
REIHE INFORMATIK
7/99

On Syntactic Action Refinement and Logic
Mila Majster-Cederbaum, Frank SaIger

Universität Mannheim
Seminargebäude D 7, 27
D-68131 Mannheim

_______O_n_~xntacticAction Refinement and Logic

Mila Majster-Cederbaum, Frank SaIger

Universität Mannheim
Fakultät für Mathematik und Informatik,

D7, 27, 68131 Mannheim, Germany
{mcb, fsalger }@pi2.informatik.uni-mannheim.de

FAX:++49/621/292-5364

Abstract. Action refinement is a useful methodology for the develop-
ment of concurrent processes in a stepwise manner. We are here inter-
ested in establishing a connection between syntactic action refinement
and logic. In the syntactic approach to action refinement, reduction func-
tions are used to remove the refinement operators from process-algebraic
expressions thereby providing semantics for them. We incorporate a syn-
tactic action refinement operator to the Hennessy-Milner-Logic and de-
fine a logical reduction function for this extended logic. This provides a
possibility to refine a process expression and a formula simultaneously on
the syntactic level, while preserving their satisfaction relation. It turns
out that the assertion P F cP ~ P(a 'V> Q] F cp[a 'V> Q] where .(a 'V> Q]
denotes the refinement operator both, on process terms and formulas
holds in the considered framework under weak and reasonable restric-
tions.

1 Introduction

The formal development of concurrent systems can be carried out in process
calculi like CCS [MiI80] or CSP [Hoa90]. These calculi provide operators which
are used to compose process expressions to more complex systems (which are
also called process expressions). The basic building blocks in such calculi are
uninterpreted atomic actions which can be seen as the conceptual entities on
a chosen level of abstraction. A designer might be interested in providing a
more precise or detailed structure far an action which occurs in a given process
expression. This is the point where action refinement comes in. Given a process

. __expression ..P__one._refines_an atomic action a of P by a more complex process
expressionQ, gaining a more concrete process expression P[a 'V> Q]. Since the
refinement takes place on the process expression itself, it is called syntactic action
refinement. On the other hand it is possible to define a refinement operator on
the semantic level (see e.g. [GGR94]). The application of this operator is called
semantic action refinement.

Much work has already been done to clarify the properties of semantic and
syntactic action refinement (e.g. [AH91,DD93,BDE93,GGR94]), but investiga-
tions of action refinement in logical calculi are rare (cf. [Huh96] for a semantic

approach).
----Logicafca,Zculz; like temporal and modallogics (e.g. [Koz83,Sti87,Eme90,Pen91])

provide the ability to formalize properties of processes. Such properties are de-
noted by formulas 'P of the considered logic. If a process P has the property 'P
we write P F 'P. For example the process expression

read_dataj send_dataj stop_transmission

determines the
'fi' def1 catlOn 'P =
Milner-Logic.

process P shown in Figure 1. P obviously satisfies the spec-
(read_data)(send_data)(stop_transmission)T in the Hennessy-

o~_r_e_a_d__d_a_ta_~.O~_s_en_d d_a_ta_~.0 stop_transmissio~0

Fig. 1. The Process P

In a later design step two different channels are provided to send data. Hence
the action a = send_data is refined by the process Q = (send_data_channell +
send_data_channel2) where '+' denotes nondeterministic choice which gives the
process P[a '"'-+ Q] shown in Figure 2. Obviously P[a '"'-+ Q] F 'P, but on the other

o •
stop_transmissi~b

Fig.2. The Process P[a"--+ Q]

hand P[a '"'-+ Q] F VJ where

VJ d;j (read_data) (send_data_channell) (stop_transmission) T1\

(read_data) (send_data_channel2) (stop_transmission) T.

We consider the quest ion how VJ can be obtained from 'P via a suitable refine-
ment operation .[a '"'-+ .••] on the logic i.e. we consider the following question: is
it possible to define refinement operators on the process- and the logical calculus

2

suchthat we may conclude P[a "-+ Q] F ip[a "-+ Q]? That means, can we simulta-
neously refine the-pro-cess expressTon-P -ancCthe formula ip, while preserving the
satisfaction relation? And, to go a step further: Can we also infer P F ip from
P[a "-+ Q] F ip[a "-+ Q]? As we will see, the solution of the above task comes
down to the task of defining appropriate reduction functions for the process
calculus and the logical calculus. These functions are responsible for merging
different abstraction levels and thereby removing the refinement operators.

Gur framework consists of a subset of CCS [MiI80] enriched with an operator
for action refinement. Action-prefixing is replaced by an operator for sequential
composition of process expressions, which is more adequate when dealing with
action refinement. To specify properties of processes we use the negation free
form of the Hennessy-Milner-Logic advocated in [Mil80], also enriched with an
operator for action refinement. The application of this operator will be called
logical action refinement. We provide a link between syntactic action refinement
for process expressions and syntactic action refinement in our adopted Hennessy-
Milner-Logic. More concrete, we investigate restrictions on processes P, Q and
formulas ip which guarantee

(1)

where a is taken from a fixed set of atomic actions.
The validity of (1) has an interesting implication: Process equivalences are

used to identify process expressions. Semantic models based on interleaving are
not considered to be 'good' models for action refinement since the used equiva-
lences fail to be congruences for action refinement (cf. [vGG89]). Gur approach
suggest arevision of this view: Let P be a process and let P be a set of formu-
las that P satisfies based on the interleaving semantics. If P' satisfies P as weIl
(e.g. if P' is bisimular to P) then P[a "-+ Q] and P'[a "-+ Q] both satisfy the set of
formulas {ip[a "-+ Q] : ip E p}. This result-can be used by a system designer, ",ho
is not interested in full equality of refined process expressions modulo bisimula-
tion equivalence, but in the fact, that two refined pro ces ses both satisfy a refined
property (or a set of refined properties) of special interest.

Although verification is usually expressed in terms of implementation rela-
tions (cf. [BBR90] for an overview) and action refinement does not support this
kind of verification our approach supports 'a priory'-verification with respect to
transition behaviour formalized by formulas.

In Section 2 we introduce the process calculus RBP P which contains an op-
erator for syntactic refinEllpent'.J'he c:9!1Sept_oflogical refinement for the logic
RH M L is defined in Section 3. Section 4 provides the link between those two
concepts, formalized by Theorem 2. We restate the obtained results in the envi-
ronment of syntactic action refinement in Section 5. A discussion and applica-
tions of the results are given in Section 6.

3

2 The Set RB PP of Processes

We fix a set Act := {a,b, ... } U {ä,b, ... } of actions and a set VarAct :=
{Vi, V2, ... } of distinguished action variables where Act n Var Act = 0. Action
variables from V ar Act can be regarded as dummyactions used in what fol-
lows as 'place-holders' for processes. We let range a, ß, I, ... over the set A :=
Act UV ar Act. Elements of this set are called atomic performances or simply per-
formances. An action a and its complement ä may synchronise, performing the
distinguished action T if they are composed in an appropriate way by parallel
composition.

2.1 Syntax

Definition 1. As usual the process expression 0 is used to denote a process
which is unable to perform any atomic performance.

1) Let RBP be the language of process expressions genera ted by the gramm ar

P ::= a [(P + P) I (P; P) [P[a'V7 P]

2) Let RBP P be the language of process expressions generated by the gramm ar

P ::= 0 I a [(P + P) I (P; P) [P[a'V7 Q] [(PIP)

where Q E RBP.
3) Let BP P, BP be the languages of process expressions generated by the gram-

mars for RBPP, RBP respectively, without the rule P ::= P[a 'V7 Q].

o

Please note that we excluded the silent action T from the set A. Hence it is not
possible to generate process expressions containing T. This decision is debatable
but in our opinion T-actions are internal knowledge of the system and should be
generated only by the system itself via communication. Hence it seems not to be
reasonable to supply the ability to specify the systems internal behavioursince a
designer is not explicitly informed about it. Moreover without knowledge about
the internal behaviour of a system it seems to be unnatural to be able to refine it
by known, observable actions (see [AH91]). Only the system itself should know
"about its internal actions and no refirie=-metnodül"ogyshould affect them.
As in [GGR94] we define a function ~ : BP P -+ 2A which gives the set of

performances of a process expression.

Definition 2. Let P, Q E BP P be process expressions. We define the function
~ : BP P -+ 2A as follows:

~(O) := 0

4

~(a) := {a}

~((P * Q))":= ~(P) U ~(Q) if * E {+,;, I}
o

The function ~Act : BP P -+ 2Act is defined iri analogy to the function ~.

2.2 The Reduetion Funetion for RBPP

We now proceed to the definition of performance refinement. As in [AR91] we
use a reduction function red: RB PP -+ BPP which removes the occurrence of
all refinement operators in a process expression. The function red uses syntactic
substitution defined as in [GGR94].

Definition 3. Let P, PI, P2, Q E BP P be process expressions. Syntactic substi-
tution, denoted (P){ Q / a} is defined as follows:

(O){Q/a}:= 0

{
Q if a = ß

(a){Q/ß}:= a otherwise

((PI * P2)){Q/a}:= ((Pd{Q/a} * (P2){Q/a}) where * E {+,;, I}
o

Remark 1. To avoid excessive use of brackets we sometimes use the notation
P{Q/a} instead of (P){Q/a} ifthe context avoids ambiguity. 0

The following remark shows that several nested applications of the substi-
tution operation can be reduced to only one such application. It is proved by
induction on the structure of PE BP P.

Remark 2. Let P,Ql,Q2 E BPP be process expressions and ')'1,')'2E A.
Further let * E {; , +, I}. If ')'1, ')'2 (j. ~((Ql * Q2)) u ~(P) and ')'1 =J ')'2 then
(((P){(')'1 * ')'2)/a}){Q2/')'2}){QI/')'d = (P){(Ql * Q2)/a}. 0

Definition 4. Let P, PI, P2 E RB PP and Q E RB P be process expressions.
The function red: RB PP -+ BPP is defined as follows:

red(O) := 0

red(a) := a

red((P1 * P2)) := (red(Pd * red(P2)) where * E {+,;, I}

red(P[a"-+ Q]) := (red(P)){red(Q)/a}
o

5

Remark 3. Please note that the refinement of an action might suspend a poten-
tial communication. We could use instead fhe--'hybrid'ü.perator-.[ii -"--+Q]H :=

(.[a "--+ Q])[ä "--+ Q] if this is feIt to be an undue property of a refinement op-
erator. Q is the expression Q where every action is replaced by its complement
(cf. [AH91]). 0

Remark 4 states that one application of the reduction function is sufficient to
remove all refinement operators occurring in a process expression.

Remark 4. Let PE RBPP and Q E RBP. Then red(P[a "--+ Q]) =
red(red(P)[a"--+ Q]). 0

Lemma 1. Let P E RB PP, Q 1, Q2 E RB P be process expressions and 11, 12 E
A such that 11 =1= 12. Further let * E { ; , + }. //,1,,2 (j. ~(P) U~(red(Ql; Q2))
then red(((P[a "--+ (,1 * 12)])[,2"--+ Q2])[,1 "--+Ql]) = red(P[a "--+ (Ql * Q2)]).

Proof. Follows by Remark 2 and Remark 4.

•
In the presence of the sequential composition operator ';' it is common to work
with a special predicate J indicating successful termination (cf. [AH91]).

Definition 5. Let Je RBP P be the least set closed under the rules

OE J

E E J and F E J =;, (E * F) E J where * E {I, +,;}

E E J =;, E[a "--+ Q] E J
o

2.3 The Semantics ofRBPP

We now define the operational semantics of the language RBP P.

Definition 6. Let E, EI, E2, FE RBP P and Q E RBP be process expressions.

6

transition:

choicel :

choice2 :

sequential compositionl :

sequential composition2 :

E~E'
(E+F)~E'

F~F'

(E+F)~F'

E~E'
(E;F)~(E';F)

F~F'
(E;F)~F'

if E E V

o

f red(E[","-+Q])~Fre inement: -~- --~~-~--
E[","-+Q]~F

The last rule expresses the philosophy that the behaviour of the process P is
considered to be identical to that of the process red(P) (cf. [AH91]).

A process expression P determines a labelled transition system with termi-
nation i.e. a tupel (P, RBP P, A,~, V) where P E RBP P is the initial state
and ~~ RBP P x Au {T} x RBP P is the set of transitions, derived from the
operational semantics. V gives the set of terminated states. A process expression
P' is called an a-sucessor of P iff P ~ P'. P' is called a sucessor if there is a
performance a S.t. P' is an a-sucessor of P. Sometimes we use the notation P ~
to indicate the ability of P to execute an a-performance.

Some elementary properties of the function red are summarized in the fol-
lowing which allow us to relate the behaviour of P and red(P[a '"'--'Q]). First
we show that refinements behave weil in the sense that they neither remove a
process expression from the set V of terminated states nor introduce a reduced---
process expression to it.

Lemma 2. Let P E BP P and Q E RBP. Then P E V iff red(P[a '"'--'Q]) E V.
Proof. Immediate.

7

Lemma 3. Let P ERBPP. Then P E V iffred(P) E V.
Proof. Follows from Definition 6, the inability of P E V to commit any perfor-
mance a E A and the fact that Q E RBP for any term of the from P(a '""'-t Q] .

•
Lemma 4. Let P E B PP and Q E RB P be process expressions. 1f a =I ß then

1) VPVPt(P I!.t pt =? red(P[a '""'-t Q]) I!.t red(pt(a '""'-t Q]))

2) 1f ß rt ~(red(Q)) then VPVpt (red(p(a '""'-t Q]) I!.t pt =? ;jp"(P I!.t P" and

red(P"[a'""'-t Q]) = pt))

Proof. 1) By structural induction on P E BPP.

P = 0 and P = I where I =I ß: Trivial.

P=ß:

Obvious as P I!.t 0, red(P(a '""'-t Q]) = ß = P since a =I ß and red(O[a '""'-t Q]) = O.

Assurne (PI + P2) I!.t pt for some pt E BP P. By Definition 6 we get PI I!.t pt
or P2 I!.t pt. W.l.o.g. assurne the former. Then

red(Pr(a'""'-t Q]) I!.t red(pt[a '""'-t Q])

by the induction hypothesis. This implies

(red(Pda'""'-t Q]) + red(P2(a '""'-t Q])) I!.t red(pt(a '""'-t Q])

As (red(Pda'""'-t Q]) + red(P2[a '""'-t Q])) = red((PI + P2)[a '""'-t Q]) we get

red(P[a'""'-t Q]) I!.t red(pt[a '""'-t Q]).

Assurne (PIIP2) I!.t pt for some pt E BPP. Since ß =I T (remember T rt A)
we have pt = P{IP2 where PI I!.t P{ or pt = PIIP~ where P2 I!.t P~. W.l.o.g.
assurne the former. By the induction hypothesis we get red(Pda '""'-t Q]) ~
red(pna'""'-t Q]). This implies

- ß -(red(PI [a '""'-t Q]) IP) -'--+ (red(P{ (a '""'-t Q]) IP)

8

for any P E BP P. Now let P = red(Pz [a "-> Q]). Then

red(P[a"-> Q]) P.r red((P{IPz))[a "-> Q]).

Assurne (PI; Pz) P.r pI for some pi E B PP. By Definition 6 we have to consider
two cases:

Case 1: PI E V. By the assumption we must have Pz P.r Pi. We get

red(Pz[a"-> Q]) P.r red(pl[a "-> Q])

by the induction hypothesis. By Lemma 2 we get red(PI [a "-> Q]) E J. This
implies

(red(PI [a "-> Q]); red(Pz[a "-> Q])) P.r red(pl[a "-> Q])

hence
red(P[a"-> Q]) P.r red(pl[a "-> Q]).

Case 2: PI tf. V. Then PI .P.r P{ and (PI; Pz) .P.r (P{; Pz) by Definition 6. We get

red(Prfa"-> Q]) .P.r red(P{[a "-> Q])

by the induction hypothesis. By Definition 6 we obtain

(red(Prfa"-> Q]); p) .P.r (red(P{[a"-> Q]); p)

for any P E BPP. Let P = red(Pz[a"-> Q]) then

red(P[a"-> Q]) .P.r red((P{; Pz)[a "-> Q]) = red(p'[a "-> Q]).

2) By structural induction on P E BP P.

P = 0: Trivial, since red(P(a "-> Q]) = O.

P=T

Case 1: I = a. Then red(a(a "-> Q]) = red(Q). But ß tf. ~(red(Q)) by the
condition whence the implication is trivially true.
Case 2: I = ß. Then red(ß(a "-> Q]) = ß since a i- ß. Hence pi = O. We choose
pli = 0 whence red(plI(a "-> Q]) = 0 = PI.
Case 3: I i- a and I i- ß. Then red(P(a "-> Q]) = ,. Since I i- ß the implication
is trivially true.

9

Assurne red((P1 + Pz)[a "-t Q]) !.r P' for some P' E BPP. From Definition 3
and Definition 4 we obtain

(red(Pda"-t Q]) + red(Pz[a "-t Q])) !.r p'

hence
red(Pda"-t Q]) !.r P' or red(Pz[a "-t Q]) !.r p'.

W.l.o.g. assurne the former. Then

3P"(P1 !.r pli and red(P"[a "-t Q]) = P')

and
3P"((P1 + Pz) !.r p" and red(P"[a "-t Q]) = P').

Assurne red((P1IPz) [a "-t Q]) !.r P' for some P' E B PP. Then we get

(red(Pda"-t Q]) [red(Pz [a "-t Q])) !.r p'.

Since ß ::j:. T (T rf. A) we get

p' = (Elred(Pz[a "-t Q])) where red(P1[a "-t Q]) !.r E E E BPP

or

p' = (red(Pda "-t Q])IF) where red(Pz[a "-t Q]) !.r F FE BPP.

W.l.o.g. assurne the former. Then

- ß - -3P(P1 -'-+ P and red(P[a "-t Q]) = E)

and

As
red((FlPz)[a"-t Q]) = (red(F[a "-t Q])lred(Pz[a "-t Q]))

we get
red((FlPz)[a"-t Q]) = (Elred(Pz[a "-t Q])) = p'

from (*). Hence we conclude

3P"((P1IPz)!.r p" and red(P"[a"-t Q]) = P')

10

Assurne red((Pl ;P2)[a ~ Q]) ß, pi for some pi E B PP. We obtain

(red(Pda ~ Q]); red(P2[a ~ Q])) ß, Pi.

Case 1: pi = (E; red(P2[a ~ Q])) where red(Pda ~ Q]) ß, E.

Case 2: pi = F where red(P2[a ~ Q]) ß, Fand red(P1[a ~ Q]) E J.

For case 1 we get

by the induction hypothesis. This implies

by Definition 6. As

by assertion (*), we conclude

~P"((Pl; P2) ß, pli and red(P"[a ~ Q]) = Pi)

by choosing pli = (p; P2).

For case 2 we obtain

~P"(P2 ß, pli and red(P"[a ~ Q]) = F)

by the induction hypothesis. By Lemma 2 we have P1 E J since
red(P1 [a ~ Q]) E J. Hence we obtain

~P"((Pl; P2) ß, pli and red(P"[a ~ Q]) = F) .

•
Lemma 5. Let PE BPP be a process expression. Then

1) VPVP'(P ~ pi ::::}red(P[a ~ ß]) ß, red(pl[a ~ ß]))

2) I/ ß rf. ~(P) then VPVP' (red(P[a ~ ß]) ß, pi ::::}~P"(P ~ pli and

red(plI[a ~ ß]) = pI)

11

ProoL~~~r.!!2nJt~.!!:9:~) are proved by structural induction on P E BP P. We
only show the cases where the proof differs from the proof of Lemma 4.

For assertion 1) we show

a ~ 0, red(P[a -v> ß]) = ß whence red(P[a -v> ß]) ~ 0 which completes
this case since red(O[a -v> ß]) = o.

For assertion 2) we show

Gase 1: / = a. Then red(a[a -v> ß]) = ß. By Definition 6 wehave pi = O.We
choose pli = O. Then P ~ pli and red(plI[a -v> ß]) = red(O[a -v> ß]) = 0.= P'.

Gase 2: / = ß: cannot occur due to the condition ß rf. ~(P) of the lemma.

Gase 3: / =1= a and / =1= ß: The implication is trivially true .

•
Lemma 6. Let P E B P P be a process expression and /1, /2 E A. Then

1) VPVP' (p ~ P' =>

:lf"(red(P[a-v> (/1;/2)]) ~ pli ~ red(P'[a -v> (/1;/2)]))

2) 11/1,/2 rf. ~(P) then VPVPIVPII(red(p[a-v> (/1;/2)]) ~ pi ~ pli =>

:lF(P ~ Fand red(F[a -v> (/1; /2)]) = pli)

Proof. 1) by induction on the structure of P E BP P.

P = 0: Trivial.

Gase 1: / =1= a. Then the implication is trivially true.

Gase 2: / = a. Then a ~ 0 whence pi = O.Now red(a[a -v> (/1;/2)]) = (/1;/2).
We choose pli = (0; /2)' Then

12

.----------------_._ .. _-~-- - - ------ --

Assurne (PI + P2) ~ pi for some pi E BPP. Then we obtain

by Definition 6. W.l.o.g. assurne the former. Then

This implies

Assurne (P1IP2) ~ pi for some pi E BP P. Since a i- 7 (7 rf. A) we have

pi = (P{1P2) where PI ~ P{

or
pi = (P11Pn where P2 ~ P~

by Definition 6. W.l.o.g. assurne the former. Then

by the induction hypothesis. This implies

and

(P"lred(P2(a"'" (/1;/2)]) ~ (red(P{(a"'" (/1;/2)])lred(P2(a"'" (/1;/2)]))'

We obtain

and

(P"lred(Pda"'" (/1; /2)]) ~ red((P{1P2)[a "'" (/1; /2)]))'

We conclude

13

Assurne (P1;P2) ~ P' for some P' E BPP.

Case 1: P' = (P{; P2) where P1 ~ P{

Case 2: P' = P~ where P2 ~ P~ and P1 E V

For case 1 we obtain

by the induction hypothesis. This implies

and

(P"; red(P2 [a "-+ (,1; /2)]) ~ (red(P{[a "-+ (,1; /2)]); red(P2 [a "-+ (,1; /2)])).

We obtain

:lP"(red((P1;P2)[a,,-+ (,1;/2)]) ~ (P";red(P2[a"-+ (,1;/2)])) and

(P";red(P2[a"-+ (,1;/2)])) ~ red((P{;P2)[a"-+ (,1;/2)]))

by Definition 3 and Definition 4. Hence we conclude the desired result

:lP(red((P1jP2)[a"-+ (,1;/2)]) ~ P ~ red((P{jP2)[a"-+ (,1;/2)]))

by choosing P = (P"; red(P2[a "-+ (-'11; /2)])'

For case 2 we have

:lP"(red(P2[a,,-+ (,1; /2)]) ~ p" 24. red(P~[a "-+ (,1; /2)]))
- --- .,----" - .._- ._-------- -_.

by the induction hypothesis. Since P1 E V we have red(P1 [a "-+ (,1; /2)]) E V
by Lemma 2. Hence

2) By induction on the structure of PE BPP.

14

--_._---------~..•---- - ..__ _----- - _.~-- ---- - -_. -----_. -- -_. -------, .. -_.

P = 0: Trivial, since red(O[a "" (rl; 12)]) = O.

Case 1: 1 :f: a. The red(r[a "" (rl; 12)]) = 1. Hence the implication is triv-
iaHy true since 11,12 tf. ~(P) by the condition of assertion 2).

Case 2: 1 = a. Then red(a[a "" (rl; 12)])= (rl; 12). Hence we have pI = (0; 12)
and P" = O. On the other hand a ~ o. We choose P = o. Hence

P ~ P and red(P[a "" (rl;12)]) = P".

P = (PI + P2):

Assume red((PI + P2)[a "" (rl; 12)]) 2+ P' ~ P" for PI, P" E BP P. We
obtain

Hence we obtain

or
red(P2[a"" (rl;12)]) 2+ pI ~ P".

W.l.o.g. assume the former. Then

~P(PI ~ P and red(P[a "" (rl; 12)]) = P")

by the induction hypothesis. This implies

P = (PlIP2):

Assume red((PlIP2)[a "" (rl;12)]) 2+ pI ~ P" for P',P" E BPP. We ob-
tain

(red(Pda"" (rl;12)])lred(P2[a"" (rl;12)])) 2+ p' ~ P".
- -------------- _.- ------._------

Since 11,12 :f: T (T tf. A) we have one of the foHowing cases:

Case 1)

pI = (Elred(P2[a"" (rl;12)])) where red(Pl[a"" (rl;12)]) 2+ E

and
P" = (E'lred(P2[a"" (rl;12)])) where E ~ E'

15

.._.__ ._--~~----~~...-- -
.. . . "~'.~~'~".=c~~ __ ------...J

----------_._-------------------------------------,

Case 2)

and
pli = (red(Pda 'V> (''tl; ')'2)])!F') where F ~ F'

72
(Note that red(P1[a'V> (')'1;')'2)]) f+ since ')'2 tf. ~(P))

We consider case 1), i.e. we have

whence we get

This implies

and

which gives

Taking (*) and (**) together we obtain

whence

Assurne red((P1; P2)[a 'V> (')'1; ')'2)]) 2} pi ~ pli for P', pli E BP P. We ob-
tain

Case 1)

16

-.- --" -_ .._--------------- ----------~-_._- -

and
pli = (EI;red(P2[a-~ eil; 7;)])) where E:4 E'

(Note that red(Pl [a "-" bl; 12)]) 2+ implies E (j. V since ,1 (j. ~(P))

Case 2)

pI = P where red(P2[a"-,, bl;,2)]) 2+ p and red(Pl[a"-" bl;,2)]) E V
and

pli = pI where P :4 pI

For case 1 we have

whence we get

by the induction hypothesis. This implies

and

which gives

Taking (*) and (**) together we obtain

whence we obtain

For case 2 we obtain

by the induction hypothesis. From red(Pda "-" bl; 12)]) E V we have PI E V
by Lemma 2. Hence we obtain

•
17

-- -- ---,

Lemma 7. Let P E BPP and /'1,/'2 E A. Then

1) VPVP' (p ~ P' ~

Vi E {I, 2} (red(P[a "-+ (,1 + /'2)]) 4 red(P'[a "-+ (,1 + /'2)])))

2) If /'1, /'2 rt ~(P) then

VPVPI(3i E {1,2}(red(P[a,,-+ (,1 +/'2)]) 4 P' ~

3F(P ~ Fand red(F[a "-+ (,1 + /'2])) = PI)))

Praof. Both assertions are proved by induction on the structure of P E BP P .

•
Lemma 8. Let P ERBPP. Then
. VPVP' E RBPP(P ~ P' ~ red(P) ~ red(P'))

Praof. The proof is by induction on the strucure of P E RBP P.

P = 0: Trivial.

P = a: Trivial since red(P) = P.

Suppose (PI + P2) ~ P' for some P' ERBPP. Then

by Definition 6. W.l.o.g. assume the former. Hence

red(Pr) ~ red(P')

by the induction hypothesis. This implies

(red(Pr) + red(P2)) ~ red(P')

by Definition 6 whence we conclude

by Definition 4.

Assume (P1IP2) ~ P' for some P' E RBP P. Since ß I- T (remember T rt A) we
get

p' = (EIP2) where PI ~ E E E BPP

18

or
pi = (P1IF) where P2!::r F F--"EBPP----------

by Definition 6. W.l.o.g. assurne the former. Then

red(Pd !::r red(E)

by the induction hypothesis. This implies

(red(Pdlred(Pz)) !::r (red(E)/red(Pz))

by Definition 6, i.e.
(red(Pd/red(Pz)) !::r red(P') .

.Assume (P1; Pz) !::r pi for some P' E RBP P. According to Definition 6 we
consider two cases:

Case 1: P' = (E; Pz) where P1 !::r E.

Case 2: pi = F where Pz !::r Fand P1 E V.

For case 1 we get
red(P1) !::r red(E)

which implies
(red(Pdi red(Pz)) !::r (red(E); red(Pz))

whence
red(P1; Pz) !::r red(E; Pz).

For case 2 we obtain
red(Pz) !::r red(F)

by the induction hypothesis. By Lemma 3 we have red(Pd E ..j since
P1 E ..j. Hence

(red(Pdi red(Pz)) !::r red(F)

i.~. red(P1 iPz) !::r red(F).

P= P(a"--> QJ:

Assurne P(a "--> QJ !::r E' for some E' E RBP P. Then we must have red(P(a "-->
Q]) !::r E' by Definition 6 and E' = red(E') E BP P which completes this in duc-
tion step .

•
19

Remark 5. The converse of Lemma 8 does not hold as can be seen in the follow-
ing:

bLet P = (alb). Then red(P) = P whence P -+ red((e[e '"'-' a]IO)). But on the
b

other hand P -1+ (e[e'"'-' a]IO). 0

3 The Logic RHM L

In this section we introduce the logic H M L following the line of [Mil80]. We
augment H M L by an operator for logical action refinement which gives the
logic RHML.

3.1 Syntax

Definition 7. H M L is the language of assertions genemted by the gmmmar

P ::= T 11- I (p 1\ p) 1 (p V p) I [alp I (a)p

where a mnges over A. Let RH M L be the language genemted by the above
gmmmar with the additional rule

P ::= p[a '"'-' Q]

where Q E RBP.
o

Definition 8. Let <p, 'Ih, <P2 E H M L. We define the function ~ : H M L -+ 2A
as follows:

~(*) := 0 if * E {T, 1-}

~((<Pl * «2)) := ~(<Pl) U ~(<P2) if * E {I\, V}

~([a]<p) := {a} U ~(<p)

~((a)<p) := {a} U ~(<p)

o

The function ~Act : H M L -+ 2Act is defined analogously to the function ~.

3.2 The Logical Reduction

We introduce a concept of logical substitution by the way of which we are able
to define the reduction of logical formulas.

20

Definition 9. Let Q,Q1,Q2 E BP and P,P1,P2 E HML and n,m E !No. The

operation of logical substitution, (P){a'V+ Q} is defined as follows:

((ßJp){a'V+ Q} := [ß](p){a "---> Q}if a =/= ß

([aJp){a"---> Q} :=

{

[ß](p){a "---> Q} if Q = ß

(((vnJ(p){a"---> Q}){ Vn "---> Qd !\ ((vm](p){a "---> Q}){ Vm "---> Q2}) if Q = (Q1 + Q2)

([Vn]([Vm](p){ a "---> Q}){vm "---> Q2}){ Vn "---> Qd if Q = (Q1; Q2)

((ß)p){a"--->Q}:=(ß)(p){a"--->Q} ifa=/=ß

(a)p){ a "---> Q} :=

{

(ß)(p){a,,--->Q} ifQ=ß

(((vn)(p){a"---> Q}){vn "---> Qd!\ (vm)(p){a "---> Q}){vm "---> Q2}) if Q = (Q1 + Q2)

(Vn)(Vm)(p){a"---> Q}){vm "---> Q2}){Vn "---> Qd ifQ = (Q1;Q2)

For the introduction ofvariables Vn, Vm we require Vn, Vm tf- ~([a]P) U ~(Q) and
n =1= m (vn,vm tf- ~((a)P) U ~(Q) respectivly).
o

Remark 6. To avoid excessive use of brackets we sometimes use the notation
p{ a 'V+ Q} instead of (p){ a 'V+ Q} if the context avoids ambiguity.
o

Example 1. Let <p= [aJ((b)TV [aJ..l) and Q = (d+ e) where a,b,d,e E A. Then

(<p){a'V+ Q} = ([dj((b)T V ([dj..l /\ [eJ..l)) /\ [eJ((b)T V ([dj..l /\ [eJ..l)))

o

To prove that the operation of logical substitution is always defined we introduce
a suitable transitive, anti-symmetrical relation.

21

- --,- ------

Definition 10. The length I . I : RH M L -+ IN of formulas is given by

I * I := 1 * E {1-,T}

1(<pI * <P2)1 := 1+ I<pII + 1<P21 * E {V,!\}

I * <pI := 1 + 1<p1 * E {la), (a)}

1<p[a'V> Q]I := 1+ 1<p1
o

Definition 11. The length I. I : BP -+ IN of process expressions is given by

lal:= 1

I(PI *P2)1:= 1+ IFII + IP21 * E {; ,+}
o

Definition 12. The relation -<c BP x H M L is defined by
(Q,1/J) -< (P, <p) iff IQI < IPI or (IQI = IFI and 11/J1 < l<pl).
o

The relation -< is anti-symmetrical and transitive and (a, T), (a,1-) are the
minimal elements.

By using -< on the set BP x H M L the effect of decreasing the complexity
(length) of Q by an application of the substitution operation <p{ a 'V> Q} is
stronger than the effect of reducing the complexity of <po

Lemma 9. Let <pE H M L be a formula and P E BP be a process expression.
Then <p{a 'V> P} E H M L for any a E A.

Proof. By well-founded induction on -<.

The induction hypothesis is given by

V(Q,1/J) -< (P,<p),Va E A(1/J{a'V> Q} E HML)

for the process expression P E B P and the formula <p E H M L und er consid-
eration. We consider the different cases according to Definition 9, and show for

.... __.__~eachcase.that the logical substitution operator strictly decreases thecomplexity
with respect to -<.

<p = *, * E {1-, T}:

By Definition 9 and Definition 7 we immediately conclude <p{ a 'V> P} E H M L.

22

By Definition 9 we have (cp){ a "-+ P} = ((cpd{ a "-+ P} * (CPz){ a "-+ P}).
--------- ----Clearly ICPil < Icpl for i = 1,2 whence by Definition 12 (P, CPi) -< (P, cp). We

get (cpd{ a "-+ P} = <PI E H M Land (CPz){ a "-+ P} = <PzE H M L by the induc-
tion hypothesis. Hence (<PI * <Pz) E H M L.

cp = [ß]cp', a -1=ß:

By Definition 9 we have (cp){a "-+ P} = [ß](cp'){a "-+ P}. Now Icp'l < I[ß]cp' I
whence (P,cp') -< (P,[ß]cp') by Definition 12. Hence (cp){a "-+ P} = rjJ E HML
and therefore [ß]rjJ E H M L.

cp= [a]cp', P = ß:

Analogously to the above case.

By Definition 9 we have

Clearly Icp'l < l[a]cp'l whence (P, cp') -< (P, [a]cp'), hence (cp'){a "-+ P}) = rjJ E
H M L. Hence [vn]rjJ E H M L. As (PI, [vn]rjJ) -< (P, [a]cp') since IP11 < IPI
we obtain ([vn]rjJ){Vn "-+ Pr} = <PI E HML. A similar argument provides
([vm]rjJ){ Vm "-+ Pz} = <PzE H M L for the second conjunct of (1). Hence <PI1\ <PzE
HML.

cp = [a]cp', P = (PI; Pz):

We have (cp){a "-+ P} = ([vn]([vm](cp){a "-+ P}){vm "-+ PZ}){vn "-+ Pr} by
Definition 9. Since Icp'l < l[a]cp'l we get (P, cp') -< (P, [a]cp') and therefore
(cp){a"-+ P} = rjJ E HML. Hence [vm]rjJ E HML. Since !Pzi < !PI we have
(PZ,[vm]rjJ) -< (P,[a]cp') and therefore ([Vm]rjJ){vm "-+ Pz} = <PI E HML. By
similar reasoning we conclude ([Vn]<Pl){Vn "-+ Pz}) = <PzE HML.

The proof for the diamond modali ty (.) is similar to the cases for the box modal-
ity [.].

-- --- ------ -------- .----------------

The following lemma can be seen as the counterpart of Remark 2 for the
logical framework.

Lemma 10. Let Ql, Qz E BP be process expressions and cp E H M L be a for-
mula. Let1l'IZ E.A S.t./l -I=IZ and* E {+,;}. 1fll,IZ rf. ~((Ql *Qz))U~(cp)
then (((cp){ a "-+ (/1 * IZ)}){Jz "-+ Qz}){Jl "-+ Qr} = (cp){ a "-+ (Ql * Qz)}.

23

Proof. By induction on the structure of i.p E H M L

i.p = *, where * E {T, ..L}:

Trivial.

i.p= (i.pl * i.p2), where * E {A, V}:

Follows from the induction hypothesis and Definition 9.

i.p= [ß]i.p', where a: =I- ß:

Trivial, since ,1,,2 rf. ~(i.p) and no substitution takes place.

We split the proof of this step in two parts. Part one establishes the claim
of the lemma for the operator ';' while part two captures the operator '+'.

Part 1: * =;

We have:

([a:Ji.p'){a: ~ (,1; ,2)}
= ([V3] ([V4]((i.p'){ a: ~ (,1; ,2)}){ V4 ~ ,2}){ V3 ~ 'I}

(By Definition 9) .
= ([V3]['2](i.p'){ a: ~ (,1;,2)}){ V3 ~ ,d

(By Definition 9 and V4 rf. ~(i.p'{a: ~ (,1; ,2)}))
[,1][,2](i.p'){ a: ~ (,1; ,2)}
(By Definition 9 and V3 rf. W,2]i.p' {a: ~ (,1; ,2)})

Now we get

((['1]['2] (i.p'){a: ~ (,1;,2)}){,2 ~ Q2}){,l ~ Qd
((['l]['2J((((i.p'){a:."-'-('Yl ;,2)}){.,2 ~ Q2}){,l ~ Ql})){,2 ~ Q2})
hl~ Qd
(Since ,1,,2 rf. ~(i.p') u ~(Qd u ~(Q2))

= ((['1]['2] (i.p'){a: ~ (Ql; Q2)}){,2 ~ Q2}){'l ~ Qd
(By the induction hypothesis)
(['l](['2J(i.p'){a: ~ (Ql; Q2)}){,2 ~ Qd){,l ~ Qd
(Since ,I =I- '2)
([a:Ji.p'){a: ~ (Ql; Qd}
(By Definition 13)

24

.•.

We have:

([a]rpl){a ~ (r1 + 12)}
= (([V3](rp'){ a ~ (r1 + 12)}){ V3~ ,t} I\. ([V4](rpl){ a ~ (r1 + 12)}){ V4~ 12})

(By Definition 9)
= (b1] (rpl){ a ~ (r1 + 12)} I\. [/2](rp'){ a ~ (r1 + 12)})

(By Definition 9 and V3,V4 (j. ~((rp'){a ~ (r1 + 12)}))

Now we get

(((b1](rpl){ a ~ (r1 + 12)} I\. [/2](rp'){ a ~ (r1 + 12)})){ ,2 ~ Q2}) {t1 ~ Q t}
= (((b1] (rpl){ a ~ (r1 + 12)}){ ,2 ~ Q2}){ ,1 ~ Q t}I\.

(([/2] (rpl){ a ~ (r1 + 12)}){ ,2 ~ Qd){ ,1 ~ Qt})
(By Definition 9)

= (((bd((((rp'){a ~ (r1 + ,2)}){/2 ~ Q2}){t1 ~ Qt}){/2 ~ Q2})
{t1 ~ Qt}1\.
(([/2]((((rpl){a ~ (r1 + ,2)}){/2 ~ Q2}){/1 ~ Qt}){/2 ~ Q2})
{t1 ~ Qt})
(Since 11, 12 (j. ~((Q1 + Q2)) u~(rp))

= (((b1] (rp'){a ~ (Q1 + Q2)}){/2 ~ Q2}){t1 ~ Qt}1\.
(([/2] (rp'){a ~ (Q1 + Q2)}){/2 ~ Q2}){t1 ~ Qt})
(By the induction hypothesis)

= (([/1] (rpl){a ~ (Q1 + Q2)}){/1 ~ Qt}1\.
(b2](rp'){a ~ (Q1 + Q2)}){/2 ~ Q2})
(Since 11, 12 (j. ~(rp) U ~((Q1 + Q2)) and 11 i- 12)

= ([a]rpl){a ~ (Q1 +Q2)}
(By Definition 9)

rp = (ß)rpl:

The proof is carried out in analogy to the induction step of the box-modality [.].

•
Definition 13. Let Q E RBP be a process expression and P, P1 ,P2 E RHML
be jormulas. We define the logical reduction function Red: RHM L -t HM L
as jollows: _.

Red([ß]p) := [ß]Red(p)

Red((ß)p) := (ß)Red(p)

25

Red(<P[a"-+ Q]) := (Rea(<p)){a-~-iea(Q)T-----
o

Some elementary properties of the function Red are given below. Lemma 11
states that one application of the reduction function is enough to remove all
refinement operators occurring in a formula and is the counterpart of Remark 4
for the logical framework.

Lemma 11. Let Q E RB P be a process expression and r.pE RH M L bc a for-
mula. Then Red(r.p[a "-+ Q]) = Red(Red(r.p)[a "-+ Q]).

Proof. Immediate from Definition 9 and Definition 13.

•
Lemma 12 states that the result of the reduction of formulas with nested

refinements is equal to the result of the refinement on certain formulas without
nested refinements. It is the 'logical' counterpart of Lemma 1.

Lemma 12. Let Ql, Q2 E RBP be process expressions, r.pE RHML be a for-
mula and * E {; , +}. If 11, ,2 E A s.t. 11 i=- 12 and 11, ,2 (j. ~(r.p)U~(red(Ql *Q2))
then Red«(r.p[a "-+ (,1 * 12)J)['2 "-+ Q2])bl "-+ Ql]) = Red(r.p[a "-+ (Ql * Q2)]).
Proof. Follows by Lemma 10 and Lemma 11.

The following lemma states that the logical reduction function Red is always
defined.

Lemma 13. Let r.pE RH M L be a formula. Then Red(r.p) E H M L.

Proof. The proof is by induction on Ir.pl E IN.

•
3.3 Semantics

We extend the standard satisfaction relation (see e.g. [Sti87]) to cope with re-
finement as follows.

Definition 14 (Satisfaction). Let P E RBP P, Q E RBP and r.p,r.pl,r.p2E
RHML.

P 1= (r.pl1\ r.p2) iff P 1= r.pl and P 1= r.p2

26

-- ----"------------------ -- -------

P F [a]<p

P F (a)<p

iff PE{E E RBPFTvE'ERBFP(E!:t-F;' '* E' F <p)}

iff PE {E E RBPPj3E' E RBPP(E ~ E' and E' F <p)}

P F <p[a "-+ Q] iff P F Red(<p[a "-+ Q]) .
o

We say a process P is a model of <piff P F <poEquivalently we say P satisfies
<piff P F <po

Example 2. Let P1 := (alb), P2 = ((a; b) + (b; a)), <p := ((a)(b)T 1\ (b)(a)T),
Q := c[c "-+ (al;a2)]. Pi F <p and P;[a"-+ Q] F <p[a "-+ Q] = ((al)(a2)(b)T 1\
(b)(al)(a2)T) for i = 1,2. In addition Plla"-+ Q] satisfies (al)(b)(al)T which is
not satisfied by P2[a "-+ Q].
o
Lemma 14. Let P E RBP P and<p E H M L. Then P F <p{::} red(P) F <po

Proof. The proof is by induction on the structure of <pE H M L;

The base case <p E {T, 1-} are trivial.
The cases <p= (<Pl * <P2)where * E {V, I\} follow immediatly from Definition 14
and the induction hypothesis.

<p= [a]<p':

Both directions are proved by an indirect argument.

',*':

Suppose P F [a]<p' and red(P) ~ [a]<p'. Then

3E' E RBP P(red(P) ~ E' and E' ~ <p').

This yields
3E' E RBP P(P ~ E' and E' ~ <p')

whence P ~ [a]<p'.

'<:=':

Suppose P ~ [a]<p' and red(P) F [a]<p'. Then

3E' E RBP P(P ~ E' and E' ~ <p') (1)

whence
red(P) ~ red(E')

27

by Lemma 8. From (1) we obtain

red(E') ~ cp' (3)

by the induction hypothesis. Hence (2) and (3) imply

::JE E RBP P(red(P) ~ E and E ~ cp')

i.e. red(P) ~ [alcp'

cp= (a)cp':

':::}': In analoy to the '{:::'-direction of the proof for the box modality.

'{:::': In analoy to the ':::}'-direction of the proof for the box modali ty .

•
Lemma 15. Let PE RBPP and cpE RHML. Then P F cp <=} P F Red(cp).

Praaf. The proof is by induction on Icpl E IN.

•
Corollary 1. Let P E RBP P and cpE RH ML. Then P F cp <=} red(P) F cp.

Praaf. P F cp

<=} P F Red(cp) (By Lemma 15)

<=} red(P) F Red(cp) (By Lemma 14 and Lemma 13)

<=} red(P) F cp (By Lemma 15)

•
4 Simultaneous Atomic Performance Refinement for

RBPP and RHML

In this section we provide the link between refinement in the process calculi and
the logical calculi. ------------

4.1 The Necessary Restrietions

We give the main result (Theorem 2) in this section. It will enable us to modify
both a formula cp E RH M Land its model P E RBPP by simultaneously
applying syntactic performance refinement to cp and P. The main property of
the simultaneous refinement is: If process P satisfies the formula cp then the

28

refined process P[a --v; Q] satisfies the refined formula cp[a --v; Q] and vice versa.
Formally we have: for any P E RBP P, Q E RBP, a E A, (j;-ERHM1--:-----------------

(P PCP? P[a --v; Q] P cp[a --v; Q]) (2)

Assertion (2) does not hold in general but we give the (weak and reasonable)
restrictions under which it is true. Actually it differs from the assertion we are
interested in, namely the same assertion for the framework of action refinement.
But as we will see in section 5 we obtain the desired assertion easily as a corol-
lary of assertion (2).

It turns out that the following two conditions are sufficient to establish validity
of assertion (2).

(I) ~(red(P)) n ~(red(Q)) = 0 and

(II) ~(.Red(cp)) n~(red(Q)) = 0.

We first provide a few examples to support the intuition why these conditions
are necessary.
Example 3 shows a situation where a refiriement does not preserve the satisfac-
tion relation between original and refined process expressions and formulas. The
situation appears due to the fact, that the original property is left unmodified
but the original process is modified by the refinement.

Example 3. Consider the process expression P := band the formula cp :=
[c](d)T.
We have Pp cp but red(P[b --v; c]) ~ Red(cp[b --v; c]). Note that we have
~(red(Q)) n ~(Red(cp)) i= 0.
o
We encounter another situation where the satisfaction relation is not preserved
by a refinement if the refinement leaves the original process expression unmodi-
fied and modifies the original formula.

Example 4. Consider the process expression P := band the formula cp := [cl (d) T
from example 3.
We have P p cp but red(P[c --v; b]) ~ Red(cp(c --v; b]). Note that we have
~(red(Q)) n ~(red(P)) i= 0.
o
The next two examples demonstrate the faHure of preserving the satisfaction
relation in the 'other direction', namely from the refined to the original process
expressions and formulas.

Example 5. Consider the process expression P := band the formula cp := (c)T.
We have P ~ cp but red(P(b --v; c]) p Red(cp(b --v; c]). Note that we have
~(red(Q)) n ~(red(cp)) i= 0.
o

29

Example 6. Consider the process expression P := band the formula <P:= (e) T
from example 5.'
We have P ~ <P.but red(P(e ~ b]) 1= Red(<p(e ~ b]). Note that we have
~(red(Q)) n ~(red(P)) =P 0.
o

4.2 Preliminaries for the Refinement Theorems

Two facts are crucial for the proof of the main theorem:

- We can refine a process expression P E RBP P and a formula <pE RH M L by
simple pro cesses (which consists only of action variables) without affecting
their satisfaction relation. This fact will be formalized in the 'expansion-
lemmata' given below.

- We can reduce two refinement steps into one. This fact has been formalized
by Lemma 1 and Lemma 12..

The following expansion lemmata formalize the possibility to refine perfor-
mances of process expressions and formulas by simple process expressions, com-
posed of two performances, without affecting the satisfaction relation.

Lemma 16 (Expansion lemma for ';'). Let P E BPP be a process expres-
sion, <pE H M L be a formula and 11,12 E A S.t. 11,12 rf. ~(P) U ~(<p). Then
P 1=<p{:}red(P(a~ bl;/2)]) I=Red(<p(a~ bli/2)]).

Proof. By induction on the structure of<p E H M L

<p= *, where * E {T, .l}: Trivial, since Red<*[a ~ bli 12)]) = *.

<p= (<PI* <P2)where * E {A, V}:

The claim follows from the induction hypothesis and Definition 9, Definition 13
and Definition 14.

<p= (ßJ<p'where a =p ß:

Both directions are proved by an indirect argument.

'=}':

Assume P 1= (ßJ<p' and red(P(a ~ bli 12)]) ~ Red«(ßJ<pI)(a ~ bli 12)])
Prom

we obtain

30

by Definition 9 and Definition 13.
Hence we get

3E' E RBpp(red(p(a"" (,1;/2)])!!, E' and

E' ~Red(<p'(a"" (,1;/2)])) (1)

by Definition 14. Now a =1= ß, ß (j. ~((,1;/2)) due to the condition /1,/2 (j. ~(<p)
and since ß E ~(<p). We obtain

3plI(P!!' pli and red(plI[a "" (,1;/2)]) = E') (2)

by application of assertion 2) from Lemma 4. Now(l) and (2) give

whence we get
3plI(P!!' pli and pli ~ <pt)

by the induction hypothesis, yielding the contradiction

Assurne red(P(a "" (,1;/2)]) F Red(((ß]<p')(a "" (,1;/2)]) and P ~ (ß]<p',
i.e.

3E' E RBP P(P !!, E' and E' ~ <pt)

Since a =1= ß we obtain

3E' E RBP P(red(P(a "" (,1; /2)]) !!, red(E'(a "" (,1; /2)]) and E' ~ <pt)

by application of assertion 1) from Lemma 4. But this implies

3E' E RB PP (red(p(a "" (,1;/2)])!!, red(E'(a "" (/1;/2)]) and

red(E'(a'"'-+ (,1; /2)]) ~ Red(<p'(a "" (,1; /2)]))

by the induction hypothesis. Hence we get

whence the desired contradiction follows.

31

_______ .<p_=~[a~J_<p'_:_

Claim: Red(([aJ<p/)[a"-,, eY1;1'2)]) = b1HI'2JRed(<p'[a"-,, (,1;1'2)])

Proof:

Red(([a]<p')[a "-" (,1; 1'2)])
= (Red([a]<p')){a"-,, (,1;1'2))

(By Definition 13)
= ([a]Red(<p')){ a "-"(,1; 1'2)}

(By Definition 13)
= ([V1]([v2](Red(<p')){a"-,, (,1;1'2)}){V2 "-" 1'2}){V1 "-" I'd

(By Definition 9)
= ([v1HI'2](Red(<p')){a "-" (,1; 1'2)}){V1 "-" I'd

(Since V2 rf. ~((Red(<p')){a "-" (,1; 1'2)}))
= bdb2]Red(<p'){ a "-"(,1; 1'2)}

(Since VI rf. ~(Red(<p'){a"-" (,1;1'2))) and V2 -::J vd
= b1HI'2]Red(<p'[a"-,, (,1;1'2)])

(By Definition 13)
o

'=}':

We have:

red(P[a"-,, (,1; 1'2)]) ~ Red(([a]<p')[a "-" (1'1; 1'2)])

{::} red(P[a"-,, (,1;1'2)]) ~ b1HI'2]Red(<p'[a"-,, (,1;1'2)])
(By the claim)

{::} 3P', pli E RBP P (red(p[a "-" (,1; 1'2)]) 2+ pi and P' ~ pli ~nd

. . pli ~ Red(<p'[a "-" (,1; 1'2)])) (1)

Since 1'1,1'2 rf. ~(P) we can apply assertion 2) of Lemma 6 and obtain

3F(P ~ Fand red(F[a "-" (1'1; 1'2)]) = Pli) (2)

Taking (1) and (2) together we have red(F[a "-" (,1; 1'2)]) ~ Red(<p'[a "-"
(,1;1'2)]). By the induction hypothesis we obtain

F ~ <p' (3)

32

But (2) and (3) imply
P ~ [alcp'.

'~':

Assume red(P[a "" bl; /2)]) F "R.ed(([a]cp')[a "" bl; /2)]) and P ~ [a]cpl.
From the latter we obtain

3pI E RBP P(P ~ p' and p' ~ cp').

By assertion 1) of Lemma 6 we get

Further pi ~ cp' implies

by the induction hypothesis. By (1) and (2)

3E',E" E RBPp(red(p[a"" bl;/2)]) 2.}E' ~ E" and

and therefore

cp = (ß)cp' where a i= ß:

Here we use a direct argument to provide the desired result. However we only
indicate the proofs since they have their analogous counterparts in the proofs
for the box-modality [.].

'=::;,':

Assume P 1= (ß)cp'. Then

3EI E RBPP(P.4. EI and EI F cp').

It is easy to see that the proof can now be carried out in analogy to the proof
of the '~'-direction in the induction step für cp = [ß]cp' where a i= ß whence
red(P[a"" bl; /2)]) F "R.ed(((ß)cp/)[a "" bl; /2)])'

'~':

33

Assume red(P[a "'--'(,1; 12)]) F Red(«(ß)({")[a "'--' (,1; 12)]), hence

red(P[a",--, (,1;12)]) F (ß)Red«({"[a",--, (,1;12)])

whence

3E' E RBP P(red(P[a "'--'(,1; 12)]) .I!t E' and E' F Red(({"[a "'--' (,1; 1'2)])).

We can now proceed in analogy to the proof of the '=:;.'-direction in the induction
step for ({'= [ß]({" where a =/:ß whence P F (ß)({".

({'= (a)({":

'=:;.': In analogy to the '~'-direction of the induction step for ({'= [a]({".

'~': In analogy to the '=:;.'-direction of the induction step for ({'= [a]({" .
•
Lemma 17 (Expansion lemma für '+'). Let PE BPP be a process expres-
sion, ({'E H ML be a formula and 11,12 E A be s. t. 11,12 tf- ~(P) u~(({').Then
P F ({'{:}red(P[a "'--'(,1 + 12)]) F Red«({'[a "'--'(,1 + 12)])'
Proof. The proof is by induction on the structure of ({'E BP P. Most of the in-
duction steps are carried out in analogy to those steps in the proof of Lemma 16.
However two cases are different and will be shown below.

({' E {T, ..l}: Trivial.

({'= «({'I * ({'2) where * E {V, I\}: In analogy to the proof of Lemma 16.

({'= [ß]({" where ß =/:a: In analogy to the proof of Lemma 16.

({'= (ß)({" where ß =/:a: In analogy to the proof of Lemma 16.

({'= [a]({":

Both directions are shown by an indirect argument.

Claim: Red(([a]({")[a "'--'(,1 + 12)]) =

(bl]Red(({"[a",--, (,1 + 12)]) 1\ b2]Red«({"[a "'--'(,1 + 12)]))

This can easily be shown by Definition 9 and Definition 13.
o

'=:;.':

34

Assurne P 1= [aJip' and red(P[a 'V+ ('"Y1 + 'Y2)]) ~ Red(([aJip')[a 'V+ (-rl + 'Y2)]).

By the assumption and the claim we obtain

which is equivalent to

or

red(P[a'V+ (-rl + 'Y2)]) ~ b2JRed(ip'[a 'V+ (-rl + 'Y2)]))

W.l.o.g. assurne the former. Then we have

3E' E RBP P (red(Pla 'V+ (-rl + 'Y2)]) ~ E' and

E' ~ Red(ip'[a 'V+ (-rl + 'Y2)])) (1)

By the condition of the lemma we have 'Yl, 'Y2 rf. ~(P) whence

3P E RBPP(P ~ P and red(P[a 'V+ (-rl + 'Y2)]) = E') (2)

by the application of assertion 2) from Lemma 7. Now (1) and (2) together give

whence we obtain
3P E RBPP(P ~ P and P ~ ip/)

by the induction hypothesis, i.e.

'~':

Assurne red(P[a 'V+ (-rl + 'Y2)]) 1= Red(([aJip/)[a 'V+ (-rl + 'Y2)]) and P ~ [aJip'.
From the latter we obtain

3E' E RBP P(P ~ E' and E' ~ ip').

By assertion 1) of Lemma 7

35

E' ~ <p,) for i = 1, 2

and therefore we get

3E' E RBPP(red(P[a "-+ (,1 + 12)]) ~ red(E'[a "-+ (,1 + 12)]) and

red(E'[a"-+ (,1 + 12)]) ~ Red(<p'[a "-+ (,1 + 12)])) for i = 1,2

by the induction hypothesis. Hence

3E' E RBP P (red(p[a "-+ (,1 + 12)]) ~ EI and

E' ~ Red(<p'[a "-+ (,1 + 12)])) for i = 1,2

which shows

and

red(P[a"-+ (,1 + 12)]) ~ ['2]Red(<p'[a "-+ (,1 + 12)]))

by Definition 14.

Hence we obtain
. red(P[a"-+ (,I + 12)]) ~

([rl]Red(<p'[a"-+ (,1 + 12)]) 1\ [r2]Red(<p'[a "-+ (,1 + 12)]))

and therefore

by the claim.

<p= (a)<p':

Claim: Red(((a)<p/)[a "-+ (,1 + 12)]) =

((rl)Red(<p'[a"-+ (,1 + 12)]) 1\ (r2)Red(<p/[a "-+ (,1 + ,2)]))

This can easily be shown by Definition 9 and Definition 13.
o

'~':

36

AssumePF(a)epl. Then

~E' E RBP P(P ~ E' and E' 1= rp').

By assertion 1) of Lemma 7

~E' E RBP P (red(p[a '""'-'(Ir + 1'2)]) ~ red(E'[a '""'-'(Ir + 1'2)]) and

EI 1= rp') for i = 1, 2

and therefore we get

~E' E RBPP (red(p[a '""'-'(Ir + 1'2)]) ~ red(E'[a '""'-'(Il + 1'2)]) and

red(E'[a'""'-' (Ir +1'2)]) 1= Red(rp'[a'""'-' (Ir +1'2)])) for i = 1,2

by application of the induction hypothesis. Hence

~EI E RBPp(red(p[a '""'-'(Ir + 1'2)]) ~ E' and

E' 1= Red(rp'[a '""'-'(Ir + 1'2)])) für i = 1,2

which shows

and

red(P[a'""'-' (Ir + 1'2)]) 1= (I2)Red(rp'[a '""'-'(Ir + 1'2)])).

Hence we obtain
red(P[a'""'-' (Ir + 1'2)]) 1=

__ UYl}Red(rp'[a'""'-' (Ir + 1'2)]) /\ (I2)Red(rp'[a '""'-'(Ir +1'2)]))
and therefore

by the claim.

37

By the assumption and the claim we obtain

which is equivalent to

and

red(P[a ~ (/1 + 12)]) F (12)Red(<p'[a ~ (/1 + 12)]))

Then we have

3E' E RBP P (red(p[a ~ (/1 + 12)]) ~ E' and

E' F Red(<p'[a ~ (/1 + 12)])) for i = 1,2 (1)

By the condition of the lemma we have 11,12 rf. ~(P) whence

3P E RBP P(P ~ P and red(P[a ~ (/1 + 12)]) = E') (2)

by the application of assertion 2) from Lemma 7. Now (1) and (2) together give

whence we obtain
3P E RBPP(P ~ P and P F <p')

by the application of the induction hypothesis. Hence we conclude

by Definition 14 which completes this case

•
4.3 The Refinement Theorem for Simultaneous Performance

Refinement

In this section we provide the link between syntactic action refinement for the
languages RBP P and RH M L.

Theorem 1. Let P E BP P and Q E RBP. Further let <pE H M L. If ~(P) n
~(red(Q)) = 0 and ~(<p)n ~(red(Q)) = 0 then P F <p~ red(P[a ~ Q]) F
Red(<p[a ~ Q]).

38

Proof. By induction on the structure of <.p E H M Land a subsidiary induction
on the structuie-oCQE-RBP~-------

<.p = *, where * E {T, ..l}: Trivial.

<.p= (<PI * <.p2)where * E {A, V}: Routine. H

<.p= [ß]<.p'where a ¥ ß:

Both directions are proved by an indirect argument.

I::::}':

In this case we use the condition ~(<.p)n ~(red(Q)) imposed on the theorem.

Assume P F [ß]<.p' and red(P[a "-+ Q]) ~ R.ed(([ß]<.p')[a "-+ Q])
From

red(P[a"-+ Q]) ~ R.ed(([ß]<.p')[a "-+ Q])

we obtain
red(P[a"-+ Q]) ~ [ßlR.ed(<.p'[a "-+ Q]).

Hence

~E' E RBP P (red(p[a "-+ Q]) ~ E' and

E' ~ R.ed(<.p'[a "-+ Q])) (1)

by Definition 14. Now a ¥ ß by the current induction step. Further ß f/.
~(red(Q)) due to the condition of the theorem and since ß E ~(<.p).Hence

~P"(P ~ p" and red(P"[a "-+ Q]) = E') (2)

by application of assertion 2) from Lemma 4. Now (1) and (2) give

red(P"[a"-+ Q]) ~ R.ed(<.p'[a "-+ Q])

whence we obtain
~P"(P ~ p" and P" ~ <.p')

by the induction hypothesis, i.e.

'~':

39

Assurne red(P[a '"'" Q]) 1= Red(([ß]ep')[a '"'" Q]) and P ~ [ß]ep'. From P ~ [ß]ep'
____________ 0. _

we obtain
3E' E RBP P(P 4 E' and E' ~ ep').

Since a =j:. ß by the current induction step we obtain

3E' E RBP P(red(P[a '"'" Q]) !!r red(E'[a '"'" Q]) and E' ~ ep')

by application of assertion 1) from Lemma 4. But this implies

3E' E RB PP (red(p[a '"'" Q]) 4 red(E'[a '"'" Q]) and

red(E'[a,"", Q]) ~ Red(ep'[a '"'" Q]))

by the contrapositiv application of the induction hypothesis. Hence

red(P[a,"", Q]) ~ [ß]Red(ep'[a '"'" Q])

i.e.
red(P[a,"", Q]) ~ Red(([ß]ep')[a '"'" Q]).

ep= [a]ep':

(Subinduction on the structure of Q E RBP)

a) Q = ß:

Both directions are proved by means of an indirect argument.

',*':

To prove this direction we use the condition ~(P) n ~(red(Q)) imposed on the
theorem.

Assurne P 1= [a]ep' and red(P[a '"'" ß]) ~ Red(([a]ep')[a '"'" ß])
From

red(P[a,"", ß]) ~ Red(([a]ep')[a '"'" ß])

we obtain
red(P[a '"'" ß]) ~ [ß]Red(ep'[a '"'" ß]).

Hence

3E' E RBP P (red(p[a '"'" ß]) !!r E' and

E' ~ Red(ep'[a '"'" ß])) (1)

40

Now ß E ~(red(Q)) implies ß.rj. ~(P) whence
-----_._- .._-- -------._-._-_._. - ~

3P"(P ~ pli and red(P"[a "-+ ß]) = E') (2)

by application of assertion 2) from Lemma 5. Now (1) and (2) give

red(P"[a"-+ ß]) ~ Red(ep'[a "-+ ß])

whence
3P" (P ~ pli and pli ~ ep')

by the induction hypothesis, i.e.

p ~ [a]ep'

Assurne red(P[a "-+ ß]) F Red(([a]ep')[a "-+ Q]) and P ~ [a]ep'. From P ~ [a]ep'
we obtain

3E' E RBP P(P ~ E' and E' ~ ep').

Hence

3E' E RBP P(red(P[a "-+ ß]) ~ red(E'[a "-+ ß]) and E' ~ ep')

by application of assertion 1) from Lemma 5. But this implies

3E' E RBP P (red(P[a "-+ ß]) ~ red(E'[a "-+ ß]) and

red(E'[a"-+ ß]) ~ Red(ep'[a "-+ ß]))

by the induction hypothesis. Hence

red(P(a"-+ ß]) ~ [ß]Red(ep/(a "-+ ß])

i.e.
red(P[a "-+ ß]) ~ Red(((a]ep')(a "-+ ß])

W.l.o.g. let VI, Vz rj. ~(P) U ~(red(Q)) U ~(ep).

We have P F ep

41

{::} F F Red(([a]cp')[a '"V> (VI + V2)])
(By Lemma 17)

{::} F F ([Vl]ep 1\ [V2]ep)
(By the claim used in Lemma 17)

{::} , red(F[v2 '"V> Q2]) F Red((([vl]ep 1\ [V2]ep))[V2 '"V> Q2])
(By the induction step (*))

{::} red(F[v2'"V> Q2]) F ((Red([vl]ep)){V2 '"V> Q2} 1\ (Red([v2]ep)){V2 '"V> Q2})
(By Definition 9 and Definition 13)

{::} red((red(F[v2'"V> Q2]))[VI '"V> Ql]) F
Red((((Red([vdep)){V2'"V> Q2} 1\ (Red([v2]ep)){V2 '"V> Q2}))[VI '"V> Ql])
(By induction)

{::} red((red(F[v2'"V> Q2]))[VI '"V> Ql]) F
Red((Red((Red(([a]cp')[a'"V> (VI + V2)]))[V2 '"V> Q2]))[VI '"V> Ql])
(By Definition 9 and Definition 13)

red(((P[a'"V> (VI + V2)])[V2 '"V> Q2])[VI '"V> Ql]) F
Red(((cp[a'"V> (VI + V2)])[V2 '"V> Q2])[VI '"V> Ql])
(By Remark 4 and Lemma 11)

{::} red(P[a'"V> (Ql + Q2)]) F Red(([a]cp')[a '"V> (Ql + Q2)])
(By Lemma 1 and Lemma 12)

W.l.o.g. let VI, V2 rf- ~(P) U ~(red(Q)) U ~(cp)

We have P F cp

{::} FFep
(By Lemma 16)

{::} red(red(F[v2'"V> Q2])[VI '"V> Ql]) F Red(Red(ep[v2 '"V> Q2])[VI '"V> Ql])
(By induction)

{::} red(((P[a '"V> (VI; V2)]) [V2 '"V> Q2]) [VI '"V> Ql]) F
Red(((cp[a'"V> (VI; V2)])[V2 '"V> Q2])[VI '"V> Qd)
(By Remark 4 and Lemma 11)

42

{:} red(P[a,","" (QI; Q2)]) F Red«[a]4?')[a '"'""(QI; Q2)])
(By Lemma 1 and Lemma 12)

We have red(P[a '"'""Q]) = red(P[a '"'""red(Q)]) by Definition 3 and Defini-
tion 4. Further we have Red(4?[a '"'""Q]) = Red(4?[a '"'""red(Q)]) by Definition 9
and Definition 13. Then

red(P[a,","" Q]) F Red(4?[a '"'""Q])

iff
red(P[a,","" red(Q)]) F Red(4?[a '"'""red(Q)])

iff

The last equivalence holds since red(Q) E BP thereby reducing the current in-
'duction step to one of the previous steps in the induction on the structure of
Q E RBP.

4? = (ß)4?' where ß i- a:

'=:;.': The proof of this direction proceeds in analogy to the '~'-direction of
the box modality [.].

'~': The proof of this direction proceeds in analogy to the '=:;.'-direction of
the box modality [.].

4? = (a)4?': For the subsidiary induction step Q = ß the proof of the '=:;.'-
direction proceeds in analogy to the '~'-direction of this induction step for
the box modality [.] and vive versa. The other steps of the induction on the
structure of Q E RBP are similar to those steps for the box modality .

•
Theorem 2 (Simultaneous Performance Refinement Theorem). Let PE
RBPP, Q E RBP, a E A and 4? E RHM L. 1/ ~(red(P)) n ~(red(Q)) = 0 and
~(Red(4?)) n ~(red(Q)) = 0 then P F 4? {:} P[a '"'""Q] F 4?[a '"'""Q]. -----------

Proof. We have P F 4?

iff red(P) F 4? (By Corollary 1)

iff red(P) F Red(4?) (By Lemma 15)

iff red(red(P)[a '"'""Q]) F Red(Red(4?)[a '"'""Q]) (By Theorem 1)

43

iff red(P[a "-+ Q]) 1= Red(tp[a "-+ Q]) (By Remark 4 and Lemma 11)

iff P[a "-+ Q] 1= Red(tp[a "-+ Q]) (By Corollary 1)

iff P[a "-+ Q] 1= tp[a "-+ Q] (By Lemma 15)

•
5 Simultaneous Action Refinement for RB P P and

RHML

In this section we give restate Theorem 2 of the previous section in the environ-
ment of action refinement. Therefore we consider the set Act instead of the set
A for the provision of conceptual entities:

We consider the process language RBP P of section 2 (Definition 1) where
the rule PE ::= a is replaced by the rule PE ::= a and a E Act. Call
the language generated by this grammar RBPPpure' Clearly Theorem 2 of
section 4 still holds if we replace RBPP (RBP) by RBPPpure (RBPpure
resp.) since RB PP pure <;; RBPP (RBPpure <;; RBP). The same claim holds
for RH M Lpure which is the language generated by the language RH M L
(Definition 7 in section 3) where the rules P ::= [alp and P ::= (a)p are
replaced by the rules P ::= [alP and P ::= (a)p where a E Act.

The following is immediate.

Theorem 3 (Simultaneous Action Refinement Theorem).
Let P E RBP Ppure, Q E RBPpure be process expressions, tp E RH M Lpure be
a formula and a E Act be an atomic action. 1f ~Act(red(P)) n ~Act(red(Q)) = 0
and ~Act(Red(tp)) n ~Act(red(Q)) = 0 then P 1= tp ? P[a "-+ Q] 1= tp[a "-+ Q].

Example 7. We take tp = [a]((b)T V [all-) and Q = (d + e) where a,b,d,e E A
from Example 1. Further let P1 = (a; (b + a)) and Pz = ((a; b) + (aj a)). Now
H 1= tp which by Theorem 2 implies P1 [a "-+ Q] 1= tp[a "-+ Q]. On the other hand
we have Pz ~ tp whence by Theorem 2 we obtain Pz[a "-+ Q] ~ tp[a ,,-+.Q].
o

6 Conclusion

We defined syntactic performance refinement on a subset of CCS-process ex-
pressions and formulas of the Hennessy-Milner-Logic. We proved that for P E
RB P Ppure, Q E RB Ppure, a E Act, tp E RH M Lpure the assertion

44

holds under the two liberal restrictions ~Act(red(P)) n ~Act(red(Q)) = 0 and
- ~Act CR.ed(<p))n~Act (red(Q)) = 0 which can be dropped if we rename the actions -~----
of red(Q) in the obvious way. Hence a system designer can simultaneously refine
the syntax of a process expression and a formula in a stepwise manner (using
Theorem 3) as illustrated in Figure 3 while preserving the satisfaction relation.

P 1= <p

1 [1
P[a1 "" Q1] 1= <p[a1 "" Qd

1 [1
(P[a1 "" Q])[a2 "" Q2] 1= (<p[a1 "" Qd)[a2 "" Q2] ~_._..._-----

Fig.3. Stepwise Simultaneous Action Refinement

Another interesting result is that the assertion 1

(PI =b P2) =} (PI F <P=} (P2[a '"Vl- Q] F <p[a '"Vl- Q)))

holds for any PI, P2 E B P Ppure due to the following fact: The assertion PI =b P2
implies the assertion V<pE HMLpure.(P1 F <p{:} P2 F <p) (cf. [MiI80,Sti96] for
the general result). It is folklore that PI =b P2 not necessarily implies red(P1 [a '"Vl-

Q)) =b red(P2 [a '"Vl- Q)). In our framework, a system designer can first establish
the assertion P F <po Then she applies simultaneous action refinement obtaining
P F<P where

and
<P = (... (<p[a1"" Q1)) [a2 '"Vl- Q2)) ...)[an "" Qn]

Replacing the expression E E BP Ppure for P where E =b P a system designer
immediatly knows E F <P where

E = (... (E[a1 '"Vl- Q1))[a2 '"Vl- Q2)) ...)[an '"Vl- Qn]

1 =b is the denotation of strong bisimulation equivalence defined in [MiI80].

45

The generalisation of this result to sets of properties is straightforward and sheds
---aefifferentiighT-Onthe statement that interleaving semantics are not appropriate

to model action refinement: A designer might not be interested in fuH equality
of processes modulo an equivalence relation, but in partial equality modulo a
defined set of properties. This fact can be exploited to circumvent the problems
which occur when action refinement operators are used in a framework where
concurrency is modeHed by interleaving of actions.

Verification of programs is commonly formalized by means of implementation
relations (cf. [BBR90]). Since atomic actions are uninterpreted 'action names',
there is no such relation between an action a and an expression Q in the term
P[a"'-> Q]. Although our approach is not appropriate for this kind of verification
it supports 'a priory'-verification with respect to transition behaviour formalized
by formulas of the language RH M L.

Work is in progress that extends the above results: We model infinite behaviour,
study synchronisation, and investigate other logics and appropriate models for
concurrency. Furthermore we investigate polynomial time algorithms for the im-
plementation of the reduction functions red and Red.

A future topic is the investigation of the equivalence relations induced on the
process environments by the extended logical frameworks.

References

[AH91] L. Aceto and M. Hennessy. Adding action refinement to a finite process
algebra. Lecture Notes in Computer Science, 510:506-519, 1991.

[BBR90] In W. P. De Roever G. Rozenberg J. W. De Bakker, editor, REX Workshop on
Stepwise Refinement of Distributed Systems: Models, Formalism, Correctness,
Mook,' The Netherlands, May / June 1989, volume 430 of Lecture Notes in
Computer Science. Springer-Verlag, 1990.

[BDE93] E. Best, R. Devillers, and J. Esparza. General refinement and recursion
operators for the Petri box calculus. Lecture Notes in Computer Science,
665:130-140, 1993.

[DD93] Ph. Darondeau and P. Degano. Refinement of actions in event structures and
causal trees. Theoretical Computer Science, 118(1):21-48, September 1993.

[Eme90] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor"
Handbook of Theoretical Computer Science, volume B, pages 996-1072, Am-
sterdam, 1990. Elsevier Science Publishers.

[GGR94] Ü. Goltz,-R~-C:orrTeri, and A. Rensink. On syntactic and semantic action
refinement. Lecture Notes in Computer Science, 789:385-404, 1994.

[Hoa90] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hal! Interna-
tional, Englewood Cliffs, 1990.

[Huh96] Michaela Huhn. Action refinement and property inheritance in systems of
sequential agents. In Ugo Montanari and Vladimiro Sassone, editors, CON-
CUR '96: Concurrency Theory, 7th International Conference, volume 1119 of
Lecture Notes in Computer Science, pages 639-654, Pisa, Italy, 26-29 August,
1996. Springer-Verlag.

46

[Koz83] D. Kozen. Results on the propositional mu -calculus. Theoretical Computer
-~_.----Science;'27(3r333:"'354, December 1983.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer, Berlin, 1 edition,
1980.

[Pen9l] W. Penczek. Branching time and partial order in temporal logic. Technical
Report UMCS-91-3-3, Department of Computer Science, Manchester Uni-
versity, Oxford Rd., Manchester M13 9PL, UK, 1991.

(Sti87] C. Stirling. Modal logics for communicating systems. Theoretical Computer
Science, 49(2-3):311-347, 1987.

[Sti96] C. Stirling. Modal and temporallogics for processes. Leeture Notes in Com-
puter Science, 1043:149-237, 1996.

[vGG89] R. van Glabbeek and U. Goltz. Partial order semantics for refinement of
actions-neither necessary nor always sufficient but appropriate when used
with care-. BEATCS: Bulletin of the European Association for Theoretical
Computer Seien ce, 38, 1989.

47

--_ ...- "--_._- -,~ --- ._ .._----~,.:.,.....:..------_:~._--_ .._--_.-
-- -_ .._._---~--~~~~-----------'

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048

