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Abstract

We describe a general method for constructing triangulations A which are suit-
able for interpolation by S7(A), 7 = 1,2, where S7(A) denotes the space of splines
of degree ¢ and smoothness r. The triangulations A are obtained inductively by
adding a subtriangulation of locally chosen scattered points in each step. By using
Bézier-Bernstein techniques, we determine the dimension and construct Lagrange
and Hermite interpolation sets for S7(4A), r =1,2. The Hermite interpolation sets
are obtained as limits of the Lagrange interpolation sets. The interpolating splines
can be computed locally by passing from triangle to triangle. Several numerical
results on interpolation of functions and scattered data are given.
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1 Introduction

Let A = {TW1]... TIM} be a regular triangulation of a simply connected polygonal
domain Q in IR?. For 0 < r < g, the set

SpA)={s€C™(Q): slpy €M, I=1,...,N}
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is called the space of bivariate splines of degree ¢ and smoothness r on A. Here,
My = span{z’y’ : 1,720, i+ < q}

denotes the space of bivariate polynomials of total degree ¢ and II,; denotes the space
of univariate polynomials of degree q.

A set {z1,...,2m} in Q, where m = dim S} (A) is called a Lagrange interpolation
set for S7(A) if for each function f € C(Q), a unique spline exists such that s(z) =
f(zi), i=1,...,m. If also partial derivatives of f are involved and the total number of

Hermite conditions is m, then we speak of a Hermite interpolation set for S7(4).

Lagrange and Hermite interpolation sets for S7(A°) were constructed for crosscut
partitions A, in particular for rectangular partions with diagonals, in [1, 10, 32, 33, 43,
44, 49, 55, 56]. Results on the approximation order of these interpolation methods were
given in [10, 18, 32, 42, 45, 47, 55, 56].

Much less is known about interpolation by S7(A) for more general classes of triangu-
lations A. Based on the results of Morgan & Scott [40] a Hermite interpolation scheme
for S;(A), q > 5, where A is an arbitrary triangulation, was defined by Davydov {16].
In this case, Lagrange interpolation sets were constructed by Davydov & Nurnberger
(17]. Their method can also be applied for ¢ = 4, where A has to be slightly modified if
exceptional constellations of triangles occur. Earlier, Gao [26] defined a Hermite inter-
polation scheme for S;(A) in the special case when A is an odd degree triangulation.
Interpolation sets for S3(A), where A is a nested polygon triangulation, were given in
Davydov, Niirnberger & Zeilfelder [19]. For ¢ > 37 + 2, a Hermite interpolation set
for S7(A), A an arbitrary triangulation, was constructed by Chui & Lai [13]. In this
case, a Hermite-Birkhoff type interpolation scheme was given by Davydov, Niirnberger
& Zeilfelder [21] with detailed investigations of its approximation order (see also de Boor
& Hollig 7], de Boor & Jia (8], Chui, Hong & Jia [14], Lai & Schumaker [38]). Results
on almost interpolation (i.e. interpolation after small perturbations of the points) by
S3(A) were given by Davydov, Sommer & Strauf [22], and the references therein.

In this paper, we describe an inductive method for constructing triangulations A
which are suitable for interpolation by S7(A), T =1,2. By starting with one triangle,
in each step, we add locally chosen scattered points and obtain a larger subtriangulation
(to which the splines can be extended). Simultaneously, in each step, we determine the
dimension of the spline space on the resulting subtriangulation and construct Lagrange-
respectively Hermite interpolation sets. In this way, we obtain interpolation sets for
S3(4), ¢ > 3 and S2(A), ¢ > 5. For the space SZ(A) it is necessary to split some of
the triangles. In addition, we describe a more general class of triangulations Ag such
that its vertices form an interpolation set for S}(Ag).

In contrast to global methods, the interpolating splines can be computed locally
by passing from triangle to triangle and by solving small systems. We also note that
our interpolation method can be used for the construction of smooth surfaces, where
only data are used - and no derivative. For scattered data fitting the (approximative)
data are computed by local methods. This in contrast to finite element methods for
cubic splines, where all triangles have to be subdivided by a Clough-Tocher split and



derivatives are involved. For details see Remark 7.2. Our numerical results show that
the interpolation methods for functions and scattered data work efficiently, where for
low degree splines some triangles have to be subdivided.

»

2 Construction of Triangulations

In the following, we construct a triangulation A for a set of finitely many points in
the plane which is suitable for interpolation by Sq(A), r =1,2. The triangulation is
constructed inductively as follows.

We first assume that in each step sufficiently many points can be added. In the first
step, we choose three points and consider the corresponding triangle. Now, we assume
that a simply connected triangulation A is already constructed. We denote the vertices

on the boundary of A by vy, ..., v, (in clockwise order). Now, we pass through the ver-
tices v1,...,v, and add a subtriangulation of locally chosen scattered points to each ver-
tex. More precisely, for 4 = 1,...,n, we choose points wy1,...,wy,, Ay > 1 (in clock-

wise order) and consider the polyhedron P, formed by the points vy, Wy—T ey Wi ds - - o
Wy A,y V1, Where wo xg := vp and vpq1 := wy1 (see Figure 1.). We connect the points

W1 - Wy, With v, by line segments and denote the edges of P, with endpoint v, by
€u0s- -+ eur,+1 (in clockwise order). (For details see Remark 2.1.) We choose enough
points wy1,. .., wy 5, such that A, > 2 if two edges in {e,0,...,eux,+1} have the same
slope. Analogously, we choose A, > 3 if an edge in {e,1,...,€u,} has the same slope
as ey0, and a further edge in {e,1,...,€e,,} has the same slope as €ud,+1-

P# . 1,2 .IJ:)\/A

e#y)‘;t

Tl

w/‘_ly/\u—l
Figure 1. The polyhedron P,.

For the case, when r = 2, one triangle of P, has to be subdivided into three subtri-
angles (see Figure 2.) if there do not exist four consecutive edges in {ey0,...,€ux,+1}
with different slopes. In this case, a triangle of P, has to be subdivided which has an
edge ey, with slope different from all other edges in {e,0,...,eux,+1}, or an arbitrary
triangle of P, has to be subdivided if there does not exist such an edge e, .. We sub-
divide this triangle such that we obtain four consecutive edges with end point v, which
have different slopes.



Figure 2. Subdivision of a triangle.

If there exist sufficiently many points such that for each x4 € {1,...,n}, a polyhe-
dron P, with the above properties can be added, we obtain a larger triangulation. If
for some p € {1,...,n}, such a polyhedron cannot be added, we choose some point
and add a triangle with vertex v, which has exactly one common edge with the given
subtriangulation and so forth. By proceeding with this method, we finally obtain the
triangulation A.

Since in our method, there is some freedom in the choice of the polyhedrons P,, we
briefly discuss some algorithmic aspects.

Remark 2.1 Our basic principle is to add a polyhedron P, to some boundary point v,
of the subtriangulation A constructed so far. In order to obtain natural triangulations,
it may be necessary to use the following variant of our method. Given A, we add P, to
that boundary point v, whose boundary edges e, o and e, r.+1 form a minimal angle.
In our computations, we choose the points wy1,...,w,, X, in a circular ring of the cone

formed by e, 0 and ey x,4+1 such that P, \ {eu0, ey, +1} does not intersect A.

We note that by applying the spline method described in the subsequent sections we
also obtain the interpolation sets for S3(A), 7 = 1,2, where A is a convex quadrangu-
lation with diagonals in [46], where different methods are used.

3 Construction of Admissible Sets

In this section, we construct admissible sets for spline spaces Sz(A), where ¢ > 3 if
r=1,and ¢ > 5 if r = 2. In order to describe admissible sets we need some notations
(cf. [5, 6,9, 23, 24]). Let TH = A(vgl],vgl],vgl]), I=1,...,N, be the triangles of A. For
s € Sy(A), the polynomials pll = Slrum € fIq, l=1,...,N, can be written as

Py = 3 o) 8a®i(r,9)8)(z,9)85(z,y), (z,y) € T, (1)
i+j+k=q .

where @, € I, U= 1,2,.3, is uniquely defined by @#(vg]) = 640, v =1,2,3. The
representation (1) is called the Bézier-Bernstein form of pl!l and the real numbers

t

a; ;. are called the Bézier-Bernstein coefficients of plil.



Given ¢ = (4,7,k,1), we use the abbreviation a(c) = apjk A subset {01,...,0m}
of I ={(4,5,k,1): i+j+k=g¢q, I =1,...,N} is called an admissible set for S7(A)
if for every choice of coefficients a(o,) € R, u = [,...,m, a unique spline s € S7(A)
exists with these coeffieients in the representation (1) of s. We remark that the notion
of admissible sets is closely related to the notion of minimally determining sets (cf.
(3, 4, 31, 53, 54]). However, we need this notion for describing the interpolation sets in
a unified way and for the argumentations in our proofs.

We need the following simple lemma on the connection of admissible sets and the
dimension of S7(A).

Lemma 3.1 Let {01,...,0m} be an admissible set for Sq(A) and for p € {1,...,m},
let s, € S3(A) be the unique spline for which a(oy,) = éup, v=1,...,m, in (1). Then
{s1,...,8m} forms a basis of Sj(A) and m = dim S7(A).

Proof of Lemma 3.1: Let a spline s € S7(A) with coefficients a(sy),...,a(om) in its
representation (1) be given. It follows from the definition of the splines s1,..., sm, that
the spline 37 ; a(oy)s, has the same coefficients in (1). Since {o1,...,0p} is an admis-
sible set, we obtain s = 370, a(0y)s,. A similar argument shows that 3570 ) a5, = 0
implies a; = ... = &, = 0. This proves Lemma 3.1. |

In the following, we construct admissible sets for S7(A), where r = 1,2. This is done
by assigning a subset MM of I = {(4,7,k,1): i+j +k = ¢} to each triangle TW of A.
In this case, for simplicity we say that {(¢,5,k) : (i,5,k,1) € MU} is assigned to T,
For r =1, i.e. for the space S;(A), we assign the following sets.

Q=A{G4k) : i+j+k=q}
A ={(i,j,k) €Q: k>2}
Bi={(4,5,k)€Q: k>2, i#q-—-2}
Cir={(,5k)eQ: j>22, k>2}.

Case 1. S;(A), ¢ > 3.

Here, we refer to the construction of the triangulation A (see Section 2). We recall
that A is constructed by adding to each boundary point v, of the subtriangulation,
constructed so far, a polyhedron P, (see Figure 1.). Therefore, in order to construct
an admissible set for SI(A), it essentially suffices to describe which sets are assigned
to the triangles of P,. In Figure 1., we set w,o = Wu—1Aumty Wurutl = Vpt1. By
construction of A, three edges e, ., €y ,41, €uu+2 with different slopes exist. We now

denote the triangles of P, by Tll = A(vgl'“],vg"l],vgl"‘]), where vgl"l] = vy, vg”] =
Wy,r s Ugul] = Wy, 1= 0,1,...,v+1, and v [l”] = Uy, Ugul] = Wy +1 vgyl

]

Wy, V1 =V +2,...,A,. We note that the sets Whlch will be assigned to each Tl
are understood with respect to the representation (1) of plt1l ¢ H on Tkl

We assign the set Q to the first triangle in the construction of A. Moreover, to each

polyhedron P,, we assign the following sets: We assign the set B; to Tl the set C)



to T+ and the set A; to the remaining triangles of P, (see Figure 3.). If for some g
such a polyhedron cannot be added, we assign the set A, to the triangle with vertex v,
that has exactly one common edge with the given subtriangulation.

»

P, :

Figure 3. The sets A;, By and C; assigned to P,.

In this way, we assign to each triangle T of A a set of indices (by adding the index
! to the elements (4,7, k)). The union of all such sets yields a subset of I = {(i,3,k,1) :
i+j+k=gq,1=1,...,N} denoted by A;.

Theorem 3.2 For q > 3, the set Ay is an admissible set for S’;(A).
For r = 2, i.e. for the space Sg(A), we assign the following sets.

={(,5,k): i+ji+k=q}

—{(Zj,k)EQ k> 3}

By ={(4,5,k) €Q: k>3, i#q—3}

Cy ={(1,5, k) EQ k>3, i#q-3, (i,5,k) # (¢ ~4,1,3)}
Dy = {(4,4,k) 1723, k>3}

In addition, if some triangle of A is subdivided, we assign one of the following sets.

) {(0,0,5), (1, 0,4)} yif g =35,
02 = {(7‘ ]7k)€ k237 i7j#q_3a (Zajak)7é(q_4:173))
(1,4, )#(lq—4,3)} ,if ¢ 26,

Dy = {(65,k)€Q: 123, k23, i#¢-3, (4,5,k) # (¢ -4,1,3)}, if¢> 7.

Case 2. SZ(A), q>5.

As above, we refer to the construction of A (see Section 2). We recall that A is
constructed by adding to each boundary point v, of the subtriangulation, constructed
so far, a polyhedron P, (see Figure 1.). Therefore, in order to construct an admissible
set for Sg(A), it essentially suffices to describe which sets are assigned to the triangles
of P,. In Figure 1., we set w, o = Wy—1 o1y Wudut+l = Vpsl-




We assign the set Q to the first triangle of A which we constructed. Moreover, to
each polyhedron P, (see Figure 1.), we assign the following sets.
Case 2a. No triangle of P, is subdivided.

In this case, by comstruction of A, four edges e, ., ..., e, +3 with different slopes
exist. We now denote the triangles of P, by Tl = A(vgl"l], vgl"l],v:[;l"l]), where vgl'“] =
Vys vg”ll = Wy, 'ug"‘] = Wyum+1, Y1 =0,1,...,v+2, and vgl"l] = Uy, vg"ll = Wy 41
vg"l] = Wy, V1 =V +3,...,A,. We assign the set By to T[l"], the set Cp to Tlv+1]
the set Dy to TU+2! and the set A to the remaining triangles of P, (see Figure 4.). We
note that the sets which will be assigned to each T!1! are understood with respect to

the representation (1) of pltl ¢ ﬁq on Tlnl,

P,

Figure 4. The sets Ay, B, C7 and D, assigned to P,.

Case 2b. Some triangle of P, is subdivided.
Let T{] be the triangle that is subdivided by the subdividing point y,, from its
interior into three subtriangles T9). = A(v{,vd,vg), o € {0,1,3}. We now denote

. Lyl ] [l L L
t%e ]trla.ngles of P, by Tlnl = A(v[1 d,v% 1]],1;;[3 1]), x[;zrh]ere vg - v[;,,]vg - Wy s
V3 = Wh41, 11 =0,1,...,v+1, and v =, U Y = W1 U3 Y = Wy, V1=
v4+2,..., . v < Ay, then we set v = vl = vy, v =0} =w,,, 1] =vi =0} =

Yuw, V3 =18 = wy,r1 and T2 = Tl (See Figure 5.).



1_ .3 _
U3 = U3 = Wup+1

=V = Wy

Figure 5. Notations for the subdivided triangle.

In this case, it follows from the choice of Tl] and Yu, that the edges &g = ¢, ,, €1 =
y#,,,] €2 = €uu+l and €3 = e, 4o have different slopes. We assign the set By to
Fl , the set Cy to T, 1)] the set Dy to T[(l"’”)l o = 2,3, and the set As to the
remammg triangles of P,. Alternatlvely, for ¢ > 7, we assign the set By to TU&0),
the set Cp to T3 the set Dy to T DI the set Dy to T2 and the set Ay to
the remaining triangles of P, (see Figure 6.). If v = A,, then we set v = v} = v,
v =1 = Wy A, +1s vi=v) =0} = YuAus vi=v}= wyx, and T2 = 71l The
assignment of the sets Ay, By, Co, Do, respectively As, By, Ca, Dy, Dy, is analogous as
above. We note that the sets which will be assigned to each Tln] | respectively T )
are understood with respect to the representation (1) of the polynomial piece on Tl
respectively Tkl

D2 D2

D2 C2 D2

B, Bs

Figure 6. The sets By, Ca, D5 (respectively By, Ca, Dy, Dj) assigned to Tkl

If for some p such a polyhedron cannot be added, we assign the set Ay to the triangle
with vertex v, that has exactly one common edge with the given subtriangulation.

In this way, we assign to each triangle T of A a set of indices (by adding the
index ! to the elements (7,7,k)). The union of all such sets yields a subset Ay of
I={(G4kl): i+j+k=9q, Il=1,...,N}.

Theorem 3.3 For q > 5, the set Ay is an admaissible set for Sg(A).



For proving our results on admissible and interpolation sets, we need the follow-
ing well-known result (c.f. [6, 9, 23]) which expresses smoothness conditions between
neighboring triangles. Let A* be a triangulation consisting of the two triangles 7+l =
A}, v3,93), T2 = A(v},v3,v}) and let the polynomial pieces p*l = s| .y € I, [ =
1,2, of a spline s € SS(A*) be given in the form (1) (with corresponding coefficients

«[l o
o itivk=q).

Lemma 3.4 The following statements are equivalent.
(1) s € Sg(A")
(i) For all p € {0,...,7} :
*[2 * ! 1 * ] * * . .
a E,J]',P = > a 2 O (v]) 87 (V)5 (v)), i+ =g,

141, 471,k1 91517k !
i1+j1+k1=p

where ®, € I, p=1,2,3, is uniquely determined by ®,(v}) =6,.,, v=1,2,3.

It is well known (cf. [9, 23]) that for r = 1 the smoothness conditions (4¢) of Lemma
3.4 have the geometric interpretation that the corresponding Bézier-Bernstein points lie
in the same plane. Moreover, if the edges [v},v}], [v], vi] have the same slopes, then
for » = 1 the geometric interpretation of these smoothness conditions is that this plane
degenerates to a line that contains three of the corresponding Bézier-Bernstein points.

The next lemma will be needed in Section 6. If we assume that the edges [v],v]]
and [v],v}] have different slopes, then the following result follows easily from Lemma
3.4 and some elementary computations.

. S «[2 «[1
Lemma 3.5 Let s € Sg(A Yy g 25 andi+j =q—-2. Ifa E‘]]»,z, a E'lil,j+j1,k1’

t1+71+k1 =2, (41,51, k1) € {(0,1,1),(0,2,0)} and either 0*5,1314-1,1 or a*£,1;+2,0 are given,

then the coefficients a*glj‘ilyj"r'jl;kl’ 1451+ k=2, 1 =1,2, are uniquely determined.

4 Construction of Interpolation Sets

By using the above results on admissible sets we construct Lagrange- and Hermite
interpolation sets for the spline spaces Sj(A), where g >3 ifr=1,andg>5ifr =2.
For simplicity, we use the same symbols as in Section 3 for the interpolation sets.

In the following, we construct Lagrange interpolation sets for S7(A), r = 1,2 (si-
multaneously with the admissible sets constructed in Section 3).

Given a triangle T' = A(v;,v9,v3) in A, we choose one of the following point sets in
T. For r =1, i.e. for the space S;(A), we consider the following sets.

Set @: Choose g+ 1 disjoint line segments py,...,pg41 iIn T. For 4 =1,...,¢+1 choose
q+2—ppointsonp,.

Set A;: Choose ¢ —1 disjoint line segments ay,...,aq—1 inT. For p =1,...,¢—1 choose
g — 4 points on a,.




Set Bi: Choose g —2 disjoint line segments by,...,b,—2 in T. For p =1,...,¢9—2 choose
q — p points on by,.

Set C1: Choose ¢ —3 disjoint line segments ¢;,...,cq—3inT. For p =1,...,¢—3 choose
q — 2 — p points on ¢,

Note that we choose points and line segments according to the following general
rules: the points should not lie on triangles considered before and the line segments
should be parallel with respect to a certain direction and should have all a non-empty
intersection with both of the edges [v1,vs], [v1,v3].

In Section 3, we described which index sets Q, A;, B, C; are assigned to the
triangles T[l], [ =1,...,N, of A. Now, we choose point sets with exactly the same
symbols @, A;, By, C) for the triangles T 1=1,...,N (See Figure 3. and Figure

)
l @
53

P
A
1

By
C1
By
A a
SHA) SG(A

Figure 7. : Lagrange interpolation points.

The union of these points sets is denoted by £; for A.
Theorem 4.1 For q > 3, the set L1 is a Lagrange interpolation set for S;(A).

For » = 2, i.e. the space Sg(A), we consider the following sets.
Set Q: Choose ¢+ 1 disjoint line segments py,...,pg+1in T. For p =1,...,¢+1, choose
g+ 2 — p points on p,.

Set A;: Choose ¢ — 2 disjoint line segments a1,...,aq—2 in T. For p =1,...,¢ — 2,
choose ¢ — 1 — u points on a,.
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Set By: Choose q — 3 disjoint line segments b1,...,b,—3 in T. For p = 1,...,¢ - 3,
choose ¢ — 1 — y points on b,.

Set Cy: Choose g—3 disjoint line segments ¢y,...,¢cq—3in T. For p =1,...,¢—4, choose
g — 1 — u points on c, and choose the point on ¢;—3 which lies on the edge [v1,v3].

Set Ds: Choose ¢ — 5 disjoint line segments dy,...,dg—5 in T. For p = 1,...,¢ — 5,
choose ¢ — 4 — . points on d,,.

In addition, if T" has to be subdivided, we consider the following sets for ¢ = 5, 6.

Set Cy: If ¢ = 5, then choose two distinct points on the edge [v1,v3]. If ¢ = 6, then
choose three distinct points on the edge [v1, v3], two different distinct points on the edge
[v2,v3] and one point from the interior of T'.

In this case, for ¢ > 7, we choose the following set.

Set Dy: Choose q — 6 disjoint line segments dy,...,dg—¢ in T. For p =1,...,¢ -7,
choose ¢ —4— u points on d, and choose the point on dq_g which lies on the edge [v1, v3].

Note that we choose points and line segments according to the above general rules.

In Section 3, we described which index sets Q, Ay, Ba, Cs, C~'2, Dy, Dy are assigned
to the triangles of A. Now, we choose point sets with exactly the same symbols for the
triangles T, [ =1,..., N (see Figure 4., Figure 6. and Figure 7.). The union on these
point sets is denoted by £, for A.

Theorem 4.2 For ¢ > 5, the set Ly is a Lagrange interpolation set for Sg(A).

In the following, we construct Hermite interpolations sets for S7(A), r = 1,2 (simul-
taneously with the admissible sets constructed in Section 3). For doing this we describe
some basic Hermite interpolation conditions which we obtain by using the above La-
grange interpolation sets and taking limits, which means that certain points and line
segments coincide. Roughly speaking, the corresponding Hermite interpolation condi-
tions are obtained as follows. If certain points on a line segment coincide, then we pass
to the directional derivatives along the line segment, and if certain line segments coin-
cide, then we pass to the directional derivative of a unit vector which is not collinear to
the directional derivative along the line segment.

For describing Hermite interpolation conditions, we denote by f; the partial deriva-
tive in direction of the unit vector d. The higher partial derivatives are denoted by
fdgdf’ where the unit vectors d; and dy are not collinear. Given a point z = (z,y) € Q
and w a natural number, we set D f(z) = (fa (z),fd‘i,_ld2 (2),- -, fag (2))-

For simplicity, we use the same symbols as in Section 3 for the Hermite interpolation
conditions. Let f € C'(2) be a sufficiently differentiable function. For a given triangle
T = A(v1,v2,v3) in A, one.of the following Hermite interpolation conditions is imposed
to a polynomial p € fIq on T at a point in T. Here, d; denotes a unit vector in direction

of the edge [v3,v;], 7 = 1,2. For » = 1, i.e. for the space S(}(A), we consider the
following conditions.
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Condition Q: D“p(v3) = D“ f(v3), w=0,...,q.
Condition A;: D¥p(v3) = D“’f( 3), w=0,...,q—2.

Condition By: D¥p(v3) = D¥f(vs3), w=0,...,q — 2, except pd§—2(v3) = fda,_z(vg).
Condition Cy: D*p(v) = D*f(v), w=0,...,q — 4, where ¥ = 1(vy + v3).

Note, that v3 and 7 should not lie on triangles considered before.

In Section 3 we described which index sets @, A;, B;, C; are assigned to the
triangles TH 1 = 1,...,N, of A. Now, we choose Hermite interpolation conditions
for the polynomials p! at a point of TW, [ =1,..., N, with exactly the same symbols
Q, A, B, Ci. The union of these points is denoted by H; for A.

Theorem 4.3 For q > 3, the set H; 1is a Hermite interpolation set for S;(A).

For r = 2, i.e. the space Sg(A), one of the following Hermite interpolation conditions
is imposed to a polynomial p € l:Iq on T at a point in 7.

Condition Q: D“p(v3) = D¥f(v3), w=0,...,q.

Condition Ay: D“p(v3) = D¥f(vs3), w=10,...,q— 3.

Condition By: D¥p(v3) = D¥f(v3), w=0,...,q — 3, except Pyg-3 (v3) = fdg—s(vg).
Condition Cy: D“p(v3) = D¥f(v3), w=10,...,q — 3, except pd.;-a(vg) = fdg—a(v;g) and
pd‘{_4d2(v3) = fd‘{“‘dg (US)'

Condition Dy: D“p(7) = D¥f(7), w=0,...,q — 6, where ¥ = %(vqy + v3).

In addition, if 7" has to be subdivided, we impose the following Hermite interpolation
conditions.

Condition Cy: D“p(vs) = D¥f(vs), w = 0,...,q — 3, except pd‘l,‘dg(m) = fd‘l,déa(vg),
wherea+8=¢~-3, a, $=0,1, if ¢ > 6, and pd?(vg) = fdix(vg), a=0,1,if ¢ =5.

Note, that vz and 7 should not lie on triangles considered before.

In Section 3 we described which index sets Q, Ay, By, Ca, Ca, Dy are assigned to
the triangles TH 1=1,...,N of A. Now, we choose Hermite interpolation conditions
for the polynomials pl! at a point of TH, 1 =1,..., N, with exactly the same symbols
Q, Ay, By, Cy, Cy, Dy. The union of these points is denoted by H, for A.

Theorem 4.4 For q > 5, the set Hy is a Hermite interpolation set for Sg(A).

For later use, we discuss a fundamental connection of the partial derivatives of a
polynomial (given in the form (1)) at a vertex and its Bézier-Bernstein coefficients (cf.
(6, 13, 23)).

Let p € fIq on T' = A(vy,vg,v3) be given in the form (1) and let d;, j = 1,2, be unit
vectors in direction of the edge [v1,v;41], 7 =1,2. For all 0 < o+ 3 < ¢, we have

gl 1 )
pd‘;‘dg(x’y) = Z ai)j’ki!j!.k:!((bl@%@g)d?dg(xvy)v (xay) eT.
i+j+k=q |
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Since (®%) =0, p > 1, it follows from Leibniz’ rule
3 1

(212)28)ag = Y (2)(@1)gan (B @K, i4+j +k=g.
| e

Analogously, since o) Jav =0, v > 1, we have
2/d5

(219325) 108 = Z Z )(21)gan s (D) (BR)ag, 1+ 5 +E=¢.

p=0v=0

Thus,

i 1' FRN@1)G T (21577 (22)4 (83)5, i Butw g j—pm ke
((I) o (I)3)d°‘dﬁ - Z Z u (t—a— ,3+/l-+1/) %] ;A)'(Ic1 v)! 2<D1 “ g (D% (1)3 :

u=0v=0

Since @, (vy) = 61,4, 1 =1,2,3, we get for j € {0,...,a}, k€ {0,..., 8},
(85 21®5) 4o 15 (v1) = () (§) 7oty (@) (21)5;  (92)], (B9)5,,

and (‘I’i‘b‘%@g)dddﬂ (v1)=0,ifj >aor k> B, 1 +J + k= q. Therefore, we obtain
172

(@157 (21)57 5 (@2)] (23)5, agj—i sk (2)

I Mm

o
Pgeq? (v1) = ZFZT 2_:

It easily follows from (2) and induction that if the Bézier-Bernstein coefficients

Aq—j—kjks J =0,...,0, k=0,...,08, are determined, then all derivatives P (v1),
1 2
a1 =0,...,0, 51 =0,...,08, are determined.
Conversely, if all these derivatives are given, then the Bézier-Bernstein coefficients
Gq—j—kgk, J =0,...,a, k =0,...,0, are uniquely determined. This can be seen by

induction and the following equation which is an immediate consequence of (2).

o
fremhes = %pw"(”l) Z( ) (@) ae-s-0s0
Sk ®1)a I/ (®1)a, \PTK o 5
——ZZ (q>2)d1) (Z%m) Qg—j—k,j.k: (3)
]= k=0

5 Proof of the Main Theorems for S;

In this section, we prove our main theorems for S,}(A) (Theorem 3.2, Theorem 4.1 and
Theorem 4.3). We begin with the proof of our result on admissible sets. For doing this,
we need Theorem 5.1.
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Let P = P, be a polyhedron as in Figure 1. and A* be a triangulation of a domain
Q* such that P and A* have common edges [v, wp], [v,wr+1]. (For simplicity, here we
omit the index p). By adding the triangles of P to A* we obtain a triangulation A%.
We denote by Ap the union of sets chosen in Case 1 of Section 3.

Theorem 5.1 Let ¢ > 3. If A* is an admissible set for S;(A*), then A =AU Ap 1s
an admissible set for SH{A}).

Proof: Let us first assume that A = 1. We set m1 = (4) — 1, mp = (%;%) and m =
card(A). Since A* = {01,...,0m—m;—m,} I8 an admissible set for S;(A*), g >3, it
follows that for every choice of coeflicients a(o,), 4 = 1,...,m—m;—ma, a unique spline

s* € S,}(A*) exists with these coefficients in the representation (1) of s*. Since eg and ey

have different slopes, it follows from Lemma 3.4 that the coefficients aElgl 2 agl,;],j, i+j=
g—p, p=0,1,of pltvl € ﬁq on Tl = A(v,wy,wyy1), v = 0,1, in the representation
(1) are uniquely determined. Moreover, Lemma 3.4 implies that agﬂ2’0’2 is uniquely
determined. Now, it is easy to see that for every choice of coefficients a(o,), p =
m~—my —mg+1,...,m —mgy, where {om_m,—mg+1,--+,Tm-my} = B1 = {(3,7,k,l0) :
t1+J+k=gq, k2>2, 1+# g— 2}, a unique polynomial plol ¢ fIq on Tl exists with
these coeficients in the representation (1) of plol. It follows from Lemma 3.4 that the
coefficients aEl}] p tti=q—p, p=0,1,0f pl] are uniquely determined. Therefore, for
every choice of coefficients a(o,), p =m —mo+1,...,m, where {m—m,+1,..-,0m} =
Ci ={(G,j,k,l1): i+j+k=gq, j>2, k> 2}, a unique polynomial plt] € ﬁq on Tk
exists with these coefficients in the representation (1) of plel. Since all differentiability
conditions for r = 1 at the edges ey, e1, e; have been involved, we get that for every

choice of coefficients a(c,), # =1,...,m, a unique spline s from S;(A}B),

_ ) sMzy), if (z,y) € QF,
S(x7y> - { p[lu](x’y) , lf (x’y) € T[l,,]’ v = 0,1,

exists with these coefficients in the representation (1) of s. This shows the case A = 1.
If A > 1, we may assume that the edges ex_; and ey, have different slopes. It follows
from Lemma 3.4 (applied to the edges e, ..., ex—2) that for every choice of coefficients
corresponding to the sets A; = {(4,7,k,0,) : i+j+k=¢q k>2}, v=0,...,)A =2,
unique polynomials p["’] € I:Iq on T in the representation (1) exist with these coeffi-
cients in the representation (1) of pl v=0,..., 1 -2 Now, we argue as in the case
A = 1. This proves Theorem 5.1. |

Corollary 5.2 For q¢ > 3, we have
dim SHAR) = dim SHA®) + MY + (%} - L.

Now, we prove Theorem 3.2.
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Proof of Theorem 3.2: It is obvious that the set @ is an admissible set for the space

defined on the triangle chosen in the first step of our construction. Let A be the
triangulation that consist of the triangles of A and the triangles of the polyhedrons
P,, p=1,...,n It follows from induction and Theorem 5.1 that an admissible set
for S,}(A) and the union of sets assigned to the triangles of P,, 4 =1,...,n, yield an

admissible set for Sl(/:\.) Moreover, it is obvious that if a polyhedron at v, cannot be
added and there exists a triangle with vertex v, which has exactly one common edge
with A, then the assigned set A; leads to an admissible set. This proves Theorem 3.2. B

Next, we prove Theorem 4.1. For doing this, we need Theorem 5.3 below. Let P,
A*, Q) v, wy,...,wry1, be defined as in the beginning of this section and denote by
Lp the union of sets chosen in Section 4 for the case 7= 1.

Theorem 5.3 Let ¢ > 3. If L* is a Lagrange interpolation set for SI(A*) then L =
L* U Lp is a Lagrange interpolation set for Sl(A* ).

Proof: Let us first assume that A = 1. We set m;, my as in the proof of Theorem 5.1
and m = dim S;(A}‘,). Moreover, let £* = {z1,..., Zmem;-my} C £ = {z1,...,2m}
and a spline s € S(}(A}‘;), g > 3, which satisfies s(2;) =0, i = 1,...,m, be given. We
will show that s = 0. Since £* is a Lagrange interpolation set for S;(A*), it follows
that slg» = 0. Since s is a Cl-spline the function values and all first derivatives of
plo] = 8lruol € IT, (respectively pl) = 8lpuy € I1,) vanish at ey (respectively ep). Let
d; be a unit vector in direction of e;. Since ey and e; have different slopes, it follows
from (2), (3) and the proof of Theorem 5.1 that pggl (v) = pg%](v) = 0. Thus,

Depll(v) =0, w=0,1,2. (4)

Let b, = {(z,y) € Tl : auT + By + v, =0}, p=1,...,9 — 2, be the line segments
chosen in Tlol such that ¢ — p points of {zm_ ml_m2+1,...,zm_m2} lie on by, p =
1,...,¢ — 2. We claim that

pllly, =0, u=1,...,¢~2. (5)

We prove (5) by induction on p. We denote by z[ ol , the intersection points of b,, u =
1,...,9 — 2, and e3. Since the function value and the derivative (in direction of ;) of
pl! °]|b € I1, vanish at z%o] it follows from the interpolation conditions of ple! on b; that
the claim holds for 4 =1. We assume that (5) holds for p € {1,...,7}, 7 < ¢—3, and
show that (5) holds for 7 + 1. By induction hypothesis, a polynomial glol € H -7 exists

such that n
pl(z,y) = T (auz + Buy + 7)a)(z,9), (z,y) € T
u=1
Since the function value and the derivative (in direction of byt1) of il +1 € Hq —n
vanish at zgi]l, it follows from the interpolation conditions of plo! on b n+1 that qll, 1 =

0, and p[l"]h,n+1 = 0. This proves (5).
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From (4), we conclude pllo) = 0. Since s is a C}-spline the function values and all
the first derivatives of pl"t] vanish at e;. Thus,

. pr[h](v) =0, w=0,...,3. (6)

Let ¢y, p=1,...,q— 3, be the line segments chosen in Tl such that q — 2 — p points
of {zm—my+1,---,2m} Heon ¢y, p=1,...,¢— 3. Analogously as in the proof of (5), we
can see that

P, =0, p=1,...,4-3.

From this and (6), we conclude that pltl = 0 and s = 0. This proves the case A = 1.

If A > 1, we may assume that the edges ey_; and e),1 have different slopes. Since s
is a Cl-spline the function values and all first derivatives of plo) = 8|puol € fIq vanish at
eo. Let a,, p=1,...,¢ — 1, be the line segments chosen in Tl guch that g — 1 of the

chosen points lie on a,, 4 =1,...,¢— 1. Analogously as in the proof of (5), we can see
that p[l°]|a“ =0, p=1,...,94~1. Since D‘”p[lol(v) =0, w=0,1, we have pll = 0. By
proceeding with these arguments, we obtain s|rq,} = p[l"] =0, v=0,...,A —2. Now,
we can argue as in the case A = 1. This proves Theorem 5.3. |

Proof of Theorem 4.1: It is well known that the set Q is a Lagrange interpolation set
for the space defined on the triangle chosen in the first step of our construction. Let A
and A be defined as in the proof of Theorem 3.2. Then it follows from induction and
Theorem 5.3 that a Lagrange interpolation set for S(}([l) together with the points chosen
on the line segments in the triangles of P,, 4 =1,...,n, form a Lagrange interpolation

set for Sé(&) This proves Theorem 4.1. o

Next, we prove Theorem 4.3. For doing this, we need Theorem 5.4 below. Let P,
A*, Q, v, wy,...,Wry1, be defined as in the beginning of this section and denote by
‘Hp the union of the sets chosen in Section 4 for the case r = 1.

Theorem 5.4 Let ¢ > 3. If H* is a Hermite interpolation set for S;(A*), then H =
H*UHp s a Hermite interpolation set for S(}(A}S).

Proof. Let us first assume that A = 1. Let a spline s € S;(A}B) which satisfies the
homogenous interpolation conditions be given. We will show that s = 0. Since H*
is a Hermite interpolation set for S;(A*), it follows that s|p» = 0. By Lemma 3.4,
aﬁfg}p =0,1+j=q—-p, p=0,1, where aEg}k, i+ 7+ k = q, are the coefficients of
plol = 8|puol € ﬁq in the representation (1), where Tl = A(v, wq, w;). Since the slopes
of eg and ey are different, Lemma 3.4 implies that al[llﬁ]Q’O’Q = 0. We claim that

1 . .
aEJ.?},q—p—j:O,]=0,...,q—2—/.L,/J,‘——O,-n,q_3' (7)

We prove (7) by induction on x and by using the homogeneous interpolation conditions at
wy. Let d be a unit vector in direction of the edge [wy, wo]. By (3) and the interpolation
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conditions p (wl) =0, j=0,...,9—2, (7) holds for x = 0. We assume that (7) holds
for p € {0,...,1}, n < ¢—4, and show that (7) holds for n+ 1. Let d; be a unit vector
in direction of the edge e; = [wy,v]. It follows from (3) that

»

glbol _ lo] [lo]
nil,aq —-n=1—j T 9jp¢[1§+1dj(w1)+ Z 97113%11,11,«1 —-51-n-1
J1=0
[l
+ Z Z Oivin 1%y grg—in—g 3 =0, ¢ =0 =3, (8)
11=0 j1=0

where 05,0515, 0, 5,,; are suitable real numbers. By induction hypothesis the third term
on the right hand-side of (8) vanishes. Since p[ ol (w1) =0, 7=0,...,q—7n—3, it

dIt @
follows from (8) and by induction on j that aEH-]l,j,q—n—l—j =0,7=0,...,g—7mn—-3
This proves (7). From this and aEl"J’-}k =0, (i,5,k) € Q\ By, we conclude that plol = 0.

Since s is a C'-spline, the function values and all first derivatives of plt] = 8lpun € fIq
vanish at e; and e;. Thus,

Deplil(v) =0, w=0,...,3. (9)

Now, we claim that
pd#![wl,wg _0 /J'_O "7q_4' (10)

We prove (10) by induction on u. Now, let d be a unit vector in direction of [wy, we].
Since the function value and the first derivative in direction of d of plt |[w1 wz] € I, vanish
at wy and wy, it follows from the interpolation conditions of plt) at 7 = (w1 +w2) that
the claim holds for 4 = 0. We assume that (10) holds for u € {0,. .. ,n}, n<q-5,and
show that (10) holds for 4+ 1. In the following, we use that for g € C¥(Q2),

w

I(erbr1+aba)” = Z (:J) a‘f—oaggéi"””ég’ (11)
o=0

where 61, 62 and @36, + 269 are unit vectors and w is a natural number. Let dy be a unit
vector in direction of the edge [wq,v] and «, 8 # 0 be given such that d; = ads + Bd.
By (11), we have

n+1
! L
p,[fll,lﬂd,,(wQ) —a"“pfinlldp(wz ) + 21 (1Y) g1 ”5”pd$]+1 o oo (W2), p=10,1. (12)
. o=
Again by (11), we obtain
] R ]
pd§+1_°dp+o(w2) == Z (7]+1‘_U)a0"‘7]—1(—ﬁ) pdr1,+1 —c— po+a+‘r(w2)’ g = 1),77+1
=0
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From this and the induction hypothesis it follows that pgéll_,dp wL(w2) =0, ¢ =
1,...,7+ 1, and therefore (12) implies

11]" l
P (w2) = &gk (w2) =0, p=0,1. (13)

(]

d117+1dp

conditions of pgrl,]ﬂ €M,y at = (w1 +wy) that pZ},L][wl’wQ] = 0. This proves (10).
1 1

Moreover, p (wy) =0, p =0,1. Then it follows from (13) and the interpolation

From this and (9), we conclude p/"} = 0 and s = 0. This proves the case A = 1.
If A > 1, we may assume that the edges ex—; and ey, have different slopes. f&nal—

ogously as in the proof of (7) the interpolation conditions of pllol = slpuer € g at
)

wy imply that a5 ., . =0, 7 =20,...,¢=2—p, p=0,...,0 -2 Since s is
a Cl-spline, we conclude plol = 0. By proceeding with these arguments, we obtain
S| = p[l"-] =0, v=0,...,A—2, and s = 0. This proves Theorem 5.4. |

Proof of Theorem 4.5 The proof is similar to the proof of Theorem 4.1 by using Theo-
rem 5.4 instead of Theorem 5.3. |

6 Proof of the Main Theorems for Sg

In this section we prove our main theorems for Sg(A) (Theorem 3.3, Theorem 4.2 and
Theorem 4.4). We begin with the proof of our result on admissible sets. For doing this,
we need Theorem 6.1, and Theorem 6.3. Let P, A*, Q*, A%, v, wg, ..., wxy1 be defined

as in the beginning of Section 5 and denote by Ap the union of sets chosen in Case 2a
of Section 3.

Theorem 6.1 Let ¢ > 5. If A* is an admissible set for Sg(A*), then A= A* U Ap s
an admissible set of Sg(A‘j;).

Proof By our construction we have A > 2. We first assume that A = 2. We set
my = (5,0 -1 my = (%) =2 ms = (7% and m = card(A). Since A* =
{01, ., Om—mi—my—ms } iS an admissible set for Sg(A*), q > 5, it follows that for every
choice of coefficients a(o,), # =1,...,m —mj — my — m3, a unique spline s* € Sg(A*)
exists with these coeflicients in the representation (1) of s*. Since eg, e;, e and e3 have

different slopes, it follows from Lemma 3.4 that the coefficients agl’g-!p, agff,],j, it+j =
[ta]

q—p, p = 0,1,2, and Qqp ik j+k=p p=2012, of p[l"] € ﬁq on Tl =
A(v,wy,wyr1), v = 0,1,2, in the representation (1) are uniquely determined. We

claim that the coefficients agl_]&j’k, j+k =23, (and a,[]lﬂls,w, agi]&w) are uniquely de-
termined. We may assume that v = (0,0), w, = 7,(cosw,,sinw,), v =0,...,3, where
18




T, >0, v=20,...,3, and 27 > wg > w1 > wy > w3 = 0. By Lemma 3.4 the vector

xt = (0‘511]3 3, 07 E;l]3 2,1 al[ll}.]g,lg, agl_]3’0,3) satisﬁes
bl —1 0 0
(‘I’gd(w))2 0 -1 0 —
0 0 -1 o) ’
0 10 (@Rwy))y

[Lo] in(wo— .
where v € IR* is suitable chosen. Since <I>[2 (wy) = %%:—;%, <I> J (wg) = 2%;2((‘:’;_—:3, it
follows from some elementary computations that

sin{wp) sin(wg — we) sin(wy ) sin{w; — we)

D=- (sin{ws) sin(wp — wy))?

(Here, D is the determinant of the above system.) Since eg, e1, es and e3 have different -
slopes, we have wyp — w2, wp — w3, w; — w3 # 7. Thus, D # 0. Note that wg —

wi, W1 —we, wp —ws # w. This shows that the coefficients agl_]s)j’k, j+k =3 (and
gLl

ay23 0,35 gi]3’3,0) are uniquely determined.

Now it is easy to verify that for every choice of coefficients a(c,), p =m — m; —
mg —m3 + 1,...,m — my — m3, where {Om—m;~my—ms+1,---)Om-my—ms} = B2 =
{G,7,k,lo) : i+j+k=gq, k>3,17# q—3} a unique polynomial plol ¢ ﬁq on
Tlol exists with these coefficients in the representation (1) of pll. By Lemma 3.4 the
coefficients a[;]p, i+j=q—-p, p=01,2 of plal are uniquely determined. Since
(¢ -4,0,4,0L) € Co = {(4,5,k0) : i+j+k=1q k>3 i%#q—3, (i,5,k) #
(¢ — 4,1,3)}, it follows from Lemma 3.5 that agi]4,1,3 is uniquely determined. This
implies that for every choice of coefficients a(o,), p=m —mg —m3+1,...,m — m3,
where {0m—my—ma+1;--->Tmoms} = C2, a unique polynomial pl) € Il, on T[ 1 exists
with these coefficients in the representation (1) of plhl.

Now, by Lemma 3.4 for every choice of coefficients a(o,), p =m—-mz+1,...,m,
where {0m—ma+1,--+,0m} = Dy = {(3,5,k,12) : i+j+k=4q, j>3, k>3}a unlque

polynomial pl2] € II; on Tl2] exists with these coefficients in the representation (1) of
plial,
Since all differentiability conditions for 7 = 2 at the edges eg, €1, ez, e3 have been
involved, we get that for every choice of coefficients a(o,), 4 =1,...,m, a unique spline
s from Sg(A};),

B s*(z,y) , if (z,y) € Q*,
s(z,y) = { p[l,](x’,y) if (z,y) € T[ly]’ v=0,1,2,

exists with these coefficients in the representation (1) of s. This proves the case A = 2.

If A > 2, we may assume that the edges ex_q, ex—1, ex, exy1 have different slopes. It
follows from Lemma 3.4 (applied to the edges ey, ..., ex_3) that for every choice of coefli-
cients corresponding to the sets Ay = {(3,7,k,0,) : i+j+k=¢q, k>2}, v=0,...,A=3,
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unique polynomials p[l vl e H on T] exist with these coefficients in the representation
(1) of pl, v =0,...,A - 3 Now, we can argue as in the case A = 2. This proves
Theorem 6.1. |

Corollary 6.2 For ¢ > 5, we have
dim S2(Ap) = dim SI(A*) + A7) + (179 - 3.

The next theorem deals with the case when some triangle T of the added polyhe-
dron P = P is subdivided (see Case 2b of Section 3). We denote by y, the point which
subdivided the triangle T, Moreover, let éy, €1, €3 and é3 be as in Case 2b of Section
3, and denote by Az the union of sets chosen in Case 2b of Section 3.

Theorem 6.3 Let ¢ > 5. If A* is an admissible set for 52(A*) then A = A* U Az 1s
an admissible set for .5'2(A* ).

Proof. We first assume that A = 1. We set m; and mg3 as in the proof of Theorem
6.1, my = (qgl) — 4 and let m = card(A). We may assume that TUlo] is subdivided.
Since A* = {01,...,0m—m;—my—2ms} 1S an admissible set for Sg(A*), q > 5, it follows
that for every choice of coefficients a(c,), p =1,...,m —my — ma — 2mg, a unique
spline s* € S2(A*) exists with these coefficients in the representation (1) of s*. Since
g, €1, €9 and €3, have different slopes, it follows from Lemma 3.4 that the coefﬁments

[f;",,o)], a£(2°;2)], t+j=qg-p, p=012 and affi";,l},]k, j+k=p p=012 of
pllod)]l ¢ I, on Tl = A],v,v{), ¢ = 0,1,2, (cf. Case 2b of Section 3) in
the representation (1) are uniquely determined. As in the proof of Theorem 6.1, it

follows that the coefficients ag( 031])],C, j+k =3, (and ag(l_oé?g]:s, a([](l°32)] ) are uniquely
determined. Now, it is easy to see that for every choice of coefficients a(c,), p =
m—mj—ma—2m3+1,...,m—my—2m3, where {Tm—_m; —my—2ms+1s- - > Um_m2_2m3}~=
By ={(3,4,k,(10,0)) : i+j+k=gq, k>3, i q—3} aunique polynomial pl(o0} ¢ 11,
on Tl0.0)] exists with these coefficients in the representation (1) of pl(o:0l. By Lemma

3.4, the coefficients a[( 0’1)], E(;Op )], it+j=q—p, p=0,1,2, are uniquely determined.

Here, a[(]" N itj+k= g, are the coefficients of plo:3) € TT, on T3] = A(v3, 03, v3)
in the representation (1) (cf. Case 2b of Section 3). We claim that the coefficient
ag(l; 3)}3 is uniquely determined. Let d, respectively dy, ds, be unit vectors in direction
of the edge [yo,w1], respectively [yo,wo], [y0,v], and let By, B2 # 0 be given such that

d = Bidy + Bads. 1t follows from the C2-property and (11) that
2

o) = X ()T BRR (vo)
=0

= 5117(1(;3’3) (yo) + 2[315229(1%2112 (yo) + ,32P;;3’ N(yo) = PEi(slo’ Nyo). (14)

On the other hand, it follows from the C?-property and (11) that

PP (y0) = 81K (y0) + 62 3 (o) = p5 (o).
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From this and (14), we conclude that the derivative p[ 30’1)](y0) [( o )](yo) is uniquely

determined. Then by (3) the coefficient a[( °’l)} (and a[( s 313) is umquely determined.

Let us first consider the case when for ¢ > 5, we assign 02 to TVl and Dy to T3,
Since

_ {(O7Oa5,(l051))7(1a074a (1011))} )1fq=5a
(q—4a074’)€C’2= {(i)jvka(loal)): 7’+.7+k=q7 k23a iaj#q_Ba
(7’7.77]6) 7é (q - 47173)7 (ivja k) # (l?q - 413)} ) lfq Z 6a

by Lemma 3.5 the coeflicient ag(f"i’ll)}f; is uniquely determined.

Let us first consider the case ¢ > 6. In this case, since (0,9 — 4,4, (lp,1)) € Cy,
by Lemma 3.5 the coefficient a[l(l;’lg]?, is uniquely determined, and it is ea.sy to verify
that for every choice of coeflicients a(o,), u =m — mg — 2mg +1,. — 2mg, where
{Tm—mg—2ma+1s-- - »Om—2ms } = Ca, a unique polynomial plte:1)] ¢ H q > 6, on T[(lo’l)]
exists with these coefﬁments in the representation (1) of pl(te:1)],

The case ¢ = § is slightly different. In this case, since a[l(’lo,’;)] is determined, by

Lemma 3.5 the coeflicient a([)(’f”4 I s uniquely determined. Then for every choice of
coefficients a(c,), p = m—1,m, where {o;m_1,0m} = Cy, a unique polynomial plte:V)] ¢
IT5 on T{(o:D)] exists with these coefficients in the representation (1) of plto.1),

Then by Lemma 3.4 for every choice of coefficients a(v,), 4 =m—2mg+1,...,m—
mg, where {Tm-2ms+1,---0m-ms} = Do = {(1,5,k,(00,3)): i+j+k=q, 7 >3, k>
3}, a unique polynomial pllo:3)] ¢ ﬁq on T3 exists with these coefficients in the
representation (1) of pl(o:3)].

Now, we consider the case when for ¢ > 7, we assign f)g to T,V gng Cy to Tll0,3)]
Since (¢ — 4,0,4) € Cy by Lemma 3.5 the coeficient agi"zfl)% is uniquely determined.
Then for every choice of coefficients a(s,), u =m —mg —2m3 +1,...,m — 2m3 + 2,
where {0m—my—2ma+1,---»Tm—dmg+2t = Co = {(4,5,k,(10,3)) : 1 +j+k =gq, k>
3, 1 #q¢-3, (,5,k) # (¢—4,1,3)}, a unique polynomial pllo:3) ¢ ﬂq, q > 7, on Tl(o3)]
exists with these coefficients in the representation (1) of pl©3)]l. By Lemma 3.4 the

coefficients aE,(Yl]‘{’kl)], j+k=q-p, p=0,1,2, of plllo:D] are uniquely determined. Since

(g — 4,0,4,(lp,1)) € Dy, by Lemma 3.5 the coefficient "'E;(ioi,ll),]s is uniquely determined.
Therefore, for every choice of coefficients a(o,), 4 =m —2m3 +3,...,m — m3, where
{om—2ma+3,- -, Om=ms} = D2 = {(4,7,k,(lp,1)) : i +j+k=9q, i >3, k>3, 1+#
q—3, (i,5,k) # (¢—4,1,3)}, a unique polynomial pllo} € I, ¢ > 7, on Tl(o:1)] exists
with these coefficients in the representation (1) of pltfe-)],

Now, in all cases, it follows from Lemma 3.4 that for every choice of coefficients
a(ou), p=m—m3+1,...,m, where {Om-myt1,---,0m} = Dy = {(1,5,k, (lo,2)) :
i+j+k=gq, j >3, k> 3}, a unique polynomial p[(lo’ I e II on T2 ex1sts with
these coefficients in the representation (1) of plto:2)],

The rest of the proof is similar to the proof of Theorem 6.1. This proves Theorem
6.3. [ |
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Corollary 6.4 For g > 5, we have

dim S}I’»(A*}‘-,) =dim S;{A*) + (A +1)(%31) +2(%Y) - 5.
Now, we prove Theorem 3.3.
Proof of Theorem 3.3: The proof is similar to the proof of Theorem 3.2 for A. The only
differences is that we use Theorem 6.1 and Theorem 6.3 (if some triangle of A has to
be subdivided) instead of Theorem 5.1. - |

Next, we prove Theorem 4.2. For doing this, we need Theorem 6.5 and Theorem
6.6. Let P, A*, Q% A%, v, wp,...,wxrq1 be defined as in the beginning of Section 5 and
denote by Lp the union of the sets chosen in Section 4 which correspond to Case 2a of
Section 3.

Theorem 6.5 Let ¢ > 5. If L* is a Lagrange interpolation set for S2(A*) then L =
L*U Lp is a Lagrange interpolation set for 52(A‘;3)

Proof. By our construction we have A > 2. We first assume that A = 2. We set
my, Mg, Mg, as in the proof of Theorem 6.1 and m = dim Sg(A},). Moreover, let £L*=
{z1,- .., Zm—my~mg—ma} © L = {z1,...,2m} and a spline s € Sg(A*P), g > 5, which
satisfies s(z;) = 0, ¢ = 1,...,m, be given. We will show that s = 0. Since £* is a
Lagrange interpolation set for SZ(A*), it follows that s|q- = 0. Since s is a C?-spline
the function value and all first and second derivatives of plel = = 8|7l G H (respectively

pl2l = Slpug) € I ¢) vanish at eg (respectively e3). Moreover, D“p TI = O w=0,1,2,
Where plitl = Slruy € H Since eg, e;, ey and e3 have different slopes it follows from
(2) and the proof of Theorem 6.1 that

Dplel(v) = pUplil(y) = Dplel(v) =0, w=0,...,3. (15)
Let b, = {(z,y) € Tl : a,z + By +7, =0}, p=1,...,9 — 3, be the line segments
chosen in Tlel such that ¢ — 1 — p4 points of {Zm_my—my—mgtls-- - »Zmems—ms} lie On

bu, p=1,...,9 —3. We claim that
pllly, =0, u=1,...,¢-3. (16)

We prove (16) by induction on yx. Denote by z[ J , w=1,...,q—3, the intersection point
ofb,, p=1,...,9—3, and eq. Since the functlon value, the first and second derivative
(in direction of b;) of plol|,, € II, vanish at zgl(’], it follows from the interpolation
conditions of pl) on b; that (16) holds for 4 = 1. We assume that (16) holds for
pe{l,...,n}, n < g — 4, and show that (16) holds for 7 + 1. By induction hypothesis
a polynomial ql} e II —n exists such that

n
plol(z,y) = [[ (eu + Buy + 1u)d" (2, ), (z,y) € Tl
u=1
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Since the function value, the first and the second derivative (in direction of by+1) of

[lo]

q[lollbn +1 € Ilg—y vanish at 2,7, it follows from the interpolation conditions of plel on
bp41 that q[l°]|b,,+1 = (Q, and p[lf’]fb,,+1 = 0. This proves (16). From this and (15), we

conclude plol = 0. Let d; be unit vectors in direction of the edge e¢; = [v,w;], j =1, 2.
Since s is a C?-spline, we get ’

P, () =0, v=0,1,2. (17)
1 d2

Let ¢y, p = 1,...,9 — 3, be the line segments chosen in Th] such that g—-1-pu
points of {Zm—my—ma+1,- > Zm-ma—1} lleOn ¢y, p=1,...,¢—4, and zm—m, lies on the
intersection of ¢,—3 and [v,wq]. As in the proof of (16) we obtain

p[l1]|6#:07 ‘LL=17,q"'4 (18)

We denote by zgl], ¢ =1,...,9— 3, the intersection point of ¢y, p=1,...,¢—3, and

[v,w2]. Then it follows from the interpolation condition of p[lll at Zm—m, = zgi]3 and

the above that p[h](zEl]) =0, p=1,...,¢—3. Moreover, from (15) we obtain pgél(v) =

0, v=20,...,3, and p[11]|[v7w] = 0. Therefore, pgi](v) = 0. Then by (3), (15) and (17)
2
we have that the coeflicients agl_]‘l’j,k, J+k =4, (jk) # (1,3), in the representation

(1) of plt] on T = A(v, w1, wq) are zero. By Lemma 3.5, we obtain agi]4)1’3 =0. It

follows from (2) that pgﬂp(v) = 0. Then we get D“pll(v) =0, w=0,...,4. It follows
2
from (18) that pltl = 0.
Since s is a C?-spline the function values, all the first and second derivatives of plia]
vanish at ey. Thus,

Deplal(v) =0, w=0,...,5. (19)

Let d,, p=1,...,9 — 5, be the line segments chosen in Tl guch that q — 4 — i points
of {Zm-ms+1,---,2m} lle on dy, p = 1,...,9 — 5. As in the proof of (16) we obtain
p[12]|du =0, p=1,...,¢— 5. From this and (19) we conclude pl?) = 0, and s = 0. This
proves the case A = 2.

If A > 2, we may assume that the edges ex_2, ex_1, ey, and eyy; have different
slopes. Since s is a C2-spline the function values, all the first and second derivatives of
pliol = 5| € T, vanish at ey. Thus,

Dupll(v) =0, w=0,1,2. (20)
Let ay, p = 1,...,q9 — 2, be the line segments chosen in Tl such that ¢ — 1 — g of
the chosen points lie on a,, p =1,...,9 — 2. As in the proof of (16) we can see that
p[’°]|a“ =0, u=1,...,¢ —2. From this and (20) we conclude ple! = 0. By proceeding
with these arguments, we obtain s|pp,) = pl =0, v =0,...,A =3, and s = 0. This
proves Theorem 6.5. |
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Now, let TU"], ]5, Yv, €0, €1, €2, €3 be as in front of Theorem 6.3 and denote by L3
the union of sets chosen in Section 4 which correspond to Case 2b of Section 3.

Theorem 6.6 Let ¢ > 5. If L* is a Lagrange interpolation set for SZ(A*), then L =
L*U Lz 1s a Lagrange interpolation set for Sg(A*I‘-J).

Proof: We first assume that A = 1. Let my, mgy, mg be as in the proof of Theorem
6.3, m = dim Sg(A’},) and L£* = {21,...,Zm-mi—mg—2ms} C L = {z1,...,2m}. We
may assume that Tl is subdivided. Let a spline s € Sg(A’;S), g > 5, which satisfies
s(z;) =0, 1 =1,...,m, be given. We will show that s = 0. Since L£* is a Lagrange
interpolation set for SZ(A*), it follows that s|o~ = 0.

Since s is a C2- sphne the function values and all first and second derivatives of
plo0)] — 8lriug.0n € H (respectively pl{to:2)] = = s|pig.2n € I ¢) vanish at & (respectively
€3). Moreover, D“p (o, Dl(w) =0, w = 0,1,2, where pllo: 0l - = 8|peay € . Since
€0, €1, €2 and é3 have different slopes, it follows from (2) and the proof of Theorem 6.1
that

D“’p[(l"’o)] (v) = D‘”p[(lo’l)](v) = D‘”p[(lo’z)](v) =0, w=0,...,3. (21)

Let b,, o =1,...,g9—3, be the line segments chosen in T{0:0! such that ¢ — 1 — p points
of {Zm—mi—my—2ma+1,--s2Zm—mg—2ms} He on by, p =1,...,¢9 — 3. As in the proof of
Theorem 6.5, we can see that s(z;) =0, i = m—my—mg—2mz+1,...,m=mz —2ms3,
and (21) imply plte.0)] = 0.

Since s is a C%-spline the functional values and all the first and second derivatives of
pllo )] — 8| tae € ﬁq (respectively pl(o:3)] = 5|pieg.an € fIq) vanish at [yo, ] (respec-
tively [yo,wp]). Moreover, it follows from the proof of Theorem 6.3 that

ple N (ye) = pllo gy = 0, (22)

where d is a unit vector in direction of the edge [yo, w1].

Let us first consider the case ¢ = 6. Let 2,,_7, zZm—6, Zm_35, be the points chosen on
(v, w1}, Zm-4, Zm—3, be the points chosen on (yg,w1) and z,,_3 be the point chosen from
the interior of Tl¢o: Dl Since s(z;) =0, i=m—7,...,m — 5, it follows from (21) that
p[(lf”l)]l[v,wl] = 0. Since s(2;) =0, 1 = m —4, m —3, and plloDl(w,) = 0, it follows from
(22) that p[(lovl)]l[y wi] = 0. As in the proof of Theorem 6.3, it follows from (3) that
a[z(ylfv’sl)] = a[ffg’;;” [( % 1)], i+j+k =6, are the coeficients of pl(o:1)] € g on
Tl = A(v, ¥, wr) in the representamon (1). This shows that

= 0, where a;

Pz y) = 300701 (2, 1)@ (2, )24 (2, y), (2,y) € T,

Now, it is easy to see that s(zm—2) = 0 implies a[l(yl{";l)] =0, and plte V] = 0.

Now, we consider the case ¢ = 5. Let zn_1, zm, be the points chosen on (v, w].
Since s(z;) = 0, i = m—1,m, it follows from (21) that plo:! ]|[ 1] = 0. Analogously, as
in the proof of Theorem 6.3, it follows from (3) that a[(lo’ V=0 and a[(l0 Y = 0, where
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agg?,’cl)], i+j+k =5, are the coefficients of pl(o-)l € TI5 on Te:D] = A(v, yo, w1) in the

representation (1). We conclude pl{o:1)] = 0.

In these cases, as in the proof of Theorem 6.5 we get pllo3)] = g

We finally consider ‘the case q 2> 7. Let {Zm—my—2ma+1,. - Zm—2ms+2} b€ the points
chosen in T3, As in the proof of Theorem 6.5 it follows from (22) that s(z) =
0, 1=m—mg—2mz+1,. — 2mg3 + 2, implies p[(l°’3)] = 0. Slnce sis a C?- spline
the functional values and all the first and second derivatives of plllo:)] = = 8| i € H
vanish at [yo, w1]. We set [yo, w1] = {(z,y) € T : az+ By ++ = 0}. It follows that
a polynomial ¢ltoD)] € Hq«3 exists such that

pllo)(z,y) = (az + By + 7)* @ (z,y), (z,y) € T, (23)
Let d,, p=1,...,¢—6, be the line segments chosen in Tl 1] gych that g—4 — u points
of {Zm_2m3+3,- -, Zm-mga } lieon d,, p=1,...,¢—7, and zy,_m, lies on the intersection
of dg_¢ with [v,w1]. It is obvious that q[(l"'l)](zi) =0,i=m-2mg+3,...,m — ms.

Moreover, it follows from (21) that D¥¢l(oVl(y) =0, w =0,...,3. By using arguments
as in the proof of Theorem 6.5, we get gl(lo:V] = 0, and plto:V)] = q.

The rest of the proof is similar to the proof of Theorem 6.5. This proves Theorem
6.6. a

Proof of Theorem 4.2: The proof is similar as the proof of Theorem 4.1 for A. The only
difference is that we use Theorem 6.5 and Theorem 6.6 (if some triangle of A has to be
subdivided) instead of Theorem 5.3. [ |

Next, we will prove Theorem 4.4. For doing this, we need Theorem 6.7 and Theorem
6.8. Let P, A*, Q*, A%, v, wy,...,wr+1 be defined as in the beginning of Section 5
and denote by Hp the union of sets chosen in Section 4 which correspond to Case 2a of
Section 3.

Theorem 6.7 Let ¢ > 5. If H* is a Hermite interpolation set for SQ(A*) then H =
H* UHp is a Hermaite interpolation set for SQ(A* ).

Proof. By our construction we have A > 2. We first assume that A = 2. Let a spline
s € Sg(A}‘,) which satisfies the homogenous interpolation conditions be given. We will
show that s = 0. Since H* is a Hermite interpolation set for SQ(A*), we have s|q» = 0.
By Lemma 3.4, aE‘;]p—o i+j=q—-p, p=0,1,2, where aES]k, i+j+k=gq,are the
coefficients of pllol = Slrugl € Hq in the representation (1), where Tl = A(v,wg,w; ).
As in the proof of Theorem 6.1, we get aEI ]3 0,3 = 0. We claim that

l .
U‘L?}’qau—j —_‘07 J :07"'7(1_3_/"’ /‘L:O77q_4 (24)

We prove (24) by induction on u and by using the homogeneous interpolation conditions
at wi. Let d be a unit vector in direction of the edge [w1, wo]. By (2) and the interpo-

lation conditions pgj-’](wl) =0, 7=0,...,9— 3, (24) holds for p = 0. We assume that
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(24) holds for 4 € {0,...,7n}, n < ¢~ 5, and show that (24) holds for n + 1. Let d; be a
unit vector in direction of the edge e; = [wy,v]. It follows from (3) that (8) now holds
for 7 =0,...,¢4 —4 — 7. As in the proof of Theorem 5.4 the interpolation conditions
Pan+igs (wl) =0, §=0...9 —n — 4, imply that (24) holds for n + 1. This shows (24).
From this and a[ ]k =0,i+j+k e Q\ By, we conclude pll = 0. By Lemma 3.4,

El;]p—O i+j=q-p, p=0,1,2, where alil i+ 7+ k = q, are the coefficients of

1,7,k?
plhl = 8|puy € I1, in the representation (1), where T = A(v, w;, wy). As in the proof
of Theorem 6.1, we get agl]a,m = 0. Moreover, we can see analogously as (24) that the

interpolation conditions of pl"t} at wy imply

oLl _ C_ _ [11] _
Qpiqepu—j =0, 7=0,...,¢g=3~p, p=0,...,9 -5, anda 04=0.

By Lemma 3.5, a<[;1—]4,1,3 = 0. This shows that plt] = 0.

Since s is a C?-spline the function values and all first and second derivatives of
plizl = $|pua € g vanish at ey and eg. Thus,

DUplel(v) =0, w=0,...,5. (25)

Let dy be a unit vector in direction of the edge ey = [wo,v]. We claim that

pgﬁ]l[wz,wal 0, p=0,...,9—6. (26)
We prove (26) by induction on p. Now, let d be a unit vector in direction of [wq, ws].
Since the function value and the first and second derivative in direction of d of pl2} l{w%wa] €
II; vanish at we and ws, it follows from the interpolation conditions of p[l"’] at 7 =
%(wz + w3) that the claim holds for p = 0. We assume that (26) holds for u € °*
{0,...,17}, n < ¢—7, and show that (26) holds for n + 1. By induction hypothesis
and similar arguments as in the proof of Theorem 5.4 we obtain

l .
pfigzlf-ldp (’LU3) = 07 p= 0) 17 2. (27)
Moreover, pg,flqdp(wz) =0, p=0,1,2. Then it follows from (27) and the interpolation

conditions of p[ ,2,Ll €My p1atT= 3(wy +ws), that p;f,]H] [wa,wa] = 0. This proves (26).

From this and (25) we conclude pl'2l =0, and s = 0. This proves the case A = 2.

If A > 2, we may assume that the edges ex_s, €x_1, e and exy1 have different slopes.
As in the proof of (24) the interpolation conditions of pllo] = Spig) € H at wy imply that
a%?]]’q_#__j =0,7=0,...,¢-3—p, p=0,...,¢—3. Since sis a C’Z—sphne we get plol = 0.
By proceeding with these arguments we obtain s|;q,) = p[l"] =0, v=0,...,A=3, and
s = 0. This proves Theorem 6.7. |

The next result is needed for the case when some triangle has to be subdivided. Let
T P, Yu, €0, €1, €2, €3 be as in front of Theorem 6.3 and denote by H  the union of

sets chosen in Section 4 which correspond to Case 2b of Section 3.
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Theorem 6.8 Let ¢ > 5. If H* is a Hermite interpolation set for 52(A*) then H =
H*UHp is a Hermite interpolation set for Sz(A* )-

Proof: Let us first assdme that A = 1. We may assume that 7! is subdivided. Let a
spline s € Sg(A},), q > 5, which satisfies the homogenous interpolation conditions be
given. We will show that s = 0. Since H* is an interpolation set for Sg(A*), it follows
that s|q- = 0. Let plo)] = 8| itg.en € ﬁq, g =20,...,3, be given in the representation
(1) (cf. Case 2b of Section 3). As in the proof of Theorem 6.1, we get a{[](io:;?g}:; = 0. Then
as in the proof of Theorem 6.7 it follows from the interpolation conditions of pl(o®l at

yo that plo®] = q, By Lemma 3.4, alllo Dl 0, 1+7=qg—p, p=20,1,2. Moreover,

o)) _ [Go1)] _ e
ag.q-33 = Ag—3 03 = 0.

Let us first consider the case q > 6. By (2) and the 1nterpolat10n conditions of
plfoe o = 0, and p[(>V) = 0. By Lemma 3.5, o'} =
a[l(l;”lz]g, = 0. As in the proof of Theorem 6.7 it follows from (3) and the remaining
interpolation conditions at w; that plle:D] =g

Now, we consider the case ¢ = 5. Again, we have p|%§l% b= 0. By Lemma 3.5,
a[l(,lf’;)] = E)(,lf,l; W= 0. Thus, plteD] = o,
As in the proof of Theorem 6.7 we obtain pl(o2] = 0 and plo:3 = 0. This shows

the case A = 1. The rest of the proof is similar as the proof of Theorem 6.7. This proves
Theorem 6.8. |

€ II; at wy we get p|

Proof of Theorem 4.4: The proof is similar to the proof of Theorem 4.2 by using The-
orem 6.7 instead of Theorem 6.5 and, if some triangle of A is subdivided, Theorem 6.8
instead of Theorem 6.6. | |

7 Final Remarks and Numerical Examples

We finally discuss some variants of our basic principle of constructing triangulations A
and interpolation sets for Sg(A), 7 = 1,2, which result from our numerical experience.
Moreover, we give some numerical examples.

We first consider the spaces S;(A). By applying the above interpolation methods,
we obtain good approximations for ¢ > 4.

We first note, that we may use the following variant in the iterative construction
of the triangulation A if small angles appear at the boundary of the subtriangulation
A constructed so far. If two adjacent boundary edges form a small angle we may
connect these edges and use a Clough-Tocher split of the resulting triangle. Now, for
S;(A), q > 3, interpolation schemes can be constructed analogously as in Section 4.

In order to obtain good approximations in the case ¢ = 3 for non-uniform triangu-
lations A it is necessary to modify the triangulation A, i.e. to subdivide some of the
triangles of the polyhedron added in each step as follows. If a polyhedron is added such
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that two neighboring triangles form a convex quadrangle, then we add the second diag-
onal if possible. Otherwise, we subdivide one of the triangles of the polyhedron by using
a Clough-Tocher split. The corresponding admissible sets are shown in Figure 8. (the
admissible points added in one step are marked by filled circles), and the interpolation
sets can be defined analogously as in Section 4.

&z
Figure 8. Admissible sets for Si(A).

We finally consider the case ¢ = 2. In this case, we consider triangulations Ag of
the following type. By starting with one triangle, we describe Ag inductively as follows.
Given a subtriangulation Ag, we add a triangle T which has one common edge with Ag.
Then in clockwise order, successively we add quadrangles (with two diagonals) having
one common edge with AQ and triangles having one common point with AQ, where
the last quadrangle also has one common edge with 7' (see Figure 9.). We denote the
resulting subtriangulation again by AQ and proceed with this method to obtain Ag.

Figure 9. Construction of the triangulation Agq.

In this case we obtain the admissible set shown in Figure 9. (the admissible points are
marked by filled circles), since the intersection points of the diagonals of the quadrangles
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are singular (cf. [46]). We have the following result on interpolation by S}(Ag).

Theorem 7.1 The vertices of Ag (ezcept the intersection points of the diagonals) to-
gether with three addittonal points in the starting triangle form a Lagrange interpolation

set for S3(Ag).

Theoretically, if we consider in Ag instead of the quadrangles with two diagonals
arbitrary quadrangles, then for the quadrangles with only one diagonal no interpolation
point can be chosen. In this case, no good approximations can be expected, in general.

As a numerical test, we use our interpolation methods to approximate the test func-
tion of Franke

3 _(9==2)24(9y-2)? 3 _e=+1)?  (ey+1)
- .

Fay) = e PN

1 _@=-n%+@y-32 1
4

tse - ge_(gz_4)2_(9y_7)2, (z,y) € R?

by S,}(A), g = 3,4, and S3(Ag). Here, A, respectively Ag results from the above
triangulation methods and the corresponding domain Q contains [0,1] x {0,1]. The
results for the Hermite interpolating spline s € S3(A), respectively s € Sj(A), are given
in Table 1.

N dim S3(A) | [If = slleo N dim S;(A) | If = slleo
112 169 3.31 % 1072 32 131 1.46 x 10~ 1
480 649 1.03% 1072 211 652 2.49 % 1072
1984 2563 1.24% 1073 || 745 2085 1.30 % 10~3
8064 10224 1.29%107% | 3257 8694 1.33 %107 ¢

| 32512 40725 1.62%107° || 14495 38091 7.80 1078

Here, we note that there is some freedom in defining Hermite interpolation condi-
tions. For example, we may only impose interpolation conditions at the vertices by

Table 1. Interpolation by S;(A), q=3,4.

replacing the condition C; for r = 1 as follows:

Condition C1: pggy (vs) = faray(v3), b=

0,...

(Here, the unit vectors d;, j = 1,2, are chosen as in Section 4).

,q—4, v=2,...,9—2— .

Table 2. contains our numerical results for the Lagrange interpolating spline s €
S}(Ag). Here, we use data which are rather uniformly distributed.
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N dim S3(Aq) | IIf — slleo

24 16 3.27% 107!

112 44 1.51 %1071

» | 480 148 2.47 x 1072
1984 548 2.55 % 10~°
8064 2116 2.68 x 1077
32512 8324 3.58 % 107°
130560 33028 5.10 x 10~

Table 2. Interpolation by S1(Ag).

Numerical examples for S;(A), g=2,...,7, where Ais a given convex quadrangulation
with diagonals, were given in [46].

Now, we consider the space Sg(A). By applying the above methods, we obtain good
approximations for ¢ > 7. We note that according to our numerical experience, for
g =7, it is advantageous to modify the admissible set (and the corresponding Hermite
interpolation set) from the above sections as in Figure 10. (the admissible points added
in one step are marked by filled circles).

v
n
Figure 10. Admissible sets for S?(A).

In order to obtain good approximations for ¢ = 6, it is necessary to modify the
triangulation A as follows. If in the construction of A a polyhedron P, is added with
a triangle subdivided, then we also subdivide a neighboring triangle of P,. The corre-
sponding admissible set is shown in Figure 11. (the admissible points added in one step
are marked by filled circles), and the corresponding Hermite interpolation set can be
defined analogously as in Section 4.




Figure 11. Admissible sets for SZ(A).

Again, we use our interpolation method to approximate the test function of Franke by
Sg(A), q = 6,7. The results for the Hermite interpolating spline s € S2(A), respectively
5 € S2(A), are given in Table 3.

N dim Sg(A) | 1If — slloo N dim S3(A) | |If — slloo
72 418 2.42 %1071 34 367 5.44 %1071
567 2840 3.87 %1073 333 2827 5.61 % 1072
2113 10204 1.42 %1074 || 1325 10706 | 1.18 x10~*
9461 44996 5.83%107% [ 6073 48139 5.30 x 10~°

Table 3. Interpolation by SZ(A), ¢=6,7.

Numerical examples for Sg(A), q=17,8, where A is a given convex quadrangulation
with diagonals, were given in [46]. Meanwhile we also computed examples for Sz(A)
which give similar results.

Again, there is some freedom in defining Hermite interpolation conditions. For ex-
ample, we may only impose interpolation conditions at the vertices by replacing the
condition Dy for r = 2 as follows:

Condition Dj: pd;;dg(vg,) = fd‘l‘d;(US)7 pw=0,....,9—6, v=3,...,q—3— u.
(Here, the unit vectors d;, j = 1,2, are chosen as in Section 4).

We note that the complexity of the algorithm for computing the interpolating splines
on the triangulation A is O(cardA).

After having written long computer programs for spline interpolation, we started
with some tests on scattered data fitting. Let data be given at the vertices of a tri-
angulation A constructed by our method. By using these data, we compute the inter-
polation conditions, needed for our spline method, approximatively by applying a local
interpolation method for II,. With these approximative values, we compute splines from
Sq(A), 7 =1,2 (See Table 4. and Table 5.).




N dim S3(A) | |If — slleo N dim S;(A) | If = slleo
112 169 9.71 % 1072 32 131 2.67 %1071
480 649 5.65 % 102 211 652 1.48 x 1071
1984 2563 7.26%10°° || 745 2085 3.12% 1072
8064 10224 2.22% 1073 || 3257 8694 3.48 x 1073
32512 40725 3.87x10~* || 14495 38091 3.83% 1077

Table 4. Scattered data fitting by S;(A), q=3,4.

N dim S§(A) | |If — slleo
72 418 7.39 x 1071
567 2840 1.46 x 1071
2113 10204 3.75 % 102
9461 44996 6.64 x 10~3

Table 5. Scattered data fitting by S2(A).

Remark 7.2 Lagrange interpolation methods for S3..,(A), r > 1, were investigated
by Gmelig Meyling & Pfluger [28] (see also Grandine [29]), where the solvability of the
corresponding linear system has to be required. We also note that our interpolation
methods are different from the finite element approach, where Hermite interpolation
conditions are involved. In contrast to our method, all triangles of A have to be sub-
divided into at least three subtriangles while in our methods only some of the triangles
have to be subdivided into three subtriangles. Moreover, there are no corresponding
Lagrange interpolation schemes on A. For Cl-splines of degree ¢ = 2,3, there are
the classical schemes of Clough & Tocher [15], Fraeijs de Veubeke and Sander [25, 51]
(see also Lai [36]) and Powell & Sabin [48] on triangles, respectively quadrangles. For
C2-splines of degree ¢ = 5,6,7, Alfeld [2], Gao [27], Laghchim-Lahlou and Sablonniére
(34, 35], Sablonniére [50] and Wang {57] defined Hermite interpolation schemes of finite
element type. We note that our Hermite interpolation schemes are different from those
for S3(A), ¢ > 3r + 2 in Davydov, Nirnberger & Zeilfelder [21]. Quasi interpolation
methods were developed by Chui & Hong [11, 12] for Si(A) and by Lai & Schumaker
[38] for SZ(A) (see also [39]) for certain classes of triangulations A.
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