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Abstract

We describe a general method for constructing triangulations .6. which are suit-
able for interpolation by S;(.6.), T = 1, 2, where S;(.6.) denotes the space of splines
of degree q and smoothness T. The triangulations .6. are obtained inductively by
adding a subtriangulation of locally chosen scattered points in each step. By using
Bezier-Bernstein techniques, we determine the dimension and construct Lagrange
and Hermite interpolation sets for S;(.6.) , T = 1,2. The Hermite interpolation sets
are obtained as limits of the Lagrange interpolation sets. The interpolating splines
can be eomputed locally by passing from triangle to triangle. Several numerical
results on interpolation of functions and scattered data are given.

K eywords : Bivariate Splines, Interpolation, Bezier-Bernstein teehniques, Triangulation,
Seattered data.

AMS Classifieation: 41A05, 41A15, 65D05, 65D07, 65D17, 41A63

1 Introduction

Let .6. = {T[l], ... , T[NJ} be a regular triangulation of a simply eonneeted polygonal
domain n in 1R2. For 0 ~ r < q, the set
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is called the space of bivariate splines of degree q and smoothness r on .6.. Here,

.
denotes the space ofbivariate polynomials of total degree q and IIq denotes the space
of univariate polynomials of degree q.

A set {Zl,"', zm} in n, where m = dim s~(.6.) is called a Lagrange interpolation
set for s~(.6.) if for each function ! E C(n), a unique spline exists such that s (Zi) =
!(Zi), i = 1, ... , m. If also partial derivatives of! are involved and the total number of
Hermite conditions is m, then we speak of a Hermite interpolation set for s~(.6.).

Lagrange and Hermite interpolation sets for s~(.6.C) were constructed for crosscut
partitions .6.c, in particular for rectangular partions with diagonals, in [1,10,32,33,43,
44,49, 55, 56]. Results on the approximation order of these interpolation methods were
given in [10, 18, 32, 42, 45, 47, 55, 56].

Much less is known about interpolation by s~(.6.) for more general dasses oftriangu-
lations .6.. Based on the results of Morgan & Scott [40] a Hermite interpolation scheme
for Si(.6.), q ~ 5, where .6. is an arbitrary triangulation, was defined by Davydov [16].
In this case, Lagrange interpolation sets were constructed by Davydov & Nürnberger
[17]. Their method can also be applied for q = 4, where .6. has to be slightly modified if
exceptional constellations of triangles occur. Earlier, Gao [26] defined a Hermite inter-
polation scheme for Sh.6.) in the special case when .6. is an odd degree triangulation.
Interpolation sets for sj (.6.), whe re .6. is a nested polygon triangulation, were given in
Davydov, Nürnberger & Zeilfelder [19]. For q ~ 3r + 2, a Hermite interpolation set
for S~(.6.), .6. an arbitrary triangulation, was constructed by Chui & Lai [13]. In this
case, a Hermite-Birkhoff type interpolation scheme was given by Davydov, Nürnberger
& Zeilfelder [21] with detailed investigations of its approximation order (see also de Boor
& Höllig [7]' de Boor & Jia [8]' Chui, Hong & Jia [14]' Lai & Schumaker [38]). Results
on almost interpolation (i.e. interpolation after small perturbations of the points) by
S~(.6.) were given by Davydov, Sommer & Strauß [22]' and the references therein.

In this paper, we describe an inductive method for constructing triangulations .6.
which are suitable for interpolation by S~(.6.), r = 1,2. By starting with one triangle,
in each step, we add locally chosen scattered points and obtain a larger subtriangulation
(to which the splines can be extended). Simultaneously, in each step, we determine the
dimension of the spline space on the resulting subtriangulation and construct Lagrange-
respectively Hermite interpolation sets. In this way, we obtain interpolation sets for
si (.6.), q ~ 3 and S;(.6.), q ~ 5. For the space S;(.6.) it is necessary to split some of
the triangles. In addition, we describe a more general dass of triangulations .6.Q such
that its vertices form an interpolation set for si (.6.Q).

In contrast to global methods, the interpolating splines can be computed locally
by passing from triangle to triangle and by solving small systems. We also note that
our interpolation method can be used for the construction of smooth surfaces, where
only data are used - and no derivative. For scattered data fitting the (approximative)
data are computed by local methods. This in contrast to finite element methods for
cubic splines, where all triangles have to be subdivided by a Clough- Tocher split and
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derivatives are involved. For details see Remark 7.2. Our numerical results show that
the interpolation methods for functions and scattered data work efficiently, where for
low degree splines some triangles have to be subdivided.

2 Construction of Triangulations

In the following, we construct a triangulation 6. for a set of finitely many points in
the plane which is suitable for interpolation by S~(6.), r = 1,2. The triangulation is
constructed inductively as follows.

We first assurne that in each step sufficiently many points can be added. In the first
step, we choose three points and consider the corresponding triangle. Now, we assurne
that a simply connected triangulation A is already constructed. We denote the vertices
on the boundary of A by VI,' .. , Vn (in clockwise order). Now, we pass through the ver-
tices VI,' .. , Vn and add a subtriangulation of locally chosen scattered points to each ver-
tex. More precisely, for J.L = 1, ... ,n, we choose points WJ-l,I, . " " , WJ-l,AI" AJ-l 2: 1 (in clock-
wise order) and consider the polyhedron PJ-l formed by the points vJ-l' wJ-l-I,AI'_l' WJ-l,I,""",

wJ-l,AI',VJ-l+I, where WO,AO := Vn and vn+l := WI,I (see Figure 1.). We connect the points
WJ-l,I,"', WJ-l,AI' with vJ-l by line segments and denote the edges of PJ-l with endpoint vJ-l by
eJ-l,o"" , el-',AI'+l (in clockwise order). (For details see Remark 2.1.) We choose enough
points WJ-l,I,'" , WJ-l,AI' such that AJ-l 2: 2 if two edges in {eJ-l,o"" , eJ-l,AI'+l} have the same
slope. Analogously, we choose AJ-l 2: 3 if an edge in {el-',I, ... , eJ-l,AI'} has the same slope
as eJ-l,O, and a further edge in {eJ-l,I, ... , eJ-l,AI'} has the same slope as eJ-l,AI'+I'

Figure 1. The polyhedron P!J.'

For the case, when r = 2, one triangle of PJ-l has to be subdivided into three subtri-
angles (see Figure 2.) if there do not exist four consecutive edges in {eJ-l,o"" , el-',A,..+d

with different slopes. In this case, a triangle of PI-' has to be subdivided which has an
edge eJ-l,V with slope different from all other edges in {eJ-l,o," " . , eJ-l,AI'+d, or an arbitrary
triangle of PI-' has to be subdivided if there does not exist such an edge el-',vo We sub-
divide this triangle such that we obtain four consecutive edges with end point vJ-l which
have different slopes.
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PJ.L:

Figure 2. Subdivision of a triangle.

If there exist sufficiently many points such that for each f.£ E {I, ... ,n}, a polyhe-
dron PJ.L with the above properties can be added, we obtain a larger triangulation. If
for some f.£ E {I, ... ,n}, such a poly hedron cannot be added, we choose some point
and add a triangle with vertex vJ.L which has exactly one common edge with the given
subtriangulation and so forth. By proceeding with this method, we finally obtain the
triangulation .6..

Since in our method, there is some freedom in the choice of the polyhedrons PJ.L, we
briefiy discuss some algorithmic aspects.

Remark 2.1 Our basic principle is to add a polyhedron PJ.L to some boundary point vJ.L

of the subtriangulation .6. constructed so far. In order to obtain natura~ triangulations,
it may be necessary to use the following variant of our method. Given .6., we add PJ.L to
that boundary point vJ.L whose boundary edges eJ.L,O and eJ.L,AI'+1 form a minimal angle.
In our computations, we choose the points WJ.L,l,'" , WJ.L,AI' in a circular ring of the cone
formed by eJ.L,O and eJ.L,AI'+l such that PJ.L \ {eJ.L,o, eJ.L,AI'+d does not intersect .6..

We note that by applying the spline method described in the subsequent sections we
also obtain the interpolation sets for S~(.6.), r = 1,2, where Li is a convex quadrangu-
lation with diagonals in [46]' where different methods are used.

3 Construction of Admissible Sets

In this section, we construct admissible sets for spline spaces S~(.6.), where q 2: 3 if
r = 1, and q 2: 5 if r = 2. In order to describe admissible sets we need somenotations
( f [ ]) [I] (UJ [I] [I]) .C. 5, 6, 9, 23, 24 . Let T =.6. vi , v2 ,v3 , l = 1, ,N, be the tnangles of .6.. For
s E S~(.6.), the polynomials pU] = sIT[l] E rrq, l = 1, , N, can be written as

[1]( ) '" [I] ~<I>i( )iFo.j( )iFo.k( ) ( ) T[I]p x,y = 6 ai,j,ki!j!k! 1 x,y 'J!2 x,y 'J!3 x,y, x,y E ,
i+j+k=q

(1)

where <I>J.L E rri, f.£ = 1,2,3, is uniquely defined by <I>J.L(vY]) = bJ.L,v, V = 1,2,3. The
representation (1) is called the Bezier-Bernstein form of pU] and the real numbersat~,kare called the Bezier-Bernstein coefficients of pU].
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Given (j = (i,j,k,l), we use the abbreviation a((j) = a~11k' A subset {(jl, ... ,(jm}
of 1= {(i,j, k, l) : i + j + k = q, 1 = 1, ... ,N} is called an'~dmissible set for S~(L')..)
if for every choice of coefficients a( (j J.L) E IR, J.L = l, ... ,m, a unique spline S E S~(.6.)
exists with these coeffieients in the representation (1) of s. We remark that the not ion
of admissible sets is closely related to the notion of minimally determining sets (cf.
[3, 4, 31, 53, 54]). However, we need this notion for describing the interpolation sets in
a unified way and for the argumentations in our proofs.

We need the following simple lemma on the connection of admissible sets and the
dimension of S~(.6.).

Lemma 3.1 Let {(jl,"" (jm} be an admissible set for S~(.6.) and for J.L E {I, ... ,m},
let sJ.LE S~(.6.) be the unique spline for which a((jJ.L) = oJ.L,V' 1/ = 1, ... ,m, in (1). Then
{SI,"" Sm} forms a basis of S~(.6.) and m = dim S~(f~.).

Proof of Lemma 3.1: Let a spline s E S~(.6.) with coefficients a((jd, ... , a((jm) in its
representation (1) be given. It follows from the definition of the splines sI,' .. , Sm that
the spline 2:;=1 a((jJ.L)sJ.Lhas the same coefficients in (1). Since {(jl,"" (jm} is an admis-
sible set, we obtain s = 2:;=1a((jJ.L)sJ.L' A similar argument shows that 2:~1 aJ.LsJ.L= 0
implies al = ... = am: = O. This proves Lemma 3.1. •

In the following, we construct admissible sets for S~(.6.), where r = 1,2. This is done
by assigning a subset M(l] of 1= {(i,j, k, l) : i + j + k = q} to each triangle T[I] of .6..
In this case, for simplicity we say that {(i,j,k): (i,j,k,l) E M(l]} is assigned to Tll].

For r = 1, i.e. for the space S~(.6.), we assign the following sets.

Q={(i,j,k): i+j+k=q}
Al = {(i,j,k) E Q: k ~ 2}

BI = {(i,j, k) E Q: k ~ 2, i i= q - 2}

Cl = {(i,j, k) E Q: j ~ 2, k ~ 2} .

Case 1. S~(.6.), q ~ 3.
Here, we refer to the construction of the triangulation .6. (see Section 2). We recall

that .6. is constructed by adding to each boundary point vJ.Lof the subtriangulation,
constructed so far, a polyhedron PJ.L (see Figure 1.). Therefore, in order to construct
an admissible set for S~(.6.), it essentially suffices to describe which sets are assigned
to the triangles of PJ.L' In Figure 1., we set wJ.L,O= WJ.L-l,A,,_I' WJ.L,A,,+l = vJ.L+1' By
construction of .6., three edges eJ.L,V' eJ.L,v+l, eJ.L,v+2with different slopes exist. We now
denote the triangles of P by T[lvI] - .6.(v[IVI] v[lvI1 v[IVI]) where v[IVI] - v V(lvI]_J.L - l' 2 , 3' 1 - J.L' 2 -

[lVI] _ _ 0 1 d [lVI] _ (lvI] _ [lVI] _WJ.L,VI' v3 - WJ.L,vI+l, 1/1 - , , ... ,1/+1, an VI - VJ.L, V2 - WJ.L,VI+l V3 -
WJ.L,VI' 1/1 = 1/ + 2, ... , AJ.L'We note that the sets which will be assigned to each T[lvI]
are understood with respect to the representation (1) of p(lvI1 E ITq on T(lvI].

We assign the set Q to the first triangle in the construction of .6.. Moreover, to each
polyhedron PJ.L,we assign the following sets: We assign the set BI to Tllv], the set Cl
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to T[lv+l] and the set Al to the remaining triangles of Pj1. (see Figure 3.). 1£for some J.L

such a polyhedron cannot be added, we assign the set Al to the triangle with vertex vj1.

that has exactly one common edge with the given subtriangulation.

Figure 3. The sets Al, BI and Cl assigned to PiL.

In this way, we assign to each triangle T[l] of .6. a set of indices (by adding the index
l to the elements (i,j, k)). The union of all such sets yields a subset of 1= {(i,j, k, l) :
i + j + k = q, l = 1, ... , N} denoted by Al.

Theorem 3.2 For q ~ 3, the set Al is an admissible set for S~(.6.).

For r = 2, i.e. for the space S~(.6.), we assign the following sets.

Q={(i,j,k): i+j+k=q}
A2 = {(i,j, k) E Q: k ~ 3}
B2 = {(i,j, k) E Q: k ~ 3, i i- q - 3}

C2={(i,j,k)EQ: k~3, ii-q-3, (i,j,k)i-(q-4,1,3)}
D2 = {(i,j,k) E Q: j ~ 3, k ~ 3}

In addition, if some triangle of 6. is subdivided, we assign one of the following sets.

{

{(O,0, 5), (1,0, 4)} , if q = 5,
(;2 = {(i:j:k)EQ: k~3, i,ji-q-3, (i,j,k)i-(q-4,1,3),.

(~,J,k)i-(1,q-4,3)} ,lfq~6,

D2 {(i,j,k)EQ: i~3, k~3, ii-q-3, (i,j,k)i-(q-4,1,3)}, ifq~7.

Case 2. S~(.6.), q ~ 5.
As above, we refer to the construction of .6. (see Section 2). We recall that 6. is

constructed by adding to each boundary point vj1. of the subtriangulation, constructed
so far, a polyhedron Pj1. (see Figure 1.). Therefore, in order to construct an admissible
set for S~ (.6.), it essentially suffices to describe which sets are assigned to the triangles
of Pj1." In Figure 1., we set wj1.,O = Wj1.-I,AI'_l' WIt,AI'+1 = VIt+I'
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We assign the set Q to the first tri angle of ß which we constructed. Moreover, to
each polyhedron PJ.L (see Figure 1.), we assign the following sets.
Case 2a. No triangle of PJ.L is subdivided.

In this case, by cORstruction of ß, four edges eJ.L,v,'" , eJ.L,v+3 with different slopes
exist We now denote the triangles of P by T(lvI] - ß(V(lvI] V(lvI] v[IVI]) where V[IVI] -

• J.L - 1'2'3' 1-
[lVI] (lvI] a 1 2 d [lVI] [lVI]

vJ.L, v2 = WJ.L,VI' v3 = WJ.L,VI+1, VI = , , ... ,V + 1 an VI = VJ.Ll v2 = WJ.L,vI+l

V~VI] = WJ.L,VIl VI = V + 3, ... , AW We assign the set B2 to T[lv], the set C2 to T[lv+I],

the set D2 to T[lv+21 and the set A2 to the remaining triangles of PJ.L (see Figure 4.). We
note that the sets which will be assigned to each T[lvI] are understood with respect to
the representation (1) of p(lvll E ITq on T[lvI].

Figure 4. The sets A2, B2, C2 and D2 assigned to PJ1.'

Case 2b. Some triangle of PJ.L is subdivided.
Let T(lv] be the triangle that is subdivided by the subdividing point YJ.L,V from its

interior into three subtriangles T[(lv,U)]= ß(Vf,V2",VJ), (J" E {a,1,3}. We now denote
the triangles of P by T[lvI] = ß(v[lvIJ v[IVI] v[IVI]) where v[lvI1 = v v[IVI] = WJ.L 1 , 2 , 3' 1 J.L, 2 J.L,VI'
[lVI] a 1 1 d [lVI] [lVI] [lVI]

v3 =WJ.L,VI+1, VI = 1 , ••• ,V+ , an VI =VJ.Ll v2 =WJ.L,vI+l v3 =WJ.L,VIl vI =
V + 2, ... , AW If V < AJ.L, then we set v~ = Vf = VJ.Ll v~ = v~ = WJ.L,Vl v~ = vi = vr =
YJ.L,V' v~ = v~ = wJ.L,v+1 and T[(lv,2)] = T(lv+d (See Figure 5.).
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VI - V3 - W3 - 3 - J.L,1I+1

Vo - V3 - W2 - 2 - J.L,II

Figure 5. Notations for the subdivided triangle.

In this case, it follows from the choice of T(lv] and YJ.L,II that the edges eo = eJ.L,II' el =
[v~, YJ.L,II], e2 = eJ.L,II+I and e3 = eJ.L,1I+2 have different slopes. We assign the set B2 to
Tl(lv,O)] the set (;2 to T[(lv,l)] the set D2 to T[(lv,cr)] (J" = 2 3 and the set A2 to the, , " ,
remaining triangles of PJ.L" Alternatively, for q 2: 7, we assigri the set B2 to T[(lv,O)],
the set C2 to T[(lv,3)], the set D2 to T[(lv,I)], the set D2 to T[(lv,2)] and the set A2 to
the remaining triangles of PJ.L (see Figure 6.). If /.I = AJ.L, then we set v~ = vi = vJ.L'
vO = v3 = W \ I vO = vI = v3 = Y \ vI = v3 = W \ and T[(I",..,2)] = T[h,..-l]. The2 2 J.L,",..+' 3 2 I J.L,",..' 3 3 J.L,",..
assignment ofthe sets A2, B2, (;2, D2, respectively A2, B2, C2, D2, D2, is analogous as
above. We note that the sets which will be assigned to each T(lvl], respectively T[(lv,cr)],

are understood with respect to the representation (1) of the polynomial piece on T[lvl],
respectively T[(lv,cr)].

If for some J.L such a polyhedron cannot be added, we assign the set A2 to the tri angle
with vertex vJ.L that has exactly one common edge with the given subtriangulation.

In this way, we assign to each triangle T(l] of ß a set of indices (by adding the
index l to the elements (i, j, k)). The union of all such sets yields a subset A2 of
I={(i,j,k,l): i+j+k=q, l=1, ... ,N}.

Theorem 3.3 FOT q 2: 5, the set A2 is an admissible set fOT S~(ß).
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For proving oUf results on admissible and interpolation sets, we need the follow-
ing weIl-known result (e.f. [6, 9, 23]) whieh expresses smoothness eonditions between
neighboring triangles. Let 6..* be a triangulation eonsisting of the two triangles T*[l] =
6..(vi,v2,vj), T*[2] = .1.(vi,v2,v.4) and let the polynomial pieees p*[l] = sIT*[I] E Ilq, 1 =
1,2, of a spline s E S~(6..*) be given in the form (1) (with eorresponding eoeffieients
*[IJ . . k )a i J' k' 2 + J + = q ., ,

Lemma 3.4 The following statements are equivalent.
(i) s E S~(6..*)
(ii) For all p E {O, ... , r} :

where <1>",E ITl, J.L = 1,2,3, is uniquely determined by <1>",(v~)= 8""v, l/ = 1,2,3.

It is weIl known (cf. [9, 23]) that for r = 1 the smoothness eonditions (ii) of Lemma
3.4 have the geometrie interpretation that the eorresponding Bezier-Bernstein points lie
in the same plane. Moreover, if the edges [vi, vj]' [vi, v4] have the same slopes, then
for r = 1 the geometrie interpretation of these smoothness eonditions is that this plane
degenerates to a line that eontains three of the eorresponding Bezier-Bernstein points.

The next lemma will be needed in Seetion 6. If we assurne that the edges [vi, vj]
and [vi, v4] have different slopes, then the following result follows easily from Lemma
3.4 and some elementary eomputations.

Lemma 3.5 Let s E Sq2(6.*), q 2: 5, and i +] = q - 2. 1f a*~2J]o2'a*~l+]iJO+JOk ,
1 J 1, 1, 1

il+h+kl =2, (il,h,kl) ~ {(O,1,1),(O,2,O)} andeithera*~~+l,l ora*~~J+2,O aregiven,
then the eoeffieients a*~l+]° 0+ ° k , il + ]1+ kl = 2, 1 = 1,2, are uniquely determined.

'l,J J1, 1

4 Construction of Interpolation Sets

By using the above results on admissible sets we eonstruet Lagrange- and Hermite
interpolation sets for the spline spaees S~(6..), where q 2: 3 if r = 1, and q 2: 5 if r = 2.
For simplieity, we use the same symbols as in Seetion 3 for the interpolation sets.

In the following, we construet Lagrange interpolation sets for S~(6..), r = 1,2 (si-
multaneously with the admissible sets eonstrueted in Seetion 3).

Given a tri angle T = 6..(Vl,V2,V3) in 6.., we ehoose one of the following point sets in
T. For r = 1, i.e. for the spaee S~(6..), we eonsider the following sets.

Set Q: Choose q+ 1 disjoint line segments PI,' .. , pq+l in T. For J.L = 1, ... ,q + 1 ehoose
q + 2 - J.L points on P""
Set Al: Choose q -1 disjoint line segments al, ... , aq-l in T. For J.L = 1, ... , q -1 ehoose
q - J.L points on a""
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Sg(6.)

Set BI: Choose q - 2disjoint line segments bl, ... ,bq-2 in T. For J.L = 1, ... ,q - 2 choose
q - J.L points on b,.,..
Set Cl: Choose q - 3 disjoint line segmentsq, ... , Cq-3 in T. For J.L= 1, ... ,q - 3 choose
q - 2 - J.L points on c,.,.."

Note that we choose points and line segments according to the following general
rules: the points should not lie on triangles considered before and the line segments
should be parallel with respect to a certain direction and should have all a non-empty
intersection with both of the edges [VI, V2], [VI, V3J.

In Section 3, we described which index sets Q, Al, BI, Cl are assigned to the
triangles T(l], l = 1, ... ,N, of 6.. Now, we choose point sets with exactly the same
symbols Q, Al, BI, Cl for the triangles T(l], l = 1, ... ,N (See Figure 3. and Figure
7.).

"2..:.-

Sg(6.)

Figure 7. : Lagrange interpolation points.

The union of these points sets is denoted by £1 for 6..

Theorem 4.1 Por q ~ 3, the set £1 is a Lagrange interpolation set for S~(6.).

For r = 2, i.e. the space S~(6.), we consider the following sets.

Set Q: Choose q+ 1 disjoint line segments PI, ... ,Pq+l in T. For J.L = 1, ... , q+ 1, choose
q + 2 - J.L points on P,.,..
Set A2: Choose q - 2 disjoint line segments al,"', aq-2 in T. For J.L= 1, ... , q - 2,
choose q - 1 - J.L points on a,.,..
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Set B2: Choose q - 3 disjoint line segments bl, ... , bq-3 in T. For J1, = 1, ... , q - 3,
choose q - 1 - J1, points on bJ.L"

Set c2: Choose q - 3 disjoint line segments Cl, ... , Cq-3 in T. For J1, = 1, ... , q - 4, choose
q - 1 - J1, points on cp. J8,ndchoose the point on Cq-3 which lies on the edge [Vl, V3].

Set D2: Choose q - 5 disjoint line segments dl, ••• , dq-s in T. For J1, = 1, ... , q - 5,
choose q - 4 - J1, points on dJ.L"

In addition, if T has to be subdivided, we consider the following sets for q = 5,6.

Set (;2: If q = 5, then choose two distinct points on the edge [Vl, V3]. If q = 6, then
choose three distinct points on the edge [Vl, v31, two different distinct points on the edge
[V2, V3] and one point from the interior of T.

In this case, for q ~ 7, we choose the following set.

Set ih: Choose q - 6 disjoint line segments dl, ••• , dq-6 in T. For J1, = 1, ... , q - 7,
choose q - 4 - J1, points on dp. and choose the point on dq-6 which lies on the edge [Vl, v31.

Note that we choose points and line segments according to the above general rules.
In Section 3, we described which index sets Q, A2, B2, C2, (;2, D2, D2 are assigned

to the triangles of Ll. Now, we choose point sets with exactly the same symbols for the
triangles T[/], l = 1, ... ,N (see Figure 4., Figure 6. and Figure 7.). The union on these
point sets is denoted by £2 for Ll.

Theorem 4.2 For q ~ 5, the set £2 is a Lagrange interpolation set for S;(L~).

In the following, we construct Hermite interpolations sets for S~(Ll), r = 1,2 (simul-
taneously with the admissible sets constructed in Section 3). For doing this we describe
some basic Hermite interpolation conditions which we obtain by using the above La-
grange interpolation sets and taking limits, which means that certain points and line
segments coincide. Rbughly speaking, the corresponding Hermite interpolation condi-
tions are obtained as follows. If certain points on a line segment coincide, then we pass
to the directional derivatives along the line segment, and if certain line segments coin-
cide, then we pass to the directional derivative of a unit vector which is not collinear to
the directional derivative along the line segment.

For describing Hermite interpolation conditions, we denote by f d the partial deriva-
tive in direction of the unit vector d. The higher partial derivatives are denoted by
fd"'dß, where the unit vectors dl and d2 are not collinear. Given a point z = (x,y) E n
1 2

and w a natural number, we set DW f(z) = (fdw (z), fdw-1d (z), ... , fdw (z)).
1 1 2 2

For simplicity, we use the same symbols as in Section 3 for the Hermite interpolation
conditions. Let f E C(n) be a sufficiently differentiable function. For a given triangle
T = Ll(Vl, V2, V3) in Ll, one.of the following Hermite interpolation conditions is imposed
to a polynomial p E ITq on T at a point in T. Here, dj denotes a unit vector in direction
of the edge [V3, Vj], j = 1,2. For r = 1, i.e. for the space S~(Ll), we consider the
following conditions.
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Condition Q: DWp(V3) = DW f(V3), w = 0, , q.
Condition Al: DWp(V3) = DW f(V3), w = 0, , q - 2.
Condition BI: DWp(V3) = DW f(V3), w = 0, , q - 2, except Pdq-2(V3) = fdQ-2(V3).1 1

Condition Cl: DWp(v)"= DW f(v), w = 0, ... , q - 4, where V = ~(V2 + V3)'

Note, that V3 and V should not lie on triangles considered before.
In Seetion 3 we described which index sets Q, Al, BI, Cl are assigned to the

triangles T[I], l = 1, ... ,N, of~. Now, we choose Hermite interpolation conditions
for the polynomials pU] at a point of TU], l = 1, ... ,N, with exactly the same symbols
Q, Al, BI, Cl. The union of these points is denoted by Jil for ~.

Theorem 4.3 For q ~ 3, the set Jil is a Hermite interpolation set for S~(~).

For r = 2, i.e. the space S~(~), one of the following Hermite interpolation conditions
is imposed to a polynomial p E Irq on T at a point in T.

Condition Q: DWp(V3) = DW f(V3), w = 0, , q.
Condition A2: DWp(V3) = DW f(V3), w = 0, , q - 3.
Condition B2: DWp( V3) = DW f(V3), w = 0, ,q - 3, except PdQ-3 (V3) = f d'!-3( V3)'

1 1

ConditionC2: DWp(V3) = DWf(V3), w=0, ... ,q-3, exceptPdQ-3(V3) =fd'!-3(V3) and
1 1

Pdi-4d2(V3) = fdi-4d2(V3).
Condition D2: DWp(v) = DW f(v), w = 0, ... , q - 6, where v = ~(V2 + V3)'

In addition, if T has to be subdivided, we impose the following Hermite interpolation
conditions.

Note, that V3 and v should not lie on triangles considered before.
In Section 3 we described which index sets Q, A2, B2, C2, 62, D2 are assigned to

the triangles TU], l = 1, ... ,N of ~. Now, we choose Hermite interpolation conditions
for the polynomials pU] at a point of TU], l = 1, ... ,N, with exactly the same symbols
Q, A2, B2, C2, 62, D2. The union of these points is denoted by Ji2 for ~.

Theorem 4.4 For q ~ 5, the set Ji2 is a Hermite interpolation set for S~(~).

For later use, we discuss a fundamental connection of the partial derivatives of a
polynomial (given in the form (1)) at a vertex and its Bezier-Bernstein coefficients (cf.
[6, 13, 23]).

Let p E Irq on T = ~(Vl,V2,V3) be given in the form (1) and let dj, j = 1,2, be unit
vectors in direction of the edge [VI, Vj+l], j = 1,2. For all 0 ~ a + ß ~ q, we have

Pd"'dß(x,y) = '" ai,j,kilJqikl(q>iq>~q>~)d"'dß(x,y), (x,y) E T.
12 L...J ... 12

i+j+k=q

12



Since (<.P~)di = 0, J.1- 2::1, it follows from Leibniz' rule

Analogously, since (<.P~)d2= 0, v 2::1, we have

Thus,

Since <.P,"( vr) = 81,,"' J.1- = 1,2,3, we get for j E {O,... ,a}, k E {O,... ,ß},

(<'pi <'pj<'pk) () (Q)(ß) i!j!k! (A'. )Q-j(A'. )ß-k(A'. )j (<.p )k1 2 3 dfdg VI = j k (q-Q-ß)! ':1.'1dl ':1.'1d2 ':1.'2dl 3 d2'

and (<.pi<.P~<.P~)d"'dß(vr) = 0, if j > a or k > ß, i+ j + k = q. Therefore, we obtain
1 2

Q ß
Pdfdg(vr) = (q-';~ß)! LL (j)(~)(<.Pl)~1-j(<.Pr)~;k(<.P2)~1(<.p3)~2aq-j-k,j,k. (2)

j=Ok=O

It easily follows from (2) and induction that if the Bezier-Bernstein coefficients
aq-j-k,j,k, j = O, ... ,a, k = O, ... ,ß, are determined, then all derivatives Pd"'ldß1(Vl),

1 2al = 0, ... ,a, ßl = 0, ... ,ß, are determined.
Conversely, if all these derivatives are given, then the Bezier-Bernstein coefficients

aq-j-k,j,k, j = 0, ... , a, k = 0, ... ,ß, are uniquely determined. This can be seen by
induction and the following equation which is an immediate consequence of (2).

aq-Q-ß,Q,ß

(3)

5 Proof of the MainTheorems for S~

In this section, we prove our main theorems for S~(L~) (Theorem 3.2, Theorem 4.1 and
Theorem 4.3). We begin with the proof of our result on admissible sets. For doing this,
we need Theorem 5.1.
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Let P = Pj.L be a polyhedron as in Figure 1. and ß* be a triangulation of a domain
0* such that P and ß* have common edges [v, wo], [v, W,X+I]. (For simplicity, here we
omit the index f.t). By adding the triangles of P to ß* we obtain a triangulation ßp.
We denote by Ap the nnion of sets chosen in Case 1 of Section 3.

Theorem 5.1 Let q 2: 3. 1f A* is an admissible set for S~(ß*), then A = A* u Ap is
an admissible set for S~(ßp).

Proof Let us first assurne that A = 1. We set ml = m - 1, m2 = (q;2) and m =
card(A). Since A* = {0"1, ... ,O"m-mI-m2} is an admissible set for S~(ß*), q 2: 3, it
follows that for every choice of coefficients a( 0"j.L), f.t = 1, ... , m-ml -m2, a unique spline
s* E S~(ß*) exists with these coefficients in the representation (1) of s*. Since eo and e2

have different slopes, it follows from Lemma 3.4 that the coefficients a~~j~p,a~~~],j'i+j =
q - p, p = 0,1, of p[lv] E fIq on T[lv] = ß(v,wv,wv+d, 1/= 0,1, in the representation
(1) are uniquely determined. Moreover, Lemma 3.4 implies that a~~2,O,2 is uniquely
determined. Now, it is easy to see that for every choice of coefficients a(O"j.L), f.t =
m - ml - m2 + 1, ... ,m - m2, where {O"m-mI-m2+1,.'. ,O"m-m2} = BI = {(i,j, k,lo) :
i + j + k = q, k 2: 2, i i- q - 2}, a unique polynomial p[lo] E fIq on T[lo] exists with
these coefficients in the representation (1) of p[lo]. It follows from Lemma 3.4 that the
coefficients a~~j~p,i+j = q - p, p = 0,1, of p[h] are uniquely determined. Therefore, for
every choice of coefficients a(O"j.L), f.t = m - m2 + 1, ... , m, where {O"m-m2+1, ... , O"m} =
Cl = {(i,j, k, Id: i+ j + k = q, j 2: 2, k 2: 2}, a unique polynomial p[ll] E fIq on T[II]
exists with these coefficients in the representation (1) of p[lo]. Since all differentiability
conditions for r = 1 at the edges eo, el, e2 have been involved, we get that for every
choice of coefficients a( 0" j.L), f.t = 1, ... , m, a unique spline s from S~(ßp),

( ) { s*(x,y), if (x,y) E 0*,
s x,y = p[lv](x,y), if(x,y) ET[lv], 1/=0,1,

exists with these coefficients in the representation (1) of s. This shows the case A = 1.
1£ A > 1, we may assurne that the edges e>.-l and e,X+I have different slopes. It follows
from Lemma 3.4 (applied to the edges eo, ... , e>.-2) that for every choice of coefficients
corresponding to the sets Al = {(i,j, k, Iv): i + j + k = q, k 2: 2}, 1/= 0, ... ,A - 2,
unique polynomials p[lv] E fIq on Tl1v] in the representation (1) exist with these coeffi-
cients in the representation (1) of p[lv], 1/ = 0, ... , A - 2. Now, we argue as in the case
A = 1. This proves Theorem 5.1. •

Corollary 5.2 For q 2: 3, we have

Now, we prove Theorem 3.2.
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Proof of Theorem 3.2: It is obvious that the set Q is an admissible set for ~he space
de:fined on the triangle chosen in the :first step of our construction. Let 6. be the
triangulation that consist of the triangles of 6. and the triangles of the polyhedrons
PJ.L, J.L= 1, ... , n. It fbllows from induction and Theorem 5.1 that an admissible set
for S~(6.) and the uni~n of sets assigned to the triangles of PJ.L' J.L= 1, ... , n, yield an

admissible set for S~(6.). Moreover, it is obvious that if a polyhedron at vJ.L cannot be
added and there exists a triangle with vertex vJ.L which has exactly one common edge
with 6., then the assigned set Al leads to an admissible set. This proves Theorem 3.2 .•

Next, we prove Theorem 4.1. For doing this, we need Theorem 5.3 below. Let P,
6.*, [2*, V, wo,,,,,W.HI, be de:fined as in the beginning ofthis section and denote by
I:-p the union of sets chosen in Section 4 for the case r= 1.

Theorem 5.3 Let q ~ 3. If £* is a Lagrange interpolation set for S~(6.*), then I:-=
£* u I:-p is a Lagrange interpolation set for S~ (6.p).

Proof. Let us :first assurne that A = 1. We set ml, m2 as in the proof of Theorem 5.1
and m = dim S~(6.p). Moreover, let 1:-*= {zl, ... ,Zm-ml-m2} Cl:- = {ZI, ... ,Zm}
and a spline s E S~(6.p), q ~ 3, which satis:fies S(Zi) = 0, i = 1, ... ,m, be given. We
will show that S = O. Since £* is a Lagrange interpolation set for S~(6.*), it follows
that sln* = O. Since s is a Cl-spline the function values and all first derivatives of
p[lol = SIT[IOl E llq (respectively p[lll = SIT[111 E llq) vanish at eo (respectively e2)' Let
dl be a unit vector in direction of el. Since eo and e2 have different slopes, it follows
from (2), (3) and the proof of Theorem 5.1 that p~g](v) = p~il(v) = O. Thus,

I I

DWp(lo](v) = 0, w = 0,1,2. (4)

Let bJ.L= {(x, y) E T[lo]: O'.J.Lx+ ßJ.LY+ 'YJ.L= O}, J.L= 1, ... , q - 2, be the line segments
chosen in T(lo] such that q - J.L points of {zm-ml-m2+1, ... , Zm-m2} lie on bJ.L' J.L =
1, ... ,q-2. Weclaimthat

p[lo]lbl'=O, J.L=1, ... ,q-2. (5)

We prove (5) by induction on J.L. We denote by z~o], the intersection points of bJ.L' J.L=
1, ... ,q - 2, and eo. Since the function value and the derivative (in direction of bd of
p[lolibl E IIq vanish at zt1o], it follows from the interpolation conditions of p(lo] on bl that
the claim holds for J.L= 1. We assurne that (5) holds for J.LE {1, ... ,7]}, 7] ~ q - 3, and
show that (5) holds for 7] + 1. By induction hypothesis, a polynomial q(lo] E llq_7) exists
such that

7)

p(lo] (x, y) = II(O'.J.Lx+ ßJ.LY+ 'YJ.L)q(lo] (x, y), (x, y) E T(lo].
J.L=1

Since the function value aild the derivative (in direction of b7)+d of q(lo] Ib'7+I E IIq_7)
vanish at Z~~l' it follows from the interpolation conditions of p(lo] on b7)+1 that q(lo] Ib'7+I =
0, and p[lollb'7+I = O. This proves (5).
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From (4), we conclude p(lo] = O. Since s is a C1-spline the function values and all
the first derivatives of p[h] vanish at el. Thus,

Dw (ld( ) - 0 - 0 3p v - ,w- , ... , . (6)

Let cp., fJ, = 1, ... , q - 3, be the line segments chosen in T[ll] such that q - 2 - fJ, points
of {zm-m2+l,'" ,zm} lie on cp., fJ, = 1, ... , q - 3. Analogously as in the proof of (5), we
can see that

(llJI - 0 - 1 - 3P CI-' - , fJ, - , ••• , q .

From this and (6), we conclude that p(ll] = 0 and s = O. This proves the case A = 1.
If A > 1, we may assume that the edges eA-l and eA+l have different slopes. Since s

is a C1-spline the function values and all first derivatives of p(lo] = slT[lol E ITq vanish at
eo. Let ap" fJ, = 1, ... , q - 1, be the line segments chosen in T(lo] such that q - fJ, of the
chosen points lie on ap" fJ, = 1, ... ,q - 1. Analogously as in the proof of (5), we can see
that p[lollal-' = 0, fJ, = 1, ... , q - 1. Since DWp(lo](v) = 0, w = 0,1, we have p[loJ = O. By
proceeding with these arguments, we obtain SIT[lvl = p[lvJ = 0, 1/ = 0, ... , A - 2. Now,
we can argue as in the case A = 1. This proves Theorem 5.3. •

Proof of Theorem 4.1: It is weIl known that the set Q is a Lagrange interpolation se_t
for t~e space defined on the triangle chosen in the first step of oUf construction. Let 6.

and Li be defined as in the proof of Theorem 3.2. Then it follows from induction and
Theorem 5.3 that a Lagrange interpolation set for S~(Li) together with the points chosen
on the line ~egments in the triangles of Pp., fJ, = 1, ... ,n, form a Lagrange interpolation

set for S~(Li). This proves Theorem 4.1. •

Next, we prove Theorem 4.3. For doing this, we need Theorem 5.4 below. Let P,
6.*,0*, v, Wo"",WA+l, be defined as in the beginning ofthis section and denote by
1tp the union of the sets chosen in Section 4 for the case r = 1.

Theorem 5.4 Let q ~ 3. If 1t* is a Hermite interpolation set for S~(6.*), then 1t =
1t* u 1tp is a Hermite interpolation set for S~(6.p).

Proof Let us first assume that A = 1. Let a spline s E S~(6.p) which satisfies the
homogenous interpolation conditions be given. We will show that s = O. Since 1t*
is a Hermite interpolation set for S~(6.*), it follows that sln' = o. By Lemma 3.4,

a~~j~p= 0, i + j = q - p, p = 0,1, where atj~k' i + j + k = q, are the coefficients of
p(lo] = slT[lol E ITq in the representation (1), where T[loJ = 6.(V,WO,Wl)' Since the slopes
of eo and e2 are different, Lemma 3.4 implies that a~~2,O,2 = O. We claim that

[lo] .0' 0 2 0 3ap.,j,q_p._j = , J = , ... ,q - - fJ" fJ, = ,... ,q - . (7)

We prove (7) by induction on fJ, and by using the homogeneous interpolation conditions at
Wl. Let d be a unit vector in direction of the edge [Wl, wo]. By (3) and the interpolation
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conditions p~] (wt} = 0, j = 0, ... , q - 2, (7) holds for J.L = O. We assurne that (7) holds
for J.L E {O,... , 7J}, 7J ::; q - 4, and show that (7) holds for 7J+ 1. Let d1 be a unit vector
in direction of the edge e1 = [Wl, vJ. It follows from (3) that

[10.]
a7)+1,j,q-7)-l-j

j-1

= ejp~~Ldi(W1) + L el1,ja~~l,l1,q-jl-7)-l
1 11=0

7) j

+ L L eil,jl,ja~~o.'~l,q-il-l1' j = 0, ... , q - TI - 3,
il=O 11=0

(8)

where ej, ejl,j, eid1,j are suitable real numbers. By ind uction hypothesis the third term
on the right hand-side of (8) vanishes. Since p(l~L (wt} = 0, j = 0, ... , q - TI - 3, it

d1 cf)

follows from (8) and by induction on j that a~~l,j,q-7)-l-j = 0, j = 0, ... ,q - TI - 3.
This proves (7). From this and a[lo]k = 0, (i,j, k) E Q \ BI, we conclude that p(lo.] = O.

2,1,

Since s is a C1-spline, the function values and all first derivatives of p[ll] = S!T[lll E TI:q
vanish at e1 and e2. Thus,

(9)

Now, we claim that

(10)

We prove (10) by induction on J.L. Now, let d be a unit vector in direction of [W1, W2].

Since the function value and the first derivative in direction of d of p[h] I[Wl ,W2] E IIq vanish
at W1 and W2, it follows from the interpolation conditions of p[h] at 'iJ = !(W1 +W2) that
the claim holds for J.L = O. We assurne that (10) holds for J.L E {O,... ,TI}, TI::; q - 5, and
show that (10) holds for TI+ 1. In the following, we use that for 9 E CW(O),

(11)

where 61, 62 and a161 +a262 are unit vectors and w is a natural number. Let d2 be a unit
vector in direction of the edge [W2, v] and a, ß:j:. 0 be given such that d1 = ad2 + ßd.
By (11), we have

(12)

Again by (11), we obtain
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Prom this and the induction hypothesis it follows that p~~L-<7 dP+<7(W2) =
2

1, ... ,1] + 1, and therefore (12) implies

0, (J =

(13)

\.

Moreover, p[I~L (wd = 0, p = 0,1. Then it follows from (13) and the interpolation
d1 dp

conditions of p[I~L E rIq-7)-1 at v = ~(WI +W2) that p[I~L I[Wl,W2] = O. This proves (10).
~ ~

Prom this and (9), we conclude p[ltl = 0 and s = O. This proves the case A = 1.
If A > 1, we may assume that the edges e>'-I and eHI have different slopes. Anal-

ogously as in the proof of (7) the interpolation conditions of p[loJ = SIT[lol E rIq at
. 1 h [la] - 0 . - 0 2 - 0 2 S' .WI 1mp y t at aJ.L,j,q_J.L-j - , J - , ... , q - - J.L, J.L - , ... , q -. mce s 1S

a CI-spline, we conclude p[lo] = O. By proceeding with these arguments, we obtain
SIT(lv] = p(lv] = 0, v = 0, ... , A - 2, and s = O. This proves Theorem 5.4. •

Proof of Theorem 4.3: The proof is similar to the proof of Theorem 4.1 by using Theo-
rem 5.4 instead of Theorem 5.3. •

6 Proof of the Main Theorems for S~

In this section we prove our main theorems for S~(L~) (Theorem 3.3, Theorem 4.2 and
Theorem 4.4). We begin with the proof of our result on admissible sets. For doing this,
we need Theorem 6.1, and Theorem 6.3. Let P, .6.*, [2*, .6.p, v, Wo, ... , W>'+I be defined
as in the beginning of Section 5 and denote by Ap the union of sets chosen in Case 2a
of Section 3.

Theorem 6.1 Let q ~ 5. 1f A* is an admissible set for S~(6.*), then A = A* u Ap is
an admissible set of S~ (6.p).

Proot By our construction we have A ~ 2. We first assume that A = 2. We set
ml = (q;l) - 1, m2 = (q;l) - 2, m3 = (q;4) and m = card(A). Since A* =
{O"I,... , 0"m-ml -m2 -m3} is an admissible set for S~ (.6. *), q ~ 5, it follows that for every
choice of coefficients a(O"J.L),J.L = 1, ... , m - ml - m2 - m3, a unique spline s* E S~(6.*)
exists with these coefficients in the representation (1) of s*. Since eo, el, e2 and e3 have
different slopes, it follows from Lemma 3.4 that the coefficients a~~j~p, at~],j' i + j =
q - p, p = 0,1,2, and a~~p,j,k' j + k = p, p = 0,1,2, of p[lv] E rIq on T(lv] =
.6. (v, Wv, Wv+l), v = 0,1,2, in the representation (1) are uniquely determined. We

claim that the coefficients a~~3,j,k' j + k = 3, (and a~~3,O,3' a~.:'\3,O) are uniquely de-
termined. We may assurne that v = (0,0), Wv = Tv(coswv,sinwv), v = 0, ... ,3, where

18



Tv > 0, v = 0, ... ,3, and 27r > Wo > WI > W2 > W3 = O. By Lemma 3.4 the vector
t ([LI] [It] [ltl [ltl) . fi

x = aq-3,3,0' aq-3,2,1' aq-3,1,2' aq-3,0,3 satls es

-1 0
o -1
o -1
-1 0

where'V E IR.4 is suitable chosen. Since .:p[lz](w ) = T1sin(Wl) .:p[l0](W2)= 7"zsin(wo-wz) it
I 2 I TZ sm(wz)' 3 7"1 sm(wO-wl)'

follows from some elementary computations that

D = _sin(wo) sin(wo - W2) sin(WI) sin(WI - W2) .
(sin(W2) sin(wo - WI))2

(Here, D is the determinant of the above system.) Since eo, el, e2 and e3 have different
slopes, we have Wo - W2, Wo - W3, WI - W3 # 7r. Thus, D # O. Note that Wo _-:-:-_. ._
WI, WI - W2, W2 - W3 # 7r. This shows that the coefficients a~~3,j,k' j + k = 3 (and

[LoJ [Lz]) . 1 d . daq-3,0,3' aq-3,3,0 are umque y etermme .
Now, it is easy to verify that for every choice of coefficients a( 0'J1o), f.L= m - ml -

m2 - m3 + 1, ... ,m - m2 - m3, where {O'm-m1':'mz-m3+1, ... ,O'm-mz-m3} = B2 =
{(i,j, k, lo): i + j + k = q, k ~ 3, i # q - 3} a unique polynomial p[Lol E frq on
T[lo] exists with these coefficients in the representation (1) of p[lo]. By Lemma 3.4 the
coefficients a~~j~p,i + j = q - p, p = 0,1,2, of p[lt] are uniquely determined. Since
(q-4,0,4,h) E C2 = {(i,j,k,ld: i+j+k = q, k ~ 3, i # q-3, (i,j,k) #
(q - 4,1, 3)}, it follows from Lemma 3.5 that a~~4,1,3 is uniquely determined. This
implies that for every choice of coefficients a(O'J1o)' f.L= m - m2 - m3 + 1, ... ,m - m3,
where {O'm-mz-m3+1,'" ,O'm-m3} = C2, a unique polynomial p[h] E frq on T[ll] exists
with these coefficients in the representation (1) of p[LI] .

Now, by Lemma 3.4 for every choice of coefficients a(O'J1o), f.L= m - m3 + 1, ... ,m,
where {O'm-m3+1,"" O'm} = D2 = {(i,j, k, l2): i + j + k = q, j ~3, k ~ 3} a unique
polynomial p[lz] E frq on T(lz] exists with these coefficients in the representation (1) of
p(lz].

Since all differentiability conditions for r = 2 at the edges eo, el, e2, e3 have been
involved, we get that for every choice of coefficients a(O'J1o), f.L= 1, ... ,.m, a unique spline
s from S~(6.p),

( ) {S*(X,y),if(X,Y)ES1*,
S x, Y = p(lv](x, y) , if (x, y) E T(lv], v = 0,1,2,

exists with these coefficients in the representation (1) of s. This proves the case A = 2.
If A > 2, we may ass urne that the edges e>.-2, e>.-I, e>., e>'+1 have different slopes. It

follows from Lemma 3.4 (applied to the edges eo, ... , e>.-3) that for every choice of coeffi-
cients corresponding to the sets A2 = {(i,j, k, lv) : i+j +k = q, k ~ 2}, v = 0, ... ,A-3,
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unique polynomials p[lv] E fIq on T[lv] exist with these coefficients in the representation
(1) of p[lv], v = 0, ... , A - 3. Now, we can argue as in the case A = 2. This proves
Theorem 6.1. •

Corollary 6.2 For q ~ 5, we have

dim S;(.6.p) = dim S;(.6.*) + A(q;l) + (q;4) - 3.

The next theorem deals with the case when some triangle T[lv] of the added polyhe-
dron P = P is subdivided (see Gase 2b of Section 3). We denote by Yv the point which
subdivided the triangle T[lv]. Moreover, let eo, el, e2 and e3 be as in Gase 2b of Section
3, and denote by Ai' the union of sets chosen in Gase 2b of Section 3.

Theorem 6.3 Let q ~ 5. 1f A* is an admissible set for S~(.6.*), then A = A* u Ai' is
an admissible set for S~(.6.p).

Proof We first assurne that A = 1. We set ml and m3 as in the proof of Theorem
6.1, m2 = (q;l) - 4 and let m = card(A). We may assurne that T[lo] is subdivided.
Since A* = {al, ... ,am-ml-m2-2m3} is an admissible set for S~(.6.*), q ~ 5, it follows
that for every choice of coefficients a(a,J, f..l = 1, ... ,m - ml - m2 - 2m3, a unique
spline s* E S~(.6.*) exists with these coefficients in the representation (1) of s*. Since
eo, el, e2 and e3, have different slopes, it follows from Lemma 3.4 that the coefficients
[(10,0)] [(lo,2)J . . - - 0 1 2 d [(lo,l)J . k - - 0 1 2 fai,j,p , ai,p,j , 2 +] - q - p, p - , , ,an aq_p,j,k'] + - p, p - , , , 0

p[(IO,17)] E fIq on T[(lo,17)] = .6.(vf,v2",v3), a = 0,1,2, (cf. Gase 2b of Section 3) in
the representation (1) are uniquely determined. As in the proof of Theorem 6.1, it
follows that the coefficients a[(lo,l)] ]" + k = 3 (and a[(lo,O)] a[(lo,2)]) are uniquelyq-3,],k' , q-3,0,3' q-3,3,0
determined. Now, it is easy to see that for every choice of coefficients a(aJ.L), f..l =
m-ml -m2 -2m3+1, ... ,m-m2 -2m3, where {am-ml-m2-2m3+l,.", am-m2-2m3} =
B2 = {(i,j, k, (lo, 0)) : i+ j + k = q, k ~ 3, i i- q - 3} a unique polynomial p[(lo,O)] E fIq
on T[(lo,O)] exists with these coefficients in the representation (1) of p[(lo,O)]. By Lemma
3 4 th ffi. t [(10,1)] [(10,3)] . . 0 1 2 . 1 d t . d., e coe clen s ai,j,p ,ai,j,p ,2 + ] = q - p, p = , , ,are umque y e ermme .
Here a[(lo,3)] i+]" + k = q are the coefficients of p[(10,3)] E fI on T[(lo,3)] = .6.(v3 v3 v3)

, t]k " q l' 2' 3
in the ;epresentation (1) (cf. Gase 2b of Section 3). We claim that the coefficient
ab~I~~11!3is uniquely determined. Let d, respectively dl, d2, be unit vectors in direction
of the edge [YO,Wl], respectively [YO, wo], [YO, v]' and let ßl, ß2 i- 0 be given such that
d = ßldl + ß2d2. It follows from the C2-property and (11) that

2

p~~o,l)](yO) = 2: G)ßi-T ß2P~~~0~]d"(YO)
T=O 1 2

ßip~~r3)](yo) + 2ßlß2P~~~J;](yo) + ßip~~~,O)l(yo) = p~~o,O)](YO). (14)

On the other hand, it follows from the C2-property and (11) that

P[(lo,l)J (y ) _ ß p[(lo,3)J (y ) + ß p[(lo,l)J (y ) _ p[(lo,O)] (y )d3 0 - 1 d2dl 0 2 d2d2 0 - d3 0 .
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From this and (14), we conclude that the derivative p~~o,l)l(yo) = p~~o,3)](yO) is uniquely

determined. Then by (3) the coefficient a~(,I~~11~3(and a~~3~ci!3) is uniquely determined.
Let us first consider th~ case when for q 2: 5, we assign (;2 to T[(lo,l)] and D2 to T[(lo,3)].
Since

{

{(0,0,5,(lo,1)),(1,0,4,(Z0,1))}
-(q-4,0,4)E(;2= {(i:j:k,(lo,1)): i+j+k~q, k2:3, i,j-=lq-3,

(2,J, k) -=I(q - 4,1,3), (2,J, k) -=I(1, q - 4, 3)}

, if q = 5,

, if q 2: 6,

by Lemma 3.5 the coefficient a~~/{!3 is uniquely determined.
Let us first consider the case q 2: 6. In this case, since (0, q - 4,4, (lo, 1)) E (;2,

by Lemma 3.5 the coefficient a~(,I~~ll!3 is uniquely determined, and it is easy to verify
that for every choice of coefficients a((Jj.L), J.L = m - m2 - 2m3 + 1, ... , m - 2m3, where
{(Jm-m2-2m3+1, ... , (Jm-2m3} = (;2, a unique polynomial p[(lo,l)] E frq, q 2: 6, on T[(lo,l)J
exists with these coefficients in the representation (1) of p[(lo,l)].

The case q = 5 is slightly different. In this case, since a~(,lf,t)] is determined, by

Lemma 3.5 the coefficient a~(,lti)] is uniquely determined. Then for every choice of
coefficients a((J j.L), J.L = m -1, m, where {(Jm-l, (Jm} = (;2, a unique polynomial p[(lo,l)] E
frs on T[(lo,l)] exists with these coefficients in the representation (1) of p[(lo,l)].

Then by Lemma 3.4 for every choice of coefficients a((Jj.L), J.L = m - 2m3 + 1, ... , m-
m3, where {(Jm-2m3+l,"" (Jm-mJ = D2 = {(i,j, k, (ZO,3)): i+ j + k = q, j 2: 3, k 2:
3}, a unique polynomial p[(lo,3)] E frq on T[(lo,3)] exists with these coefficients in the
representation (1) ofp[(lo,3)J.

Now, we consider the case when for q 2: 7, we assign D2 to T[(lo,l)] and C2 to T[(lo,3)].
Since (q - 4,0,4) E C2 by Lemma 3.5 the coefficient a~~,ä!3 is uniquely determined.
Then for every choice of coefficients a((Jp.), J.L = m - m2 - 2m3 + 1, ... , m - 2m3 + 2,
where {(Jm-m2-2m3+l,"" (Jm-2m3+2} = C2 = {(i,j, k, (ZO,3)): i + j + k = q, k 2:
3, i -=Iq-3, (i,j,k) -=I(q-4, 1,3)}, a unique polynomialp[(lo,3)] E frq, q 2: 7, on T[(lo,3)]
exists with these coefficients in the representation (1) of p[(lo,3)]. By Lemma 3.4 the
coefficients a~,l,~)], j + k = q - p, p = 0,1,2, of p[(lo,l)] are uniquely determined. Since

(q - 4,0,4, (ZO,1)) E D2, by Lemma 3.5 the coefficient a~~o,ä!3 is uniquely determined.
Therefore, for every choice of coefficients a((Jp.), J.L = m - 2m3 + 3, ... ,m - m3, where
{(Jm-2m3+3, ... ,(Jm-m3} = D2 = {(i,j,k,(lo,1)): i+j+k = q, i 2 3, k 2: 3, i-=l
q - 3, (i,j, k) -=I(q - 4, 1, 3)}, a unique polynomial p[(lo,l)] E frq, q 2: 7, on T[(lo,l)] exists
with these coefficients in the representation (1) of p[(lo,l)].

Now, in all cases, it follows from Lemma 3.4 that for every choice of coefficients
a((Jp.), J.L = m-m3+1, ... ,m, where {(Jm-m3+1, ••• ,(Jm} = D2 = {(i,j,k,(lo,2)):
i + j + k = q, j 2: 3, k 2:3}, a unique polynomial p[(lo,2)] E frq on T[(lo,2)], exists with
these coefficients in the representation (1) of p[(lo,2)].

The rest of the proof is similar to the proof of Theorem 6.1. This proves Theorem
6.3. •
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Corollary 6.4 For q 2: 5, we have

Now, we prove Theorem 3.3.
Proof of Theorem 3.3: The proof is similar to the proof of Theorem 3.2 for .6.. The only
differences is that we use Theorem 6.1 and Theorem 6.3 (if some triangle of .6. has to
be subdivided) instead of Theorem 5.1. •

Next, we prove Theorem 4.2. For doing this, we need Theorem 6.5 and Theorem
6.6. Let P, .6.*, 0*, .6.p, V, Wo, ... ,WHI be defined as in the beginning of Section 5 and
denote by £:,p the union of the sets chosen in Section 4 which correspond to Case 2a of
Section 3.

Theorem 6.5 Let q 2: 5. 1f C is a Lagrange interpolation set for S~(.6.*), then .c =
CU£:, p is a Lagrange interpolation set for S~ (.6.p).

Proof By our construction we have A 2: 2. We first assurne that A = 2. We set
ml, m2, m3, as in the proof of Theorem 6.1 and m = dim S~(.6.p). Moreover, let £:,*=
{Zl, ... ,zm-ml-m2-m3} ~ £:, = {Zl, ... ,Zm} and a spline s E S~(.6.p), q 2: 5, which
satisfies S(Zi) = 0, i = 1, ... ,m, be given. We will show that S = O. Since C is a
Lagrange interpolation set for S~(.6.*), it follows that sln' = O. Since s is a C2-spline
the function val~.1eand all first and second derivatives of p(lo] = SiZ:[lol E fIq (respectively
p[12] = SIT(l2] E IIq) vanish at eo (respectively e3). Moreover, DWplIIJ(V) = 0, w = 0,1,2,
where p(ll] = SIT[IIJ E fIq. Since eo, el, e2 and e3 have different slopes, it follows from
(2) and the proof of Theorem 6.1 that

(15)

Let bj1. = {(x, y) E T(lo]: aj1.x + ßj1.Y + '"Yj1.= O}, J.L = 1, ... , q - 3, be the line segments
chosen in T[lo] such that q - 1 - J.L points of {zm-ml -m2 -rn3 +1, ... , Zrn-rn2 -rn3} lie on
bj1., J.L = 1, ... , q - 3. We claim that

p(lo] Ibl" = 0, J.L = 1, ... , q - 3. (16)

We prove (16) by induction on J.L. Denote by zlioJ, J.L = 1, ... ,q - 3, the intersection point
of bj1., J.L = 1, ... , q - 3, and eo. Since the function value, the first and second derivative
(in direction of bd of p(lo] Ibl E IIq vanish at zt1o], it follows from the interpolation
conditions of p(lo] on b1 that (16) holds for J.L = 1. We assurne that (16) holds for
J.L E {1, ... , 7] }, 7] ~ q - 4, and show that (16) holds for 7] + 1. By ind uction hypothesis
a polynomial q(lo] E fIq-'7 exists such that

'7
p(lo] (x, y) = TI (aj1. + ßj1.Y + '"Yj1.)q(lo](x, y), (x, y) E T(loJ.

j1.=1
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Since the function value, the first and the second derivative (in direction of bTJ+1) of
q(lollb'1+l E IIq-TJ vanish at Z~~l' it follows from the interpolation conditions of p[lol on
bTJ+1 that q[lo]lb'1+l = Q, and p[loJlb'1+l = O. This proves (16). Prom this and (15), we
conclude p(lo] = O. Let dj be unit vectors in direction of the edge ej = [v, Wj]' j = 1,2.
Since s is a C2-spline, we get

(17)

Let cJ1., J.L = 1, ... , q - 3, be the line segments chosen in T(ll] such that q - 1 - J.L

points of {zm-m2-m3+1,"" zm-m3-d lie on cJ1.' J.L = 1, ... , q - 4, and zm-m3 lies on the
intersection of Cq-3 and [v, W2]. As in the proof of (16) we obtain

(18)

We denote by z~d, J.L = 1, ... , q - 3, the intersection point of cJ1.' J.L = 1, ... , q - 3, and
[v, W2]. Then it follows from the interpolation condition of p(ll] at Zm-m3 = z~I~]3 and

the above that p(lll(z~ll) = 0, J.L = 1, ... , q - 3. Moreover, from (15) we obtain p~~J(v) =
2

0, lJ = 0, ... ,3, and p[h]l[v,W2] = O. Therefore, p~~](v) = O. Then by (3), (15) and (17)

we have that the coefficients aq[I~4 k' j + k = 4, (j, k) =j:. (1,3), in the representation,J,

(1) ofp[h] on T(ld = 6.(V,Wl,W2) are zero. By Lemma 3.5, we obtain a~~4,1,3 = O. It

follows from (2) that Pd[h~3(V) = O. Then we get DWp[ll](v) = 0, W = 0, ... ,4. It follows
1 2

from (18) that p[ll] = O.
Since s is a C2-spline the function values, all the first and second derivatives of p(l2]

vanish at e2. Thus,

Dw (l2] ( ) - 0 - 0 5P V-,W-, ... ,. (19)

Let dJ1.' J.L = 1, ... , q - 5, be the line segments chosen in T[12] such that q - 4 - J.L points
of {Zm-m3+1,'" ,zm} lie on dJ1., J.L = 1, ... , q - 5. As in the proof of (16) we obtain
p[l2] k, = 0, J.L = 1, ... , q - 5. Prom this and (19) we conclude p(l2] = 0, and s = O. This
proves the case A = 2.

If A > 2, we may assume that the edges e.x-2, e.x-l, e.x, and e.x+1 have different
slopes. Since s is a C2-spline the function values, all the first and second derivatives of
p(lo] = S!T[IO] E frq vanish at eo. Thus,

(20)

Let aJ1., J.L = 1, ... , q - 2, be the line segments chosen in T(lo] such that q - 1 - J.L of
the chosen points lie on aJ1.' J.L = 1, ... , q - 2. As in the proof of (16) we can see that
p[lo] laI' = 0, J.L = 1, ... ,q -2. From this and (20) we conclude p[lo] = O. By proceeding
with these arguments, we obtain SIT[lvJ = p[lv] = 0, lJ = 0, ... , A - 3, and s = O. This
proves Theorem 6.5. •
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Now, let T(lv], P, YI/, eo, el, e2, e3 be as in front of Theorem 6.3 and denote by £f>
the union of sets chosen in Section 4 which correspond to Case 2b of Section 3.

Theorem 6.6 Let q ~ 5. 1f £* is a Lagrange interpolation set for sg(ß*), then £ ='
£* U £f> is a Lagrange interpolation set for S~(ß'j,).

Proof We first ass urne that A = 1. Let ml, m2, m3 be as in the proof of Theorem
6.3, m = dim sg(ß'j,) and £* = {Zl,"', zm-ml-mz-2m3} ~ £ = {Zl,"', zm}. We
may assurne that T(lo] is subdivided. Let a spline S E sg(ß 'j,), q ~ 5, which satisfies
S(Zi) = 0, i = 1, ... , m, be given. We will show that S = O. Since £* is a Lagrange
interpolation set for sg(ß*), it follows that sln* = O.

Since s is a C2-spline the function values and all first and second derivatives of
p[(lo,O)] = SIT[(lo,Ol] E frq (respectively p[(lo,2)] = SIT[(lo,2l) E frq) vanish at eo (respectively
e3)' Moreover, DWp[(lo,l)](v) = 0, W = 0,1,2, where p[(lo,l)] = siT[(lo,ll) E frq. Since
eo, el, e2 and e3 have different slopes, it follows from (2) and the proof of Theorem 6.1
that

(21)

Let bp., /L = 1, ... , q - 3, be the line segments chosen in T[(lo,O)] such that q - 1- /L points
of {zm-ml-mz-2m3+l, ... , zm-mz-2m3} lie on bp., /L = 1, ... ,q - 3. As in the proof of
Theorem 6.5, we can see that S(Zi) = 0, i = m - ml - m2 - 2m3 + 1, ... ,m:"'- m2 - 2m3,
and (21) imply p[(lo,O)] = O.

Since s is a C2-spline the functional values and all the first and second derivatives of
p[(lo,l)] = SIT[(lO,ll] E frq (respectively p[(lo,3)] = SIT[(lo,3l]E frq) vanish at [yo, v] (respec-
tively [Yo, wo]). Moreover, it follows from the proof of Theorem 6.3 that

(22)

whe re d is a unit vector in direction of the edge [yo, Wl]'
Let us first consider the case q = 6. Let Zm-7, Zm-6, Zm-5, be the points chosen on

(V,Wl], Zm-4, Zm-3, be the points chosen on (YO,Wl) and Zm-2 be the point chosen from
the interior of T[(lo,l)]. Since S(Zi) = 0, i = m - 7, ... ,m - 5, it follows from (21) that
p[(lo,l)]I[v,Wl] = O. Since S(Zi) = 0, i = m - 4, m - 3, and p[(lo,l)](wd = 0, it follows from
(22) that p[(lo,l)li[yo,wl] = O. As in the proof of Theorem 6.3, it follows from (3) that
al(lo,l)] = a[(lo,l)] = 0 where a[(lo,l)] i+ J' + k = 6 are the coefficients of p[(lo,l)] E fr6 on2,1,3 1,2,3 , t,J,k ' ,

T[(lo,l)] = ß(V,YO,Wl) in the representation (1). This shows that

Now, it is easy to see that S(Zm-2) = 0 implies a~(lf'I)] = 0, and p[(lo,l)] = O.
Now, we consider the case q = 5. Let Zm-l,' ;m, be the points chosen on (v, Wl]'

Since S(Zi) = 0, i = m -1, m, it follows from (21) that p[(lo,l)]I[v,Wl] = O. Analogously, as

in the proof of Theorem 6.3, it follows from (3) that a~(lf'i)l = 0 and ab(lf'I)] = 0, where
" , ,
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ai:~~kl)], i+j + k = 5, are the coefficients of p[(lo,l)] E Ih on T((lo,l)] = ~(v, Yo, wd in the
representation (1). We conclude p((lo,l)] = O.

In these cases, as in the proof of Theorem 6.5 we get p((l0,3)] = O.
We finally consider"the case q ~ 7. Let {zm-m2-2m3+1, ... , zm-2m3+2} be the points

chosen in T[(l0,3)]. As in the proof of Theorem 6.5 it follows from (22) that S(Zi) =
0, i = m - m2 - 2m3 + 1, ... ,m - 2m3 + 2, implies p((l0,3)] = O. Since S is a C2-spline
the functional values and all the first and second derivatives of p[(lo,l)] = SIT[(lo,l)] E fIq

vanish at [YO,wlj. We set [YO,Wl] = {(x,y) E T((lo,l)] : ax+ßy+'Y = O}. It follows that
a polynomial q((lo,l)] E fIq-3 exists such that

.- --.....-.,:;:

p((lO,l)](X, y) = (ax + ßy + 'Y)3q[(l0,1)] (x, y), (x, y) E T[(lo,l)]. (23)

Let dp., p, = 1, ,q - 6, be the line segments chosen in T[(lo,l)] such that q - 4 - p, points
of {zm-2m3+3, ,zm-~3} lie on dp., p, = 1, ... ,q -7, and zm-m3 lies on the intersection
of dq-6 with [v, wlj. It is obvious that q((lo,l)](Zi) = 0, i = m - 2m3 + 3, ... ,m - m3.
Moreover, it follows from (21) that DWq[(lo,l)](v) = 0, W = 0, ... ,3. By using arguments
as in the proof of Theorem 6.5, we get q((lo,l)] = 0, and p((lo,l)] = O.

The rest of the proof is similar to the proof of Theorem 6.5. This proves Theorem
6.6. •

Praof of Theorem 4.2: The proof is similar as the proof of Theorem 4.1 for ~. The only
difference is that we use Theorem 6.5 and Theorem 6.6 (if some triangle of ~ has to be
subdivided) instead of Theorem 5.3. •

Next, we will prove Theorem 4.4. For doing this, we need Theorem 6.7 and Theorem
6.8. Let P, ~ *, D*, Sp, v, Wo, ... , W.\+l be defined as in the beginning of Section 5
and denote by Hp the union of sets chosen in Section 4 which correspond to Case 2a of
Section 3.

Theorem 6.7 Let q ~ 5. 1f H* is a Hermite interpolation set for S~(~*), then H =
H* U Hp is a Hermite interpolation set for S~(~p).

Praof By our construction we have A ~ 2. We first ass urne that A = 2. Let a spline
s E S~(~p) which satisfies the homogenous interpolation conditions be given. We will
show that s = O. Since H* is a Hermite interpolation set for S~(~*), we have sln- = o.
By Lemma 3.4, ailo).Jp = 0, i+ j = q - p, p = 0,1,2, where a[lo]k' i+ j + k = q, are the

1 , ~,J,

coefficients of p[lo] = SIT(lO] E fIq in the representation (1), where T[lo] = ~(v, wo, Wl).
As in the proof of Theorem 6.1, we get a~~3,O,3 = O. We claim that

[lo] - 0 . - 0 3 - 0 4ap.,j,q_p._j - ,J - , ... , q - - p" p, - , ... , q - . (24)

We prove (24) by induction on p, and by using the homogeneous interpolation conditions
at Wl. Let d be a unit vector in direction of the edge [Wl, wo]. By (2) and the interpo-
lation conditions P~](Wl) = 0, j = 0, ... , q - 3, (24) holds for p, = O. We assurne that

25



(24) holds for I-" E {O, ... , 'Tl}, 'Tl ::; q - 5, and show that (24) holds for 'Tl+ 1. Let dl be a
unit vector in direction of the edge el = [WI, vJ. It follows from (3) that (8) now holds
for j = 0, ... ,q - 4 - 'Tl. As in the proof of Theorem 5.4 the interpolation conditions
Pd'7+1dj(wd = 0, j = O~... q - 'Tl - 4, imply that (24) holds for 'Tl + 1. This shows (24).

1

Prom this and atj~k = 0, i + j + k E Q \ B2, we conclude p(lo] = O. By Lemma 3.4,
[11] - 0 . . - - 0 1 2 h [h] . . k - h ffi . fai,j,p - ,2 + J - q - p, p - , , , w ere ai,j,k' 2 + J + - q, are t e coe c1ents 0

p[h] = SIT[ll] E fIq in the representation (1), where T[11] = .6.(v, WI, W2)' As in the proof

of Theorem 6.1, we get a~~3,O,3 = O. Moreover, we can see analogously as (24) that the
interpolation conditions of p[h] at W2 imply

[Id - 0 . - 0 3 - 0 5 d [Id 0aJ.L,j,q-J.L-j - ,J - , ... , q - - 1-", I-" - , ... , q - , an aq-4,O,4 = .

By Lemma 3.5, a~~4,1,3 = O. This shows that p(ll] = O.
Since s is a C2-spline the function values and all first

p(l2] = SIT(l2] E fIq vanish at e2 and e3. Thus,

DWp[12](V) = 0, W = 0, ... ,5.

and second derivatives of

(25)

Let d2 be a unit vector in direction of the edge e2 = [W2, vJ. We claim that

[12]1 - 0 - 0 6p d~ [W2,Wa] - , I-" - , ... , q - . (26)

We prove (26) by induction on 1-". Now, let d be a unit vector in direction of [W2, W3].
Since the function value and the first and second derivative in direction of d of p[12] l[w2,wa] E
11q vanish at W2 and W3, it follows from the interpolation conditions of p(l2] at v =
t(W2 + W3) that the claim holds for I-" = O. We ass urne that (26) holds for I-" E •
{O, ... , 'Tl}, 'Tl ::; q - 7, and show that (26) holds for 'Tl + 1. By induction hypothesis
and similar arguments as in the proof of Theorem 5.4 we obtain

[12] ( ) - 0 - 0 2Pd'7+1 W3 - ,P - ,1, .
2 dp

(27)

Moreover, P~~LdP (W2) = 0, P = 0,1,2. Then it follows from (27) and the interpolation

d't' f [12] 11- - - 1( ) h [12] I - 0 Th' (26)con 1 IOns 0 Pd'7+1 E q-ry-I at v - 2"w2 +W3 , t at p '7+1 [W2,Wa] -. lS proves .
2 d2

From this and (25) we conclude p(l2] = 0, and s = O. This proves the case A = 2.
If A > 2, we may ass urne that the edges e)'-2, e).-I, e). and e),+1 have different slopes.

As in the proof of (24) the interpolation conditions of p[lo] = sT10J E fIq at WI imply that
(lo] - 0 . - 0 -3- - 0 -3 S' . C2_ l' t [101 = 0aJ.L,J,q-J.L-j - ,J - , ... , q f.L, f.L - , ... , q . mce S lS a sp me we ge p .

By proceeding with these arguments we obtain SIT[ZvJ = p[lv] = 0, v = 0, ... , A - 3, and
S = O. This proves Theorem 6.7. •

The next result is needed for the case when some triangle has to be subdivided. Let
T[lv], P, Yv, eo, el, e2, e3 be as in front of Theorem 6.3 and denote by 'Hp the union of
sets chosen in Section 4 which correspond to Case 2b of Section 3.
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This shows
This proves

•

Theorem 6.8 Let q ~ 5. 1f H* is a Hermite interpolation set for SJ(b..*), then H =
H* U Hp is a Hermite interpolation set for SJ(b..p).

Proof Let us first assume that A = 1. We may assume that T[lo] is subdivided. Let a
spline s E SJ(b..p), q ~ 5, which satisfies the homogenous interpolation conditions be
given. We will show that s = O. Since H* is an interpolation set for SJ(b..*), it follows
that sln* = O. Let p[(lo,cr)] = SIT[(lo,O")] E fIq, er = 0, ... ,3, be given in the representation

(1) (cf. Case 2b of Section 3). As in the proof of Theorem 6.1, we get a~~3~6~3= O. Then
as in the proof of Theorem 6.7 it follows from the interpolation conditions of p[(lo,O)] at
Yo that p[(lo,O)] = O. By Lemma 3.4, a~:~~~l)]= 0, i+ j = q - p, p = 0,1,2. Moreover,
a[(lo,l)] = a[(lo,l)] = O.
0,q-3,3 q-3,0,3

Let us first consider the case q ~ 6. By (2) and the interpolation conditions of
pl[(lo,l)] E II at Wl we get pl[(lo,l)] = 0 and pl[(lo,l)] = O. By Lemma 3.5 a[(lo,l)] =

[v,wd q [V,Wl]' [VO,Wl] , q-4,1,3

a~(,l;~12!3 = O. As in the proof of Theorem 6.7 it follows from (3) and the remaining
interpolation conditions at Wl that p[(!o,l)] = O.

Now, we consider the case q = 5. Again, we have pl[[(lo,l)]] = O. By Lemma 3.5,
V,Wl

a[(lo,l)] = a((lo,l)] = O. Thus p[(lo,l)] = O.
1,1,3 0,1,4 ,

As in the proof of Theorem 6.7 we obtain p((lo,2)] = 0 and p((lo,3)] = O.
the case A = 1. The rest of the proof is similar as the proof of Theorem 6.7.
Theorem 6.8.

Proof of Theorem 4.4: The proof is similar to the proof of Theorem 4.2 by using The-
orem 6.7 instead of Theorem 6.5 and, if some triangle of b.. is subdivided, Theorem 6.8
instead of Theorem 6.6. •

7 Final Remarks and Numerical Examples

We finally discuss some variants of our basic principle of constructing triangulations b..
and interpolation sets for S~(b..), r = 1,2, which result from our numerical experience.
Moreover, we give some numerical examples.

We first consider the spaces S~(b..). By applying the above interpolation methods,
we obtain good approximations for q ~ 4.

We first note, that we may use the following variant in the iterative construction
of the triangulation b.. if small angles appear at the boundary of the subtriangulation
Li constructed so far. If two adjacent boundary edges form a small angle we may
connect these edges and use a Clough-Tocher split of the resulting triangle. Now, for
S~(b..), q ~ 3, interpolation schemes can be constructed analogously as in Section 4.

In order to obtain good approximations in the case q = 3 for non-uniform triangu-
lations b.. it is necessary to modify the triangulation b.., i.e. to subdivide some of the
triangles of the polyhedron added in each step as folIows. If a polyhedron is added such
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that two neighboring triangles form a convex quadrangle, then we add the second diag-
onal if possible. Otherwise, we subdivide one of the triangles of the polyhedron by using
a Clough- Tocher split. The corresponding admissible sets are shown in Figure 8. (the
admissible points addeB in one step are marked by filled circles), and the interpolation
sets can be defined analogously as in Section 4.

Vj.L

Figure 8. Admissible sets for Sj(b..).

We finally consider the case q = 2. In this case, we consider triangulations L::lQ of
the following type. By starting with one triangle, we describe L::lQ inductively as follows.
Given a subtriangulation LiQ, we add a triangle T which has one common edge with LiQ.
Then in clockwise order, successively we add quadrangles (with two diagonals ) having
one common edge with LiQ and triangles having one common point with LiQ, where
the last quadrangle also has one common edge with T (see Figure 9.). We denote the
resulting subtriangulation again by LiQ and proceed with this method to obtain L::lQ'

Figure 9. Construction of the triangulation b..Q.

In this case we obtain the admissible set shown in Figure 9. (the admissible points are
marked by filled circles), since the intersection points of the diagonals of the quadrangles
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f(x,y)

are singular (cf. [46]). We have the following result on interpolation by si (~Q)'

Theorem 7.1 The vertices of ~Q (except the intersection points of the diagonals) to-
gether with three addittonal points in the starting triangle form a Lagrange interpolation
set for Si(~Q)'

Theoretically, if we consider in ~Q instead of the quadrangles with two diagonals
arbitrary quadrangles, then for the quadrangles with only one diagonal no interpolation
point can be chosen. In this case, no good approximations can be expected, in general.

As a numerical test, we use our interpolation methods to approximate the test func-
tion of Franke

3 _ (9:r-2)2+(9y-2)2 3 _ (9:r+1)2 _ (9y+1)
= -e 4 + -e 49 104 4

1 (9:r-7)2+(9y-3)2 1 -(9x-4)2 -(9 _7)2+-e 4 - -e Y25'
by S~(~), q = 3,4, and Si(~Q)' Here, ~, respectively ~Q results from the above
triangulation methods and the corresponding domain n contains [0,1] x [0,1]. The
results for the Hermite interpolating spline s E SH~), respectively 8 E sl(~), are given
in Table 1.

N dim SH~) Ilf - 81100 N dim SH~) Ilf - 81100
112 169 3.31 * 10 -'2 32 131 1.46 * 10 -1

480 649 1.03 * 10 -'2 211 652 2.49 * 10 -~
1984 2563 1.24 * 10 <.I 745 2085 1.30 * 10 -,j

8064 10224 1.29 * 10 -'I 3257 8694 1.33 * 10 -'I
32512 40725 1.62 * 10 .e, I 14495 38091 7.80 * 10 .b I

Table 1. Interpolation by S~(~), q = 3,4.

Here, we note that there is some freedom in defining Hermite interpolation condi-
tions. For example, we may only impose interpolation conditions at the vertices by
replacing the condition Cl for r = 1 as folIows:

(Here, the unit vectors dj, j = 1,2, are chosen as in Section 4).
Table 2. contains our numerical results for the Lagrange interpolating spline 8 E

Si(~Q)' Here, we use data which are rat her uniformly distributed.
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N
24
112
480
1984
8064
32512
130560

dim S2(6.Q)
16
44
148
548
2116
8324
33028

111 - 81100
3.27 * 10-
1.51 * 10-
2.47 * 10-
2.55 * 10-
2.68 * 10-
3.58 * 10-
5.10 * 10-

\.

Table 2. Interpolation by Si(6.Q).

Numerical examples for $~(A), q = 2, ... ,7, where A is a given convex quadrangulation
with diagonals, were given in [46].

Now, we consider the space S~(6.). By applying the above methods, we obtain good
approximations for q ~ 7. We note that according to our numerical experience, for
q = 7, it is advantageous to modify the admissible set (and the correspondingHermite
interpolation set) from the above sections as in Figure 10. (the admissible points added
in one step are marked by filled circles).

VJ.L

Figure 10. Admissible sets for S?(t:..).

In order to obtain good approximations for q = 6, it is necessary to modify the
triangulation 6. as follows. If in the construction of 6. a polyhedron PJ.L is added with
a triangle subdivided, then we also subdivide a neighboring triangle of PJ.L' The corre-
sponding admissible set is shown in Figure 11. (the admissible points added in one step
are marked by filled circles), and the corresponding Hermite interpolation set can be
defined analogously as in Section 4.
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Pj.J.

Vj.J.

Figure 11. Admissible sets for Sg(.6.).

Again, we use our interpolation method to approximate the test function of Franke by
S~(fl), q = 6,7. The results for the Hermite interpolating spline 8 E Sg(b..), respectively
8 E sj(b..), are given in Table 3.

N dirn Sg(b..) 111 - 81100 N dirn S4(b..) 111 - 81100
72 418 2.42 * 10 -1 34 367 5.44 * 10 -1

567 2840 3.87 * 10 -,j 333 2827 5.61 * 10 -z
2113 10204 1.42 * 10 -4 1325 10706 1.18 * 10 -'1

9461 44996 5.83 * 10 -b 6073 48139 5.30 * 10 -b

Table 3. Interpolation by S~(b..), q = 6,7.

Numerical examples for S~(A), q = 7,8, where A is a given convex quadrangulation
with diagonals, were given in [46]. Meanwhile we also computed examples for Sg(A)
which give similar results.

Again, there is some freedom in defining Hermite interpolation conditions. For ex-
ample, we may only impose interpolation conditions at the vertices by replacing the
condition D2 for r = 2 as folIows:

(Here, the unit vectors dj, j = 1,2, are chosen as in Section 4).
We note that the complexity of the algorithm for computing the interpolating splines

on the triangulation b.. is O(cardb..).
After having written long computer programs for spline interpolation, we started

with some tests on scattered data fitting. Let data be given at the vertices of a tri-
angulation b.. constructed by our method. By using these data, we compute the inter-
polation conditions, needed for our spline method, approximatively by applying a local
interpolation method for rr2. With these approximative values, we compute splines from
S~(b..), r = 1,2 (See Table 4. and Table 5.).
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N dirn SH~) 111 - 81100 N dirn Sl(~) 111 - 81100
112 169 9.71 * 10 -2 32 131 2.67 * 10 -1

480 649 5.65 * 10 -2 211 652 1.48 * 10 -1

1984 23'63 7.26 * 10 -;) 745 2085 3.12 * 10 -2

8064 10224 2.22 * 10 -3 3257 8694 3.48 * 10 -.:5

32512 40725 3.87 * 10 -4 14495 38091 3.83 * 10 -4

Table 4. Scattered data fitting by S~(ß), q = 3,4.

N dirn Sg(~) 111 - 81100
72 418 7.39 * 10 -1

567 2840 1.46 * 10 -1

2113 10204 3.75 * 10 -2

9461 44996 6.64 * 10 -;)

Table 5. Scattered data fitting by Sg(~).

Remark 7.2 Lagrange interpolation methods for S2r+1 (~), r ~ 1, were investigated
by Gmelig Meyling & Pfluger [28] (see also Grandine [29]), where the solvability of the
corresponding linear system has to be required. We also note that our interpolation
methods are different from the finite element approach, where Hermite interpolation
conditions are involved. In contrast to our method, all triangles of ~ have to be sub.
divided into at least three subtriangles while in our methods only some of the triangles
have to be subdivided into three subtriangles. Moreover, there are no corresponding
Lagrange interpolation schemes on~. For C1-splines of degree q = 2,3, there are
the classical schemes of Clough & Tocher [15]' Fraeijs de Veubeke and Sander [25, 51]
(see also Lai [36]) and Powell & Sabin [48] on triangles, respectively quadrangles. For
C2-splines of degree q = 5,6,7, Alfeld [2]' Gao [27]' Laghchim-Lahlou and Sablonniere
[34, 35]' Sablonniere [50] and Wang [57] defined Hermite interpolation schemes of finite
element type. We note that our Hermite interpolation schemes are different from those
for S;(~), q ~ 3r + 2 in Davydov, Nürnberger & Zeilfelder [21]. Quasi interpolation
methods were developed by Chui & Hong [11, 12] for sl(~) and by Lai & Schumaker
[38] for Sg(~) (see also [39]) for certain classes of triangulations ß.
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