993

[118] L. Hammond, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B. Hertzberg., M.K.
Prabhu, H. Wijaya, C. Kozyrakis, K. Olukotun. Transactional Memory Coherence
and Consistency. In Proceedings of the 31st Annual international Symposium on
Computer Architecture (München, Germany, June 19 - 23, 2004). International
Symposium on Computer Architecture. IEEE Computer Society, Washington, DC,
p. 102, 2004

[119] R. Iyer, L. Bhuyan, A. Nanda. Using Switch Directories to Speed Up Cache-to-
Cache Transfers in CC-NUMA Multiprocessors. IPDPS , p. 721, 2000.

[120] T. Schlichter. Exploration of Hard- and Software Requirements for one-sided, zero
copy user level Communication and its Implementation. Diploma Thesis, Computer
Architecture Group, University of Mannheim, 2003

201
[121] H. Fröning. Architectural Improvements of Interconnection Network Interfaces.
Inaugural Dissertation, University of Mannheim, Jul. 9, 2007.

[122] H. Litz. HTAX Specification. Technical Report, Computer Architecture Group, Uni-
versity of Mannheim, 2007

[123] P. Haspel. Researching methods for efficient hardware specification, design and
implementations of a next generation communication architecture. Inaugural Dis-
sertation, University of Mannheim, 2007

[124] L. Schaelicke, A. Davis. Improving I/O performance with a conditional store buffer.
MICRO-31. Proceedings. 31st Annual ACM/IEEE International Symposium on ,
pp.160-169, 30. Nov-2. Dec 1998

[125] H. Litz, H. Froening, M. Nuessle, U. Bruening. A HyperTransport NIC for Ultra-
low Latency Message Transfers. Technical Report, 2007

[126] D. Bayer. Designing the Network Port Element for the ExTOLL Network Chip.
Project Report, University of Mannheim, 2005

[127] D. Slogsnat, A. Giese, M. Nuessle, U. Bruening .A Versatile, Low Latency Hyper-
Transport Core. Technical Report, 2008

[128] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U. Brüning. The HTX-Board: A Rapid
Prototyping Station. 3rd annual FPGAworld Conference, Stockholm, Sweden, Nov.
16, 2006

[129] S. Kapferer. Design Space Analysis and Implementation of a Cache Coherent
Device for HyperTransport. Diploma Thesis, University of Mannheim, 2007

[130] F. Ueltzhöffer. Design and Implementation of a Virtual Channel Based Low-Latency
Crossbar Switch. Diploma Thesis, University of Mannheim, 2005

[131] B. Geib. Improving and Extending a Crossbar Design for ASIC and FPGA Imple-
mentation. Diploma Thesis, University of Mannheim, 2007

202
[132] N. Burkhardt. Fast Hardware Barrier Synchronisation for a Reliable Interconnec-
tion Network. Diploma Thesis, University of Mannheim, 2007

[133] S. Schenk. Configuration and Implementation of the Xilinx Multi Gigabit Trans-
ceivers. Project Report, 2007

[134] H. Klimant, R. Piotraschke, D. Schoenfeld. Informations- und Kodierungstheorie.
B.G. Teubner 2003

[135] D. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge:
Cambridge University Press, 2003

[136] P. Koopman, T. Chakravarty. Cyclic Redundancy Code (CRC) Polynomial Selection
For Embedded Networks. International Conference on Dependable Systems and
Networks (DSN'04), p. 145, 2004

[137] J. Ray, P. Koopman. Efficient High Hamming Distance CRCs for Embedded Net-
works. International Conference on Dependable Systems and Networks, DSN 2006,
pp.3-12, 2006

[138] T.-B. Pei and C. Zukowski. High-Speed Parallel CRC Circuits in VLSI. IEEE Trans.
Comm., vol. 40, no. 4, pp. 653-657, Apr. 1992

[139] Sprachmann. Automatic Generation of Parallel CRC Circuits. IEEE Des. Test 18, 3
(May. 2001), pp. 108-114, 2001

[140] Yin-Tsung Hwang, Jiun-Yan Chen, Ming-Hwa Sheu. Automatic Generation of Pro-
grammable Parallel CRC & Scrambler Designs. IEEE Workshop on Signal Pro-
cessing Systems Design and Implementation, SIPS '06, pp.286-291, Oct. 2006

[141] P. Subbiah. Bit-Error Rate (BER) for high speed serial data communication. Tech-
nical Paper, Cypress Semiconductor, 2006

[142] L. Thon, H.-J. Liaw. Error-Correction Coding for 10Gb/s Backplane Transmission.
DesignCon 2004

203
[143] Intel. Intel® Connects Cables. High-Performance 20 Gbps Optical Cables. Product
Brief, 2007

[144] J. von Neumann. Probailistc logics and the synthesis of reliable organisms from
unreliable components. Automata Studies, in Annals of Mahtematical Studies no.
34, pp. 43-98, Princeton University Press, 1956

[145] P. Lala. Self-Checking and Fault-Tolerant Digital Design. Academic Press/Morgan
Kaufmann Publishers, 2001

[146] R. Baumann. Soft errors in advanced computer systems. Design & Test of Comput-
ers, IEEE, Volume 22, Issue 3, Page(s):258 - 266, May-June 2005

[147] P. Hazucha, T. Karnik, J, Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Dermer, S.
Hareland, P. Armstrong, S. Borkar. Neutron soft error rate measurements in a 90-
nm CMOS process and scaling trends in SRAM from 0.25-um to 90-nm generation.
Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International,
pp. 21.5.1-21.5.4, 8-10 Dec. 2003

[148] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C.
A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M.
Orro, G. J. Unger, J. M. Ross, T. J. O'Gorman, B. Messina, T. D. Sullivan, A. J.
Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W.
A. Klein, C. W. Wahaus. IBM experiments in soft fails in computer electronics
(1978-1994). IBM Journal of Research and Development, Vol. 40, No.1, 1996

[149] S.S. Mukherjee, J. Emer, S.K. Reinhardt. The soft error problem: an architectural
perspective. 11th International Symposium on High-Performance Computer Archi-
tecture, 2005. HPCA-11, pp. 243-247, 12-16 Feb. 2005

[150] A. X. Widmer, P. A. Franaszek. A DC-Balanced, Partitioned-Block, 8B/10B Trans-
mission Code. IBM Journal of Research and Technology, Volume 27, Number 5,
Page 440, 1983

[151] Rick Walker, Birdy Amrutur, Tom Knotts, Richard Dugan. 64b/66b coding update.
IEEE 802.3ae, Albuquerque, 3/6/2000

204
[152] Suresh Chalasani, Rajendra V. Boppana. Communication in Multicomputers with
Nonconvex Faults. IEEE Transactions on Computers ,vol. 46, no. 5, pp. 616-622,
May, 1997

[153] Chun-Lung Chen, Ge-Ming Chiu. A Fault-Tolerant Routing Scheme for Meshes
with Nonconvex Faults. IEEE Transactions on Parallel and Distributed Systems
,vol. 12, no. 5, pp. 467-475, May, 2001

[154] R.A. Reed, M.A. Carts, P.W. Marshall, C.J. Marshall, O. Musseau, P.J. McNulty,
D.R. Roth, S. Buchner, J. Melinger, T. Corbiere. Heavy ion and proton-induced sin-
gle event multiple upset. IEEE Transactions on Nuclear Science, vol.44, no.6,
pp.2224-2229, Dec 1997

[155] Maria Engracia Gomez, Nils Agne Nordbotten, Jose Flich, Pedro Lopez, Antonio
Robles, Jose Duato, Tor Skeie, Olav Lysne. A Routing Methodology for Achieving
Fault Tolerance in Direct Networks. IEEE Transactions on Computers ,vol. 55, no.
4, pp. 400-415, April, 2006

[156] Young-Joo Suh, Binh Vien Dao, Jose Duato, Sudhakar Yalamanchili. Software-
Based Rerouting for Fault-Tolerant Pipelined Communication. IEEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 3, pp. 193-211, March, 2000

[157] C. Ho and L. Stockmeyer. A New Approach to Fault-Tolerant Wormhole Routing for
Mesh-Connected Parallel Computers. IEEE Trans. Comput. 53, 4 , pp. 427-439,
Apr. 2004

[158] Donald H. McMahon, Alan A. Kirby, Bruce A. Schofield, Kent Springer. Data and
forward error control coding techniques for digital signals. US Patent Number
5144304, 1992

205
CList of Figures

Figure 1-1. Block diagram of the Extoll NIC . 4
Figure 1-2. Ultra NIC . 5
Figure 1-3. The HTX board . 6
Figure 1-4. Design space diagram . 7
Figure 1-5. Flow diagram . 8
Figure 1-6. MESI state diagram for a requesting cache . 8
Figure 1-7. MESI state diagram for a snooping cache . 9
Figure 1-8. Design exploration design space . 10
Figure 1-9. Four-node example . 12
Figure 1-10. System parameters for HT1000 . 12
Figure 2-1. The memory hierarchy of the Intel Itanium processor [5] . 14
Figure 2-2. Classification of parallel architectures according to Sima . 16
Figure 2-3. UMA, NUMA and COMA architectures . 17
Figure 2-4. Distributed memory architecture . 19
Figure 2-5. Goals of all communication paradigms . 20
Figure 2-6. Aspects of communication paradigms . 20
Figure 2-7. Device integration design space . 25
Figure 2-8. Pointer-based wrap-around queue . 28
Figure 2-9. Queue synchronization design space . 29
Figure 2-10. Consumer process notification design space . 30
Figure 2-11. Address decoding for a read request to a conditional store buffer in Extoll [121] . . 31
Figure 2-12. Design space of shared memory computers . 32
Figure 2-13. Common topologies for small scale shared memory computers 33
Figure 2-14. Design space of cache coherence protocols . 35
Figure 2-15. Influence of the interconnect topology on broadcast based protocols 38

206
Figure 2-16. MOESI state diagram for a requesting cache . 40
Figure 2-17. MOESI State diagram for a snooping cache . 41
Figure 2-18. MESIF state diagram for a requesting cache . 42
Figure 2-19. MESIF state diagram for a snooping cache . 43
Figure 2-20. Hierarchical snoopy-bus NUMA system . 44
Figure 2-21. Design space of directory cache coherence protocols . 45
Figure 2-22. Directory contents in a full mapped directory. There is a bit for every cache, stating

whether the memory block is cached by that cache (bit=1) or not (bit =0) 46
Figure 2-23. Conflict caused by simultaneous access to the same memory location 49
Figure 2-24. Treatment of conflicting accesses . 51
Figure 2-25. Transfers for a read_exclusive request for different conflict treatment strategies . . 53
Figure 2-26. A 2-processor Intel Xeon system . 55
Figure 2-27. Snoop filter entry format and address partitioning [38] . 56
Figure 2-28. 2nd and 3rd generation AMD Opteron processors . 57
Figure 2-29. An 8-node Opteron topology . 58
Figure 2-30. The Sun UltraSPARC T2 processor [17] . 59
Figure 2-31. The Sun T2 die with an area of 342 mm2 . 60
Figure 2-32. T3E PE Block diagram [84] . 61
Figure 2-33. XT4 processing element block diagram [92] . 62
Figure 2-34. Cray SeaStar2 block diagram [92] . 63
Figure 2-35. BlueGene/L node architecture . 64
Figure 3-1. Comparison of HTX and PCI Express connections to the processor 66
Figure 3-2. HyperTransport topology [51] . 68
Figure 3-3. HyperTransport read and write request packet flow . 69
Figure 3-4. HyperTransport and PCI Express packet formats [49] . 70
Figure 3-5. Memory accesses and memory types in the AMD 64bit architecture [20] 71
Figure 3-6. Device access using memory-mapped I/O in Opteron systems 72
Figure 3-7. System parameters . 73
Figure 3-8. Relative performance for streams of different packet sizes . 74
Figure 3-9. Latencies . 77
Figure 3-10. Buffer design space . 79
Figure 3-11. NIC locations . 80
Figure 3-12. The development of processor speeds of x86 processors . 82
Figure 3-13. The development of DRAM memory and I/O bus speeds . 83
Figure 3-14. Read access latency, depending on memory and interconnect technology 84
Figure 3-15. Overall DRAM read access latency in Opteron system relation to number of hops to

207
take . 85
Figure 3-16. Latency of a read operation on physically local memory with broadcast based coherence

86
Figure 3-17. Views of a device in a coherent processor interconnection network 89
Figure 3-18. Coherence of device caches . 91
Figure 3-19. DMA transfer by device with subsequent processor access 93
Figure 3-20. Design space for device cache implementation to speed up queues 94
Figure 3-21. Caching instead of DMA transfer . 95
Figure 3-22. Configurations with coherent device caches . 97
Figure 3-23. Performance of off-SOC device with coherent cache . 99
Figure 3-24. CPU read latency for on-SOC devices with a cache . 100
Figure 3-25. Design space of coherent memory on the device . 101
Figure 3-26. Latency of a device acting as coherent memory controller 102
Figure 3-27. Design space for transfer caches . 103
Figure 3-28. Transparent caching in memory controller of home node . 104
Figure 3-29. Transfer cache latencies . 105
Figure 3-30. Latency summary for on-chip devices . 106
Figure 3-31. Decision process for coherent devices . 108
Figure 4-1. Ultra NIC . 111
Figure 4-2. Block diagram of the nHT core [51] . 112
Figure 4-3. Scalability of the HT core . 113
Figure 4-4. Command packet format at application interface . 114
Figure 4-5. Ultra ping-pong latencies in a two-node network [125] . 116
Figure 4-6. The coherent device infrastructure . 118
Figure 4-7. Coherent cache-aware command packet format at the nHT crossbar. 119
Figure 4-8. Cache top level diagram [129] . 121
Figure 4-9. Block diagram of the cache logic module [129] . 122
Figure 4-10. Coherent memory controller . 123
Figure 5-1. Design aspects of DCA mechanisms . 126
Figure 5-2. A potential integration of a CPU ID filed in a device table entry, based on the AMD IOM-

MU specification [42] . 129
Figure 5-3. Indirect cache access via prefetch hint . 130
Figure 5-4. Sized-write payload for prefetch hint . 131
Figure 5-5. Cache update with parallel access to MC and CPU . 132
Figure 5-6. Cache update with serial access to CPU and MC . 133
Figure 5-7. Cache update with serial access over MC and CPU . 134

208
Figure 5-8. Proposed HT 3.0 packet extension for write packets with a cache hint 134
Figure 6-1. Cosmic ray flux increases with the altitude [148] . 140
Figure 6-2. Soft fault rate scaling for DRAM [146]. 141
Figure 6-3. Soft fault rate scaling for SRAM [146] . 141
Figure 6-4. Classification of the possible outcome of soft bit faults . 143
Figure 6-5. Geometrical interpretation of Hamming distances . 144
Figure 6-6. Linear feedback shift register for g(x) = x3 + x2 + 1 [139] . 146
Figure 6-7. Chip soft fault tolerance design space . 147
Figure 6-8. Link soft fault tolerance design space . 148
Figure 6-9. Retransmission in networks . 149
Figure 6-10. Hamming distances of 8b/10b control characters in the 10b domain 152
Figure 6-11. Error detection or correction for line codes . 152
Figure 6-12. 10b word pairs with a Hamming distance of 1 and their Hamming distances on the 8bit

domain . 153
Figure 6-13. Set of 16 D characters with a minimum HD=4 . 154
Figure 6-14. Deadlock-free routing violation due to link failure . 155
Figure 6-15. Fault-tolerant routing over intermediate nodes . 156
Figure 6-16. 3D-Torus topology . 157
Figure 6-17. A node of the Extoll network . 158
Figure 6-18. Extoll packet and routing format . 159
Figure 6-19. Extoll packet and phit framing . 160
Figure 6-20. A link between two nodes in the Extoll network . 161
Figure 6-21. Functional block diagram of the PHY in the FPGA prototype 161
Figure 6-22. Extoll control phits . 163
Figure 6-23. The link port . 165
Figure 6-24. Protocol detection of multi-bit errors in phits . 168
Figure 6-25. Link failure treatment by the Extoll network (b) and software based alternative (a) . .

169
Figure 6-26. Scenario after a detected link failure . 170
Figure 6-27. Packet tail extraction and injection due to permanent link failure 171
Figure 6-28. High Availability Port [131] . 173
Figure 6-29. The barrier module [132] . 175
Figure 6-30. Extoll barrier packet format . 176
Figure 6-31. Network Port Generator and Analyzer [126] . 176
Figure 6-32. On-chip data path protection . 178

	Tightly-Coupled and Fault-Tolerant Communication in Parallel Systems
	Contents
	1 Introduction
	1.1 The Extoll Project
	1.2 Physical Implementation
	1.3 Graphical Representations
	1.4 Methodologies
	1.5 A Theoretical Model for cHT/HT Performance

	2 Communication in Parallel Computers
	2.1 Caches
	2.2 Parallel Computing Architectures
	2.2.1 Communication Paradigms
	2.2.2 Remote Load/Store
	2.2.3 Put/Get
	2.2.4 Send-Receive

	2.3 Device Integration Design Space
	2.3.1 Process-Device Interaction
	2.3.2 Device Virtualization

	2.4 Cache Coherence for Shared Memory Systems
	2.4.1 Consistency Models for Shared Memory
	2.4.2 Cache Coherence Protocols
	2.4.3 Broadcast Protocols
	2.4.3.1 MOESI
	2.4.3.2 MESIF

	2.4.4 Directory-Based Protocols
	2.4.5 Serialization of Conflicting Accesses

	2.5 Introduction to x86 Systems
	2.5.1 Intel Xeon Architecture
	2.5.2 AMD

	2.6 Examples of Parallel Systems
	2.6.1 Sun UltraSPARC T2
	2.6.2 Cray T3E
	2.6.3 Cray XT3 and XT4
	2.6.4 IBM BlueGene/L
	2.6.5 NIs on Standardized Peripheral Interfaces

	3 Improving Device to Processor Communication
	3.1 HyperTransport Devices and Accelerators
	3.1.1 The HyperTransport Protocol
	3.1.2 I/O in HTX Systems
	3.1.3 Ordering in PIO
	3.1.4 Ordering PIO Write Requests
	3.1.5 Ordering PIO Read Requests
	3.1.6 Potential Incremental Solutions

	3.2 The Space of Analysis
	3.2.1 Latency-Sensitive Data
	3.2.2 Buffering
	3.2.3 Feasible Solutions

	3.3 Memory and Interconnect Bottlenecks
	3.3.1 Influence of the Cache Coherence Protocol
	3.3.2 Summary

	3.4 Devices at the Coherent Interconnect
	3.4.1 Devices with Coherent Caches

	3.5 The Performance of Coherent Transfers
	3.5.1 Devices with Coherent Caches
	3.5.1.1 Off-SOC Devices
	3.5.1.2 Devices with Caches in SOCs

	3.5.2 Devices with a Coherent Memory Controller

	3.6 Transfer Cache
	3.7 Results
	3.7.1 Conclusion
	3.7.2 Related Work

	4 HT and cHT Prototypes
	4.1 The HT Core and Interface
	4.1.1 Results

	4.2 The Coherent HT Infrastructure
	4.2.1 The Coherent Fabric
	4.2.2 Units and Crossbars.
	4.2.3 cHT/nHT Bridge
	4.2.4 Cache Design
	1. Read requests due to misses in the cache, and corresponding read and probe responses.
	2. Change to dirty request due to a write hit to a non-exclusive cacheline, or due to the new allocation of a complete cacheline.
	3. Write requests due to cache evictions of modified data.
	4. Probing requests caused by accesses of remote processors or devices. These must be answered by either a probe response or a read response with the cacheline data.

	4.2.5 Transparent Memory Controller in the Device

	4.3 Summary

	5 Suggestions for Direct Processor Cache Access
	5.1 The Design Space
	5.1.1 Device - Thread - Processor Relations

	5.2 DCA for HyperTransport
	5.2.1 Indirect Cache Access via Prefetch Hint
	5.2.2 Direct Cache Access

	5.3 Related Work

	6 Reliability in a Direct Interconnection Network
	6.1 Faults
	6.1.1 Units
	6.1.2 Soft Error Nature and Rates
	6.1.3 Error Correcting and Detecting Codes
	6.1.4 SEU Tolerant Design
	6.1.5 Retransmission Endpoints
	6.1.6 Serial Transmission
	6.1.7 Faults in Regular Networks

	6.2 The Extoll Network
	6.2.1 Packet and Flit Protocol

	6.3 Extoll Link Error Correction
	6.3.1 The Physical Link
	6.3.2 Protocol Encoding for Serial Links
	6.3.3 The Logical Link Layer: the Link Port
	6.3.4 Temporary or Permanent Link Failure
	6.3.5 The Extoll Switch
	6.3.6 The High Availability Port
	6.3.7 Barrier
	6.3.8 The Network Port

	6.4 On Chip Protection
	6.5 Summary

	7 Conclusion
	A Acronyms
	B Bibliography
	C List of Figures

