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Non technical summary 

Research on the relationship between input and output of a “knowledge production function” 

is an important contribution towards the understanding on how firms produce innovations. 

Frequently, figures on R&D expenditures are used as input to the innovation process and 

patents are the (intermediate) output. Several studies have repeatedly examined the 

relationship between firms’ R&D expenditures and patent applications. Not surprisingly, they 

typically found a positive relationship between patenting and R&D activity. 

These frameworks, however, neglect the possible existence of a reverse causality link. 

Successful research leads to patents and to the development of the ideas towards products and 

processes. Hence a significant part of R&D expenditures may arise after the patent application 

has taken place and perhaps also after granting. The empirical study on the relation between 

input and output of a knowledge production function would in this case be imprecise. Given 

that the development part of R&D is mostly the larger one, the impreciseness could be 

substantial, and estimated patent-R&D elasticities would be biased towards zero if 

development is irrelevant for the patent production. 

This study an conducts analysis with data from the Flemish R&D survey which are linked 

with patent data from the European Patent Office in order to investigate the separate effects of 

research expenditure and development expenditure on the number of patents. It is shown that 

research has a significant positive impact on patents, but development expenditures have no 

effect. 

These results suggest the conclusion that previous studies dealing with the knowledge 

production functions suffer from measurement error. Rather than R&D investment, research 

investment seems to be the relevant determinant for patenting, and consequently the returns to 

such activities have been underestimated in the past.  

 



 

Das Wichtigste in Kürze (Summary in German) 

Untersuchungen des Zusammenhangs zwischen Input- und Outputfaktoren einer 

Wissensproduktionsfunktion (knowledge production function) tragen zum Verständnis des 

Innovationsverhaltens von Unternehmen bei. Häufig werden zu diesem Zweck FuE-

Aufwendungen als Input und die Anzahl der Patente als Outputvariable (bzw. leicht 

messbares Zwischenprodukt) verwendet. In der Vergangenheit haben sich bereits mehrere 

Forschungsarbeiten mit dieser Thematik beschäftigt und typischerweise einen positiven 

Zusammenhang zwischen Patentanmeldungen und FuE-Aufwendungen gefunden. 

Dieser Ansatz vernachlässigt jedoch ein mögliches Auftreten von Rückkopplungseffekten. 

Patente werden aus erfolgreicher Forschungsaktivität generiert, und es ist plausibel, dass 

sowohl Forschungsaufwendungen und Patentanmeldungen zu Entwicklungsaktivitäten führen, 

die schließlich in neuen Produkten oder Produktionsverfahren münden. Dies legt die 

Vermutung nahe, dass ein nicht unerheblicher Teil der FuE-Aktivitäten erst nach der 

Patentanmeldung stattfindet. Daher können in diesem Fall empirische Untersuchungen, die 

die gesamten FuE-Aufwendungen im Rahmen einer Patentproduktionsfunktion verwenden, 

das Input-Output Verhältnis nur verzerrt abbilden. Da die Entwicklungsausgaben von 

Unternehmen typischerweise größer sind als die für Forschung, wären die geschätzten 

Elastizitäten gegen Null verzerrt, falls der Entwicklungsprozess nicht für die Generierung von 

Patenten relevant ist. 

Die vorliegende Studie untersucht mittels flämischer FuE-Daten sowie Patentdaten des 

Europäischen Patentamtes die unterschiedlichen Effekte von Forschungs- versus 

Entwicklungsausgaben auf die Anzahl der jährlichen Patentanmeldungen von Unternehmen. 

Es wird gezeigt, dass Forschungsaufwendungen einen signifikant positiven Einfluss auf die 

Anmeldung von Patenten hat, während die Entwicklungsausgaben jedoch keine Rolle spielen. 

Dieses Ergebnis lässt die Schlussfolgerung zu, dass bisherige Untersuchungen Messfehler 

aufweisen.  
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Abstract 

Many studies investigate the relationship between R&D expenditures as an input and 

patents as an intermediate product or output of a knowledge production function. We 

suggest that the productivity of research in patent production functions has been 

underestimated in the literature, as scholars typically use information about R&D, i.e. the 

sum of research expenditure and development expenditure, due to data availability. 

However, in most industries only (applied) research will lead to patentable knowledge, 

and development happens after the initial research phase that may have led to a patent. 

Instead of using data on R&D, we separate the knowledge creating process into `R’ and 

`D’. This data stems from R&D surveys of Belgian firms. It turns out that only the `R’ 
part of R&D expenditure has a significant effect on patents and that development 

expenditure are insignificant. Thus previous literature relying on R&D expenditure 

suffers from a measurement error, such that the coefficient of R&D is biased towards 
zero, as R&D includes a large fraction of irrelevant expenditure, i.e. development 

expenditure, with respect to patenting.  
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1 Introduction 

Research on the relationship between input and output of a “knowledge production function” 

is an important contribution towards the understanding of how firms produce innovations. 

Usually figures on R&D expenditures are used as input to the production process and patents 

are the output. The different studies also quantify the relationship and find decreasing 

marginal returns in most cases. The estimates for the elasticities vary and depend on firm size 

(Griliches 1990), with larger firms showing a lower R&D productivity.
1
 

Griliches (1990) points to the possibility of a reverse causality link. Successful research leads 

to patents and to the development of the ideas towards products and processes. Hence a 

significant part of R&D expenditures may arise after the patent application has taken place 

and perhaps even after the patent grant. The empirical study on the relation between input and 

output of a knowledge production function would in this case be imprecise. Given that the 

development part of R&D is mostly the larger one, the impreciseness could be substantial, 

and estimated patent-R&D elasticities would be biased towards zero if development is 

irrelevant for the patent production.  

We report the results of an empirical study on the separate effects of research expenditure and 

development expenditure on the number of patents. Using panel count data models on Belgian 

firm-level data, we find that research has a significant impact on patents, but that development 

expenditures have no effect. Thus, previous results in the literature on the knowledge 

production functions suffer from, possibly large, measurement error. Rather than R&D 

investment, research investment seems to be the relevant determinant for patenting, and 

consequently the returns to such activities have been underestimated in the past. 

2 The relationship between Patents and R&D 

The understanding of the economic process that leads to product and process innovation is of 

high interest, as an economy’s wealth and growth may crucially depend on technological 

progress. At least in highly industrialized countries, technological innovation is seen as key 

input for long term employment and growth.  

                                                

1 This could be the result of selectivity and systematic differences in recording and reporting between small and 

large firms. 
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However, the identification of innovative output is not trivial, as there is no single, undisputed 

variable measuring innovation success comprehensively. Patents are the most commonly used 

indicator for invention output in the economy although this has been criticised by several 

authors (e.g. Griliches et al. 1986, Griliches 1990). It is typically emphasized that patents do 

not fully represent all of R&D output since only a fraction of the knowledge creating process 

leads to patentable inventions. Even if the knowledge is patentable, inventors may refrain 

from doing so due to additional cost of patenting or because they favour other means of 

intellectual property protection. Among others, Cohen et al. (2000) point out that firms 

frequently follow other strategies, e.g. secrecy or lead time ahead of competitors. A reason to 

patent, though, may be the blocking potential with respect to rivals, as the patent grants the 

inventor an exclusive right to exploit the technology for a fixed time period.  

Despite several shortcomings of patent information, patent data is the most frequently used 

innovation output indicator, e.g. for assessing the technological potential of countries or 

sectors. Patents are an easily available source of information, as patent applications are 

systematically recorded by (national) patent offices and are, thus, available for researchers. 

Furthermore, it should be noted that most of the crucial inventions of the last century were 

patented.  

Several studies have examined the relationship between firms’ R&D expenditures and patent 

applications. Not surprisingly, they typically found a positive relationship between patenting 

and R&D activity. The pioneering work in the use of patent statistics was conducted by 

Scherer (1965), Mueller (1966) and Schmookler (1966). Pakes and Griliches (1980) found a 

statistically significant relationship between the R&D expenditures of a firm and the number 

of patents received at the cross-sectional level, across firms and industries. This finding was 

also observed by Hall et al. (1984) who applied panel estimators for count data and they 

report an elasticity between 0.3 and 0.6 in a panel of U.S. firms (see also Bound et al., 1984, 

for further evidence). Cincera (1997) measures the impact of technological factors on 

patenting activity indicating a positive impact of R&D and technological spillovers on a 

firm’s innovation output. Crépon and Duguet (1997a, b) use a panel of French manufacturing 

firms to investigate the relationship between investment in R&D and patents, and also find a 

positive and significant effect of R&D. This is also confirmed by Licht and Zoz (1998) who 

look at the patent–R&D relationship using German survey data. More recent results which 

also report a positive patent-R&D relationship can be found in Hall and Ziedonis (2001) for a 

sample of 95 U.S. semiconductor firms and in Blundell et al. (2002). 
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2.1 Research and Development 

Research and development encompasses several kinds of activities. According to the 

definition of the Frascati Manual (1993) which frames the methodology for collecting and 

using statistics about R&D in OECD countries, the term R&D covers three activities: basic 

research, applied research and experimental development. However, most surveys, 

evaluations and reports conducted in this area do not differentiate between these activities. 

Usually basic and applied research is aggregated to one component, namely research, and can 

be described as any activity which is undertaken to generate new knowledge. Experimental 

development is systematic work, drawing on existing knowledge gained from research that is 

used as an input for developing new products or production methods.  

The Frascati Manual (1993, p. 78) outlines the importance of (applied) research towards 

patenting: “[…] Applied research gives operational form to ideas. The knowledge or 

information derived from it is often patented but may be kept secret.” This core statement was 

already made in a seminal work conducted by Hall et al. (1986) who attempt to characterize 

the lag structure in the productivity of R&D and who derive the conclusion that “it seems 

reasonable to suppose that successful research leads both to a patent application and to a 

commitment of funds for development.” 

This leads to the hypothesis that mainly the research component rather than the sum of 

research and development influences the propensity to patent. An earlier work of Link (1982) 

analyzes the determinants of inter-firm differences on the composition of R&D spending, 

namely basic and applied research as well as development. However, he does not link R&D to 

patents, but is interested in the determinants of basic and applied research as well as 

development, and regresses these R&D components on profits, diversification, ownership 

structure and subsidies. Nevertheless, all previous microeconomic, empirical studies on the 

relationship between patenting and R&D have treated R&D investment as a single, 

homogeneous activity, though. Thus, it is possible that previous studies underestimate the 

effect of research activities as the development expenditure is typically larger than research 

expenditure in the business sector. Consequently, it would be reasonable to split internal R&D 

expenditure into its two components, research and development, to investigate this hypothesis. 

As already mentioned above most databases do not allow to explore this issue since usually 

only numbers for aggregated R&D are available. However, in the OECD R&D surveys, firms 

are asked for the breakdown of internal R&D expenditure into research versus development. 
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Each of the surveyed firms is provided with the OECD definitions of research and 

development and an explanation of these terms. 

2.2 Empirical Framework 

In order to explore the determinants of a firm’s patenting process and their change over time, 

we use a patent production function which was first introduced by Pakes and Griliches (1980). 

This type of knowledge creation function describes the relationship between the number of 

successful patent applications made by a firm in a given year and its R&D spending as well as 

other firm level control variables. The number of patent applications is restricted to non-

negative integer values and is also characterized as a variable with many zero values since 

many firms do not apply for patents regularly. This led scholars to use count data models to 

investigate patent-R&D relationships. Typically Poisson and Negative Binomial models are 

used.  

Let PATit be the dependent count variable which describes the number of patent applications 

by firm i at time t, and is typically assumed to be Poisson distributed with mean λit > 0. The 

link between patents, R&Dit and a set of controls Xit is usually assumed to be of an 

exponential function form:  

 ( )'

it it it , it i it it i
E PAT | R&D X ,c exp R&D X cλ α β= = + +    (1) 

where α and β are the parameters to be estimated, and c is a firm-specific effect reflecting 

time-constant unobserved components, such as management quality or a firm’s attitude 

towards patenting, in case panel data are available.  

As we hypothesized earlier, α may be biased downwards if development activity is irrelevant 

for patenting and research activity is the relevant type of investment for creating patentable 

knowledge. Therefore, we estimate the slightly modified model as 

 [ ] ( )0 1

'

it it it it it i it it it i
E PAT | R ,D ,X ,c exp R D X cλ α α β= = + + + , (2) 

where R refers to research expenditure, and D to development expenditure. We expect that α1 

= 0 and α0 > 0, and in addition that α0 >α. The latter can be tested using a Wald test to see 

whether α0 = α1.  

As neither of the two specifications above, allows to model potential complementarities 

between R and D, we also estimate a third equation as a robustness check. There, an 

interaction term of R and D is included. 
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 [ ] ( )0 1 2

'

it it it it it i it it it it it i
E PAT | R ,D ,X ,c exp R D R D X cλ α α α β= = + + × + + . (3) 

Note that the test for complementarity is not simply conducted by interpreting whether α2 is 

significantly different from zero, as the regression model is non-linear. Instead, one has to 

calculate the cross-derivative dPAT/(dRdD) to correctly estimate the magnitude and the 

standard errors of the interaction effect (see e.g. Ai and Norton, 2003). 

3 Data, econometric methods, and results 

3.1 Database 

In order to investigate the patent production function described in the previous section we link 

three different databases: the Flemish R&D Survey, the BELFIRST database and patent data 

from the European Patent Office (EPO). The Flemish R&D Survey is conducted every second 

year, and our analysis is based on six waves of the Flemish R&D survey data which covers 

the period between 1993 and 2003.  

The R&D survey data are supplemented with information from the BELFIRST database 

which contains annual account data of Belgian firms. Furthermore, the Flemish companies are 

linked to patent data from the European Patent Office (EPO) which covers all patent 

applications filed at the EPO since 1978.  

We only include firms in the analysis that applied at least for one patent during the 

observation period (1993 – 2003). After elimination of data with missing values in variables 

of interest our final sample consists of 103 firms in an unbalanced panel that has 596 firm-

year observations. The dependent variable in the empirical analysis, PAT, is the number of 

patents filed by a firm at the European Patent Office. The regressors of main interest are, of 

course, R&D spending (R&D) or, more precisely, its two components research (R) and 

development (D) expenditure.  

As common in firm level studies we also control for firm size. Larger firms may be able to 

realize economies of scope in their innovation process, that is, they may be able to apply 

fundamental research results to more inventions than smaller firms. Thus, they may be more 

productive in yielding inventions (Scherer, 1983). Since small firms usually do not have a 

special unit dealing with patents or property rights and often hesitate to apply for a patent 

because of the large patent litigation costs, the marginal costs for patent applications are 

expected to be higher for small firms than for large firms. Previous studies (e.g. Arundel and 
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Kabla, 1998; Licht and Zoz, 1998) provide some evidence which demonstrated that small 

firms have a lower propensity to patent their innovations than large firms. Following, among 

others, Hall and Ziedonis (2001), our basic specification includes firm size measured as the 

logarithm of employment, ln(EMP). Our variables on R&D also enter the model as logarithms, 

but are divided by employment to avoid multicollinearity [ln(R&D/EMP), ln(R/EMP), 

ln(D/EMP)]. 

Additionally to firm size we also include the firms’ age measured as the logarithm of the 

difference between the current and the founding year of the firm, ln(AGE). Very young firms 

may show a higher likelihood to patent because typically spin-offs from larger firms or 

research institutions involve innovative ideas which are then protected by intellectual property 

rights. Contrary to this, older firms may be more likely to patent because they have more 

experience in managing the application procedure which may raise their efficiency in 

patenting activities (Hall and Ziedonis 2001). We also add capital intensity, ln(KAPINT), 

measured as the logarithm of the ratio tangible assets to employment as an explanatory 

variable. 

The variable GROUP has unit value, if a firm is a member of a group of companies. Research 

output may have more than one patent application possibility. A group of companies is able to 

make use of an invention in more than just one way. An alternative way of considering 

possible effects of GROUP is the internalisation of positive externalities. The value of a 

composition of several firms to a group is among other factors determined by the use of 

spillovers from innovation activities. The existence of spillovers is well documented and a 

group can make use of such effects by internalising the externalities. In contrast, group 

membership may also result in less patent applications if the firm in question is a subsidiary. 

It is possible that research conducted at a subsidiary may lead to patents that are taken out by 

the parent company, as it manages the intellectual property rights for the group. 

The group dummy is supplemented by a collaboration dummy (COLL). Firms that engage in 

collaboration may also be able to internalize external effects, and thus file more patents. In 

addition to pure spillover effects, collaboration may also lead to more patents, as the firms 

simply engage in contractual agreements on the usage of intellectual property. In order to 

ensure that all collaboration partners have access to the knowledge produced within the 

collaboration network, patenting may become more likely, as, for instance, co-assigneeship 

will unambiguously secure that collaboration partners have access to the patented knowledge. 
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Finally, 11 sector dummies on basis on the European standard industry classification NACE 

should capture different technological opportunities, and a full set of time dummies captures 

shocks over time common to all firms. 

All variables in monetary units are measured in thousand Euros in prices of the year 2000. We 

used the GDP deflator for price adjustment. Table 1 shows the descriptive statistics for all 

variables. Average firm size is about 696 employees, and average age about 27 years. Note, 

however, that the size distribution is highly skewed, since the median firm size is about 168 

employees in our sample. Regarding R&D expenditures firms spent around 14 million Euros 

per year where approximately 10 million were spent for development, and about 4 million for 

research. In total, all firms of our sample applied for a total amount of 1222 patents, however, 

the distribution of this variable is rather skewed since about half of the companies only 

applied for one patent and only about 10 percent filed for more than 10 patents during the 

whole observation period. On average, a sample company applied for 4 patents per year. 

About 69% use a cooperation network for conducting research and development and 68% 

belong to a group.  

Table 1 Descriptive Statistics (596 observations) 

Variable Label Mean Std. Dev. Min Max 

Patents PAT 3.958 17.316 0 193 
R&D expenditure R&D 13743.39 45243.07 5 471353.2 

Research expenditure R 3759.919 14848.65 0 217581.4 

Development expenditure D 9983.45 35799.6 0 424217.9 
Employment EMP 695.497 1317.274 1 7470 

Age AGE 26.728 25.750 0 121 

Capital Intensity KAPINT 54.232 173.461 0.408 2113.098 

Collaboration dummy COLL 0.688 0.464 0 1 

Group dummy GROUP 0.676 0.468 0 1 

Note: Time and industry dummies not presented. 

Earlier work which also focused on the patent–R&D relationship experimented with lag 

structures of R&D. Hall et al. (1986) provide evidence that a contemporaneous relationship 

between patents and R&D can be assumed. Longer lag structures of R&D did not improve the 

explanatory power of their regression models. For this reason and since we only have short 

time-series data for the majority of our companies in the sample, we follow this line of 

literature and also specify a contemporaneous relationship. We experimented with one-year 

lag structures, but it did not improve the results.  
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3.2 Estimation method and results 

Commonly used count data models are the Poisson and the Negative Binomial model 

(NegBin). Traditionally, scholars have applied the random or fixed effects estimators 

introduced by Hausman et al. (1984). A major drawback of these, however, is that the 

parameter estimates are only consistent under the strict exogeneity assumption, that is, it rules 

out any feedback from patenting in period t to future values of research and development 

expenditure. This will be clearly violated in our analysis, as one should expect that patents 

lead to future development activities. Therefore, we apply the linear feedback model 

suggested by Blundell et al. (1998) which relaxes the strict exogeneity assumption. The model 

approximates the fixed effects by including the log of patents from a pre-sample period as 

regressor in a standard pooled cross-sectional count model set-up, ln(PRE_PAT). In case, the 

firm had no patents in the pre-sample period a dummy is used to capture the “quasi-missing” 

value in log of patenting in the pre-sample period, NO_PRE_PAT. 

For estimating (pooled) cross-sectional count models, scholars have frequently used negative 

binomial regression models (NegBin), as a basic assumption of the Poisson model is the 

equality of the conditional mean and the conditional variance which is typically violated in 

applications, and overdispersion is found. Although the NegBin relaxes this assumption it 

would only be consistent (and efficient) if the functional form and distributional assumption 

of the variance term is correct. It has been shown, though, that the Poisson model is consistent 

even in the case of overdispersion (always assuming that the conditional mean function is 

correctly specified). The only drawback is that the standard errors will be biased if the 

equidispersion assumption is violated. However, this can be corrected by using a fully robust 

covariance matrix estimator (see Wooldridge, 2002, for example). 

Table 2 shows the quasi fixed effects panel regressions using the estimator proposed by 

Blundell et al. (1998). We also show pooled cross-sectional estimates assuming that no fixed 

effects are present in the appendix (see Table 3). 

Models 1 and 2 estimate the knowledge production function with aggregated R&D. First, we 

exclude all time invariant regressors as typical in traditional fixed effects models (model 1). 

Since we depart from the traditional estimation method with the quasi fixed effects model, it 

is possible to include time invariant variables in order to reduce the error variance (model 2).  
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Table 2 Panel Regressions on the Number of Patent Applications (596 observations) 

Variable (1) (2) (3) (4) (5) (6) 

ln(R&D/EMP) 0.131 * 0.125 ** -  -  -  -  

 (0.077)  (0.062)          

ln(R/EMP) -  -  0.235 *** 0.188 *** 0.219 ** 0.217 ** 

     (0.078)  (0.062)  (0.110)  (0.104)  

ln(D/EMP) -  -  -0.118  -0.070  -0.131  -0.044  

     (0.081)  (0.082)  (0.093)  (0.098)  

ln(R/EMP) -  -  -  -  -0.015  -0.019  

*ln(D/EMP)         (0.327)  (0.031)  

RDUMMY -  -  0.038  0.054  0.045  0.030  

     (0.252)  (0.231)  (0.256)  (0.237)  

DDUMMY -  -  -0.922 *** -0.907 *** -0.878 ** -0.983 ** 

     (0.331)  (0.313)  (0.403)  (0.390)  

ln(EMP) 0.258 *** 0.289 *** 0.223 *** 0.275 *** 0.223 *** 0.277 *** 

 (0.078)  (0.073)  (0.064)  (0.065)  (0.064)  (0.065)  

ln(AGE) -0.576 ** -0.526 *** -0.435 *** -0.425 *** -0.436 *** -0.423 *** 

 (0.098)  (0.101)  (0.094)  (0.100)  (0.095)  (0.099)  

ln(KAPINT) 0.165 * 0.099  0.134  0.107  0.125  0.122  

 (0.098)  (0.084)  (0.084)  (0.080)  (0.086)  (0.090)  
COLL -  -0.076  -  -0.041  -  -0.049  

   (0.216)    (0.207)    (0.215)  

GROUP -  -0.334 ** -  -0.411 ** -  -0.415 ** 

   (0.165)    (0.167)    (0.167)  

ln(PRE_PAT) 0.955 *** 0.889 *** 0.908 *** 0.866 *** 0.910 *** 0.861 *** 

 (0.078)  (0.065)  (0.066)  (0.063)  (0.067)  (0.061)  

No_PRE_PAT -1.692 *** -1.583 *** -1.645 *** -1.531 *** -1.649 *** -1.522 *** 

 (0.347)  (0.276)  (0.230)  (0.232)  (0.229)  (0.227)  

INTERCEPT 0.415  0.451  0.579  0.252  0.624  0.166  

 (0.697)  (0.689)  (0.454)  (0.643)  (0.470)  0.679  
Joint significance 

of year dummies 
χ2(10) 

=69.53*** 

χ2(10) 

=75.14*** 

χ2(10) 

=96.52*** 

χ2(10) 

=68.65*** 

χ2(10) 

=91.12*** 

χ2(10) 

=76.95*** 
Joint significance 

of industry 

dummies 
- 

χ
2
(10) 

=32.56*** 
- 

χ
2
(10) 

=18.94** 
- 

χ
2
(10) 

=20.00** 

Log Pseudo 
likelihood 

-1007.604 -954.265 -962.471 -932.156 -962.377 -931.861 

Wald test on  

α0 = α1 

  
6.40 ** 3.83 ** 6.08 ** 3.83 ** 

Notes: Standard errors in parentheses are clustered to capture within firm correlations.   
*** (**, *) indicate a significance level of 1% (5%, 10%). 

 

The results of model (1) and (2) report the regression results using the sum of R and D 

expenditure. The estimated patent-R&D elasticity amounts to 14% [=exp(0.131)-1] in the 

model that excludes the time-invariant covariates, and to 13% [=exp(0.125)-1] in the model 

with time invariant covariates. Models (3) and (4) relax the assumption that R and D have the 

same coefficient. Once we separate R&D into R and D, there are a few firms in the sample 

that have either zero R or zero D spending. Since we have to take the log of the variables, and 



 13 

the log of zero if not defined, we set the variables ln(R) and ln(D) to zero is these cases. As 

commonly done in the literature (e.g. Hall and Ziedonis 2001), we capture the arising bias 

from that by two dummy variables (RDUMMY and DDUMMY) that capture the zero values in 

R and D. As a result, we do not have to discard these observations. Note that the estimated 

coefficients of these dummies have no interpretation in itself. Instead of zero, we could also 

have imputed -9999, for instance, and the estimates of the slopes of R and D would be 

numerically identical. Then the dummies would just have different coefficients due to the 

arbitrary choice of the imputation value.
2
 

In these models, we find interesting differences: the estimated patent-research elasticity goes 

up to 26% in model (3) and 21% in model (4). The coefficient of development expenditure is 

not significant, though. Thus, we can conclude that the patent production function 

underestimates research productivity if R&D is used as the relevant measure. Note that we 

report the Wald test on the difference of the coefficients of R and D that indicate a significant 

difference. Once we separate R and D, the estimated knowledge productivity of research 

basically doubles, and development is irrelevant for patenting.  

The models (5) and (6) include the interaction term ln(R/EMP)*ln(D/EMP) to model 

complementarity between R and D with respect to patenting. However, the estimated 

coefficient is zero. As this does not necessarily imply no complementarity, since we estimate 

a non-linear model, we also computed the cross-derivative dPAT/(dRdD) and calculated its 

standard error using the delta method. However, the results do not improve. While we 

certainly believe that complementarities exist between research and development activities in 

general, we do not find any with respect patenting. As said above, it indeed seems that 

research expenditure is the relevant component for patenting, but not development. Instead, 

research and patenting will trigger future development activities, which finally leads to new 

product introductions and new processes. 

The results on the control variables are interesting as well. As expected, larger firms are more 

likely to patent, which confirms arguments on economics of scope and related arguments 

mentioned earlier. Interestingly, younger firms, all else constant, file more patents than older 

firms. This supports the argument that (high tech) spin off companies involve more innovative 

                                                

2
 As a robustness check, the regressions were also conducted without observations that had either zero R or zero 

D spending. All results are robust, but somewhat less pronounced. For instance, in the fully specified model, 

the coefficients of R and D did only differ at the 10% significance level, possibly due to smaller sample size 

and thus higher correlation between R, D and their interaction term. 
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ideas for commercialization. The capital intensity and the collaboration dummy are 

insignificant in all models. The firms associated with a group are less likely to patent. This 

indicates that subsidiaries may not take out the patent themselves, but that the parent company 

does so. Note that many of the larger firms in Flanders are foreign owned so that we do not 

have the parent company itself in our data.  

Finally, the regressions also indicate that there are significant firm-specific effects as 

measured by the pre-sample patent measures. Note, however, that the pooled cross-sectional 

models yield very similar results (see Table 3 in the Appendix). We also find that patenting is 

heterogeneous across industries, as the industry dummies are jointly significant. The year 

dummies are also jointly significant, which indicates the presence of macroeconomic shocks 

that affect patenting behavior of all companies.  

4 Conclusion 

We report the results of a study on the separate effects of research and development 

expenditures on patent productivity. We argue that research productivity has often been 

underestimated as scholars typically have only data on R&D expenditure available, but not on 

research expenditure and development expenditure separately.  

Employing our Flemish firm-level panel database, we find that the patent-R&D elasticity is 

about 13% when using R&D in the regressions. Once we separate research and development 

spending, it turns out that development expenditure has no impact on patenting, but the 

estimated patent-research elasticity amounts to 21% and 26% depending on the model 

specification. Thus, the estimated research productivity is about twice as high compared to the 

R&D productivity.  

Our estimations should only be seen as some first evidence on the different contribution of 

research and development to patenting. As our sample size is quite small, we cannot estimate 

separate equations for different industries. While we find that only research contributes to 

patenting but development is irrelevant, there may well be industries where development 

contributes to some extent to the patent process. Consequently, it would be desirable to 

replicate our regressions for a larger sample of firms, where scholars could group the sample 

by industry. While our available database is small as it only concerns Flanders, the survey 

data we use are actually available for many OECD countries, for some even since the late 

1970s. Surprisingly there is little research on the OECD R&D surveys. While other surveys, 

such as the Community Innovation Survey are widely used for research, it seems that the 
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R&D surveys are difficult to access for scholars in other countries. If this barrier could be 

overcome, there would be the opportunity to replicate or extend our study with large firm-

level panels from larger countries. 
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Appendix 

Table 3 Pooled cross-sectional Poisson models on patent applications   

(596 observations) 

Variable (1) (2) (3) (4) (5) (6) 

ln(R&D/EMP) 0.458 *** 0.478 *** -  -  -  -  

 (0.120)  (0.109)          

ln(R/EMP) -  -  0.752 *** 0.444 *** 0.834 *** 0.735 *** 

     (0.194)  (0.127)  (0.226)  (0.149)  

ln(D/EMP) -  -  -0.251  -0.015  -0.183  0.260  

     (0.170)  (0.127)  (0.215)  (0.171)  

ln(R/EMP) -  -  -  -  -0.115  -0.062  

*ln(D/EMP)         (0.074)  (0.046)  

RDUMMY -  -  0.100  0.095  0.085  -0.160  

     (0.419)  (0.356)  (0.427)  (0.410)  

DDUMMY -  -  -1.300 ** -1.301 *** -1.488 ** -1.769 *** 

     (0.550)  (0.499)  (0.661)  (0.516)  

ln(EMP) 1.191 *** 1.111 *** 1.051 *** 0.996 *** 1.043 *** 0.988 *** 

 (0.305)  (0.150)  (0.167)  (0.135)  (0.168)  (0.133)  

ln(AGE) -0.339  -0.387 *** -0.002  -0.138  0.005  -0.988  

 (0.210)  (0.147)  (0.165)  (0.137)  (0.166)  (0.133)  

ln(KAPINT) 0.019  -0.470 *** -0.183  -0.454 *** -0.132  -0.291 ** 

 (0.191)  (0.125)  (0.156)  (0.119)  (0.166)  (0.135)  

COLL -  0.089  -  0.162  -  0.024  

   (0.250)    (0.267)    (0.274)  

GROUP -  -0.595 ** -  -0.569 * -  -0.685 ** 

   (0.283)    (0.304)    (0.311)  

INTERCEPT -6.535 *** -4.680 *** -5.435 *** -4.499 *** -5.639 *** -5.164 *** 

 (1.485)  (0.837)  (0.985)  (0.875)  (1.035)  (0.919)  
Joint significance 

of year dummies 
χ
2
(10) 

=54.32*** 

χ
2
(10) 

=119.53*** 

χ
2
(10) 

=34.69*** 

χ
2
(10) 

=74.74*** 

χ
2
(10) 

=38.46*** 

χ
2
(10) 

=103.20*** 
Joint significance 

of industry 

dummies 
- 

χ2(10) 

=64.73*** 
- 

χ2(10) 

=54.76*** 
- 

χ2(10) 

=57.93*** 

Log Pseudo 

likelihood 
-2176.233 -1560.191 -1804.207 -1497.452 -1800.399 -1458.610 

Wald test on  

α0 = α1 
- - 8.51 ** 3.95 ** 8.85 *** 4.76 ** 

Note: Standard errors in parentheses are clustered to capture within firm correlations.   
*** (**, *) indicate a significance level of 1% (5%, 10%). 

 

 


