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1 Introduction

1.1 Motivation

The past decades have witnessed that revenue management (RM) has not only
revolutionized industries like airlines, hotels, or car rental agencies, but also in
retailing and manufacturing, the application of RM methods offers promising
potential to improve supply chain profitability. For example, the integration of
innovative pricing strategies, e.g., price changes over time or price differentiation
between different customer classes with operations management (OM) decisions
such as inventory control, manufacturing, or capacity management, are more and
more employed to improve the overall performance and to increase profits.

A main reason for RM activities, such as dynamic pricing strategies, being more
frequently used in business-to-business (B2B) and business-to-consumer (B2C)
markets is the advent of the Internet and electronic commerce. This novel infor-
mation technology has simplified transactions and reduced transaction cost. For
instance, in terms of dynamic pricing companies are able to change their prices at
very low (or zero) changeover (menu) costs (Elmaghraby and Keskinocak, 2003).

Dell Computers, for example, introduced a Direct Business Model which com-
pletely bypasses the dealer channel and directly sells their products via Internet
to the end-customers. This strategy allows Dell to have a closer relationship with
its customers and thus more valuable information. Using this information, Dell
has the ability to segment its customers based on several criteria so that they are
able to sell exactly the same product at different prices depending on whether
the order is made by a private customer, a small, medium, or large company,
or another business. Moreover, Dell achieves a better performance in matching
their available production capacity to demand (McWilliams, 2001).

Another example is Ford Motor Company. They implemented an innovative
pricing strategy which distinguishes cars in terms of their respective demand
popularity. They followed the idea “Why waste cash on vehicles that sell well
without it?” and increased prices for low-margin vehicles such as Escorts and
Aspires, which led to decreasing sales, and cut prices for high-margin vehicles
such as Escapes, which led to increasing sales. This strategy brought Ford a
higher utilization of their production capacities and increasing profits. Moreover,
they stepped up market research to find features that ”the customers were willing
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to pay for but the industry was slow to deliver” for example, more comfortable
supercabs on trucks. They set up their sales units as businesses and told them
which vehicles and option packages give Ford the highest profit. Ford was able to
better coordinate the demand side (revenue) with the supply side (manufacturing
cost), see Welch (2003) and Coy (2000).

A popular example for markdown pricing is the fashion industry. At the end of
the selling season, it can often be observed that fashion retailers decrease their
selling prices in order to clear their inventories and release space for the next
selling season. However, it is not unlikely that this kind of discounts results in
selling prices which are below procurement or production costs so that markdowns
are apparently rather a revision of an initial decision than a profitable strategy.
Zara, the flagship brand of the Spanish retail group Inditex, maintains a high
brand profile in the retail clothing sector. Zara’s strategy differs from other
fashion retailers in the way that they optimally match their selling prices with
the offered quantity and the market requirement in order to cut down discounts.
Only about 18 % of Zara’s clothing do not work with their customers and must
be discounted. That is a half of the industry average of 35 % (Dutta, 2002).

These recent developments of integrating RM with OM activities and the re-
sulting successes have indicated the tremendous potential to improve the supply
chain performance. However, in retailing and manufacturing the integration of
supply and demand-oriented activities is still at an early stage. Fleischmann et al.
(2004) review linkages between marketing and operational decisions and discuss
several drivers that call for a coordination of supply and demand-oriented activ-
ities. Especially, the interaction of inventory/capacity issues, such as when and
how much to order, together with pricing issues, such as when to charge which
price, is not yet well understood. This thesis investigates this problem with the
target to give detailed insights into this interrelation.

Holding inventory can have various motives, the transaction, safety, and specu-
lation motive (Silver et al., 1998). The transaction motive results from the fact
that driven by economies of scale or technical restrictions a company is forced
to order/produce in batches instead of ordering/producing continuously. The re-
sulting inventory is called cycle stock. Safety stocks are the result of the safety
motive which is induced by uncertainty in required data, e.g., demand or lead
time. A third motive is the speculation motive. In this case firms build up inven-
tory in expectation of changing prices, i.e., early replenishments in expectation of
increasing purchase prices or postponement of sales in expectation of increasing
selling prices. However, this motive is not considered in this thesis.

Two elementary models considering economies of scale and uncertainty are un-
doubtedly the economic order quantity (EOQ) model and the newsvendor model,
respectively. The EOQ model is concerned with answering the question of how
much and equivalently how frequently inventory should be replenished taking
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1.1 Motivation

economies of scale into account and given that the demand rate is accurately
known. The objective is to identify the size of the order that minimizes the aver-
age costs consisting of the sum of fixed ordering costs (any fees associated with
placing orders, such as delivery charges) and inventory holding costs (costs of
storage as well as cost of capital) per period. It can be argued that the real world
is seldom as well-behaved as deterministic models and real-world situations are
more realistically described by stochastic models. However, deterministic models
are often excellent approximations and represent a good starting-point to describe
inventory phenomena.
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Figure 1.1: EOQ cost functions
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Figure 1.2: EOQ inventory cycle

Figure 1.1 illustrates the impact of order size Q on ordering and holding costs.
While ordering costs per unit decrease exponentially with the size of orders,
holding costs increase with an increasing order quantity. The optimal order size
Q∗ is equal to the value where the ordering cost function intersects the function of
holding costs. The presence of fixed costs associated with ordering or production
encourages firms to exploit economies of scale by ordering or producing larger lots
resulting in inventories. The behavior of the inventory level applying an EOQ
model is illustrated in Figure 1.2.

Two fundamental assumptions of the traditional EOQ problem are a fixed and
exogenously given selling price and a constant and known demand rate. These
assumptions yield that the revenue that is generated by each customer demanding
a product is identical, but the costs caused by ordering and storing products are
different. Assume that the unit selling price is P , procurement cost is c per unit,
and inventory holding cost is h per unit and time unit. The order of size Q takes
place at t0 = 0. Thus, independent from the date of sales all units generate an
identical revenue P . However, since the period of time where the units are kept
in stock differs across the units, the profit margin is different across the units
that are sold at different points in time.

A unit that is sold at time t1 generates a profit margin of (P − c−ht1). However,
a second unit that is sold at time t2 with t1 < t2 generates a profit margin of
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Figure 1.3: EOQ replenishment

(P − c − ht2) that is lower than the unit sold at t1. From an economic point
of view, firms would prefer customers buying early in an order cycle to those
customers arriving late because the longer units are kept in stock the higher are
the inventory holding costs. Thus, a firm has an incentive to stimulate customers
to buy early in order to reduce stocks.

One method to control incoming demands is the application of dynamic pricing
strategies. Dynamic pricing is as old as commerce itself. In most retail and in-
dustrial trades, firms use various forms of dynamic pricing, e.g., markdowns, sales
promotions, coupons, and auctions in order to respond to dynamically changing
market environments. The area by far the most mature in dynamic pricing is
RM which is concerned with pricing a perishable resource to maximize revenue.
Prices are adjusted dynamically as a function of inventory/capacity level and
time left in the selling season. However, it is assumed that the initial inventory
or capacity level is exogenous and cannot be replenished. Industries where RM
is typically applied are airline, hotel, and car rental industries. However, the
interrelation between dynamic pricing strategies and inventory management, for
the case that replenishment is allowed, is not yet well understood.

The elementary model which is concerned with the question of how much ca-
pacity has to be acquired in the presence of demand uncertainty is the classical
newsvendor problem (Silver et al., 1998). Capacity, in this context, is widely
defined and can be, for instance, inventory, production, workforce, or transporta-
tion capacity. This problem is traced back to the problem faced by the owner of
a newsstand who has to decide how many newspapers to stock in the morning
before observing demand. If the newsvendor orders too much, excess inventory
has to be scrapped or, if possible, can be sold at a salvage value. However, the
unit salvage value is likely to be below the unit cost of acquisition so that in
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both cases the newsvendor faces a loss per unit. On the other hand, if he orders
too little, the newsvendor faces lost sales for each unmet demand. Costs asso-
ciated with excess demand may simply be the lost profit. However, additional
costs may arise, for instance, for added costs acquiring the product from a second
channel or goodwill costs. That is, both cases ordering too much and ordering
too little are subject to costs which are called overage costs and underage costs,
respectively. The objective of the newsvendor is to determine the capacity which
optimally matches with demand, in particular, the capacity level that specifies
the best trade-off between overage costs and underage costs.

Two fundamental assumptions of the classical newsvendor problem are a given
demand distribution and an exogenous selling price. These assumptions give
that the demand, which is uncertain, is exogenous and cannot be influenced.
Therefore, the primary goal is to minimize the quantity gap between supply
and demand. However, the mismatch of supply and demand is not just caused
by quantity gaps. A “wrong” price, resulting in a too high or too low demand
yields lower profit margins. An extension that incorporates pricing issues into the
classic newsvendor problem is called the price-setting newsvendor problem where
demand is given by a price-response function. The price-setting newsvendor prob-
lem is concerned with optimally matching supply with demand by simultaneous
optimization of price and capacity.

Another cause of the supply-demand mismatch is when customers are charac-
terized by a different willingness to pay, but the firm is unable to segment the
customers. In this case, the firm is unable to charge the maximum amount that a
customer is willing to pay so that the firm loses revenue. In traditional RM, there
exist methods, such as product differentiation and price discrimination which are
seeking to match a fixed supply with demand by discriminate prices between dif-
ferent customer classes. It is obvious that both the classical newsvendor problem
and price discrimination within the RM context where capacity is assumed to
be given are only suboptimal compared to a decision-making framework which
simultaneously optimizes price strategy and capacity planning.

This thesis contributes to the emerging field of literature investigating the in-
teraction between revenue management methods and operations management
activities. In particular, it centers around the analysis of two general topics:

(A) interaction of dynamic pricing and inventory management,

(B) interaction of price discrimination between different customer classes and
capacity planning in the presence of demand uncertainty.
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1.2 Research questions

The central research question that is addressed in this thesis is how firms can
benefit from coordinating demand and supply management activities and how
these activities interact in a coordinated decision-making. The special focus in
terms of demand management activities is on dynamic pricing strategies and
customer segmentation while the special focus in terms of supply management
is on inventory management and capacity planning under demand uncertainty,
respectively.

The first major research question that is addressed is how firms can benefit from
coordinating dynamic pricing strategies and inventory replenishment. In partic-
ular, what is the gain from a coordinated decision-making where price strategy
and replenishment policy are optimized simultaneously compared to decentral-
ized decision-making where marketing optimizes prices and operations optimizes
replenishment policies. Furthermore, this thesis clarifies what the gain from
applying dynamic pricing compared to a constant pricing strategy is. It is al-
ready known from literature that dynamic pricing strategies may increase the
company performance. However, this thesis answers the question how dynamic
pricing influences replenishment policies, particularly, order quantities and order
frequencies. The specific research questions that are dealt with are:

1. What is the benefit of simultaneous decision-making of price strategy and
replenishment policy compared to decentralized decision-making where mar-
keting decides on the pricing strategy and operations optimizes the replen-
ishment policy?

2. How do dynamically changing selling prices and the replenishment strategy
interact?

3. What is the benefit of dynamic pricing compared to a constant pricing
strategy?

These research questions are investigated under several business environments.
Starting with a simple single-product monopoly setting, the analysis is extended
to problems incorporating a supplier quantity discount, multiple products that
share a warehouse with limited storage capacity, and a competitive environment.

The second major research question that is tackled in this thesis is how firms can
benefit from coordinating customer segmentation either by price discrimination
or product differentiation and capacity acquisition in the presence of demand
uncertainty. In particular, it is clarified what the gain of coordinated decision-
making of price discrimination and capacity acquisition is compared to (i) the case
where the firm is not able to discriminate prices and (ii) the case of a decentralized
decision-making framework where independent sales managers are responsible for
price management and capacity acquisition.
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The specific research questions that are addressed concerning the second topic
are:

1. How does customer segmentation, in particular price discrimination influ-
ence price decision and capacity acquisition in an integrated planning ap-
proach?

2. What is the impact of capacity costs and demand uncertainty on price and
capacity decisions?

3. What is the benefit of price discrimination compared to a single-pricing
strategy?

4. What is the benefit of centralized decision-making compared to decentral-
ized decisions where two individual product managers decide separately on
price and capacity?

1.3 Structure and overview

The thesis is divided into 5 chapters. Chapter 2 provides a literature overview
on the topics closely related to this thesis. Since there is huge body of literature
on integrated RM and OM problems, Section 2.2.1 first presents comprehensive
surveys that classify contributions of various research streams in this field. Sec-
tions 2.2.2 and 2.2.3 give a detailed overview of papers that are related to the
problems analyzed in Chapter 3 and 4, respectively. Section 2.2.2 focuses on dy-
namic pricing problems in inventory and production, in particular, on problems
where fixed ordering or setup costs play a significant role. Moreover, this section
provides specific overviews on pricing and inventory control literature consider-
ing a supplier quantity discount, multiple products, and competition. Section
2.2.3 provides a survey of stochastic models that integrate pricing and capacity
decisions.

Chapter 3 studies the benefit of dynamically changing prices to achieve opera-
tional efficiency in the EOQ model. Following an introduction of preliminaries
and notation in Section 3.2, Section 3.3 is based on Transchel and Minner (2008)
and analyzes an integrated pricing and EOQ replenishment problem of a monopo-
listic retailer who is allowed to change the selling price over time. First, a dynamic
pricing model with continuous price changes is developed and analyzed. Since in
practice there is, typically, a limit on the number of times where the price can be
adjusted, the model is generalized to that the number of price changes over an
order cycle are optimized. Besides, providing further evidence for the benefits of
dynamic pricing, this part especially points out the impact of dynamic pricing on
operational decisions such as order quantity and order frequency. It is established
that the trade-off between fixed ordering and inventory holding costs yields that
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the optimal selling price increases over an order cycle and triggers higher demand
rates when inventories are high. Furthermore, it is shown that the optimal cycle
length and the order quantity are increasing in the number of price variations.
Thus, the order frequency of the retailer is lower if more price adjustments are
allowed over an order cycle. For the case of a linear price-response function,
analytical solutions for the optimal prices, the optimal times where the price is
adjusted, and the optimal cycle length are found. Moreover, it can be shown
that the time intervals where a particular price is charged are equally. In the
case of an exponential price-response, the length of the time intervals where a
particular selling price is charged is increasing over the order cycle. In this case,
if the price is low, the demand rate responds more sensitively to price variations
than at higher prices. Therefore, the price jumps are lower at the beginning of
the order cycle than at the end. Since for exponential price-response functions
no closed-form solutions can be derived, an algorithm is developed to determine
the optimal solution numerically. It is widely accepted that the net present value
(NPV) approach is the right framework for valuing inventories. However, aver-
age cost or average profit approaches are simpler and thus more widely used. For
the classical EOQ model that minimizes average costs, it can be verified that
the average cost approach gives an approximately optimal solution for the NPV
approach. This section shows that also in case of profit maximization for both
constant and dynamic pricing, the outcomes of maximizing the average profit are
approximately optimal compared to maximizing the discounted cash-flows, i.e.,
maximizing the NPV.

Section 3.4 is based on Transchel and Minner (2008a) and extends the model of
Section 3.3 to the case where the supplier offers an all-units quantity discount.
The benefits of coordinated decision-making and dynamic pricing are investigated
compared to a decentralized decision framework. Three decision frameworks are
distinguished: a decentralized decision-making strategy where price and replen-
ishment decisions are made independently, a coordinated strategy with a constant
selling price where a central decision maker decides simultaneously on a single
price and the replenishment policy, and a coordinated strategy where the retailer
is allowed to implement a finite number of price adjustments within each order
cycle. While various findings state that decentralized decision-making leads to
an underestimation of selling prices, in case that the supplier offers a quantity
discount it is shown that two different effects influence the outcome of decision-
making: the overhead cost and the discount effect. The overhead cost effect
results from the fact that a centralized decision maker takes all relevant costs
(fixed ordering cost and inventory holding cost) into account. This yields a larger
selling price, a lower demand rate, and a lower lot-size compared to decentralized
decision making where the price is set disregarding fixed ordering and inven-
tory holding costs. The discount effect, on the other hand, results from the fact
that a decentralized decision maker who decides on prices does not take a sup-
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plier quantity discount into account. Therefore, costs are overestimated which, in
turn, yields a selling price that is too high. Depending on which effect dominates,
selling price, demand rate, and order quantity increase or decrease.

In Section 3.5 that is based on Transchel and Minner (2006), the interaction
between pricing and procurement decisions of multiple products that share a
common warehouse with limited storage capacity is analyzed. Based on the
traditional warehouse scheduling problem (WSP) that considers a coordinated
planning of order sizes and delivery scheduling of multiple products with limited
storage capacity, the interaction between dynamic pricing and replenishment de-
cisions is analyzed. A common cycle approach is assumed that considers that all
products have an order cycle with an identical length. A two-stage optimization
model that integrates pricing and replenishment considerations is developed. At
the second stage the order cycle is given and the objective is to determine the
optimal price trajectories for each product. At the first stage, the replenishment
policy for each product is optimized anticipating the optimal price strategy from
the second stage and taking the limited storage capacity into account. A com-
parison between decentralized decision-making where marketing and operations
optimize selling prices and replenishment policies independently and coordinated
decision-making where constant and dynamic pricing are distinguished is made.
The results indicate that by simultaneous decision-making a firm can reduce order
quantities and hence required minimum storage capacity. Based on the results of
Section 3.3.1 where in a single-product problem the selling price increases con-
tinuously over an order cycle, it is shown that in case of multiple products with
limited storage capacity, the selling price does not increase continuously. At the
point in time where one product is ordered, the price for this product decreases in-
stantaneously. At the same time, the price for the other products instantaneously
increases. This opposed pricing effect yields a better matching of demand with
available inventory and an optimal utilization of the limited capacity.

In Section 3.6, based on Transchel and Minner (2008b), two retailers are com-
peting with each other for the same potential buyers. The retailers are allowed
to change their sales quantity dynamically over time, however, the retailers differ
in their respective replenishment cost. Retailer 1 orders in batches (EOQ policy)
whereas retailer 2 follows a just-in-time (JIT) strategy. The primary goal of this
study is to analyze the optimal replenishment policy and the equilibrium out-
put strategy. A differential game where both retailers repeatedly interact over
the order cycle is developed and an open-loop Nash equilibrium is derived. It
is shown that both retailers follow contrary output strategies. While retailer 1
decreases his output over an order cycle, retailer 2 increases his output. However,
the diminishing rate of retailer 1 is larger than the enhancing rate of retailer 2
such that the total output decreases over the order cycle. Moreover, a numerical
example indicates that if EOQ and JIT replenishment result in identical average
profits in a monopoly, in a competitive environment where one firm follows an
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EOQ and the other firm follows an JIT policy, EOQ replenishment leads to a
higher average profit than JIT replenishment.

Chapter 4 investigates a joint pricing and capacity planning problem in the
presence of demand uncertainty. Section 4.2 introduces the well-known price-
setting newsvendor problem that studies a single-product, single-period capac-
ity and price decision problem. Structural properties concerning the existence
and uniqueness of the optimal solution are derived. Moreover, an algorithm is
presented that determines the optimal price and capacity for a special class of
additive demand functions.

Section 4.3 is based on Transchel et al. (2007) and extends the price-setting model
of Section 4.2 to the case where market demand can be segmented into two cus-
tomer classes differing in their willingness to pay. While Section 4.2 basically
reviews existing results, Section 4.3 provides novel insight. The major contri-
bution is to investigate the impact of customer segmentation on price strategy
and capacity decision. Customer segmentation can be achieved by either price
discrimination or product differentiation. If price discrimination is not possible
because of arbitrage and cannibalization, the firm can use product differentiation,
e.g., by different brands or different quality levels. In particular, the interaction
of the prices that are charged from each customer class and the initial capacity
investment is studied.

A stochastic model is developed which simultaneously optimizes selling prices and
capacity acquisition. Structural properties are derived which show that under
certain circumstances a unique optimal solution exists. Based on these results,
an algorithm is developed, which determines the optimal solution efficiently. In
order to examine the interaction of price decision and capacity planning, we
analyze the decision problem for different capacity costs and different levels of
demand uncertainty. It is shown that an integrated decision-making where price
decisions are jointly made with the capacity decision provides a firm a higher
flexibility to match supply with demand. This flexibility is characterized by the
fact that the firm is able to adjust both capacity and selling prices simultaneously.
Hence, prices can be adjusted differently between customer classes by taking their
respective price-sensitivity and other demand characteristics into account.

Furthermore, we illustrate the benefit of customer segmentation and price dis-
crimination and its impact on price and capacity decision compared to a single-
pricing strategy. It is shown that the higher flexibility achieved by customer
segmentation yields a risk reduction in terms of underage and overage costs,
which, in turn, leads to increasing profit. Last but not least, we will show the
benefit of centralized compared to decentralized decision-making. It is common
in practice that different customer classes are served by different sales managers
where each sales manager decides on the selling price and the required capacity
reservation with the objective to maximize his individual profit.
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Chapter 5 concludes this thesis. It summarizes the major findings and discusses
implications and extensions for future research.

11



2 Fundamentals and literature
review

The goal of this section is to integrate this thesis with the wide range of academic
literature. It provides fundamentals and reviews related literature.

2.1 Fundamentals

Both in academia and practice, the following question often arises: What is Supply
Chain Management? If you ask five different people, you will probably get five
different answers about what the scope of Supply Chain Management (SCM) is.

Firms within a supply chain are linked through physical, information, and finan-
cial flows. Product flows include the movement of goods from the raw material
supplier to the end-customer as well as any customer returns or service needs.
Information flows involve sharing forecasts, transmitting orders and updating the
status of delivery, and financial flows include credit terms, payment schedules, and
consignment and ownership arrangements. Hence, the fundamental goal of SCM
is the integration and coordination of all supply management and demand man-
agement activities, i.e., matching supply with demand (Cachon and Terwiesch,
2006). A definition of Chopra and Meindl (2007) points out that all intra-firm
activities are included in SCM.

Supply Chain Management integrates supply and demand management within
and across companies from raw material supplier to end customer.

Operations Management (OM) and Revenue Management (RM) are two organi-
zational functions within a firm which are concerned with supply and demand
management activities. While OM addresses supply and operations decisions
and processes with the objective of lowering costs of production and delivery,
RM includes market segmentation and price differentiation in order to manage
the firm’s interface with the market with the objective of increasing revenue. In
this thesis, we propose that SCM integrates the two streams OM and RM, as illus-
trated in Figure 2.1, as two functions that operate supply and demand-oriented,
respectively.
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Figure 2.1: Supply chain management framework

Operations Management is the business function which is concerned with supply
management activities (procurement and production) of goods and services and
involves the responsibility of ensuring that the transformation process is efficient
and effective. That is, OM includes the management of resources as well as the
distribution of goods and services to customers. In particular, OM is concerned
with questions of how supply processes can be optimally organized, structured,
and managed to make them more efficient meeting demands (Reid and Sanders,
2007). Planning problems range from strategic to tactical and operational levels.
Representative strategic issues include determining the size and location of man-
ufacturing plants or service facility, deciding on the structure of service networks,
and designing technologies. Tactical issues include plant layout and structure as
well as equipment selection and replacement. Additionally, operational issues in-
clude, for instance, inventory replenishment, production scheduling and control,
and materials handling.

Revenue Management includes mainly demand management activities in under-
standing, anticipating, and influencing consumer behavior. The most common
RM definition is that RM “is a method which can help a firm to sell the right
inventory unit to the right type of customer, at the right time, and for the right
price” (Kimes, 1989). In particular, RM deals with modeling and optimization of
pricing strategies and traditional issues of capacity allocation for a fixed capacity
with the objective to maximize the overall revenue. RM began with the airline
deregulation act in 1978. With this act, the US Civil Aviation Board (CAB) lost
the control of airline prices which were strictly regulated and based on standard-
ized prices and profitability targets. From this point in time onwards, established
carriers have been free to set their prices individually without CAB approval. One
of the greatest success stories is the American Airlines RM system “DINAMO”.
By carefully controlling the availability of various fare-products on their network
via DINAMO, American Airlines estimates that they added 1.4 billion dollars

13



2.1 Fundamentals

to their bottom line for the period from 1989-92 (Talluri and van Ryzin, 2004).
This was the beginning of intensive developments of RM techniques.

Two RM methods that are particularly focused on in this thesis are dynamic
pricing and customer segmentation. Dynamic pricing can formally be defined
as the ability to change selling prices over time (inter-temporal price changes)
in response to changing supply and demand characteristics such as variations in
inventory levels, production capacities, and demand.

Customer segmentation is another important characteristic inherent in effective
RM meaning the ability to segment the market into customer classes and to
charge a different price from each customer class (price discrimination). A com-
mon mechanism to segment the market is differentiating the customers according
to their willingness to pay. However, customer segmentation can be difficult be-
cause arbitrary price discrimination is not realizable. It is necessary that one or
more attributes used to segment the customers truly differentiate the products
or services (Weatherford and Bodily, 1992). It has to be avoided that customers
resell products after purchasing, otherwise arbitrage is possible.

Price discrimination can be classified into three types:

• In first-degree price discrimination, the company is able to separate the
whole market into each individual customer and charges them the price he
is willing to pay. This type is also called perfect price discrimination.

• In second-degree price discrimination, the company offers a price menu to
the customers and depending on their preferences, they get an incentive for
self-selection. For example, a firm introduces different prices for different
quantities (quantity discounts).

• The third-degree price discrimination is the form of price discrimination
most frequently found and involves charging different prices for the same
product in different segments of the market.

In the real world, however, first-degree price discrimination is rather impossible
to achieve unless the firm knows every consumer’s preferences. This knowledge,
however, would be associated with high transactions costs involved in finding out
through market research what each customer is willing to pay. More common are
the second and third-degree price discrimination. The latter is basically applied
in traditional RM.

Figures 2.2 and 2.3 represent for a simple linear price-response function the max-
imum revenue obtained by selling at a single price and by selling at multiple
prices. The striped area in both figures represents the revenue that is obtained.
Obviously, the revenue obtained by applying price discrimination is significantly
greater than the revenue obtained at a single price. Intuitively, the more different
prices are charged, the greater the revenue that is generated and as the number
of prices tends to infinity, first-degree price discrimination is achieved.
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Figure 2.3: Revenue by selling a prod-
uct at multiple prices, Tal-
luri and van Ryzin (2004)

Several conditions are required to implement price discrimination. First, price
discrimination requires market segmentation regarding customers’ willingness to
pay. It should be impossible to resell the product after purchasing, otherwise
arbitrage is possible. Additionally, firms should have some degree of monopoly
power to sustain a structure of market segmentation because in case of perfect
competition, firms have no power to vary prices. Nevertheless, monopoly power
need not be absolute when products are differentiated in some way or sold in
dispersed markets. By this strategy called product differentiation, it is possible
to maintain price discrimination even with limited market power (Talluri and van
Ryzin, 2004).

Differentiated products are those which are in the same product group, yet are
not identical. Product differentiation can be observed in practice either by ver-
tical product differentiation or horizontal product differentiation. Products are
vertically differentiated if all consumers agree on which product is better, if their
prices are identical, e.g., consumers prefer the product with the higher quality
level. On the other hand, products are said to be horizontally differentiated if
consumers are different in their taste and product differentiation is based on ap-
pearance, e.g., color of the product. Durable goods manufacturer often design
product lines by segmenting their market on quality attributes that exhibit a
“more is better” property for all customers. By differentiating products, a firm
is able to decrease the substitutability of their products and customize offers to
the requirements of customers or market segments (Choi et al., 1997).

Typically, OM and RM are independent business functions. However, since de-
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Figure 2.4: Interaction of OM and RM

mand management activities generate demands and OM is responsible to fulfill
these demands in order to maximize the overall company profit, supply and de-
mand activities have to be coordinated. Figure 2.4 illustrates this interrelation.

2.2 Literature review

The coordination of revenue management and inventory and manufacturing de-
cisions has received extensive treatment in the literature for more than 50 years.
One of the earliest contributions integrating price and inventory/manufacturing
decisions is by Whitin (1955) who provides extensions of two fundamental in-
ventory models. Whitin (1955) investigates, in both the deterministic EOQ and
the stochastic “newsvendor” model, the benefits of simultaneous decision-making
of price and order quantity. Since that time, many researchers have extended,
modified, or more deeply analyzed these problems in order to achieve detailed
insights into the interaction of pricing and operations strategies. This literature
overview does not cover all streams of research in this field but focuses exclusively
on closely-related contributions concerning the investigations in Chapter 3 and
Chapter 4.

Section 2.2.1 presents comprehensive surveys that classify contributions of various
research streams in this field. Section 2.2.2 focuses on contributions that analyze
dynamic pricing problems in inventory and production, in particular, continuous
time problems and problems where fixed ordering or setup costs play a significant
role. Section 2.2.3 provides a survey of stochastic models that integrate pricing
and capacity decisions.

2.2.1 Comprehensive overview

A thorough review of literature on integrated pricing and production models
until the early nineties appears in Eliashberg and Steinberg (1993). Eliashberg
and Steinberg (1993) focus on contributions that compare decentralized and co-
ordinated decision-making of marketing and operations decisions. The papers
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that are reviewed in their survey explicitly outline the benefits of a coordinated
system. A special issue of the International Journal of Production Economics,
Vol. 37, No. 1, from 1994 deals with the coordination of sales and manufactur-
ing decision. This special issue includes papers that describe specific company
approaches of manufacturing-sales coordination, works that describe general re-
quirements for an effective manufacturing sales coordination as well as works of
specific coordination aspects.

Bitran and Caldentey (2003) provide a review of research results of dynamic pric-
ing strategies and its relation to revenue management. Their survey is based on
traditional RM problems in which a perishable and non-renewable set of resources
is used to satisfy stochastic and price-sensitive demand.

Elmaghraby and Keskinocak (2003) provide a comprehensive overview of dy-
namic pricing strategies and its interaction with inventory management. They
constitute a review of current practices in dynamic pricing. In order to better
understand the state-of-the-art of dynamic pricing practices, they conduct in-
terviews with directors of marketing and operations. The existing literature is
classified according to three main market environments: replenishment vs. non-
replenishment of inventory (R vs. N), dependent vs. independent demand over
time (D vs. I), and myopic vs. strategic customers (M vs. S). Elmaghraby and
Keskinocak (2003) identify that the majority of the literature can be assigned to
two major groups: NR-I (this includes NR-I-M and NR-I-S) and R-I-M. Typical
NR-I products are those with a short selling season and a long lead time, e.g.,
fashion apparel. R-I-M markets, on the other hand, mostly belong to the category
of nondurable products such as consumer-packaged goods and fresh produce.

Compared to the two previous surveys, Chan et al. (2004) are the first who con-
sider topics like demand learning or pricing and inventory control across multiple
products. They classify papers basically according to the length of planning
horizon underlying the reviewed models. Their survey is split up in (1) models
to explain price realizations, (2) general pricing and production models assum-
ing either variable production costs or fixed production set-up costs, (3) models
dealing with markdown pricing and promotions, and (4) fixed pricing models.
Moreover, Chan et al. (2004) distinguish papers according to their pricing mech-
anisms and production cost functions and provide an overview of multi-period
models classified according to various assumptions, e.g., demand type (deter-
ministic vs. stochastic and linear vs. exponential), dealing with excess demand
(lost sales vs. backlogging), replenishment option, capacity limits, and number
of products.

Yano and Gilbert (2004) basically focus their review on integrated pricing and
production/procurement problems. They review research that involves both sup-
ply chain coordination and price competition. The authors identify models that
deviate in their perception of operational costs. Three groups are identified: (1)
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models with setup cost emphasis and time-invariant demand, (2) models with
demand/production smoothing concerns, and (3) models dominated by demand
uncertainty. To be more explicit, the cost trade-offs balance inventory holding
costs vs. (1) fixed ordering or setup cost, (2) cost of varying the rate of produc-
tion, and (3) cost of producing/ordering too much or too little when demand is
uncertain. This classification shows that besides operational considerations the
characteristics of demand play an important role.

Finally, Talluri and van Ryzin (2004) provide a detailed overview of the devel-
opment of RM applications in theory and practice. Their book comprehensively
covers theory and practice of the entire field. They distinguish RM between
quantity-based RM that is concerned with questions like whether to accept or
reject an offer to buy and price-based RM that is concerned with questions like
how to price over time or across products.

2.2.2 Dynamic pricing in inventory and production

This section provides an overview on contributions that analyze the impact of
dynamic pricing strategies in inventory and production with a special focus on
continuous time models and models where fixed ordering or setup costs play a
significant role. It is closely related to Chapter 3.

Pricing and replenishment in a monopoly environment

Section 3.3 considers a continuous time inventory replenishment and pricing prob-
lem. Models that consider fixed ordering costs and time-invariant demand are
typically based on a discrete time framework. Thomas (1970) analyzes an inte-
grated pricing and production planning decision model. He provides an analysis
and a solution algorithm for a model characterized by a set of discrete time peri-
ods where the demand in each period is a downward-sloped function of the price.
The model proposed by Thomas (1970) sets only a single price in any given pe-
riod. Kunreuther and Schrage (1973) develop an algorithm for determining the
optimal pricing and ordering decisions for a lot-sizing problem in a multi-period
environment where demand differs from period to period. They provide bounds
on the optimal solution under time-varying production cost assumptions.

A variety of models are using continuous time-optimal control. However, these
models typically assume no fixed ordering costs, e.g., see Pekelman (1974), Fe-
ichtinger and Hartl (1985), Eliashberg and Steinberg (1987), Gaimon (1988),
Jørgensen and Kort (2002), and Kogan and Spiegel (2006). Models that incor-
porate fixed ordering costs in a continuous time model are rather rare. Rajan
et al. (1992) derive simultaneous pricing and ordering policies for a retailer under
standard EOQ assumptions. They consider a problem of a monopolistic retailer
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who faces a known demand rate for a product exhibiting physical decay and value
loss, and continuous pricing is applied throughout the season. Several parame-
ters are varied to investigate how the optimal profit and the optimal cycle length
change. They prove that the optimal cycle length is decreasing as the market
potential increases for both linear and exponential demand. From their observa-
tions, they conclude that the optimal profit increases with the reservation price
and decreases as procurement cost and inventory holding cost increase. Abad
(1996) formulates a generalized model of dynamic pricing and lot-sizing for a
reseller who sells perishable goods. He presents a simple solution procedure for
solving the optimization problem. Abad (1997) provides a model that determines
the optimal reseller response to a temporary price reduction by the supplier.

It can be easily verified that under certain conditions for the traditional EOQ
problem the results of the average cost (AC) approach are approximately optimal
to the net present value (NPV) approach which maximizes discounted cash-flows.
However, several authors have shown that for more complex frameworks the re-
sults based on AC and NPV approach may differ. Beranek (1967) investigates
how different payment arrangements with customers and suppliers affect the cash-
flows and thus the value of the firm. Trippi and Lewin (1974) provide an intuitive
derivation of the classical EOQ problem based on a present value approach. They
show that the optimal order quantity from the present value point of view is al-
ways less than the optimal order quantity derived from the average cost approach.
They also show that the present value function is even less sensitive to parameter
errors than the average cost function. Hofmann (1998) compares a cash-flow-
oriented and a cost-oriented formulation of an inventory problem that analyzes
investments in setup and production processes. He investigates the effects of
reduced setup costs between a cash-flow-oriented and a cost-oriented approach.
The analysis shows that there are only minor differences between the cash-flow
and the cost approach. Van der Laan and Teunter (2002) show that for two-
source inventory problems there can be considerable gaps between AC and NPV
approaches.

Pricing and replenishment with a supplier quantity discount

Section 3.4 investigates the impact of a supplier quantity discount on pricing and
replenishment strategy. Benton and Park (1996) and Munson and Rosenblatt
(1998) provide literature reviews on quantity discounts where they classify the
literature w.r.t. several discount schemes, different perspectives (buyer, supplier,
joint), and other criteria like planning horizon and number of products. The most
common discount policies in the literature are the all-units and the incremental-
units discount policy. When the supplier offers an all-units quantity discount
(AQD), the reduced purchasing price applies to the entire order quantity once
the order quantity reaches a critical breakpoint. An incremental-units discount,
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however, only applies to all units in excess of a particular breakpoint. Hadley
and Whitin (1963) develop a procedure for determining the optimal economic
order quantity for both all-units and incremental-units discount schemes. This
approach is included in almost every textbook on inventory management and
assumes that the demand rate is known and constant over an infinite planning
horizon and that the decision maker follows the objective to minimize average
costs. Gupta (1988) provides an improved procedure for determining the opti-
mal lot-size by considering an upper bound for the relevant cost and Goyal and
Gupta (1990) propose a further simplification which requires only a few EOQ
calculations for determining the optimal lot-size.

In Abad (1988a) and Abad (1988b), simultaneous optimization of lot-size and
selling price when the supplier offers an all-units or an incremental-units dis-
count is analyzed. He develops a procedure for determining the optimal lot-size
and the optimal selling price. Burewell et al. (1991) extend the model of Abad
(1988a) and allow for planned inventory shortages. They derive a similar pro-
cedure as Abad (1988a) to determine the optimal lot-size and selling price for
two classes of demand functions, iso-elastic and linear. More recently, discount
pricing schedules have received growing attention to improve the coordination
between vendors and buyers, e.g., see Weng (1995), Rubin and Benton (2003),
and Wang (2005). Inventory problems with simultaneous optimization of the re-
plenishment policy and a dynamic pricing strategy where only a limited number
of price changes is allowed has been investigated less frequently. The main moti-
vation for considering a limited number of price changes are organizational costs
associated with each price change. Abad (1997) formulates a model where the
reseller responds to a temporary price reduction of the supplier by an adjustment
of the own selling price. Abad (1997) considers that the reseller is allowed to
charge two selling prices in each order cycle. The presented model optimizes the
first (discounted) selling price and fixes the second selling price to the optimal
constant price. He presents a procedure where a selling price temporarily reduced
yields a higher cycle profit than in the case of a static selling price.

Pricing and replenishment in a capacitated multi-product
environment

Section 3.5 analyzes the interplay between pricing and procurement decisions of
multiple products that share a common warehouse with limited storage capac-
ity. Multi-product replenishment together with the issue of sharing a common
resource has been widely addressed in the literature. Under the assumption that
the selling price is exogenous and the demand rates of the products are constant
over time, the problem of when and how much should be procured is known as
the warehouse scheduling problem (WSP). Several approaches to this problem,
which is an extension of the traditional EOQ problem, have been suggested. One
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approach suggested by Hadley and Whitin (1963) and Johnson and Montgomery
(1974) is to model this problem as an aggregate of multiple single-product eco-
nomic order quantity (EOQ) problems with the single constraint that at each
time where a product is replenished, the sum of the required storage volume
(EOQ multiplied with the required unit capacity requirement) does not exceed
the limited storage capacity. Then, the problem is solved by a Lagrange multi-
plier approach. Even ordering all products at the same time provides a feasible
solution of this approach.

Other approaches improve the usage of capacity. In the common cycle or rotation
cycle approach, it is assumed that all products have the same order cycle length
and are ordered once in the order cycle. In this approach, the capacity usage is
improved by phasing the replenishments in an optimal manner (e.g., see Page and
Paul (1976), Hall (1988), Rosenblatt and Rothblum (1990), Hariga and Jackson
(1996)). Hartley and Thomas (1982) analytically compare the Lagrange multi-
plier approach and the common cycle approach to the optimal replenishment and
staggering policy of the two-product problem. Anily (1991) shows that for iden-
tical products the common cycle approach is optimal, however, if the products
are not identical, the worst case bound of this approach is infinity. Gallego et al.
(1992) show that the staggering problem is NP-complete. Gallego et al. (1996)
develop a heuristic for the problem of staggering the order arrivals to minimize
the maximum resource utilization.

Cheng (1990) presents a multi-product EOQ model that integrates the price
decision of a constant selling price into an order quantity problem. He determines
a solution in which all products are ordered with the same frequency and the lot-
sizes satisfy a storage capacity constraint. Later, Chen and Min (1994) revise
the work of Cheng (1990). They analyze Karush-Kuhn-Tucker conditions for
the problem and derive closed-form solutions in the case of linear price-response
functions. The majority of contributions that relax the time-invariant assumption
of demand base on models that assume a discrete time framework.

Gilbert (2000) considers a problem of jointly determining prices and production
schedules for multiple products that are produced on the same resource with
limited capacity. He uses a set of numerical examples to derive insights into the
relationship between prices, holding costs, and the seasonal pattern of demand.
One observation indicates that the optimal price for a product will tend to in-
crease if it has larger holding cost and/or contributes more to the seasonality of
aggregate demand. The other observation demonstrates that, among products
that experience demand peaks during the firm’s busy season, those that peak
early in the busy season should be priced more aggressively than those that peak
later.

Bertsimas and de Boer (2005) study a periodic multi-product pricing and inven-
tory control problem with finite production capacity. At the beginning of each

21



2.2 Literature review

period, both production quantities and prices of all products have to be deter-
mined. The authors formulate the periodical multi-product pricing and inventory
control problem as a stochastic dynamic program which allows for a variety of
demand models. To overcome the problem of increasing dimensionality, they
propose and test a heuristic solution method which combines linear and dynamic
programming.

Zhu and Thonemann (2005) analyze a joint pricing and inventory control problem
for a retailer who orders two products and where the stochastic demand of a
particular product depends on the prices of both products (cross-price effect).
They investigate the benefits of a joint optimization and dynamic pricing of all
products in a periodic review environment.

Pricing and replenishment in a competitive environment

Section 3.6 focuses on the interaction of a dynamically changing sales quantity
and the replenishment policy in a competitive environment. Cost and market
structure have a fundamental impact on operations and pricing decisions and the
overall company performance.

Gaimon (1989) analyzes a differential game of two competing retailers who choose
price and capacity. The acquisition of new technology reduces the firm’s unit
operating costs. An open-loop and a closed-loop Nash equilibrium is derived
concerning the optimal price and capacity strategies of both retailers. Gaimon
(1989) shows that the dynamic Nash strategies obtained for the closed-loop model
exhibit a more restrictive new technology acquisition and a greater reduction of
existing capacity relative to the open-loop strategies. Furthermore, the prices
that are charged in a closed-loop Nash equilibrium are higher compared to an
open-loop Nash equilibrium strategy.

Eliashberg and Steinberg (1991) study a problem of determining production
and marketing equilibrium strategies for two competing firms under dynamically
changing demand. The firms differ with their production costs. One firm faces
convex production costs and linear holding costs whereas the second firm faces
linear production costs and will not hold inventory. Both firms are allowed to
vary their production rates and their selling prices continuously over a finite plan-
ning horizon. The authors characterize and compare the equilibrium strategies
of the two firms. It is shown that the firm facing the convex production costs
will build up inventory at the beginning of the planning horizon, then continue
by drawing down inventory until it reaches zero, and finally, the firm will follow a
“zero-inventory” policy until the end of the planning horizon. Furthermore, they
show that this production policy is robust with respect to the market structure
(monopoly and oligopoly).
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Min (1992) extends the profit-maximizing economic order quantity model to the
case of a symmetric oligopoly. He derives economic implications regarding selling
prices, demand elasticities, the number of competitors, marginal and average
costs, and average holding costs.

Lederer and Li (1997) study a competition problem where firms compete for
customers by setting prices, production rates for each type of customers, and a
production schedule where the customers are sensitive regarding price and delay
time. Customers are either homogeneous or they can be differentiated by their
respective demand function and delay sensitivity. They show the existence of a
competitive equilibrium which is well defined as to whether or not the firm can
differentiate between customers.

Cachon and Harker (2002) analyze an economic order quantity game between two
retailers with fixed-ordering costs and price-sensitive consumers. They investigate
motivations for outsourcing if a supplier exists who is able to manage a firm’s
operations and charges a constant fee per unit of demand for that service. They
show that there are contracts that give the supplier a positive profit and yield a
higher profit to either retailer than if the retailers do not outsource.

Ha et al. (2003) analyze the role of delivery frequency in supplier competition.
They examine how the nature of competition (price or delivery) and the decision
rights (who is responsible for handling logistics, making price, and making the
delivery decision) influence supply chain performance. They show that when
suppliers compete through prices, higher delivery frequencies may result in more
intensive price competition, which is beneficial to the customers.

Adida and Perakis (2007) investigate a manufacturing system where two firms
compete through pricing and inventory control. Both firms only differ in their
production capacity. They study a decentralized Nash equilibrium game as well
as the centralized problem where an authority controls the entire system. Beside
some intuitive results, e.g., that in both settings, the firm with lower production
capacity charges higher prices, produces less, and generates less profit compared
to the firm with higher production capacity, they show, at first sight, a rather
counter-intuitive result that in the decentralized setting, the firm with the lower
capacity may want to restrict its capacity even when additional capacity is avail-
able at zero costs.

Federgruen and Meissner (2008) develop a competitive pricing model for a prob-
lem considering a time-varying demand as well as a time-varying cost structure
including both fixed and variable procurement costs. They establish the exis-
tence of a price-equilibrium and the associated optimal dynamic lot-sizing policy.
Furthermore, they design efficient procedures to compute the equilibrium prices
and dynamic lot-sizes.
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2.2.3 Pricing and capacity planning under demand
uncertainty

There is extensive research in the field of integrated pricing and capacity/inventory
management under demand uncertainty. This section provides an overview on
the literature closely related to Chapter 4. It mainly refers to two streams of op-
erations management literature. The first stream investigates the single-product
single-period pricing and capacity problem under demand uncertainty which in
the literature is called price-setting newsvendor problem. The second stream
which has received much less attention focuses on joint capacity and price setting
problems with multiple products. This research stream investigates the bene-
fits of capacity and price flexibility as two methods to hedge against demand
uncertainty.

The price-setting newsvendor problem

The initial work of endogenous pricing and capacity/inventory models was by
Whitin (1955). He considers a newsvendor-type problem where a firm simulta-
neously decides on price and order quantity. He qualitatively discusses how price
changes affect both the marginal revenue and the marginal salvage value. Mills
(1959) analyzes the price-setting newsvendor model when demand is composed of
a deterministic price-response function and a price-independent random variable.
He shows that the optimal price is lower than the price in the absence of demand
uncertainty.

Karlin and Carr (1962) identify a different impact of uncertainty on the price
decision for additive and multiplicative demand functions. While for additive
demand functions the selling price decreases with increasing uncertainty, in case
of a multiplicative demand function, the optimal selling price increases with in-
creasing uncertainty. Lau and Lau (1988) develop a solution procedure to find
the optimal solution for objective functions that are unimodal in quantity and
price. In a numerical experiment, they confirm the result of Mills (1959) that
increasing uncertainty leads to decreasing prices. Furthermore, they analyze the
problem under the objective of maximizing the probability of attaining a given
profit level. For this problem, they show analytically that given the shortage
costs are zero, uncertainty in demand only influences the value of the objective,
but does not influence the optimal price and order quantity.

Petruzzi and Dada (1999) investigate in detail inconsistencies between models
with additive and multiplicative demand functions and review and extend the re-
sults of a single-period pricing/order quantity problem to a multi-period problem.
They provide a unified framework to compare the selling price in a determinis-
tic framework with the selling price under uncertainty and they investigate the
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impact of additive and multiplicative demand models on pricing and capacity
decisions.

Van Mieghem and Dada (1999) provide insights into the economic and operational
value of price and production postponement strategies. Price postponement con-
siders that the firm is able to set prices when all demand information is known
whereas production postponement considers that the production quantity can
be postponed until accurate demand information is known. Both postponement
strategies provide a certain degree of flexibility for a firm. Their results show that
price postponement makes capacity and production decisions relatively insensi-
tive to demand uncertainty. However, capacity investments under production
postponement are always sensitive to demand uncertainty. Furthermore, this in-
sensitivity result directly shows that if price postponement is possible, additional
production postponement has a relatively small incremental value.

Khouja (2000) extends the price-setting newsvendor such that a firm can use
multiple discount prices in order to sell excess inventory. The problem is solved
by a two-stage solution approach. At the second stage, the optimal discounting
scheme is determined for a given order quantity. At the first stage, the firm
determines the optimal order quantity anticipating the optimal discount decision.
Given that each price discount is subject to costs, larger costs lead to a smaller
number of prices. Furthermore, his results show that discounting schemes are
more significant for higher demand elasticity and smaller fixed discounting costs.

More recently, Arcelus et al. (2005) consider a price-setting newsvendor problem
where a profit-maximizing retailer faces a manufacturer-trade incentive in form
of a direct price discount and can set a rebate to the end-customer with the
objective to jointly determine the optimal price and ordering policy.

Raz and Porteus (2006) develop a method for the determination of the optimal
selling price and order quantity that applies for additive, multiplicative, and com-
bined demand functions. This method regards an order quantity as a fractile of
the demand probability distribution for a given price. They develop a solution
procedure for general stochastic price-response functions where the demand dis-
tribution is approximated with a finite number of representative fractiles and
linear interpolation.

Bell and Zhang (2006) analyze the decisions that a firm has to make regard-
ing the implementation of simultaneous decision-making of price and capacity.
They examine several criteria that a firm faces referring to this implementation.
These include, for instance, the choice of the demand function (i.e., additive vs.
multiplicative), how often prices should be changed, and the level of effort to
devote demand forecasting and cost analysis. They analyze the trade-off between
effort and benefit of, e.g., a detailed data research, use of complicated stochas-
tic models compared to simpler deterministic models, and the usage of revenue
maximization or contribution maximization approaches.
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Zhan and Shen (2005) analyze structural properties of the price-setting newsven-
dor problem and obtain properties of the solution as well as geometric explana-
tions. Based on these results, they propose two algorithms: an iterative and a
simulation-based algorithm. While Zhan and Shen (2005) only analyze the prob-
lem structure for additive demand function, Yao et al. (2006) provide a detailed
analysis on how the price-setting newsvendor problem can be solved without
using specific demand functions.

Kocabiyikoglu and Popescu (2007) introduce a measure of elasticity of lost sales.
This concept provides a framework to characterize structural results for the joint
pricing and capacity decision problem. They identify bounds of the lost sales
elasticity which ensure the concavity and submodularity of the profit function as
well as the monotonicity of prices and capacity policies.

Cachon and Kök (2007) investigate the impact of the salvage value in the newsven-
dor problem. They demonstrate that several intuitive methods estimating the
salvage value might lead to overestimated order quantities and thus to a profit
loss. They note that in practice the fixed salvage value assumption is question-
able when a clearance price is rationally chosen in response to the events observed
during the selling season. The authors discuss how to estimate a salvage value
that leads to the optimal or nearly optimal order quantity w.r.t. maximizing the
total profit.

The interrelation between capacity planning and pricing is also investigated in
other research areas. From an accounting point of view, this research question
is analyzed with regard to the impact of different cost-allocation strategies (full-
cost and marginal-cost pricing) on the capacity investment. Balakrishnan and
Sivaramakrishnan (2002) provide a critical overview of research that investigates
the role of cost allocation in decision-making.

Göx (2002) analyzes a capacity planning and pricing problem of a monopolist
facing uncertain demand where the capacity constraint is modeled both by hard
and by soft capacity constraints. He studies the capacity and pricing problem
w.r.t. different information about future demand. In scenario I, both capacity
and price decision are made under complete certainty about future demand. In
scenario II, both decisions have to be made under uncertainty and in Scenario III,
the capacity has to be set under uncertainty whereas the price can be determined
when the demand uncertainty is resolved. He identifies that when pricing and
capacity decisions base on the same information, capacity costs are relevant for
pricing decisions. However, when a firm has more information on demand at the
time where the price is decided then marginal cost pricing is relevant.
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Multi-product problems

So far, mainly single-product problems have been analyzed. This paragraph fo-
cuses on multi-product problems that integrate pricing and capacity decisions
in the presence of uncertain demand which have received much less attention in
literature. The particular focus is on research that investigates the benefits of ca-
pacity and price flexibility as two methods to hedge against demand uncertainty.

Van Mieghem (1998) investigates the interaction between capacity investment
and product prices in a two-product framework given the future demand is un-
certain. He considers a firm that has the option either to invest in two product-
dedicated resources or in a single flexible resource that is able to produce both
products. This type of flexibility is called product mix flexibility where a company
can switch production between different products without high costs. Although
not jointly optimized, Van Mieghem (1998) highlights the important role of the
selling prices which significantly affect the investment decision and the value of
flexibility.

Birge et al. (1998) consider a joint capacity and pricing problem of a firm that
produces two substitutable products that are produced with two resources. They
analyze several cases where at least two of the four decision variables (selling
prices and capacities for the two products) are fixed. Furthermore, they compare
a decentralized decision-making framework where two brand managers maximize
each product’s profit independently to the case of centralized decision-making.
They show how price and capacity decisions are affected by parameter changes.

Similarly, Bish and Wang (2004) and Chod and Rudi (2005) consider a price-
setting firm that can invest either in two dedicated resources or in a single fully
flexible, but more expensive resource. While the capacity decision has to be
made under demand uncertainty, the selling prices can be set after the demand
uncertainty is resolved. They characterize under which conditions a firm prefers
to invest in the fully flexible resource rather than in two separate dedicated
resources and quantify the value of resource flexibility with regard to demand
uncertainty and demand correlation. Bish and Wang (2004) assume that the
demand for one product is not influenced by the price of the other product.
They show that it can be optimal for the firm to invest in a flexible resource
even with perfectly positively correlated demands. The reason for this effect is a
kind of financial pooling. Chod and Rudi (2005), however, do allow cross-price
demand dependencies and prove that the optimal resource level is increasing in
both demand variability and correlation.

Biller et al. (2006) compare the performance of price postponement compared to
a fixed price policy in a flexible production environment. Concerning the inter-
action of capacity flexibility and price postponement they find that the optimal
investment in flexible capacity decreases if the company postpones the pricing
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decision until all demand information is known. Moreover, price postponement
can reduce the financial risk of capacity investment. Bish and Hong (2006) study
a capacity investment and pricing problem of a firm that produces two products
of varying complexity. They assume that the resource that produces the higher
level product can also produce the lower level product, but not vice versa. Bish
and Hong (2006) consider a firm that produces two products 1 and 2 and has the
option to invest in a flexible resource and that can produce both products and
a dedicated resource that can produce product 2 only. The capacity decisions
have to be made under demand uncertainty whereas the prices are optimized
when the demand uncertainty is resolved. They analyze the impact of central-
ized decision-making when the resources are owned by a single decision maker
compared to a decentralized system when the capacity investment decision for
each resource is made separately. Their findings are that capacity investments in
flexible resources are larger under centralized decision-making than under decen-
tralized decisions whereas capacity investments in dedicated resources are lower
in the centralized than in the decentralized system.

Tomlin and Wang (2008) consider a co-production system in which two products
are simultaneously produced in a single production run that is characterized
by a random production output. After the production process, it is considered
that the product with higher quality can be downgraded to the lower quality
product. They assume that the firm has to decide about the prices, capacity
levels, downconversion, as well as the capacity allocation. They establish that
downconversion will never occur in the single-class case if both prices are set
optimally. In contrast, they show that downconversion can be optimal in the
two-class case even if prices are set optimally.
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3 Dynamic pricing under EOQ
replenishment

3.1 Introduction

In this chapter, continuous time inventory replenishment problems are considered
where dynamic pricing is applied to coordinate demand and supply decisions
when a firm faces the trade-off between fixed ordering and inventory holding costs.
Inventory models incorporating fixed ordering cost and dynamic issues, e.g., when
the demand is allowed to vary over time, are mostly based on a discrete time
framework (Kunreuther and Schrage, 1973). However, a discretization of time
implies a restriction of the points in time where a decision can be made. To avoid
the problem of having an incorrectly discretized time horizon, one option is a fine
discretization of time which, however, causes an exploding problem size. Another
option are continuous time models where inventory can be seen as a continuous
flow where there is no need to predetermine the points in time where decisions
have to be made. The problems that are analyzed in this section base on EOQ-
based models with the objective to maximize the average profit by optimizing
both the order quantity and the price strategy.

The fundamental research question of this chapter is how firms can benefit from
coordinating dynamic pricing and replenishment in order to balance the trade-off
between fixed ordering and inventory holding cost. Moreover, it is clarified how
coordinated decision-making affects pricing and replenishment decision compared
to decentralized decision-making. Under decentralized decision-making, which is
common in practice, marketing (or sales) and operations operate as independent
business units. While marketing determines the optimal selling price without
anticipating the accurate operational costs, operations optimizes the replenish-
ment strategy for a fixed demand. Since marketing and operations face different
incentive structures, i.e., marketing is rewarded for sales and satisfying customers
whereas operations is rewarded for efficiency, decentralized decision-making will
not lead to overall optimal company performance (Jerath et al., 2007).

The specific research questions that are addressed in this chapter are:

1. What is the benefit of simultaneous decision-making of price strategy and
replenishment policy compared to decentralized decision-making where mar-
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keting decides on the pricing strategy and operations optimizes the replen-
ishment policy?

2. How do dynamically changing selling prices and the replenishment strategy
interact?

3. What is the benefit of dynamic pricing compared to constant pricing?

Starting with a simple single-product monopoly setting, the analysis is extended
to problems incorporating a supplier quantity discount, multiple products that
share a warehouse with limited storage capacity, and a competitive environment.
Furthermore, we differentiate models where continuous price adjustments are
allowed to the case where only a limited number of price changes is allowed. A
continuous price adjustment is often either not feasible or too costly. For instance,
catalog retailers incur significant costs each time they change prices because new
catalogs have to be printed. Another example are general retailers who have
to communicate price changes by means of advertising which is associated with
significant costs (Netessine, 2006).
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3.2 Preliminaries

3.2.1 Assumptions and notation

Throughout this chapter, an infinite and continuous planning horizon is consid-
ered. All information about future demand and cost parameters are given and
constant. It is assumed that customer demand follows a function of the sell-
ing price P and arrives continuously at a rate of D(P ) with D(P ) ≥ 0 and
D′(P ) < 0. There exists a critical price P̄ ∈ (0,∞) such that D(P ) > 0 for
P ∈ [0, P̄ ) and D(P ) = 0 for P ∈ [P̄ ,∞). D(P ) is a on the interval [0, P̄ ] dif-
ferentiable and strictly decreasing in P . Furthermore, it is assumed that D(P )

satisfies 2−D(P )D′′(P )
D′(P )2

≥ 0. This condition holds for the majority of price-response
function, e.g., linear, iso-elastic, and exponential. We denote the optimal decision
variables by a superscript “ ∗ ”. Furthermore, let εP define the price elasticity of
D(P ) with

εP = −D′(P )

D(P )
P (3.1)

which is the percentage change in demand in response to a percentage change in
price. Based on the price elasticity, we define a class of price-response functions
as follows:

Definition 1. A price-response function D(P ) has an increasing price elasticity
(IPE), if ∂εP

∂P
≥ 0.

The intuition behind the IPE property is that with a price increase by a certain
percentage demand decreases by a larger percentage.

At every point in time, the demand rate depends solely on the current price, i.e.,
the customers are myopic and effects of forward-buying or postponement in the
case of dynamically changing prices are not incorporated. This myopic customer
behavior can be appropriate in several settings:

• the products that are sold are necessity products and customers cannot
wait for a price drop or

• price changes are small enough such that strategic waiting for lower prices
does not provide much value.

This category captures most nondurable products such as grocery items, produce,
and pharmaceutical products (Elmaghraby and Keskinocak, 2003).

Following the assumptions of the EOQ model, the retailer has to place replen-
ishment orders in batches of size Q every T periods during the infinite planning
horizon. With the release of any single order, there are associated ordering costs
F and variable procurement cost c per unit. Ordering costs are the sum of all
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fixed costs that are incurred when an order is placed and are independent of the
order size. For products that are ordered externally, these costs would include, for
instance, costs to enter the requisition, to process the receipts, incoming inspec-
tion, invoice processing, and vendor payment. Depending on who has to bear the
costs for transportation, also inbound freight may be included. In manufacturing
these costs are called setup costs. These costs would include opportunity costs of
time to initiate the work order, production scheduling time, machine setup time,
as well as inspection and cleaning time. Variable procurement costs include any
unit costs associated with purchasing a single unit, e.g., unit material costs and
unit transportation costs.

Products delivered but not yet sold are kept in inventory subject to a holding
cost h per unit and unit of time. Essential components of holding costs are cost
of capital, insurance, taxes, and storage costs. That is, total cost of holding
inventory is the sum of carrying costs and cost of capital (Timme and Williams-
Timme, 2003). It is common in research and industry to apply holding costs as
a percentage of the inventory value. While the calculation of the EOQ itself is
fairly simple, determining the correct input data is far more complex. Timme and
Williams-Timme (2003) present a methodology that supports managers to estab-
lish their accurate total inventory holding costs. Another method to overcome
this holding cost valuation problem is to optimize the net present value (NPV)
as the sum of discounted cash-flows. In academia the NPV approach is widely
accepted as the right framework for studying inventory control and production
planning problems. However, in a later analysis it is shown that applying certain
transformations of the holding cost parameter, the average profit approach of
the EOQ-type problem gives approximately near optimal results with respect to
maximizing the NPV (Trippi and Lewin, 1974).

A fundamental assumption is that the supplier has no capacity constraints and
the overall order quantity is delivered in one shipment with lead time zero. Since
all demand and cost data are known, general validity is not lost by assuming zero
lead time. Furthermore, it is assumed that backorders are not permitted. This
assumption is reasonable if it is expensive when customers cannot be satisfied
immediately but have to wait until the next order arrives. The “no-backorder”
constraint ensures that the inventory level y(t) at any time t has to be nonnega-
tive.

In the traditional EOQ model where the demand rate is exogenous, only the order
quantity and thus the order frequency is controlled in order to match supply with
demand. However, if the demand is endogenous, also the demand rate can be
controlled by the selling price.
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3.2.2 Constant pricing and replenishment in a monopoly

This section introduces the fundamental pricing and replenishment problem in
an EOQ-type framework which is presented first by Whitin (1955). The follow-
ing analysis (see Eliashberg and Steinberg (1993)) illustrates the necessity of an
integration of price and inventory management by a simple EOQ model with a
constant selling price.

It is common in practice that price and replenishment decisions are made by inde-
pendent business units. Marketing is responsible for price management whereas
operations is responsible for replenishment decisions. Marketing maximizes the
average profit ΠM only taking variable procurement costs into account:

ΠM(P ) = (P − c)D(P ). (3.2)

Maximizing (3.2) yields that the optimal price has to satisfy the following first-
order condition

P ′ +
D(P ′)

D′(P ′)
= c. (3.3)

Given the optimal price P ′ and the resulting demand rate D′, operations de-
termines the optimal replenishment policy with the objective to minimize the
average costs ACO regarding the trade-off between fixed ordering costs and in-
ventory holding costs:

ACO(Q) =
h

2
Q +

FD′

Q
. (3.4)

The outcomes are the economic order quantity, the economic order interval, and
minimized costs per period as follows

Q′ =

√

2FD′

h
, T ′ =

√

2F

hD′ , ACO′

=
√

2FhD′. (3.5)

A decision maker who simultaneously optimizes the order quantity Q or equiv-
alently the order interval T and the selling price P faces the following profit
function

Π(T, P ) = (P − c)D(P ) − h

2
D(P )T − F

T
. (3.6)

The optimal order interval and the optimal price resulting from the first-order
conditions ∂Π(T,P )

∂T
= 0 and ∂Π(T,P )

∂P
= 0 can be determined by solving the following

system of nonlinear equations

T ∗ =

√

2F

hD(P ∗)
and P ∗ +

D(P ∗)

D′(P ∗)
= c +

h

2
T ∗. (3.7)

A comparison of (3.3) and (3.7) gives that decentralized decision-making yields
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an underestimation of P , which, in turn, leads to an overestimated demand rate.
Consequently, decentralized decision-making yields a larger order quantity com-
pared to simultaneous decision-making. The reason for this suboptimality of
decentralized decision-making is that marketing disregard fixed ordering and in-
ventory holding cost. To overcome the suboptimality of decentralized decision-
making it is not essential to simultaneously decide. If marketing correctly antic-
ipates operations optimal costs, i.e., marketing maximizes

max ΠM(P ) = (P − c)D(P ) −
√

2FhD(P ), (3.8)

this solution is optimal for the entire firm. This result is easy to verify by opti-
mizing (3.8) (Whitin (1955) and Eliashberg and Steinberg (1993)).
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3.3 Dynamic pricing and replenishment in a

monopoly

This section presents an EOQ model that considers coordinated dynamic pricing
and lot-sizing decisions. A retailer procures a single product from an external
supplier and sells it on a single market without competition. The retailer’s objec-
tive is to maximize the average profit by choosing an optimal lot-size and pricing
strategy where the retailer may vary the selling price over time. The contribution
is to investigate the replenishment policy and pricing strategy in an EOQ frame-
work when the demand rate is endogenous, i.e., it can be controlled by selling
price. Within this context, two pricing frameworks are considered: a continuous
price adjustment and a limited number of price changes within an order cycle.
The continuous pricing framework is analyzed by a model based on optimal con-
trol theory. The outcome of this model reflects the results of Rajan et al. (1992)
although they incorporate perishable products. The contribution of this section
is to generalize the assumption of continuous price adjustments to an optimized
number of price changes which is reasonable if each price change is associated
with costs.

3.3.1 Model with continuous price adjustment

This section considers that the retailer is allowed to vary the selling price con-
tinuously, i.e., at any time t, the retailer is allowed to charge a different price
P (t). The objective is to maximize the average profit Π by determining the
optimal price trajectory P ∗(t) and the optimal replenishment policy which is
characterized by the optimal cycle length T ∗ and the optimal order quantity Q∗.
In real-world problems, continuous price adjustments are less realistic, however,
given the trend that in various businesses price changes are almost costless, this
model provides an upper bound for the average profit.

The problem can be considered as a two-stage hierarchical optimization problem.
At the second stage, we determine the optimal price trajectory P ∗ given a fixed
cycle length T and without consideration of F by using Pontryagin’s Maximum
Principle (Kamien and Schwartz, 1991). By substituting the optimal price P ∗(t)
for all t and for a given T into the overall objective function and integrating with
respect to t, we get the first-stage average profit as a function of T , Π(T ). Then,
the optimal cycle length T ∗ is determined by maximizing Π(T | P ∗) (Rajan et al.,
1992).
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Optimal control problem - second stage

The second-stage optimization problem is given by the following optimal control
problem, which maximizes the cycle profit ΠT for a given cycle length T :

Π∗
T = max

P (t)

T∫

0

[(P (t) − c)D(P (t)) − hy(t)] dt, (3.9)

ẏ(t) = −D(P (t)), (3.10)

y(0) = Q, y(T ) = 0, (3.11)

0 ≤ P (t) ≤ P̄ . (3.12)

y(t) represents the inventory level at time t and ẏ(t) denotes the state transition,

i.e., ẏ(t) = ∂y(t)
∂t

, which is equal to the negative demand rate at time t. Hence,
the change of inventory at time t equals the demand rate at time t. Every
replenishment cycle has the initial condition y(0) = Q and terminal condition
y(T ) = 0, i.e., the inventory level at the beginning of a replenishment cycle is
equal to the lot-size and at the end of a replenishment cycle the inventory level
is equal to zero (eq. (3.11)). When the inventory level drops to zero, the next
order arrives immediately. (3.12) ensures the non-negativity of the selling price

and the demand rate. From (3.10) and (3.11) it follows that y(0) =
T∫

0

D(P (t))dt

and y(t) =
T∫

t

D(P (s))ds = Q −
t∫

0

D(P (s))ds.

Let f(P, y, t) = (P (t) − c)D(P, t) − hy(t) denote the profit function at a partic-
ular time t with the assumption that f(P, y, t) is continuously differentiable and
concave. The Hamiltonian is

H := H(P, y, λ(t), t) = f(P, y, t) − λ(t)D(P, t) (3.13)

with the costate variable λ(t) which represents the shadow price of the state
variable y(t). The Lagrange function is

L := L(P, y, λ, µ1, µ2, t) = f(P, y, t) − λ(t)D(P, t) + µ1(t)(P̄ − P (t)) + µ2(t)P (t)
(3.14)

with the Lagrangian multipliers µ1(t) and µ2(t) associated with (3.12). For no-
tational simplicity, we omit the argument t. The maximum principle states that
a necessary condition for P ∗ to be an optimal control is

∂L

∂P
= D(P ) + (P − c − λ)

∂D(P )

∂P
− µ1 + µ2

!
= 0 (3.15)
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where µ1 and µ2 must satisfy the complementary slackness conditions

µ1 ≥ 0 and µ1(P̄ − P ) = 0 (3.16)

µ2 ≥ 0 and µ2P = 0. (3.17)

The following necessary condition defines the costate variable λ as a function of
t

λ̇ = −∂L

∂y
= h ⇒ λ(t) = ht + λ0. (3.18)

λ(t) is the value of the costate variable at time t measuring the value of an
additional unit of inventory along the optimal path (Feichtinger and Hartl, 1985)
and is a linearly increasing function of t with a slope equal to the inventory
holding cost h. That is, the value of an additional unit of inventory at time t

is equal to the cost of holding this unit over a time period [0, t]. Therefore, it
follows that λ(T ) = hT (Kamien and Schwartz, 1991) and using (3.18) it follows
that λ0 = 0 and

λ(t) = ht. (3.19)

From (3.15), (3.16), (3.17), and (3.19) (Karush-Kuhn-Tucker-conditions) (KKT)
it follows that the cases µ∗

1 > 0 and µ∗
2 = 0, µ∗

1 = 0 and µ∗
2 > 0, as well as

µ∗
1 > 0 and µ∗

2 > 0 lead to infeasible solutions. In detail, if µ1 > 0, then from
(3.16) it follows that P ∗ = P̄ , which, in turn, gives that D(P ∗) = 0. Moreover,

(3.15) gives that µ1 = (P̄ − c − λ)∂D(P̄ )
∂P

< 0 which, in turns, gives that the
Karush-Kuhn-Tucker-conditions are not satisfied. The interpretation that µ∗

2 = 0
follows analogously. Therefore, an inner solution that satisfies ck < P ∗ < P̄ with
µ∗

1 = µ∗
2 = 0 has to be optimal and the optimal price is expressed by an implicit

function

P +
D(P )

D′(P )
= c + ht. (3.20)

(3.20) establishes that the optimal selling price at time t satisfies that the marginal
revenue is equal to the marginal costs at time t. Thus, for the first unit that is
sold, the marginal costs are equal to c while the last unit sold at the end of
an order cycle, after being kept in inventory T units of time, causes marginal
costs of c + hT . Within the order cycle, the valuation of holding costs through
the adjoint variable λ(t) increases linearly following (3.19). By substitution of

P ∗(t), D(P ∗(t)), and y∗(T, t) =
T∫

t

D(P ∗(s))ds into (3.9), we get the profit as a

function of an order cycle of length T :

Π∗
T =

T∫

0



(P ∗(t) − c)D(P ∗(t)) − h

T∫

t

D(P ∗(s))ds



 dt. (3.21)
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Optimization problem - first stage

The average profit of the first stage is determined by the nonlinear optimization
problem

Π(T ) = max
T

1

T
(Π∗

T − F ) (3.22)

s.t. T ≥ 0 (3.23)

where Π∗
T is the optimal cycle profit given a cycle length T .

Proposition 1. There exists a unique optimal T ∗ which satisfies the condition
that the marginal profit at T ∗ is equal to the average profit, i.e.,

Π(T )
!
= (P ∗(T ) − c − hT )D(P ∗(T )).

Proof. The first-order condition of (3.22) gives

∂Π(T )

∂T

!
= 0 ⇔ Π(T ) =

∂Π∗
T

∂T
= (P ∗(T ) − c − hT )D(P ∗(T )). (3.24)

That is, any intersection point of Π(T ) and MP (T ) must be equal to a local
extreme point, i.e., a local maximum or a local minimum. In order to demonstrate
that there exists a unique T , we show that the marginal profit is a decreasing
function of T .

Let MP (T ) := (P ∗(T )−c−hT )D(P ∗(T )) denote the marginal profit as a function
of T . The first derivative gives

∂MP (T )

∂T
=

(
∂P ∗(T )

∂T
− h

)

D(P ∗(T )) + (P ∗(T ) − c − hT )D′(P ∗(T ))
∂P ∗(T )

∂T
.

(3.25)
Since the optimal second-stage decision is anticipated, from (3.20) it can be de-
rived that

(P ∗(T ) − c − hT )D′(P ∗(T )) = −D(P ∗(T )). (3.26)

Substituting (3.26) into (3.25) we get

∂MP (T )

∂T
= −hD(P ∗(T )) ≤ 0. (3.27)

The second-order derivative ∂2MP (T )
∂T 2 = −hD′(P ∗(T ))∂P ∗(T )

∂T
≥ 0 gives that MP (T )

is a decreasing and convex function in T such that only a single intersection point
between MP (T ) and Π(T ) can exist.
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Figure 3.1: Average profit and marginal
profit as functions of T

3.3.2 Model with a discrete number of price changes

This section considers that the number of times where the retailer is allowed
to change the selling price is limited. The main motivation for considering a
limited number of price changes are organizational costs associated with each
price change. As we will show, the majority of benefits can be captured by a few
different price levels. Therefore, a discrete number of changes balances benefits
and costs of price changes. The retailer has to decide how to set the price for the
product in each time interval where the price is fixed and when to switch from one
price to another. That is, the retailer determines the optimal number of different
prices N per order cycle of length T . The administrative costs associated with
price changes are denoted by κ(N) and are a non-decreasing function of N . For a
given N , the retailer has to establish the time intervals [ti−1, ti) and the associated
prices Pi. The time tN is equal to the cycle length T and t0 = 0.

This problem can be solved by a two-stage hierarchical optimization approach.
At the second stage, the retailer optimizes the prices for a given number N , the
points in time where the prices are adjusted, and the optimal cycle length. At
the first stage, the number of price settings N will be optimized anticipating the
optimal timing and sizing of prices for a given N . The objective is to maximize
the average profit per unit of time and can be formulated as follows:

Stage 1:
Π∗ = max

N

[{
Π(N)∗ − κ(N)

}]
, (3.28)
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Stage 2:

Π(N)∗ = max
P1,··· ,PN ,t1,··· ,tN

1

tN

[
N∑

i=1

(Pi − c)D(Pi) (ti − ti−1) (3.29)

−h

2

N∑

i=1

D(Pi) (ti − ti−1)
2 − h

N−1∑

i=1

(

(ti − ti−1)
N∑

j=i+1

D(Pj) (tj − tj−1)

)

− F

]

s.t. 0 ≤ Pi ≤ P̄ ∀ i = 1, · · · , N, (3.30)

ti−1 − ti ≤ 0 ∀ i = 1, · · · , N. (3.31)

Equation (3.28) represents the first-stage problem that optimizes N anticipat-
ing the optimal price and timing decision at the second stage. (3.29) - (3.31)
represent the optimization problem at the second stage where we determine the
optimal prices P ∗ = (P ∗

1 , · · · , P ∗
N) and the associated timing of price changes

t∗ = (t∗1, · · · , t∗N) simultaneously for a given N . The average profit in (3.29) is
given by the revenue minus purchasing cost, inventory holding cost, and setup
cost over the order cycle, divided by the cycle length. The first term is the unit
revenue minus direct purchasing cost for each interval multiplied by the respec-
tive demand rate and the length of the interval. In the second and third term
we subtract the inventory holding cost. These consist of the average of initial
and final inventory in each interval (triangles) and the inventory that has to be
carried over the entire interval (ti − ti−1) to cover the demand of all subsequent

intervals j = i + 1, · · · , N with an amount of
N∑

j=1

D(Pj)(tj − tj−1) (rectangles).

Constraint (3.30) ensures that price and demand in each interval are nonnegative
and (3.31) guarantees that all intervals are mutually exclusive and exhaustive.
The path of inventory deployment for the case N = 3 is illustrated in Figure 3.2.
The optimal order quantity is then:

Q∗ =
N∑

i=1

D(P ∗
i )
(
t∗i − t∗i−1

)
. (3.32)

For a concave profit function Π(N) and a linear cost function κ(N), a simple
incremental search for the optimal value of N can be conducted. In general,
for the stage 1 problem only a few integer values are relevant such that this
problem can be solved by enumeration and we can restrict the analysis to the
inner problem for a given number of price changes N .
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Figure 3.2: Illustration of the inventory level

After rearranging terms in (3.29), the Lagrangian can be expressed as

L(N) =
1

tN

[
N∑

i=1

(

Pi − c − h

2
(ti + ti−1)

)

D(Pi) (ti − ti−1) − F

]

+
N∑

i=1

λi(P̄ − Pi) +
N∑

i=1

µi(ti − ti−1).

(3.33)

where λi and µi for i = 1, · · · , N represent the Lagrangian multipliers of con-
straints (3.30) and (3.31), respectively.

Proposition 2. The optimal prices P ∗
i are strictly increasing over time, i.e.,

P ∗
i < P ∗

i+1 < P̄ for all i = 1, · · · , N − 1.

The proof is given in Appendix A.1. The general intuition behind this result
is that it is beneficial to enhance demand when inventories are high in order to
reduce holding costs. Note that due to the replenishments which are repeated
over an infinite horizon and the assumption of deterministic demand this intuition
is different from slow-moving, single order, stochastic demand clearance pricing
models where prices will decrease over time to salvage excessive inventories. An
optimal pricing policy is illustrated in Figure 3.3.

Corollary 1. An optimal solution [P ∗
1 , · · · , P ∗

N , t∗1, · · · , t∗N ] that maximizes (3.33)
is an interior solution, i.e., µ∗

i = λ∗
i = 0 for all i = 1, · · · , N .
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Figure 3.3: Illustration of the pricing policy

The proof of Corollary 1 follows directly from Proposition 2. Thus, the second-
stage problem is reduced to

Π(N) =
1

tN

[
N∑

i=1

(

Pi − c − h

2
(ti + ti−1)

)

D(Pi) (ti − ti−1) − F

]

. (3.34)

In order to maximize the average profit, we differentiate (3.34) with respect to Pi

and ti for i = 1, · · · , N . The necessary first-order conditions for the optimal prices
∂Π(N)

∂Pi

!
= 0 and the optimal times for price changes ∂Π(N)

∂ti

!
= 0 for i = 1, · · · , N are

characterized by:

P ∗
i +

D(P ∗
i )

D′(P ∗
i )

= c +
h

2

(
t∗i + t∗i−1

)
, for i = 1, · · · , N, (3.35)

t∗i =
(P ∗

i − c)D(P ∗
i ) − (P ∗

i+1 − c)D(P ∗
i+1)

h(D(P ∗
i ) − D(P ∗

i+1))
for i = 1, · · · , N − 1, (3.36)

and

Π(N) =

(

P ∗
N − c − h

2
((t∗N)2 − (t∗N−1)

2)

)

D(P ∗
N). (3.37)

(3.35) reflects the well-known optimality condition of marginal revenue equals
marginal cost. However, in joint replenishment and pricing optimization the
marginal cost in interval i additionally includes the holding cost for an average

item which is in stock for a duration of
t∗i +t∗i−1

2
. For interpretation purposes we

rearrange (3.36) to ht∗i (D(P ∗
i )−D(P ∗

i+1)) = (P ∗
i − c)D(P ∗

i )− (P ∗
i+1 − c)D(P ∗

i+1).
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This gives that it is optimal to increase the time ti for the price adjustment from
Pi to Pi+1 until the holding cost for the additional demand in interval i compared
to interval i+1 (hti(D(Pi)−D(Pi+1))) is smaller than the difference of the profit
margin per unit of time between intervals i and i + 1, (Pi − c)D(Pi) − (Pi+1 −
c)D(Pi+1). Condition (3.37) gives that the optimal cycle length t∗N is the time
where the average profit is equal to the marginal profit. The intuition behind
condition (3.37) is the usage of scale economies due to the fixed ordering costs. If
the last increment of profit is larger than the average profit of all previous units,
an additional unit of inventory leads to larger economies of scales and thus, to an
increasing average profit. That is, as long as the marginal profit is larger than the
average profit, it is optimal to increase the order cycle. However, if the marginal
profit is lower than the average profit, then an additional unit will decrease the
average profit.

By an iterative approach, we can show that P ∗
i for i = 1, · · ·N and t∗i for i =

1, · · ·N − 1 can be expressed as single variable functions of tN . From (3.36) it
can be observed that for all i = 1, · · · , N − 1 the optimal time t∗i is a function of
the optimal price P ∗

i of the current interval, P ∗
i+1 the optimal price of the next

interval, and the corresponding optimal demand rates. Given the results of (3.35)
and (3.36), it is apparent that t∗i can be represented as a function of its predecessor
t∗i−1 and its successor t∗i+1. With the initial condition t0 = 0, it follows that t∗1 is a
function of its successor t∗2. t∗2 is a function of t∗1 and t∗3. By substituting t∗1(t

∗
2) into

t∗2(t
∗
1, t

∗
3) and some algebraic manipulations, the time t∗2 is represented as a single-

variable function of t∗3. An iterative transformation and substitution gives that
from [t∗1(t

∗
2), t∗2(t

∗
1, t

∗
3), · · · , t∗N(t∗N−1)] it follows that each t∗i can be represented

as a function only depending on its successor, i.e., [t∗1(t
∗
2), t∗2(t

∗
3), · · · , t∗N−1(t

∗
N)].

Now, by backward insertion, each optimal time where the selling price is changed
can be represented as a function t∗i (t

∗
N) of the cycle length. Therefore, the optimal

prices and the optimal demand rates can be reduced to functions that only depend
on the cycle length tN , e.g., (P ∗

i (tN), D∗
i (tN)). In Section 3.3.3 , we show that

for a linear price-response function this iterative procedure yields closed-form
expressions P ∗

i (tN) for all i = 1, · · · , N . For general price-response functions,
this interrelation has to be solved numerically. Therefore, constraints (3.30) can
be relaxed to PN(tN) ≤ P̄ only. By solving the equation P ∗

N(tN) = P̄ , we obtain
an upper bound for the optimal cycle length denoted by tMax

N i.e., t∗N ≤ tMax
N .

The first-order condition for tN disregarding the constraint PN ≤ P̄ provides:

t′N =

√
√
√
√ 2F

hD(P ∗
N)

− 1

D(P ∗
N)

N−1∑

i=1

(t∗i )
2(D(P ∗

i ) − D(P ∗
i+1)). (3.38)

The derivation of (3.38) is given in Appendix B.1. However, using the upper
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3.3 Dynamic pricing and replenishment in a monopoly

bound on tN , the optimal cycle length is determined by

t∗N =

{
t′N if t′N ≤ tMax

N

tMax
N otherwise.

(3.39)

An intuition of (3.38) can be obtained by a transformation into

F =
h

2

N∑

i=1

D(Pi)(t
2
i − t2i−1).

This optimality condition is known from the EOQ model, namely that for an
entire inventory cycle the total inventory holding costs are equal to the fixed cost
for a single replenishment.

Compared to static pricing (see Section 3.2.2), at the beginning of a cycle a lower
selling price results in a higher demand which yields a reduction of inventory
holding costs. This, in turn, leads to a lower order frequency. The managerial
intuition behind this effect is that the retailer places orders in lots such that the
later an item is sold the higher are inventory holding costs for this item. For this
reason, the retailer has an incentive to reduce inventories at the beginning of the
order cycle.

3.3.3 Special price-response functions

Linear price-response

Assume that at any point in time t the market potential is denoted by a and an
amount of bP customers decide that the price is too high and do not buy. In
particular, the reservation price P̄ = a

b
denotes the price where the demand rate

drops to zero.

D(P ) =

{
a − bP : 0 ≤ P ≤ a

b

0 : P > a
b

. (3.40)

A linear price-response function is often used in economics, marketing, and op-
erations management literature. In the following, we analyze constant pricing,
discrete time price changes, and continuous price adjustment for the linear price-
response function.
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3.3 Dynamic pricing and replenishment in a monopoly

Constant pricing

Analyzing the special case of constant pricing, we get that substituting (3.40)
into the optimality condition (3.7) leads to

T ∗ =

√

2F

h(a − bP ∗)
and P ∗ = c +

(a − bP ∗)

b
+

√

Fh

2(a − bP ∗)
. (3.41)

In order to determine the optimal price, the second equation has to be trans-
formed into the following cubic equation:

− 8b3P 3 + (16ab2 + 8cb3)P 2 − (10a2b + 12ab2c + 2b3c2)P

+ 2a3 + 4a2bc + 2ab2c2 − Fhb2 = 0. (3.42)

Using the Trigonometrical Solution Method (see Bronshtein et al. (2004)), it can
be shown that (3.42) has at most three different real roots. However, given that
0 ≤ P ≤ P̄ there exists a unique P ∗ (see Whitin (1955), Eliashberg and Steinberg
(1991)).

Discrete price changes

In the case where price changes are limited to a given number N , the following
three propositions provide results on the optimal cycle length and the optimal
points in time where the price will be adjusted.

Proposition 3. In an order cycle where N price variations are allowed and
the price-response function is linear, the time intervals [ti−1, ti) are equidistant:
δ∗ := t∗i − t∗i−1 = t∗i+1 − t∗i for all i = 1, · · · , N − 1.

Proof. From (3.35) and (3.36) we find

P ∗
i =

1

2

(
a

b
+ c +

h

2

(
t∗i + t∗i−1

)
)

and t∗i =
1

h

(

P ∗
i + P ∗

i+1 −
(a

b
+ c
))

.

(3.43)
Inserting P ∗

i and P ∗
i+1 into the equation for t∗i leads to the condition: t∗i =

t∗i−1+t∗i+1

2
⇐⇒ t∗i − t∗i−1 = t∗i+1 − t∗i = δ∗t .

According to Proposition 3,

t∗i = i
t∗N
N

and P ∗
i =

1

2

(
a

b
+ c +

h

2

(2i − 1)

N
t∗N

)

. (3.44)
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Equation (3.44) indicates that the optimal price increases over the order cycle so

that at every time ti the retailer increases the price by a constant of h
2

t∗N
N

. The
condition Pi ≤ a

b
gives

1

2

(
a

b
+ c +

h

2

(2N − 1)

N
tN

)

≤ a

b
⇐⇒ tN ≤ 2(a − bc)

hb

N

(2N − 1)
= tMax

N . (3.45)

Using (3.44) in (3.39), the optimal cycle length results from

4N2 − 1

N2
t3N − 6(a − bc)

hb
t2N +

24F

h2b
= 0. (3.46)

Proposition 4. If the response function is linear and N price changes are allowed
in an order cycle, there exists a unique optimal cycle length t∗N ≥ 0 if

F ≤ 4

3

(a − bc)3

b2h

N4

(4N2 − 1)2
=: Fmax (3.47)

and the optimal cycle length t∗N is

t∗N =







−2 (a−bc)
hb

N2

(4N2−1)

(
2 cos(π

3
+ φ

3
) − 1

)
: F ≤ 2

3
(a−bc)3

hb2
N4

(4N2−1)2

φ = arccos
(

1 − 3F
2

hb2

(a−bc)3
(4N2−1)2

N4

)

2 (a−bc)
hb

N2

(4N2−1)

(
2 cos(π

3
+ φ

3
) + 1

)
: F > 2

3
(a−bc)3

hb2
N4

(4N2−1)2

φ = arccos
(

3F
2

hb2

(a−bc)3
(4N2−1)2

N4 − 1
)

.

(3.48)

Furthermore, t∗N is increasing in N .

The proof is given in Appendix A.2. The first part of Proposition 4 gives an upper
bound for the ordering cost F ≤ Fmax, that is, if the ordering cost exceeds this
upper bound, there is no positive cycle length and therefore no positive profit.
The second part states the existence of a unique optimal cycle length. Finally,
it is shown that the more price changes are allowed over an order cycle, the
longer is the cycle length and the lower is the order frequency. As N increases,
the necessity to compromise on inventory holding costs further reduces (see also
the following inter-leaved property) and therefore the overall lot-sizing trade-off
between fixed replenishment costs and inventory holding costs shifts in favor of
larger replenishments and therefore larger cycles.

Proposition 5. (Inter-leaved property) If the price-response function is linear in
P , then for each N > 1 follows:

P ∗
i (N + 1, t∗N+1) ≤ P ∗

i (N, t∗N) ≤ P ∗
i+1(N + 1, t∗N+1) ∀i = 1, · · · , N − 1.
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The proof of Proposition 5 is given in Appendix A.3. This property characterizes
the pricing strategy when the number of prices increases. It indicates that if the
retailer changes the selling price N times within an order cycle, the i-th selling
price is between the i-th and the (i + 1)-st price of a strategy where N + 1 price
changes are allowed. This form of inter-temporal price discrimination leads to a
better trade-off between fixed and holding cost. Chen et al. (2004) show in a
numerical example that this inter-leaved property also holds in a single-product-
inventory problem with price-sensitive demand following a Brownian motion.

Continuous price adjustment

If the retailer is allowed to change the selling price continuously, then the optimal
solution can be obtained by two alternative ways:

1. by applying the optimal control approach presented in Section 3.3.1 or

2. by analyzing the discrete model for N → ∞.

Using (3.20) and (3.18), the optimal price at time t is

P ∗(t) =

{
1
2

(
a
b

+ c + ht
)

: ht < a
b
− c

a
b

: else
. (3.49)

By integrating condition (3.10) in conjunction with the boundary conditions
(3.11), the optimal lot-size Q∗ and the inventory level at time t are

Q∗ =
b

2

[
a

b
− c − h

2
T

]

T (3.50)

and

y(t)∗ =
b

2

[
a

b
− c − h

2
(T + t)

]

(T − t) . (3.51)

Using (3.49) in the expression for the optimal profit (3.9), the average profit per
time unit becomes

Π∗
T =

1

12
bh2T 2 − h

4
(a − bc)T +

(a − bc)2

4b
− F

T
. (3.52)

Since P ∗ is increasing in t, the constraint P ∗(T ) ≤ P̄ gives an upper bound for

the optimal cycle length, Tmax = a−bc
bh

. T ∗ is determined from ∂Π
∂T

!
= 0:

1

6
bh2T − h

4
(a − bc) +

F

T 2

!
= 0. (3.53)
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Proposition 6. If the response function is linear in P and the price adjustments
occur continuously, there exists a unique T ∗ ≤ Tmax with Π(T ∗) ≥ 0 only if

F ≤ (a−bc)3

12b2h
=: F∞

Max.
Furthermore, if F ≤ F∞

Max, the optimal cycle length T ∗ is given by:

T ∗ =







−1
2

(a−bc)
hb

(
2 cos(π

3
+ φ

3
) − 1

)
: F ≤ 1

24
(a−bc)3

b2h

φ = arccos
(

1 − 24Fhb2

(a−bc)3

)

1
2

(a−bc)
hb

(
2 cos(π

3
+ φ

3
) + 1

)
: F > 1

24
(a−bc)3

b2h

φ = arccos
(

24Fhb2

(a−bc)3
− 1
)

.

(3.54)

The proof is similar to Proposition 4 and can alternatively be obtained from
analyzing the limiting case N → ∞.

Exponential price-response

A second class of demand functions assumes a nonlinear response to price varia-
tions. In the following, we assume an exponential relationship

D(P ) =

{
ae−bP : 0 ≥ P

0 : P < 0
. (3.55)

The limiting value lim
P→∞

D(P ) = 0, i.e., the reservation price is infinite. For non-

linear price-response functions, in general, we do not obtain closed-form solutions
for the optimal prices and the optimal cycle length.

Constant pricing

By inserting (3.55) into (3.35) and (3.39), the optimal constant price and the
optimal cycle length are obtained from

T ∗ =

√

2F

hae−bP ∗
and P ∗ = c +

1

b
+

h

2

√

2F

hae−bP ∗
. (3.56)

Since a closed-form solution cannot be obtained, the equations have to be solved
numerically.

Discrete price changes

In the case of a discrete number of N price adjustments, we can derive an upper
bound for the ordering cost similar to the linear case.

48



3.3 Dynamic pricing and replenishment in a monopoly

Proposition 7. If the demand decreases exponentially in the price according to
(3.55), the profit is positive only if F ≤ 8a

hb2
e−(3+bc).

If the ordering cost exceeds the upper bound, it is not beneficial to sell this
product at all. The proof and an algorithm for determining the optimal price is
given in Appendix A.4. From (3.35) it follows

P ∗
i = c +

1

b
+

h

2
(t∗i + t∗i−1) =⇒ D∗

i = ae−(1+bc+hb
2

(t∗i +t∗i−1)) (3.57)

for i = 1, · · · , N . Therefore, the optimal time instants t∗i in (3.36) for i =
1, · · · , N − 1 are given by

t∗i =

(
1
b
+ h

2
(t∗i + t∗i−1)

)
e−

hb
2

t∗i−1 −
(

1
b
+ h

2
(t∗i + t∗i+1)

)
e−

hb
2

t∗i+1

h(e−
hb
2

t∗i−1 − e−
hb
2

t∗i+1)
(3.58)

=⇒ t∗i =
2

hb
+

t∗i−1e
−hb

2
t∗i−1 − t∗i+1e

−hb
2

t∗i+1

e−
hb
2

t∗i−1 − e−
hb
2

t∗i+1

. (3.59)

The optimal cycle length follows from (3.39) by

t∗N =

√
√
√
√ 1

ae−(1+bc+hb
2

(t∗
N

+t∗
N−1))

(

2F

h
−

N−1∑

i=1

(t∗i )
2ae−(1+bc+hb

2
t∗i )
(

e−
hb
2

t∗i−1 − e−
hb
2

t∗i+1

)
)

.

(3.60)

A difference between the linear and nonlinear price-response function is the opti-
mal timing of price adjustments. Proposition 8 characterizes the behavior of the
optimal price changing strategy.

Proposition 8. In an order cycle where N price variations are allowed and the
price-response follows D(P ) = ae−bP , the length of time intervals [ti−1, ti) where
the price Pi is charged is non-decreasing in i, more specifically

ti−1

ti
≤ i − 1

i
∀i = 1, · · · , N. (3.61)

The proof is given in Appendix A.5. Proposition 8 gives that t1 ≤ (t2−t1) ≤ · · · ≤
(ti − ti−1) ≤ · · · ≤ (tN − tN−1). For a linear price-response function we showed
that the time interval between two consecutive price changes is equidistant for all

points in time, which is equivalent to
t∗1
t∗2

= 1
2
,

t∗2
t∗3

= 2
3
, · · · ,

t∗i−1

t∗i
= i−1

i
, · · · ,

t∗N−1

t∗
N

=

N−1
N

. In the exponential price-response case
t∗i−1

t∗i
≤ i−1

i
for all i = 1, · · · , N implies

that the time intervals increase over the order cycle. As an example, let N = 2,
with

t∗1
t∗2
≤ 1

2
it follows that t∗1 ≤

t∗2
2

−→ (t∗2 − t∗1) ≥
t∗2
2
. This behavior results from
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the properties of the exponential price-response function. When the price is low,
the demand rate responds more sensitive to price variations. An increase in the
selling price by one unit at the beginning of the order cycle where the price is
low has a larger impact on the demand rate than at the end of the order cycle.
This larger impact results in a lower interval length at the beginning of the order
cycle.

For the case of an exponential price-response function, the optimal cycle length t∗N
cannot be obtained in closed form. The following algorithm describes an iterative
procedure to determine the optimal solution numerically.

Algorithm

The algorithm for N ≥ 2 works as follows. Equation (3.59) gives that t∗i de-
pends on its predecessor and successor t∗i−1 and t∗i+1, respectively. Therefore, t∗1
only depends on t∗2 because t∗0 = 0. From Proposition 8 it follows that t∗i−1 ≤ t∗i

i−1
i

=⇒ t∗1 ≤
1

2
t∗2 ≤

1

2

(
2

3
t∗3

)

=
1

3
t∗3 ≤

1

3

(
3

4
t∗4

)

≤ · · · ≤
N−1∏

i=2

i

i + 1
t∗N =⇒ t∗1 ≤

1

N
t∗N .

Based on this result, the algorithm starts with an upper for t1 with t1 := T
N

where T := t∗N=1, the optimal cycle length of the constant pricing case. Given t1,
the algorithm successively calculates ti for i = 2, · · · , N by using (3.59). After
that, the algorithm checks the optimality of this solution by using (3.60). The
algorithm stops if for a particular t1 and the following calculated t2, · · · , tN the
equation (3.60) is satisfied (sufficiently exact) .

Furthermore, δ denotes the step size, ε denotes the precision criterion, and Λ and
Ψ are auxiliary variables which are set sufficiently large.

REPEAT

t1 := t1 − δ

FOR i from 2 to N

ti := ti−1

REPEAT

ti = ti + δ

Λ := ti−1 − 2
hb

− ti−2e−
hb
2 ti−2−tie

−
hb
2 ti

e−
hb
2 ti−2−e−

hb
2 ti

UNTIL |Λ| ≤ ε.

END FOR
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FOR i from 1 to N

Determine Pi and Di from (3.57) and (3.58).

END FOR

Determine by using (3.38) Ψ := tN −
√

2F
hDN

− 1
DN

N−1∑

i=1

(ti)2(Di − Di+1)

UNTIL |Ψ| ≤ ε.

3.3.4 Numerical example

Consider a linear price-response function D(P ) = a − bP with a = 500 and
b = 20.5. The setup cost is F = 900, purchasing cost c = 15 per unit, and
inventory holding cost h = 1.5 per unit and time unit. Furthermore, we set the
menu cost κ(N) = 0. This assumption provides that the optimal profit resulting
from (N = ∞) gives an upper bound with respect to N < ∞.

N Π∗ Q∗ t∗N P ∗
aver

1 -14.45 274.05 4.38 21.34
2 1.05 288.65 4.98 21.25
5 6.39 294.81 5.34 21.22
10 7.23 295.88 5.42 21.21
∞ 7.51 296.26 5.45 21.21

Table 3.1: Optimal profit, order quantity, cycle length, and average charged price
when the number of price settings is increasing

The results in Table 3.1 and the behavior of the optimal average profit illustrated
in Figure 3.4 indicate the potential for improvement even with only a few price
adjustments. In this example, the results show that if the retailer optimizes the
profit on the basis of constant pricing, the product is not profitable and the loss
per time unit is 14.45. With a single price adjustment, the product generates
a positive profit of 1.05 per time unit. Furthermore, the additional benefit is
decreasing with the number of price changes. The order cycle and the order
quantity increase with increasing N . Figures 3.6 and 3.7 illustrate the optimal
price strategy and the corresponding cycle length for N = 1, 2, 3, and an infinite
number of price changes for a linear and an exponential prices response function.
In case of the exponential price-response function, we assumed b = 0.13. The
results indicate that for both linear and exponential price-response function the
optimal order interval is increasing in N and that the inter-leaved property holds
in this numerical example for an exponential price-response function.

51



3.3 Dynamic pricing and replenishment in a monopoly

-15

-10

-5

 0

 5

 0  1  2  3  4  5  6  7  8  9  10  11  12

pr
of

it

N

Profit (N)

Figure 3.4: Optimal average profit as a
function of N

 272

 274

 276

 278

 280

 282

 284

 286

 288

 290

 292

 294

 296

 298

 0  1  2  3  4  5  6  7  8  9  10  11  12

or
de

r 
qu

an
tit

y

N

Order Quantity (N)

Figure 3.5: Optimal EOQ as a function
of N

N=1
N=2
N=3
N=inf

Price Path (N)

20

21

22

23

0 1 2 3 4 5  

 

P

t
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regarding N when the re-
sponse function is exponen-
tial in P

Now we assume a menu cost of κ = 1 for every price adjustment. The results
in Table 3.2 illustrate the effects of parameter variations on the optimal number
of price changes, the optimal profit, the optimal order quantity, and the optimal
cycle length. On the basis of the given data, we analyze the effect of a variation
of setup cost F , market potential a, price-sensitivity b, inventory holding cost h,
and procurement cost c.

An intuitive result is that the optimal profit decreases (increases) if the cost
parameters F , h, and c increase (decrease). We observe that the optimal number
of price changes increases with an increase of any of the cost parameters F ,
h, and c. Whenever costs increase, there are larger benefits from operational
efficiency. With respect to order quantity and cycle length, we observe the same
effects as in the traditional EOQ model, i.e., Q and T increase with an increase
in F . However, an increase in h does not lead to the same effect as in the
traditional EOQ model. As Table 3.2 shows, an increase in h decreases the order
quantity, however, the effect on the cycle length is not unidirectional. For small
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F N∗ Π∗ Q∗ t∗N a N∗ Π∗ Q∗ t∗N
200 2 221.58 151.2 1.84 499 4 0.10 292.6 5.37
800 3 23.00 280.0 4.60 500 4 2.78 294.0 5.29
900 4 2.78 294.0 5.29 510 4 32.27 307.1 4.73
910 4 0.90 295.1 5.37 530 3 102.96 328.8 4.14
920 4 -0.93 296.3 5.45 750 2 1634.62 498.5 2.46

b N∗ Π∗ Q∗ t∗N h N∗ Π∗ Q∗ t∗N
10.0 2 2386.62 448.1 2.72 0.60 2 149.11 494.8 6.48
18.0 3 215.53 342.0 3.83 1.00 3 63.76 363.3 5.41
19.5 3 71.90 314.8 4.39 1.30 3 26.73 319.2 5.18
20.2 4 21.16 301.2 4.91 1.50 4 2.78 294.0 5.29
20.5 4 2.78 294.0 5.29 1.51 4 1.09 292.1 5.31
20.6 4 -2.82 291.4 5.48 1.53 4 -0.57 290.2 5.33

c N∗ Π∗ Q∗ t∗N
10 2 566.32 489.2 3.82
14 3 81.75 331.4 4.44
15 4 2.78 294.0 5.29

15.1 4 -3.73 289.7 5.51

Table 3.2: Effect of parameter F , a, b, h, and c on N∗, Π∗,Q∗, and t∗N

holding costs, the cycle length decreases as in the EOQ model. At the same
time, the increase of the holding cost results in increasing prices and therefore
decreasing demand rates. For significantly large holding costs, the latter effect
compensates the former and results in an increasing order cycle. A decreasing
demand rate, in turn, leads to a longer cycle length. The same observation can
be made concerning the impact of increasing variable procurement costs c on t∗N .
With respect to variable procurement cost c, market potential a, and sensitivity
b, we observe that the optimal number of price changes decreases with larger
demand rates, that is, the faster a good is moving, the fewer price changes are
required. Order quantity and cycle length show the same dependency on demand
rate driven by the underlying parameters, that is, Q increases in a and decreases
in c and b whereas the optimal length of the order cycle changes in the opposite
direction.

3.3.5 Discounted cash-flow analysis

The objective of the majority of EOQ-based problems is to maximize average
profit or minimize average costs. However, several authors complain that optimiz-
ing the average performance does not explicitly take into account the time value
of money and that the net present value (NPV) approach, a standard method
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for using the time value of money to appraise long-term decision problems, is the
right framework for studying inventory control and production planning prob-
lems. The NPV defines the total discounted cash-flows over a finite or infinite
planning horizon. In the following, we will show that the average profit approach
(AP) used in the previous section is a reasonable approximation of the NPV
approach.

Constant pricing

Let r denote the discount rate. The NPV for a single order cycle of length T

is determined by the initial procurement costs, i.e., variable and fixed ordering
costs plus the discounted continuous payments over the order cycle. In order to
keep the analysis simple and transparent, we omit out-of-pocket holding costs.
Then,

NPV (T ) = −cD(P )T − F +

T∫

0

PD(P )e−rtdt.

Over an infinite planning horizon, the NPV is the discounted sum of all single-
cycle NPVs, i.e.,

NPV =
∞∑

n=0

NPV (T )e−nrT = NPV (T )
1

1 − e−rT

=
PD(P )

r
− F + cD(P )T

1 − e−rT
(3.62)

The first-order condition of (3.62) w.r.t. T gives

∂NPV

∂T
= 0 ⇔ cD(P )(erT − 1) = r(F + cD(P )T ). (3.63)

In the following, we use a Maclaurin series, which is a special Taylor series ex-
pansion of a function about 0, in order to transform the first-order conditions
(Bronshtein et al., 2004). The Maclaurin series of a function w(x) is defined as

w(x) = w(0) + w′(0)x +
w′′(x)

2!
x2 + . . . +

w(n)(x)

n!
xn + . . . .

Using a second-order Maclaurin series approximation erT ≈ 1 + rT + r2T 2

2
to

(3.63), we get

T ∗ =

√

2F

rcD(P )
, (3.64)
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which is equal to (3.7) for h = rc.

The first-order condition of (3.62) w.r.t. P gives

∂NPV

∂P
= 0 ⇔ 1

r
(D(P ) + PD′(P )) =

cD′(P )T

1 − e−rT
, (3.65)

⇔ P +
D(P )

D′(P )
=

rcT

1 − e−rT
. (3.66)

The first-order Maclaurin series approximation w.r.t. r applied to r
(1−e−rT )

(see

Grubbström and Thorstenson (1986), Corbey et al. (1999), and van der Laan and
Teunter (2002)) give

r

(1 − e−rT )
≈ r

2
+

1

T
.

Hence, (3.66) can be transformed into

P +
D(P )

D′(P )
= c +

rc

2
T, (3.67)

which is equal to (3.7) for h = rc.

Thus, when the holding cost rate is chosen as h = rc, the optimal solution, i.e.,
the optimal cycle length and optimal price of the average profit approach are
approximately optimal for the NPV approach.

Dynamic pricing

For the case of dynamic pricing, we exemplarily present the analysis for N = 2.
The analysis for an arbitrary N follows analogously. For a single order cycle

NPV (2)(P1, P2, t1, t2) = −cQ − F +

t1∫

0

P1D(P1)e
−rtdt +

t2∫

t1

P2D(P2)e
−rtdt

with Q = D(P1)t1 + D(P2)(t2 − t1). Thus, the NPV is determined as

NPV =
∞∑

n=0

NPV (2)(P1, P2, t1, t2)e
−nrt2 =

1

(1 − e−rt2)
NPV (2)(P1, P2, t1, t2).

(3.68)
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The optimal solution has to satisfy the following first-order conditions

∂NPV

∂t1
= 0 ⇔ 1

(1 − e−rt2)

[

− c(D(P1) − D(P2))

+ (P1D(P1) − P2D(P2))e
−rt1

]

= 0, (3.69)

thus,

t1 =
1

r
ln

(
P1D(P1) − P2D(P2)

c(D(P1) − D(P2))

)

.

Using the Maclaurin series approximation for ln(1 + x) ≈ x, it follows that

t1 =
(P1 − c)D(P1) − (P2 − c)D(P2)

rc(D(P1) − D(P2))

which is equal to (3.36) of the AP approach if h = rc. The first-order condition
of (3.68) w.r.t. t2 gives

∂NPV

∂t2
= 0 ⇔ −re−rt2

(1 − e−rt2)2
Π(2) +

(−cD(P2) + P2D(P2)e
−rt2)

(1 − e−rt2)
, (3.70)

⇔ (ert2 − 1)

r
(P2e

−rt2 − c)D(P2) = NPV (2) (3.71)

Some algebraic transformations give

(P1D(P1) − P2D(P2))

(
1 − e−rt1

r

)

+ cD(P2)

(
e−rt1 − 1

r

)

= F + cD(P1)t1 + cD(P2)(t2 − t1).

Using the Maclaurin series approximation for e−rt1 , and using the condition
(c(D(P1) − D(P2)) = (P1D(P1) − P2D(P2))e

−rt1) from (3.69), by some algebraic
transformation it follows

t22 =
2F

rcD(P2)
− 2(D(P1) − D(P2))

rD(P2)

rt21
2

.

Thus, the optimal cycle length is

t2 =

√

2F

rcD(P2)
− (D(P1) − D(P2))

D(P2)
t21 (3.72)
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which is equal to (3.38) for N = 2 if h = rc. The first-order conditions of (3.68)
w.r.t. P1 and P2 give

∂NPV

∂P1

= 0 ⇔ P1 +
D(P1)

D′(P1)
= ct1

r

(1 − e−rt1)
, (3.73)

∂NPV

∂P2

= 0 ⇔ P2 +
D(P2)

D′(P2)
= c(t2 − t1)

r

(e−rt1 − e−rt2)
. (3.74)

Using the first-order Maclaurin series approximations w.r.t. r (together with
l’Hospital’s rule) r

(1−e−rt1 )
≈

r
2

+ 1
t1

and r
(e−rt1−e−rt2)

≈
1

(t2−t1)
(1 + r

2
(t2 + t1)) give

that the approximative representations of (3.73) and (3.74) are

P1 +
D(P1)

D′(P1)
= c +

rc

2
t1

and

P2 +
D(P2)

D′(P2)
= c +

rc

2
(t1 + t2).

which are equal to (3.35) for i = 1, 2 if h = rc.

Thus, the average profit approach is approximately optimal and gives the same
order quantity and the same selling price as in the NPV approach when the
holding cost rate is chosen as h = rc.

3.3.6 Summary and implications

This section analyzed a problem of jointly determining the profit-maximizing
pricing and lot-sizing policy with inter-temporal price discrimination in an EOQ
framework. Besides providing further evidence for the benefits of dynamic pricing
(which admittedly has already been pointed out in more complex environments),
we especially show its impact on operational (order quantity and order cycle)
decisions. In the general dynamic pricing model, we could not derive closed-
form solutions for the optimal decisions. To gain more insights into structural
results, we investigated the problem for a linear and an exponential price-response
function. For the linear model, we found analytical solutions for the optimal
prices, the optimal times where the price is adjusted, and the optimal cycle
length, and we have proven that the time intervals where a particular price is
charged are equidistant. In case of an exponential price-response, the length of
the time intervals where a particular selling price is charged is increasing over
the order cycle. In this case, if the price is low, the demand rate responds more
sensitive to price variations than at higher prices. Therefore, the price jumps are
lower at the beginning of the order cycle than at the end. The overall benefit
from a discrete number of price changes in an economic order quantity context
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is to increase the demand rate when inventories are high such that operational
efficiency is increased.

For both linear and exponential price-response and menu cost are equal to zero,
the optimal profit is increasing and the marginal revenue is decreasing with the
number of price changes. If there is no menu cost for price adjustment, the profit
in case of continuous price adjustments is an upper bound. If the menu costs
are strictly positive, then there exists an optimal N∗ that maximizes the average
profit per time unit. Further, it was shown that the optimal cycle length and the
order quantity are increasing in the number of price variations. Thus, the order
frequency of the retailer is lower if more price adjustments are allowed over an
order cycle. In the numerical example, we showed the impact of changing param-
eters on the optimal number of price changes, order quantity, cycle length, and
average profit. We observed that the optimal number of price changes increases
with an increase of any of the cost parameters F , h, and c. Furthermore, increas-
ing fixed costs have the same impact on the optimal lot-size and cycle length
as in the traditional EOQ model, i.e., Q∗ and T ∗ increase in F . The impact of
increasing holding costs is not unique. Two complementary effects occur. On the
one hand, increasing holding costs lead to a higher order frequency, just as in the
traditional EOQ model. On the other hand, an increasing h leads to increasing
prices and decreasing demand rates. These effects, in turn, lead to a longer cycle
length. Depending on which effect dominates, the cycle length and the lot-size
increase or decrease.

This model is based on several simplifying assumptions, e.g., deterministic en-
vironment, a single product, or a monopoly that allowed us to obtain detailed
structural insights into the optimal pricing, timing, and inventory policies. The
major implication is that using dynamic pricing strategies does not only influence
demand but also affects the replenishment policy in such a way that order quan-
tity and order cycle length increase with an increasing number of price changes.
In the following, this problem is extended in several ways. In the next section
a supplier quantity discount is incorporated. It is investigated how coordinated
decision-making where the retailer optimizes price and replenishment policy si-
multaneously increases the performance compared to a decentralized decision
making framework where price and replenishment decisions are made indepen-
dently.
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3.4 Dynamic pricing and replenishment with

quantity discounts

This section, extends the model of Section 3.3 to the case where the supplier of-
fers an all-units quantity discount (AQD). It is a common practice that suppliers
offer a discount for large order quantities. For this kind of price discrimination
(see Section 2.1), a supplier designs a menu of price-quantity pairs and customers
select their optimal purchasing volume. Dolan (1987) and Wilcox et al. (1987)
provide several reasons for a firm to offer quantity discounts from both a market-
ing and an operations management point of view. If the supplier faces high setup
costs which lead to a large lot-size and high holding costs, quantity discounts
may reduce the inventory level immediately after stocking due to larger customer
orders. Furthermore, suppliers offer quantity discounts for a better utilization of
idle capacity in order to achieve economies of scale in manufacturing. From a
marketing perspective, quantity discounts are used to stimulate sales, e.g., Neslin
et al. (1995). From a financial point of view, the time value of money is taken
into consideration. Because of the offered quantity discount, buyers decide to
buy earlier and a larger quantity. Therefore, revenues are available earlier for
possible reinvestment (Beranek, 1967).

We compare a decentralized decision framework where first marketing determines
the optimal pricing strategy and then operations optimizes the replenishment pol-
icy to coordinated decision-making where the retailer decides on pricing strategy
and replenishment policy simultaneously. Hereby, we distinguish between two
pricing strategies. In case of constant pricing, the retailer determines the optimal
selling price that is constant over an infinite planning horizon. In case of dynamic
pricing, the retailer varies the selling price over time. We analyze the benefits
from coordinated dynamic pricing and replenishment compared to coordinated
constant pricing and replenishment and to decentralized decision-making. We
assume that the number of price changes over an order cycle is given. However,
in order to determine the optimal number of price changes, the results of Section
3.3.2 can be used. There it is shown how dynamic pricing can enhance opera-
tional efficiency by increasing the demand rate when inventories are high. The
benefits of exploiting supply quantity discounts significantly depend on whether
variable purchasing price reductions can offset additional holding costs from or-
dering minimum required quantities. Therefore it appears promising that the use
of dynamic pricing even stronger influences operational efficiencies than in case
without a quantity discount. Furthermore, this section extends Eliashberg and
Steinberg (1993) who compare sequential and simultaneous optimization of lot-
size and (constant) selling price without quantity discounts. They show that the
optimal selling price in the case of simultaneous optimization is larger than in the
case of sequential optimization which, in turn, results in a lower order frequency.
This property does not hold necessarily if the supplier offers a quantity discount.
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We develop optimization models for three different decision frameworks, the de-
centralized framework where marketing and operations optimize independently,
the coordinated-constant framework where the retailer optimizes a constant price
and the order quantity simultaneously, and the coordinated-dynamic framework
where the retailer employs a finite number of price changes over an order cycle.
We provide analytical properties of the objective functions and present algo-
rithms for determining the optimal replenishment policy and price strategy for
the coordinated-constant and the coordinated-dynamic framework, respectively.

3.4.1 Model formulation

We follow the assumptions of the EOQ model described in Section 3.2. Addi-
tionally, it is assumed that the supplier offers a regular purchasing price c0 per
unit and an AQD schedule with l = 0, . . . , L different purchasing prices where
the discount is rl percent on c0 per unit if the order quantity is larger than or
equal to a breakpoint quantity Q̄l. The AQD policy with multiple breakpoints is
characterized by a vector

{(r0, Q̄0), (r1, Q̄1), · · · , (rL, Q̄L) | r0 < r1 < · · · < rL, Q̄0 < Q̄1 < · · · < Q̄L}

with r0 = Q̄0 = 0. Let cl := (1 − rl)c0 be the reduced procurement price for a
unit if the order quantity Q ∈ [Q̄l, Q̄l+1) with c0 > c1 > · · · > cL and Q̄L+1 = ∞.
Inventory holding costs depend, among others, on the cost of capital that, in
turn, depends on the purchase price cl and are denoted by hl per unit and unit
of time. We assume that hl is an increasing function of cl.

3.4.2 Decentralized decision-making

Assume that the selling price and the purchasing strategy are determined by sep-
arated decision-making units. First, marketing optimizes the selling price and
generates customer demand. Then, given this demand rate, operations deter-
mines the optimal replenishment policy taking into account the supplier’s quan-
tity discount. Marketing does not take into account fixed ordering costs and does
not anticipate purchasing price discounts as a result of order quantities because
the discount actually applied is unknown until the operations decision is taken.
Marketing’s objective function is as follows:

Π̃(P ) = (P − c0)D(P ). (3.75)

The optimal selling price P̃ ∗ is obtained from the first-order condition P + D(P )
D′(P )

=

c0. Given the demand rate D̃∗ = D(P̃ ∗), operations minimizes average costs of
replenishment and inventory taking into account the supplier quantity discount.
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Hadley and Whitin (1963) developed a two-stage algorithm in order to deter-
mine the optimal replenishment policy. A first stage iteratively calculates the
constrained economic order quantity Q̃∗

l and the resulting costs starting from the
highest discount cL until the first index l0 is found where the solution satisfies
Q̃∗

l0
≥ Q̄l0 and Q̃∗

l < Q̄l for all l > l0. Thus,

Q̃∗
l0

=

√

2FD(P̃ ∗)

hl0

≥ Q̄l0 and C̃∗
l0

=

√

2Fhl0D(P̃ ∗). (3.76)

At a second stage, the cost of this inner solution C̃∗
l0

is compared with the costs

of all breakpoint quantities larger than Q̃∗
l0
, i.e., C̃l(Q̄l) for l = l0 + 1, ..., L with

C̃l(Q̄l) = clD(P̃ ∗) +
hl

2
Q̄l + F

D(P̃ ∗)

Q̄l

.

Thus, the optimal profit in the case of decentralized decision-making is as follows:

Π̃∗ = (P̃ ∗ − c0)D(P̃ ∗) − min{C̃∗
l0
, C̃l(Q̄l) | l = l0 + 1, ..., L}.

3.4.3 Coordinated decision-making - constant pricing

In case of coordinated decision-making, we simultaneously optimize lot-size Q

and selling price P . The optimization problem for a particular purchasing price
cl is given by

Π∗
l (P,Q) = max

P,Q

(

(P − cl)D(P ) − hl

2
Q − F

D(P )

Q

)

(3.77)

s.t. Q ≥ Q̄l. (3.78)

A relaxation of (3.78) and differentiating (3.77) with respect to Q and P yields
the necessary first-order conditions for an inner solution (e.g., see Whitin (1955)
and Eliashberg and Steinberg (1993)). Solving (3.79) and then determining

T ∗ =
√

2F
hlD(P ∗

l
)

leads to the same solution as solving (3.7) for c = cl and then

determining Q∗ =
√

2FD(P ∗

l
)

hl
.

Q∗
l =

√

2FD(P ∗
l )

hl

and P ∗
l +

D(P ∗
l )

D′(P ∗
l )

= cl +
F

Q∗
l

(3.79)

where the optimal selling price P ∗
l , conditional that the purchasing price is cl, is

represented as an implicit function of the optimal order quantity. For a particular
purchasing price cl, the optimal order quantity is only feasible if Q̄l ≤ Q∗

l . Given
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this constraint, a transformation of Q∗
l from (3.79) yields that an inner solution

P ∗
l is only feasible if P ∗

l is lower than a break price P̄l for a given unit purchasing
cost cl:

P ∗
l ≤ D−1

(
hlQ̄

2
l

2F

)

=: P̄l (3.80)

where D−1(.) denotes the inverse of the price-response function. The inverse
function indeed exists due to the fact that D(P ) is a strictly monotone function.
Using this result, the AQD policy can be characterized by

{(r0, P̄0), (r1, P̄1), · · · , (rL, P̄L) | r0 < r1 < · · · < rL, P̄0 > P̄1 > · · · > P̄L}

where P̄0 = P̄ . Substituting the optimal order quantity into (3.77), the two-
variable problem is reduced to a single-variable problem that only depends on
P :

Πl(P ) = (P − cl)D(P ) −
√

2FhlD(P ), (3.81)

s.t. P ≤ P̄l. (3.82)

Properties of an optimal pricing and lot-sizing policy

The following properties characterize the profit function (3.81).

Proposition 9. For P ≥ 0, (3.81) is either a concave-convex function or a
strictly concave function of P with lim

P→0
Πl(P ) < 0 and lim

P→P̄
Πl(P ) = 0.

The proof of Proposition 9 is given in Appendix A.6. Abad (1988a) reduces
(3.77) to a single-variable problem that only depends on the order quantity Q.
He shows that if the first-order condition with respect to P yields a closed-form
solution P ∗(Q), as it is the case for linear and iso-elastic price-response functions,
the reduced profit function is a convex-concave function of Q and develops a
procedure to determine the optimal price and lot-size. Based on this result,
Abad (1988a) gives an algorithm to determine the overall optimal lot-size. Note
that we do not need the requirements of having a closed-form solution for P ∗(Q).

Proposition 10. For an arbitrary fixed selling price P , (3.81) is a strictly de-
creasing function of cl. Therefore, the profit functions Πl and Πl′ for different
unit purchasing costs cl and cl′ do not intersect and Πl(P ) > Πl′(P ) for all P and
cl < cl′.

The proof follows from the first partial derivative of (3.81) with respect to cl and
the assumption that hl increases in cl. With this, it is easy to verify that ∂Πl

∂cl
< 0.

Implicitly, it follows that the profit function Πl(P ) > Πl′(P ) for cl < cl′ .
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Theorem 1. Let l0 be the largest index of a discount where the local optimum
Q∗

l0
is feasible, i.e., Q̄l0 ≤ Q∗

l0
and Q̄l > Q∗

l for all l = l0 + 1, · · · , L. Then for all
l < l0, Πl(P ) < Πl0(P

∗
l0
) for all P .

The proof follows directly from Propositions 9 and 10 with the implication that
all discounts that are lower than the discount rl0 can be omitted from the de-
termination of the optimal solution. If Πl(P

∗
l ) < 0 for all cl, then Q∗ = 0. To

find the optimal value of P , we have to find the profit maximizing price in each
interval (P̄l+1, P̄l] and compare these profits to determine the global optimum.

For the following illustration we assume that the supplier offers a single price
break Q̄1. Then, there are 3 cases for the optimal price P ∗.

1. The free local optimum P ∗
1 for the reduced purchasing price c1 is a feasible

solution, i.e., P ∗
1 ≤ P̄1.

2. The free local optimum P ∗
1 is infeasible and the breakpoint profit (the re-

tailer orders the breakpoint quantity Q̄1 at the reduced purchasing price
c1) is larger than the optimal profit given the regular purchasing price c0,
Π1(P̄1) > Π0(P

∗
0 ).

3. The free local optimum P ∗
1 is infeasible and the profit where the retailer

orders the breakpoint quantity is lower than the optimal profit for the
regular purchasing price, Π1(P̄1) < Π0(P

∗
0 ).

P

P

P 1

_

P 1

P 0

P 0 *P 1 *

P 1 ( P 1 * )

Figure 3.8: Average profit curve:
Case 1

In Case 1, as shown in Figure 3.8, the breakpoint price P̄1 is large enough such
that the optimal selling price P ∗

1 is a feasible solution. Figures 3.9 and 3.10
illustrate the Cases 2 and 3 where P ∗

1 is an infeasible solution. In Case 2, the
breakpoint profit is larger than the optimal profit for the regular purchasing price
c0 and in Case 3 the opposite holds. If Π1(P̄1) = Π0(P

∗
0 ), the retailer is indifferent

between ordering Q̄1 or Q∗
0. The bold lines represent the feasible profit curves.

Propositions 9 and 10 and Theorem 1 allow the following algorithm for calculating
the optimal selling price and lot-size.
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P

P

P 1

_
P 0 *P 1 *

P 1

P 0

P 0 ( P 0 * )

P 1 (     )P 1

_

Figure 3.9: Average profit curve:
Case 2

P

P

P 1

_
P 0 *P 1 *

P 1

P 0

P 0 ( P 0 * )
P 1 (     )P 1

_

Figure 3.10: Average profit curve:
Case 3

Algorithm

Set l := L,

REPEAT

Calculate the optimal selling price P ∗
l by solving the first-order condi-

tion ∂Πl

∂P

!
= 0,

D(P )

D′(P )
+ P − cl −

√

Fhl

2D(P )
= 0,

calculate Π∗
l := Πl(P̄l),

l := l − 1,

UNTIL P ∗
l+1 < P̄l+1.

(The loop stops at the index l0, the largest index for which P ∗
l0
≤ P̄l0 , i.e.,

the local optimum P ∗
l0

is an inner solution.)
Calculate Π∗

l0
:= Πl0(P

∗
l0
).

The optimal profit is determined from

Π∗ =

{
max{Π∗

l | l ∈ {l0, . . . , L}} : if at least one Π∗
l ≥ 0

0 : otherwise
.

Let l∗ := argmax{Π∗
l }. Then the optimal price and the optimal order

quantity are given by

P ∗ =

{
argmax{Π∗

l∗(P )}} : Π∗ ≥ 0
P̄ : otherwise

,
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and

Q∗ =

{ √
2FD(P ∗)

hl∗
, if P ∗ = P ∗

l0

Q̄l, if P ∗ = P̄l

.

END

The important property for this algorithm to work is that the profit curves do
not intersect which gives that the profit function for a discount rate rl is located
above of profit functions for discount rates rl′ with l′ < l.

Impact of coordinated decision-making on pricing and replenishment

This section demonstrates differences in the decisions between decentralized (se-
quential) and coordinated (simultaneous) decision-making on pricing and replen-
ishment strategy. From Section 3.2.2 it is known that for a particular discount
rate rl, a comparison of the first-order condition of decentralized and coordinated
decision-making gives

D(P̃ )

D′(P̃ )
+ P̃ = c0 and

D(P )

D′(P )
+ P = cl +

F

Q
. (3.83)

Under decentralized decision-making, the optimal selling price P̃ ∗ is only based
on the regular purchasing costs c0. However, in the coordinated case, the price
P ∗ takes into account both overhead costs and an eventually beneficial quantity
discount.

Proposition 11. If D(P ) has an increasing price elasticity and the retailer does
not use a quantity discount (l = 0), then the optimal selling price in case of
decentralized decision-making is lower than under simultaneous optimization, i.e.,
P̃ ∗ < P ∗ and D(P̃ ∗) > D(P ∗). If l > 0, the coordinated case yields a higher price
in comparison to the decentralized system if the optimal coordinated selling price

satisfies P ∗
l > D−1

(
Fhl

2(c0−cl)2

)

.

The proof is given in Appendix A.7. Coordinated decision-making is influenced
by two contrary effects, the overhead cost effect and the discount effect. The over-
head cost effect implies that a coordinated decision-making takes overhead costs
into account. These costs are disregarded in case of decentralized decision-making
so that a coordinated decision-making yields that the selling price increases com-
pared to decentralized decision-making. The discount effect, on the other hand,
implies that marketing does not take into account that operations might use a
quantity discount. This, in turn, leads to an overestimation of costs and thus to
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a higher price in case of decentralized decision-making compared to coordinated
decision-making. Whether the optimal selling price is larger or smaller compared
to the decentralized case depends on which effect dominates.

3.4.4 Coordinated decision-making - dynamic pricing

As in Section 3.3.2, we assume that the retailer can change the selling price N

times, at times ti, i = 0, . . . , N − 1 within each order cycle and each price change
is subject to administrative costs. Like in Section 3.3.2, this problem can be
formulated by a two-stage optimization problem. However, the optimal procure-
ment price has additionally to be chosen implicitly by choosing the optimal order
quantity. Using (3.34), the two-stage optimization problem can be formulated as
follows

Π∗ = max
N

[

max
l,PN ,tN

{

Π
(N)
l − κ(N)

}]

, (3.84)

with

Π
(N)
l =

1

tN

[
N∑

i=1

(

Pi − cl −
hl

2
(ti + ti−1)

)

Di (ti − ti−1) − F

]

. (3.85)

s.t. Pi ≤ P̄ ∀ i = 1, . . . , N (3.86)
N∑

i=1

Di(ti − ti−1) ≥ Q̄l. (3.87)

Equation (3.85) represents the average retailer profit given cl, a price vector PN =
(P1, . . . , PN) and a timing vector tN = (t1, . . . , tN). Constraint (3.86) ensures that
the selling prices do not exceed the reservation price and by constraint (3.87) the
lot-size must be larger than or equal to the breakpoint Q̄l to ensure that the used
unit price is attained.

Properties of an optimal pricing and lot-sizing policy

In order to maximize the average profit, we differentiate (3.34) with respect to
Pi and ti, i = 1, · · · , N . The first-order conditions with respect to Pi give

∂Π
(N)
l

∂Pi

=
1

tN

[

Di (ti − ti−1) +

(

Pi − cl −
hl

2
(ti + ti−1)

)

D′
i (ti − ti−1)

]

!
= 0,

⇔ Pi +
Di

D′
i

!
= cl +

hl

2
(ti + ti−1) . (3.88)
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Equation (3.88) corresponds to (3.35) when there is no quantity discount. The
optimal price P ∗

i in a particular time interval [ti−1, ti) for i = 1, · · · , N must
satisfy (3.88) and depends on the initial and final point of this interval. For
price-response functions with a price-elasticity that is non-decreasing in price,
the optimal selling price P ∗

i is non-decreasing in i. From Section 3.3.2 it follows
that for a given cl and a given N , the optimal pricing policy and the optimal
inventory development over an order cycle is as illustrated in Figures 3.11 and
3.12. The first-order condition of Π

(N)
l with respect to ti for i = 1, ..., N − 1 gives

P

P 1

P 2

P 3

P N - 1

P N

tt 1 t 2 t 3 t N - 1 t N = Tt 0 = 0

Figure 3.11: Illustration of the pricing
policy

Q
D 1

D 2

D 3

D N - 1 D N

tt 1 t 2 t 3 t N - 1 t N = Tt 0 = 0

Figure 3.12: Illustration of inventory
level

∂Π
(N)
l

∂ti
=

1

tN
[(Pi − cl)Di − (Pi+1 − cl)Di+1 − hlti(Di − Di+1)]

!
= 0.

Therefore, the optimal times t∗i must satisfy

t∗i =
(P ∗

i − cl)Di − (P ∗
i+1 − cl)D

∗
i+1

hl(D∗
i − D∗

i+1)
i = 1, · · · , N − 1. (3.89)

(3.89) corresponds to (3.36) when there is no quantity discount. From (3.89) we
find that the optimal time t∗i is a function of the optimal price P ∗

i of the current
interval, the optimal price P ∗

i+1 of the next interval, and the corresponding optimal
demand rates. As shown in Section 3.3.2, the optimal prices and the optimal
demand rates can be reduced to functions that only depend on the cycle length
tN , e.g., (P ∗

i (tN), D∗
i (tN)), and the maximization problem reduces to the following
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single-variable problem:

Π
(N)
l (tN) := Π

(N)
l (P ∗

1 (tN), · · · , P ∗
N(tN), t∗1(tN), · · · , t∗N−1(tN), tN) =

1

tN

[
N∑

i=1

(

P ∗
i (tN) − cl −

hl

2
(t∗i (tN) + t∗i−1(tN))

)

D∗
i (tN)(t∗i (tN)− t∗i−1(tN))−F

]

.

(3.90)

Given linear price-response functions, this iterative procedure yields closed-form
expressions for P ∗

i (tN) for all i = 1, . . . , N . In the general case, the dependen-
cies have to be solved numerically. As for the static pricing problem, the profit
function Π

(N)
l (tN) has to possess some particular characteristics that enable us

to find the optimal solution efficiently.

Conjecture 1. For an arbitrary feasible tN (0 ≤ P ∗
i (tN) ≤ P̄ , ∀i = 1, · · · , N),

(3.90) is a decreasing function of cl. Therefore, if the profit function is concave,

quasi-concave, or concave-convex, then Π
(N)
l (tN) and Π

(N)
l′ (tN) do not intersect

for cl 6= cl′, i.e., Π
(N)
l (tN) > Π

(N)
l−1(tN) for all l = 1, . . . , N − 1.

For general price-response functions, the proof of Conjecture 1 is analytically
intractable. However, in the next section we show for linear price-response func-
tions that Conjecture 1 holds. The shape of (3.90) depends on the price-response
function. If D(P ) is such that (3.90) is concave, quasi-concave, or concave-convex,
similar to the constant pricing case, for a fixed cl, the following algorithm can be
applied to determine the optimal solution. Otherwise, a complete enumeration
over all inner solutions and breakpoints has to be used in order to determine the
optimal solution.

This algorithm resembles the algorithm for the classical EOQ average cost min-
imization problem with an all-units quantity discount. It takes into account the
interdependencies of the determination of the optimal order quantity, the optimal
prices in the N time intervals, and the optimal times where the price is adjusted.
In Step 1, we solve the constrained optimization problems backwards, starting
with the highest discount rate rL until an unconstrained solution is feasible for
the first time. In Step 2, we compare the various breakpoint profits for L to l0 +1
to the first free optimal solution and identify the optimal discount rate r∗l where
the profit reaches the maximum. In Step 3, we determine the resulting optimal
cycle length and the optimal order quantity.

Algorithm

Set l := L,
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REPEAT

Solve the constrained optimization problem as in Section 3.3.2:

max
tN

{Π(N)
l (tN)} (3.91)

s.t. Pi(tN) ≤ P̄ ∀i = 1, · · · , N. (3.92)

l := l − 1

UNTIL
N∑

i=1

D∗
i (t

∗
N)(t∗i (tN) − t∗i−1(tN)) ≥ Q̄l+1.

Let l0 be the largest index for which the free optimum

Q∗
l0

=
N∑

i=1

D∗
i (t

∗
N)(t∗i (t

∗
N) − t∗i−1(t

∗
N))

is a feasible solution, i.e., Q∗
l0
≥ Q̄l0 . Calculate the optimal profit

Π
(N)∗

l0
:= Π

(N)
l0

[P ∗
1 (t∗N), · · · , P ∗

N(t∗N), t∗1(t
∗
N), · · · , t∗N−1(t

∗
N), t∗N ]

and the breakpoint profits

Π
(N)∗

l := Π
(N)
l [P ∗

1 (tNl
), · · · , P ∗

N(tNl
), t∗1(tNl

), · · · , t∗N−1(tNl
), tNl

]

for all l from l0 + 1 to L where tNl
denotes the optimal cycle length given

that the retailer orders the breakpoint quantity Q̄l.

The optimal profit is determined from

Π(N)∗ =

{

max{Π(N)∗

l | l ∈ {l0, . . . , L}} : if at least one Π
(N)∗

l ≥ 0
0 : otherwise

.

Let l∗ = argmax{Π(N)∗

l }. For the case Π(N)∗ > 0, the optimal cycle length
t̂∗N is either t∗N if l∗ = l0 or tNl

if l∗ > l0 and the optimal order quantity is
determined by

Q∗ =
N∑

i=1

D∗
i (t̂

∗
N)(t∗i (t̂

∗
N) − t∗i−1(t̂

∗
N)).

Otherwise, it is not optimal to order, i.e., Q∗ = 0.

END
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3.4.5 Linear price-response function

In this section, we detail the previous results for the special case of a linear price-
response function. A detailed analysis of the decentralized framework and the
coordinated-constant pricing framework for linear price-response functions is also
given in Eliashberg and Steinberg (1993) and Abad (1988a). Let

D = D(P ) =

{
a − bP : 0 ≤ P ≤ a

b

0 : P > a
b

(3.93)

where a represents the market potential and the reservation price is P̄ = a
b
.

Using the results of Section 3.3, the optimal times t∗i can be represented as a
function of tN

t∗i (tN) = i
tN

N
. (3.94)

Moreover, the optimal prices and demand rates are characterized by

P ∗
i (tN) = 1

2

(
a
b

+ cl + hl

2
(2i − 1) tN

N

)
, (3.95)

=⇒ D∗
i (tN) = b

2

(
a
b
− cl − hl

2
(2i − 1) tN

N

)
, (3.96)

and by inserting (3.94), (3.95), and (3.96) into (3.90), the profit function for a
given purchase price cl can be transformed into the single-variable function

Π
(N)
l (tN) =

b

4

[
(a

b
− cl

)(a

b
− cl − hltN

)

+
h2

l t
2
N

12

(4N2 − 1)

N2

]

− F

tN
. (3.97)

For a detailed derivation of (3.97) see Appendix B.2.

Proposition 12. For an arbitrary tN , (3.97) is a decreasing function of cl.

Therefore, the profit functions Π
(N)
l (tN) and Π

(N)
l′ (tN) do not intersect for cl 6= cl′,

i.e., Π
(N)
l (tN) > Π

(N)
l−1(tN) for all l = 1, . . . , N − 1.

Proposition 13. If D = D(P ) is linear, the profit function Π
(N)
l (tN) is a

concave-convex function of tN .

The proofs of Proposition 12 and 13 are given in Appendix A.8 and A.9. With
the results of Proposition 12 and 13, all requirements to use the following Algo-
rithm are satisfied.

Algorithm:

Step (1):
Solve the constrained optimization problem (3.91)-(3.92) from l = L until the
largest index l0 is identified where Q̄l ≤ Q∗

l0
< Q̄l0+1 by using the Lagrangian
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Multiplier method. We introduce the Lagrangian multipliers λ1 and λi
2 for i =

1, · · · , N related to the minimum order quantity constraint and the reservation
price constraints for all charged selling prices over an order cycle. The Lagrangian
function Ll for a particular purchasing cost cl is defined by:

Ll(P1, · · · , PN , tN , λ1, λ
i
2) =

1

tN

[
N∑

i=1

(

Pi − cl −
hl

2
(2i − 1)

tN

N

)

(a − bPi)
tN

N
− F

]

+ λ1

[

tN

N

N∑

i=1

(a − bPi) − Q̄l

]

+
N∑

i=1

λi
2

[a

b
− Pi

]

,

with the Karush-Kuhn-Tucker conditions

∂Ll

∂Pi

≤ 0 P ∗
i

∂Ll

∂Pi

= 0 ∀i = 1, . . . , N

∂Ll

∂tN
≤ 0 t∗N

∂Ll

∂tN
= 0

∂Ll

∂λ1

≥ 0 λ∗
1

∂Ll

∂λ1

= 0

∂Ll

∂λi
2

≥ 0 λi∗
2

∂Ll

∂λi
2

= 0 ∀i = 1, . . . , N

λ1 ≥ 0, λi
2 ≥ 0 ∀i = 1, . . . , N.

We seek the price vector P ∗
1 , P ∗

2 , . . . , P ∗
N and the cycle length t∗N that satisfy all

these conditions. The partial derivation with respect to Pi for all i = 1, . . . , N,

and the partial derivation with respect to tN give

∂Ll

∂Pi

=
1

N

[

a − bPi + (Pi − cl −
hl

2
(2i − 1)

tN

N
)(−b) − λ1btN − λi

2N

]

!
= 0,

⇔ Pi(tN , λ1, λi
2) =

1

2

(
a

b
+ cl +

hl

2
(2i − 1)

tN

N
− λ1tN − λi

2N

)

, (3.98)

∂Ll

∂tN
=

F

t2N
− hl

2

(

a − b

N2

N∑

i=1

(Pi(2i − 1))

)

+ λ1

(

a − b

N

N∑

i=1

Pi

)

!
= 0,
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⇔ tN(P1, . . . , PN , λ1) =

√
√
√
√
√

2F

hl

(

a − b
N2

N∑

i=1

(Pi(2i − 1))

)

− 2λ1

(

a − b
N

N∑

i=1

Pi

) .

(3.99)
Subject to the complementary slackness condition, we obtain the first-order con-
dition

∂Ll

∂λ1

=
tN

N

N∑

i=1

(a − bPi) − Q̄l

!

≥ 0. (3.100)

The two constraints (3.100) and λ1 ≥ 0 are complementary inequalities, i.e.,
∂Ll

∂λ1
> 0 if and only if λ1 = 0. Thus, if λ1 > 0, it must be satisfied that ∂Ll

∂λ1
= 0.

The value of λ1 can be interpreted as shadow price that values a decrease of the
breakpoint quantity Q̄l by one unit. Equation (3.98) indicates that if hl > 0,
the optimal selling price is strictly increasing over the order cycle. Therefore, the
reservation price constraints must not be binding for i = 1, . . . , N − 1, that is,
λi

2 = 0 for i = 1, . . . , N − 1. The only reservation price that may constrain the
problem is for PN(tN) ≤ P̄N :

∂Ll

∂λN
2

=
a

b
− PN

!

≥ 0. (3.101)

A similar shadow price interpretation holds for λN
2 . Here, (3.101) and λN

2 ≥ 0
are complementary inequalities, i.e., λN

2 > 0 if and only if PN = a
b
. Substituting

PN from (3.98) into (3.101) gives an upper bound for the optimal cycle length

tN ≤
a
b
− cl + λN

2 N

hl(
2N−1

N
− λ1)

= tNl
. (3.102)

For determining the optimal solution (P ∗
1 , . . . , P ∗

N , t∗N , λ∗
1, λ

N∗

2 ), we solve the sys-
tem of equations and inequalities (3.98), (3.99), (3.100), and (3.102) under the
condition λ∗

1 ≥ 0 and λN∗

2 ≥ 0.

Step (2) and Step (3) follow straight just as described in Section 3.4.4.

3.4.6 Numerical example

The following numerical example shows the benefit of coordinated planning of
price and order quantity compared to a decentralized planning approach and
the impact of the ratio of fixed and holding cost, price-sensitivity of customers,
and the supplier’s quantity discount. The demand follows the linear structure
D(P ) = a − bP . The parameters are set to a := 1000, c0 := 5, and hl := 0.02cl.
The parameters F , Q̄1, r1, and b are varied in order to show the impact on lot-
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sizing and pricing. In the case of a dynamic pricing strategy, we assume that the
retailer changes the selling price twice in each order cycle, i.e., N = 2.

As a base case, we consider b = 100 and r1 = 15% if Q ≥ 4000 =: Q̄1 units.
Furthermore, we distinguish F = 0 and F = 500. Tables 3.3 and 3.4 show
the optimal price and lot-sizing decision as well as the optimal cycle length and
the optimal average profit for the three frameworks and both purchasing options
regular (l = 0) and discounted (l = 1). Column “Loss” illustrates the loss of
profit compared to the coordinated-dynamic framework.

Framework F = 0
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 0 0.0 7.5 625 0.8%
1 4000 16.0 7.5 600

coordinated- 0 0 0.0 7.5 625
constant 1 4000 13.9 7.1 627 0.5%

coordinated- 0 0 0.0 7.5 625
dynamic 1 4000 (7.0,14.0) (6.9,7.3) 630

Table 3.3: Results of the base case (F = 0, b = 100, Q̄1 = 4000, r1 = 0.15)

Framework F = 500
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 1414 5.6 7.5 448
1 4000 16.0 7.5 568 3.9%

coordinated- 0 1361 5.8 7.7 451
constant 1 4000 14.2 7.1 588 0.5%

coordinated- 0 1374 (2.9,5.9) (7.6,7.8) 452
dynamic 1 4000 (7.1,14.2) (7.0.7.4) 591

Table 3.4: Results of the base case (F = 500, b = 100, Q̄1 = 4000, r1 = 0.15)

If F = 500 and the retailer does not use the quantity discount (l = 0), we ver-
ify the findings of Eliashberg and Steinberg (1993) that decentralized decision-
making leads to an underestimation of price and an overestimation of lot-size
compared to coordinated decision-making (7.5 < 7.7 and 1414 > 1361). How-
ever, this is not necessarily true if the supplier offers a quantity discount. If
the retailer uses the quantity discount (l = 1), for both F = 0 and F = 500
it can be observed that the optimal selling price decreases from the decentral-
ized to a coordinated-constant framework (7.5 > 7.1) whereas the order-quantity
remains the same. In case of decentralized decisions and F = 0, the optimal
purchasing strategy is a just-in-time strategy with the regular purchasing cost
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c0 (Π∗
0 = 625 > 600 = Π∗

1) and an optimal selling price P ∗
0 = 7.5. However, if

the retailer optimizes price and purchasing policy simultaneously, the discount
strategy becomes more profitable. That is, the discount effect dominates the
overhead effect. It is optimal to accept additional holding costs in order to save
variable purchasing costs. Due to the larger lot-size which would result in higher
holding costs, it becomes more beneficial to decrease the selling pricing in or-
der to increase the demand rate. In case of F = 500, the lot-sizing decision
is equal for the decentralized and the coordinated framework. However, in the
coordinated framework a lower selling price leads to a higher order frequency (a
higher demand rate leads to a lower cycle length) which results in reduced holding
costs. Furthermore, it can be seen that the benefit of dynamic pricing compared
to coordinated constant pricing for both F = 0 and F = 500 is lower than 1%.
The same observation can be made when we compare the dynamic-coordinated
framework with the decentralized framework for the case F = 0. If F = 0, the
benefit of coordinated-dynamic pricing increases to 3.9% per time unit.

Framework QD F = 0
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 0 0.0 7.5 625
1 3000 12.0 7.5 653 3.4%

coordinated- 0 0 0.0 7.5 625
constant 1 3000 10.4 7.1 674 0.3%

coordinated- 0 0 0.0 (7.5.7.5) 625
dynamic 1 3000 (5.2,10.5) (6.9,7.3) 676

Table 3.5: Impact of a lower breakpoint quantity Q1 (F = 0, b = 100, Q̄1 = 3000,
r1 = 0.15)

Framework QD F = 500
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 1414 5.6 7.5 448
1 3000 12.0 7.5 611 2.2%

coordinated- 0 1361 5.8 7.7 451
constant 1 3000 10.7 7.2 624 0.2%

coordinated- 0 1374 (2.9,5.9) (7.6,7.7) 452
dynamic 1 3000 (5.3,10.7) (7.0,7.4) 625

Table 3.6: Impact of a lower breakpoint quantity Q1 (F = 500, b = 100, Q̄1 =
3000, r1 = 0.15)

Tables 3.5, 3.6, 3.7, and 3.8 illustrate the impact of the discount policy on the
optimal solution. Tables 3.5 and 3.6 show the results of a decreasing breakpoint
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Framework QD F = 0
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 0 0.0 7.5 625
1 4000 16.0 7.5 670 6.0%

coordinated- 0 0 0.0 7.5 625
constant 1 4000 13.3 7.0 711 0.3%

coordinated- 0 0 0.0 (7.5,7.5) 625
dynamic 1 4000 (7.6,13.4) (6.9,7.1) 713

Table 3.7: Impact of a higher discount rate r1 (F = 0, b = 100, Q̄1 = 4000,
r1 = 0.2)

Framework QD F = 500
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 1414 5.6 7.5 448
1 4000 16.0 7.5 643 4.5%

coordinated- 0 1361 5.8 7.7 451
constant 1 4000 13.6 7.0 670 0.4%

coordinated- 0 1374 (2.9,5.9) (7.6,7.7) 452
dynamic 1 4000 (6.8.13.6) (6.9,7.3) 673

Table 3.8: Impact of a higher discount rate r1 (F = 500, b = 100, Q̄1 = 4000,
r1 = 0.2)

quantity and Tables 3.7 and 3.8 the results of an increasing discount rate. Both
changes yield an increasing desirability of the quantity discount. While the benefit
of the coordinated-dynamic framework compared to the coordinated-constant
framework remains low, the benefit compared to the decentralized framework
does increase. Compared to the base case F = 0 where a JIT policy was optimal,
now the quantity discount is beneficial such that the retailer orders the breakpoint
quantity.

Tables 3.9 and 3.10 illustrate the impact of price-sensitivity on the optimal de-
cision and the average profit. Compared to the base case, an increasing price-
sensitivity leads to a decreasing selling price among all decision frameworks. For
F = 0, across all decision frameworks, it is optimal to follow a JIT strategy.
Therefore, decentralized decision-making yields the same performance as coordi-
nated decision-making. But in case of F = 500 the application of coordinated-
dynamic pricing is highly beneficial compared to decentralized and coordinated-
constant decision-making.
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Framework QD F = 0
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 0 0.0 6.0 161 0.0%
1 4000 26.0 6.0 61

coordinated- 0 0 0.0 6.0 161 0.0%
constant 1 4000 19.0 5.7 118 —

coordinated- 0 0 0.0 (6.0,6.0) 161
dynamic 1 4000 (10.0,20.0) (5.5,6.0) 124

Table 3.9: Impact of a larger price-sensitivity of customers b (F = 0, b = 140,
Q̄1 = 4000, r1 = 0.15)

Framework QD F = 500
l Q∗

l T ∗
l P ∗

l Π∗
l Loss

decentral 0 1095 7.3 6.0 23
1 4000 26.0 6.0 42 55.8%

coordinated- 0 951 8.4 6.3 32
constant 1 4000 20.0 5.7 88 7.4%

coordinated- 0 987 (4.5,9.0) (6.2,6.5) 35
dynamic 1 4000 (11.0,21.0) (5.5,6.1) 95

Table 3.10: Impact of a larger price-sensitivity of customers b (F = 500, b = 140,
Q̄1 = 4000, r1 = 0.15)

3.4.7 Summary and implications

This section considered an economic order quantity (EOQ) model where the sup-
plier offers an all-units quantity discount (AQD) and the retailer faces a price-
dependent demand rate. Three different decision frameworks were analyzed, a
decentralized decision-making strategy, a coordinated strategy with a constant
selling price, and a coordinated strategy where the retailer is allowed to implement
a finite number of price adjustments within each order cycle. For the coordinated
frameworks, we derived analytical properties and developed efficient algorithms
to determine the optimal price and lot-sizing strategy. These algorithms are ap-
plicable to all concave, quasi-concave, and concave-convex profit functions. In a
numerical example, we showed the difference in decision-making between the de-
centralized, the coordinated-constant, and the coordinated-dynamic framework.
It could be observed that in the case of low price-sensitivity of the customers, the
benefit of dynamic pricing compared to constant pricing is rather low. However,
with increasing price-sensitivity, coordinated decision-making and, in particular,
dynamic pricing becomes more beneficial.

Without a supplier quantity discount, the coordinated framework with a constant
pricing strategy yields a higher price, a lower demand rate, and a lower order
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quantity compared to sequential pricing and replenishment (see Eliashberg and
Steinberg (1993)). If the supplier offers an all-units quantity discount, these
properties do not necessarily hold. In the discount case, two effects influence
the outcome of decision-making. The first effect is the overhead cost effect. In
contrast to decentralized decision-making, a central decision maker takes into
account all relevant costs (setup cost and inventory holding cost). This yields an
increasing selling price, a decreasing demand rate, and a decreasing lot-size. The
second effect is the discount effect. Here, under decentralized decision-making,
marketing does not consider the quantity discount schedule of the supplier and
optimizes the selling price only using the undiscounted purchasing price. Thus,
marketing overestimates operations cost which yields a higher selling price than
in the case of coordinated decision-making. However, by taking into account the
supplier quantity discount, it might be optimal to order a larger lot-size at a
reduced purchasing price. Therefore, an increase or decrease of the selling price,
the demand rate, and the order quantity depends on which effect dominates.
The overhead cost effect yields an underestimation of the average cost in the
decentralized system, whereas the discount effect overestimates the average cost.

A natural extension of the model would be to consider a joint dynamic pricing and
lot-sizing determination problem where the supplier offers an incremental units
discount. An extension regarding supply chain coordination is to the design of
a quantity discount schedule by the supplier if it is anticipated that the retailer
employs decentralized decision-making, coordinated decision-making with a con-
stant price, or coordinated decision-making with a dynamic pricing framework.

The following section studies a multi-product dynamic pricing and replenishment
problem with limited storage capacity. The objective of this problem is to co-
ordinate pricing strategy, order size, and delivery schedule of multiple products
in order to maximize the average profit. Like in this section, a comparison of
a decentralized decision-making strategy where marketing and operations opti-
mize selling prices and the replenishment policy sequentially, and a coordinated
decision-making where constant and dynamic pricing is distinguished, is made.
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3.5 Dynamic pricing and replenishment in the

warehouse scheduling problem

A fundamental problem in inventory management is the planning and scheduling
of bottleneck operations. Many industries face replenishment problems of multi-
ple products that share a warehouse with limited storage capacity. This section
studies the interplay between pricing and procurement decisions of multiple prod-
ucts that share a common warehouse with limited storage capacity.

The capacitated multi-product replenishment problem with the objective to de-
termine the replenishment and staggering policy of all products and where the
selling price is exogenous is widely investigated in academia. Gallego et al. (1992)
show that such problems are NP-complete. Several heuristics were developed to
overcome this complexity. In the common cycle or rotation cycle approach, it
is assumed that all products have the same order cycle length and are ordered
once in the order cycle. This heuristic is called common cycle policy, because all
products are replenished for the same cycle length.

The objective in the following is to maximize the average profit by choosing
the optimal pricing strategy, the optimal lot-size for each product, and the op-
timal staggering of the order-releases under the common-cycle assumption. We
compare differences in performance between a decentralized and a coordinated
decision framework. In the decentralized framework, marketing and operations
optimize sequentially. Here, marketing decides first on the sales price for each
product and then, operations optimizes the replenishment of multiple products.
In the coordinated framework, the firm decides on the selling price and the replen-
ishment strategy for all products simultaneously. Hereby, we distinguish between
two pricing strategies. In the case of a constant pricing strategy, the retailer
determines the optimal selling price that is constant over the entire planning
horizon. In the case of a dynamic pricing strategy, it is assumed that the retailer
is allowed to adjust the selling price continuously.

For single-product inventory problems without capacity constraints it has been
shown in Section 3.3 that the retailer achieves operational efficiency by dynamic
pricing. In the case of multiple products and limited storage capacity, it is ex-
pected that the retailer can benefit further from such a dynamic pricing strategy.

3.5.1 Model formulation

Let K denote the number of products k = 1, . . . , K. For each product and each
time t, the retailer faces a known demand rate Dk(t) that depends solely on
the current price P k(t), i.e., the customers are myopic and the effects of forward
buying in expectation of rising prices or postponement in expectation of declining
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prices are not incorporated. The demand rate for each product k is modeled by
a price-response function Dk := D(P k). The reservation price is denoted by P̄ k.
For simplicity, we assume that the demand of one product does not depend on
the pricing strategy of the other products. This simplification allows us to derive
some structural properties analytically.

Following the assumptions of the EOQ model, for each k the retailer places re-
plenishment orders in batches of size Qk. With the release of any single batch
there is an associated fixed ordering cost F k and a variable procurement cost ck

per unit. Products delivered but not yet sold are kept in inventory subject to a
holding cost hk per unit and unit of time. Backorders are not permitted. Assum-
ing that the order intervals of all products have a common length, this assumption
of a common-cycle strategy implies that each product is replenished exactly once
in each order cycle. Further, we assume that the sequence of replenishments for
the K products has been predetermined. Note that in the classical WSP with
given demand rates the sequence is irrelevant which might not necessarily hold
here. Furthermore, we consider that the products share a common warehouse
with limited and constant storage capacity level S. The storage requirement of
each product is defined as the volume sk displaced by one unit of product k that
is held in inventory. The inventory level at time t is denoted by yk(t).

3.5.2 Decentralized decision-making

Consider the following decentralized framework where pricing and replenishment
decisions occur sequentially. First, marketing decides on the sales price for each
product only on the basis of direct cost without consideration of overhead costs
(inventory holding and fixed ordering costs). It solves a monopolist pricing prob-
lem with a given cost structure. Then, operations solves a WSP with given
demand rates on the basis of overhead costs and takes into account the lim-
ited storage capacity. For all products k = 1, . . . , K, marketing maximizes the
following independent profit functions:

max
P k

Πk(P k) = (P k − ck)Dk, (3.103)

s.t. 0 ≤ P k ≤ P̄ k. (3.104)

For marketing, the operations decisions are unknown and there is no anticipation
of the relevant setup and holding costs. For every product k, the optimal sales
price P k∗ is obtained from the first-order condition

Dk

(Dk)′
+ P k = ck (3.105)
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where (Dk)′ is defined as ∂Dk

∂P k .

Based on the optimal price P k∗ resulting from (3.105), the associated demand
rate Dk∗ is the input parameter for the operations optimization that decides on
lot-sizes for each product such that it minimizes the average cost consisting of
ordering costs and inventory holding costs under a limited storage capacity.

T 1 T 2 .  .  . T k - 1 T k .  .  . T K

1 2 3 k - 1 k k + 1 K

44444444444444 344444444444444 21
                                                                                                                  

T

1

Figure 3.13: Replenishment sequence

Figure 3.13 illustrates a replenishment sequence. Besides the order quantities and
the selling prices, in the common cycle approach additional decision variables are
the time intervals between two replenishments. Tj denotes the time between
the replenishment of product j and j + 1 and the cycle length is determined by
T = T1 + · · · + TK . Let yk

j define the inventory level of product k when product
j is ordered. We obtain the following constrained optimization problem:

min
T,T1,··· ,TK

C =
K∑

k=1

(
hk

2
TDk∗ +

F k

T

)

(3.106)

s.t.

K∑

k=1

skyk
j ≤ S j = 1, . . . , K. (3.107)

Constraint (3.107) ensures that the required storage capacity does not exceed the
capacity limit S at that time where a product is replenished. That is, when we
consider a fixed order cycle with the replenishment sequence 1, . . . , K, the current
inventory level for all products k is the demand until the next order or, in other
words, the last batch size minus the demand since the order arrived. That is,

yk
j = Dk∗

(

T −
j−1∑

i=k

Ti

)

k = 1, . . . , j − 1, (3.108)

y
j
j = Dj∗T = Qj k = j, (3.109)

yk
j = Dk∗

k−1∑

i=j

Ti k = j + 1, . . . , K. (3.110)

This problem is analyzed among others by Page and Paul (1976) and Hall (1988)
with the result that if an optimal replenishment and staggering policy is used,
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the peak storage requirement over an order cycle is equal for all replenishment
points and the minimum required storage capacity Smin that is needed to follow
a replenishment strategy with a common cycle length T is given by

Smin =

K∑

k=1

k∑

l=1

skslDk∗Dl∗

K∑

k=1

skDk∗
T. (3.111)

If the capacity constraint is not binding, the optimal common cycle length and
the optimal order quantities are

T ∗
uncon =

√
√
√
√
√
√
√
√

2
K∑

k=1

F k

K∑

k=1

hkDk

and Qk∗ = Dk∗T ∗
uncon (3.112)

and in the case of a binding constraint

T ∗
con =

K∑

k=1

skDk∗

K∑

k=1

k∑

l=1

skslDk∗Dl∗
S and Qk∗ = Dk∗T ∗

con. (3.113)

3.5.3 Coordinated decision-making - constant pricing

In the case of coordinated decision-making, we optimize the lot-sizes Qk, the
selling prices P k, and time intervals between two orders simultaneously. For each
product, the retailer charges a constant selling price over the entire planning
horizon, e.g., P k(t) = P k. Therefore, Dk(t) = Dk is constant for k = 1, . . . , K.
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This can be modeled by the following constrained optimization problem:

max
~P ,~T ,T

Π =
K∑

k=1

(

(P k − ck)Dk − hk

2
DkT − F k

T

)

(3.114)

s.t.

[
j−1
∑

k=1

skDk(T −
j−1
∑

i=k

Ti) + sjDjT +
K∑

k=j+1

skDk

k−1∑

i=j

Ti

]

≤ S

j = 1, . . . , K (3.115)
K∑

j=1

Tj = T (3.116)

0 ≤ P k ≤ P̄ k k = 1, . . . , K. (3.117)

~P and ~T denote the vector of the selling prices and the vector of the time intervals
between order releases, respectively. The objective function (3.114) contains the
objective functions (3.103) and from the decentralized framework (3.106). Con-
straints (3.115) and (3.116) are the same as in the cost-minimization model for
the decentralized framework. The difference between (3.107) and (3.115) is that
the inventory level does not only depend on the time intervals Ti, but also de-
pends on the charged selling price through the demand rates. Constraint (3.117)
ensures that the charged selling prices and the demand rates are nonnegative.

For solving this problem, the Lagrangian Multiplier method and the Karush-
Kuhn-Tucker conditions provide an efficient solution approach. We assume that
all products are profitable, e.g., it follows 0 < P k < P̄ k for k = 1, . . . , K. The
Lagrangian function is given by

L(~P , ~T , T ) = Π(~P , ~T , T )

+
K∑

j=1

µj

(

S −
[

j−1
∑

k=1

skDk(T −
j−1
∑

i=k

Ti) + sjDjT +
K∑

k=j+1

skDk

k−1∑

i=j

Ti

])

. (3.118)

The KKT conditions are ∂L

∂P k = 0, ∂L

∂Tk
= 0 for all k = 1, . . . , K,

µj

(

S −
[

j−1
∑

k=1

skDk(T −
j−1
∑

i=k

Ti) + sjDjT +
K∑

k=j+1

skDk

k−1∑

i=j

Ti

])

= 0

for j = 1, . . . , K, which represent the complementary slackness conditions, and

µj ≥ 0 for j = 1, . . . , K. Moreover, T =
K∑

k=1

Tk.
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The first-order condition of L with respect to a particular P k gives:

Dk

(Dk)′
+ P k = ck +

hk

2
T + skΨ(µ1, . . . , µK , T1, . . . , TK) (3.119)

where

Ψ(µ1, . . . , µK , T1, . . . , TK) :=
(

k−1∑

j=1

µj

(
k−1∑

i=j

Ti

)

+ µkT +
K∑

j=k+1

µj

(

T −
j−1
∑

i=k

Ti

))

≥ 0. (3.120)

The derivation of (3.119) is shown in Appendix B.3. It is easy to see that the func-
tion Ψ(µ1, . . . , µK , T1, . . . , TK) is an increasing function in µj for j = 1, . . . , K.

A comparison of (3.105) and (3.119) gives that coordinated decision-making leads
to a higher selling price than the decentralized framework. This results from the
underestimation of the relevant cost in the decentralized system when marketing
neglects setup costs and inventory holding costs. Furthermore, the capacity con-
straint yields a further increasing selling price. If the capacity constraint is not
binding for all replenishment points j, the shadow prices are zero and the optimal
selling prices are equal to the optimal selling prices in the single-product optimiza-
tion problem, see Eliashberg and Steinberg (1993). If the capacity constraint is
binding at least at one replenishment time, the function Ψ(µ1, . . . , µK , T1, . . . , TK)
is strictly positive. It follows that P l∗

(decentral) ≤ P l∗
(coordination) and P l∗

(uncapacitated) ≤
P l∗

(capacitated).

Proposition 14. If the retailer follows an optimal replenishment and pricing
policy under the common cycle assumption, the inventory immediately after a
replenishment is filled up to an equal capacity level.

For the proof, see Appendix A.10. That is, the property that the peak storage
requirement at any replenishment point is equally also holds for the joint pricing
and replenishment problem. This property yields that the capacity constraints
(3.115) reduce to a single constraint as in the decentralized model. Therefore,
we can develop a solution procedure similar to that in Page and Paul (1976) and
Hall (1988).

Solution procedure

In a first step, this procedure checks whether the storage capacity constraint is
binding, i.e., we check the unconstrained solution for feasibility. If the uncon-
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strained solution is infeasible, the optimal solution is given by the cycle length
that provides a binding capacity constraint.

• Determine the optimal unconstrained solution. From (3.112) follows

T ∗
uncon =

√
√
√
√
√
√
√
√

2
K∑

k=1

F k

K∑

k=1

hkD(P k∗)

⇐⇒ (T ∗
uncon)2

K∑

k=1

hkD(P k∗) − 2
K∑

k=1

F k = 0.

(3.121)
Due to the unconstrained case, Ψ(µ1, . . . , µK , T1, . . . , TK) (from (3.119)) is
zero. The unconstrained solution is feasible if

T ∗
uncon ≤

K∑

k=1

skDk∗

K∑

k=1

k∑

l=1

skslDk∗Dl∗
S (3.122)

where Dk∗ = D(P k∗(T ∗
uncon)).

• If (3.122) is not satisfied, determine the constrained optimal solution Tcon

that provides a binding capacity constraint (3.122) where Dk∗ = D(P k∗(T ∗
con)).

The Lagrangian function is given by

L(T, ~P ) = Π(T, ~P ) + µ

(

S

K∑

k=1

skDk − T

K∑

k=1

k∑

l=1

skslDkDl

)

. (3.123)

The KKT conditions are

∂L

∂P k
= 0 ⇔ Dk

(Dk)′
+ P k = ck +

hk

2
T + µ

(

(sk)2Dk +
K∑

l=1

skslDl

)

(3.124)

for all k = 1, . . . , K,

∂L

∂T
= 0 ⇔

K∑

k=1

(
F k

T 2
− hk

2
Dk

)

= µ

K∑

k=1

k∑

l=1

skslDkDl, (3.125)

and

∂L

∂µ
= 0 ⇔ S

K∑

k=1

skDk = T

K∑

k=1

k∑

l=1

skslDkDl. (3.126)
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From (3.124) it can be seen that the selling price of product k is linear in
T and depends on the prices of all other products. Therefore, the solution
can only be obtained by solving this system of non-linear equations (3.124)
- (3.126) numerically.

Eliashberg and Steinberg (1993) show that in the single-product inventory prob-
lem the correct anticipation of the operations cost function (CEOQ =

√
2FDh) in

the marketing decision provides the centrally optimal decision even under sequen-
tial decision-making. This nice result does no longer hold under a joint capacity
constraint since the optimal pricing decision also includes the opportunity cost
of using scarce warehouse capacity.

3.5.4 Coordinated decision-making - dynamic pricing

The retailer is allowed to change the selling price continuously over an order cycle.
The resulting continuous time optimization problem is:

max
~P ,~T ,T

Π =
1

T

K∑

k=1





T∫

0

{(P k(t) − ck)Dk(t) − hkyk(t)}dt − F k



 (3.127)

s.t. ẏk(t) = −Dk(t) k = 1, . . . , K (3.128)

yk(0) =

T∫

0

Dk(t)dt, yk(T ) = 0, yk(t) ≥ 0 k = 1, . . . , K (3.129)

[
j−1
∑

k=1

sk

T∫

j−1∑

i=k

Ti

Dk(t)dt + sj

T∫

0

Dj(t) +
K∑

k=j+1

sk

T∫

T−
k−1∑

i=j

Ti

Dk(t)dt ≤ S

j = 1, . . . , K (3.130)

K∑

j=1

Tj = T (3.131)

0 ≤ P k(t) ≤ P̄ k k = 1, . . . , K. (3.132)

The objective (3.127) is to maximize the average profit over all products where
for each product the individual profit is the revenue minus the procurement costs,
the inventory holding costs, and the ordering costs over the order cycle divided
by the cycle length. The optimal selling prices for each product k and each point
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in time t represent the control variables which are piecewise continuously differ-
entiable functions of t. The price trajectories P k(t) for k = 1, . . . , K influence
the objective both directly through revenues and indirectly through the impact
on the state variables. The state variables are the inventories yk(t) of each k.
The state transition at time t for each state variable yk(t) is given by (3.128).
This constraint is called state transition equation. Constraints (3.129) give the
initial and the terminal condition for the state variables, e.g., at the beginning of
an order cycle the inventory level is equal to the order quantity and at the end,
the inventory level is zero (zero-inventory-property). Furthermore, they prohibit
backordering. Constraints (3.130), (3.131), and (3.132) have the same interpre-
tation as (3.115) - (3.117) in the constant pricing approach in Section 3.5.3.

The problem is solved by a two-stage solution procedure that consists of a non-
linear master-problem (first-stage) that uses the results of several continuous time
optimization problems (second-stage).

Solution approach

• Second-stage: For a given first-stage decision, divide the order cycle into
j = 1, . . . , K subintervals such that a particular subinterval j corresponds
to the time between ordering product j and j + 1. By this partition we
can decompose the optimal control problem into several subproblems that
can be solved by standard methods of optimal control theory. For each
product k in each subinterval j of length Tj we find the price and the
associated inventory trajectory with initial and final inventory levels yk

0j

and yk
Tj

. Subsequently, we solve K2 optimal control problems that give us

the total profit for product k in subinterval j, Πk
j (Tj, yk

0j
, yk

Tj
), as a function

of Tj, yk
0j

and yk
Tj

.

• First-stage: The master problem connects the subproblems and optimizes
the lengths Tj and the initial and final inventories yk

0j
and yk

Tj
for each j, k =

1, . . . , K, anticipating the profit impact by using the functions Πk
j from the

second-stage optimal control problems. We solve the master problem with
respect to inventory levels and the lengths of the subintervals such that the
order cycle length is the sum of all subinterval lengths and at the beginning
of each subinterval where a product is ordered the required storage volume
does not exceed the available storage capacity.

Optimal control problems j, k = 1, · · · , K

The optimal control problem for subinterval j and product k is given by
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max
P k

j

Πk
j =

Tj∫

0

{(P k
j (t) − ck)Dk

j (t) − hkyk
j (t)}dt (3.133)

s.t. ẏk
j (t) = −Dk

j (t), (3.134)

yk
j (0) = yk

0j
, yk

j (Tj) = yk
Tj

, (3.135)

0 ≤ P k
j (t) ≤ P̄ k. (3.136)

The control variables (the selling prices and the associated demand rates) are
assumed to be piecewise continuously differentiable functions of time. Constraint
(3.135) gives the initial and terminal state condition. As in the case of static
pricing, constraint (3.136) ensures the non-negativity of the demand rate. The
optimal control problems are solved by Pontryagin’s Maximum Principle. The
Hamiltonian function using the adjoint variable λk

j (t) to (3.134) is

Hk
j = (P k

j (t) − ck)Dk
j (t) − hkyk

j (t) − λk
j (t)D

k
j (t).

The necessary conditions for optimality are

∂Hk
j

∂P k
j

=
Dk

j (t)

(Dk
j )

′(t)
+ P k

j (t) − ck − λk
j (t)

!
= 0 and (3.137)

λ̇k
j = −

∂Hk
j

∂yk
j

= hk. (3.138)

The solution of the first-order differential equation (3.138) is

λk
j (t) = hkt + λk

0j. (3.139)

The adjoint variable λk
j (t) represents the marginal valuation of the state variable

yk
j at time t in the subinterval j. If an exogenous influence would increase the

state variable by one unit at time t, the objective value would change by λk
j (t).

The value λk
0j, that is, λk

j (0), characterizes the marginal valuation of the state
variable at time t = 0. The optimal price trajectory is represented as a function
P k∗

j (λk
0j, t) and the optimal demand trajectory Dk∗

j (λk
0j, t) is given by the price-

response function.

Conditions (3.134) and (3.135) give
Tj∫

0

Dk∗
j (λk

0j, t)dt = yk
0j

− yk
Tj

and the initial

value for the adjoint variable is a function λk
0j(Tj, yk

0j
, yk

Tj
). For the most common
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price-response functions, linear and iso-elastic, we can obtain λk
0j(Tj, yk

0j
, yk

Tj
) in

closed form. Therefore, the optimal selling price trajectory becomes a function
P k∗

j (Tj, yk
0j

, yk
Tj

, t) and the optimal demand trajectory follows from the price-

response function Dk∗
j (Tj, yk

0j
, yk

Tj
, t). The inventory level at a particular time

t is determined as a function yk∗
j (Tj, yk

0j
, yk

Tj
, t) = yk

0j
−

t∫

0

Dk∗
j (Tj, yk

0j
, yk

Tj
, s)ds.

Substitution of P k∗
j , Dk∗

j , and yk∗
j into (3.133) and integration gives the optimal

profit of a particular product k and a particular subinterval j as Πk
j (Tj, yk

0j
, yk

Tj
),

a function depending on Tj, yk
0j

, and yk
Tj

.

Master problem

Using the optimal control results, the master problem is

max
T,~T , ~y0, ~yT

Π =
1

T

K∑

k=1

(
K∑

j=1

Πk
j (Tj, yk

0j
, yk

Tj
) − F k

)

(3.140)

s.t.

K∑

k=1

skyk
0j
≤ S, j = 1, . . . , K, (3.141)

K∑

j=1

Tj = T, (3.142)

y1
TK

= yk
Tk−1

= 0, k = 2, . . . , K, (3.143)

yk
Tj−1

= yk
0j

, j = 2, . . . , K, k = 1, . . . , K, j 6= k, (3.144)

yk
TK

= yk
01

, k = 1, . . . , K, (3.145)

with ~y0 = {yk
0j
| j, k = 1, . . . , K} and ~yT = {yk

Tj
| j, k = 1, . . . , K}, respectively.

Resulting from the given order sequence, the initial inventory at the beginning
of subinterval k where product k is ordered (yk

0k
= Qk) and the inventory level

at the end of subinterval k − 1 must be zero (constraint (3.143)). Constraints
(3.144) and (3.145) ensure that the ending inventory of a subinterval equals the
initial inventory of the following interval.

This problem can also be solved by analyzing the Lagrangian function and the
KKT conditions. The Lagrangian is

L(T, ~T , ~y0, ~yT ) = Π(T, ~T , ~y0, ~yT ) +
K∑

j=1

µj

(

S −
K∑

k=1

skyk
0j

)

(3.146)
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with the KKT conditions ∂L

∂T
= 0, ∂L

∂Tj
= 0 and ∂L

∂µj
= 0 for all j = 1, . . . , K,

∂L

∂yk
0j

= 0 and ∂L

∂yk
Tj

= 0 for all j, k = 1, · · · , K, and conditions (3.142) - (3.145). Due

to the complexity, this non-linear equation system has to be solved numerically.

3.5.5 Numerical Example

The data that we use are similar to the numerical example of Rajan et al. (1992)
without any consideration of decay. Consider a supermarket that is planning the
replenishment and pricing for two storable products with linear price-response
functions Dk = ak − bkP k. Let k = 1 and k = 2 be identical products with the
parameters ak = 576, bk = 226, ck = 1.45, hk = 0.29, sk = 1, and F k = 50.
Furthermore, we assume a storage capacity S = 150.

uncapacitated capacitated
decentral constant dynamic decentral constant dynamic

Qk∗ 207 179 188 100 99 115
T ∗ 1.66 1.92 2.09 0.80 1.47 1.80
Π∗ 16.37 24.72 27.46 -16.54 11.72 17.21

S∗
min 379 268 283 150 150 150

Table 3.11: Two-product replenishment problem for uncapacitated as well as ca-
pacitated storage space

Table 3.11 illustrates the numerical results of the three presented frameworks,
first for the case of unlimited storage capacity and second, where we restrict the
storage capacity to 150 units. In both the uncapacitated and the capacitated
case, the optimal order quantity decreases if the firm decides simultaneously on
pricing and replenishment compared to the decentralized framework. This effect
comes from the underestimation of inventory and ordering costs. If the firm ad-
justs the selling price continuously, the optimal order quantity increases again.
This effect results from a better balancing of ordering and inventory holding
costs which can also be seen in the behavior of S∗

min. Even though the optimal
order quantity decreases from the decentralized to the coordinated/constant case
and then increases in the coordinated/dynamic case, the optimal cycle length in-
creases consistently from decentralized to coordinated/dynamic decision-making.
In this example, the results show that if the firm optimizes the profit locally, the
replenishment of all products is not profitable and the loss per time unit is 16.54.

Figure 3.14 illustrates the optimal prices of the simultaneous optimization for
both constant and dynamic pricing. The numerical example indicates that the
price trajectory in the dynamic case is not continuous over the order cycle of a
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T d y n

k = 1

k = 2
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tT c o n

k = 1

k = 2

Figure 3.14: Optimal constant and dy-
namic pricing

c o n s t r a i n e d
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Figure 3.15: Optimal dynamic pricing
for the unconstrained and
constrained case

product as in the single product case but it is discontinuous at the replenishment
point of the other product. This discontinuity technically results from individu-
ally optimized adjoint variables λk

0j for each subinterval j and product k. This
variable characterizes the marginal valuation of the state variable (inventory level
of product k) at the beginning of subinterval j. Due to the fact that at the begin-
ning of subinterval j product j is replenished and therefore the required storage
capacity increases immediately, also the marginal valuation of the state variables
of all products changes at this time. In this example, directly after the replen-
ishment of product 1 k = 1 at t = 0, the selling price of product 1 is set to 2.09.
Then the selling price increases continuously to 2.21 until time 0.95. At this time,
product k = 2 is replenished with an initial selling price of 2.09 (both products
are identical) and the selling price of product 1 increases instantaneously to 2.31.
Then, from time 0.95 to the end of the order cycle the selling price increases
continuously to 2.45. Because both products are identical, they have the same
optimal pricing pattern only shifted by half of the cycle length. The optimal price
of the constant pricing strategy is 2.25 and is interleaved between the minimum
price and the maximum price of the continuous pricing strategy (see inter-leaved
property in Section 3.3 and Chen et al. (2006)).

Figure 3.15 compares the single-product (unconstrained) case and the multiple-
product (constrained) case. As the analytical results have shown, the charged
selling price in the constrained case is higher than the selling price in the uncon-
strained case for all t. Furthermore, in the case with storage capacity constraint
the order frequency is larger (see in Table 3.11).
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If the retailer charges a constant selling price, the inventory-development is a
linear decreasing function in time and is differentiable at each time within an order
cycle and only non-differentiable at the boundaries. In case of dynamic pricing,
the selling price is not continuously differentiable within the order cycle but it
is non-differentiable at the point in time where the other product is replenished.
This yields that the inventory level is a non-linear function of time.

Thus, if multiple products are sharing a warehouse with limited storage capacity,
a dynamic pricing strategy with the possibility to adjust the selling price contin-
uously and having to regard the replenishment points of all other products yields
a better operational efficiency than in the case of constant pricing and without
consideration of price jumps within the order cycle. Due to the fact that sell-
ing prices can be adjusted at each replenishment point, the retailer can charge a
lower selling price at the beginning of an order cycle where the inventory is high
(that results in a higher demand) and he increases selling prices during the order
cycle both continuously between replenishments and immediately (impulse) at a
particular replenishment point. This leads to a better utilization of the limited
capacity and to an increasing profit.

3.5.6 Summary and implications

This section examined a warehouse scheduling problem where a retailer simulta-
neously optimizes pricing and replenishment. In order to illustrate the benefits of
coordinated decision-making, dynamic pricing, and the interaction of price and re-
plenishment strategies, a decentralized decision-making strategy where marketing
and operations sequentially optimize selling prices and replenishment strategies
was compared to a coordinated decision-making where price and replenishment
strategies are optimized simultaneously. Moreover, constant and dynamic pricing
strategies were distinguished.

It was analytically shown that coordinated decision-making yields a higher selling
price than a system with decentralized decision-making. Furthermore, the opti-
mal selling price increases from an uncapacitated to a capacitated framework. We
presented a solution procedure for solving the coordinated optimization model
with continuous price adjustments. This model was solved in a two-stage ap-
proach where several optimal control problems have to be solved at the second
stage and a non-linear optimization problem is solved at the first stage. This
formulation allows us to determine the price jumps at the replenishment points
optimally. In a numerical example, we presented differences in decision-making on
price and replenishment. It was indicated that in a warehouse scheduling prob-
lem with limited storage capacity where the retailer simultaneously optimizes
the replenishment strategy and the dynamic and continuous pricing strategy, the
retailer adjusts the prices discontinuously during the order cycle. Both adjust-
ments influence the cycle length and therefore the order frequency of the retailer.
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Furthermore, in the case of coordinated decision-making with continuous price
adjustment, the price trajectory is not continuous over the entire order cycle but
it is discontinuous at the replenishment point of the other products.

The next section extends the traditional EOQ problem to a continuous time
Cournot competition problem. Two firms sell substitutable products and com-
pete in quantities on a market whose market price is a commonly known decreas-
ing function of total output. Both firms choose their quantities simultaneously
but they differ in their respective cost structure. This section investigates the
performance of an EOQ and a JIT replenishment strategy in a competitive envi-
ronment.
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3.6 Economic lot-sizing and dynamic quantity competition

3.6 Economic lot-sizing and dynamic quantity

competition

This section studies a problem of dynamic quantity competition in continuous
time with two competing retailers facing different cost structures. Retailer 1
replenishes subject to fixed ordering costs and variable procurement costs, and
all inventory kept in stock is subject to holding costs. Retailer 2 faces no fixed
ordering costs but only variable procurement costs. Both retailers are allowed to
change their sales quantities dynamically over time. Following the structure of
the economic order quantity (EOQ) model, retailer 1 places replenishment orders
in batches whereas retailer 2 follows a just-in-time (JIT) policy. The objective of
both retailers is to maximize their individual average profit per time unit being
aware of the competitor’s replenishment and output decisions.

The problem is modeled by a two-stage hierarchical optimization approach. The
second-stage model is a differential game for a given cycle length. An open-
loop Nash equilibrium is derived and the equilibrium output strategies of both
retailers are compared. At the first stage, the optimal cycle length of the EOQ
retailer is determined, anticipating the optimal output trajectories at the second
stage. Furthermore, the existence of a unique optimal solution is shown. One
issue assuming an open-loop strategy is the required information at any time t.
In an open-loop strategy, the retailers does not need to observe the current state
at time t except the initial state. A second issue is the degree of commitment.
An open-loop strategy does not give the retailers any flexibility to react to signals
because both retailers commit their entire output strategy at the beginning of
the game. One can argue that this is not a reasonable strategy. However, if the
state of the system is not observable, then open-loop strategies are a realistic
assumption (Dockner et al., 2000).

3.6.1 Model formulation

Consider two retailers competing over an infinite planning horizon where each of
them attempts to maximize its average profit. The average profit equals revenue
minus costs where both firms differ in their respective cost structure. A replenish-
ment of retailer 1 is subject to fixed ordering costs F1 and variable procurement
costs c1 per unit. All inventory that is kept in stock is subject to holding costs
h1 per unit and time unit. Retailer 2 faces only variable procurement costs c2

per unit. We assume that c1 ≤ c2. This assumption is reasonable because JIT
replenishment which is characterized by a higher flexibility and no fixed costs
usually results in higher variable procurement costs. Following the assumptions
of the EOQ model, retailer 1 places replenishment orders in batches of size Q
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3.6 Economic lot-sizing and dynamic quantity competition

every T periods. Thus, the game can be partitioned into identical intervals of
length T .

F i r m  1

M A R K E T

D 1  D 2  

F i r m  2

           P ( D 1 + D 2 )
Figure 3.16: Competition model

We assume that the supply source of both retailers is uncapacitated, the order
quantity is delivered in one shipment with lead time zero, and backorders are not
permitted. Let t denote the time after retailer 1 placed an order and Di(t) the
output that retailer i puts on the market at time t. It is assumed that for all t, the
market price is a commonly known, decreasing, concave, and twice-continuously
differentiable function of the total output, i.e., P (D(t)) with D(t) = D1(t)+D2(t)
satisfies ∂P

∂D
< 0 and ∂2P

∂D2 ≤ 0. Furthermore, we assume that P (0) > c2, i.e., the
unit procurement cost of retailer 2 is lower than the maximum market price.
Otherwise, retailer 2 would never participate in this game. Since the market
price is a decreasing function of the total output, there exists a critical output
level D̄ ∈ (0,∞) such that P (D(t)) > 0 for D(t) ∈ [0, D̄) and P (D(t)) = 0 for
D(t) ∈ [D̄,∞). The critical level can be interpreted as the market potential. That
is, if the output of both retailers is equal to or exceeds the level D̄ ≤ D1 +D2, the
market price drops to zero. The inventory level of retailer 1 at time t is denoted
by y1(t).

The objective functions of both retailers can be formulated as follows. The av-
erage profit of retailer 1 depends on the cycle length of an order and the output
trajectory over the order cycle, i.e.,

Π1 = max
T,D1(t)

1

T





T∫

0

((P (D1(t) + D2(t)) − c1)D1(t) − h1y1(t))dt − F1



 . (3.147)

Retailer 2 determines his optimal output at any time t, i.e.,

Π2(t) = max
D2(t)

((P (D1(t) + D2(t)) − c2)D2(t)). (3.148)

Retailer 1 first determines the optimal order frequency anticipating the optimal
output trajectory. Therefore, we decompose the problem into a two-stage hier-
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archical optimization problem. At the second stage, given a fixed cycle-length
T , we solve a differential game and determine a Nash equilibrium strategy where
both retailers choose their respective output quantities simultaneously and each
of them has complete information about the profit function of the other. Fur-
thermore, we assume that the output strategies D1 and D2 only depend on time,
i.e., Di(t) with i = 1, 2. This strategy is called an open-loop strategy. At the
first stage, retailer 1 determines T ∗ and Q∗ anticipating the optimal quantity
competition from the second stage.

3.6.2 Model analysis

Second stage - quantity competition

The second-stage problem is a differential game played for a given cycle length
T on a fixed and finite time interval [0, T ] where each retailer commits his entire
strategy at the beginning of the game. Based on the considerations above, we
obtain the following optimal control formulation for the EOQ retailer.

Problem 1: EOQ retailer

ΠT
1 = max

D1(t)

T∫

0

[(P (D1(t) + D2(t)) − c1)D1(t) − h1y1(t)] dt, (3.149)

s.t. ẏ1(t) = −D1(t), (3.150)

y1(0) = Q, y1(T ) = 0, (3.151)

D1(t) ≥ 0. (3.152)

(3.149) represents the total profit of a single replenishment cycle [0, T ]. Since the
fixed ordering costs are sunk, F1 is not relevant for the decision. (3.150) repre-
sents the state equation which is the instantaneous change rate of inventory at t

where the state variable is represented by y1(t). At any t in [0, T ], the inventory
level decreases by the output D1(t). The replenishment cycle is repeated over
an infinite planning horizon with the initial condition y1(0) = Q and terminal
condition y1(T ) = 0, i.e., the inventory level at the beginning of a replenishment
cycle is equal to the lot-size and at the end of a replenishment cycle the inventory
level is equal to zero (eq. (3.151)). When the inventory level drops to zero, the
next order arrives immediately. (3.152) ensures the non-negativity of the output.

Problem 2: JIT retailer

Since the output of retailer 2 depends on the output of retailer 1 which, in turn,
depends on the cycle length, retailer 2 anticipates the entire order cycle of retailer
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1.

ΠT
2 = max

D2(t)

T∫

0

[(P (D1(t) + D2(t)) − c2)D2(t)] dt, (3.153)

s.t. D2(t) ≥ 0. (3.154)

(3.153) represents the objective of the JIT retailer optimizing his output strat-
egy being aware of the optimal output and replenishment strategy of retailer 1.
(3.154) ensures non-negativity of the output of retailer 2.

Let f1(y1(t), D1(t), D2(t)) and f2(D1(t), D2(t)) denote the profit functions of both
retailers at a particular time t with

f1(y1(t), D1(t), D2(t)) = (P (D1(t) + D2(t)) − c1)D1(t) − h1y1(t), (3.155)

f2(D1(t), D2(t)) = (P (D1(t) + D2(t)) − c2)D2(t). (3.156)

Both retailers choose their output strategy simultaneously. An open-loop Nash
equilibrium that defines D∗

1(t) and D∗
2(t) satisfies

ΠT
1 (D∗

1(t), D
∗
2(t)) ≥ ΠT

1 (D1(t), D
∗
2(t)) and ΠT

2 (D∗
1(t), D

∗
2(t)) ≥ ΠT

1 (D∗
1(t), D2(t))

for all t. That is, neither of the retailers has an incentive to deviate from this
initially chosen strategy. To find the open-loop Nash equilibrium for this game,
Problems 1 and 2 have to be solved simultaneously. The Hamiltonians corre-
sponding to (3.149) and (3.153) are

H1(t) = f1(y1(t), D1(t), D2(t))−λ(t)D1(t) and H2(t) = f2(D1(t), D2(t)) (3.157)

with the costate variable λ(t) which represents the shadow price of the state
variable y1 at time t. It is assumed that D∗

1(t) + D∗
2(t) < D̄. Otherwise both

retailers would generate a loss at this particular time. Taking constraints (3.152)
and (3.154) into account, the Hamilton-Lagrange functions are

Li(t) = Hi(t) + µ1(t)D1(t) + µ2(t)D2(t) i = 1, 2 (3.158)

with the Lagrangian multipliers µ1(t) and µ2(t). For notational simplicity, in the
following we omit the argument t. Applying the standard necessary conditions
from differential game theory to (3.158) (Dockner et al., 2000) gives that

∂L1

∂D1

= P ′(D1 + D2)D1 + P (D1 + D2) − c1 − λ + µ1
!
= 0, (3.159)

∂L2

∂D2

= P ′(D1 + D2)D2 + P (D1 + D2) − c2 + µ2
!
= 0 (3.160)
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and the conditions which define the costate variable λ as a function of t

λ̇ = −∂L1

∂y1

= h1 ⇒ λ(t) = h1t + λ0. (3.161)

λ(t) measures the value of an additional unit of inventory along the optimal path
(Feichtinger and Hartl, 1985). As represented in Section 3.3.1 we get that λ0 = 0
so that

λ(t) = h1t. (3.162)

Furthermore, µ1 and µ2 have to satisfy the complementary slackness conditions

µ1 ≥ 0 and µ1D1 = 0, (3.163)

µ2 ≥ 0 and µ2D2 = 0. (3.164)

Proposition 15. For any t, there exists a unique Cournot Nash equilibrium.

Proof. There exits a unique Cournot equilibrium if ∂2Li

∂D2
i

+ ∂2Li

∂Di∂Dj
< 0 (e.g., see

Tanaka (2001)). From the second derivatives and second cross derivatives, it
follows

∂2Li

∂D2
i

+
∂2Li

∂Di∂Dj

=

P ′′(D1 + D2)Di + 2P ′(D1 + D2) + P ′′(D1 + D2)Di + P ′(D1 + D2) < 0 (3.165)

for i = 1, 2 and j 6= i. Therefore, the effect of changing the own output on the
marginal profit at time t is larger than the effect of a change of the competitor’s
output.

The optimal solution has to satisfy the Karush-Kuhn-Tucker conditions (3.159),
(3.160) (by substituting (3.162)), (3.163) and (3.164) (Sydsæter and Hammond,
2002). The case µ∗

2 > 0, µ∗
3 > 0 never occurs because it yields that P (0) < c2

which gives that retailer 2 would never enter the market. Thus, we get the
following three cases where either retailer 1 or retailer 2 operates as a monopolist
or both retailers are in direct competition:

1. µ∗
1 = 0 and µ∗

2 > 0,
In this case, retailer 1 is a monopolist. From (3.160) and (3.164), it follows
that µ∗

2 = −(P (D1)−c2) and P (D1) < c2. Hence, the market price resulting
from the output of retailer 1 is lower than the variable procurement cost of
retailer 2. As a consequence, retailer 2 does not offer a positive quantity. Let
DM

1 (t) denote the monopoly quantity offered to the market at t. Therefore,
(3.159) gives that DM∗

1 solves

P (D1) + P ′(D1)D1 = c1 + h1t. (3.166)
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(3.166) reflects the well-known optimality condition of marginal revenue
equals marginal cost. Since, ∂

∂D1
(P (D1) + P ′(D1)D1) = 2P ′(D1)+P ′′(D1) <

0, together with (3.166) it follows that DM∗

1 decreases in t and P (DM∗

1 ) in-
creases in t. Therefore, there exists a time t̄1 where the monopoly market
price is equal to the variable procurement cost of retailer 2. At this time,
retailer 2 offers a positive quantity. Substituting P (D1) = c2 into (3.166)
and solving for t, t̄1 is obtained from

t − 1

h1

(P ′(DM∗

1 )DM∗

1 + (c2 − c1)) = 0. (3.167)

(3.167) determines the point in time where retailer 2 enters the market and
offers a positive quantity. Therefore, for all t ≤ t̄1, D∗

2 = 0 and DM∗

1 solves
(3.166). However, if P ′(DM∗

1 )DM∗

1 + (c2 − c1) < 0, then t̄1 < 0 and the
situation where retailer 1 operates as monopolist does not occur.

2. µ∗
1 > 0 and µ∗

2 = 0,
In this case retailer 2 is a monopolist. From (3.159) and (3.163), it follows
that µ∗

1 = −(P (D2) − c1 − h1t) with P (D2) < c1 + h1t. That is, the
market price resulting from the output of retailer 2 is lower than the variable
procurement costs plus inventory holding cost until t of retailer 1, i.e., this
case only occurs later in an order cycle where the value of a unit of inventory
is high. Since we assume at the second stage that the order cycle length
is exogenous, this case cannot be eliminated in advance. However, we will
show later that retailer 1 who optimizes the cycle length T will set T ∗ such
that this case will not occur. (3.160) gives that the monopoly output of
retailer 2, DM∗

2 solves

P (D2) + P ′(D2)D2 = c2, (3.168)

where marginal revenue equals marginal costs. Let t̄2 be the time where
P (DM∗

2 ) = c1 + h1t, i.e., where the monopoly price of retailer 2 is equal to
marginal cost of retailer 1. Substituting P (DM∗

2 ) = c1 + h1t into (3.168) it
follows that t̄2 solves

t − 1

h1

(P (DM∗

2 ) − c1) = 0 (3.169)

and for all t ≥ t̄2 it follows that D∗
1 = 0 and DM∗

2 solves (3.168).

3. µ∗
1 = µ∗

2 = 0,
In this case, both retailers are in direct competition and both outputs are
strictly positive. (3.159) and (3.160) give that the optimal solution has to
satisfy

P ′(D1 + D2)(D1 − D2) + (c2 − c1) = h1t. (3.170)
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(3.170) and c2 − c1 > 0 give that for t = 0, it follows that D∗
1 > D∗

2. If
c2 − c1 = 0, then D∗

1 = D∗
2 and if c2 − c1 < 0, then D∗

1 < D∗
2. However, for

t > 0 and c2 − c1 > 0, it follows that D∗
1 might be larger, equal to, or lower

than D∗
2 depending on t.

In the following, we show the characteristics of the optimal output strategies of
both retailers.

Proposition 16. In an open-loop Nash equilibrium,
∂D∗

1

∂t
≤ 0 ,

∂D∗

2

∂t
≥ 0, and

∂D∗

∂t
≤ 0.

Proof. In order to prove this proposition the three previous cases have to be
analyzed. The proof for Case 1 where retailer 1 is a monopolist, i.e., µ∗

1 = 0 and
µ∗

2 > 0, is shown in Section 3.3 and by Rajan et al. (1992). In Case 2 where retailer
2 is a monopolist, i.e., µ∗

2 = 0 and µ∗
1 > 0, it is obvious that the output remains

constant. Therefore, only Case 3 where both retailers are in direct competition
needs to be shown in detail.

To determine
∂D∗

1

∂t
≤ 0, we apply the Implicit Function Theorem (see Sydsæter

and Hammond (2002)) to (3.159):

P ′′(D1 + D2)

(
∂D1

∂t
+

∂D2

∂D1

∂D1

∂t

)

+ P ′(D1 + D2)

(

2
∂D1

∂t
+

∂D2

∂D1

∂D1

∂t

)

= 0

⇔ ∂D1

∂t
=

h1
(

P ′′(D1 + D2)
(

1 + ∂D2

∂D1

)

+ P ′(D1 + D2)
(

2 + ∂D2

∂D1

)) . (3.171)

Applying the Implicit Function Theorem to (3.159) and (3.160), respectively, we
get

∂Di

∂Dj

= − P ′′(D1 + D2)Di + P ′(D1 + D2)

P ′′(D1 + D2)Di + 2P ′(D1 + D2)
∈ (−1, 0). (3.172)

Thus, from (3.171) and (3.172) it follows that
∂D∗

1

∂t
≤ 0 and

∂D∗

2

∂t
=

∂D∗

2

∂D1

∂D1

∂t
≥ 0.

Moreover, we get
∣
∣
∣
∂D∗

1

∂t

∣
∣
∣ ≥

∣
∣
∣
∂D∗

2

∂t

∣
∣
∣. Thus, ∂D∗

∂t
≤ 0.

A graphical illustration for a special linear price-response function is as follows.
The best response of one retailer is a linear function of the competitor’s decision.
Figure 3.17 illustrates the best-response function of both retailers depending on
the time within the order cycle. Let t1 and t2 be two points in time within the
order cycle [0, T ] with t1 < t2. The best-response function of the JIT retailer
is not influenced by the point in time, i.e., it does not change over an order
cycle. However, for the EOQ-retailer an increasing t yields that the best-response
function shifts downwards. This shifting yields that the equilibrium is shifted to
the top left, i.e., the optimal output of the EOQ retailer decreases while the
optimal output of the JIT retailer increases.
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D 1 ( D 2 , t 1 )

D 2 ( D 1 )

D 1

D 2

D 1 ( D 2 , t 2 )

D * 1 ( t 1 )

D * 2 ( t 1 )

D * 2 ( t 2 )

D * 1 ( t 2 )

Figure 3.17: Optimal response function with respect
to competitor’s output depending on t

The intuition behind the output strategies of both retailers is as follows. For
retailer 1, it is beneficial to reduce the output over an order cycle. Because at
the beginning of an order cycle where inventory is high, retailer 1 offers a larger
output in order to reduce the stock and thus, inventory holding costs. With a
lower inventory level, the output level is reduced. On the other hand, retailer 2
follows a contrary output strategy where it is beneficial to offer a lower output at
the beginning of an order cycle where retailer 1’s output is high and to enhance
the output over the order cycle. If at time t = 0, the procurement costs of
retailer 2 exceed the monopoly price of retailer 1, then retailer 2 is deterred from
the market, i.e., D∗

2 = 0. However, over the order cycle, each unit of retailer
1 becomes more expensive because of additional holding costs and therefore, he
reduces his output which leads to an increasing market price. Later in the order
cycle, there exists a time t̄1 where the monopoly price of retailer 1 is equal to the
procurement costs of retailer 2 and it becomes beneficial for retailer 2 to enter
the market. From this point in time, both retailers are in direct competition. If
procurement plus inventory holding costs of retailer 1 exceed the monopoly price
of retailer 2, retailer 1 is displaced out of the market. That is, depending on the
cost structure of both retailers, there may exist phases within the order cycle
where one retailer operates as a monopolist and phases where both retailers are
in direct competition. Figures 3.18 and 3.19 illustrate the three output strategies
described above under the assumption that T > t̄2. In case that t̄1 ≤ 0 and
c2 ≤ c1, the output of retailer 2 is larger than retailer 1’s output over the entire
order cycle, i.e., D∗

2 > D∗
1.
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Figure 3.18: Optimal output strategies
for the case t̄1 > 0
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Figure 3.19: Optimal output strategies
for the case t̄1 ≤ 0

First stage - order cycle decision

At the first stage, retailer 1 determines the optimal cycle length anticipating the
optimal output strategies at the second stage by maximizing the average profit

Π1(T ) =
1

T

(
ΠT

1 (T ) − F1

)
(3.173)

where ΠT
1 (T ) is the optimal cycle profit given the cycle length T . By choosing

the cycle length, retailer 1 determines indirectly the lot-size which is the total
output over the entire order cycle. Ordering a large amount at one time will
reduce the order frequency and thus the fixed cost per unit, but it will increase
holding costs. However, larger lot-sizes also influence the output trajectories and
the market price over an order cycle which has to be taken into account. Since
the output of retailer 1 decreases over time, there exists a time t where D∗

1(t) = 0.
This time determines an upper bound for T ∗. From the previous section, we get
that for all t > t̄2 the unit procurement costs plus the inventory holding costs
of retailer 1 exceed the monopoly price of retailer 2 so that retailer 1 is deterred
from the market (µ∗

1 > 0 and µ∗
2 = 0). Due to the infinite planning horizon and

the repeated equal order cycles, it is obvious that retailer 1 never chooses T ∗

larger than t̄2. Otherwise, he would loose market share within the period [t̄2, T ].
That is, the upper bound is

T ∗ ≤ t̄2. (3.174)

Furthermore, we get from the previous results that ΠT
1 (T ) is not necessarily a

continuous function of T . Depending on the parameter setting, the three cases
A, B, and C can occur. If t̄1 ≤ 0, then both retailers directly compete over the
entire order cycle (Case A). If t̄1 > 0 and using (3.166) and (3.169), we get that
if T < t̄1, then retailer 1 is a monopolist over the entire order cycle (Case B). If
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t̄1 > 0 and T > t̄1, then there exist both cases, monopoly and competition. For
all t ∈ [0, t̄1], retailer 1 is a monopolist and for all t ∈ [t̄1, T ], both retailers are
in direct competition (Case C). Given these three cases, the cycle profit is as
follows

ΠT
1 (T ) =







ΠT
1A(T ), if t̄1 ≤ 0

ΠT
1B(T ), if t̄1 > 0 and T ≤ t̄1

ΠT
1C(T ), if t̄1 > 0 and T > t̄1.

(3.175)

with

ΠT
1A(T ) =

T∫

0



(P (D∗
1(t) + D∗

2(t)) − c1)D
∗
1(t) − h1

T∫

t

D∗
1(s)ds



 dt, (3.176)

ΠT
1B(T ) =

T∫

0



(P (DM∗

1 (t) − c1))D
M∗

1 (t) − h1

T∫

t

DM∗

1 (s)ds



 dt, (3.177)

ΠT
1C(T ) =

t̄1∫

0



(P (DM∗

1 (t)) − c1)D
M∗

1 (t) − h1





t̄1∫

t

DM∗

1 (s)ds +

T∫

t̄1

D∗
1(s)ds







 dt

+

T∫

t̄1



(P (D∗
1(t) + D∗

2(t)) − c1)D
∗
1(t) − h1

T∫

t

D∗
1(s)ds



 dt. (3.178)

Proposition 17. There exists a unique T ∗ which satisfies the condition that the
marginal profit at T ∗ is equal to the average profit, i.e.,

Π1(T
∗) = (P (D∗

1(T
∗) + D∗

2(T
∗)) − c1 − h1T

∗)D∗
1(T

∗).

Proof. This proposition has to be shown for the functions ΠT
1A(T ), ΠT

1B(T ), and
ΠT

1C(T ). We give the proof for ΠT
1A(T ), the proofs for ΠT

1B(T ) and ΠT
1C(T ) follow

in the same manner.
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If t̄1 ≤ 0, then the first-order condition of (3.173) is as follows

∂Π1

∂T
= − 1

T 2
ΠT

1A(T ) +
1

T

∂ΠT
1A(T )

∂T
+

F1

T 2

= − 1

T 2

T∫

0



(P (D∗
1(t) + D∗

2(t)) − c1)D
∗
1(t) − h1

T∫

t

D∗
1(s)ds



 dt

+
1

T





T∫

0

−h1D
∗
1(T )dt + (P (D∗

1(T ) + D∗
2(T )) − c1)D

∗
1(T )



+
F1

T 2

= −Π1(T )

T
+

1

T
[(P (D∗

1(T ) + D∗
2(T )) − c1 − h1T )D∗

1(T )]
!
= 0

⇔ Π1(T ) = (P (D∗
1(T ) + D∗

2(T )) − c1 − h1T )D∗
1(T ). (3.179)

(3.179) gives that the optimal cycle length is the value where the marginal profit
is equal to the average profit. Let

MP (T ) := (P (D∗
1(T ) + D∗

2(T )) − c1 − h1T )D∗
1(T )

define the marginal profit at time T . From (3.179) the first-order derivative is

∂MP (T )

∂T
=

(
∂P (D∗

1(T ) + D∗
2(T ))

∂T
− h1

)

D∗
1(T )

+ (P (D∗
1(T ) + D∗

2(T )) − c1 − h1T )
∂D∗

1(T )

∂T
. (3.180)

Proposition 16 gives that the second term of (3.180) is negative. Furthermore,
from (3.159) and (3.162) it follows that

P ′(D∗
1(T ) + D∗

2(T ))D∗
1(T ) + P (D∗

1(T ) + D∗
2(T )) − c1 − h1T = 0, (3.181)

(note that, since t̄1 ≤ 0, µ1 = µ2 = 0) and using the implicit function theorem, it
follows that

(
∂P (D∗

1(T ) + D∗
2(T ))

∂T
− h1

)

= −∂(P ′(D∗
1(T ) + D∗

2(T ))D∗
1(T )

∂T
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= −
[

P ′′(D∗
1(T ) + D∗

2(T ))
︸ ︷︷ ︸

≤0

(
∂(D∗

1(T ) + D∗
2(T ))

∂T

)

D∗
1(T )

︸ ︷︷ ︸

≤0

+

P ′(D∗
1(T ) + D∗

2(T ))
︸ ︷︷ ︸

<0

∂D∗
1(T )

∂T
︸ ︷︷ ︸

≤0

]

≤ 0.

That is, the marginal profit is a non-increasing function of T , i.e, ∂MP (T )
∂T

≤ 0.
Since MP (T ) is a non-increasing function of T and all values of T which satisfy
the first-order condition and thus MP (T ) = Π1(T ), it follows that there exists
only a single intersection point of MP (T ) and Π1(T ). Figure 3.20 illustrates the
behavior of MP (T ) and Π1(T ).

T

P 1 ( T )

M P ( T )

Figure 3.20: Average and marginal
profit as functions of T

The intuition behind the optimality condition is the use of scale economies due to
fixed ordering costs. If the last increment of profit is larger than the average profit
of all previous units, an additional unit of inventory leads to larger economies of
scales and thus to an increasing average profit. That is, as long as the marginal
profit is larger than the average profit, it is optimal to increase the order cycle.

3.6.3 Solution procedure

Based on the previous results we suggest the following algorithm. Starting with
T = ε when ε is a sufficiently low value and larger than zero, the algorithm calcu-
lates the average profit 1

T

(
ΠT

1k(T ) − F1

)
where k ∈ {A,B,C} and the marginal
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profit MP (T ) for increasing values for T and seeks the particular value for T

where ΠT
1k(T ) = MP (T ).

Algorithm

BEGIN

Set δ as the step size and AP>MP

Determine t̄1 from (3.167)

IF t̄1 ≤ 0 THEN

FOR T = ε WHILE AP < MP DO

AP := 1
T

(
ΠT

1A(T ) − F1

)

MP := (P (D∗
1(T ) + D∗

2(T )) − c1 − h1T )D∗
1(T )

T := T + δ

END DO

ELSE

FOR T = 0 WHILE AP < MP DO

IF T ≤ t̄1 THEN

AP := 1
T

(
ΠT

1B(T ) − F1

)

MP := (P (DM∗

1 (T )) − c1 − h1T )DM∗

1 (T )

T := T + δ

ELSE

AP := 1
T

(
ΠT

1C(T ) − F1

)

MP := (P (D∗
1(T ) + D∗

2(T )) − c1 − h1T )D∗
1(T )

T := T + δ

END IF

END DO

END IF

END
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3.6.4 Numerical example

This section presents a numerical example illustrating the impact of the replen-
ishment strategy on the average performance in monopoly and a competitive
environment. Suppose a linear price-response function

P (D1 + D2) =

{
a
b
− D1+D2

b
: 0 ≤ D1 + D2 ≤ a

0 : D1 + D2 > a
. (3.182)

The parameter a = 1000 units is the market potential and b = 10 represents the
price-sensitivity. Let the costs parameter of both retailers be as follows: The

Cost parameter Retailer 1 (EOQ) Retailer 2 (JIT)
Fi 500 -
ci 5.00 5.67

Table 3.12: Cost parameters of both retailers

inventory holding cost of retailer 1 is h1 = 0.1 per unit and unit of time. The
parameter setting is chosen so that in a monopoly both replenishment strategies
(JIT and EOQ) generate identical average profits with ΠM

1 = ΠM
2 = 470. While

retailer 2 follows a JIT strategy, retailer 1 orders in batches of size QM = 1, 546
units which cover an order cycle of length TM = 6.6.
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P (JIT)

t

P

Figure 3.21: Optimal monopoly market price of retailer
1 and retailer 2

The optimal monopoly outputs as well as the respective optimal monopoly prices
are illustrated in Figures 3.21 and 3.22. Retailer 2 has no incentive to change
the output level over time. His output is constantly 217 units with a resulting
market price of 7.83. Retailer 1, however, follows a dynamic output strategy. At
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Figure 3.22: Optimal monopoly output trajectories of re-
tailer 1 and retailer 2

the beginning of an order cycle, he offers a higher amount than later in the order
cycle. The strategy results from the fact that the inventory level decreases faster
so that inventory holding costs are reduced (see Section 3.3 and Rajan et al.
(1992)). Although both retailers make an identical average profit, the average
output deviates between EOQ and JIT policy. At any t, the optimal output of
an EOQ strategy is larger than the output under JIT policy. Consequently, the
average market price in an EOQ setting is lower than in a JIT environment.

The results change when EOQ and JIT replenishment are compared in a com-
petitive environment. We consider the same parameter setting as noted above.
From the previous section it is known that both retailers do not necessarily com-
pete over the entire order cycle. (3.167) gives that t̄1 = −36.6, hence, under
this parameter setting both retailers directly compete over the entire order cycle.
Contrary to the monopoly where both replenishment strategies led to identical
average profits, in a competitive environment the average profits of EOQ and JIT
deviate:

Π∗
1 = 205 and Π∗

2 = 179.

It is not surprising that the average profit decreases compared to monopoly profit.
However, the profit decrease for the JIT retailer is larger than for the EOQ
retailer. The optimal order quantity and the optimal cycle length of the EOQ
retailer are

Q∗ = 1, 142 and T ∗ = 7.0.

Figure 3.24 and 3.23 illustrate the optimal output trajectories of retailer 1 and
retailer 2, respectively, as well the corresponding market price trajectory.

While the average profit of the EOQ retailer decreases from 470 to 205, the
average profit of the JIT retailer decreases to 179. The intuition behind this effect
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Figure 3.23: Optimal output trajectories under
competition

is a commitment advantage of the EOQ retailer. By ordering the output for the
entire order cycle at the beginning of an order cycle, the EOQ retailer incurs a
commitment of selling this amount. Hence, fixed ordering costs have sunk. At
any t, the output of both retailers depends on their respective marginal costs.
While marginal costs of the JIT retailer remain constant over time, marginal
costs of the EOQ retailer increase over the order cycle.

The results of this example indicate that while a firm can be indifferent in the
choice of EOQ or JIT replenishment in monopoly, EOQ replenishment is pre-
ferred under competition (given that the competitor follows a JIT strategy). The
intuition is that the EOQ retailer achieves a competitive advantage by ordering
in batches by which the fixed ordering costs have sunk. Since the marginal costs
of the EOQ retailer are lower than the marginal costs of the JIT retailer until t,
the time where c1+h1t = c2, the EOQ retailer offers more on the market than the
JIT retailer (the EOQ retailer holds a higher market share than the JIT retailer).

3.6.5 Summary and implications

This section analyzed the interaction of a dynamically changing sales quantity
and the replenishment policy in a duopoly. The retailers differed in their replen-
ishment costs. While a replenishment of retailer 1 was subject to fixed ordering
costs and variable procurement costs, retailer 2 faced only variable procurement
costs. Inventories were subject to holding costs. Hence, retailer 1 places replen-
ishment orders in batches whereas retailer 2 follows a just-in-time policy. Both
retailers maximized average profits taking the competitor’s decision into account.

This problem was formulated as a two-stage hierarchical optimization problem.
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Figure 3.24: Optimal market price trajectory under
competition

At the first stage, the optimal cycle length of retailer 1 was determined anticipat-
ing the optimal output decisions over the order cycle at the second stage. At the
second stage, a differential game was considered where both retailers repeatedly
interact over the order cycle of a given length. We derived an open-loop Nash
equilibrium and structural properties concerning the existence and uniqueness of
an open-loop Nash equilibrium. Furthermore, we analyzed the optimal output
strategies of both retailers.

We have shown that, independent of the cycle length, both retailers follow con-
trary output strategies. While retailer 1 decreases the output over an order cycle,
retailer 2 enhances his output. However, the decreasing rate of retailer 1 is larger
than the enhancing rate of retailer 2 such that the total output decreases over the
order cycle. Given the second-stage solution, we have shown that there exists a
uniquely optimal cycle length at the first stage. Since for general price-response
functions no closed-form solution can be derived, we developed a solution algo-
rithm to determine T ∗. In a numerical example, we showed that while EOQ and
JIT generate identical average profits in monopoly, in a competitive environment
EOQ replenishment yields a better performance than JIT replenishment.

The competition model assumed that both retailers followed an open-loop strat-
egy, i.e., they commit to pricing and replenishment decision at the beginning of
an order cycle. It is questionable if the results hold if both retailers follow a
closed-loop strategy, i.e., they adapt future strategies based on the current state
of the system. Moreover, the research question whether the open-loop strategy
is a good approximation of the closed-loop strategy is of considerable interest.

Another extension of the model is to consider a problem where both retailers face
fixed ordering and holding costs. In this context, both retailers have to decide
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about the output, order quantity, and replenishment cycle. Additionally, they
have to anticipate the point in time when the competitor places an order. This
problem is rather complex because beyond the output and replenishment policy,
the retailers have to decide the optimal time displacement of the orders of both
retailers. As in all EOQ-based models, a weakness of the prescribed model lies
in the myopic and deterministic environment. However, continuous time models
in a competitive environment and uncertain demand are rather complex and
achieving structural findings is in the majority of cases impossible.
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4 Joint pricing and capacity
planning under demand
uncertainty

4.1 Introduction

This chapter investigates integrated decision-making of price strategy and capac-
ity acquisition in the presence of uncertain demand.

Capacity management issues are relevant on every stage of the supply chain and
every hierarchy level (strategic, tactical, and operational). It greatly influences
a firm’s ability to match supply with demand. Capacity, in this context, is
defined as the maximal sustainable output rate of a limited resource (van Mighem,
2008). Firms have a bundle of resources that perform their activities which can be
divided into two groups: tangible and intangible. This thesis basically considers
tangible resources, e.g., plants, manufacturing equipment, and human resources.

On the other hand, pricing is one of the most important elements of the marketing
mix, which generates demand. However, marketing effort can be waste if the
capacity decision is suboptimal. In particular, when both price and capacity
decisions have to be made in the presence of demand uncertainty, a coordination
of these two decisions is essential to optimally match supply with demand.

From traditional RM and economic theory it is known that customer differen-
tiation that segments the market according to customers’ buying behavior and
their willingness to pay is a considerable instrument resulting in a better capac-
ity utilization, increasing sales, and increasing revenues (Talluri and van Ryzin,
2004). However, a fundamental assumption in traditional RM is that the initial
capacity is exogenously given and fixed. This restrictive assumption might lead
to suboptimal solutions if the capacity decision did not anticipate the correct
customer characteristics.

The central research question that is addressed in this chapter is how firms can
benefit from coordinating customer segmentation either by product differentiation
(customization) or price discrimination and capacity acquisition in the presence of
demand uncertainty. Customization has several benefits. For example, a focused
selection of capacity dedicated to products that are directly targeted to specific
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customers’ needs. This decreases costs due to a better capacity utilization and
increases sales and revenues (Elmaghraby and Keskinocak, 2003). In particular,
this chapter answers the question what the gain of coordinated decision-making
of prices that are charged for individual customer classes and capacity acquisition
is. Moreover, it is clarified how pricing strategy and capacity decision interact
with each other with a special focus on the impact of capacity investment and
demand uncertainty.

First, the interaction of price and capacity decisions of a single-product problem
is analyzed. This problem is known as the price-setting newsvendor problem and
is frequently discussed in literature. Since the price-setting newsvendor problem
is an extension of the classical newsvendor problem where it is assumed that
the selling price is exogenously given, major differences in capacity decision are
identified. Moreover, it is investigated how demand uncertainty affects price
decision and capacity acquisition.

After that, the impact of customization is investigated, in particular, the in-
teraction of capacity acquisition and price decisions when the firm is able to
segment the market into two customer classes. In order to clarify the benefit of
coordinated decision-making, we compare the coordinated framework (i) to the
case where the firm is not able to discriminate prices and (ii) to the case of a
decentralized decision-making framework where independent sales managers are
responsible for price management and capacity acquisition. Moreover, we analyze
the impact of capacity investment and demand uncertainty.

Concluding, the specific research questions addressed in this chapter are:

1. How does customer segmentation, in particular price discrimination influ-
ence price decision and capacity acquisition in an integrated planning ap-
proach?

2. What is the impact of capacity costs and demand uncertainty on price and
capacity decisions?

3. What is the benefit of price discrimination compared to a single-pricing
strategy?

4. What is the benefit of centralized decision-making compared to decentral-
ized decisions where two product managers decide separately on price and
capacity?

The chapter is structured as follows. Section 4.2 introduces the price-setting
newsvendor problem for a single-product, single-period capacity and price deci-
sion problem. Structural properties concerning the existence and characterization
of the optimal solution are derived. Moreover, a solution algorithm is presented
to obtain the optimal price and capacity decision for the special class of ad-
ditive demand functions. Section 4.3 extends the model of Section 4.2 to the
case where market demand is segmented into two customer classes. Section 4.3.1
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develops a stochastic model and Section 4.3.2 analyzes the model and derives
structural properties of the optimal solution. Section 4.3.3 presents a solution
algorithm. Section 4.3.4 provides a numerical example that illustrates the im-
pact of customer segmentation and price discrimination on price and capacity
decisions compared to a single-pricing strategy. Furthermore, in Section 4.3.5
a decentralized decision-making strategy where two sales managers are respon-
sible to decide independently on price and capacity acquisition is compared to
central decision-making where both prices and capacity acquisition are decided
simultaneously. A brief summary and conclusions are given in Section 4.3.6.
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4.2 The price-setting newsvendor problem

This section introduces the price-setting newsvendor problem. In the price-setting
newsvendor problem, a decision maker facing random demand for a single prod-
uct has to decide on a single selling price and the capacity acquisition for a single
period. Single period, in this context, does not necessarily mean that the product
can only be sold in a single selling period. But, this model is also relevant for
multi-period problems when the capacity decision is irreversible, i.e., it cannot
be increased or decreased in the short term and, excess capacity cannot be stored
and excess demand cannot be produced in advance or in future periods. In the
traditional newsvendor problem it is assumed that market parameters such as de-
mand and selling price are exogenous. Incorporating these factors into the model
can provide an excellent vehicle for examining how operational problems interact
with marketing issues to influence decision-making at the firm level (Petruzzi and
Dada, 1999).

4.2.1 Model formulation

Consider a firm facing a price-dependent and uncertain demand has to make
three decisions characterized by a two-stage hierarchical structure. At the first
stage, the firm has to decide the selling price P for a single product and about
capacity acquisition C. These decisions have to be made in the presence of
demand uncertainty. At the second stage, i.e., when the firm observes the actual
demand, it determines the production quantity.

Capacity acquisition is subject to one-time investment costs c per unit capacity.
The demand is represented by an additive, linear, and downward sloping function
of price

D(P, Ψ) = Ψ − bP (4.1)

where Ψ is a non-negative random variable defined on an interval [A,B] with
A ≥ 0, mean µ, and standard deviation σ, and the parameter b describes the
price-sensitivity of the customers. CV denotes the coefficient of variation. In
order to assure that the demand is positive for some ranges of P , it is assumed
that A − b(c + cp) ≥ 0 where cp denotes the unit production cost. Additive
demand functions are commonly used in operations and economics literature.
This formulation is equivalent to the structure D(P, Ψ̄) = d(P )+Ψ̄ where d(P ) =
µ − bP is a deterministic and linear price-response function and Ψ̄ is a random
shock with E{Ψ̄} = 0 and V ar{Ψ̄} = σ2, e.g., see Petruzzi and Dada (1999) or
Li and Atkins (2002).

We assume that Ψ has a continuous distribution function F (z) with density
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function f(z). Let r(z) be the Hazard (or failure) rate (FR) defined by

r(z) =
f(z)

1 − F (z)

and let g(z) be the generalized failure rate (GFR) defined by

g(z) = zr(z).

The GFR is the percentage change in the excess demand with respect to the
stocking level, which can be interpreted as the elasticity of the excess demand
with respect to capacity. For a detailed analysis between FR and GFR, see
Lariviere and Porteus (2001) and Lariviere (2006).

Although the pricing issue is only a minor extension of the traditional newsvendor
problem, the analytical tractability becomes more difficult. Kocabiyikoglu and
Popescu (2007) introduce the concept of the elasticity of lost sales. The elasticity
of lost sales for a given capacity level C and price P denoted by εs(P,C) is the
percentage change in the rate of lost sales with respect to price, i.e.,

εs(P,C) =

∣
∣
∣
∣

% change in lost sales

% change in price

∣
∣
∣
∣
.

Definition 2. The elasticity of lost sales corresponding to the stochastic and
price sensitive demand D(P, Ψ) and the capacity level C is defined as

εs(P,C) = − (P − cp)

(1 − FD(P )(C))

∂(1 − FD(P )(C))

∂P
=

(P − cp)
∂FD(P )(C))

∂P

(1 − FD(P )(C))

where FD(P )(C) defines the distribution function of the random demand.

Kocabiyikoglu and Popescu (2007) show that this concept allows to derive struc-
tural properties of the objective function and the optimal solution. The objective
is to maximize the expected profit which is

Π∗ = max
C,P







C+bP∫

A

(P − cp)(z − bP )f(z)dz +

B∫

C+bP

(P − cp)Cf(z)dz − cC






.

(4.2)
If the demand during the period is lower than the capacity, i.e., z−bP ≤ C , then
the profit is (P −cp)(z−bP ) where z denotes a realization of the random variable
Ψ. It is assumed that excess capacity C − (z − bP ) does not cause any costs and
cannot be used otherwise. If demand exceeds the capacity, i.e., z− bP > C, then
the profit is (P − cp)C and all units (z − bP ) − C are lost.

For mathematical convenience, we use the variable transformation K = C +
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bP which simplifies the computation. An intuition of K can be obtained by a
rearrangement of the transformation to

K − µ = C − (µ + bP ). (4.3)

K −µ can be interpreted as the safety capacity, which is defined as the deviation
of the capacity acquisition from the expected demand, so that K is the expected
market potential plus a safety capacity (Petruzzi and Dada, 1999). By executing
some algebraic transformation, the expected profit is

Π(K,P ) = Λ(P ) − L(K,P ) (4.4)

with
Λ(P ) = (P − c − cp)(µ − bP ) (4.5)

and

L(K,P ) = c

K∫

A

(K − z)f(z)dz + (P − c − cp)

B∫

K

(z − K)f(z)dz. (4.6)

Λ(P ) represents the profit if there is no variation of demand from its mean.
L(K,P ) represents the expected loss function which is the sum of the expected
overage and expected underage costs (Silver et al., 1998). For the case that z is
lower than K, leftovers (K − z) are assessed with overage costs c. If z exceeds
K, then shortages (z − K) are assessed with underage costs (P − c − cp).

4.2.2 Structural properties

Necessary conditions for a maximum are ∂Π
∂P

= 0 and ∂Π
∂K

= 0. The first-order
condition of (4.4) w.r.t. K and P give

∂Π

∂K
= 0 ⇐⇒ K(P ) = F−1

(
P − cp − c

P − cp

)

(4.7)

and

∂Π

∂P
= 0 ⇐⇒ P (K) =

µ + b(cp + c)

2b
− 1

2b

B∫

K

(z − K)f(z)dz. (4.8)

Therefore, K∗ can be expressed as a function of P and P ∗ can be expressed as a
function of K.
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From the second derivatives of (4.4) w.r.t. P and K

∂2Π

∂K2
= −(P − cp)f(z) (4.9)

and
∂2Π

∂P 2
= −2b (4.10)

we get that for a given K (4.4) is concave in P and for a given P (4.4) is concave
in K. However, it can be easily shown that for general distribution functions
(4.4) is not necessarily jointly concave in P and K. We will show later which
conditions lead to a unique optimal solution.

The intuition of (4.7) is obtained by a rearrangement to

cF (K) = (P − c − cp)(1 − F (K)).

The objective is to find the optimal K∗ where the expected loss of having one unit
unused capacity is equal to the expected gain of having one additional capacity
unit. The expected loss of having one unit unused capacity is equal to the unit
capacity costs times the probability that the demand is lower than the capacity
level. The expected gain of an additional capacity unit is the benefit of using
this unit in order to produce and sell an additional product, i.e., the selling
price minus capacity and production costs times the probability that the demand
exceeds the capacity. From (4.3) it follows that

F−1

(
P − cp − c

P − cp

)

− µ = C − (µ − bP ),

which represents the optimal safety capacity. Resubstitution C = K − bP yields
that the optimal capacity level is determined by

C∗ = F−1

(
P − c − cp

P − cp

)

− bP.

The term
(

P−c−cp

P−cp

)

represents the ratio between underage cost cu and overage

cost co, i.e., cu

cu+co
where cu = P − c− cp and co = c (see (4.6)). This ratio is also

called newsvendor ratio.

The following proposition states the impact of demand uncertainty on the selling
price (e.g., see Mills (1959) and Petruzzi and Dada (1999)).

Proposition 18. If D(P, Ψ) is an additive price-response function, then the
optimal selling price P ∗ is lower than the price P0 that maximizes the profit
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4.2 The price-setting newsvendor problem

Λ(P ) = (P − c − cp)(µ − bP ), i.e.,

P ∗ ≤ P0

with

P0 =
µ + b(cp + c)

2b
. (4.11)

The proof directly follows from (4.8) since the expected shortfall Θ(K) :=
B∫

K

(z −
K)f(z)dz is nonnegative.

The intuition of Proposition 18 is the incentive of the firm to reduce uncertainty
(Petruzzi and Dada, 1999). With rising uncertainty there is a rising risk of
overcapacity and capacity shortage. In case of a fixed price, this risk can only be
hedged with an adjustment of capacity investment (safety capacity). However, if
the firm simultaneously optimizes price and capacity, uncertainty is balanced by
price and capacity adjustments. In case of symmetric distributions it follows that

if P ≥ 2(c + cp) ⇔
(

P−c−cp

P−cp

)

≥ 1
2
, which equivalently means that underage costs

exceed overage costs, then increasing uncertainty yields an increasing investment

in safety capacity. On the other hand, if P < 2(c + cp) ⇔
(

P−c−cp

P−cp

)

< 1
2
, then

overage costs exceed underage costs. In this case, it is more expensive to have
one unit leftover than one unit shortage which yields that an increasing demand
uncertainty leads to decreasing capacity acquisition.

In how far price optimization affects expected overage and underage costs de-
pends on the characteristic of the price-response. If the price-response function
is additively connected with the random variable, then for a given K the selling
price does not influence expected overcapacity and expected shortfall but it just
influences the expected demand. Thus, while a price increase yields a decreasing
CV, the variance of the demand remains constant because

V ar(D(Ψ, P ) = Ψ − bP ) = V ar(Ψ) and CV =

√

V ar(D(Ψ, P ))

µ − bP
.

For the sake of completeness the multiplicative case is compared. If a determin-
istic price-response function d(P ) is multiplicatively connected with the random
variable Ψ, i.e., D(P ) = d(P )Ψ with E(Ψ) = 1 (all multiplicative demand func-
tions can be normalized to E(Ψ) = 1)(Petruzzi and Dada, 1999), then

V ar(D(Ψ, P ) = Ψ · d(P )) = d(P )2V ar(Ψ) and CV = σ.

In this case, it can be seen that while price changes affect the variance of demand,
the CV is unaffected. Therefore, in order to reduce uncertainty, i.e., to decrease
the CV, the selling price has to be increased (Karlin and Carr, 1962).
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4.2 The price-setting newsvendor problem

Figures 4.1 and 4.2 illustrate the impact of increasing demand uncertainty on
price and capacity decisions in the traditional newsvendor problem and in the
price-setting newsvendor problem. In both cases, increasing demand uncertainty
changes the characteristic of the density function. In the traditional newsvendor
problem (see Figure 4.1) it can be observed that an increasing uncertainty (σ
increases to σ′) only affects the shape of the curve but not the position. That
is, increasing uncertainty does not influence the mean of demand but the only
impact of increasing uncertainty is an increasing C.

µ ( P ) C C ' D e m a n d

Pro
ba
bil

ity

k ( P ) s

k ( P ) s '

Figure 4.1: Impact of increasing un-
certainty in the traditional
newsvendor problem

µ ( P ) C C ' D e m a n d

Pro
ba
bil

ity

µ ( P ' )

k ( P ' ) s '
k ( P ) s

Figure 4.2: Impact of increasing uncer-
tainty in the price-setting
newsvendor problem

Figure 4.2 demonstrates that increasing demand uncertainty affects both shape
and position of the density function. Since the price decreases with increasing
uncertainty, the expected demand increases. This yields that the density func-
tion shifts to the right. As consequence, the additional safety capacity which is
acquired to hedge increasing uncertainty is lower in the price-setting newsvendor
problem than in the traditional newsvendor problem with an exogenous price.
The following proposition shows the monotonicity of the optimal price P ∗(K)
and the optimal capacity K∗(P ).

Proposition 19. The optimal price and the optimal capacity are concave in-
creasing in their respective arguments. That is,

∂P ∗(K)

∂K
≥ 0,

∂K∗(P )

∂P
≥ 0 and

∂2P ∗(K)

∂K2
≤ 0,

∂2K∗(P )

∂P 2
≤ 0.

The proof is presented in Appendix A.11.

For general distribution functions, (4.4) is not necessarily jointly concave in P

and K. However, for specific functional forms of price-response and distribution
functions the existence and uniqueness of an optimal capacity level and optimal
selling price has been shown. Petruzzi and Dada (1999) show that if the failure
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4.2 The price-setting newsvendor problem

rate r(z) satisfies 2r(z)2+r′(z) > 0, then there exists a unique pair (K∗, P ∗) which
maximizes (4.4). Yao et al. (2006) provide a more general condition. They show
that if the distribution function F has an increasing GFR, then Π(P,K∗(P )) is a
quasi-concave function in P which guarantees the existence and uniqueness of an
optimal solution. Kocabiyikoglu and Popescu (2007) show that if εs(P,K) > 1

2
,

then (4.4) is jointly concave in P and K, which ensures that a unique (K∗, P ∗)
exists.

Proposition 20. There exists a unique solution (K∗, P ∗) which solves (4.8) and
(4.7).

The proof is represented in Appendix A.12. In the following section, an iterative
algorithm for computing the optimal price and capacity decision is presented.

4.2.3 Solution procedure

The following algorithm, generally formalized by Zhan and Shen (2005), can be
used to determine the optimal solution. This algorithm starts with the price P0

which represents an upper bound for P . Then it calculates the value K0 = K(P0)
by solving (4.7). Given K0, the algorithm calculates a new price P 1 = P (K0)
which is the input to update K. The iteration is repeated until the absolute
difference |P n − P n−1| is lower than a precision criterion ε.

BEGIN

Set δ > ε,

Calculate P 0 from (4.11),

REPEAT

Calculate K0 := K(P 0) using (4.7),

Calculate P 1 := P (K0) using (4.8),

Calculate δ := |P 1 − P 0|,
P 0 := P 1,

UNTIL δ ≤ ε

P ∗ := P 0 and K∗ := K0

END

Thus, the optimal capacity level is determined by C∗ = K∗ − bP ∗.
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4.2 The price-setting newsvendor problem

4.2.4 Summary and implications

This section presented a single-product single-period capacity decision and pric-
ing problem of a firm facing uncertain demand. This problem is known as price-
setting newsvendor problem. While the traditional newsvendor problem assumes
that the selling price is exogenous, in the price-setting newsvendor problem the
selling price is, beside the initial capacity, an additional decision variable. In-
corporating pricing issues into capacity decision problems provides an important
vehicle for examining how operational problems interact with marketing issues.

The focus of this section was two-fold: First, structural properties of an optimal
pricing strategy were analyzed and it was investigated how the pricing issue af-
fects the firm’s optimal capacity decision. Second, since the problem is rather
complex so that no closed-form solutions exist, an algorithm for computing the
optimal price and capacity decision was presented. Differences between the tradi-
tional and the price-setting newsvendor problem were revealed on how increasing
demand uncertainty is hedged in decision-making

The results of this section indicated how demand uncertainty is balanced by price
and capacity adjustment. While in the traditional newsvendor problem increasing
uncertainty is solely balanced from the supply side, i.e., capacity adjustment, it
was shown that this is not necessarily optimal. In order to optimally match
supply with demand both the supply and demand side have to be adjusted in
an appropriate ratio. From the supply-side, increasing uncertainty is balanced
by capacity adjustment in order to reduce expected underage and overage costs.
From the demand perspective, increasing uncertainty is balanced by a decreasing
price. The lower selling price has two effects. First, it decreases underage costs
and second the expected demand increases. This, in turn, decreases the expected
overcapacity. Consequently, from a company point of view that maximizes the
total profit, a simultaneous optimization yields a better match of supply with
demand than an independent optimization of capacity, given a fixed selling price.

The following section investigates the impact of customer segmentation on price
decision and capacity acquisition in an integrated planning approach.
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4.3 The price-setting Newsvendor model with customer segmentation

4.3 The price-setting Newsvendor model with

customer segmentation

This section studies an extension of the price-setting newsvendor problem where
the firm is able to segment the market into two customer classes called H and
L, respectively (high-class and low-class customers). Market segmentation either
results from product differentiation or from price discrimination. If price discrim-
ination is not possible because of arbitrage and cannibalization, the firm can use
product differentiation, e.g., different brands or different quality levels in order to
avoid these effects. In case of product differentiation, both products are produced
with the same resource. The decision-making structure is hierarchical. At the
first stage the decision maker has to establish the capacity acquisition and the two
selling prices that are charged for each customer class. These decisions are made
in the presence of demand uncertainty. At the second stage when the demand
uncertainty is resolved, the decision maker establishes production quantities.

The majority of papers that integrate pricing issues into capacity decision prob-
lems with two demand classes (or two products) assume responsive pricing, i.e.,
the capacity decision has to be made under demand uncertainty whereas the
pricing decision can be postponed after uncertainty is resolved (Chod and Rudi
(2005) and Bish and Wang (2004)). In this section it is assumed that both pricing
and capacity decisions have to be made under demand uncertainty.

The contribution of this section is to investigate the interaction of the selling
prices that are charged for each customer class and the capacity investment with
respect to different parameter values, e.g., capacity costs and uncertainty. A
stochastic model is developed and structural properties of the objective function
and the optimal solution are derived. Then, a numerical example is presented
that demonstrates the benefits of customer segmentation and price differentia-
tion and derives properties on the interaction prices and capacity. Additionally,
coordinated decision-making is compared to decentralized decision-making where
independent sales managers are responsible for price management and capacity
acquisition.

4.3.1 Model formulation

It is considered that the demand can be segmented into two demand classes, H

and L, which are characterized by independent price-response functions. For both
demand classes an individual price is charged. PH is the price that is charged to
customer class H while PL is the price that is charged to customer class L. It
is assumed that the firm is able to perfectly segment the market. There are no
substitution effects between the demand classes, i.e., the demand of both classes
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4.3 The price-setting Newsvendor model with customer segmentation

is only influenced by their respective price and not by the price that is charged
to the other class.

The demand of H is modeled by an additive random, downward-sloping, and
linear function

DH := D(PH , Ψ) = Ψ − bPH

where the market potential Ψ is a random variable defined on the interval [A,B]
with A ≥ 0, mean µ, standard deviation σ, and parameter b that describes
the price-sensitivity of the H-class customers. A realization of Ψ is represented
by z such that dH = z − bPH denotes a realization of DH . f(z) and F (z)
represent the probability density function and the cumulative density function of
Ψ, respectively.

Demand for L is modeled by a deterministic, downward-sloping, and linear price-
response function with

dL := d(PL) = α − βPL

for 0 ≤ PL ≤ α
β

and 0 otherwise.

Customer segmentation can be achieved either by product differentiation or price
discrimination. Product differentiation is characterized by different production
costs where production of one unit of H and L is subject to variable production
cost cH and cL, respectively. It is assumed that cH > cL for product differentiation
and cH = cL if price discrimination is applied. Capacity acquisition is subject to
capacity cost of c per unit capacity. For the sake of simplicity, it is assumed that
production of H and L consumes the same amount of capacity of one unit per
product.

As in the previous section, the firm faces a two-stage decision-making process. At
the first stage, the capacity level C and the selling prices PH and PL are decided
under demand uncertainty. At the second stage when the demand is known, the
firm decides on production quantities. If the total demand H plus L exceeds the
capacity, it is assumed that H-class customers have a higher priority than L-class
customers, which is reasonable, for instance, when customers have a prioritized
customer support (Anderson and Dana, 2006). In particular, the initial capacity
C is allocated by a priority rule which states that H-class demand is satisfied
before L-class demand. All unmet demand is lost. An implication following
this priority rule is that despite of L-class demand being deterministic, since the
uncertain H-class demand is satisfied first, the available capacity to produce L is
uncertain. Consequently, L-class sales are uncertain as well.

As in the single-product problem, we define the measure of the elasticity of lost
sales for both products H and L (Kocabiyikoglu and Popescu, 2007).
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4.3 The price-setting Newsvendor model with customer segmentation

Definition 3. The elasticity of lost sales of H corresponding to its stochastic and
price sensitive demand D(PH , Ψ) and the capacity level C defines the percentage
change in the rate of lost sales of H with respect to a change in (PH − cH):

εs(PH , C) = −
(

PH − cH

1 − FD(PH)(C)

)
∂(1 − FD(PH)(C))

∂PH

=
(PH − cH)

∂FD(PH )(C)

∂PH

(1 − FD(PH)(C))

where (1 − FD(PH)(C)) defines the probability that demand D(PH , Ψ) exceeds the
capacity level C which results in lost sales of H.

The definition of the elasticity of lost sales for L is slightly different. In order to
determine the elasticity of lost sales of L with respect to a change in (PL − cL),
the lost sales probability of L has to be determined by

Pr(d(PL) > C − Ψ + bPH) = 1 − FD(PH)(C − d(PL)).

If D(PH) ≥ C, then regardless of PL the entire L-class demand is lost. Therefore,
if D(PH) ≥ C, the percentage change in the rate of lost sales of L with respect
to a change in (PL − cL) is equal to zero because a change of PL does not affect
the rate of lost sales. Formally written, this can be expressed as

∂(1 − FD(PH)(C))

∂PL

= 0.

It follows that

∂(1 − FD(PH)(C − d(PL)))

∂PL

=
∂(FD(PH)(C) − FD(PH)(C − d(PL)))

∂PL

.

Definition 4. The lost sales elasticity of L corresponding to the stochastic de-
mand D(PH , Ψ) and the capacity level C is defined as the percentage change in
the rate of lost sales of L, with respect to a change in (PL − cL):

εs(PL, C) =

−
(

PL − cL

FD(PH)(C) − FD(PH)(C − d(PL))

)
∂(FD(PH)(C) − FD(PH)(C − d(PL)))

∂PL

⇔ εs(PL, C) =
(PL − cL)

∂FD(PH )(C−d(PL))

∂PL

(FD(PH)(C) − FD(PH)(C − d(PL)))
(4.12)

where (FD(PH)(C)−FD(PH)(C − d(PL))) defines the probability that d(PL) < C −
D(PH , Ψ) and D(PH , Ψ) ≤ C.
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The profit for a given demand realization z is the difference between revenue and
total costs (variable manufacturing and capacity costs):

π(C,PH , PL) = (PH − cH) min{z − bPH , C}
+ (PL − cL) min{dL, max{0, C − (z − bPH)}} − cC. (4.13)

If the H-class demand does not exceed C, then the profit resulting from H is
(PH −cH)(z−bPH) and the excess capacity is available to satisfy L-class demand
so that L-class sales depend on the remaining capacity. If the L-class demand is
lower than the remaining capacity, then L-class sales are equal to L-class demand
and the profit is (PL − cL)dL. Otherwise, L-class sales are C − (z− bPH) and the
profit is (PL−cL)(C− (z−bPH)). If the H-class demand during a period exceeds
C, then the profit resulting from H is (PH − cH)C and there is no remaining
capacity to satisfy L-class demand.

Using the same substitution as in Section 4.2, i.e., K = C + bPH and taking
expectation of (4.13) yields

Π(C,PH , PL) =

C+bPH−dL∫

A

((PH − cH)(z − bPH) + (PL − cL)dL) f(z)dz

+

C+bPH∫

C+bPH−dL

((PH − cH)(z − bPH) + (PL − cL)(C − z + bPH)) f(z)dz

+

B∫

C+bPH

(PH − cH)Cf(z)dz − cC.

By some algebraic transformations illustrated in Appendix B.4, it follows that

Π(K,PH , PL) = Λ(PH , PL) − L(K,PH , PL) (4.14)

with
Λ(PH , PL) = (PH − c − cH)(µ − bPH) + (PL − c − cL)dL (4.15)

and

L(K,PH , PL) = c

K−dL∫

A

(K−z−dL)f(z)dz+(PL−c−cL)

K∫

K−dL

(dL+z−K)f(z)dz,

+ (PH − c − cH)

B∫

K

(z − K)f(z)dz + (PL − c − cL)

B∫

K

dLf(z)dz. (4.16)
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The substitution K = C + bPH provides a mathematical convenience to ana-
lyze the price-sensitive newsvendor problem such that K can be interpreted as
safety factor or safety capacity (see, Petruzzi and Dada (1999) and Li and Atkins
(2002)). Λ(PH , PL) and L(K,PH , PL) represent the expected revenue minus di-
rect costs and the expected loss. As in (4.5), Λ(PH , PL) is the profit if there is
no variation of H-demand from its mean and PL is set such that the complete
L-demand can be satisfied. The expected loss function L(K,PH , PL) can be in-
terpreted as in Silver et al. (1998) by expected overage and underage costs. For
the case that z + dL is lower than K, leftovers (K − z − dL) are assessed with
overage costs c. If z + dL exceeds K and z is lower than K, then shortages for
L (dL − (K − z)) are assessed by underage costs (PL − c − cL). If z exceeds K,
then shortages for H and L occur where H-shortages (z −K) cost (PH − c− cH)
and L-shortages (dL) cost (PL − c − cL).

4.3.2 Structural properties

This section analyzes structural properties of the objective function and the op-
timal solution. The first and second derivatives w.r.t. PH give

∂Π

∂PH

= µ + b(c + cH) −
B∫

K

(z − K)f(z)dz − 2bPH (4.17)

and
∂2Π

∂P 2
H

= −2b. (4.18)

From (4.18), it follows that for a given K and PL, (4.14) is concave in PH .

Proposition 21. The optimal PH can be represented as a closed-form function
of K:

P ∗
H(K) = PH0 −

Θ(K)

2b
(4.19)

where PH0 = µ+b(c+cH)
2b

and Θ(K) =
B∫

K

(z − K)f(z)dz.

Proposition 21 follows directly from rearranging (4.17). As in the single-product
problem, PH0 denotes the optimal price which optimizes the expected profit
Λ(PH , PL) if there is no variation of H and Θ(K) is the expected shortfall of
H (Petruzzi and Dada, 1999). It can be easily shown that P ∗

H(K) is increasing
in K and lower than PH0 .
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The first and second derivatives of (4.14) w.r.t. PL are

∂Π

∂PL

= F (K − dL) (α − 2βPL + βcL) +

K∫

K−dL

(K − z)f(z)dz (4.20)

and
∂2Π

∂P 2
L

= −2βF (K − dL) − β2(PL − cL)f(K − dL) ≤ 0. (4.21)

From (4.21) we get that for a given K, Π(K,P ∗
H(K), PL) is a concave function of

PL.

Theorem 2. For a given K, (4.14) is jointly concave in PH and PL.

Since the cross derivatives ∂2Π
∂PH∂PL

and ∂2Π
∂PL∂PH

are equal to zero, the proof of
Theorem 2 follows directly from the second derivatives (4.18) and (4.21).

Proposition 22. For a fixed K, the optimal PL can be represented as

P ∗
L(K) = PL0 +

1

2βF (K − dL)

K∫

K−dL

(K − z)f(z)dz (4.22)

where PL0 = 1
2β

(α + βcL).

Proposition 22 follows directly from (4.20). PL0 is the optimal price given that
the marginal cost only consists of unit production cost cL and sunk capacity costs.
However, P ∗

L cannot be given as a closed-form function of K.

Conjecture 2. The optimal selling price for L satisfies the following condition:

1

2β
(α + βcL) = P 0

L ≤ P ∗
L ≤ P 1

L =
1

2β
(α + β(c + cL)) .

The intuition of this conjecture is that a decision maker who simultaneously
optimizes prices and capacity takes into account that potential excess capacity
of H can be used to produce L. The inequality P 0

L ≤ P ∗
L directly follows from

Proposition 22. However, a proof of the inequality P ∗
L ≤ P 1

L remains outstanding
and is subject to future research.

The first-order derivative of (4.14) w.r.t. K gives

∂Π

∂K
= (PH − cH)(1 − F (K)) + (PL − cL)(F (K) − F (K − dL)) − c. (4.23)
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The interpretation of this equation is obtained by rearranging the first-order
condition ∂Π

∂K
= 0 into

(PH−cH−c)(1−F (K))+(PL−cL−c)(F (K)−F (K−dL)) = cF (K−dL). (4.24)

which states that the optimal K has to be set such that expected underage costs
(left-hand side) are equal to expected overage costs (right-hand side).

Even for the simple single-product price and capacity decision problem a unified
solution framework and a general understanding of what drives the tractability of
this problem is lacking (Kocabiyikoglu and Popescu, 2007) and the effort required
to compute P ∗

H , P ∗
L and K∗ depends on structural properties of the demand

function. The following theorems provide properties that guarantee the existence
and uniqueness of an optimal solution.

Theorem 3. If the distribution F (z) satisfies that its failure rate h(z) = f(z)
1−F (z)

,

is increasing and concave in z, then for a given PL, Π(K,P ∗
H(K), PL) is quasi-

concave and has a unique maximum K∗(PL).

The proof is presented in Appendix A.13. The next results show that the existence
of a unique solution can be guaranteed by a lower bound of the lost sales elasticity.

Theorem 4. If εs(PL, K) ≥ 1, then for a given PH which is sufficiently large,
Π(K,PH , PL) is jointly concave in K and PL. Since P ∗

H(K) is concavely increas-
ing in K, there exists a unique optimal solution (K∗, P ∗

H , P ∗
L).

The proof is presented in Appendix A.14. If the problem satisfies the conditions of
Theorem 3 and 4, the optimal solution can be determined efficiently. Otherwise,
an exhaustive numerical search is needed.

The following section presents an algorithm in order to determine the optimal
prices P ∗

H and P ∗
L as well as the optimal capacity C∗ efficiently for all profit

functions satisfying these conditions.

4.3.3 Solution procedure

The algorithm starts with the initial solution (K0, P 0
H) obtained from the single-

product problem of Section 4.2 that considers H as the single product. The
initial values K0 and P 0

H are determined by using the algorithm from Section
4.2.3. Given the initial solution (K0, P 0

H), the algorithm calculates P 0
L based on

equation (4.22) which is the input to update K0 to K1. The algorithm stops when
the absolute difference |K0 −K1| falls below a precision criterion ε. Termination
of the algorithm is assured by Theorem 4.

Algorithm
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Calculate the initial values P 0
H and K0 from (4.7) and (4.8) by using

the algorithm from Section 4.2,

Calculate P 0
L := PL(K0) by using (4.22),

REPEAT

Calculate K1 := K(P 0
L) using (4.24),

Calculate P 1
H := P ∗

H(K0) using (4.19),

Calculate P 1
L := P ∗

L(K0) using (4.22),

Calculate δ := |K0 − K1|,
K0 := K1, P 0

H := P 1
H and P 0

L := P 1
L

UNTIL δ ≤ ε

P ∗
H := P 0

H , P ∗
L := P 0

L, and K∗ := K0

END

4.3.4 The benefits of customer segmentation

This section presents a numerical example that illustrates the impact of customer
segmentation on price and capacity decisions as well as its benefit compared to a
single-price strategy. Two strategies are compared. The first strategy denoted as
CS (customer segmentation) presumes that the firm is able to segment the market
and can differentiate selling prices between the two customer classes. The second
strategy denoted as NCS (non-customer segmentation) presumes that the firm is
able to segment the market but cannot discriminate prices so that a single price
is charged for both customer classes. Note that NCS is a special case of CS with
the assumption that PH = PL.

Consider H-class demand to be characterized by Ψ which is uniformly distributed
on the interval [500, 1500] and sensitivity coefficient b = 20. L-class demand is
deterministic with dL = α − βPL, α = 1000, and β = 40. It is assumed that
the expected market potential of H and the market potential of L are identical
whereas the price sensitivities of both customer classes deviate. In this example,
the price-sensitivity of L-class customers is larger than the price-sensitivity of
H-class customers. This assumption is reasonable when L-class customers are
more price-oriented and have (on average) a lower willingness to pay. The unit
production costs are identical for both products with cH = cL = 2, hence, price
discrimination is considered.

To demonstrate the impact of capacity costs, c is varied between 1 and 19. In
particular, a value of c = 1 corresponds to inexpensive capacities while a value
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of c = 19 corresponds to expensive capacities. The firm simultaneously decides
on selling prices PH and PL charged for each customer class as well as capacity
acquisition C.

Impact of customer segmentation on selling prices

Figures 4.3 illustrates the impact of price discrimination on selling prices for
different capacity costs c. It can be observed that P ∗, the optimal single price
under NCS, is interleaved between P ∗

H and P ∗
L which are the optimal prices under

CS. In case of NCS, the firm faces a lost gain of P ∗
H−P ∗ for each H-class customer

served. On the other hand, the CS-price that is charged to L-class customers is
lower than P ∗. Although the firm additionally gains an extra payment of P ∗−P ∗

L

per unit sold, it indirectly faces lost sales from any customers who is not willing
to pay the higher price.
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Figure 4.3: Impact of customer segmentation on price

For both strategies CS and NCS, the selling prices increase with increasing ca-
pacity costs c. At first sight, this is an intuitive result because increasing costs
have to be balanced by increasing prices. However, we will see in case of higher
uncertainty this result does not hold in general.

Another effect which can be observed from Figure 4.3 is that increasing capacity
costs have different impacts on P ∗

H and P ∗
L. The price curves indicate that P ∗

H

increases more in c than P ∗
L. This effect is intuitive because of the higher price-

sensitivity of L-class customers. For example, if both prices increase by one unit,
then the demand decrease of L-class customers is larger than the one of H-class
customers.

Another finding is that for expensive capacities L appears to be unprofitable.
When c is larger than 15, the selling price is lower than the total costs, i.e.,
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P ∗
L < c + cL. At first sight, it appears to be unprofitable to serve L-class cus-

tomers. However, the deterministic nature of L-class demand reduces the risk of
overcapacity of the entire system, such that L-class demand serves as a safety
buffer for the higher priority H-class demand and as a real option, which is an-
ticipated by the decision maker.
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Figure 4.4: Impact of customer segmentation on capacity

Impact of customer segmentation on capacity acquisition

Figure 4.4 illustrates the capacity effect. Two results can be observed: first,
capacity acquisition decreases in capacity cost and second, CS leads to higher
capacity acquisition than NCS. From economic theory it is known that price
discrimination enables a firm to capture more consumer surplus which, in turn,
leads to increasing demand. In order to satisfy this demand the firm has to
increase capacities.

The effect that the capacity gap between CS and NCS decreases for c = 1, . . . , 5
and then increases from c = 5, . . . , 19 results from the positive lower bound of
the uniform distribution. If c is lower than 5, capacity acquisition is sufficiently
cheap such that it is beneficial to acquire a capacity level which is able to satisfy
all H-class demand, independent of demand realization, i.e., C∗ ≥ B − bPH . In
this case, expected underage costs of H are equal to zero. However, if c ≥ 5,
then C∗ < B − bPH , i.e., there is a positive probability of H having a capacity
shortfall such that the capacity gap between CS and NCS increases in c.

Benefit of customer segmentation

Figure 4.5 illustrates the performance improvement of CS compared to NCS.
The results indicate that the difference in profit between CS and NCS is roughly
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Figure 4.5: Impact of customer segmentation on profit

constant for different capacity costs, and it appears that capacity costs do not
influence the performance improvement of CS compared to NCS.

Impact of demand uncertainty

In order to analyze the impact of demand uncertainty on price and capacity
decisions, the CV is varied. For uniformly distributed random variables on the

interval [A,B], it follows that µ = A+B
2

and σ =
√

(B−A)2

12
. Up to now, Ψ has

been uniformly distributed on the interval [500, 1500], which corresponds to a CV
= 0.28. If we increase the interval to [200, 1800] the mean remains unchanged
but the CV increases to CV = 0.46.

Impact of demand uncertainty on selling prices

Figure 4.6 illustrates the impact of demand uncertainty and capacity costs on
selling prices for both CS and NCS. The dashed curves represent the optimal
prices given a moderate demand uncertainty with CV= 0.28, while the solid
curves represent the optimal prices given that demand uncertainty is high with
CV= 0.46. Similar to Figure 4.3, the two curves in the middle represent the
optimal single price under NCS whereas the two upper and lower curves represent
the prices under CS.

First, the most obvious result is that all selling prices, in case of CS and NCS
decrease with increasing demand uncertainty. The intuition of this effect is the
same as analytically shown in Section 4.2. Increasing demand uncertainty implies
a higher risk of overage and underage costs. Let (C∗, P ∗

H , P ∗
L) be the optimal

solution for a particular CV1. If the CV increases to a larger value CV2, it follows
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Figure 4.6: Impact of demand uncertainty on prices of
CS and NCS

that the expected sales decrease. In order to decrease this risk, it is optimal to
decrease the price, which, in turn, leads to an increase in expected demand and,
additionally, to an increase in expected sales.

Another result is that in case of NCS and high demand uncertainty the price
curve stops at c = 13 which implies that production is not beneficial when c

exceeds 13. This also can be seen from Figure 4.8, if capacity investment costs
are larger than 13, then the expected profit of a single-pricing strategy drops
to zero. Consequently, a product which is unprofitable under a single-pricing
strategy can become profitable when the firm is able to discriminate prices.

An effect that could not be observed in case of moderate demand uncertainty,
i.e., CV = 0.28 is that selling prices are not necessarily monotonous in c. For CV
= 0.28, it appears that prices are monotonously increasing in c. For CV = 0.46
and low values of c, however, P ∗

H increases in c, and for large values of c, P ∗
H

decreases. The cause of these rather counter-intuitive results can be explained
by two covering effects influencing P ∗

H . Recall Proposition 21 states that

P ∗
H(K) =

1

2b



µ + b(c + cH) −
B∫

K

(z − K)f(z)dz



 . (4.25)

To gain an intuition of these two effects, we take a look at the framework of a
decentralized decision-making where price and capacity are optimized indepen-
dently. Consider that PH is optimized without taking capacity restrictions into
account and for simplification let PL = cL, therefore, P ∗

H = 1
2b

(µ + b(c + cH)).
It is easy to see that P ∗

H increases in c. On the other hand, for a given PH it

133



4.3 The price-setting Newsvendor model with customer segmentation

follows from (4.23) that K = F−1
(

PH−c−cH

PH−cH

)

decreases in c which implies that

the expected shortfall Θ(K) =
B∫

K

(z−K)f(z)dz (see Proposition 21) is increasing.

Therefore, from (4.25) it follows that the two covering effects have a direct and
an indirect effect on P ∗

H . The direct effect leads to an increase of P ∗
H and is linear

in c whereas the indirect effect leads to a decrease of P ∗
H . From Figure 4.6 it

can be seen that with increasing c the indirect impact is stronger than the direct
impact which means that the selling price decreases in c.

Impact of demand uncertainty on capacity acquisition
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Figure 4.7: Impact of demand uncertainty on capacity of
CS and NCS

Figure 4.7 illustrates the impact of demand uncertainty on capacity investments
for both CS and NCS. The solid curves represent optimal capacity acquisition
when the demand uncertainty is high (CV = 0.46) and the two dashed curves
represent optimal capacity decisions under a moderate demand uncertainty (CV
= 0.28). The entirely solid and dashed curves represent the CS-strategy, while
the dotted solid and dotted dashed curves represent the NCS-strategy.

As with moderate demand uncertainty, capacity acquisition decreases in capacity
costs. Moreover, it can be observed that for inexpensive capacities, increasing de-
mand uncertainty leads to increasing capacity acquisition, contrary to expensive
capacities where increasing uncertainty leads to a capacity decrease.

The intuition behind this effect is a different ratio of underage and overage costs
between inexpensive and expensive capacities. For inexpensive capacities costs of
having a capacity shortfall are larger than costs of having overcapacities. There-
fore, an increasing demand uncertainty increases the risk of not being able to
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satisfy demand, which, in turn, leads to a higher capacity buffer. However, this
ratio changes for expensive capacities where the costs of a having overcapacities
exceed the costs of having a capacity shortage, such that an increase in uncer-
tainty reduces the capacity buffer.

For both CS and NCS, the point where the solid curve intersects the dashed curve
represents the ratio where overage costs are equal to underage costs. While this
point is reached at c = 15 for CS, it is already reached at c = 9 for NCS, which
implies that a firm applying CS becomes more flexible in its demand management
and achieves a higher profitability than a firm applying NCS.

Impact of demand uncertainty on the benefit of customer
segmentation
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Figure 4.8: Impact of demand uncertainty on the perfor-
mance of CS and NCS

Figure 4.8 illustrates the performance improvement of CS compared to NCS and
the impact of demand uncertainty. The results indicate that the performance
improvement of CS compared to NCS is roughly identical for inexpensive and
expensive capacities regardless of the degree of uncertainty.

In summary, this example illustrated the impact of CS on price and capacity
decisions and the benefit compared to a NCS strategy. CS does not only influence
the demand but also affects capacity decisions. By applying CS a firm achieves a
higher flexibility in supply and demand management than by NCS. In particular,
customized pricing entails a different price for each customer class according to
their respective willingness to pay. Resulting flexibility is higher and yields higher
profits for both products, and it changes the ratio of underage and overage costs
in such a way that it becomes more expensive not to serve a customer than to
have excess capacities (underage costs exceed overage costs).

135



4.3 The price-setting Newsvendor model with customer segmentation

4.3.5 The benefits of resource centralization

This section considers that all business activities concerning different customer
classes are managed by independent sales managers. These sales managers are
responsible for setting the selling prices and reserving capacities. Traditionally,
sales managers plan their activities independent. It is known that decentralized
planning yields only suboptimal performance compared to an integrated planning
approach. It is yet unknown, however, how far decentralized decisions deviate
from simultaneous decisions, especially, how pricing and capacity decisions de-
pend on each other, and how much performance improvement can be achieved
by simultaneous decision-making.

C H

C L

D ( P H , Y )

d ( P L )

C

D ( P H , Y )

d ( P L )

Figure 4.9: Decentralized versus simultaneous planning

This section compares decentralized decision-making where two sales managers,
which are either responsible for H or L independently determine required capac-
ities (dedicated capacities) and selling prices to simultaneous decision-making.
Figure 4.9 illustrates the relationship between capacity and demand class alloca-
tion in case of decentralized and simultaneous decision-making.

In decentralized planning it is considered that sales manager H maximizes the
expected profit by optimizing selling price PH and capacity CH . This decision
problem corresponds to the single-product price-setting newsvendor problem pre-
sented in Section 4.2. Sales manager L, on the other hand, faces a deterministic
price-sensitive demand. By setting a particular selling price PL, he is able to
determine the accurate capacity CL required to produce adequate supply.

Table 4.1 shows the profit functions as well as the optimal price and capacity
decisions of sales manager H and L, respectively. The results for L are easy to
verify, the results for H are obtained using the results from Section 4.2.

As in the previous section, the following numerical example is analyzed. The
H-class demand is characterized by Ψ which is uniformly distributed. In the first
case, Ψ is uniformly distributed on the interval [500, 1500] which corresponds to
a CV= 0.28 and in the second case, Ψ is uniformly distributed on the interval
[200, 1800] which corresponds to a CV= 0.46. The sensitivity coefficient is b =
20. L-class demand is deterministic with α = 1000 and β = 40 and the unit
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Sales manager H Sales manager L

ΠH = (PH − cH − c)(µ − bPH)

−c
K∫

A

(K − z)f(z)dz ΠL = (PL − cL − c)(α − βPL)

−(PH − cH − c)
B∫

K

(z − K)f(z)dz

P ∗
H = µ+b(c+cH)

2b
− 1

2b

B∫

K

(z − K)f(z)dz P ∗
L = α+β(c+cL)

2β

K∗ = F−1
(

PH−c−cH

PH−cH

)

d∗
L = α−β(c+cL)

2

C∗
H = K∗ − bP ∗

H C∗
L = d∗

L

Table 4.1: Profit function, optimal price, and capacity decision of H and L under
decentralized planning

production cost are cH = cL = 2. In order to show the impact of capacity
investment costs, c is varied between 1 and 19.

Impact of demand uncertainty on selling prices

Figures 4.10 and 4.11 illustrate the impact of capacity investment costs (c =
1, . . . , 19) and uncertainty (CV= 0.28 and CV= 0.46) on PH and PL in case of
decentralized decision-making (in the figures PHd

and PLd
are denoted by PHd

and PLd) and in case of simultaneous planning (in the figures P ∗
H and P ∗

L are
denoted by PH* and PL*).

It can be observed that the impact of simultaneous decision-making compared
to decentralized decision-making is opposed between PH and PL. While PLd

is
lower than P ∗

L, PHd
is larger than P ∗

H . The intuition of these price effects is risk
reduction by demand adjustments. A central decision maker anticipates that
the production of the less prioritized product L can use excess capacity of H,
which decreases the risk and thus the costs of overcapacity. As a consequence PL

decreases because capacity costs are partially sunk. On the other hand, reducing
the risk of overcapacity decreases overage costs for H which implies that PH

increases. Since in case of decentralized decision-making uncertainty does not
influence PL, the price curve PLd for CV = 0.28 is equal to the price curve PLd
for CV = 0.46.
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PH is not monotonous in c for the same reason as explained in the previous
section. Increasing capacity cost causes two overlapping pricing effects. The
first effect is a direct effect which leads to a price increase. The second indirect
effect follows from increasing overage costs and expected shortages, and leads to
a price decrease. Depending on which effect is stronger, PH increases or decreases
in capacity costs (see explanation to Figure 4.6).

Additionally, the price difference between decentralized and simultaneous decision-
making is larger for expensive capacities than for inexpensive capacities. The
intuition behind this effect is that for expensive capacities where overage costs
are high, simultaneous decision-making and thus a more flexible use of capacity
becomes more important than for inexpensive capacities.
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Impact of demand uncertainty on capacity acquisition

Figure 4.12 illustrates the impact of capacity costs (c = 1, . . . , 19) and uncer-
tainty (CV = 0.28 and CV = 0.46) on C in case of decentralized and in case of
simultaneous decision-making (in the figures Cd and C∗ are denoted by Cd and
C*, respectively).
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Figure 4.12: Decentralized versus simultaneous planning
- impact of increasing demand uncertainty
on C

Besides the rather intuitive result that capacity decreases with increasing invest-
ment costs, it can be observed that for inexpensive capacities, a decentralized
decision-making leads to a higher capacity acquisition compared to simultaneous
decision-making, whereas for expensive capacities, the opposite effect is true. As
with prices, the intuition behind this effect is a reduction of the risk of overcapac-
ity and capacity shortage. In decentralized decision-making, both sales managers
determine dedicated capacity independently before exact demand is known. For
inexpensive capacities, where underage costs are larger than overage costs, sales
manager H acquires safety capacity in order to buffer possible demand peaks.
Since this safety capacity is determined independently from the capacity decision
of sales manager L, the total capacity by decentralized decision-making is larger
than by simultaneous decision-making. For expensive capacities where overage
costs are larger than underage costs, sales manager H acquires a capacity level
which is lower than the expected demand such that a simultaneous decision-
making reduces the risk of overcapacity.

The reason that Cd declines more for c ≥ 15 follows from the fact that a de-
centralized planning of H yields a negative expected profit so that it becomes
unprofitable to serve the H-class customer if c exceeds 15. As a consequence
CH = 0 and Cd = CL.
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Impact of demand uncertainty on the benefit of centralization

Figure 4.13 illustrates the impact of capacity costs (c = 1, . . . , 19) and uncertainty
(CV = 0.28 and CV = 0.46) on the difference between profits under decentralized
(profit-d) and simultaneous planning (profit*).
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Figure 4.13: Decentralized versus simultaneous planning
- impact of increasing demand uncertainty
on profit

The results indicate that for a given c the difference in profits between decen-
tralized and simultaneous decision-making is similar under moderate and high
demand uncertainty. This conjectures that demand uncertainty does not influ-
ence the performance improvement of simultaneous decision-making. However,
the difference in profits between decentralized and simultaneous decision-making
is larger for expensive capacities than for inexpensive capacities.

4.3.6 Summary and implications

This section investigated an extension of the price-setting newsvendor problem
when a firm is able to segment the market into two customer classes with different
willingness to pay. The firm simultaneously determines the capacity level and
two selling prices charged for each customer class in the presence of demand
uncertainty. It was assumed that customer segmentation can be achieved by
either price discrimination or product differentiation. If price discrimination is
not possible because of arbitrage and cannibalization, the firm can use product
differentiation, e.g., different brands or different quality levels in order to avoid
these effects. Product differentiation was characterized by different production
costs.
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A stochastic model was developed and analyzed that simultaneously optimizes
capacity acquisition and selling prices for each customer class. Despite a non-
convex optimization problem, structural properties were derived which showed
that under certain circumstances there exists a unique optimal solution. Based
on these results, an algorithm was developed which efficiently determines the
prices as well as the optimal capacity investment simultaneously.

The goal was to investigate the interaction of capacity planning and price deci-
sions in the presence of demand uncertainty. In particular, the benefit of price
discrimination compared to a single-pricing strategy was analyzed. In order to ex-
amine the interaction of pricing and capacity planning, we analyzed the decision
problem for different capacity costs and different levels of demand uncertainty.
It was examined that price discrimination provides a firm a higher flexibility and
thus the ability for a better matching of supply with demand.

On the one hand, customized pricing entails a different price for each customer
class according to their willingness to pay. On the other hand, the capacity
acquisition is optimally adjusted to demand. When the market environment
changes, e.g., a changing cost structure or demand uncertainty, customer seg-
mentation provides the firm a higher flexibility to respond on this. For instance,
the firm adjusts prices differently between customer classes by taking their re-
spective price-sensitivity and other demand characteristics into account. The
selling price that is charged for the customer class L which has a higher price-
sensitivity changes less than the selling price that is charged for the less price
sensitive customer class H.

In terms of capacity acquisition, it was observed that CS yields a higher capacity
acquisition than in case of NCS. Obviously, by applying CS the firm is able
to capture a higher consumer surplus which, in turn, yields a higher demand.
However, increasing demand uncertainty affects capacity decisions depending on
whether the firm applies CS or NCS. Since price discrimination leads to a higher
product profitability (i.e., the ratio of price and cost changes), it also changes
the ratio between underage and overage costs. This means that under NCS
the costs of having a capacity shortfall are larger than the costs of having excess
capacity (overage costs exceed underage costs) whereas under CS it becomes more
expensive not being able to serve a customer than to have overcapacity. Hence,
in case of NCS, increasing demand uncertainty leads to a capacity reduction
whereas in case of CS increasing demand uncertainty leads to a larger capacity
investment.

Another result is that an apparent unprofitable demand class (or product in case
of product differentiation) which is characterized by a well-predictable demand
can become profitable under simultaneous planning. This implies that by apply-
ing a two-customer-class (two-product) strategy where a low-positioned demand
class (product) is added to a high-positioned demand-class (product), a firm has
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more flexibility to reduce the risk of underage and overage costs. This leads to
a better match of supply and demand than in case of a single customer class
(product).

Furthermore, a decentralized decision-making strategy with dedicated capacities
where two sales managers decide independently on price and capacity was com-
pared to simultaneous decision-making. One result is that decentralized decision-
making has an inverse impact on the prices that are charged for H-class and
L-class customers, respectively. While the H-class sales manager underestimates
the price for H, the selling price for L is overestimated, or casually spoken, high-
class customers pay too little whereas low-class customers pay too much.

Whether capacity acquisition is larger or lower is not unique but it depends on
the value of capacity costs. For inexpensive capacities simultaneous decision-
making yields lower capacity acquisition whereas for expensive capacities it leads
to a larger capacity acquisition. The driving force behind this is a reduction
of uncertainty. For inexpensive capacities simultaneous decision-making reduces
the risk of a capacity shortage whereas as for expensive capacities simultaneous
decision-making reduces the risk of excess capacities.

A weakness of the presented model is that the capacity allocation to both demand
classes is exogenously given. However, depending on the parameter setting it
might be better to satisfy L-demand first. In order to avoid preallocation of
capacity, the capacity allocation has to be determined endogenously based on cost
structure and demand characteristics of both products. A further restriction of
the model is the assumption of a linear price response function. It is questionable
whether the results also hold for arbitrary price response functions. Moreover, in
practice it is often difficult to integrate price and operations decisions perfectly
because these decisions are made by independent organizational units. It is rather
realistic to develop incentive systems which induce organizational units to decide
in compliance with the overall company objective.
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5 Conclusions and outlook

This chapter summarizes the major findings of this thesis and discusses possible
future research.

5.1 Conclusions

This thesis contributed to the emerging field of literature investigating the in-
teraction between revenue management methods and operations management
activities. It centered around two major research topics: the interaction between
dynamic pricing and inventory replenishment in the presence of fixed ordering
costs (Chapter 3) and the impact of customer segmentation on price and capac-
ity decisions in a coordinated planning approach and in the presence of uncertain
demand (Chapter 4).

Chapter 3 focused on the interaction of dynamic pricing on inventory replen-
ishment in an EOQ framework. To incorporate price decisions into the EOQ
problem, which is concerned with answering the question of how much and equiv-
alently how frequently inventory should be replenished, the demand rate was for-
mulated as a price-response function. Since continuous time was assumed, this
formulation basically allowed to change prices at any time t. The objective was
to maximize the average profit by simultaneously optimizing the pricing strategy
and the replenishment policy.

In Section 3.3, EOQ models incorporating dynamic pricing in a monopoly were
developed and analyzed. Section 3.3.1 considered continuous price adjustments
and Section 3.3.2 generalized the model to the case that the number of price
changes over an order cycle are optimized. Besides providing further evidence for
the benefit of dynamic pricing, its impact on order quantity and order frequency
was analyzed.

The major finding of this section was that the trade-off between fixed ordering
and inventory holding costs yields an increasing selling price over an order cycle.
Moreover, it was shown that both the optimal order quantity and the optimal
cycle length increase with the number of price changes. The general intuition
behind this effect is to achieve operational efficiency. In the presence of fixed
ordering costs and inventory holding costs it is beneficial to increase demand when
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inventories are high in order to reduce inventories earlier and thus reduce holding
costs. Furthermore, it was shown that the solution obtained from maximizing
the average profit is approximately optimal with respect to maximizing the NPV
which is widely accepted as the right framework for valuing inventories.

In Section 3.4 the model of Section 3.3 was extended. It investigated the impact
of a supplier quantity discount. Considering that the supplier offers an all-units
quantity discount, the benefit of coordinated decision-making was analyzed where
the retailer optimizes a dynamic pricing strategy and replenishment policy si-
multaneously. The results were compared to a decentralized decision framework
where selling price and replenishment policy are optimized independently.

While previous findings stated that decentralized decision-making leads to an
underestimation of selling prices, the major finding of this section was that this
property does not necessarily hold if the supplier offers an all-units quantity
discount. In this case, two effects influence the outcome of decision-making: the
overhead cost effect and the discount effect. The overhead cost effect results
from the fact that a decision maker who decides on the price only by taking into
account variable procurement costs and disregards fixed ordering and inventory
holding costs underestimates total relevant costs. This leads to a lower selling
price, a higher demand rate, and a larger lot-size. The discount effect, on the
other hand, results from the fact that a decision maker does not take a supplier
quantity discount into account. Therefore, costs are overestimated which, in
turn, yields an overestimation of the selling price. Depending on which effect
dominates, selling price, demand rate, and order quantity increase or decrease.

Section 3.5 analyzed a multiple product dynamic pricing and replenishment prob-
lem with limited storage capacity. The major extension to the previous sections
was to determine the optimal staggering of the order-releases. Since this problem
is NP-complete already without pricing issues, a heuristic approach was consid-
ered assuming that all products are replenished once in an order cycle (com-
mon cycle approach). A two-stage optimization model was developed integrating
pricing and replenishment considerations. Furthermore, decentralized decision-
making where selling prices and replenishment policies are optimized sequentially
was compared to coordinated decision-making where a central decision maker
simultaneously optimizes selling price and replenishment policy. Moreover, con-
stant and dynamic pricing were distinguished.

The major finding of this section was that, while for both decentralized decision-
making and centralized decision-making with a constant price the selling prices
are continuous over an order cycle, in case of dynamic pricing there are points of
discontinuity. At times when the product is ordered, the price for this product
instantaneously decreases while the prices of all other products instantaneously
increase. This opposed pricing effect yields a better matching of demand resulting
in higher revenues with available inventory and thus an optimal utilization of the
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limited capacity.

Section 3.6 investigated the interaction of dynamically changing prices and dif-
ferent replenishment strategies in a competitive environment. Two retailers were
allowed to change their sales quantity dynamically over time and the market price
was sensitive with respect to the total sales quantity. The retailers differed in
their replenishment strategy. Retailer 1 followed an EOQ policy whereas retailer
2 ordered just-in-time. The primary goal of this study was to analyze the optimal
replenishment policy and the equilibrium output strategy. A differential game
was developed where both retailers repeatedly interact over the order cycle and
an open-loop Nash equilibrium was derived. Output and replenishment policies
were optimized by a two-stage model.

The major findings of this section are that output decisions are not only influenced
by the competitor’s output but also by the current inventory level of the EOQ
retailer. Since the inventory level decreases over an order cycle, the optimality
conditions change continuously. It was shown that both retailers follow contrary
output strategies over an order cycle. The EOQ retailer, driven by inventory
holding costs, decreases his market share over an order cycle. This strategy is
caused by a larger inventory reduction right after an order and leads to lower
holding costs. Although retailer 2 followed an JIT strategy and both demand
rate and cost structure were stationary, the output of retailer 2 increased over
an order cycle. Moreover, we showed that depending on the cost parameters, the
retailers do not necessarily compete over the entire order cycle. For the JIT re-
tailer, it might be beneficial not to serve the market permanently but only when
the output of the EOQ retailer is low. Therefore, the EOQ retailer is partially
a monopolist. Furthermore, a numerical example indicated that while EOQ and
JIT replenishment might yield identical profits in a monopoly environment, un-
der competition the average profit of the EOQ retailer is larger than the average
profit of the JIT retailer. The intuition is that the EOQ retailer has a competitive
advantage by ordering all units at the beginning of an order cycle such that he
obtains similar advantages like a Stackelberg leader by a sunk cost effect.

The contribution of Chapter 4 was to investigate the benefits of customer segmen-
tation when price and capacity decision are simultaneously made in the presence
of demand uncertainty. Customer segmentation was achieved either by price
discrimination or product differentiation. In Section 4.2, existing results of the
price-setting newsvendor problem with a single demand class were reviewed. The
major contribution resulted from Section 4.3. A stochastic model was developed
that distinguishes two demand classes differing in their respective price sensitivity.
This model integrates price differentiation and capacity decision in a simultaneous
optimization approach and is characterized by a non-convex structure. Structural
properties were derived which showed that under certain circumstances a unique
optimal solution exists. Based on these results, an algorithm was developed

145



5.1 Conclusions

which efficiently determines the optimal prices as well as the optimal capacity
investment.

The major findings of this chapter can be concluded as follows. Customized
pricing which is integrated in capacity planning provides a bilateral capability to
match supply with demand. On the one hand, the firm charges different prices
to different groups of customers with the ability to charge a higher price to the
group with a less price-elastic demand and a relatively lower price to the group
with a more elastic demand. Adopting such a strategy, the firm can increase its
sales and its revenues. On the other hand, the firm optimally determines capacity
and allocates it to the respective customer demand.

It is known that price discrimination leads to an increasing demand, which, in
turn, leads to increasing capacity acquisition. However, price discrimination does
not only influence the demand side but it also changes the ratio between overage
and underage costs, which is relevant for the capacity decision. Due to increas-
ing product profitability (the firm can charge a more appropriate price to each
customer class) underage costs increase, which additionally leads to increasing
capacity acquisition.

Moreover, customer segmentation might change the influence of increasing de-
mand uncertainty. Since customer segmentation changes the ratio between un-
derage and overage costs in such a way that underage costs increase, there exist
parameter settings where increasing uncertainty yields decreasing capacity ac-
quisition in a single-pricing strategy (without customer segmentation) whereas
in case of customer segmentation capacity acquisition increases.

Finally, simultaneous decision-making on price and capacity was compared to
decentralized decision-making where two sales managers decide independently on
price and capacity and capacity was dedicated in advance. Dedicated capacities
yield that a firm loses its flexibility to respond to uncertainties across products
although all products are produced with the same resource. A consequence is a
mismatch of supply and demand: capacity is used to serve a low-class customer
while the demand of a high-class customer is lost. This cannot occur in the case
of simultaneous decision-making. Another effect of decentralized decision-making
is that the sales manager who is responsible for the high-class demand underes-
timates the price whereas the selling price charged to the low-class demand is
overestimated. This mismatch leads to lower profit margins and higher risk of
excess capacity and capacity shortfall.

Concluding, the integration of customer segmentation and capacity planning pro-
vides a bilateral and thus a higher flexibility to match supply with demand. A
two demand-class strategy does not only lead to increasing demand but, in addi-
tion, it provides an option to reduce risk of excess capacity and capacity shortfall
by a more flexible control of demand.
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5.2 Outlook

While there are many remaining challenges in the two research streams operations
management and revenue management, there is an increasing awareness of the
importance of their integration. A significant portion of papers that investigate
joint production/procurement and pricing decisions is based on either EOQ or
newsvendor-type frameworks. However, besides more specific research directions
provided in Chapter 3 and Chapter 4 based on extensions of the presented models,
extensions exist which have not been covered yet.

An important element in terms of dynamic pricing disregarded in this thesis
is the consideration of strategic customer behavior. An interesting direction of
research is to investigate pricing and replenishment strategies when it is known
that customers behave strategically, i.e., they buy earlier in expectation that
the selling price will increase or they wait in expectation that the price will
decrease. There are a plenty of papers that examine dynamic pricing in the
presence of strategic customer behavior. However these papers do not consider
inventory or capacity issues (Besanko and Winston, 1990). There are very few
papers analyzing joint inventory and dynamic pricing problems with a one-time
order, e.g., see Su (2007) and Su and Zhang (2007). However, an interesting
but challenging research question is to investigate joint inventory and dynamic
pricing problems with replenishment option and the assumption that customers
act strategically.

All models analyzed in this thesis assumed that the supplier or manufacturer
is completely reliable such that all units ordered are delivered on time. It is
known from literature that the integration of yield uncertainty into inventory
management has a significant impact on replenishment decisions, e.g., see Henig
and Gerchak (1990), Bollapragada and Morton (1999), Inderfurth and Transchel
(2007). An interesting direction for research is to analyze the interaction of
pricing and replenishment in the presence of uncertain supply, e.g., see Li and
Zheng (2006).

For large companies pricing and operations decisions are delegated to indepen-
dent organizational units. Operations management is involved in purchasing raw
materials and components, or in setting up production capacity and is evaluated
as a cost center seeking for lower costs and operational efficiency. On the other
hand, marketing is making decisions on prices for finished goods or services and
is evaluated as revenue center. It is extremely unlikely that these both decision-
making units will work together perfectly without the right incentives. However,
marketing efforts to create demand can be wasted if supply is suboptimal, and
vice versa. An interesting research direction is to analyze contract mechanisms
coordinating marketing and operations activities in order to achieve the overall
maximal company profit. There is not much research on this topic. Two papers
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that investigate intra-firm coordination of marketing and operations by coordi-
nating contracts are Li and Atkins (2002) and Jerath et al. (2007).

Ultimately, the systematic integration of supply and demand-oriented activities
is still in an emerging stage, both in academia and in business practice. The good
news is that researchers and managers recognized the possibilities such that there
is enormous research potential to capture a full understanding of this integration.
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A Proofs

A.1 Proof of Proposition 2

Proof. An optimal solution of the optimization problem (3.29)-(3.31) has to sat-

isfy the following Karush-Kuhn-Tucker conditions: ∂L
(N)

∂Pi
= 0, λ∗

i (P̄ − Pi) = 0,

Pi ≥ 0, and λi ≥ 0 as well as ∂L
(N)

∂ti
= 0, µi(ti − ti−1) = 0, ti ≥ 0, and µi ≥ 0 for

all i = 1, · · · , N .

The first partial derivative of (3.33) w.r.t. Pi gives

∂L(N)

∂Pi

=
1

tN

(

D(Pi) + (Pi − c − h

2
(ti + ti−1))D

′(Pi)(ti − ti−1)

)

− λi.

If λi > 0 for at least one i, then the associated constraint is binding, i.e., P ∗
i = P̄ .

Therefore, we get

∂L(N)

∂Pi

= 0 ⇔ (P̄ − c − h

2
(ti + ti−1))D

′(P̄ )(ti − ti−1) − tNλi = 0. (A.1)

From (3.33) it follows that (P̄ − c − h
2
(ti + ti−1)) ≥ 0, otherwise LN is negative.

Since ti − ti−1 ≥ 0 and D′(P̄ ) < 0 it follows that (P̄ − c− h
2
(ti + ti−1))D

′(P̄ )(ti −
ti−1) < 0. Thus, in order to satisfy (A.1), λi has to be negative, which violates
the Karush-Kuhn-Tucker conditions. Therefore, P ∗

i = P̄ is not optimal, λ∗
i = 0,

and the optimal selling price is characterized by the first-order condition

P ∗
i +

D(P ∗
i )

D′(P ∗
i )

= c +
h

2

(
t∗i + t∗i−1

)
, for i = 1, · · · , N. (A.2)

Since t∗i − t∗i−1 ≥ 0 for all i = 1, · · · , N , the right-hand side of (A.2) increases in i

so that we need to show that the left-hand side of (A.2) is increasing in Pi. The
first derivative of the left-hand side is

∂

∂P ∗
i

(

P ∗
i +

D(P ∗
i )

D′(P ∗
i )

)

= 2 − D′′(P ∗
i )D(P ∗

i )

(D′(P ∗
i ))2

.

With the assumption that 2 − D′′(P ∗

i )D(P ∗

i )

(D′(P ∗

i ))2
≥ 0, it follows that P ∗

i increases in i,

i.e., P ∗
i−1 ≤ P ∗

i .
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A.1 Proof of Proposition 2

In order to show that the prices are strictly increasing in i, which equivalently
gives that t∗i < t∗i+1, we analyze the first partial derivative of (3.33) w.r.t. ti:

∂L(N)

∂ti
= 0 ⇔

(Pi − c − hti)D(Pi) − (Pi+1 − c − hti)D(Pi+1) + tN(µi − µi+1) = 0, (A.3)

t∗i =
(Pi − c)D(Pi) − (Pi+1 − c)D(Pi+1)

h(D(Pi) − D(Pi+1))
+

tN(µi − µi+1)

h(D(Pi) − D(Pi+1))
.(A.4)

If P ∗
i is not strictly increasing in i, then there exists at least one i where P ∗

i = P ∗
i+1.

Therefore, from (A.2) it follows that t∗i−1 = t∗i = t∗i+1, which, in turn, gives that
µ∗

i > 0 and µ∗
i+1 > 0 and from (A.3) we get that µ∗

i = µ∗
i+1. Now, we assume

that P ∗
i−1 < P ∗

i = P ∗
i+1 < P ∗

i+2 (however, an analogous argumentation holds for
the case where P ∗

j−1 < P ∗
j = P ∗

j+1 = · · · = P ∗
i = P ∗

i+1 < P ∗
i+2).

From (A.2) it follows that t∗i−2 < t∗i−1 = t∗i = t∗i+1 < t∗i+2 and thus, µ∗
i−1 = µ∗

i+2 =
0. Moreover, from (A.4) we get

t∗i−1 =
(Pi−1 − c)D(Pi−1) − (Pi − c)D(Pi)

h(D(Pi−1) − D(Pi))
− tNµi

h(D(Pi−1) − D(Pi))
(A.5)

and

t∗i+1 =
(Pi+1 − c)D(Pi+1) − (Pi+2 − c)D(Pi+2)

h(D(Pi+1) − D(Pi+2))
+

tNµi+1

h(D(Pi+1) − D(Pi+2))
. (A.6)

Let R(P ) := (P−c)D(P ). The second-order derivative is R′′(P ) = 2D′(P )+(P−
c)D′′(P ). By the assumption that 2−D′′(P ∗

i )D(P ∗

i )

(D′(P ∗

i ))2
≥ 0 ⇔ 2D′(P )2−D(P )D′′(P ) ≥

0, it follows that R′′(P ) ≤ 0, i.e., R(P ) is a concave function in P . Using the
properties that D(P ) is decreasing and convex in P and R(P ) is concave in P ,
from (A.2) it follows that R′(P ∗

i ) < 0 and the following inequalities hold

(P ∗
i−1 − c)D(P ∗

i−1) − (P ∗
i − c)D(P ∗

i ) < (P ∗
i+1 − c)D(P ∗

i+1) − (P ∗
i+2 − c)D(P ∗

i+2)

and
h(D(P ∗

i−1) − D(P ∗
i )) > h(D(P ∗

i+1) − D(P ∗
i+2)).

Figure A.1 illustrates the functions D(P ) and R(P ) where A1 = (Pi−1−c)D(Pi−1)−
(Pi−c)D(Pi), B1 = D(Pi−1)−D(Pi), A2 = (Pi+1−c)D(Pi+1)−(Pi+2−c)D(Pi+2),
and B2 = D(Pi+1) − D(Pi+2). Therefore, we get

(P ∗
i−1 − c)D(P ∗

i−1) − (P ∗
i − c)D(P ∗

i )

h(D(P ∗
i−1) − D(P ∗

i ))
<

(P ∗
i+1 − c)D(P ∗

i+1) − (P ∗
i+2 − c)D(P ∗

i+2)

h(D(P ∗
i+1) − D(Pi+2))

.

(A.7)
Since t∗i−1 = t∗i+1 and µ∗

i = µ∗
i+1 by using (A.7) it follows that (A.5), (A.6),
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D ( P )

( P - c ) D ( P )

PP i - 1 P i   = P i + 1 P i + 2

A 1

A 2

B 1

B 2

Figure A.1: Functions D(P ) and (P − c)D(P )

and µi ≥ 0 cannot be valid at the same time so that the Karush-Kuhn-Tucker
conditions are violated. Therefore, P ∗

i < P ∗
i+1 for all i = 1, · · · , N − 1.

A.2 Proof of Proposition 4

We simplify the notation of equation (3.46) by substitution of the coefficients
A3, A2, A0.

Π
′

N(tN) :=
4N2 − 1

N2
︸ ︷︷ ︸

A3

t3N −6(a − bc)

hb
︸ ︷︷ ︸

A2

t2N +
24F

h2b
︸︷︷︸

A0

= 0 (A.8)

Using the Trigonometrical Solution Method (see Bronshtein et al. (2004)), the
number of real roots is established by the sign of the discriminant ∆2 := B2

2 +B3
1

with B1 = − A2
2

9A2
3

and B2 =
A3

2

27A3
3

+ A0

2A3
:

∆2 :=
48F

h4b2

N4

(4N2 − 1)2

[

3F − 4(a − bc)3

hb2

N4

(4N2 − 1)2

]

. (A.9)

If ∆2 > 0 which requires that F >
4(a−bc)3

3hb2
N4

(4N2−1)2
, (A.8) has only one real root

t∗N := r

[

−2 cosh

(
φ

3

)

+ 1

]

, (A.10)
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with

φ = arccosh

(
B2

r3

)

, r =
2(a − bc)

hb

N2

(4N2 − 1)
≥ 0,

and

B2 =
4N2

h2b(4N2 − 1)

[

3F − 2(a − bc)3

hb2

N4

(4N2 − 1)2

]

> 0.

From the characteristics of the function hyperbolic cosine (cosh(x) ≥ 1), it follows

that t∗N < 0. If ∆2 < 0 which requires that F <
4(a−bc)3

3b2h
N4

(4N2−1)
, (3.46) has exactly

three different real roots:

t1 = −2r cos

(
φ

3

)

− A2

3A3

,

t2 = 2r cos

(
π

3
− φ

3

)

− A2

3A3

,

t3 = 2r cos

(
π

3
+

φ

3

)

− A2

3A3

,

(A.11)

where r = ±
√

| −A2
2

9A2
3
| and φ = arccos

(
A3

2
27A3

3
+

A0
2A3

r3

)

. The sign of r depends on the

sign of
A3

2

27A3
3

+ A0

2A3
, i.e.,

r =

{
A2

3A3
≤ 0 :

A3
2

27A3
3

+ A0

2A3
≤ 0 ⇐⇒ F ≤ 2

3
(a−bc)3

hb2
N4

(4N2−1)2

− A2

3A3
≥ 0 :

A3
2

27A3
3

+ A0

2A3
≥ 0 ⇐⇒ F > 2

3
(a−bc)3

hb2
N4

(4N2−1)2
.

(A.12)

Analyzing the limiting values lim
t∗
N
→−∞

Π
′

N = −∞ and lim
t∗
N
→∞

Π
′

N = ∞ gives that

the slopes at the real roots with the lowest and highest value are strictly positive
whereas the slope of the middle real root is strictly negative. Thus, only the
middle real root is a local maximum. We show that the roots t1 and t2 can be
excluded for an optimal solution due to the following condition t1 < t3 < t2 or
t2 < t3 < t1. The smallest value is non-positive and the largest value is larger
than the maximum cycle length tMax

N (see (3.45)):

If F ≤ 2
3

(a−bc)3

hb2
N4

(4N2−1)2
=⇒ r = A2

3A3
= −2(a−bc)

hb
N2

(4N2−1)
and F ≤ Fmax, φ

161
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becomes:

φ = arccos













1 − 3

2

hb2

(a − bc)3

(4N2 − 1)2

N4
F

︸ ︷︷ ︸

∈[0,1]
︸ ︷︷ ︸

∈[0,1]













=⇒ φ ∈ [0,
π

2
] (A.13)

which gives that

t1 = −2(a − bc)

hb

N2

(4N2 − 1)
︸ ︷︷ ︸

≤0

·







−2 cos

(
φ

3

)

− 1

︸ ︷︷ ︸

∈[−3,−(
√

3−1)]








≥ 0,

t2 = −2(a − bc)

hb

N2

(4N2 − 1)
︸ ︷︷ ︸

≤0

·








2 cos

(
π

3
− φ

3

)

− 1

︸ ︷︷ ︸

∈[0,
√

3−1]








≤ 0,

t3 = −2(a − bc)

hb

N2

(4N2 − 1)
︸ ︷︷ ︸

≤0

·








2 cos

(
π

3
+

φ

3

)

− 1

︸ ︷︷ ︸

∈[−1,0]








≥ 0.

It is obvious that t1 > t3 and with the above profit function analysis, the profit
function has a local maximum at t3 and a local minimum at t1. Further, it can
be shown that for N ≥ 2 the value t1 exceeds the maximum cycle length tMax

N

given in (3.45).

t1 =
2(a − bc)

hb

N

(2N − 1)
︸ ︷︷ ︸

tMax
N

· N

(2N + 1)

(

2 cos

(
φ

3

)

+ 1

)

︸ ︷︷ ︸

>1 forN≥2

> tMax
N .

An equivalent proof can be made for the case F > 2
3

(a−bc)3

hb2
N4

(4N2−1)2
. Thus, the
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optimal cycle length is as follows

t∗N =







−2 (a−bc)
hb

N2

(4N2−1)

(
2 cos(π

3
+ φ

3
) − 1

)
: F ≤ 2

3
(a−bc)3

hb2
N4

(4N2−1)2

φ = arccos
(

1 − 3F
2

hb2

(a−bc)3
(4N2−1)2

N4

)

2 (a−bc)
hb

N2

(4N2−1)

(
2 cos(π

3
+ φ

3
) + 1

)
: F > 2

3
(a−bc)3

hb2
N4

(4N2−1)2

φ = arccos
(

3F
2

hb2

(a−bc)3
(4N2−1)2

N4 − 1
)

.

In the following, we show that t∗N is increasing in N , i.e.,
∂t∗N
∂N

≥ 0. If F ≤
2
3

(a−bc)3

hb2
N4

(4N2−1)2
,

t∗N = t3 = −2
(a − bc)

hb

N2

(4N2 − 1)
︸ ︷︷ ︸

u≤0

(

2 cos(
π

3
+

φ

3
) − 1

)

︸ ︷︷ ︸

v≤0

∂t∗N
∂N

=
∂u

∂N
· v + u · ∂v

∂N
.

It is easy to show that ∂u
∂N

= 4(a−bc)
hb

N
(4N2−1)2

≥ 0. The first derivative with respect
to v gives

∂v

∂N
= −2 sin

(
π

3
+

φ

3

)

· 1

3
φ′(N), with φ′(N) =

4
N(4N2−1)

√
4

3F

(a−bc)3

hb2
N4

(4N2−1)2
− 1

⇒ ∂v

∂N
= − 2 sin

(
π

3
+

φ

3

)

·
4
3

1
N(4N2−1)

√
4

3F

(a−bc)3

hb2
N4

(4N2−1)2
− 1

.
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Therefore,

∂t∗N
∂N

=
4(a − bc)

hb

N

(4N2 − 1)2
·
(

2 cos

(
π

3
+

φ

3

)

− 1

)

+
4(a − bc)

hb

N

(4N2 − 1)2

4
3
sin
(

π
3

+ φ

3

)

√
4

3F

(a−bc)3

hb2
N4

(4N2−1)2
− 1

=
4(a − bc)

hb

N

(4N2 − 1)2

︸ ︷︷ ︸

≥0

·










(

2 cos

(
π

3
+

φ

3

)

− 1

)

︸ ︷︷ ︸

∈[−1,0]

+
4
3
sin
(

π
3

+ φ

3

)

√
4

3F

(a−bc)3

hb2
N4

(4N2−1)2
− 1

︸ ︷︷ ︸

≥1










≥ 0.

The proof for F > 2
3

(a−bc)3

hb2
N4

(4N2−1)2
follows analogous.

A.3 Proof of Proposition 5

Equation (3.44) gives

P ∗
i (N, t∗N) =

1

2

(
a

b
+ c +

h

2

(2i − 1)

N
t∗N

)

,

thus,

P ∗
i (N + 1, t∗N+1) ≤ P ∗

i (N, t∗N)

⇔ 1

2

(
a

b
+ c +

h

2

(2i − 1)

N + 1
t∗N+1

)

≤ 1

2

(
a

b
+ c +

h

2

(2i − 1)

N
t∗N

)

,

⇔ t∗N+1

N + 1
≤ t∗N

N
⇔ N

N + 1
≤ t∗N

t∗N+1

. (A.14)

An equivalent transformation of the second inequality provides:

P ∗
i (N, t∗N) ≤ P ∗

i+1(N + 1, t∗N+1)

⇔ 1

2

(
a

b
+ c +

h

2

(2i − 1)

N
t∗N

)

≤ 1

2

(
a

b
+ c +

h

2

(2i + 1)

N + 1
t∗N+1

)

,
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⇔ t∗N
t∗N+1

≤ (2i + 1)

(2i − 1)

N

N + 1
∀i = 1, · · · , N. (A.15)

For proving this proposition, we have to prove (A.14) and (A.15). For F ≤
2
3

(a−bc)3

hb2
N4

(4N2−1)2
, from Proposition 4 and (3.48) we get

t∗N
t∗N+1

=

N2

(4N2−1)

(N+1)2

(4(N+1)2−1)

(
2 cos(π

3
+ φN

3
) − 1

)

(

2 cos(π
3

+ φN+1

3
) − 1

) ,

with φN = arccos

(

1 − 3F

2

hb2

(a − bc)3

(4N2 − 1)2

N4

)

.

Some algebraic transformations give

t∗N
t∗N+1

=
N

(N + 1)

(2N + 3)

(2N + 1 − 1
N

)
︸ ︷︷ ︸

θ1(N)

(
2 cos(π

3
+ φN

3
) − 1

)

(

2 cos(π
3

+ φN+1

3
) − 1

)

︸ ︷︷ ︸

θ2(N)

. (A.16)

First, we analyze the factors θ1(N) and θ2(N) separately. It is easy to show that
θ1(N) ≥ 1 for all N ≥ 1. For the factor θ2(N) we have to analyze φN . Equation

(A.13) indicates φN ∈ [0, π
2
] for all N . The factor (4N2−1)2

N4 is increasing in N .
Therefore,

• (1 − 3F
2

hb2

(a−bc)3
(4N2−1)2

N4 ) is decreasing in N ,

• φN = arccos(1 − 3F
2

hb2

(a−bc)3
(4N2−1)2

N4 ) is increasing in N ,

i.e., φN ≤ φN+1. Using φN ∈ [0, π
2
] ∀N it follows (2 cos(π

3
+ φN

3
)−1) ∈ [−1, 0] ∀N

and

φN ≤ φN+1 ⇐⇒
∣
∣
∣
∣
2 cos(

π

3
+

φN

3
) − 1

∣
∣
∣
∣
≤
∣
∣
∣
∣
2 cos(

π

3
+

φN+1

3
) − 1

∣
∣
∣
∣
. (A.17)

Thus,

θ2(N) =

(
2 cos(π

3
+ φN

3
) − 1

)

(

2 cos(π
3

+ φN+1

3
) − 1

) ≤ 1. (A.18)

Using this result, we prove inequality (A.15). It is obvious that (2i+1)
(2i−1)

is de-
creasing in i for all i = 1, · · · , N . Therefore, it is sufficient to show that

t∗N
t∗
N+1

≤ (2N+1)
(2N−1)

N
(N+1)

. (A.16) and (A.18) give

t∗N
t∗N+1

≤ N

(N + 1)

(2N + 3)

(2N + 1 − 1
N

)
. (A.19)
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Considering inequality (A.15), let g1(N) = (2N+1)
(2N−1)

and g2(N) = (2N+3)

(2N+1− 1
N

)
. We

will show that g1(N) ≥ g2(N) for all N ≥ 1. This is easy to verify for N = 1,
g1(1) = 3 ≥ 2.5 = g2(1). Furthermore, we show that there is no intersection
point for N > 1:

g1(N) = g2(N) ⇔ (2N + 1)

(2N − 1)
=

(2N + 3)

(2N + 1 − 1
N

)
⇔ N =

1

2
.

Therefore, for all N > 1 and i = 1, · · · , N
(2i+1)
(2i−1)

≥ (2N+3)

(2N+1− 1
N

)
and thus,

t∗N
t∗N+1

≤ (2i + 1)

(2i − 1)

N

N + 1
∀i = 1, · · · , N.

For proving relation (A.14), we have to show that θ1(N) ·θ2(N) ≥ 1 for all N ≥ 1.
The expression θ1(N) depends only on N , however, θ2(N) is also influenced by the
cost and demand parameters F, h, c, a, and b through φN . The goal of the proof
is to find a parameter configuration such that the numerator and the denominator
of θ2(N) have the largest difference, i.e., a change from N −→ N + 1 has the
largest impact on φN . Then, θ2(N) has the lowest value. For this lower-bound
configuration we show that θ1(N) · θ2(N) ≥ 1.

From (A.17), we get that φN = arccos
(

1 − 3F
2

hb2

(a−bc)3
(4N2−1)2

N4

)

is increasing in

N . From φN ∈ [0, π
2
] follows (π

3
+ φN

3
) ∈ [π

3
, π

2
] =⇒ cos(π

3
+ φN

3
) ∈ [0, 1

2
].

An increase in N has the largest impact on the cosine for φN = π
2
, i.e., when

(

1 − 3F
2

hb2

(a−bc)3
(4N2−1)2

N4

)

= 0. This is achieved when F is close to its maxi-

mum value. From F ≤ 2
3

(a−bc)3

hb2
N4

(4N2−1)2
for all N ≥ 1 follows F ≤ 1

24
(a−bc)3

hb2

for N −→ ∞. Therefore, the upper bound for F is Fmax = 1
24

(a−bc)3

hb2
−→ φN =

arccos(1 − 1
16

N4

(4N2−1)2
). Due to the characteristics of the cosine-function, θ2(N)

is a lower bound for Fmax = 1
24

(a−bc)3

hb2
, e.g., for F < Fmax, θ2(N) will be larger.

Therefore, θ1(N) · θ2(N) ≥ 1 and it follows

N

N + 1
≤ t∗N

t∗N+1

.

The proof for the case F > 2
3

(a−bc)3

hb2
N4

(4N2−1)2
is similar.
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A.4 Proof of Proposition 7

Let f1(P ) = P − c− 1
b

and f2(P ) =
√

Fh
2ae−bP from (3.56). It is easy to verify that

the function

g(P ) = f2(P ) − f1(P ) =

√

Fh

2ae−bP
− P + c +

1

b

is convex in P , thus, the (sufficient) first-order condition ∂g

∂P
establishes the local

minimum,

Pmin = −2

b
ln

(

b

2

√

Fh

2a

)

.

If g(Pmin) ≥ 0, there are no real roots, and thus, no solution of (3.56) exists

g(Pmin) =

√

Fh

2a
e−ln( b

2

√
Fh
2a

) +
2

b
ln

(

b

2

√

Fh

2a

)

+ c +
1

b
≥ 0 ⇔ F ≥ 8a

hb2
e−(3+bc).

If F < 8a
hb2

e−(3+bc), then g(P ) has two different real roots. By analyzing the profit
function (3.6) with an exponential price-response function,

Π(P ) = (P − c)ae−bP −
√

2Fhae−bP , (A.20)

we note that lim
P→0

Π(P ) = −∞ and lim
P→∞

Π(P ) = 0. Under the necessary condition

F < 8a
hb2

e−(3+bc), P 0
1 is a local maximum and P 0

2 is a local minimum and P ∗ = P 0
1 .

To determine the optimal price P ∗ that maximizes the profit function (A.20), the
following algorithm can be used.

Algorithm 1

Let P1 = 0, P2 > 0, and ε sufficiently small.
WHILE |P1 − P2| ≤ ε

1. Evaluate f2(P1).

2. Find P2 such that f2(P1) = f1(P2).

3. P1 := P2

END
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A.5 Proof of Proposition 8

The proof is by induction:

• First, we show
t∗1
t∗2
≤ 1

2
. Assume t0 = 0. Then, from (3.59) t1 is given by

t∗1 =
2

hb
− t∗2

e
hb
2

t∗2 − 1
. (A.21)

Thus, we obtain
t∗1
t∗2

=
2

hbt∗2
− 1

e
hb
2

t∗2 − 1
. (A.22)

Expression (A.22) is strictly decreasing in t∗2. With the conditions t∗1 ≤ t∗2
and t∗1, t

∗
2 ≥ 0, the statement holds considering the limiting values lim

t∗2→0

t∗1
t∗2

=

1
2

and lim
t∗2→∞

t∗1
t∗2

= 0.

• Assume the statement holds for k = i − 1, i.e., ti−2

ti−1
≤ i−2

i−1
. For ti−1

ti
we

obtain

ti−1

ti
=

2

hbti
− e−

hb
2

ti

(e−
hb
2

ti−2 − e−
hb
2

ti)
+

ti−2

ti

e−
hb
2

ti−2

(e−
hb
2

ti−2 − e−
hb
2

ti)

≤ 2

hbti
− 1

(e
hb
2

(ti−ti−2) − 1)
+

ti−2

ti−1

1

(1 − e−
hb
2

(ti−ti−2))
.

Due to the assumption ti−2

ti−1
≤ (i−2)

(i−1)
≤ (i−1)

i
,

ti−1

ti
≤ 2(e

hb
2

(ti−ti−2) − 1) − hbti

hbti(e
hb
2

(ti−ti−2) − 1)
+

(
i − 1

i

)
1

(1 − e−
hb
2

(ti−ti−2))
.

Considering the limiting values lim
t∗i →0

t∗i−1

t∗i
= 1

2
and lim

t∗i →∞

t∗i−1

t∗i
= i−1

i
, and the

fact that
t∗i−1

t∗i
is strictly decreasing in t∗i , the proposition holds.
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A.6 Proof of Proposition 9

Let C(P ) :=
√

2FhlD(P ). C(P ) is a monotonically decreasing function in P ,

i.e., ∂C
∂P

≤ 0. Furthermore, ∂2C
∂P 2 =

√
Fhl

2D(P )

(
(D′(P ))2

2D(P )
− D′′(P )

)

. If D′′(P ) ≤ 0,

then C(P ) is a convex function in P , i.e., ∂C
∂P

≥ 0. Therefore, −C(P ) is a concave

function in P . Because Π̃l is a concave function in P , Πl(P ) is a concave function.
However, if D′′(P ) > 0, then C(P ) is not uniquely convex or concave. For all P

with (D′(P ))2

2D(P )
−D′′(P ) ≥ 0, C(P ) is convex and it follows the same argumentation

as above. For all P where (D′(P ))2

2D(P )
−D′′(P ) ≤ 0, C(P ) is concave and thus, −C(P )

is convex. Due to the monotonicity, Πl(P ) is concave-convex. An analysis of the
limiting values gives lim

P→0
Πl(P ) = −

√

2FhlD(0) ≤ 0 and lim
P→P̄

Πl(P ) = 0.

�

A.7 Proof of Proposition 11

Given the first-order conditions in (3.83), we have to show that ∂
∂P

(
D(P )
D′(P )

+ P
)

≥
0. The optimal P has to satisfy D(P )

D′(P )
+ P ≥ 0 ⇔ εP = −D′(P )

D(P )
P ≥ 1. The IPE

from Definition 1 gives that

∂εP

∂P
= − ∂

∂P

(
D′(P )

D(P )
P

)

≥ 0

⇔ − ∂

∂P

(
D′(P )

D(P )

)

P − D′(P )

D(P )
≥ 0.

Some algebraic transformations give

−D′′(P )

D′(P )
P ≤ 1 + εP . (A.23)

Assume that ∂
∂P

(
D(P )
D′(P )

+ P
)

< 0. Thus ∂
∂P

(
D(P )
D′(P )

)

+1 < 0 ⇔ 2− D(P )D′′(P )
(D′(P ))2

< 0.

Then,

−D′′(P )

D′(P )
P > 2εP . (A.24)

Because εP ≥ 1, inequality (A.23) and (A.24) cannot be valid simultaneously.

Thus, ∂
∂P

(
D(P )
D′(P )

+ P
)

≥ 0. From c0 < c0 + F
Q∗

0
and (3.83) we get that P̃ ∗ < P ∗.

However, it is not assured that c0 < cl +
F
Q∗

l

for a quantity discount rl with l > 0.
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A.8 Proof of Proposition 12

From the fact that ∂
∂P

(
D(P )
D′(P )

+ P
)

≥ 0, it follows that the selling price in the

coordinated system is higher if and only if

c0 < cl +
F

Q

with Q =
√

2FD(P )
hl

. The property follows from

c0 − cl <

√

Fhl

2D(P )
⇔ D(P ) <

Fhl

2(c0 − cl)2
⇔ P ∗

l > D−1

(
Fhl

2(c0 − cl)2

)

.

�

A.8 Proof of Proposition 12

The partial derivation of (3.97) gives

∂Π
(N)
l

∂cl

= −
(

a
b
− cl − hltN

)
−
(

a
b
− cl

) (

1 + ∂hl

∂cl
tN

)

+ hl

6
∂hl

∂cl

(4N2−1)
N2 t2N

= −2
(

a
b
− cl − hl

2
tN
)
−
(

a
b
− cl

)
∂hl

∂cl
tN + hl

6
∂hl

∂cl

(4N2−1)
N2 t2N

= −2
(

a
b
− cl − hl

2
tN
)
− ∂hl

∂cl

(
a
b
− cl − hl

6
(4N2−1)

N2 tN

)

tN .

Using ∂hl

∂cl
≥ 0 and Di ≥ 0 for all i = 1, · · · , N with

DN =
b

2

(
a

b
− cl −

hl

2

(2i − 1)

N
tN

)

≥ 0 ⇔ a

b
− cl −

hl

2

(2i − 1)

N
tN ≥ 0,

it follows

∂Π
(N)
l

∂cl

= −2







a

b
− cl −

hl

2
tN

︸ ︷︷ ︸

≥0







− ∂hl

∂cl







a

b
− cl −

hl

6

(4N2 − 1)

N2
tN

︸ ︷︷ ︸

≥0







tN ≤ 0.

�

170



A.9 Proof of Proposition 13

A.9 Proof of Proposition 13

The first-order condition gives that Π
(N)
l (tN) has three local extreme values. The

limiting values indicate that lim
tN→−∞

Π
(N)
l (tN) = +∞, lim

tN→0−
Π

(N)
l (tN) = +∞.

Thus, the function Π
(N)
l (tN) has a local minimum for tN < 0 and a verti-

cal asymptote at tN = 0. Furthermore, we have lim
tN→+0

Π
(N)
l (tN) = −∞ and

lim
tN→+∞

Π
(N)
l (tN) = +∞. Therefore, for tN ≥ 0 the profit function Π

(N)
l (tN) comes

from −∞, has first a local maximum, then a local minimum, and goes to +∞,
i.e., Π

(N)
l (tN) is a concave-convex function for tN ≥ 0.

�

A.10 Proof of Proposition 14

The first-order condition of (3.118) with respect to Tk, the conditions (3.108) -

(3.110), and substitution T =
K∑

k=1

Tk gives:

∂L

∂Tk

= 0 ⇔
K∑

j=1

(
F j

T 2
− hj

2
Dj

)

−
K∑

j=1

µjΘkj(P
1, · · · , PK)

!
= 0 k = 1, · · · , K.

(A.25)
with

Θkj(P
1, · · · , P k) =







j∑

i=1

siDi +
K∑

i=k+1

siDi : j ≤ k

j∑

i=k+1

siDi : j > k

. (A.26)

Because the first term of (A.25) is equal for any pair (k, k′),k 6= k′ of products,
it follows

K∑

j=1

µjΘkj(P
1, · · · , P k) =

K∑

j=1

µjΘk′j(P
1, · · · , P k) (A.27)

⇔
K∑

j=1

µj

(
Θkj(P

1, · · · , P k) − Θk′j(P
1, · · · , P k)

)
= 0. (A.28)

We assume that all products are profitable, i.e., Dk > 0 for all k = 1, · · · , K.
Therefore, from (A.26) it can be seen that Θkj 6= Θk′j for all k 6= k′ and Θkj 6= Θkj′

for all j 6= j′, therefore, Θkj − Θk′j′ 6= 0 and each summand of (A.28) must be
different from zero.
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A.10 Proof of Proposition 14

In the following, we show that either the capacity constraint is binding or it is
not binding for all replenishments. We prove this property by a contradiction to
the assumption that there is a replenishment where the capacity constraint is not
binding.

Consider a pair (k, k′) of products. Without loss of generality assume k < k′.
Using (A.26), (A.28) can be transformed into:

k∑

j=1

µj

(
k′

∑

i=k+1

siDi

)

−
k′

∑

j=k+1

µj

(
k∑

i=1

siDi +
K∑

i=k′+1

siDi

)

+
K∑

j=k′+1

µj

(
k′

∑

i=k+1

siDi

)

= 0. (A.29)

Suppose there is a finite number of replenishments with µk = 0 and a finite
number of replenishments with µj > 0 for all j, k ∈ 1, · · · , K. That is, the
replenishment of a product k does not fill up the storage volume to the capacity
level. Thus, we can omit this particular summand k in (A.29).

k−1∑

j=1

µj

(
k′

∑

i=k+1

siDi

)

−
k′

∑

j=k+1

µj

(
k∑

i=1

siDi +
K∑

i=k′+1

siDi

)

+
K∑

j=k′+1

µj

(
k′

∑

i=k+1

siDi

)

= 0.

Changing the sequence of the summation gives:

k′

∑

i=k+1

siDi

(
k−1∑

j=1

µj

)

−
k∑

i=1

siDi

(
k′

∑

j=k+1

µj

)

−
K∑

i=k′+1

siDi

(
k′

∑

j=k+1

µj

)

+
k′

∑

i=k+1

siDi

(
K∑

j=k′+1

µj

)

= 0. (A.30)

Because (A.29) must hold for each k 6= k′, it must also hold for k′′ 6= k′ with
k′′ = k − 1:

k−1∑

j=1

µj

(
k′

∑

i=k

siDi

)

−
k′

∑

j=k+1

µj

(
k−1∑

i=1

siDi +
K∑

i=k′+1

siDi

)

+
K∑

j=k′+1

µj

(
k′

∑

i=k

siDi

)

= 0.
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A.11 Proof of Proposition 19

Changing the sequence of the summation gives:

k′

∑

i=k

siDi

(
k−1∑

j=1

µj

)

−
k−1∑

i=1

siDi

(
k′

∑

j=k+1

µj

)

−
K∑

i=k′+1

siDi

(
k′

∑

j=k+1

µj

)

+
k′

∑

i=k

siDi

(
K∑

j=k′+1

µj

)

= 0. (A.31)

Equating (A.30) and (A.31) gives

skDk

(
K∑

j=1,j 6=k

µj

)

= 0.

This is a contradiction of the statement µj 6= 0 for all j 6= k.

Thus, either the given capacity level is binding and µj > 0 for all j = 1, · · · , K,
or the given capacity level is not binding and µj = 0 for all j = 1, · · · , K. It
follows implicitly that with each replenishment the storage volume is filled up to
the same capacity level.

�

A.11 Proof of Proposition 19

From (4.8) it follows that

∂P ∗(K)

∂K
=

1

2b
(K(1 − F (K))) ≥ 0

and

∂2P ∗(K)

∂K2
=

1

2b
((1 − F (K)) − Kf(K)) ≤ 0 because

Kf(K)

(1 − F (K))
≥ 0.

Optimality of K∗(P ) and the implicit function theorem imply that

∂K∗(P )

∂P
=

1

f(K)(P − cp)2
≥ 0

and the second derivative gives

∂2K∗(P )

∂P 2
=

−2

f(K)(P − cp)3
≤ 0.
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�

A.12 Proof of Proposition 20

A

B

K

K * ( P )

P * ( K )

c + c p PP 0

( K * , P * )
*

Figure A.2: Response functions K∗(P )
and P ∗(K)

(4.7) gives that for the lowest price P = c + cp, thus K∗(c + cp) = F−1(0) = A.
Furthermore, the highest price is P0 and with (4.11) we get

K∗(P0) = F−1

(
µ − b(cp + c)

µ − b(c − cp)

)

< B.

From (4.8) it follows that P ∗(B) = P0 and with the condition A ≥ b(c + cp) that
guaranteed nonnegative demand it follows that

P ∗(A) =
1

2b
(A + b(c + cp)) ≥ c + cp.

Additionally, by the concavity of P ∗(K) and K∗(P ) shown in Proposition 19, it
follows that there exists a unique optimal solution (K∗, P ∗) (see Figure A.2).

�
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A.13 Proof of Theorem 3

Denote R(K) :=
∂Π(K,P ∗

H(K),PL)

∂K
where P ∗

H(K) is substituted from (4.19).

R(K) =

(

P 0
H − Θ(K)

2b
− cH

)

[1 − F (K)] + (PL − cL)[F (K) − F (K − dL)] − c

(A.32)
The first and second derivatives give

R′(K) = −f(K)

2b
·

[

2b(P 0
H − cH) − [1 − F (K)]

h(K)
− Θ(K) − 2b(PL − cL) + 2b(PL − cL)

f(K − dL)

f(K)

]

and

R′′(K) =
f ′(K)

f(K)
R′(K) − f(K)

2b

[

f(K)h(K) + h′(K)[1 − F (K)]

h(K)2

+ [1 − F (K)] + 2b(PL − cL)

(
f ′(K − dL)f(K) − f(K − dL)f ′(K)

f(K)2

)]

.

The value of R′′(K) at K that satisfies R′(K) = 0 defines the behavior of Π at
the inflection points, that is

R′′(K) |R′(K)=0= −f(K)[1 − F (K)]

2bh(K)2
·








2h(K)2 + h′(K) +
2bPL

[1 − F (K)]3
(f ′(K − dL)f(K) − f(K − dL)f ′(K))

︸ ︷︷ ︸

(1)








.

(A.33)

Using the condition that h(K) is increasing in K, i.e.,

h′(K) = h(K)

(
f ′(K)

f(K)
+ h(K)

)

≥ 0,
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A.13 Proof of Theorem 3

it follows that 2h(K)2 + ∂h(K)
∂K

≥ 0 and due to h′′(K) ≤ 0 where

h′′(K) = h′(K)

(
f ′(K)

f(K)
+ h(K)

)

+ h(K)

(
∂

∂K

(
f ′(K)

f(K)

)

+ h′(K)

)

≤ 0

⇔ ∂

∂K

(
f ′(K)

f(K)

)

≤ 0.

Further ∂
∂K

(
f ′(K)
f(K)

)

≤ 0 gives

f ′(K − dL)

f(K − dL)
≥ f ′(K)

f(K)
⇔ f ′(K − dL)f(K) − f(K − dL)f ′(K) ≥ 0 (A.34)

which yields that the term (1) in (A.33) is nonnegative. Consequently,

R′′(K) |R′(K)=0≤ 0

and the local extreme point of R(K) is a local maximum, i.e., R(K) is unimodal
and has at most two roots where the larger root of R(K) corresponds to a local
maximum and the lower root of R(K) corresponds to a local minimum of Π .
Figure A.3 illustrates Π(K,PH(K), PL) and R(K) given PL.

0

P 1 ( K , P H ( K ) , P L )
R ( K )

K

Figure A.3: Π(K,PH(K), PL) and R(K)
for a given PL

Let KNV be the optimal capacity of the single-product case. We will show K∗ ≥
KNV . Assume that K∗ < KNV . Then it follows that F (K∗) < F (KNV ) and by
using (4.19) it follows PH(K∗) < PH(KNV ). Since KNV is the optimal solution
of the single-product case, KNV solves (4.7), i.e.,

(P (KNV ) − cH)(1 − F (KNV )) − c = 0.
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A.14 Proof of Theorem 4

Furthermore, K∗ satisfies (4.23). Thus, it follows that

(P (KNV ) − cH)(1 − F (KNV )) = (P ∗
H(K∗) − cH)(1 − F (K∗))

+(PL − cL)(F (K∗) − F (K∗ − dL))

(P (KNV ) − cH)(1 − F (KNV )) ≥ (P ∗
H(K∗) − cH)(1 − F (K∗))

which is equivalent to

(P (KNV )−cH)− (P ∗
H(K)−cH) ≥ (P (KNV )−cH)F (KNV )− (P ∗

H(K)−cH)F (K).

Since F (KNV ) > F (K∗) it follows that “≥” cannot be true. Thus, K∗ ≥ KNV .

By (4.7) we get that in the single-product case KNV has to satisfy (P ∗
H(KNV ) −

cH)(1− F (KNV ))− c = 0. Therefore, from (A.32) it follows R(KNV ) > 0 which,
in turn, gives that KNV is larger than the local minimum and lower than the lo-
cal maximum of Π(K,P ∗

H(K), PL). Therefore, Π(K,P ∗
H(K), PL) is quasi-concave

with the unique maximum K∗(PL).

�

A.14 Proof of Theorem 4

In order to show that for a given PH , Π(K,PL) is jointly concave in K and PL, it
has to be shown that the Hessian matrix of Π(K,PL) is negative semi-definite.
The second-order derivatives are

∂2Π

∂P 2
L

= −(PL − cL)β2f(K − dL) − 2βF (K − dL),

∂2Π

∂K2
= −(PH − cH)f(K) + (PL − cL)(f(K) − f(K − dL)),

∂2Π

∂K∂PL

= (F (K) − F (K − dL)) − f(K − dL)β(PL − cL).

It is to check if for a given PH the determinant of the Hessian of Π(K,PL) is
non-negative. Let ∆H(K,PL) be the determinant of the Hessian with

∆H(K,PL) =
∂2Π

∂P 2
L

∂2Π

∂K2
−
[

∂2Π

∂K∂PL

]2

.

That is,
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A.14 Proof of Theorem 4

∆H(K,PL) = −((PL − cL)β2f(K − dL) + 2βF (K − dL))

· (−(PH − cH)f(K) + (PL − cL)(f(K) − f(K − dL)))

− [(F (K) − F (K − dL)) − f(K − dL)β(PL − cL)]2

Some algebraic transformations give

∆H(K,PL) = (PH−cH−PL+cL)[(PL−cL)β2f(K−dL)f(K)+2βF (K−dL)f(K)]

− [(F (K) − F (K − dL))]2 + (PL − cL)2βf(K − dL)F (K). (A.35)

Using the substitution K = C + bPH on (4.12) it follows that

εs(PL, C) ≥ 1 ⇔ −[F (K) − F (K − dL)] + (PL − cL)βf(K − dL) ≥ 0

⇔ −[F (K) − F (K − dL)]2 + (PL − cL)2βf(K − dL)F (K) ≥ 0.(A.36)

It is easy to see that the first term in (A.35) is positive for sufficiently large
PH and with (A.36) it follows that for sufficiently large PH , Π(K,PL) is jointly
concave in K and PL.

�
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B Derivations

B.1 Derivation of (3.39)

We derive (3.39) from (3.29). Let R(N) denote the average revenue and C(N)

denote the average cost per unit of time. For notational simplification, we use
Di = D(Pi).
Partial derivation of R(N) with respect to tN gives

∂R(N)

∂tN
= − 1

t2N

N∑

i=1

PiDi(ti − ti−1) +
1

tN
PNDN ,

∂C(N)

∂tN
= − 1

t2N

[

F + c

N∑

i=1

Di (ti − ti−1) +
h

2

N∑

i=1

Di (ti − ti−1)
2

︸ ︷︷ ︸

(1)

+ h

N−1∑

i=1

(

(ti − ti−1)
N∑

j=i+1

Dj (tj − tj−1)

)]

︸ ︷︷ ︸

(2)

+
1

tN

[

cDN + hDN

N∑

i=1

(ti − ti−1)

︸ ︷︷ ︸

(3)

]

.

It is easy to verify that (1) + (2) = h
2

N∑

i=1

Di

(
t2i − t2i−1

)
and (3) = tN . Therefore,

the first-order condition ∂R(N)

∂tN

!
= ∂C(N)

∂tN
gives

N−1∑

i=1

(Pi−c)Di(ti− ti−1)− (PN −c)DN tN−1−
h

2

N∑

i=1

Di(t
2
i − t2i−1)+hDN t2N −F

!
= 0.
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B.2 Derivation of (3.97)

⇒
N−1∑

i=1

(Pi − c)Di(ti − ti−1) − (PN − c)DN tN−1

︸ ︷︷ ︸

(4)

−h

2

N−1∑

i=1

Di(t
2
i − t2i−1) +

h

2
DN t2N−1

︸ ︷︷ ︸

(5)

−F
!
= −h

2
DN t2N

with (4) =
N−1∑

i=1

[(Pi − c)Di − (Pi+1 − c)Di+1] ti and (5) = −h
2

N−1∑

i=1

t2i [Di − Di+1].

The optimal cycle length is determined by

t∗N =

√
√
√
√ 2F

hDN

+
1

DN

N−1∑

i=1

t2i [Di − Di+1] −
2

hDN

N−1∑

i=1

[(Pi − c)Di − (Pi+1 − c)Di+1] ti.

By substitution of (3.36), the optimal cycle length becomes

t∗N =

√
√
√
√ 2F

hDN

− 1

DN

N−1∑

i=1

t2i [Di − Di+1].

B.2 Derivation of (3.97)

From (3.90) and (3.94) - (3.96) follows

Π
(N)
l =

1

tN

N∑

i=1

[(
1

2

(
a

b
− cl +

hl

2
(2i − 1)

tN

N

)

− hl

2
(2i − 1)

tN

N

)

· b
2

(
a

b
− cl −

hl

2
(2i − 1)

tN

N

)
tN

N

]

− F

tN

=
1

tN

N∑

i=1

[

b

4

tN

N

N∑

i=1

(
a

b
− cl −

hl

2
(2i − 1)

tN

N

)2
]

− F

tN

=
1

tN

N∑

i=1

[

b

4

tN

N

[
(a

b
− cl

)2

N −
(a

b
− cl

)

hltNN +
h2

l

4

t2N
N2

N∑

i=1

(2i − 1)2

]]

− F

tN
.
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B.3 Derivation of (3.119)

Therefore,

Π
(N)
l (tN) =

b

4

[
(a

b
− cl

)(a

b
− cl − hltN

)

+
h2

l t
2
N

12

(4N2 − 1)

N2

]

− F

tN
.

B.3 Derivation of (3.119)

The first-order condition of L with respect to P k for all k = 1, · · · , K gives:

∂L

∂P k
=

∂Π(~P , ~T , T )

∂P k

+
∂

∂P k

K∑

j=1

µj

(

S −
[

j−1
∑

l=1

slDl

(

T −
j−1
∑

i=l

Ti

)

+ sjDjT +
K∑

l=j+1

slDk∗
k−1∑

i=j

Ti

])

!
= 0.

The partial derivation of the first term follows from (3.114) and the partial deriva-
tion of the second term can be determined from (3.108):

Dk + (P k − ck − hk

2
T )(Dk)′ −

k−1∑

j=1

µjs
k(Dk)′

(
k−1∑

i=j

Ti

)

− µks
k(Dk)′T −

K∑

j=k+1

µjs
k(Dk)′

(

T −
j−1
∑

i=k

Ti

)

!
= 0,

⇔ Dk

(Dk)′
+P k = ck+

hk

2
T+sk

(
k−1∑

j=1

µj

(
k−1∑

i=j

Ti

)

+ µkT +
K∑

j=k+1

µj

(

T −
j−1
∑

i=k

Ti

))

︸ ︷︷ ︸

=:Ψ(µ1,··· ,µK ,T1,··· ,TK)≥0

.

B.4 Derivation of (4.14)

For a simplified notation set dL := d(PL). Taking expectation from (4.13) gives
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B.4 Derivation of (4.14)

Π(C,PH , PL) =

C+bPH−dL∫

A

((PH − cH)(z − bPH) + (PL − cL)dL) f(z)dz

+

C+bPH∫

C+bPH−dL

((PH − cH)(z − bPH) + (PL − cL)(C − z + bPH)) f(z)dz

+

B∫

C+bPH

(PH − cH)Cf(z)dz − cC

= (PH−cH)(µ−bPH)−(PH−cH)

B∫

C+bPH

(z−bPH)f(z)dz+(PH−cH)

B∫

C+bPH

Cf(z)dz

+(PL−cL)dL−(PL−cL)

B∫

C+bPH−dL

dLf(z)dz+(PL−cL)

C+bPH∫

C+bPH−dL

(C−z+bPH)f(z)dz−cC.

Adding 0 = c(µ − bPH + dL) − c(µ − bPH + dL) we have

= (PH−c−cH)(µ−bPH)+(PL−c−cL)dL−(PL−cL)

C+bPH∫

C+bPH−dL

(dL−C+z−bPH)f(z)dz

−(PH−cH)

B∫

C+bPH

(z−bPH−C)f(z)dz−(PL−cL)

B∫

C+bPH

dLf(z)dz−c(C−µ+bPH−dL).

By

c(C − µ + bPH − dL) = c

C+bPH−dL∫

A

(C − z + bPH − dL)f(z)dz

+ c

C+bPH∫

C+bPH−dL

(C − z + bPH − dL)f(z)dz + c

B∫

C+bPH

(C − z + bPH − dL)f(z)dz
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B.4 Derivation of (4.14)

and some transformations we get

= (PH−c−cH)(µ−bPH)+(PL−c−cL)dL−c

C+bPH−dL∫

A

(C−z+bPH−dL)f(z)dz

− (PL − c − cL)

C+bPH∫

C+bPH−dL

(dL − C + z − bPH)f(z)dz

− (PH − c − cH)

B∫

C+bPH

(z − bPH − C)f(z)dz − (PL − c − cL)

B∫

C+bPH

dLf(z)dz.

The substitution K := C + bPH gives

= (PH − c − cH)(µ − bPH) + (PL − c − cL)dL

− c

K−dL∫

A

(K − z − dL)f(z)dz − (PH − c − cH)

B∫

K

(z − K)f(z)dz

− (PL − c − cL)

K∫

K−dL

(dL + z − K)f(z)dz − (PL − c − cL)

B∫

K

dLf(z)dz.
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