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Let A be a triangulation of some polygonal domain Q C R? and let S7(A)
denote the space of all bivariate polynomial splines of smoothness r and degree
q with respect to A. We present a Hermite type interpolation scheme for ST(A),
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1 Introduction

Let  C R? be a polygonal domain, and let A denote a regular triangulation of Q.

The space of bivariate polynomial splines of degree ¢ and smoothness r with respect
to A is defined by

Si(A):={seC"(Q) : s, € 1, for all TeA}, 0<r<q,

where :
M, :=span{z'y’ : >0, 5>0,1+75<q}
is the space of bivariate polynomials of total degree g.

In the literature. point sets that admit unique Lagrange and Hermite interpolation
by spaces 57(A) of splines of degree ¢ and smoothness r were constructed for crosscut
partitions A, in particular for A and A2-partitions {1, 7, 17, 22, 23, 24, 27, 28].
Results on the approximation order of these interpolation methods were given in
(7,13, 17, 21, 22, 25, 27, 28).

In the case of an abitrary triangulation A, the finite-element method provides
a tool to comstruct Hermite type interpolation schemes for S7(A) with optimal ap-
proximation order O(h%*!), where h is the maximal diameter of the triangles in A.
However, as shown in [30], this technique only works if ¢ > 4r + 1.

On the other hand, the approximation power of the spline space S7(A) for ¢ >
3r + 2 was studied in [4. 8, 9. 13]. Particularly, in [8. 18] it was shown that for a
sufficiently smooth function f,

(1.1) dist (£, S5(A)) < KA,

where K is a constant that depends only on f, r, ¢ and the smallest angle §, in A.
(Great difficulties in the constructions and proofs of [3, 18] were caused by the desire
to have this K independent on the geometry of A except the obviously unavoidable
dependence on #5.) If ¢ < 3r 4+ 2, then the optimal approximation order fails for
certain triangulations (see [3]).

In this paper we present a Hermite type interpolation scheme for ST(A), g = 3r+2,
that possesses optimal approximation order O(h¢*!) in the same sense as in (3, 18],
i.e., the corresponding constant A does not depend on the geometric structure of
A. Thus, we give a new proof of (1.1) that makes use of interpolation instead of
quasi-interpolation methods developed in [3, 18]. The details of our construction are
given in Section 2, whereas the main result of the paper, Theorem 3.1 about the
approximation order, as well as its proof are presented in Section 3.



Let us emphasize that our technique is quite different from that of [8] and [18].
In each of these papers a stable local basis for a superspline subspace of S7(A) was
constructed first by using Bernstein-Bézier techniques, and then the basis functions
were used to build up & quasi-interpolation operator that yielded the optimal approx-
imation order. In contrast to this, we argue directly with nodal functionals, as it is
common in the finite-element method. However, as mentioned above, the classical
finite-element techniques could only work if ¢ > 4r + 1. In order to handle the case
q = 3r +2, we had to develop a new approach that had its roots in the idea of “weak
interpolation” introduced in [21] and further developed in [25] and [13]. Further-
more, we needed a new description of ¢ smoothness across edges in terms of nodal
functionals (see Lemma 3.2).

As a by-product of our construction, we get a nodal basis for the space of super-
splines

SyP(A) = {s € S(A) : s € C(v) for all vertices v of A},

where p =7+ [%] and g > 3r + 2. The basis consists of the fundamental functions
S81,..., 3, of our interpolation scheme. Some properties of this basis are studied in
Section 4. Namely, it is shown that {si,....s,} is locally linearly independent and
thus least supported. i.e..the supports of the basis functions s; are as small as possible,
which is not the case for the basis functions constructed in [8. 18]. Moreover, we show
that {s1,...,sn} is stable if A does not contain near-degenerate edges. (Although the
basis is not stable in general, the norm of the interpolation operator s; : C*(Q) —
S7°(A) of Section 3 is bounded by a constant that depends only on 7,¢ and the
smallest angle 0, in A.) We note that there is some interrelation between our basis
{s1,...,5,} and the basis for S7°(A) constructed in [16] by using Bernstein-Bézier
techniques. Particularly, the supports of basis functions are the same. However, the
minimal determining set of [16] cannot be transformed by standard Bernstein-Bézier
arguments into a Hermite interpolation scheme of our type.

2 Nodal Functionals

Given a regular triangulation A, we denote by N the number of triangles, by V
the number of vertices. by V7 and Vg the number of interior and boundary vertices
respectively, Vi + Vg = V', by E the number of edges, and by F; and Ep the number
of interior and boundary edges respectively, E; + Eg = E. It is well known that




Eg = Vg,
2.1) Er = 3Vi+Vs—3,
N = 2Vi+Vg—2.

»

In [16] it was shown that

dimS;"’(A) — (p;—2) 1% + ((0—327‘—1) _ 3<2r—2p+1)) N

(2.2) 1 19 5 2r—p+1
+ E(r—%—l)(uq—ilp-%‘r—d)E—%—( o,

with o being the number of singular vertices of A, where a singular vertez v is a
vertex which is formed by two lines which cross at v. It is easy to see that a vertex v
1s singular if and only if at least three edges are degenerate at v, where the degeneracy
of an edge is defined as follows.

Definition 2.1 [2] Suppose ey, e,, e3 are three consecutive edges attached to a vertex
v. The edge e, is said to be degenerate at v whenever the edges e; and e3 are collinear.
An edge e attached to v is said to be nondegenerate at v if it is either a boundary
edge or an interior edge which fails to be degenerate.

In the finite element method piecewise polynomial trial functions are usually de-
termined by their values and derivatives at some points, so-called nodal values (see.
e.g., 29, p. 101]). In (19, 12} and [26] this technique was applied to the study of
spline spaces S;(A), ¢ > 5. and supersplines S7*(A) with p > 2r and ¢ > 2p + 1,
respectively.

We set

CHA):={f€C(Q): fiLeCHT) forall T €A}, w=0,1,..,

and denote by D, the derivative operator in the direction of a unit vector 7 = (7, 7,)
in the plane, so that

S _— . . df . Of
Drf - ’rDrf L ‘yDyj~ sz = 5; Dyf - ()y
Definition 2.2 Given f € C**3(A). «.3 > 0. any number
(2.3) vf = D2 DE(f.)(=),

where T € A, z € T, and 7,7 are some unit vectors in the plane, is said to be a
nodal value of f, and the linear functional v : C**#(A) — R defined by (2.3) is a
nodal functional, with d(v) := o + 3 being the degree of v.



For some special choices of z, 71, 73 it is convenient to use the following simplified
notation which goes back to [19]. 1) If v is a vertex of A and e is an edge attached
to v, we set

tDIf(v) = DE(f)). a1,

where T is the unit vector in the direction of e away from v, and T € A is one of the.
triangles with edge e. The notation is correct since in the case when there are two
different triangles T}, Ty attached to e, flT and f|T coincide along e, and hence

) | 2

D2(fi, )(v) = DU, o).
2) If v is a vertex of A and ey, ez are two consecutive edges attached to v, we set
D D7, f(v) = Dy DY (fi)lw) . B >1.

where T' € A is the triangle with vertex v and egdes e;, 5, and 7; is the unit vector
in the e; direction away from v. 3) For every edge e of the triangulation A we choose
a unit vector 7+ (one of two possible) orthogonal to e and set

DI flz)=D3f(z). z€e. a>1,
| provided f € C%(z).

We now associate with the superspline space 57°(A), with ¢ > 3r + 2 and

(2.4) p=r+ { - } |
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a set NV of nodal functionals, as follows.
For every vertex v of A, let T, ..., To") be all triangles attached to v and num-

bered counterclockwise (starting from a boundary triangle if v is a boundary vertex).
Denote by e; the common edge of T/ and T7, ¢ = 2,....n(v). If v is an interior
VErtex, €; = en(y)+; denote the common edge of T! and T,;n"u). Otherwise, e, and
€n(v)+1 are the boundary edges (attached to v) of T! and T respectively.

We define V(v) to be the set of nodal functionals assigning to every function

f € C?v)NC*¥(A) the following nodal values:

(vl) D;“Dgf(v) for all (a.3) € 4. where




(v2) D2 Df  f(v) for all (o, 8) € Ay, where

€it+1

Ay ={(a,3) €2 : <1, B<, a+J32p—Fl},

and for each ¢ € ’{l, ..., n(v)} such that e; is nondegenerate at v,
(v3) D2 Dfx.Hf(v) for all (o, 3) € As, where
Ay ={(a,8)€Z?: a>r+1, 20+3<3r+1. a+8>p+1},

and for each 1 € {1,.... n(v)} such that e, is degenerate at v,

(vd) Dg sz f(v) and D‘;WM Dfn(v)f(v) for all (o, 8) € A3 if v is a boundary vertex,
and

(vd) Dg D*jz f(v) for all (a.3) € 4, if v is a singular vertex.

Fig. 2.1. The sets 4;, 4, and A4s.

On every edge e of A, with vertices v, and v,, we take points

(2.5) :é"i::vl+h_u'i+l(vg—ul). v=1.. .08, pu=0,....r.
where
(2.6) /ﬁu::q—BT—l—(r——;t)mod‘Z:q—27‘~1—u—2[$],

and define NV (e) to be the set of nodal functionals assigning to every function f €
CT(f2) the following nodal values:



(e) DELf(=h), .., D f(z8™) forall p = 0,....7.

In every triangle T € A, with vertices vy, v, and v3, we take uniformly spaced
points .

(2.7) S8 = (o + v+ kus) /g, i+t k=q,

and define AV(T') to be the set of nodal functionals assigning to every function f &€
C(Q) the following nodal values:

(t) f(:,’r’l”) forall 7,5,k such that i + j+ bk =gand r < 4,7,k < g —2r.

We set
M= Nw) v N ey u| V(D).
v e T

Lemma 2.3 We have
(2.8) card N = dim Sre(A).

Proof. It is easv to see that -

(2.9 card Ay = (*7%), card 4y = card 45 = (0T,

card V{e) = (r+1)(g = 3r = 1) =[] . card M(T) = (""77).

Therefore,

ard ¥ = (I () 43 N2
+o(r+1)g=3r—1)+r—p)E+ (70

The lemma now follows from (2.1), (2.2) and a simple computation. B

3 Hermite Type Interpolation

Theorem 3.1 Letr > 1, ¢ > 3r+2andp =r + [%] Given f € C*(Q), there
exists a unique spline sy € STP(A) satisfying the following Hermite type interpolation
conditions

(3.1) vsg=vf forall veN,

where N 15 defined above. Moreover, if f € C™(Q) (m € {2r,...,q+1}) and T € A,
then




(3.2) ID2DB(f — s Mpwiry < K h7™*7? ogmax | DD fllery »

forall a3 > 0, a+ 3 < m, where hr is the diameter of T, and K is a constant
which depends only on r,q and the smallest angle 8, in A.

We will prove Theorem 3.1 at the end of this section, after establishing several lemmas.

In the first two lemmas we consider a simple triangulation consisting of two tri-
angles and establish some relations between nodal values of two polynomials defined
on each triangle and joined together with " smoothness across a common edge of
the triangles.

Let T} and T3 be two triangles sharing a common edge e = [vy,v;], and let ¢; # ¢
be the other edge of T; with endpoint vy, ¢ = 1,2. Denote by 7, 7, ™ the unit
vectors applied at v; in the direction of edges e, e, e, respectively, and by 8, the
angle between 7 and 7.7 = 1,2. (See Fig. 3.1.)

Furthermore, let s be a piecewise polynomial function on T, U T4 such that
s, =pi€ll,. =12,

Our first lemma characterizes C'" smoothness of s across e in terms of its nodal values.




Lemma 3.2 Letr < q.
1) If 61+ 8, % w, then s € C™(TL U Ty) if and only if

(3.3)  sin®6; DI DI™%py(vy) = Z(-—l)ﬁ(g) sin® (6, + 65)sin®0, Df‘ DI P py(vy),
B=0

2) If 0, + 0, =, then s € C™(TL U TY) if and only if

foralla=0,..., randy=aq,...,q.

(3.4) D2, DY pa(v1) = (—=1)* D¢ DI™*py(vy). a=0,....1. vy=a,...,q.
Proof. Evidently. s € C"(T} U T3) if and only if for some unit vector 7 noncollinear
with 7,

DEDZpy(z) = DeD2py(2), forall a,p >0, a+p<r andall z €e.

Since (D‘T",pi)|57 ¢ = 1,2, is a univariate polynomial of degree at most ¢ — «, this is
equivalent to the condition

DI DYpa(vy) = DI D2 pr(vy), a=0,....r. v=a,...,q

We now choose 7' = 7. If §; + 6, = 7, then 7, = —73, and we immediately get (3.4).
Otherwise, if §; + #; # 7. then the vectors 7. 7, and 7, stay in the relation
Tsin(f, + 62) = 7y sinfy + T sin b, ,

which implies

sin*0y D2 DI pi(vi) = 3 (=1)7(3) sin*=%(8) + by) sin”8, D2 DT "py (vy),

3=0

and the first statement of the lemma follows. B

Thus, the nodal values of s € C"(T, U T,) stay in relations (3.3). The same
relations hold for every sufficiently smooth function f. By solving a linear system we
can estimate some of the nodal values of f — s at v, involved in (3.3) in terms of the
others.




Lemma 3.3 Suppose that s, as defined above, is in C"(T\UTy), and let f € C*(TyU
T,) for some k € {p+1,...,2r}. If 0, + 6y # m, then for every B = 2k — 3r —
,...,k—r—1,

»

DEDER —pwl S K (e 1D DI = palon)

0<a<2k—3r -2

(3.5)
b lsin 0+ 00 i 1D3DE T - )] ).
where K depends only on r and f;.
Proof. Since f € C*(v1), we have
sin°‘91 Df; D,,_C_df(’l}l) = Z(—l)ﬁ (g) Sin“"d(ﬁl + 93) sin’a92 Dfl Df_ﬁf('l)l)
3=0

forall e =0...., k. This, together with (3.3), imply that

X

(3.6) dra =) (-1(Yars, a=2k-3r—1,...r,

where

ay,3 = sin~7{

761 + 62) sin”8, DZ DE-8(f —py)(v1),
ay,3 = sin™?(B; + 0,) 5in?8, D2 DEP(f — py)(v1).
Consider (3.6) as a system

Az =5

of 4r — 2k + 2 linear equations in 4r — 2k + 2 unknowns

i

ai5. B=2k=3r—-1....k—r—1, i=1,2.
Thus, we have |

¢
= (al,'Zk—?ﬂ'—l: ce s QL E—r =15 U2.2k—3r =15 - - s a?.k—r—-l) s
bis a {4r — 2k + 2)-vector whose components are some linear combinations of

a g, ,/3:0.,...,2&—37‘—'2. and

aig, B=k—r....,r. 1=1,2,

10




and

where

C = <(—1)"+j( e ))m . with ni=k—-r—-1, m:i=2r—-k+1,
t,7=1

n—m+j

I is an m x m identity matrix, O is an m X m zero matrix, and B is a certain m x m
matrix. Since the determinant of C is a nonzero constant multiple of

1 m _L
et <(m+'i_j)!>'i,j=1 # 0.

A is nonsingular. Therefore,

[2flse < 147" oo 1blloo-

where || A7}, is bounded byj a constant dependent only on r. Particularly, for all
0=2k—-3r—-1...., k—r—1,

lay 5] < K < max  |a;.] + max |ai.] + max }CLQ.Q|> .
0<a<2k=3r-2 A—r<a<ly k—r<a<r

where A} depends only on r.
Recalling the definition of @; 3, 1 = 1. 2. we obtain

|DE DE=2(f — pr){vi)] = |ayzsin® (81 + 65) sin ™6,
< Ky <O<aggg§3r_2 | sin?=* () + 02) sin® "6, [ D2 DE=(f — p1)(v1)]
4+ max ’ SiI’l'B_a(f/)l + (/7)2) sin"_ﬁQgHDfl D/I.c_’a(f - ply)(v1)|

A—r<a<lr

+ max |sin® (8 + 6,)sin4, sin"‘BHQHszD’j“"(f — pg)(vl)o ,

k—r<a<r
and (3.3) follows. ®

We also need the following univariate “weak interpolation” lemma (compare (21,
Remark 5ii] and [13. Lemma 4]).

11




Lemma 3.4 Let e C R? be an interval with endpoints vy, vy, and let p € {0,...,7}
and m € {r + {MT_“] coonq+ 1 —pu}. Then for any f € C™(e), any p € II,_, and
every v =10,....m,

»

1D2(F = plllew < KA~ <hm|!D’”ch 0+ max (S =PIt
(3.7)
¢ max h.ﬂD,f(f—p)(vi)l),

R

=1.2

where h is the length of e. T denotes the unit vector in the direction of e, z** and &,

are defined in (2.5) and (2.6). respectively. and K is a constant which depends only
on q.

Proof. It is sufficient to consider the case e = = [0,A], e, vy = (0.0), va = (0,h).
Then 7 = (1,0), D, = D,. z** = (#.‘0), i=1..... K.

Since f € C™[0,h], we ha\re

(3.8) IDI(f = Blllcom < 15

HD’ f”COn: “/’:0-...,‘m,_

where p 1s the (univariate) Tavlor polvnomial.

m—1
ple) =y 2l
v=0
Therefore,
HDZ0f = pillcon < IID F=0)cor + 1D = Pllicon
< A"TNDE fllewom + 103 — plictoss

and we only need to estimate ||D7(p — p)|lcio.4]-
Let

/\u = _‘}_{/4-1 LL:i-

Since s, +2(A, +1) =g — u+ 1, the following Hermite interpolation problem

g(z*) =a;, i=1,.... Fuy DYglv;) =aj0, a=0,...,},, j=1,2,



has a unique solution g among univariate polynomials of degree at most ¢ — u, for
any given data a;,t =1,... K, and a4, a =0,...,A,, 7 = 1,2. Then

Kp - Ay
(B—p)(t) =Y (F—p)=2")Linl }: D25 — p)v;) Ljalt), t€[0,h],
=1 j=1,2 «=0
where L;p,1=1,..., Ky, and Ljqn. a=0,....A,, 7 = 1,2, denote the fundamental

polynomials of the above interpolation ploblem, i.e., they are univariate polynomials
of degree at most ¢ — u. uniquely determined by the conditions

H

Llh(h;_TT) () . K
DELip(0)=DSLin(h)=0. a=0.... A, i=1,... 5,

and

Lion(Z2=)=0. j=1,.. .8, a=0,.... 5, i=12,

A+l
DILyonl0) = D50y onlh) =05, av=0,..., A4
DYLianlh) = DlLaan(0)=0. av=0...,),

respectively. By a uniqueness argument, it is easy to check that
DiLin(t) = hT"DILiy(£). te€(0.h]
DiLjan(t) = h"77"DILjaul%), t€[0.h],
and, consequently,

WD Linllcony = A7 DILillcro.
I1D7L;anllcon = h*77D]Ljaallcoa

Therefore. we have

K

1075 = p)llcpn < Z (5 =PI WA Lisll ey

\
+ Z 1D = p)(w;)| AN Ll co.0)s
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Since p—p = (p— f) + (f = p). (3.8) implies

(B =)= < DT fllowa + 10 = p) (=81,
IDE(=P)w)l < A"7|DF fllewa + DS (f = p)(w))l,

and the lemma follows because || L; 1||¢f.1) and || Lj a1 ]| cfo.1] are bounded by a constant
dependent only on ¢. @

Since our interpolation scheme is based on nodal values involving partial deriva-
tives in various directions, we need a tool to recast the (weak) interpolation conditions
in such a form that their interaction becomes tractable. As a “common unit” we will
use derivatives of the type D7 DY (f — ). The next two lemmas provide estimations
of these derivatives in terms of nodal values of our scheme.

Consider first a single triangle T} € A. and let e be one of its edges. with vertices
vy and vsy. (Note that e may be a boundary edge of A.) Denote by e, ; and e 4 two
other edges of T'. attached to v; and wv,, respectively, and by #;; the angle between
e and e; ;.1 = 1.2. (See Fig. 3.2.)

Lemma 3.5 Let s € 577(A) and f € C™(Q) (m € {2r..... q+1}) be given. Then
forall u=0,.... roand v =10..... mo— .

L4



HDZD:.L(f - S)HC(e)

IN

Kh™7# </zm max ||D;"_“/D:Lf||0(e)

o</ <u
(3.9) | o max B |DH(f — s)(22)

0<i<x
Sesey,

< /a+/3 a NG oy,
T Ladma A |DZDZ (f =s)(wi)l ],
B<p, 1=1.2

where h is the length of e. the sets A,-4; are defined above, and K depends only on
g and min{8y;.60,-}.

Proof. Since
(ayp)e {HULHLUA3 = 0<a<r+ [ﬁ}{—“] o =0,...,7,

Lemma 3.4 shows that there exists a constant A’} dependent only on gq. such that

ID2(f = s)llew < K™ <"‘mHD:f||C(e>+ max |(f = s)(z2)

0<i<n,

(2.0)€A| UdsuAy
i=1.2

+ max /z“"[D?(f—s)(vﬁl) ., v=0,...,m.

which proves (3.9) for p = 0. Proceeding by induction on u. we suppose that (3.9)
holds for 0....,u~1. Again by Lemma3.4. applied to D¥, f € C™ *(e)and p = D, s,
we get for all v =0.....m — 4,

IDIDA(f = s)llow € Kih™ (/zm*“||D?-“D:LfHC(e) + max [DA(f - 5)(=2))

+ max R DD (f — s)(v;)] ) .
[2u) €A UAUAS - f
e=1.2

Thus, we need to estimate DgDE (f — s)(v;) in terms of Dij}ii(f — s)(v;) with
0 < u. To this end, we use the relation

T =+7cosf ;£ 7rtsind ;. =12,

where 71 ;, 7 and 7+ are the unit vectors in the directions of ey ;, e and e* respectively,
so that




o ] ' ' .
(3.10)  D2D: (f = s)w) = > £(%) cos*™ By ssin b D3+ DX, (f ~ 5)(vi),
w'=0

»

and hence.

DDA =s)wl S [DEDA (F = 8)(wi)

D DA (f = s)(w)| . 1 =12

+ K, max
0<pu/ <pu—1

where K, depends only on g and min{#;,.6;.}. Furthermore. by the induction
hypothesis,
DI DA (f = s)(vi) D7 D fllege)

)l

< Kh ™ * [ A™ max

OS#HSHI

it 1" 1"

s v 13 I '_.\ s

o max, R DY (f = s)(=t
0Zi<n i

a’'+3 "n3 )
b B DL =) )
':55“‘/.1‘;1-2 N

and (3.9) follows. ®

Under the notations of Lemma 3.3, suppose that e is an interior edge of A and
denote by T, the triangle in A that share e with 7). Let ey and ey, be two other
edges of T3, attached to vy and vy, respectively, and let #;; be the angle between e
and ey, 1 =1.2. (See Fig. 3.3.)




Furthermore, let & denote the length of e.

Lemma 3.6 Let s € S7#(A) and f € C™(Q) (m € {2r,....q+ 1}) be given.
1) If15+ 6,0 Fwrthen forallu=0,....,randvy=0....,m — pu.
1D3DL (f = s)lloey < KATTH </7' 22X 1DI ™+ D, Fllce)
u! - . L' . a+8 a AV
+ max h* IDEL(f =)= + ogdpax RTTD DY (f = s)(v)]
(3.11) oSty =

+  max  R*TIDIDS (f = s)(vq)]

(a.3)EA;. 8<u F12

Fisin sl max | RIDIDE (S — 9wl ).

(@, 3)EAq, 1=1.2

where K depends only on g and min{#, ;. 6.
)) [j both 91.1 -+ 92‘1 ?—L © and 91 2 82‘
v=0..... m— . ’

2,022}
s # 7. then for all 4 = 0,...,7 and

. w e s ~;L'.£ a+3 a ne e .
(3.12) 1 max ATIDL(f —s)(< Mr;lf}\ds“ he*PIDEDE (f = $)(v;)]
0<ign J=1.2

1DIDA (F = $)lleqn < Kb ( e 107 D2 Sl
-+

+ max [sin (61 + 62,)  max /r**‘ﬂD:Di,,(f—s)(v;)\),

7=1.2 (x.3)E 4, =12
where K depends only on g and min{f;1,#,2.621.022}.

Proof. 1) The essential difference between (3.11) and the already established in-
equality (3.9) is that the terms

h* 1D DB (f — s)(va)l, (a.3) € 435, B<u;

in the right hand side of (3.9) are substituted by
|sin™" (012 + O22)| KT |DEDE (f — s)(va)l, (,8) € Ay, i=1,2.

If £ =0, then {{a.3)€ 43+ 3 < u} =0, and (3.11) is a straightforward consequence
of (3.9). .\/Imeover, in order to perform induction on u, we only need an estimation
of the form

L7



(e,8) €43 L2 o<y Sp—1

(3.13) el . 0Ly <m—p!
Flsin+ baal] | max | WEIDSDE (7 = o))l ).

(.B)EAs, i=1.2 éi2

i
|
max A% D2 D (.f'—S)('vz)!SK1< max K DIDE(f - )

To this end we employ Lemma 3.3, which gives for all (a, 3) € 43, with 8 < p.

D2 D (f~.s><vz>l£ff-z< max  |DZTIDE (f = 5)(v2)]

€12 0<A <2 a+3)~3r=2 o1z

+lsinT(0rp+0a0)| - max |DXTYDI(f - s)(va) ) .

a+3-r<3'<r. =1,

Since
3 <2a+8)=3r—2= 3 <pu-1,

we obtain. by making use of (3.10).

max D=8 DB (f V(o) < max  |[DETETHDE (F — s)(vy
0$;3’§2(a+ﬂ)—3r~2’ ¢ a2l =8 2)] “OSu’su—ll ¢ 222/ )(va)]

. a+d-u' ' o Ny - . +8—u' nyu' _
< [\3051“1}22_1 | D7 DE (= s)(va)] < [\30;;}22—1 D575 DX (f = $)[|gpe)-

Furthermore. since
a+3—-r<f <r=(a+8-73.3)¢c Ay,
we have

a+3-3" N3’ N < o' NG’ —
P A | D; D7 (f =3s)(va)] £ max |Dg D, (f = s)(w2)l,
a4 =a+d. =12 ‘

and (3.13) follows.
2) This part can be established by exactly the same arguments, the only difference
being that the terms

RPIDZDE (=)l (ef) €4, B<

€11

now also have to be estimated. H
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Let T € A and let v be a vertex of T. Then T = T for some i € {1,...,n(v)},
where T}, ... T are all triangles attached to v and numbered counterclockwise,
as in the definition of V(v) (see Section 2). We are going to define various subsets
of N(v) and N that will be instrumental in the proof of Theorem 3.1 and the key
Lemma 3.8.

We define Vp(v) C M (v) to be the set of nodal functionals corresponding to the
following nodal values:

(vt1) D2DBf(v) for all (a.3) € Ay,

(vt2) Dg DP  f(v) for all (e, 3) € A, if e; is nondegenerate at v. or

Citl

D Dg flv) forall (o, 3) € 4y if ¢ is degenerate at v. but e;, is nondegenerate

€i-1

at v, or

Dg_, Di_lf(v) for all (a.) € Ay if both e; and e;.; are degenerate at v, but
e;—2 1s nondegenerate at v, or '

Dg D’; flv) for all (e, ) € 4y if v is a singular vertex,

(vt3) D7, DE;H flv) for all (a.3) € 4, if e;41 1s a nondegenerate at v interior edge,

or
Dz, Diﬁf(v) for all (o, 3) € Az if ;41 1s degenerate at v, or
D¢ Df{f{v) for all (e, 3) € 45 if e;x, is a boundary edge. and

i+

(vi4) D2 D‘;+1 flv) for all (o, 3) € Aj if either ¢, is degenerate at v or e; 1s a boundary

edge, or
Dg_ Df flv) for all (o, 8) € 4, if both e; and e,;_; are nondegenerate at v, or

Dz Dﬁi‘lf('z,r) for all (e, 3) € 4, if e; is nondegenerate at v, e;_; is degenerate
at v, and e;_, is again nondegenerate at v, or

Dg . Dfl,_vf(v) for all (o, 8) € 4, if e; is nondegenerate at v, both e;_; and e;_
are degenerate at v, and e,_3 is nondegenerate at v.

Furthermore, denote by
./\/’T‘J'(‘U) C,‘V’T('U), 3 =1.2,3.4,

the set of functionals corresponding to the nodal values listed in (vtl), (vt2), (vt3)
and (vt4) respectively.
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We also define N
."\[T(‘U) C ’V‘T(U)

as follows: if each of two edges e; and ¢4 is either degenerate or lies on the boundary,
then N7(v) := 0, if e;1, is an interior nondegenerate at v edge. but e; is not, then
Nr(v) := Npa(v) U Ny a(v), if, conversely, e; is an interior nondegenerate at v edge,
but e;+, is not. then gT(u) = N7s(v)UNT4(v), and, finally, if both e; and e;,; are
interior nondegenerate at v edges. then ./\~/'T(v) = N7a(v) U N7a(v) U NT4(v).

For every triangle T € A\ with vertices vy, vy, vy and edges ey, eq, €3, let

3
Vo= [Nz U N (e) UN(T),
1 =1

Ve

Finally. we need a set of nodal functionals N} of finite-element type. Let T' € A,
let v be a vertex of T'. and let the edges e;.e; of T be attached to v. Then Np(v) is
defined to be the set of nodal functionals corresponding to the nodal values

D2 D? f(v). for all (a.3) € 4, U 4, U 45U 45,
where
dy={(a.3)€Z*: (3.a)€ 45}.

Furthermore, for every edge e of T we define N'7(e) to be the set of nodal functionals
assigning to every function f € () the following nodal values:
D¥ flzeby oo DR F(2E™) forall pu=0,....r,
where z#* and &, are defined in (2.3) and (2.6) respectively, and 7' is the unit vector
in the direction from the middle point of e to the vertex of T opposite to e.
For every triangle T € A with vertices vy, vy, vs and edges ey, e, €3, we set

3

3
N7 o= N U V(e UN(T).
=1

=1




Lemma 3.7 We have

(3.14) card N7 = card N7 = ("37).

Moreover, N7 is I1,-unisolvent. i.e., for any real data a,, v € N7, there exists a
unique polynomial p € I, such that vp = a, for all v € N7.

Proof. Obviously,

card N7 = 3card A; + 3card 4, + 6 card 45 + 3card V(e) + card V(T).

By (2.9) and some elementary computation. we obtain card N = (‘”;2) Furthermore,
4
card N7(v) = Z card N7 j(v) = card 4; 4+ 3card 45 = card N7 (v).
j=1

Hence, card N7 = card V7, which proves (3.14). Particularly, card V7 = dimII,.
Because of this, the second statement of the lemma will follow if we show that the
only polynomial satisfving vp = 0 for all v € N7 is the zero function. Following the
lines of the proof of Lemma 3.5, with f =0 and s = p. we get

||D:.'/,'D:_J-pHC(€,) = O I, = 1,2,3,
forall p=0,....rand ~=0..... q — . and every edge e; of T". Therefore,

p= ([112[3)r+175-,

where [;, [, and {3 are linear polynomials such that e; C {(z.y) : L(z,y) = 0},

and p is a polynomial in [I,_3._3. Then vp = 0, for all v € N(T). Since N(T) is-

114-3-_3-unisolvent, we have p = 0, and hence. p =0. B

We also need some local geometric characteristics of the triangulation.

Let e be anv interior edge of the triangulation A, and let v and v’ be its vertices.
Denote by e; and e; the adjacent edges of e at v, and by #; the angle between e and
e 1= 1,2. We set

95'” = min{gl?g?} : ée,'u = |7T - 91 - (92‘ .



If e is a boundary edge, then 4, denotes the angle between e and its unique adjacent
edge at v. Furthermore,

: 85 = min{ee.‘uw He.v’} )

and for an interior edge e.

i Ben. if e is degenerate at v'.
min{f, ., 8.}, if e is nondegenerate at both v and v'".

(We note that no edge can be degenerate at both endpoints simultaneously.)
For every triangle T' € \ we denote by

A+ and At

the minimum of 4. over all edges of T'. and the minimum of 96 over all edges of T
lying in the interior of (0. respectively. Thus. #7 denotes the smallest angle around
T, whereas 0 measures the “near-degeneracy” of the edges of T'. Certainly,

Hr > fa.

The following key lemma shows that the nodal functionals in V7 can be estimated

in terms of those in V7. Moreover. only the contribution of A7 to this estimation is
influenced by fr.

Lemma 3.8 Let T € A, s € 57°(A\) and f € C™(Q) (m € {2r,....q+1}). Then
for any v € N7

W (f =) < KRN < hZ ,max | D' D™ Fllco
(3.15) ==
+ max_ hflr(u)]u(f —5)| + sin™"#7 max /zfif(u)]l/(f - 3)] > ,

vENT\NT veNT

where hr 1s the diameter of T, and K depends only on r. ¢ and 8.

Proof. Since V(T) C N7NAN7. we do not need to estimate |v*(f —s)| for v* € V(T).
Moreover, by simmetry. it is enough to consider NV7(v) for a vertex v of T, and N7(e)
for an edge e of 7.




Let T = T for some i € {1,.... (v)}. Then Nz(v) corresponds to the nodal
values

vig = D;Dgi+lg('u) . for all (CY,,(}) € 43U 40U 43U ;13.
We consider three cases.

Case 1: (a,3) € 4.

Then
a+(3 ) C < Yo+ a+3 « " N L\
hy™ID2 DY (f = s)(v)] < 27FPhx (_\v,zo‘J,Zgg-,\w,:aw|Dx Dy (f = s){v)]
<2° (a}%,z)mé\'4 /z%l+"'iI(Dl"f'D5'(j' —s)(v)|.
Therefore.
(3.16)  AFTDDS (f —s)(v)] <2 max A7 —s).  (e.fB) € Ar,
T € Ci4l T

veNT | {v)
which proves (3.15).

Case 2: (a.3) € A,.
If e; is nondegenerate at v. then v~ € N7,(v) and (3.15) trivially holds. If e; is
degenerate at v. but e,_; is nondegenerate at v. then. by (3.4).

hrPIDZ DE, (F = 5)(0) = A5 |DE DL (f = )W)l < max ATlu(f =)l

vENT 2 (V)

Similarly. if both e; and e,_, are degenerate at v. but e;_, is nondegenerate at v, then
a repeated application of (3.4) shows that

REPIDL DL, (f = s)(w) = Ky |D2_ D2 (F = 5)(v)| € _max mlu(f - s)l.
a veNT2

Finally. if v is singular. then in the same manner we can see that

(3.17)  hFTDIDE (f —s)w)| < max AF(f - s), (e, B) € Ay,

vENT (V)

which, hence, holds in either case and confirms (3.15).

Case 3: (CK,,B) € 1"13 U .:{3.



By simmetry, assume without loss of generality that («, 3) € A4;.

If either e; is degenerate at v or e; is a boundary edge. then v* € N7 4(v) and
(3.15) trivially holds. If. otherwise, e; is a nondegenerate at v interior edge, then
analysis similar to that in Case 2 shows that

(3.18)  AFPPIDEDP_ (f—-s)(v)| < max REVW(f—s).  (@.8) € As.

. UE/\/T_4('U)
Let us denote by v;_i, v; and v;4, the vertices of e;_;. e; and e;,; different from v,
respectively, by e[, the edge between v; and vi4,. and by e;_, the edge between v;
and v;—;. The same argumentation as in the above shows that

ho‘w]D‘1 D'_j (f —s)(vi)] £2° max /2%(”)‘1/(]‘. —-3). (a.3)€ A,
(3 19) vENT, 1 (i)

hs*|D2 DY Af = 8wl < max Ay
Fit VENT 2 (i)

vif=s)l. (e.8) € As.
If now e; is nondegenerate at v;. then by the definition of A7,
(3.20) Nralv) = {wg = D2 D":,_lg(v,-) (.)€ A}

In view of (3.16)~(3.20) and Lemma 3.6. 2). with T, = T and T, = T~!, we have

U
for every p =0..... rand v =0..... m— .

aiVopl D = s)leten < B <hg; Oglﬁﬂ||Dg}—~'D;;chv(e,)

; d(v) -
3.21 + max /z vif—s max he N (f = 3)|
( ) vENT(E; T ' j ‘ veNT (V)UNT {v:) T ‘
+sin~" 7 max flr(") lv(f —s)] ) .
vENT 2 (L YUNT 5 (v )UNT 2 (v )UNT 3 (v:)

where A’y depends only on ¢ and #7. Since

(322) |(f = s) = D5 D2, (f = s)(v)| < 27 max | DI D¥, (f = s)(v)].

- 0<u<s3

(3.15) follows from (3.21).
If e, is degenerate at v;, then

(3.23) Nralvi) = {vg = D DL glv) « (o) € As} .




By (3.4),
(3.24) \D2 Dﬂ g(u)l =D D5 gl (@.B) € As.

In vievs} of (3‘16)—(3.19), (3.23), (3.24) and Lemma 3.6, 1), with T} = T and T, =

T:~! we have for every 4 = 0,...,7and v =0,...,m — pu.

RF DY DEAS = )l < K (h DI+ D, fllogey

'<
d(v)

. + max A4 v(f—s)| + max h v(f—s
(3.23) veNp(e) T I ) VENT L (UNTL () T S =)
d(v) . R

+ max h v(f —3s)| + sin”"fr max
VENT 2 (v )JUNT 2 (v;) T ‘ (j ). "E/VTQ(U)U-’VTA(V

with [, being dependent only on ¢ and #7. Therefore. (3.15) follows from (3.22).
Finally, let e be one of the edges of T. say ¢ = e;. Then for any v~ € N7,

(3.26)  |v"(f =) = |DA(F = s)(=29)] < 2* max |DiTDUL(F — s)(=£)].

o<y <p

and (3.15) follows from (3.21) or (3.25) if ¢, is an interior edge of Q. If, otherwise, e;
is a boundary edge. then, similar to the above. Lemma 3.5 implies that

h:ﬁ“’nDz;D:L(f—s)lmsfﬁ(’% max 1077 Dy fllcge

< II
: d{v) .
3.27 + max AF7(f - s)| + max hy Tv(f — 3
( ) veNr(e) T ‘ | VENT (W)UNT (v) | |
d(v) .
+ max hy v(f —s |> ,
VENT 2 (W)UNT 4 (V)UNT 2 (v UN 2 {vs) © | )

with K3 being dependent only on ¢ and #7. which. in view of (3.26), implies (3.15).
|

In the following lemma we use standard finite-element techniques to get an esti-
mation of [|s_|¢(r) in terms of the nodal functionals v € NE.

Lemma 3.9 Ifs € 57°(A) and T € A, then

3.2 si e < K max h&5 M us|
(3.28) ||>1THC(T)_ vl sl

where hr is the diameter of T, and I depends only on q.
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Proof. Let T be a fixed triangle in the plane, say, the triangle with vertices 9; =
(—%, 0), 0y = (%, 0), 03 = (0, %3) Although T may be not in A. it is easy to see that
the set of nodal functignals N7 is well-defined for T.

For every T € A, let By : R — R? be an affine mapping such that Br(T) = T.
Then

Brz= Ar=+by. =z €R%.

where A7 : R* — R? is an invertible linear mapping and b7 € R%. Since T contains

a disk of radius @

(3.29) | A7) € 2V3hr.

For every ' € V. say of the form
vg = D2 DY g(%
vg = + ,429("“0) :

let us define v by
vg = DI D‘fzg(:o) .
where
Ti:||_v47%ii}—l.{T%i. 1=1.2. :O:BTEO-

Then it 1s easv to check that
(3.30) veN; = veNT.
Moreover. a standard computation shows that

(3.31) D2 D7 g(BrZy) = || Ary

)| Ay

'DJD,fl Dig(fo) .
By Lemma 3.7, .V is II,-unisolvent. Therefore, for every v € N7 there exists a
unique fundamental polynomial p, € II, such that
. I, fv=v,
Vip, = e a  ap
g 0. ifvreNZ\ {v}.

Similarly, for every o € A% there exists a unique fundamental polynomial p; € II,
such that

. B l’ if 1/‘ = /A/.
v P, = O_’ if & /\/"}: \ {&}
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It follows from (3.31) that

(3.32) pu(Brz) = || Ar 7| ArhallPps(2)

»

We are now ready to prove (3.28). Since 8. 1s a polynomial in II,, we have

Sy = S (vs)p., .

UEJ\/T"

Therefore. by (3.32) and (3.29).

lsleam < > st lpllee = D lvsl- by o Brlleg

VEN VENT
d ~
< Z Jos] 1A [ 15 |C’(T)
VENT
2r
< (2\/§> Poll -7 | max R s ;
> Z Piolle(r VN T |vsl

ve \/7'.

and (3.28) follows. =&

Remark 3.10 It is not difficult to see that the triples (7.1I,,N7), T € A, form
an affine family of finite elements in the sense of [10. p. 87]., and (T,Hm/\/,;) plays
the role of the reference finite element for this family. Particularly, (3.30) shows that
(T,T0,, N'7) is affine-equivalent to (7. II,. N7). with Br being the corresponding affine
mapping.

Proof of Theorem 3.1. It follows from Lemma 3.8 and Lemma 3.9 that the only
spline s € S7?(A) that satisfies vs = 0 for all v € V. is the zero function. In view
of (2.3), a standard linear algebra argument shows that for any real data a,, v € NV,
there exists a unique spline s € 57"*(A) such that vs = q, forall v € N. Particularly,
for every function f € C'*(Q) the Hermite tvpe interpolation problem

vs=vf forall venN

has a unique solution sy € 57”(A). which proves the first statement of the theorem.
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Let us fix a function f € C™(Q) and a triangle T € A. Without loss of generality
assume that (0.0) € T. Then for the Taylor polynomial

. J J=J gy
- P DADIY 1100) i
j: :

A=)
we have

(3.33) |1 DSDE(f - p)ller) < ™ max (|DP DR fllo

— (m-+-1—‘u-—,, ! 0<m/<m

gm—oa—3

for all @, 3> 0. o + 3 < m. As a consequence. for every v € N7.

(3.34) w(f = p) < Kihg ™ max DT D™ fller

0<m’/<m

where K is a constant depending only on g.

We have .

(3.35) [IDED(f = sp)llowimy SWDEDE(S = plllcery + (D2 DY(B = s ) Lwir)
By the bivariate Markov mequahtv (see. for example. [11]).

(3.36) D2 D2plleiry < Kalhrsind) ™ ?|pllorry forall pell,,

where hr and # are the diameter and the smallest angle of T, respectively, and K>
depends only on g.

Since p — 37 € S7?(A) and (p — SJ’)IT € I1,, 1t follows from (3.36) and Lemma 3.9
that

S IDEDY(5 — si)llewiry < Kalhrsind) ™ 7||( p—.sf)‘THC(T)
937 < Kshg” =7 ma\;ghT IV"(ﬁ—sf)[,
vrENT

where K3 depends only on ¢ and A7. By (3.34) and Lemma 3.8. since v(f —s;) =0
for all v € Nr. we have for every v* € f\i’}

a3y Wl S BB = DRI =)
< [x,hT max 10T D™ Flleim
0<m/

where Ky depends only on 7, ¢ and fr.

Since A1 > . now (3.35), (3.33). (3.37) and (3.38) imply (3.2). ®

Remark 3.11 It is easy to see from the above proof that Theorem 3.1 in fact holds
with A7 in place of H,.

Q]
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4 A Basis for 5p°(A)

Let N = {vi}1,, where n = dim 57*(A) in view of (2.8). For every f € C*(Q), it
follows from Theorem 3.1 that the interpolating spline s; € S7*(A) satisfying (3.1)
can be represented as

n

(4.1) sp= > (vif)si

=1
where the fundamental functions s; € S7*(A). ¢+ =1,....n. are uniquely determined
by the conditions
(42) Visg =C>U LJ: lI’L
Therefore. {sy...... sn} s a basis for §7*(A). The following theorem establishes some
useful properties of this basis.
Theorem 4.1 The fundamental functions sy, ..., s, form a basis for S7P(A) such

that .
1) {s1,.. .82} 1s locally linearly independent. i.e.. for every open B C Q the
subsystem {s; : BN supp s; # 0} is linearly independent on B,

2) {s1,....3,) is least supported. i.e., for every basis {by,....b,} of STP(A) there
exists a permutation © of {1..... n} such that

supp s; C supp b(yy. forall t=1....,n.

3) foreachi=1..... n, supp $; is either a triangle or the union of some triangles
sharing one common vertex.
- - d{v; -y d{v;
4) [xlhi(u) <lsilleay < ARG /zi(u ' where

h; == max hr.
TCsupps;

Ky, Ky depend only on r. q and 85. and
Ky = { l.. - zj v; € /\~/ \ V.
sin~" O, ifuEN,
with _ _
N o= U Nr. O = minfbr.

TeA
TeA




5) the corresponding normalized basis {s7,... 5%}, with s7 := h7 ™5, is stable
in the sense that

k3 -
. K
(4.3) Kymaxa] < || Y aisilleia) € —5— max|al,
J P sinfy ¢

where Ky and Ks depend only onr. q and 0.

Proof. 1) As shown in [12], a system of functions {sy,....s,} C S7(A)\ {0} such
that IT, C span {s;..... sn} is locally linearly independent if and only if

(4.4) card{i: T Csupps;} < (qu) = dimIl,, for every T € A.

Since I, C 57(A). we only have to check (4.4). Fix a triangle T in A. By applying
consecutively Lemma 3.9 and Lemma 3.3 (the latter with f = 0), we get

(4.5) Isq lleir) < Ks < ‘max_ /zilf(”)|u.s.i1 + sin~"f7 max th(")|1/.sil> ,
vENP\NT vENT

where g depends only on », ¢ and A7. Therefore. Sij = 0 if v; € N7. so that (4.4)
follows from (3.14).

2) Least supportedness of {s1,...,s,} follows from its local linear independence
in view of (6, Theorem 3.4].

3) As we have seen. T C supp s; implies v; € Nr. Therefore, it suffices to show
that for each fixed v € NV the set

T,:={TeAN:veNt}

consists either of a single triangle or of some triangles sharing one common vertex.

Since
N =Ny ul N (eyu VT,
e T

we consider several cases. First. if v € N(T) for some T € A, then obviously
T, = {T}. If v € N(e) for some interior edge ¢ of A, then 7, = {71, T2}, where
T, and T; are the two triangels sharing the edge e. (If e is a boundary edge, then,
of course, there is only one such triangle T, and 7, = {T'}.) Finally, assume that
v € N(v) for some vertex v of A. Then v € N7 implies v € Np(v). The latter is
possible only for the triangles T that are attached towv. Hence, 7, C{T € A: v e T}.
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4) By (4.5),

. e 1 dv;
Isillo@ = 225, Isqpllom < holy | max Ry = KoKy h{™,

which gives the upper bound. Furthermore. by Markov inequality (3.36),
1= |uys| < [x'}h;d("")||3.L~|THC(T), for some T C supp s;,
where A7 depends onlv on ¢ and 84. It is not difficult to check that

max hr < Ly min At
T Csupps; TCsupp s;

where K3 depends only on ¢ and f, (see, e.g.. [13, Lemma 3.2]). Therefore,
Isille@ > K7 RG R,

and the lower bound is also shown.
5) We fix {a;}7, and set s = >  a;s7. Let = € T € A. By (4.4) and (4.5) we

have . ‘ .
| Z a;5;(2)] < max|a, Z |s7(2)] < max|ai| (*3?) Ks sin™" 7.
i=1 L i=1 L
which proves the upper bound for ||s]|¢(q). Moreover, let |a;| = max \a;|. Then

o —.{l(l/]) _
vis = h; a;.
Therefore, in view of Markov inequality. we have for some T C supp s;.

d{v ©ogdlyy) L —dlyy
laj] = K5 | < KRS R N e < KA slew

which completes the proof. W

Remark 4.2 A similar interpolation scheme can be done for the superspline space
SyP(A) with any p within the range

r+1 . —1
’"'*'{r-) }gpgmm{’lr,[qo }}

The only necessary change in the construction is that in the definition of A (e) one

should take

K,:=min{g—2p—~14+u. q—3r—1~—(r—p)mod2} .

All results of Section 3 and Section 4 remain valid.
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We conclude the paper with a discussion of the results of Section 4.

First of all, it immediately follows from Theorem 3.1 that the norm of the inter-
polation operator s; : C*(Q0) — S57?(A) is bounded by a constant which depends
only on r,q and the smallest angle 6, in A. On the other hand, it is easy to see
that some of the fundamental functions s; can grow unboundedly if the triangulation
contains near-degenerate edges. (In Theorem 4.1 we could only estimate ||s:]|¢(q)

with a constant depending on f4.) This seems to be controversial at first glance. We
will try to explain this phenomenon. Let v be a vertex of the triangulation A. The
nodal values v in the set A/(v) are linearly independent, as we have shown, if they
are considered as linear functionals on the spline space S7?(A). Contrary to this,
the nodal values v € N (v) corresponding to the partial derivatives of the same order
k, with p < k& < 2r. do stay in a linear relation as linear functionals on the space
C*(Q). (Recall that Sy#(A) is not a subspace of C?(Q).) Indeed. there exist exactly
k + 1 linearly independent partial derivatives D2 sz(f)(v), with a + 3 = k, for any
k-times differentiable function f. and we certainly have in A/(v) more than k+1 nodal
values of this tyvpe. As a consequence. the coefficients v; f in (4.1) satisfy some linear
relations reflecting the fact that f is 2r-times differentiable at each vertex. This leads
to some cancellations in the sum and makes possible estimation (3.2).

Let us also remark that, according to Theorem 4.1. 2). our basis is best possible
for the space 57*(A) in regard to the size of the supports of the basis functions. It
shares this property with the basis constructed in [16]. The bases in [3. 18] fail to be
least supported. but they have the advantage that the stability inequality (4.3) holds
for them without sin”f. in the right hand side, i.e., thev enjoy stability even in the
presence of near-degenerate edges.

Finally. we note that the property of local linear independence established for our

basis in Theorem 4.1, 1), plays an important role in the theory of almost interpolation
(see [12, 14, 13]).
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