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Abstract

Let 6. be a triangulation of some polygonal domain DeR 2 and let S; (6.)
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q with respect to 6.. We present a Hermite type interpolation scheme for S~ (6.),
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1 Introduction
Let D C R2 be a polygonal domain, and let 6. denote a regular triangulation of D.
The space of bivariate 'P0lynomial spEnes of degree q and smoothness , with respect
to 6. is defined by

where
ITq := span {xiyj :i 20, j 2 0, i + j :::;q}

is the space of bivariate polynomials of total degree q.
In the literature, point sets that admit unique Lagrange and Hermite interpolation

by spaces 5; (6.) of spEnes of degree q anel smoothness , were constructed for cross cut
partitions 6., in particular for 6.1 and 6.2-partitions [1, 7, 17, 22, 23, 24, 27, 28].
Results on the approximation order of these interpolation methods were given in
[7,13,17,21,22.25.27,28].

In the case of an abitrary triangulation 6., the finite-element method provides
a tool to construct Hermite type interpolation schemes for 5;(6.) with optimal ap-
proximation order O(hq+1), where h is the maximal diameter of the triangles in 6..
However, as shown in [30]' this technique only works if q 2 4, + 1.

On the other hand, the approximation power of the spline space 5; (6.) for q 2
:3, + 2 was studied in [4, 8, 9. 18]. Particularly. in [8. 18] it was shown that for a
sufficiently smooth function f,

(1.1)

where f{ is a constant that depenels only on f, r, q and the smallest angle (h.. in 6..
(Great difficulties in the constructions and proofs of [8, 18] were caused by the desire
to have this f{ independent on the geometry of 6. except the obviously unavoidable
dependence on eö..) If q < 31 + 2, then the optimal approximation order fails for
certain triangulations (see [.5]).

In this paper we present a Hermite type interpolation scheme for 5;(6.), q 2 31"+2,
that possesses optimal approximation order O( h4+1) in the same sense as in [8, 18]'
i.e., the corresponding constant f{ eloes not depenel on the geometrie structure of
6. Thus, we give a new proof of (1.1) that makes use of interpolation instead of
quasi-interpolation methods developeel in [8, 18]. The details of our construction are
given in Seetion 2, whereas the main result of the paper, Theorem :3.1 about the
approximation order, as well as its proof are presenteel in Section :).
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Let us emphasize that our technique is quite different from that of [8] and [18].
In each of these papers a stable local basis for a superspEne subspace of S~C6.) was
constructed first by using Bernstein-Bezier techniques, and then the basis functions
were used to build up ä quasi-interpolation operator that yielded the optimal approx-
imation order. In contrast to this, we argue directly with nodal functionals, as it is
common in the finite-element methoel. However, as mentioned above, the classical
finite-element techniques coulel only work if q 2': 41' + 1. In order to handle the case
q 2': :31' + 2, we had to develop a new approach that hael its roots in the idea of "weak
interpolation" introeluceel in [21] anel further developeel in [25] and [13]. Furt her-
more, we needeel a new description of C' smoothness across edges in terms of nodal
functionals (see Lemma :3.2).

As a by-product of our construction, we get a noelal basis for the space of super-
spEnes

S~,P(6.):={SES~(6.): sEC1lu)forallvertices v of 6.},

where p = l' + [r'~I] and q 2': :31' + 2. The basis consists of the fundamental functions
SI, ... , Sn of our interpolation scheme. Some properties of this basis are studied in
Section 4. Namely, it is shown that {SI, .... Sn} is locally linea1'ly independent and
thus least supported, i.e .. the supports of the basis functions Si are as small as possible,
which is not the case for the basis functions constructeel in [8, 18]. Moreover, we show
that {SI, ... , Sn} is stable if 6. eloes not contain near-elegenerate eelges. (Although the
basis is not stable in general, the norm of the interpolation operator Sj : C2r(D) -+
S~'P(6.) of Section :3 is bouneleel by a constant that elepenels only on 1', q and the
smallest angle ().0. in 6..) We note that there is some interrelation between our basis
{SI,"" Sn} and the basis for S~,P(6.) constructeel in [16] by using Bernstein-Bezier
techniques. Particularly, the supports of basis functions are the same. However, the
minimal determining set of [16] cannot be transformeel by stanelard Bernstein-Bezier
arguments into a Hermite interpolation scheme of our type.

2 Nodal Functionals
Given a regular triangulation 6., we elenote by N the number of triangles, by 1/
the number of vertices, by VI anel VB the number of interior anel boundary vertices
respectively, VI + VB = V', by E the number of eelges, anel by EI anel EB the number
of interior anel bounelary eelges respectively, EI + EB = E. It is weIl known that



(2.1)
VB,
;31/1+ VB - :3 ,
2V1 + VB - 2.

(2.2)

In [16] it was shown that

dimS;'P(i.l) (P;2)V' + ((Q-3;'-I) - ;3Cr-;+I)) N

+ ~(r + 1)(2q - 4p + r - 2)E + er-;+l)17 ,

with 17 being the number of singular vertices of 6., where a singular vertex v is a
vertex which is formed by two lines which cross at v. It is easy to see that a vertex v
is singular if and only if at least three edges are elegenerate at v, where the degeneracy
of an edge is defined as follows.

Definition 2.1 [2] Suppose el, e2, e3 are three consecutive edges attached to a vertex
v. The edge e2 is said to be degenerate at v whenever the edges el and e3 are collinear.
An edge e attached to v is said to be rwndegenerate at v if it is either a boundary
edge or an interior eelge which fails to be degenerate.

In the finite element methocl piecewise polynomial trial functions are usually ele-
termined by their values and derivatives at some points, so-called nodal values (see,
e.g., [29, p. 101]). In [19, 12] anel [26] this technique was applied to the study of
spline spaces S~(i.l), q ::::5. and supersplines S;,P(.6) with p ::::2r and q ::::2p + 1,
respecti vely.

We set

C>L(i.l) := {f E C(Sl) : fiT E C>L(T) for all T E .6}, f.L = 0,1, ... ,

and denote by D, the derivative operator in the direction of a unit vector T = (Tx, Ty)

in the plane, so that

Definition 2.2 Given f E ("=>+.13(6.). er../3:::: O. any number

(2.3) vf' = D~ Dq (f' )(:::).
, 1 '2 IT ..

where TELl, ::: E T, anel Tl, T2 are some unit vectors in the plane, is said to be a
nodal value of 1, anel the linear functional v : ca+ß(i.l) -+ R elefineel by (2.;3) IS a
nodal functional, with d(v) := er. + /3 being the degree of v.
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For some special choices of :::,Tl, T2 it is convenient to use the following simplified
notation which goes back to [19]. 1) If v is a vertex of ~ and e is an edge attached
to v, we set

D~ f(v) := D~(fIT)(v) , a::: 1.

where T is the unit vector in the elirection of e away from v, and T E ~ is one of the
triangles with edge e. The notation is correct since in the case when there are two
different triangles Tl, T2 attached to e, fl

Tt
anel fl

T2
coincide along e, and hence

2) If v is a vertex of ~ anel el, e2 are two consecutive edges attached to v, we set

where T E ~ is the triangle with vertex u anel egeles el, e2, anel Ti is the unit vector
in the ei elirection away from v. :3) For every eelge e of the triangulation ~ we choose
a uni t vector T..L (one of two l;ossi b le) orthogonal to e anel set

provided f E CCi(:::).
We now associate with the superspline space S;.P(~). with q ::: 31' + 2 and

(2.4) [
r + 1]P=r+ -- .2 .

a set )V of nodal functionals. as follows.
For every vertex v of 6., iet T;, ... , T:(u) be all triangles attacheel to v and num-

bereel counterclockwise (starting from a bounelary triangle if v is a bounelary vertex).
Denote by ei the common eelge of T~-l anel T~,i = 2, ... 1 n(v). If 'U is an interior
vertex, el = en(v)+l elenote the C01111110n eelge of Tu

l anel Tvn(v). Otherwise, el anel
en(v)+l are the bounelary eelges (attaeheel to v) of T~ anel Tvn(v) respectively.

We elefine N (v) to be the set of noelal funetionals assigning to every function
f E CP( v) n C2r( 6.) the following noelal values:

(vI) D~ De f(v) for all (a, /3) E Al, where

{ . 2 }Al:= (a,/3)EZ : 0,:::0, ,13:::0, a+/3::;p,

.5



(v2) D~iD~i+J(V) für all (a"ß) E A21 where

A2 := {(a, ,ß) E Z2 : a:S 1', ,ß:S 1', a + ,ß ~ p + I} 1.
anel für eachiE {I, ... , n (v)} such that ei is nünelegenerate at v,

(v3) D~iD~i+J(V) für all (a"ß) E A3, where

ib:={(a"ß)EZ2
: a~r+l, 2a+ß:SJr+1. a+,ß~p+l},

anel für each i E {I, ... ,11 (v)} such that ei is elegenerate at v,

(v4) D~ Dße f(v) anel Dae D~ l(v) für all (a,ß) E .4.3 if V is a büunelary vertex.
l 2 n(ul+l n(u)" !

anel

(v5) D~lD~2f(v) für all (a.;3) E A2 if v is a singular vertex.

A f

p Cf.

Fig. 2.1. The sets Al, A2 anel A3.

On every eelge e üf 6., with vertices VI anel V2, we take püints

(2.5)

where

_iJ..! '- 'v I '! ('v v)
"'e .- 1 T "1'+1 2 - 1 . i = 1. ... , fi:iJ. 1 fJ. = 0, ... ,1' ,

(2.6) "'iJ. := q - 31' - 1 - (I' - p) müel2 = q - 21' - 1 - fJ. - 2 [r+~-iJ.] 1

anel elefine N(e) tü be the set üf nüelal functiünals assigning tü every functiün f E
Cr(D) the füllüwing nüelal values:
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(e) D~l.f(::~,l), ... , D~l.f(::~'K.;<) for a11~l = 0, ... , r.

In every tri angle T E 6, with vertices VI, V2 ancl V3, we take uniformly spacecl
points
(2.7) ::~j,k := (iVl + jV2 + kV3)/q.i + j + k = q,

ancl clefine N(T) to be the set of noclal funetionals assigning to every function f E
C(,O) the fo11owingnoclal values:

(t) f(::~j,k) for a11i,j, k such that i + j + k = q ancl 'I' < i,j, k < q - 21'.

We set
.V :=U jV (v) U U jV (e) U UN' (T) .

u T

Lemma 2.3 We have
(2.8)

Proof. It is easy to see that .

(2.9)
- 14. - (1'+2) -cl -\ - -cl --\ _ (2r-p+l)cal C - 1 - 2 ' cal ."1.2- cal ."1.3- 2 '

carcl;V(e) = (1' + l)(q -:31' -1) - [";1] carcljV(T) = (Q-3;-l).

Therefore,

carcl.V (P~2)V + ((Q-3;-I) + :3er-;+I)) N + 2er-;+l)vs

+ (('I' + l)(q -:31' - 1) + 'I' - p) E + er~:+l)O' .

The lemma now fo11owsfrom (2.1), (2.2) ancl a simple computation .•

3 Hermite Type Interpolation

Theorem 3.1 Let 'I' 2:: 1, q 2:: :31' + 2 and p = 'I' + [r;l]. Civen f E c2r(,O), there
exists a unique spline S J E S~,p(6) satisf7;ing the following H eTmite type interpolation
conditions
(3.1) l/S J = 1/ f fOT all 1/ EN ,
whereN is defined above. MOTeoveT. ifI E Cm(D) (m E {2T, ... ,q+1}) andT E 6,
then



for alt Ct, ß 2 0: Ct + ,6 :S:;m, where hT is the diameter of T, and J{ is a constant
which depends only on 1', q and the smallest angle ():::,.in 6.

We will prove Theorem 3.1 at the end of this section, after establishing severallemmas.
In the first two lemmas we consider a simple triangulation consisting of two tri-

angles and establish some relations between nodal values of two polynomials defined
on each triangle and joined together with C,. smoothness across a common edge of
the triangles.

Let Tl and Tz be two triangles sharing a common edge e = [VI, VZ], and let ei =f e
be the other edge of Ti with enelpoint vI,i = 1,2. Denote by T, Tl, TZ the unit
vectors applieel at VI in the elirection of eelges e, el, ez respectively, and by ()i the
angle between T anel Ti. i = L 2. (See Fig. 3.L)

Fig. 3.1.

Furthermore, let 5 be a piecewise polynomial function on Tl U Tz such that

SI = Pi E IIq ,i = 1. 2 .T,

Our first lemma characterizes cr smoothness of 5 across e in terms of its nodal values.
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Lemma 3.2 Let r :::;q.
1) [f 81 + 82 # 7r, then s E cr(T1 u T2) if and only if

Cl'

(3.3)
.

sina81 D~D~-~P2(vd = L( -l)ß (~) sinL~-,I3((11+ (12)sin,ß(12D~lD-;'-ßp1(vr),
ß=o

for all a = 0, ... , rand I = Ct, ... , q.
2) [f 81 + (12= iT, then s E cr(T1 u T2) if and only if

(3.4) Da D'Y-ap (u ) = (_l)LtDc~ D~/-'''lJ ('L.1 )
T2 T 2 1 Tl T 1 1, a = 0, .... r. 7 = a, ... ,q.

Proof. Evidently. s E C"(T1 U T2) if anel only if for some unit vector TI noncollinear
with T.

Since (D~lpdle' i = 1, 2, is a univariate polynomial of degree at most q - a, this is
equivalent to the conelition

a = 0, ... , r. ~(= a, ... , q.

We now choose TI = T2. If e1 + 82 = 71, then Tl = -T2, anel we immediately get (3.4).
Otherwise, if 81 + 82 # 71. then the vectors T. Tl anel T2 stay in the relation

which implies

. ,:>11 Dcx D~i-'" ( ) ~'( 1)13(,,,) . ,:x-,t3(/1 Ll)' t3Ll Dß D~/-i3 ( )sm 171 T2 ~ PI V1 = L - ,13 sm 171 + 172 sm' 172 Tl T' PI VI ,

.:3=0

and the first statement of the lemma follows. •

Thus, the noelal values of s E C"(T1 U T2) stay in relations (:3.:3). The same
relations hold for every sufficiently smooth function f. By solving a linear system we
can estimate some of the noelal val ues of f - s at VI invol ved in (:3.:3) in terms of the
others.



Lemma 3.3 Suppose that s. as defined above, is in Cr(T1 U T2), and let f E Ck(T1 U
T2) fOT same k E {p + 1, ... ,2T}. If 81 + 82 ::f:. 1T', then fOT every ß = 2k - 3r-
1, ... ,k - r - 1.

(3.5)
< [{ ( max ID~ D;-cx (f - pd(vd I

0<cx<2k-3"-2 1

+ I sin-r(81 + 82)1 k2;?-l;~r ID~iD;-cx(f - Pi)(V1)! ) ,
. t= 1.2

wheTe I\.' depends only on rand rh.

Proof. Since f E Ck(VI), we have

sinCX 81 D~2 D;-ü f(V1) =L(-1);3 (~) sinü-,G (81 + 82) sini382 D~l D~-ß f(V1)
;]=0

for all a = 0,. ". k. This, together with (3.:3), imply that

(:3.6)

where

a2.cx = L( -l);3(~)a1.ß, a = 2k - Jr - 1, ... ,I,
.1]=0

a 1.;3 := sin -t] (81 + 82) sin;] 82 D~l D~-.G (f - P1)( vd ,

a2.ß := sin -,G (B1 + B2) sini] B1 D~2 D~-G (f - P2)( 'Ul) .

Consider (:3.6) as a system
Ax = b

of 4/ - 2k + 2 linear equations in 4r - 2k + 2 unknowns

ai.;] , /3 = 2k - :31' - 1.... , k - / - 1 , i = 1, 2 .

Thus, we have

x = (a1,2k-3"-1"'" a1,k-r-1. a2.2k-3r-l, .... a2,k_r_1)t,

b is a (4/ - 2k + 2 )-vector whose components are some linear combinations of

al,;] , 13 = 0, ... , 2k - :3r - 2. and

ai,ß , ,6 = k - T •... , r, i = 1, 2,
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anel

(
B -[)

A= CO'

where

C = (( -lr+j(n.='~~j)) m , withn:= k - l' - 1, rn:= 21' - k + 1,
',J=l

[ is an m x m ielentity matrix, 0 is an rn x rn zero matrix, anel B is a certain m x m
matrix. Since the eleterminant of C is a nonzero constant multiple of

elet(( +l_l,)m #0.
m , ) ';,j=l

A is nonsingular . Therefore,

where IIA-liloo is bouneleel by a constant elepenelent only on r. Particularly, for all
,6 = 2k - Jr - 1, ... ,k - r - 1,

where [1.."1 elepenels only on r.
Recalling the elefinition of a;,13, i = 1. 2, we obtain

ID~l D~-i3(f - pd(udl = laL;3 sini3(81 + (2) sin-.,Je21
:::; f\.'l ( max Isin/3-e'(81 + (2) sina-13821ID~ D~-':X(J - pd(vdl

0'Sa'S2k-3r-2 1

+ max Isini3-':X(81 + (2) sin,:x-;3821ID~ D~-a(f - ptl(utll
k-r<,:x<,' 1

I I . i3-':X(1J /1)' O'IJ . -13L1 IIDa Dk-':X(j' )' ( )1)T max Sln' fl1+ fl2 Sln fl[ Sln 'fl2 T? T - P2 Vl ,
k-r'Sa'Sr -

anel (3.5) folIows. •

vYe also neeel the following univariate"weak interpolation" lemma (compare [21,
Remark .5ii] anel [1:3, Lemma 4]).
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Lemma 3.4 Let e c R2 be an inteTval with endpoints Vi, V2, and let f.l. E {O, ... , r}
and m E {r + [r+~-iL] , ... , q + 1 - p}. Then fOT any f E ernte), any pE IIq-iL and
every ~(= 0, .... TI?'.

(3.7)

IID~U - p)lle(e) < I{h-~I (hmIID~ llle(e) + max IU - p)(z~.i)1
1:S':S",..

+ max. hL>ID~U-P)(Vdl),
o~a~r+[r+}-,,]

,== 1.2

wheTe h is the lengfh of e. T denotes thermit vector in the direetion of e, z~,i and /'i,iL

are defined in (2.5) and (2.6). respeetZ:vely. and K is a constant which depends only
on q.

Praaf. It is sufficient to consieler the case e = [0, h], i.e., Vi = (0,0), V2 = (0, h).
Then T = (1,0), DT = Dx• z~"i = (",:~i'0), i = 1. .... /'i,w

Since f E Cm[O. 16]' we hav'e

(:3.8 ) IID~I(}' '-)11 < h
m
-, IIDm}'11x - P C(O.h] - (m-~tl! x C[O.hJ, I' = 0 .... ,'rn,

where p is the (univariate) Taylor polynomiaL

m-i

p(:r) := , D~~(O):'CII.L.., 11.

11=0

Therefore,

IID;;(f - p)llc[o.h] < IID~:(f- p)llC(o.h] + IID;;(p - p)llc[o.h]
< hm-~iIID; fllqo,h] + IID;(p - p)IIc[o.h],

anel we only neeel to estimate 11 Di U5 - p) IIc[o,h].
Let

AiL := r + [r+~-Ll] .
Since /"i,iL + 2(AiL + 1) = q - f.l. + 1, the following Hermite interpolation problem

g(z~")=ai,i=l, .... r;,iL' D~g(vj)=aj,a, a=O, ... ,AiL, j=1,2,



has a unique solution g among univariate polynomials of degree at most q - /-l, for
any given data ai, i = 1, ... ,fi,1J,1 anel aj,ü, 0: = 0, ... , AIJ,' j = 1, 2. Then

~~ ~~
(p - p)(t) = 2:)]3 - p)(:::~,i)Li.h(t) + L L D~(p - p)(Vj)Lj,a,h(t), tE [0, h],

i=1 j=1,2 a=O

where Li.h, i = L ... ,fi,I-" anel Lj,ct.lt, 0: = 0, ... , Aw j = 1,2, denote the fundamental
polynomials of the above interpolation problem, i.e., they are univariate polynomials
of degree at most q - /-l. uniquely eletermineel by the conditions

i,j = 1, ,fi,IL'

0: = O AIJ,' i = 1, ... , K.IJ"

and

L (jh) - 0 J' - 1 ... ", - 0 \; - 1 ')i,LY.h /'\.JJ+l -.. - ~ f"~L~ L.l- ~ ••• ~AfJ.~ £,- , ~

D~LL:y.h(O) = D:L'2.u.h(h) = 0':'<.11' a, v = 0 , Aw

D:L1.a.h(h) = D:L2.u.h(0) = O. 0:, V = 0 , /\IJ,'

respectively. By a. uniqueness a.rgument, it is easy to check that

anel, consequently,

D]Li.h(t)
D:~Lj.CY.h( t)

h-~; D]Li.d *). t E [0. h],
hCY-~"D]Lj,u:.l( *), tE [0. h],

11 D; L.h IIC[o.h]

11 D; L ]p,h IIc[o.h]

h-~"IID; Li,lll C[0.1],

hü-~;I1 D; L],u:.111c[0.1]'
Therefore, we have

I'i.j.L

,=1
.\,.<

+ L.L ID~(jj- p)(vj)1 ha-1ILj,a.lllC[0,lj,
j=1,2 (y=O



Since p - P = (p - f) + U - p)~ (:3.8) implies

I(p - p)(.:~.i)1 < hJH11D:;'fllc[O,h] + IU - p)(z~.i)l,

ID~(p- p)(Vj) 1 < hm-(YIID:n fllC(o,h] + ID~(f - p)(vj)l,

and the lemmafollows because IILi,lllC(o,l] anclIILj,a,IIIC[O,I] are boundecl by a constant
dependent only on q .•

Since 01.11' interpolation scheme is basecl on noclal values involving partial deriva-
tives in various directions~ we neecl a tool to recast the (weak) interpolation conditions
in such a form that their interaction becomes tractable. As a "common unit" we will
use deri vati ves of the type D~'D~l.(f - s ). The next two lemmas provide estimations
of these derivatives in terms of noclal values of our scheme.

Consider first a single triangle Tl E 6. an cl let e be one of its edges, with vertices
VI and V2. (Note that e ma.y be a bounclary eelge of 6.) Denote by eu and eu two
other edges of Tl' attached to VI anel v2 ~ respecti vely, and by aLi the angle between

d '1 .) (C' F" '3 -) )e an el.i, 'l = ._.. ,Jee 19... _.

Fig. 3.2.

Lemma 3.5 Let s E S~P(.::::,,) and f E C7n(O) (17'2 E PT ..... q + l}) be given. Then
fOT aU J.L = 0, .... r (md ~/ = 0 ..... m - p.

L4



(3.9)

11 D; D~.L U - s) IIC(e) < I{h-'Y-J.L (hm max IID;'-J.L' DJ.L:fIIC(e)
O~J.L'~J.L e

I' I.'+ max hJ.LIDJ.L.LU - s)(z~ ")1
0<1-"<1-' e
O~i:5;ZJ.LI

+ max hL"+13ID~D~liU-S)(Ui)I),
1."pIEAl UA2UA3 '

.d~J-l-. t=1,2

whe1'e h 'lS the length of e. the sets A.l -/:h are defined above, and I{ depends only on
q and min{Bl,1, e1,2}.

Proof. Since

p = 0, .... 1'.

Lemma :3.4 shows that there exists a constant I<""l dependent only on q, such that

IID~'U - s)llc(e) < lI.'lh-~1(hmIID:nfllc(e) + max IU - s)(z~.i)1
O~'~"I-'

+ max I{)ID~U - s)(udl), i = 0, ... ,m,
(".OIEAl UA2UA3

I::;:: 1 ,2

which proves (:3.9) for ~l = O. Proceeding by induction on p, we suppose that (3.9)
holds for 0, ... ,p-1. Again by Lemma 3.4. applied to D~.Lf E Cm-J.L(e) andp = D~.Ls,
we get for all ; = O.... , m - p,

< Klh-~I (hm-J.L11 Dr;-J.L DJ.1..LfIIC(e) + m,ax IDJ.L.LU - s)(z~,i)1
. e O~i~,,1-' e '

+ max h('ID~" DJ.L.LU - S)(Ui)I) .
(o'/-LlEAluA']UA,'3 - e

1= l,2

Thus. we need to estimate D~D~.L(f - S )(Ui) in terms of D~D~l.iU - s)( ud with
,6 :s; p. Ta this end. we use the relation

where Tl,i, T ancl T.L are the unit vectors in the clirections of el.i, e and e.L respectively,
so that

1.5



(:3.10)

anel henee.

1 D~ D~l. (f - S )(uil 1 < ID~'D~l., (f - S )(u;) I

+ ](2 max ID~+!L-I"' D~~(f - S)(Vi)1 ,i = 1,2,
O~:>'S!L-l -

where ](2 elepenels only on panel min{81.1.81.2}' Furthermore. by the ineludion
hypothesis,

< I"Jt -U:-~L (17m max 11 D:n-I"" D~~ fIIC(e)
0SI"" SI"'

+ max 1/'ID~~(f _ s)(.::(,i)1
O<p" <J.1.1 ~

O~i:Sn:~~,/

+ ("';3)2;~c\u.-\, hcx'+.uID~'D~l.,(f - .s)(Vi) 1 ),

f3$;~LI. ,=1,2

anel (:3.9) follows. •

Uneler the notations of Lemma :30.5, suppose that e is an interior eelge of .6. anel
elenote by T2 the triangle in .6. that share e with Tl' Let e2,l anel e2,2 be two other
eelges of T2, attaeheel tOlh anel V2, respectively, anel let 82.i be the angle between e
anel e2.i, i = L 2. (See Fig. :3.:3.)

Fig. 3.3.

16



Furthermore, let h elenote the length of e.

Lemma 3.6 Let s E S~',P(i:::.) and f E Cm(D) (m E {2r, ... , q + 1}) be given.
1) If ()l.2 + B2.2 =A Ir~ then fol' all j..l = 0, ... ,T and;' = 0, ... ,m - j..l.

(3.11)
+ max. ha+/3ID~D~I,(f-s)(V2)1

(a.J)EA.1• :3-::;1'-

+ I sin -r (81.2 + 82.2)I . l11ax_
o

hc>+131 D~ D~i2 (f - s) (V2) I ) .
(O,J)EA.2, ,-1.~

wheTe I{ depends ordy on Ci and l11in{81.1' 81.2, 82.2}.
2) If both 81,1 + 82.1 =1= Ir and 81.2 + 82.2 =1= Ir. then fOT all j..l

~(= 0 ..... m - fl,

0, ... , rand

(:3.12)

IID;D).L.LU - s)IIC(e) :s; Kh-~I-IL (hm max IID;'-).L'D).L~fIIC(e)
e O::;).L'::;).L' e

+ l11ax hl,/ID).L~U - s)(.::(')1 + l11ax ho+i3ID~ D~(f - s)(vj)1
O</"</' e . (,~,J)EAI, i3</, • 1,)

O{i$.;:~, )= 1.2 -

+ maxisin-r(81.j+82.J)1 l11a.x hc,+/3ID~D~ (f-S)(Vj)I),
J=1.2 (c,,3)EA2' i=1.2 ',)

wheTe I{ depends onLy on q and l11in{Gl.l: 81.2' 82.l, 82.2}.

Proof. 1) The essential elifference between (:3.11) anel the alreaely established in-
equality (3.9) is that the terms

in the right hand siele of (3.9) are substituted by

(a,,I3) E .42, i = 1,2.

If j..l = 0, then {( a, /3) E .43 : i3:S; j..l} = 0, emd (:3.11) is a straightforwarel consequence
of (:3.9). Moreover, in order to perform induction on j..l, we only neeel an estil11ation
of the form



(3.13)

max ho+,GID~ D~,U - s)(v2)1 :::; 1(1 ( max h"+iL'IID;DiL~(J - s)IIC(e)
(o,ß)E'{3 1._ 0<,,'<,,-1 e
ß"5~ 11I O$:~-;'_p.1

+ Isin-"(e1,2 + 82,z)1 max .)hc-,+,,JID~D~i'2U-S)(V2)1).
(c-'.ß)EA2,,=1._

To this end we employ Lemma 3.:3, which gives for all (a, 3) E A3, with ,6 :::; f-l,

ID~D~,U-.s)(V2)1:::; f{2 ( ma ..x.' ID~+ß-3'D~'?(f-S)(V2)1
1.. 0:,:ß':;2(0+,J)-3r-2 I..

+ Isin-"(e1•2 + 82.2)[ max. ID~+J-G' D~'? (f - s)(v2)1 ) ,
0+13-1':;;3':;,.. ,=1.2 '.-

Since
3' :::;2(a + ß) - Jr - 2 ==? .13' :::; f-l - 1,

we obtain. by making use of (:3.10).

max ID~+!3-/3' D~' Jf - s)(v2)1:::; max ID~+,G-iL' D~' Jf - S)(V2) I
0:;;3':;2(0+ß)-3r-2' '1,. O:;iL':;I"-l' I,.

:::; 1{3 max ID~t+G-I"'DiL~(f - s)(v2)1 :::; 1(3 max IID~+/3-iL'DiL~U - s)IIC(e)'
O:;iL':;I"-l e 0:;1"':;1"-1 e

Furthermore. since

0+,3 - r :::;/3':::; T ==? (a + /3 - l3',,3') E A2,

we have

max ID~' D~i'.2(f - s)(v2)1,
(olß')EA')

a'+!3'=o:+.d. 7=1,2

and (3.1:3) follows.
2) This part can be established by exactly the same arguments, the only difference

being that the terms

(a,;3) E /b, ,6:::; f-l,

now also have to be estimated .•
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Let T E 6 anel let u be a vertex of T. Then T = T~ for some i E {I, ... , n(v)},
where T;, ... ,Tun(v) are all triangles attaehecl to u anel numbereel eountercloekwise,
as in the elefinition of jV (u) (see Seetion :2). We are going to elefine various subsets
of )V (v) anel )\/ that will be instrumental in the proof of Theorem :3.1 anel the key
Lemma :3.8.

'Ne elefine JV'TCU) C N (u) to be the set of noelal functionals eorresponeling to the
following noelal values:

(vtl) D~D~f(v) for all (a,,:3) E Al,

(vt2) D~iD~i+J(V) for all (a,,3) E A2 if ei is nonclegenerate at v. 01'

D~i_lD~J(v) for all (a,,3) E A2 if e, is clegenerate at u. but ei-l is nonelegenerate
at v, 01'

D~;_2 D~;_J(v) for all (a. ,8) E A2 if both ei anel ei-l are elegenerate at v, but
ei-2 is nonelegenerate at v, 01'

D~lD~2f (v) for all (a, /3) E A.2 if v is a singular vertex,

(vt:3) D~'+lD~i+2f(u) for all (a.;3) E A2 if ei+l is a nonelegenerate at v interior eelge,
or

(vt4)

D~i+lD~i+2f(u) for all (a,ß) E A.3 if ei+l is elegenerate at u, or

D~i+l D~J(v) for all (a,f3) E .4.3 if ei+l is a bounelary eelge, anel

D~i D~i+J (v) for all (a, i3) E A3 if ei ther ei is clegenerate at v or ei is a bounelary
eclge, 01'

D~'_l D~J(v) for all (a,B) E .'h if both ei anel ei-l are nonelegenerate at v, or

D~;_2 D~;_J(v) for all (a, /3) E A2 if ei is nonelegenerate at u, ei-l is elegenerate
at v, anel ei-2 is again nonelegenerate atv, 01'

D~i_3D~i_J(V) for all (a,ß) E ,'h if ei is nonelegenerate at v, both ei-l anel ei-2
are elegenerate at v, anel ei-3 is nonelegenerate at v.

Furthermore, elenote by

NT,j(v) CNT(v), j = 1,:2,:3.4,

the set of funetionals eorresponeling to the noelal values listeel in (vtl), (vt2), (vt3)
anel (vt4) respeeti vely.
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We also define
iJT(v) C JVT(v)

as follows: if eaeh of t,v.oeelges ei anel ei+l is either elegenerate or lies on the boundary,
then X(T(V) := 0, if ei+1 is an interior nonelegenerate at v edge, but ei is not, then
ilT(v) := NT.2(V) U JVT.3(V), if, eon'lersely, ei is an interior nondegenerate at vedge,
but ei+l is not, then .\J'T(V) := NT.2(V) U .MT.4(v), anel, finally, if both ei and ei+l are
interior nondegenerate at v edges. then iiT(v) := NT.2(V) U JVT,3(V) UNT.4(V).
For e'lery triangle T E ~ with 'lertiees U1, U2, V3 and edges el, e2, e3, let

3 3

NT:= UJVT(Vi)UU/V(ei)UN(T),
i=l
3

.VT .- U ."iT(Vi)'
i=1

,=1

Finally. we neeel a set of noelal functionals Ni offinite-element type. Let T E 6..,
let v be a vertex of T. anel let the eelges el. e2 of T be attaehed to v. Then JV; (v) is
defineel to be the set of noelal funetionals corresponding to the nodal 'lalues

where

Furthermore, for e'lery eelge e of T we elefineNi( e) to be the set of nodal functionals
assigning to e'lery function fEe" (D) the following nodal 'lalues:

DJ1. j'( _J1..1 ) DJ1. f'( _,L.n./J )
T' \ ...:...e ~ ... : TI. ...•e for all f..l = 0, ... , T ,

where z~.i anel /'1;J1. are elefineel in (:2.:3) anel (:2.6) respecti'lely, and TI is the unit 'lector
in the elireetion from the mielelle point of e to the vertex of T opposite to e.
For e'lery triangle T E ~ with 'lertices 'U1,V2, V3 anel eelges el, e2, e3, we set

3 3

N; := U JV;Cu;) U U N;( eil U N(T).
i=l

:20
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Lemma 3.7 vVe have

(:3.14)

iVforeover, N; is IIq-unisolvent. i.e., fOT any Teal data a", v E N;, there exists a
uniqlle polynomial p E IIq s'uch thai l/P = CL" fOT aU l/ E JV;.

Proof. Obviously,

eard N; = :3 card Al + :3card .4.2+ 6 eard A3 + :3 eard N( e) + eard JV(T).

By (2.9) and some elementary computation. we obtain card N; = (Q;-2). Furthermore,

-1

eard.A/T(v) = ~ cardJVT,j(v) = cardA1 + 3eard.4.2 = eardN;(v).
j=1

Henee, eardN'T = eardN;, \vhieh proves (:3.14). Partieularly, eardJV; = dimIIq.
Beeause of this. the seeond statement of the lemma will follow if we show that the
only polynomial satisfying l/P = 0 for all l/ E N; is the zero funetion. Following the
lines of the proof of Lemma 3.5. with f == 0 and oS = p. we get

for all f.1 = 0, .... r and ~(= 0..... Cf - f.1, and every edge ei of T. Therefore,

where 11, l2 and 10 are linear polynomials such that ei C {(x.y) : li(x,y) = O},
and p is a polynomial in IIq-37._3. Then l/P = 0, for all l/ E N(T). Sinee JV(T) is.
IIq_37'_3-unisolvenL we have p = 0, and henee, p = O .•

vYe also need some loeal geometrie eharaeteristies of the triangulation.
Let e be any interior edge of the triangulation 0., and let v and Vi be its vertiees.

Denote by e1 and e2 the adj aeent edges of e atv, and by Bi the angle between e and
ei, i = L 2. vYe set
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If e is a boundary edge. then ee,v denotes the angle between e and its unique adjacent
edge at v. Furthermore.

and for an interior edge e,

if e is degenerate atul
•

if e is nondegenerate at both v and Vi.

(vVe note that no edge can be degenerate at both end points simultaneously.)
For every tri angle T E ~ we denote by

the minimum of ee over all edges of T, and the minimum of ee over all edges of T
lying in the _interior of n. respectively. Thus. fh denotes the smallest angle around
T, whereas eT measures the "near-degeneracy" of the edges of T. Certainly,

The following key lemma shows that the nodal functionals in N; can be estimated
in terms of those in .'iT. Moreover. only the contribution of FiT to this estimation is
influenced by fh.

Lemma 3.8 Let T E~. 8 E s~.P(~) and fE C1n(D) (m E {2r, ... ,q+ 1}). Then
for any 1/ E Ny

(3.1.5)
Il/*(f - 8)l :::; Kh~d(v') (h::; max [la;'a;;-m' fllc(dT)

O<m'<m

+ n~ax_. h~(v)Il/(f - 8)1 + sin-J'BT m~x h~(v)il/U - 5)1)
I/EJVTVVT vE,VT

where hT is the diameter oI T. (md I( depends only on r. q and eT.

Proof. Since N(T) c N;nNT. we do not need to estimate Il/"U - s) I for l/" E N(T).
Moreover, by simmetry. it is enough to consider N; (u) for a vertex v of T, and N; (e)
for an edge e of T.
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Let T = T~ for somei E {L ... ,n(v)}. Then N;(v) corresponds to the nodal
values

Z/' 9 = IY:e Deß g(v). for all (0:, ,13) E A.l U /b U A.3 U /b.
t 1+1 .

'vVe consider three cases.

Case 1: (o:,ß) E Al'
Then

hcr+ßIDCfDl3 (l- s)(v)l:::; 2ü+/3h.,.>+.t3 max IDCf'Dß'(f - s)(v)1
T e, e,+ I . T ,.t'~o.3'~o. Cf'+i3'=Cf+.i3 x y

:::; 2P max h''''+i3'ID~'Df'(f - s)(v)l.
(u:'.,:3')EA1 T y

Therefore.

(o:,ß)Elh,

which proves (:3.15).

Case 2: (0:, ,6) E :~h
If ei is nonelegenerate at v. then z/ E '\/T.2(V) anel (:3.1.5) trivially holds. If ei is

degenerate at v. but ei-l is nonelegenerate at c. then. by (:3.4).

Similarly, if both ei anel ei-l are elegenerate at u. hut ei-2 is nonelegenerate at v, then
a repeated application of (:3.4) shows that

Finally. if u is singular. then in the same manner we can see that

(:3.17) (0:,/3) E A2,

which, hence, holels in either case anel confirms (:3.15).

Case 3: (0:,/3) E /b U /13,

:2:3



By simmetry, assume without loss of generality that (0:"ß) E A3.
If either ei is degenerate atv 01' ei is a boundary edge. then z/ E NT.4(V) and

(:3.15) trivially holds. If, otherwise, ei is a nondegenerate at v interior edge, then
analysis similar to that in Case 2 shows that

(3.18) (0:"ß)EA2.

Let us denote by Ui-l,Ui ancl Vi+l the vertices of ei-l. ei and ei+1 different from v,

respectively, by <+1 the eelge between Vi anel Vi+1, and by e;_l the edge between Vi

and Vi-l. The same argumentation as in the above shows that

(:3.19)
h~+(3ID~iD~, (f - s)(v;)1 :::; 2P n}ax h~(lI)Il/(f - ..,)1, (0:,,6) E /h,

',+1 lIE.\iT.1 (Vi)

h~+GID~iD~, (f - s)(Ui)l:::; max h~(I/)Il/(f - ..,)1. (0:,,3) E A2.
',+1 lIENT.2(Vi)

If now ei is nonelegenerate. at Vi. then by the elefinition of jVT,

(3.20)

In view of (3.16)-(3.20) anel Lemma :3.6. 2). with Tl = T anel T2 = T~-l, we have
for every f.l. = O..... r ancl ~/= O..... m - {L.

(:3.21)

h-'+).1.'1 -I ).1. . - I . (m '11 m-' ).1.' '11T I De,Del.(j - .,)1 C(ei):::; /\1 hT Ol<n~<X De, ).1. Dpl.f C(ei)
t _P- _f-L ~I

+ max h~lI) Il/(f - oS) I + . max h~lI) Il/(f - s) 1

LIEHT (ei) I/E.\iT.l (v)U/VT.1 (Vi J

+sin-I'BT max h~lI)Il/(f-.s)I)
lIEJVT.2 (v)UJVT.4 (vJuNT.2 (Vi )U/VT.3 (v,)

where /"""1 elepenels only on Cf anel eT. Since

(:3.22)

(3.1.5) follows from (:3.21).
If ei is elegenerate at Vi, then

(3.23 )
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By (3.4),

(3.24) (o:,ß) E lb.

(3.25 )

In view of (3.16)-(:3.19), (:3.23), (3.24) anel Lemma 3.6, 1), with Tl = T anel T2 =
T~-l, we have for every f.l = 0, ... , r anel I = 0, ... ,777, - f.l.

h}+~IID~D"l.U - s)IIC(e) :::;[{2 (h;; max IID;-~I D~~fIIC(e)
t ei ~ O~.LL/::;,LL 1 ei 1

+ max h~(v)lvU - s)1 + max h~(v)lvU - s)1
vENT(ei) vE.VT.! (v)uNT.dv;)

with [{2 being elepenelent only on q anel eT. Therefore. (:3.1.5) follows from (:3.22).
Finally, let e be one of the eelges of T. say e = ei. Then for any v" E }V;,

(:3.26)

anel (:3.1.5) follows from (:3.21) or (3.25) if ei is an interior eelge of 0. H, otherwise. ei

is a bounelary eelge. then, similar to the above. Lemma :3.5 implies that

hi-+~IIID;'D~~(f - s)IIC(e) :::;[{3 (h'T max IID;-~" D~~flle(e;)
-I el t O::;,LL"::;J..L' t ei

(:3.27) + max h*v) IvU - s) I + max h~(V)IvU - s) I
vENT{e;) VE"VT,l (-u)uNT,j (v;)

+ max h*V)lvU-s)I),
vE"VT.2 (u)uNT,4 (v)uNT,2(Ui luNT3 (Vi)

with K3 being elepenelent only on q anel eT. which. in view of (3.26), implies (:3.15) .

•
In the following lemma we use stanelard finite-element techniques to get an esti-

mation of IlsITllc(T) in terms of the noclal functionals v E NT'
Lemma 3,9 [fs E S;,P(6.) and TE 6., then

(:3.28) Iisl 11e(T):::; K mal5 h*v)jvsl ,
T vENT

where hT IS the diameter of T, and [{ depends onLy on q.



Proof. Let T be 30 fixed triangle in the plane, say, the tri angle with vertices VI =
(-~,O), U2 = (~,O), U3 = (0, ¥l Although T may be not in.6.. it is easy to see that
the set of nodal functiQnals Nt is well-defined for T.

For every T E .6.. let BT : R2 --1- R2 be an affine mapping such that BT(T) = T.
Then

BT:: = AT:: + bT, :: E R2
•

where AT : R2 --1- R2 is an invertible linear mapping and bT E R2. Since T contains
30 disk of radius VZ'. .
(:3.:29) [[.-hll ::; :2)3 hT.

For every i/ E Nt. sa.y of the form

A D(r DiJ (A)V9 = .;. -'-g::o .
'1 12 .

let us define v by
Der D3 ( )1/0:= _ '_9 ::0 ,.':1 11; '2

where
Ti = I[A.TT;II-l.-hT;.

Then it is easy to check that

1.=1.:2.

(3.:30)

Moreover. 30 standard computation shows that

By Lemma 3.1, .\/; is TIq-unisolvent. Therefore, for every v E N'; there exists a
unique fundamental polynomial ]),/ E TI'I such that

{
1.

V~l) - '.
l/ - O.

if v~ = v.
if v~ E N; \ {v}.

Similarly, for every () E Nt there exists a unique fundamental polynomial Pli E TIq
such that

~ A { 1,
V p,/ = 0,

if v~ = i/.
if 1/ E Nt \ {n.
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It follows from (:3.31) that

(3.32)

\.

We are now reaely to prove (:3.28). Since Sly is a polynomial in TIq, we have

Therefore. by (:3.:32)anel (:3.29),

IISlyllc(y) < L Ivsl. IIPvllc(y) = L Ivsl. Ilpv 0 Bylle(T)
vEN:; vE.V:;'

< L Ivsl'IIAyIIJ(V)IIßvllc(T)
vEN:;'

anel (:3.28) follows. •

Remark 3.10 It is not elifficult to see that the triples (T. TIq,JV;), T E 6., form
an affine family of finite elements in the sense of [10, p. 87]' anel ('T, TIq, JVi) plays
the role of the reference fini te element far this family. Particularly, (:3.30) shows that
(T, TIq, N;) is affine-equivalent to (t. TI'I' ,\li), with By being the corresponeling affine
mappmg.

Proof of Theorem 3.1. It fo11owsfrom Lemma :3.8 anel Lemma :3.9 that the only
spline .s E S;,P (6.) that satisfies I/S = 0 for a111/ E N. is the zero function. In view
of (2.8), a stanelard linear algebra argument shows that for any real elata av, v E N,
there exists a unique spline S E S:;.P( 6.) such that vs = Clv for a11v E JV. Particularly,
for every function I E ('21'( n) the Hermite type interpolation problem

lh = vI for a11 v E N

has a unique solution Sj E S;;'P(6.). which proves the first statement of the theorem.



Let us fix a function f E Cm (D) anel a tri angle T E .6...Without loss of generality
assume that (0.0) E T. Then for the Taylor polynomial

Jn-l j / " J• _ DJ D?-J ](0,0) ,1'1

J')(:1: '1)):= '\' '" -', J" xJ yJ-]" i....JL /'(]_/)!
J=O /=0

we have

(3.33) liDO:DP(j' --)11 < 2"'-'-'-13, hm-',1-.i3 max IIDm' Dm-mi /11
x y P C(T) - (m+1-L1-j3)! T O<m/<m x y ,C(T)

for all a, ß 2: O. 0: + 3 ~ m. As a consequence. for every 1/ E .M;.
(:3.34) I ( 1'-)1 J' I m-<l(I/) IIDmlDm-rnlj'll

1/. - P ~ \.1 <T max x y C(T),
O<m'<m

where 1(1 is a constant elepeneling only on q.
We have

(:3.35) 11 D~ D; U - 5]) IIL",,(T) ~ 11 D~~D~ U - I)) IIc(T) + 11 D~ D; (p - 5]) IILoo(T) .

By the bivariate Markov inequality (see. for example. [U]).

(:3.36)

where hT anel f) are the diameter anel the smallest angle of T. respeeti vely, anel K2

elepenels only on q.
Since p - 5] E S~.P(.6..) anel (ß - S])IT EIl" it follows from (:3.36) anel Lemma :3.9

that

(3.37)

(3.:38 )

where f{3 elepenels only on q anel (h. By (:3.:34) anel Lemma 3.8, since I/(f - 5]) = 0
for all 1/ E )VT. we have for every 1/" E .M;

h~(I/*)II/"(ß - s])1 ~ h*v*)II/"(]) - f)1 + h*I/*)II/"U - 5])1

~ 1\.'4h';, max 11 D;' D;-m' fIIC(T) ,
U<m.'<m

where K4 elepenels only on T, Cf emelEh.
Since f)T 2: f):::", now (:3.:3,5), (:3.:3:3). (3.:37) anel (:3.:38) imply (:3.2) .•

Remark 3.11 It is easy to see from the above proof that Theorem :3.1 in fact holels
with f)T in place of e:::".
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4 A Basis für S~,P(6.)

Let )V = {vdi=l' where TI, = dirn S~',P(6.) in view of (2.8). For every f E C2r(D), it
follows from Theorem :3.1 that the interpolating spEne S1 E S;,P(6.) satisfying (3.1)
can be representecl as

!l

(4.1 )
,=1

where the fundamental jimctions Si E S~',P(6.).i = L ... , n. are uniquely determined
by the conclitions
(4.2) ViSj = Sij , i. j = L ... ,17,.

Therefore. {SI ..... Sn} is a ba.sis for S~',P(6.). The following theorem estabEshes some
useful properties of this basis.

Theorem 4.1 The fundamental fllndions SI,"" Sn form a basis for S;,P(6.) such
that

1) {SI,"" Sn} is locafly linearly independent, i .e .. for every open B C D the
subsystem {Si: B n supp Si # 0} is linearly independent on B,

2) {SI," ., Sn} is least s'upported. i.e .. for every basis {bI," . , bn} of S;,P(6.) there
exists a permutation 7i 0f {1. .... n} such that

supp Si C supp b,,(i)' for aUi = 1. .... n.

:3) for eachi = 1. .... 17" supp Si is edher a triangle 01' theunion of same triangles
sharing one common uerte:'C.

4') }". I d( vil 11 - 11 I -I' I ,l( v, ) I'I li :::;.'ji e(n):::; \.2 \.:3?i . tu ,ere

hi:= max hT,
TCsupps,

I{I) !{2 depend on.!y on r. Cf and f)~. and

with
N:= U iJT.

TE~

29

ifl/; EJV\F/.
if Vi E iJ,

- -
f)0. := minf)T,

TE0.



5) the cOTTesponding nOTmali:::ed basis {s~, ... ,s~}, with si:= h~d(l.I;)Si, is stable
in the sense that

(4.3)

whe're I\."4 and f{s depend only on r, q and e6..

Praaf. 1) As shown in [12]' a systeni of funetions {Sl,' .. ,Sn} C S;C::~) \ {O} such
that IIq C span {Sl, .... sn} is locally linearly independent if and only if

(4.4) for every T E 6..

Since IIq C S~',P(~), we only have to check (4.4). Fix a triangle T in 6.. Byapplying
consecutively Lemma 3.9 anel Lemma 3.8 (the latter with f == 0), we get

where I\."6 elepends only on '1', q anel eT. Therefore, silT == 0 if Vi t/:. NT, so that (4.4)
follows from (:3.14).

2) Least supporteelness of {51,' .. ,Srt} follows from its local linear independence
in view of [6, Theorem 3.4].

3) As we have seen. T C supp Si implies I/i E JVT. Therefore, it suffices to show
that for each fixed v E N the set

consists either of a single triangle 01' of some triangles sharing one common vertex.
Since

N = U.,V(u) u UN(e) u UN(T).
v e T

we consider several cases. First, if v E N(T) for some T E 6., then obviously
Tv = {T}. If v E N(e) for some interior edge e of .6., then 'Tv = {Tl, T2}, where
Tl and T2 are the two triangels sharing the eelge e. (If e is a boundary edge, then,
of course, there is only one such tri angle T. anel Tv = {T}.) Finally, assume that
v E N(u) for some vertex u of.6.. Then v E NT implies 1/ E NT(u). The latter is
possible only for the triangles T that CI,reattacheel to u. Hence, Tv C {T E .6. : u E T}.
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4) By (4.5),

Iisillc(n) = max IlsiiTllc(T)::; 1\.'13!{:3 max h~(l/;) = !(6K3 h1(l/i).
TCSllPPSi TCSllPPSi.

which gives the upper bound. Furthermore. by Markov inequality (:3.36),

1 = 1/./;8il ::; !\',h~d(l/illlsiITIIc'(T), for some Tc supp Si,

where K, depends only on q and ()6.. It is not difficult to check that

max hT::; I\.'s m1n hT
Tcsupp S, TCSllPP Si

where Ks depends only on q anel ()6. (see, e.g .. [IS, Lemma :3.2]). Therefore,

11
_11 > }'-l}'-'21"/d(l/ilSi ern) _ \, \s 'i .

and the lower bound 1Salso shown .
.5) We fix {a;}i=l anel set 8 = L~l Cl;.';';. Let:: E T E ~. By (4.4) and (4.5) we

have
n n.

IL Cli«.::)1 ::; max IClil L 187(::)1 ::; max la;1 (q;2)K6 Sin-raT,, ,
i=l ,=1

Wh1ch proves the upper bounel for Ilsllctn). Moreover, let ICljl = max laJ Then,

Therefore, in view of .\JIarkov inequality. we have for some T' C supp Sj,

I I / d(l/])[ I }' / d(l/j)/-d('/j)11 1I }' }--'2rll 11Cl j = 7,j /./j S ::; \,' j 7,T' SIT' C (T I)::; \., \.:3 S C (n) ,

which completes the proof. •

Remark 4.2 A similar interpolation scheme can be done for the superspline space
S~,P(6.) with any p within the range

[1'+1] . { [Cf-I]}l' + ~ ::;p ::; mm 21', ~ .

The only necessary change in the construction is that in the definition of N(e) one
should take

KIJ- ;= min {Cf - 2p - 1+ ~L, Cf - }r - 1 - (1' - ~) mod2} .

All results of Seetion :3 and Section 4 remain valid.
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We eonclude the paper with a diseussion of the results of Seetion 4.
First of all, it immediately follows from Theorem 3.1 that the norm of the inter-

polation operator S f : C2r( D) --+ S~,P(!:l) is bounded by a eonstant whieh depends
only on T, q and the snlallest angle e £:,. in!:l. On the other hand, it is easy to see
that some of the fundamental functions Si ean grow unboundedly if the triangulation
eontains near-degenerate edges. (In Theorem 4.1 we eould only estimate Ilsillc(D)
with a eonstant depending on 86,.) This seems to be eontroversial at first glanee. We
will try to explain this phenomenon. Letu be a vertex of the triangulation .c:... The
nodal values v in the set N(u) are linearly independent, as we have shown, if they
are eonsidered as linear functionals on the spline space S;,P(6). Contrary to this,
the nodal values v E N(v) eorresponding to the partial derivatives of the same order
k, with p < k :::; 21', do stay in a linear relation as linear functionals on the spaee
C2r(D). (Reeall that S~',P(!:l) is not a subspace of C21'(D).) Indeed. there exist exaetly
k + 1linearly independent partial derivatives D~l D~2(f)(V), with a + ,3 = k, for any
k-times differentiable function f. and we certainly have in N (v) more than k +1 nodal
values of this type. As a consequence. the coefficients vJ in (4.1) satisfy some linear
relations reflecting the fact that f is 21'-times differentiable at each vertex. This leads
to some cancellations in the sum and makes possible estimation (3.2).
Let us also remark thaL according to Theorem 4.1. 2). our basis is best possible

for the space S;.P( ~) in regard to the size of the supports of the basis funetions. It
shares this property with the basis constructed in [16]. The bases in [8. 18] fail to be
least supported. but they have the advantage that the stability inequality (4.3) holds
for them without sin!"ij.0. in the right hand side, i.e., they enjoy stability even in the
presence of near-degenerate edges.
Finally. we note that the property of local linear independence established for our

basis in Theorem 4.1. 1), plays an important role in the theory of almost interpolation
(see [12, 14, 1-5]).
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