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Chapter 1

General Introduction

This dissertation consists of three self–contained papers. In chapter 2 we analyze a

collective decision problem, while in chapters 3 and 4 we study a theoretical and a more

applied auction problem, respectively. Chapter 4 originated from joint work with Florian

Müller.

1.1 Group Decisions with Dispersed Information and

Interdependent Preferences

In chapter 2 we study a decision problem in which a group has to take a collective scalar

decision, decision–relevant information is dispersed among the members of the group,

and the individual group members’ preferences are interdependent. Such a problem

occurs, for instance, in a company whose department managers have to take collective

decisions, for example about the level of the company’s R&D expenditures. Although

each manager is interested in the well–being of the company as a whole, it is likely that

he is biased towards the well–being of his own department. Moreover, each manager may

be endowed with superior information about his own department, for instance about the

effect of the decision on it. Thus, the department managers face two conflicting goals:

On the one hand, they want to aggregate information of the different departments in

order to achieve decisions which are good for the company, but on the other hand,

they want to use their private information strategically to push the decision into the

direction which is best for their own departments. The question arises which decision

making processes are capable of making use of as much information as possible without

1
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being too prone to opportunistic behavior.

Grüner and Kiel (2004) compare two distinct decision making processes within this

environment. In the first one, each group member has to secretely vote for a real–valued

decision and the average vote is implemented as collective decision. In the second one,

the median vote is implemented. The two decision making processes differ in their

ability to aggregate information and in their vulnerability to opportunistic behavior.

Suppose a department manager believes that an extreme decision is optimal for his own

department. Then, in case the collective decision is the average vote, this manager has

the ability to push the decision far into his preferred direction by voting for a decision

which is even more extreme than the one he considers best. For instance, referring to

the R&D expenditure example, a manager who wants the company to spend one million

may vote for an expenditure of three millions because he expects other managers to

vote for less than one million. Since each group member can use extreme positions to

exercise a large influence on the collective decision, this process is particularly vulnerable

to opportunistic behavior. By contrast, if the median vote is implemented, extreme

positions are disregarded such that the effects of opportunistic behavior are less severe.

However, this comes at the cost that less of the agents’ information is reflected in the

decision. The main result of Grüner and Kiel (2004) is that, from a welfare point of

view, either decision rule may be preferable depending on the degree of interdependence

in preferences.

The reason why it is sometimes better to implement the median instead of the aver-

age vote is to confine opportunistic behavior which has more severe consequences when

the average vote is implemented. The idea behind this paper is that there are often

better means available to cope with opportunistic behavior than changing the decision

rule. For instance, when the collective decision is the average vote, the problem of oppor-

tunistic behavior can be mitigated by forbidding extreme votes. Referring again to the

example from above, one may forbid the managers to vote for expenditures exceeding

one million. This reduces the ability of mangers who prefer extreme positions to manip-

ulate the collective decision, while it maintains a larger responsiveness of the decision

to the managers’ information than when the median vote is implemented. Our main

result is that if it is possible to restrict the group members’ discretion in voting, then

implementing the average vote is under general conditions preferable to implementing

the median vote.
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1.2 First–Price Auctions, Seller Information and

Commitment to Sell

In chapter 3 we study the problem of a seller who wants to conduct a first–price sealed

bid auction to sell an indivisible object. In such an auction each buyer is allowed to

submit a sealed bid. The buyer who submits the highest bid obtains the object and

has to pay an amount corresponding to his bid. The seller’s degree of freedom when he

designs the auction is the set of admissible bids. For instance, he may only allow bids

above a certain reserve price, bids below a certain bid cap, or he may only allow a finite

number of bids.

While the optimal auction problem is well understood under standard assumptions,

some of the commonly made assumptions are often not met in practice. For instance,

it is commonly assumed that the seller’s reservation value does not change between the

point in time at which he designs the auction and at which the auction is conducted.

However, it often happens that the seller has to leave the buyers a reasonable amount

of time to think about their bidding strategies. An example may be a procurement

contract for sale that leaves bidders to prepare construction plans or prototypes. In the

meantime the seller’s information may improve and his estimate about his reservation

value may become more accurate. Another commonly made assumption concerns the

seller’s commitment power. Normally it is assumed that he can commit not to withdraw

the object after obtaining only unsatisfactory bids. However, even if he is not legally

allowed to withdraw the object, he can often affect the outcome of the auction by

submitting himself bids via a third party. Although this is usually also forbidden, it is

hard to detect and there is empirical evidence that it does indeed happen in practice.

Therefore we are interested in a setting which differs from the standard independent

private values setting with risk–neutral buyers in two respects: firstly, the seller has to

fix the rules of the auction before he learns his valuation of the object and secondly, he

has the opportunity to keep the object after observing the bids.

In the first part of the chapter we consider the case with a risk–neutral seller to explain

the effects which drive our results: If the seller was able to postpone the announcement of

the reserve price until he becomes better informed, he would wait and choose different

reserve prices for different realizations of his reservation value. But since he is not

allowed to do this in our setting, he can only choose one (real) reserve price. Yet to a
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certain degree, he can mimic further reserve prices by choosing a non–connected set of

admissible bids. A gap in this set forces each buyer to decide between bidding below

the gap which means bearing a higher risk that the seller decides not to sell the object

at the end, and bidding above the gap which increases the seller’s eagerness to sell. The

lowest bid above the gap can be interpreted as the reserve price relevant for buyers who

want the seller to sell with a high probability. We show that for general distributions

of buyer valuations it may be optimal for the seller to choose a set of admissible bids

which exhibits gaps.

Crucial for the analysis in the first part of the chapter is that the seller cannot

postpone the announcement of the auction rules until he is better informed. However,

in many applications it is not clear why the seller should not be able to wait, at least

with the announcement of some specifics of the auction such as the reserve price. In the

second part of the chapter we relax this assumption. We show that a risk–averse seller

might have a strict incentive not to wait. If he fixes a first–price auction with a non–

connected set of admissible bids before he gets informed rather than waiting until he gets

informed and announcing the rules of the auction at that point, he can sometimes obtain

less variation in the buyers’ bidding behavior without sacrificing expected revenue. Due

to his risk–aversion, this makes him strictly better off. Thus, with a risk–averse seller

who cannot commit to sell, the information structure and timing we assumed in the first

part of the chapter may arise endogenously.

1.3 Asymmetric Procurement Systems

In chapter 4 we study the problem of a procurer, e.g. a carmaker, who needs to procure a

specific part on a regular basis. In each period he has to decide between buying the part

from the previous period’s supplier, the incumbent, or from one of several entrants. Since

incumbent and entrants differ in nature, the problem is inherently asymmetric. Due to

his collaboration with the procurer in the previous period, the incumbent possesses

process–specific knowledge which cannot be easily transferred. By switching to one of

the entrants, the procurer has to incur switching costs. The level of these switching

costs can largely be influenced by the incumbent. For instance, if the incumbent incurs

relationship–specific investments to improve just–in–time production, it becomes more

valuable for the procurer to continue the relationship with him. The procurer faces
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two conflicting goals: On the one hand, he wants to protect the incumbent in order to

endow him with the right incentives to invest in the relationship, but on the other hand,

he wants to exercise competitive pressure on him such that procurement prices are bid

down competitively.

How the procurer’s trade–off is resolved differs largely in different parts of the world.

In the automotive industry, American carmakers try to exercise as much competitive

pressure on their suppliers as possible, while Japanese carmakers try to build deep rela-

tionships with their incumbent supplier to obtain benefits from collaboration. Although

the differences in the two systems are mainly rooted in differences in business culture

and a different evolution of industry in the two countries, the question arises whether

one system has structural advantages over the other one, in particular since in the recent

past Western car producers tried to imitate their Asian counterparts.

One of the main differences between the two systems lies in the way the procurer

treats the incumbent. In the “American system” the procurer does not constrain himself

in the way he exercises competitive pressure on the incumbent, whereas in the “Japanese

system” he grants the incumbent a distinct standing: He first tries to come to an agree-

ment with him and only approaches the entrants in case they are not able to reach an

agreement. Furthermore, to capture in our model that in practice there is often much

more opportunistic behavior than assumed in large parts of the procurement literature

(e.g. in Laffont and Tirole (1988) and in Bag (1997)), we assume that the procurer

can commit himself to one of the two systems, but within the systems he behaves op-

portunistically. In particular, he cannot credibly promise the incumbent to reward his

relationship–specific investments in a pre–specified way, although he can observe it. As

consequence, the procurer does not design his procurement process to induce a certain

investment behavior by the incumbent, but the incumbent invests to have the procurer

choose a procurement process which gives him some preferential treatment.

With this framework we find a theoretical foundation for some empirical findings in

the literature on the two procurement systems such as that the characteristics of the

part procured determine which system performs better (see, e.g., Hahn, Kim, and Kim

(1986) and Dyer (1996)). In particular, we find that the procurer’s preferences over

the two systems depend in a non–monotonic way on the importance of the investment

associated with the part procured. While for low and for high investment costs, i.e. for

important and relatively unimportant investment, the “American system” is superior,
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the “Japanese system” is better for intermediate costs, i.e. for intermediate important

investment. Furthermore, we find that the incumbent is not inevitably better protected

if the procurer does not use the entrants to exercise direct pressure on him.



Chapter 2

Group Decisions with Dispersed

Information and Interdependent

Preferences

2.1 Introduction

There are two main reasons for delegating a decision to a group. First, although the

preferences of group members may be interdependent because of altruism or due to

spill–over effects, it is likely that they are not completely aligned. By involving sev-

eral individuals in the decision making process, divergent interests can better be taken

into account. Second, information relevant to evaluate the possible decisions might be

distributed among the members of the group. Hence, information aggregation may be

improved.

We are interested in situations in which a group is already installed to take a collective

scalar decision, information relevant for the decision is dispersed among the members

of the group, and the group members’ preferences are interdependent. Such a problem

occurs, for instance, in a company whose department managers have to take collective

decisions. Each head of department is endowed with superior information about his

own department and, although he is also interested in the well–being of the company

as a whole, he is biased towards the well–being of his own department. Other examples

include national parliaments, in which the representatives of different regions meet; or

7
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decisions taken by the members of a family.1

A large number of decision making processes is conceivable and may be classified ac-

cording to whether cheap talk is possible between the group members before the decision

is taken and according to whether monetary incentives are feasible. If monetary incen-

tives are feasible, the problem of finding the welfare maximizing decision making process

turns into a standard mechanism design problem. In this case the first–best process can

be implemented as ex post Nash equilibrium using an expected externality mechanism.2

However, it is often not possible3 or not desirable4 to set monetary incentives. Under ab-

sence of monetary incentives the problem is non–trivial and implementability is affected

by whether cheap talk is possible before the collective decision is taken or not.

In this paper we are concerned with the class of decision making processes in which

monetary incentives are not feasible and cheap talk is excluded a priori. In particular, we

are interested in processes which can be implemented by first asking the group members

to secretely vote for some decision, and then applying a decision rule mapping their votes

into a collective decision. Thereby we allow for the possibility that group members are

restricted in choosing a vote. For instance, they may only be allowed to choose from a

discrete set of possible votes or from votes belonging to a certain interval. Two particular

decision rules are of special interest: In the first, the decision is the average of all votes

(henceforth mean decision rule) and in the second, it is the median vote (henceforth

median decision rule).

If the preferences of all group members are completely aligned (henceforth common

preferences), the only concern of each group member is that the decision mechanism

can appropriately make use of his information. In contrast, if a member’s preferences

depend only on his own information (henceforth private preferences), his sole aim is to

push the collective decision into his preferred direction. For the intermediate cases in

which preferences are interdependent but not completely aligned, a group member faces

a trade-off between these goals.

To what extent the collective decision reflects the group members’ information de-

pends on the decision making process employed. On the one hand, a process which

1For further examples see section 1.2 in Grüner and Kiel (2004).
2See Bergemann and Morris (2006).
3E.g., for legal reasons or because group members do not respond to monetary incentives.
4Think of decisions taken in a parliament or by a jury in a court. Furthermore, monetary incentives

may not be desirable if it is too costly to design them.
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endows each group member with more influence on the decision can result in more of

the members’ information being utilized for the decision. But on the other hand, such

a process improves also the group members’ opportunities to behave opportunistically.

A welfare maximizing planner designing the decision making process therefore faces a

trade–off between avoiding opportunistic behavior and the responsiveness of the decision

to the information. How severe this trade–off is depends on how eager the members are

to behave opportunistically and thus on the degree of interdependence in preferences.

We are interested in comparing the performance of the two classes of decision making

processes in which either the mean or the median decision rule is used and the set of

admissible votes is part of the mechanism design problem. The questions we are going to

address are ’Which decision rule should be used for which degrees of interdependence?’

and ’How large should each individual group member’s influence on the decision be?’5

This Contribution

A broader categorization of the related literature can follow the same lines as in section

1.3 of Grüner and Kiel (2004) since our paper builds directly upon theirs. Grüner and

Kiel (2004) analyze the mean and the median decision rule when voting is not restricted,

i.e. when group members are allowed to vote for any real–valued decision. Their main

finding is that, depending on the degree of interdependence, either decision rule may

attain a higher level of welfare. For preferences close to private the median decision rule

is preferable, while for preferences close to common the mean decision rule is.

We also consider the mean and the median decision rule, but we allow restrictions on

admissible votes. Since for either decision rule and for almost all degrees of interdepen-

dence group members prefer decisions that are more extreme than is socially optimal,

welfare can be enhanced by forbidding at least the most extreme votes.

Our main results describe how the findings in Grüner and Kiel (2004) change when

we compare the mean and the median decision rule for the case with optimally restricted

instead of unrestricted voting. Asymptotically, i.e. for large groups, we find that the

mean decision rule is not only preferable for common preferences, but also for private

preferences. Thus, if it is possible to restrict the group members’ discretion in voting,

the median decision rule is no longer needed. The heuristics behind this result are the

5A group member’s influence on the collective decision is jointly determined by his discretion in

choosing a vote and the decision rule.
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following: If preferences are private, group members are very prone to opportunistic be-

havior. This makes the decision process that relies on an unrestricted mean decision rule

perform badly, because for this process the influence of each individual group member’s

vote on the group decision is large, and thus also his ability to behave opportunistically.

By consequence, welfare can be improved by reducing the group members’ influence on

the decision. Two different ways of doing this are choosing the median decision rule

(then only the median vote affects the decision) and sticking to the mean decision rule

but restricting the group members’ discretion in choosing a vote (for instance by for-

bidding extreme votes). Since the second way is also capable of reducing opportunistic

behavior, but allows for a larger responsiveness of the decision to the group members’

information, it outperforms the first way.

For the non–asymptotic case the intuition behind the comparison result remains

valid, but is technically harder to prove. However, for uniformly distributed signals we

have enough structure to prove that for any number of group members and for any degree

of interdependence in preferences the optimally restricted mean mechanism is preferable

to the optimally restricted median mechanism. Finally, we address the robustness of this

result. We show numerically that it stays valid for small numbers of group members for

distributions with linear densities as well as for symmetric distributions with quadratic

densities.

Structure of the Paper

We present the model in the subsequent section. In section 2.3 we discuss mechanisms

relying on the mean and the median decision rule separately before we compare them

in section 2.4. Finally, we conclude in section 2.5. All proofs can be found in the

Appendix.

2.2 The Model

There is a group consisting of n symmetric agents which has to take a collective decision

x ∈ R. For convenience we assume n to be an odd number larger than three such that

m := n+1
2

is an integer. Throughout the paper we will denote a generic agent by i.

The signal θi is private information of agent i. All signals are independently drawn

from a cumulative distribution function Φ(·) with a connected support Θ = [θ, θ]. We



2.2. THE MODEL 11

assume that a probability density function φ = Φ′ exists and is strictly positive on

the support. Furthermore, we assume the distribution to be normalized such that the

expected signal is zero, i.e. E[θi] = 0. We denote the variance of the distribution

by σ2 := E[θ2
i ] and the median of the distribution by θMed := Φ−1(1

2
). Later on we

will be interested in the distribution of the median signal, i.e. the mth highest of n

independently drawn signals. We denote this signal by θm:n, the probability density

function according to which θm:n is distributed by φm:n(θ) := n!
(m−1)!2

Φ(θ)m−1φ(θ)(1 −
Φ(θ))m−1, and the respective cumulative distribution function by Φm:n(θ).

Agent i’s payoff is ui = −(x−θ∗i )2 such that he is interested in minimizing the distance

between the collective decision x and his preferred decision θ∗i . His preferred decision

is a convex combination of his own private information and the private information of

all other agents: θ∗i := (1 − α)θi + α
n−1

∑
j 6=i θj with α ∈ [0, αn] := [0, n−1

n
]. The polar

cases α = 0 and α = αn describe private and common preferences, respectively. If

preferences are private, an agent’s preferred decision depends only on his own private

information. If preferences are common, it depends symmetrically on each agent’s private

information. In this case the preferred decisions of all agents coincide. The parameter

α measures the degree of interdependence in preferences. The higher α is, the stronger

is interdependence.

A decision making process is characterized by a mechanism Γ = (V, x) consisting

of a set of admissible votes V ⊂ R and a decision rule x : V n → R mapping votes

into decisions. The performance of a mechanism depends on how well it aggregates the

agents’ true signals. Therefore we introduce a specific notation for how the decisions

made in equilibrium depend on the agents’ signals instead of their votes. We call a

function d : Θn → R mapping types into decisions a decision function and we call

a decision function d implementable if there exists a mechanism Γ = (V, x) and an

equilibrium (described by the voting rules vi : Θ → V ) inducing it, i.e. if d(θ1, . . . , θn) =

x(v1(θ1), . . . , vn(θn)).

We are interested in mechanisms relying on the mean decision rule, defined by

x1(v1, . . . , vn) := 1
n

∑
i vi, and the median decision rule, defined by x2(v1, . . . , vn) :=

median{v1, . . . , vn}. To any mechanism relying on the mean decision rule, Γ = (V, x1),

we refer as mean mechanism and to any mechanism relying on the median decision rule,

Γ = (V, x2), we refer as median mechanism.

As equilibrium concept we adopt the notion of Bayesian Nash equilibrium.
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2.2.1 Welfare

The sum of the agents’ utilities is maximized by decision d∗1(θ1, . . . , θn) := 1
n

∑
i θi.

6 We

define welfare attained by a decision function d(·) as the negative of the expected squared

difference between the decisions taken and the first–best decisions multiplied by n:

W(d) = −nE[(d(θ1, . . . , θn) − d∗1(θ1, . . . , θn))2]. (2.1)

This welfare functional is a positive linear transformation of the sum of expected util-

ities.7 We adopt this particular transformation as our welfare functional because it

has some nice properties concerning interpretability (e.g., welfare only depends on the

degree of interdependence via the agents’ strategic behavior) and computability (e.g.,

asymptotic welfare converges for the most important decision functions).

2.2.2 Optimal Decisions and Upper Bounds on Welfare

The following Lemma describes the welfare maximizing decisions when different infor-

mation about the agents’ signals is available.

Lemma 2.1 (Optimal decisions)

(i) The first–best decision is d∗1(θ1, . . . , θn) = 1
n

∑
i δ

∗
1(θi) with δ∗1(θi) := θi.

(ii) If only the median signal is known, the best decision is d∗2(θ1, . . . , θn) = δ∗2(θm:n)

with

δ∗2(θ) := E[d∗1(·)|θm:n = θ] =
1

n
θ +

1

2

n− 1

n
(E[θi|θi < θ] + E[θi|θi > θ]) .

(iii) The best uninformed decision is d∗3(θ1, . . . , θn) = 0.

The functions δ∗1 and δ∗2 describe the agents’ voting behavior that would be best for

welfare when the mean and the median decision rule are used, respectively. When the

mean decision rule is used, it is socially optimal that each agent votes for his signal.

When the median decision rule is used, it is optimal that each agent votes for his expec-

tation of the first–best decision conditional on his own signal being the median signal.

This expectation normally differs from his signal.8

6This follows directly from the FOC
∑

i −2(d − θ∗i ) = −2(nd −∑i θi)
!
= 0.

7W(d) =
∑

i E[−(d(·) − θ∗i (·))2 + θ∗i (·)2 − d∗1(·)2] =
∑

i E[ui(·)] +
∑

i E[θ∗i (·)2 − d∗1(·)2].
8Whether it is more or less extreme, i.e. whether |θ| < |δ∗2(θ)| or |δ∗2(θ)| < |θ| is true, is ambiguous.
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The performance of a mechanism is subject to informational constraints (Which

agents’ information is used in equilibrium?) and to incentive compatibility constraints

(How is the information used in equilibrium?). For instance, if some mechanism im-

plements a decision function which depends only on the median signal, this mechanism

can never do better than always choosing the best decision conditional on knowing only

the median signal. From the informational constraints we obtain the following upper

bounds on welfare:

Lemma 2.2 (Upper bounds on welfare)

(i) For any decision function d : Θn → R we have W(d) ≤ B1 := W(d∗1) = 0.

(ii) For any decision function d : Θn → R depending only on the median signal we

have W(d) ≤ B2 := W(d∗2) = −σ2 + nE[δ∗2(θm:n)2].

(iii) The highest welfare level that can be achieved by a decision function which does

not depend on the signals is B3 := W(d∗3) = −σ2.

The optimal level of welfare that can be achieved when only a certain information

is used is increasing in the amount of information. Therefore we have the following

ordering of bounds:

0 = B1 > B2 > B3 = −σ2.

Since the best uninformed decision d∗3(·) = 0 is always implementable, a welfare level

of at least B3 = −σ2 can be achieved for any distribution, any number of agents and

any degree of interdependence. Henceforth we will refer to a mechanism which always

implements the best uniformed decision as best uninformed mechanism.

2.3 Mechanisms

In this section we derive the equilibria of mechanisms relying on the mean and the me-

dian decision rule. Moreover, we show that agents exaggerate (relative to the welfare

maximizing voting behavior) for either rule. As a consequence, in both cases exaggera-

tion can be mitigated and welfare can be enhanced by forbidding extreme votes.

Appendices A.4 and A.5 supplement the analysis in this section. In Appendix A.4

we derive necessary and sufficient conditions for decision functions to be implementable
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Figure 2.1: Voting under the mean decision rule; actual voting v(θ): black solid curve;

welfare maximizing voting δ∗1(θ): dark gray curve; admissible votes: light gray region

(θ ∼ U [−1, 1], n = 3, α = 1
2
)

by general mechanisms, i.e. by mechanisms which do not necessarily rely on the mean

or the median decision rule. In Appendix A.5 we briefly discuss stochastic mechanisms.

2.3.1 Mean Mechanisms

If the mean mechanism is used and agents’ votes are unrestricted, there is a unique

symmetric equilibrium in which each agent votes according to

δ1(θ) := n(1 − α)θ

(Grüner and Kiel, 2004, Proposition 2). If preferences are common (i.e. if n(1−α) = 1),

there is no conflict of interest between the agents. Each agent’s vote is in accordance

with welfare maximizing behavior: δ1(θ) = δ∗1(θ) = θ. However, if preferences are not

common (i.e. if n(1 − α) > 1), then an agent who votes for his signal believes that

the collective decision will be less extreme than the decision he prefers.9 Therefore he

does not vote for his signal but tries to push the decision into his preferred direction by

exaggerating relative to the welfare maximizing voting behavior, i.e. |δ∗1(θ)| < |δ1(θ)|.
This is displayed in figure 2.1(a). The gray curve depicts the welfare maximizing voting

behavior, the black curve shows the agents’ equilibrium voting behavior.

If voting is restricted, two things may change. First, an agent may not be allowed

to choose his preferred vote. Then he chooses the closest vote which is still allowed.

9I.e. he believes the decision to be smaller (larger) than the decision he prefers if his signal is positive

(negative).
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Second, an agent might expect the votes of others to be biased. He then takes this bias

into account and adjusts his vote accordingly. Figure 2.1(b) displays an example for this:

Suppose only positive votes are allowed. Then each agent believes that the other agents’

expected votes are strictly positive, which means that they tend to be too high. As a

consequence, each agent adjusts his voting behavior downwards by c. Therefore some

agents with positive signals still prefer negative votes. However, since negative votes are

not allowed, there is pooling at the lower end of the distribution. Agents with signals

from the interval [−θ, τ ] all vote for decision zero. We obtain the following Proposition.

Proposition 2.1 (Mean mechanism, equilibrium)

(i) The mean mechanism Γ = ([v, v], x1) possesses a unique symmetric equilibrium in

which each agent votes according to voting rule

v(θ) :=





δ1(τ) − c if τ < θ

δ1(θ) − c if τ ≤ θ ≤ τ

δ1(τ) − c if θ < τ

with τ := δ−1
1 (v + c), τ := δ−1

1 (v + c) and c = (n − 1)E[v(θ)]. The implemented

decision function is d1(θ1, . . . , θn) := 1
n

∑
i v(θi).

(ii) The welfare level attained by the unique symmetric equilibrium is

W([v, v], x1) := W(d1) = −E[(v(θi) − θi)
2].

Besides the symmetric equilibrium in which each agent votes according to voting rule

v(θ), also equilibria with asymmetric voting strategies exist. For example, in a game

with three players strategies v1(θ) = v(θ)+k/2, v2(θ) = v(θ)+k/2 and v3(θ) = v(θ)−k

constitute an equilibrium in case voting is not restricted. Agents 1 and 2 increase their

votes by k/2 relative to the symmetric equilibrium and agent 3 offsets these increases

by decreasing his vote by k. Since the adjustments just cancel each other out, the

implemented decision function and the attained welfare level stay unaffected.

If voting is restricted, asymmetric equilibria do not necessarily implement the same

decision function that is implemented in the unique symmetric equilibrium.10 In the

10Reconsider the example from above and suppose now that votes above v and below −v are forbidden.

Since agent 3 is supposed to decrease his vote more strongly than agents 1 and 2 increase theirs, it is
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proof of Proposition 2.1 we derive all equilibria, but in the remainder of this paper we

restrict attention to the unique symmetric equilibrium stated in Proposition 2.1.

In part (ii) of Proposition 2.1 a simple expression for welfare is stated. From this

expression it can be directly observed that welfare is higher the closer an agent’s vote lies

to his signal. When only votes from a certain interval are admissible, voting strategies

consist of flat parts for high and low signals, and of an increasing part connecting the

two flat parts. Figure 2.1(c) shows the non–degenerated case, figure 2.1(b) displays

an example for the degenerated case in which the restriction is only binding on one

side. Recall that agents exaggerate when voting is not restricted and preferences are

not common. As a consequence, they may vote for decisions which are strictly higher or

lower than any signal (see figure 2.1(a) again). Therefore it is always welfare enhancing

to forbid at least the most extreme votes. This introduces flat parts in the voting rule

which bring some votes strictly closer to the respective signals without bringing any

votes farther away.

Proposition 2.2 (Mean mechanism, restriction is optimal)

Suppose a mean mechanism Γ = (V, x1) shall be used and preferences are not common,

i.e. α ∈ [0, αn). Then it is optimal to counteract the agents’ exaggeration by restricting

the set of admissible votes.

It can also be shown that the optimal set of admissible votes is indeed an interval.11

Since we will not need this result later on, we will not prove it formally.

General conditions characterizing the optimal interval of admissible votes can be

given but are not very tractable because they rely on two–dimensional optimization

and the endogenous parameter c. Tractable conditions can be obtained for symmetric

distributions, because then attention can be restricted to a one–dimensional optimization

more likely that the restriction detains him from choosing his preferred vote than agents 1 and 2. In

contrast, in the symmetric equilibrium, this is equally likely for all agents. Thus, the implemented

decision functions must differ.
11A proof can make use of a similar reasoning as in section 7 of Alonso and Matouschek (2007).

Although they consider a principal–agent model, the implied mathematical problem is similar to the

derivation of the optimal set of admissible votes given the equilibrium voting behavior of the mean

mechanism in our paper. Furthermore, for the agents’ signals being distributed according to a truncated

normal distribution, they obtain a similar condition characterizing the optimal set of admissible votes

as we do in Proposition 2.3.
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problem and c is always zero. If we additionally assume the hazard rate φ/(1−Φ) to be

increasing, the solution to the optimization problem is unique.

Proposition 2.3 (Mean mechanism, optimal restriction)

Let φ be symmetric around zero and let the hazard rate, φ/(1−Φ), be increasing. Then the

problem maxv W([−v, v], x1) possesses a unique solution which is implicitly characterized

by E[θi|θi > τ ] = v with τ = δ−1
1 (v).

If signals are uniformly distributed on [−1, 1], the optimal interval of admissible votes

is V ∗ = [− n(1−α)
2n(1−α)−1

, n(1−α)
2n(1−α)−1

].12 Thus, for any fixed α < 1 and for n large it is optimal

to allow votes V ∗ ≈ [−1
2
, 1

2
]. Later on we will show that using V = [−1

2
, 1

2
] as a rule of

thumb often works quite well, even for non–uniform distributions and for small numbers

of agents.

Before we go on to the median mechanism, we derive a lower bound on the welfare

level that is achieved by the optimally restricted mean mechanism. For reasons of

tractability we do this, again, only for distributions which are symmetric around zero.

Instead of allowing the agents to choose from an interval, we now allow them only

to choose between the two discrete options −v and v. There is an (almost) unique

symmetric equilibrium in which it is optimal for agents with positive signal to vote for

v and for agents with negative signal to vote for −v.13 Optimizing welfare over v leads

to the following Proposition.

Proposition 2.4 (Mean mechanism, lower bound on welfare)

Let φ be symmetric about zero. A lower bound on the level of welfare attained by the

optimally restricted mean mechanism is

max
v

W({−v, v}, x1) = −σ2 + E[θi|θi > 0]2.

Note that the bound derived in Proposition 2.4 does not depend on the number

of agents and the degree of interdependence. Moreover, it follows directly from the

Proposition that the welfare level attained by the optimally restricted mean mechanism

12For the uniform distribution on [−1, 1] we have E[θi|θi > τ ] = v ⇔ 1
2 (τ + 1) = v. Using τ =

δ−1
1 (v) = v

n(1−α) and solving for v yields the result.
13The equilibrium is only almost unique because there is a degree of freedom regarding the behavior

of an agent with type zero.
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is at least by the discrete amount E[θi|θi > 0]2 higher than the welfare level attained by

the best uninformed mechanism.

2.3.2 Median Mechanisms

If the median decision rule is used the agents are not restricted in voting, there are

multiple equilibria,14 but only one symmetric equilibrium in which the agents’ voting

behavior is strictly monotonic. In this equilibrium each agent votes for what he expects

to be his preferred decision conditional on having the median signal. I.e. agent i votes

according to

δ2(θ) := E[θ∗i (·)|θi = θm:n and θi = θ]

= (1 − α)θ +
α

2
(E[θi|θi < θ] + E[θi|θi > θ])

(Grüner and Kiel, 2004, Proposition 1). If extreme votes are forbidden, an agent is not

always allowed to vote according to δ2(θ). He then chooses the vote closest to δ2(θ)

which is still allowed.

Proposition 2.5 (Median mechanism, equilibrium)

(i) Median mechanism Γ = ([v, v], x2) possesses an equilibrium in which each agent

votes according to voting rule

v(θ) :=





δ2(τ) if τ < θ

δ2(θ) if τ ≤ θ ≤ τ

δ2(τ) if θ < τ

with τ := δ−1
2 (v) and τ = δ−1

2 (v). This is the only symmetric equilibrium in

which the agents’ voting behavior is strictly monotonic for signals in [τ , τ ]. The

implemented decision function is d2(θ1, . . . , θn) = v(θm:n).

(ii) The welfare level attained by the equilibrium in (i) is

W([v, v], x2) := W(d2) = B2 − nE[(v(θm:n) − δ∗2(θm:n))2]. (2.2)

14For instance, it is an equilibrium if all agents vote for the same decision irrespective of their types.

In this case no agent is ever pivotal such that no agent has a strict incentive to deviate from this

behavior.
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If signals are uniformly distributed, the preferred vote of an agent with signal θ is

δ2(θ) = (1− α
2
)θ, but it would be best for welfare if he voted according to δ∗2(θ) = n+1

n
1
2
θ.

It follows that

|δ∗2(θ)| ≤ |δ2(θ)| ≤ |θ| (2.3)

for any θ. By the right inequality each agent prefers votes which are less extreme than

his signal, by the left inequality he prefers votes which are more extreme than is socially

optimal. Crucial for these inequalities is that an agent’s bliss point is a weighted sum of

his own signal and the average of all other signals. In equilibrium, the fact that an agent

is pivotal conveys the information that his signal is the median signal. With uniformly

distributed signals an agent can infer from this information that his signal is likely to

be more extreme than the average of the other agents’ signals. By consequence, his

preferred vote is less extreme than his signal, i.e. |δ2(θ)| ≤ |θ|. However, since he still

puts a stronger weight on his own signal than is socially optimal, his preferred vote is still

more extreme than the vote which would be best for welfare. Therefore |δ∗2(θ)| ≤ |δ2(θ)|.
While condition (2.3) holds for any signal θ when signals are uniformly distributed,

this is not necessarily true for other distributions.15 However, condition (2.3) holds at

least for signals close to θ and θ for general distributions: Suppose an agent with signal

θ obtains the information that his signal is the median signal. Then he knows that one

half of the other agents’ signals is also θ and the other half lies somewhere between θ

and θ. This implies that the signals of agents having smaller signals lie farther away

from his own signal than those of agents having larger signals. As a consequence, he

adjusts his preferred vote downwards below his own signal. I.e. δ2(θ) < θ. Since he

puts a stronger weight on his own signal than on the other signals, he does not adjust

his vote far enough downwards. Thus, his preferred vote is larger than the vote which

is best for welfare, i.e. δ∗2(θ) < δ2(θ).

We can conclude that at least agents with very high and very low signals exaggerate

relative to the socially optimal use of their information. Therefore it is welfare–enhancing

to forbid at least votes outside the interval [δ∗2(θ), δ
∗
2(θ)]. These votes are always more

extreme than is socially optimal.

15Condition (2.3) requires that δ2(0) = δ∗2(0) = 0. Since this can only hold for distributions with

θMed = 0, condition (2.3) at least breaks down for any distribution in which the median of the distribu-

tion is not zero.
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Proposition 2.6 (Median mechanism, restriction is optimal)

Suppose a median mechanism Γ = (V, x2) shall be used and preferences are not common,

i.e. α ∈ [0, αn). Then it is optimal to counteract the agents’ exaggeration by restricting

the set of admissible votes.

2.4 Comparison of Mechanisms

In this section we compare mean with median mechanisms. We first explain why the

mean decision rule often performs badly when voting is not restricted (subsection 2.4.1).

Then we show for some classes of distributions and a finite number of agents (subsection

2.4.2), and for general distributions and a large number of agents (subsection 2.4.3) that

the optimally restricted mean mechanism performs better than the optimally restricted

median mechanism.

2.4.1 Comparison of the Unrestricted Mechanisms

In this subsection we consider the performance of the mean and the median decision

rule when there are no restrictions on voting, i.e. when V = R.

If preferences are common, agents do not behave strategically. As a consequence, the

unrestricted mean mechanism implements the first–best, but the unrestricted median

mechanism implements only the best conditional on using only the median signal. Since

the use of more information is clearly beneficial in absence of strategic behavior, the

unrestricted mean mechanism performs better.

Proposition 4 in Grüner and Kiel (2004)

If preferences are common, the unrestricted mean mechanism attains a higher level of

welfare than the unrestricted median mechanism:

W(R, x1) = B1 > B2 = W(R, x2) if α = αn.

Now we consider what happens for other degrees of interdependence. If the unre-

stricted mean mechanism is used, decision d1(·) = 1
n

∑
i n(1 − α)θi = n(1 − α)d∗1(·) is

implemented in equilibrium. n(1− α) is the factor by which each agent exaggerates his

signal and d∗1(·) is the first–best decision. The implemented decisions and the first–best
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decisions are perfectly correlated, but because of the agents’ exaggeration they may nev-

ertheless fall far apart. Although it is common knowledge that each agent’s preferred

decision lies in [θ, θ], the range of decisions is [n(1 − α)θ, n(1 − α)θ] and becomes arbi-

trarily large as n(1−α) increases. The reason for this is that the decision is additive in

all votes such that individual exaggerations might add up.

Even though there might also be exaggeration when the unrestricted median mech-

anism is used (see Proposition 2.6), exaggeration is less problematic there because only

the median agent’s vote affects the implemented decision. The range of the implemented

decisions is [δ1(θ), δ1(θ)] which is always a subset of [θ, θ].

If preferences are private, the fact that the consequences of exaggeration are more

harmful under the mean decision rule makes the unrestricted median mechanism gener-

ally preferable.

Proposition 3 in Grüner and Kiel (2004)

If preferences are private, the unrestricted median mechanism attains a higher level of

welfare than the unrestricted mean mechanism:

W(R, x1) <W(R, x2) if α = 0.

Since the above inequalities are strict and welfare is continuous in α, Propositions

3 and 4 in Grüner and Kiel (2004) also hold for intermediate degrees of interdepen-

dence sufficiently close to private and common preferences, respectively (Proposition 5

in Grüner and Kiel (2004)).

However, asymptotically, the preferability of the mean mechanism is a peculiarity of

perfectly common preferences. For any fixed degree of interdependence α ∈ [0, 1) the

factor n(1 − α) becomes arbitrarily large as n increases. Since this has, as described

above, very harmful consequences when the mean but not when the median decision

rule is used, the set of parameters α for which the unrestricted median mechanism

is preferable over the unrestricted mean mechanism converges towards the set [0, 1),

whereas the set for which the converse holds converges towards the singleton set {1}.

Proposition 2.7 (Asymptotic comparison, voting unrestricted)

If preferences are not common and the number of agents is sufficiently large, the unre-

stricted mean mechanism performs worse than the unrestricted median mechanism:

W(R, x1) <W(R, x2) for any fixed α ∈ [0, 1) if n is sufficiently large.
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Figure 2.2: Welfare; mean mechanism Γ = (R, x1): black solid curve; median mechanism

Γ = (R, x2): black dotted curve; best uninformed mechanism Γ = (V, 0): gray curve

(θ ∼ U [−1, 1])

In the proof of the Proposition we derive a sufficient condition for the statement

which is independent of the distribution of signals. If n ≥ (1 + 2(1 − α))/(1 − α)2,

the unrestricted mean mechanism is worse than the unrestricted median mechanism.

Furthermore, we show also that if n > 2/(1 − α), the unrestricted mean mechanism is

worse than the best uninformed mechanism.

Figure 2.2(a) displays how welfare typically looks like. The graph shows the wel-

fare level attained by the unrestricted mean mechanism (black solid curve), by the

unrestricted median mechanism (black dotted curve) and by the best uninformed mech-

anism (gray curve) for uniformly distributed signals and three agents. It can be seen

that close to private preferences (α = 0) the unrestricted median mechanism performs

better (Proposition 3 in Grüner and Kiel (2004)), while close to common preferences

(α = α3) the unrestricted mean mechanism is better (Proposition 4 in Grüner and Kiel

(2004)).

Figure 2.2(b) shows the same functions as figure 2.2(a), but for 101 instead of 3

agents. The graph gives an impression of how bad the unrestricted mean mechanism

becomes when the number of agents increases (see Proposition 2.7). While for common

preferences the unrestricted mean mechanism still implements the first–best, it is already

worse than the best uninformed mechanism for degrees of interdependence very close to

common preferences.
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2.4.2 Non–Asymptotic Comparison of the Optimally Restricted

Mechanisms

The influence of an agent’s vote on the collective decision depends on two features of

the mechanism. First, it depends on his discretion in choosing a vote, and second, on

the impact of his vote on the collective decision. If an agent is allowed to choose any

real–valued vote but his vote has no impact on the decision, he has no influence on the

decision. Likewise, he has no influence if his vote alone determines the decision but he

has to pick his vote from a singleton set.

If the unrestricted mean mechanism is used, an agent’s influence is large. He is

allowed to pick any real–valued vote and his vote always has an impact on the decision.

While the benefit of this large influence is a high correlation between first–best and

implemented decisions, it comes at the cost that each agent’s vote may affect the decision

in a way which might be detrimental for welfare. This happens to be the case if n(1−α)

is large, i.e. if interdependence is weak or if the number of agents is large. Then welfare

can be significantly improved by reducing an agent’s influence on the collective decision.

There are different ways of reducing an agent’s influence on the decision. In the

preceding subsection we showed that if n(1 − α) is large, it is beneficial to choose the

unrestricted median mechanism instead of the unrestricted mean mechanism, i.e. to re-

duce the impact of an agent’s vote on the collective decision while leaving his discretion

unchanged. In this subsection we show for some classes of distributions that leaving

the impact of an agent’s vote on the collective decision unchanged but forbidding ex-

treme votes is a better way of reducing his influence on the decision. Heuristically,

by forbidding extreme votes it is possible to control for the agents’ exaggeration under

the mean decision rule while maintaining a correlation between first–best decisions and

implemented decisions which is higher than the correlation present under the median

decision rule.

We prove that for uniformly distributed signals, any number of agents and any degree

of interdependence the optimally restricted mean mechanism performs better than the

optimally restricted median mechanism. Although we are not able to prove this result

for more general distributions theoretically, numerical examples suggest that it extends

at least to the case of distributions with linear densities and symmetric distributions

with quadratic densities.
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Uniform Distribution

Suppose that signals are uniformly distributed on a normalized support of length 2 and

consider first the case in which preferences are private. We can show that the specific

mean mechanism Γ = ([−1/2, 1/2], x1) attains a welfare level above B2 for any number

of agents. That is, it attains a welfare level above anything that can be achieved by a

median mechanism. If instead of private preferences stronger degrees of interdependence

are considered, bound B2 stays unchanged but the performance of mean mechanism

Γ = ([−1/2, 1/2], x1) becomes even better because agents exaggerate less. Hence, we

can conclude that the optimally restricted mean mechanism must perform better than

any median mechanism for any degree of interdependence and any number of agents.

Proposition 2.8 (Comparison, uniform distribution)

If signals are uniformly distributed, then the optimally restricted mean mechanism attains

a higher level of welfare than the optimally restricted median mechanism:

max
V

W(V, x1) > B2 ≥ max
V ′

W(V ′, x2) for any α ∈ [0, αn].

In the proof we make use of the specific structure of the uniform distribution: First,

because of the symmetry of distribution and the symmetry of the set of admissible votes

we obtain an explicit expression for the equilibrium voting behavior when the mean

decision rule is used. Second, the specific structure of the uniform distribution allows us

to compute bound B2 analytically.

Symmetric Distributions with Quadratic Densities

Now we consider symmetric distributions with quadratic densities on a normalized sup-

port of length 2.16 We denote the curvature of the density function by parameter

a ∈ [−3/2, 3]. If a is negative, the density function is concave such that most prob-

ability mass lies close to the median of the distribution. If a is positive, the density

function is convex such that most probability mass lies close to the endpoints of the

support.

Again, to show the superiority of the mean decision rule for any degree of inter-

dependence, it suffices to consider private preferences and to find a specific set of ad-

16This class of distributions is characterized by Θ = [−1, 1], φ(θ) = a
2 θ2 + 1

2 − a
6 and a ∈ [−3/2, 3].

The median of any distribution from this class is θMed = 0.
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Figure 2.3: Welfare for private preferences; mean mechanism Γ = ([−1
2
, 1

2
], x1): upper

black curve; median mechanism Γ = (R, x2): lower black curve; bound B2: upper gray

curve; bound B3: lower gray curve (θ − θ = 2, n = 3, α = 0)

missible votes V such that the welfare level attained by mean mechanism Γ = (V, x1)

is higher than B2. For n = 3 and for any curvature parameter a the same restriction

that worked already for the uniform distribution, V = [−1/2, 1/2], works here too. The

upper black curve in figure 2.3(a) displays the welfare level attained by mean mechanism

Γ = ([−1/2, 1/2], x1). The upper gray curve lying slightly below this curve shows bound

B2. As benchmarks we have drawn the welfare level attained by the unrestricted median

mechanism Γ = (R, x2) (lower black curve), and the welfare level attained by the best

uninformed mechanism (lower gray curve).

Distributions with Linear Densities

Finally, we consider distributions with linear densities on a normalized support of length

2.17 We denote the slope of the density function by parameter a ∈ [−1/2, 1/2]. By a

17This class of distributions is characterized by Θ = [− 2
3a − 1,− 2

3a + 1], φ(θ) = ax + 2
3a2 + 1

2 and

a ∈ [− 1
2 , 1

2 ]. To obtain E[θ] = 0 for any parameter a, the support of the distribution varies in a. The

median of the distribution characterized by parameter a is θMed = −(4a2 + 3 − 3
√

4a2 + 1)/(6a) and

differs from zero for a 6= 0.
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symmetry argument we can restrict attention without loss of generality to positive slope

parameters.

Once again, for n = 3 and private preferences the specific mean mechanism Γ =

([−1/2, 1/2], x1) performs better than anything that can be achieved using a median

mechanism. The upper black curve in figure 2.3(b) displays the welfare level attained by

mean mechanism Γ = ([−1/2, 1/2], x1). The upper gray curve lying slightly below the

upper black curve shows bound B2. As benchmarks we have drawn again the welfare

level attained by the unrestricted median mechanism Γ = (R, x2) (lower black curve),

and the welfare level attained by the best uninformed mechanism (lower gray curve).

2.4.3 Asymptotic Comparison of the Optimally Restricted

Mechanisms

In subsection 2.4.1 we obtained a very strong asymptotic result against the unrestricted

mean mechanism: For any degree of interdependence except for common preferences

the unrestricted median mechanism is preferable over the unrestricted mean mechanism

(Proposition 2.7).

In this subsection we consider the asymptotic performance of the optimally restricted

mechanisms. When preferences are common, it is for both, the mean and the median

decision rule, optimal not to restrict voting. Therefore the result from section 2.4.1

remains valid: The mean decision rule is preferable. In the following we prove the less

obvious result that the mean decision rule is also preferable for private preferences.

We present the argument in three steps. First, we explain why it suffices to compare

the optimally restricted mean mechanism with the unrestricted median mechanism, then

we derive the comparison result for symmetric and for asymmetric distributions.

Asymptotic Effect of the Restriction of Voting on the Performance of Mean

and Median Mechanisms

Restricting the set of admissible votes has different effects on the implemented decision

depending on whether the mean or the median decision rule is used.

When the median decision rule is used and agents are allowed to choose from an

interval V = [v, v] instead of from V = R, the implemented decision only changes if the

preferred vote of the median agent, δ2(θm:n), does not fall into the interval [v, v]. Since
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for n → ∞ the median signal θm:n lies with probability one close to the median of the

distribution, θMed, the restriction of V effects the implemented decision asymptotically

either with probability zero (if δ2(θMed) ∈ (v, v)), or with probability one (if δ2(θMed) /∈
[v, v]).18 In the former case the optimally restricted median mechanism cannot perform

significantly better than the unrestricted median mechanism. In the latter case it cannot

perform significantly better than the best uninformed mechanism. For the case in which

V is not an interval, an analogous reasoning applies.

By contrast, when the mean decision rule is used, restricting V may significantly

improve the performance of the mechanism. Since the restriction affects the implemented

decision already if an arbitrary agent’s preferred vote does not belong to V and not only

if this is true for the median agent’s preferred vote, restricting V is a more powerful

instrument when the mean decision rule is used. From Proposition 2.4 we know already

that the optimally restricted mean mechanism attains a welfare level of at least −σ2 +

E[θi|θi > 0]2 which is by a discrete amount higher than the welfare level −σ2 obtained by

the best uninformed mechanism. Furthermore, since for all but common preferences the

unrestricted mean mechanism becomes arbitrarily bad as the number of agents increases

(Proposition 2.7), the optimally restricted mean mechanism also performs significantly

better than the unrestricted mean mechanism.

Combining the insights of these two cases we can make the following observation:

Observation 2.1 To prove the asymptotic superiority of the mean decision rule over the

median decision rule, it suffices to show that the optimally restricted mean mechanism

performs better than the unrestricted median mechanism.

Symmetric Distributions

When the mean decision rule is used and agents are only allowed to choose between −v
and v, agents with a positive signal vote for v and agents with a negative signal vote

for −v. Thus, the information conveyed in equilibrium is the numbers of agents having

positive and having negative signals. Since the agents’ behavior does not depend on

18There is a third case possible. δ2(θMed) might lie on the boundary of the interval of admissible

votes. Then the restriction is binding with probability 1/2. However, using a similar reasoning as for

the two other cases, such a mechanism cannot perform significantly better than the unrestricted median

mechanism and than the best uninformed mechanism at the same time.



28 CHAPTER 2. GROUP DECISIONS

the absolute value of v, there is a degree of freedom regarding what is done with the

gathered information. In Proposition 2.4 we have already derived the welfare level that

is obtained by choosing v optimally.

When the unrestricted median mechanism is used, the information conveyed in equi-

librium is the exact position of the median signal. For n→ ∞ and private preferences we

are able to compute a tractable analytical expression for welfare under the unrestricted

median mechanism and we can show that it is worse than the lower bound on welfare

achieved by the optimally restricted mean mechanism that we derived in Proposition

2.4. Heuristically, the information conveyed if mean mechanism Γ = ({−v, v}, x1) and if

the unrestricted median mechanism Γ = (R, x2) is used is similar, but only for the mean

mechanism there is a degree of freedom regarding what is done with the information

obtained. This makes the mean mechanism perform better.

Proposition 2.9 (Asymptotic comparison, symmetric distributions)

Let φ be symmetric about zero and let preferences be private, i.e. α = 0. If the number

of agents is sufficiently large, the optimally restricted mean mechanism attains a higher

level of welfare than the unrestricted median mechanism:

lim
n→∞

max
V

W(V, x1) ≥ −σ2 + E[θi|θi > 0]2 ≥ lim
n→∞

W(R, x2).

Proposition 2.9 together with Observation 2.1 show that for symmetric distributions

and a large number of agents the optimally restricted mean mechanism performs better

than the optimally restricted median mechanism, while the unrestricted median mech-

anism is preferable to the unrestricted mean mechanism.

Figure 2.4(a) depicts the same as figure 2.3(a), but for 101 instead of 3 agents. In

this case the specific mean mechanism Γ = ([−1/2, 1/2], x1) is only better than bound

B2 for curvature parameters close to zero. Note that it still lies close to it, whereas

the unrestricted median mechanism performs much worse. It is notable that for most

positive curvature parameters, i.e. when most probability mass lies at the two endpoints

of the distribution, the unrestricted median mechanism performs even worse than the

best uninformed mechanism.19

19By restricting the set of admissible votes when the median decision rule is used, it is possible to

attain at least a welfare level slightly above what is achieved by the best uninformed mechanism.
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Asymmetric Distributions

Now we consider distributions for which the mean of the distribution, E[θi] = 0, and

the median of the distribution, θMed, do not coincide. For such distributions and for

n → ∞ the first–best decision lies close to zero with probability one while the deci-

sion implemented by the median mechanism lies close to δ2(θMed) = (1 − α)θMed 6= 0

with probability one. Hence, with probability one the unrestricted median mechanism

implements decisions which are worse than the best uninformed decision.20

20By restricting the set of admissible votes the performance of the median mechanism can be improved,

but it cannot become much better than the performance of the best uninformed mechanism.

An example for how it may be improved is the following: Suppose that the median of the distribution

is positive. Then the vote preferred by the median agent is strictly positive with a probability close

to one, but the optimal decision is close to zero with a probability close to one. This problem can be

avoided by forbidding positive votes. However, if the unlikely event happens that the median agent

prefers a strictly negative vote, it might be optimal to let the decision be strictly negative. Thus, the

structure of the optimal set of admissible votes when the median decision rule is used is V = [v, 0].
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Proposition 2.10 (Asymptotic comparison, asymmetric distributions)

Let θMed 6= 0 and let preferences be not common, i.e. α ∈ [0, 1). If the number of agents

is sufficiently large, the optimally restricted mean mechanism attains a higher level of

welfare than the unrestricted median mechanism:

lim
n→∞

max
V

W(V, x1) > −σ2 > lim
n→∞

W(R, x2) = −∞ if α 6= 1.

Figure 2.4(b) depicts the same as figure 2.3(b), but for 101 instead of 3 agents. For

a 6= 0 the median of the distribution differs from zero. It can be seen that for all values

of the slope parameter a but those lying very close to zero the unrestricted median

mechanism performs even much worse than the best uninformed mechanism.

2.5 Conclusion

In this paper we considered collective decision problems with interdependent preferences

when there is no cheap talk prior to the voting stage and monetary transfers are not

feasible. In this setting we compared the mean and the median decision rule when the

agents’ discretion in voting may be restricted.

Each agent’s influence on the decision is large when the mean decision rule is used

and voting is not restricted. This gives agents the possibility to behave opportunistically.

We showed that it is in many cases optimal to reduce an agent’s influence on the decision,

but that this is better done by using the mean decision rule and restricting his discretion

in choosing a vote than by choosing the median decision rule.

An obvious extension of our model is allowing for cheap talk prior to the voting stage.

Since the agents’ preferences are interdependent, they might have an incentive to com-

municate informatively. When cheap talk is possible and preferences are common, the

unrestricted median mechanism becomes relatively better,21 whereas when preferences

are private, the unrestricted mean mechanism becomes relatively better.22 Thus, the

21If there is no conflict of interest, any agent truthfully communicates his information prior to the vot-

ing stage. Thus, not only the unrestricted mean mechanism but also the unrestricted median mechanism

is capable of implementing the first–best.
22Without cheap talk the unrestricted mean mechanism is very prone to coordination failures. For

instance, if there are 101 agents which all prefer decision 1, the implemented decision is 101. This

problem can at least be partially mitigated through communication.



2.5. CONCLUSION 31

performances of the two mechanisms approach each other and the question arises how

this affects their relative performance.

It might also be interesting to look for the optimal mechanism in larger classes of

mechanisms. In Appendix A.4 we derive necessary and sufficient conditions for the

implementability of decision functions. As a starting point one may therefore look for

the optimal mechanism in classes of mechanisms in which these functions are particularly

tractable. Furthermore, allowing decisions to be stochastic may improve the tractability

of the optimization problem (for this see the discussion in Appendix A.5).
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Chapter 3

First–Price Auctions, Seller

Information and Commitment to

Sell

3.1 Introduction

One of the most crucial assumptions in auction theory addresses the seller’s commit-

ment power. Can the seller commit himself not to offer unsold objects again at a later

point in time? Can he commit not to affect the auction outcome by placing phantom

bids himself? Can he commit not to change the rules of the auction after eliciting some

information from the buyers? The seller’s ability to commit crucially affects what he

can implement and what he optimally should implement. For instance, in the indepen-

dent private values environment with risk–neutral buyers and a risk–neutral seller any

standard auction with an optimally chosen reserve price maximizes the seller’s revenue

when he can commit to any behavior (Myerson, 1981, Riley and Samuelson, 1981). In

contrast, when he cannot commit to anything, there is basically only a single auction im-

plementable, namely the open English auction without reserve price (Vartiainen, 2007).

However, the full commitment and the no commitment assumption are both rather ex-

treme and rarely met in practice. Therefore there is a need to analyze settings in which

the seller can commit to some behavior but not to others, for example the cases in which

he cannot commit not to sell and in which he cannot commit to sell.

A seller who cannot commit not to sell cannot credibly promise not to reauction

33
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unsold objects at a later point in time. In this case it is optimal for the seller to conduct

a sequence of standard auctions with declining reserve prices (McAfee and Vincent, 1997,

Skreta, 2004).

When the seller cannot commit to sell, he might decide to keep the object after

observing the outcome of the auction. This can either happen directly by withdrawing

the object, or indirectly by placing a phantom bid himself.1 Even when the seller is

legally not allowed to refrain from selling the object to the highest bidder or to place

own bids, he can often not be prevented from using a third party to place bids on his

behalf.

This Contribution

In this paper we are interested in the case in which the seller cannot commit to sell. The

first part of the paper addresses the optimal auction with a first–price payment rule in

an environment in which the commitment problem is binding with positive probability

when the seller sets a reasonable reserve price. This is because we assume that the seller

has to design the rules of the auction before he learns his reservation value. Except for

this assumption and the seller’s lack of commitment power, we stick to the standard

independent private values environment with risk–neutral buyers and a risk–neutral

seller.

Often some time needs to pass between the announcement of the auction (and its

rules) and the beginning of the tendering procedure. For example, this is the case when

the seller auctions a procurement contract and the buyers have to prepare prototypes or

construction plans before they can reasonably think about their bidding strategies. Dur-

ing the time between the announcement and the start of the bidding procedure the seller

may obtain more accurate estimates about his valuation (e.g. due to changed market

conditions) or about his outside options (e.g. about his own production possibilities).

Moreover, the seller may be uninformed about his valuation at the time he designs the

auction if he decides to install general rules for a series of future auctions instead of

1The placement of phantom bids can be interpreted as setting a secret reserve price. In Cassady

(1967) it is claimed that reserve prices are usually not announced and many examples for this are given.

Furthermore, similar observations are made in Hendricks, Porter, and Tan (1993) for auctions for oil

and gas leases held by the government, in Elyakime, Laffont, Loisel, and Vuoung (1994) for timber

auctions in France and in Ashenfelter and Graddy (2003) for auctions of art.
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deciding on the rules on a case–by–case basis.2

By the Revenue Equivalence Theorem, any auction format which induces the same

allocation and in which the worst buyer type has to make a zero expected payment

generates the same expected revenue for the seller.3 Due to this property the nature

of the payment rule plays a more prominent role when the seller cannot commit to sell

than when he can: Consider the symmetric equilibria of a first–price and a second–

price auction with the same reserve price. Since both auction formats induce monotonic

bidding behavior, the resulting allocations coincide when the seller can commit to sell

to the highest bidder. Hence, which payment rule is used does not matter for expected

revenue. However, the actual payment the highest bidder has to make in the two cases

generally differs. As a consequence, the seller’s incentive to sell and to keep the object

differs too. If the seller cannot commit to sell to the highest bidder, the final allocation of

the object and thus also his expected revenue depends on the nature of the payment rule

used. We restrict attention to the case in which the seller uses a first–price payment rule.

This assumption can be justified for two reasons: First, in practice sellers often want to

choose a first–price auction format because of its simplicity and certain other features

(e.g., its robustness with respect to collusion). Second, from a theoretical point of view,

fixing a specific payment rule allows us to analyze the effects that the commitment

problem has on the optimal allocation more thoroughly.

Our main result in the first part of the paper is that the structure of the optimal

first–price auction in our setting may differ from the optimal structure in the standard

setting. More specifically, while in the standard setting the seller only has an incentive

to restrict bidding by setting a reserve price, he may also want to prohibit intermediate

bids in our setting. The reason for this is the following: Suppose the seller’s reservation

value is x1 with 10 percent probability and x2 > x1 with 90 percent probability. If

the seller learns his reservation value before he has to fix the rules of the auction, he

chooses different reserve prices depending on his actual reservation value. If he has to fix

rules first, then he can only set one (real) reserve price, yet to a certain degree, he can

mimic a second second reserve price by offering a non–connected set of admissible bids

2Timber auctions in France are usually conducted as first–price sealed bid auctions without reserve

price. Since the seller’s value may differ from case to case he has an incentive to install secret reserve

prices by placing own bids (Elyakime, Laffont, Loisel, and Vuoung, 1994).
3See chapter 3 in Krishna (2002).
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B = [r1, x2) ∪ [r2,∞) with x1 < r1 and x2 < r2. Then r1 is the reserve price relevant

for buyers who are satisfied with getting the object with at most 10 percent probability,

and r2 is the one relevant for those who want a higher probability. By changing the gap

in B, the seller can influence which of the buyers’ types aim at getting a high and which

ones aim at getting a low probability of obtaining the object, i.e. for which r1 and for

which r2 is the relevant reserve price. By increasing r2, fewer buyer types submit a bid

above this threshold, but those who do, submit a higher bid than previously. The seller

faces a trade–off which is similar to that associated with reserve prices. He can sacrifice

efficiency in order to induce more aggressive bids.

We show that for general distributions of buyer types there are distributions of seller

types such that the seller wants to prohibit intermediate bids. Furthermore, if the

seller’s valuation can assume only a finite number of values, this specific kind of first–

price auction is sometimes capable of implementing the overall optimal mechanism.

In the first part of the paper we assume that the seller has to design the rules of

the auction before he learns his value. In the second part of the paper we relax this

assumption by endogenizing the time at which the auction is designed. We show that if

the seller is risk–averse instead of risk–neutral, he might have a strict incentive not to

wait until he gets informed. If he waits, he chooses a first–price auction with a reserve

price only, however the chosen reserve price varies with the realization of his reservation

value. As a consequence, also the buyers’ bidding behavior depends on the seller’s reserve

price. In contrast, if the seller designs the auction while he is still uninformed, he might

choose a first–price auction in which intermediate bids are prohibited, but the induced

bidding behavior does not vary with his type. As this enables him to reduce the variation

in bids without reducing expected revenue, the seller may choose the auction before he

is fully informed. Thus, the information structure we assumed in the first part of the

paper might arise endogenously when the seller is risk–averse.

Structure of the Paper

We present the model in the subsequent section. In section 3.3 we derive which bidding

behavior can be implemented by the seller. Then, in section 3.4, we analyze the structure

of the optimal first–price auction if the seller is risk–neutral and does not know his value

at the time he designs the auction. In section 3.5 we consider the case in which the
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seller is risk–averse and the time at which he designs the auction is endogenous. The

last section concludes. All proofs can be found in the Appendix.

3.2 The Model

We consider the problem between a seller of an indivisible object (player 0) and two

symmetric buyers (players 1 and 2). Throughout the paper we will refer to a generic

buyer by i and to the other buyer by −i.
The valuations that the three players assign to the object are independently drawn

and private information. Buyer i’s valuation, θi, is drawn from a distribution function

F (·) with support [0, 1]. We assume that a density function f := F ′ exists and is

strictly positive on the support. Moreover, we make the assumption, which is commonly

adopted in auction theory, that the virtual valuation function v(θ) := θ−(1−F (θ))/f(θ)

is strictly increasing.4 The seller himself assigns a reservation value of θ0 to the object,

drawn according to a distribution function G(·). To focus on the interesting cases,

we assume that for all buyer types θi > 0 trade is efficient with positive probability.

Technically, this can be stated as G(ǫ) > 0 for any ǫ > 0.

The seller offers the object for sale via a first–price sealed bid auction in which only

bids from a set B ⊂ R+ are admissible. For instance, B = [r,∞) specifies a first–

price auction with a reserve price, B = [0, c] a first–price auction with a bid cap, and

B = {b1, b2} one in which participating bidders can only choose between a high and a low

bid. The timing is the following: The seller specifies the rules of the auction, B, before he

and the buyers privately learn their valuations. Then the buyers simultaneously decide

between participating in the auction by submitting a bid bi ∈ B and not participating.

Finally, the seller observes the bids and decides between selling the object to the highest

participating buyer5 and keeping it. A monetary transfer is only made if the seller

actually sells the object at the end. In this case the winning bidder pays his bid to the

seller. Thus, the seller’s payoff is

u0 =





θ0 if the seller keeps the object

bi if buyer i obtains the object
,

4This assumption is met by the most common distributions and is implied by an increasing hazard

rate f(θ)/(1 − F (θ)).
5If the highest bid is submitted by several buyers, we assume that the winner is drawn by chance.
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and buyer i’s payoff is

ui =





θi − bi if buyer i obtains the object

0 if he does not
.

For the time being we assume that all players are risk–neutral. Only in section 3.5 we

consider a modified version of the model in which the seller is risk–averse.

As equilibrium concept we adopt the notion of Perfect Bayesian equilibrium. A

symmetric Perfect Bayesian equilibrium6 is characterized by a set of admissible bids B, a

set of participating buyer types P ⊂ [0, 1], a bid function b : P → B mapping those types

into bids, and a rule describing for which combinations of bids and reservation values

the seller sells and keeps the object at the end. We call a bid function implementable

by a set B, if the game that is played after the seller has chosen the set B possesses

a symmetric Perfect Bayesian equilibrium inducing this bid function. We call a bid

function implementable if it is implementable by some set B.

To sum up, we consider a standard auction setting which is modified in two respects:

First, the seller has to fix the rules of the auction, the set B, before he learns his value.

Second, he cannot commit to actually selling the object after observing the bids and

learning his value.

3.3 Implementable Bid Functions

Given a set of admissible bids B we normally obtain a multiplicity of symmetric equilibria

which differ only in the behavior of types with mass zero. For instance, there is an

equilibrium for which the buyer type that is just indifferent between participating and

not participating does participate, and one in which this type does not. This multiplicity

complicates stating our results, but it does not affect expected payoffs. We therefore

simplify result statements by pinning down the behavior of indifferent players.

Assumption 3.1 If a buyer is indifferent between participating and not participating,

he participates. If he is indifferent between submitting a low and a high bid, he chooses

the high bid. If the seller is indifferent between selling and not selling, he sells.

6With symmetric we refer, of course, only to the buyers’ behavior.
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In this section we first state results for the standard case in which the seller always

sells to the highest bidder (subsection 3.3.1), then we derive necessary and sufficient

conditions for bid functions to be implementable when the seller cannot commit to sell

(subsection 3.3.2).

3.3.1 The Standard Case: The Seller Always Sells to the High-

est Bidder

The results in this subsection are standard and can be found in any textbook on auction

theory (e.g., in section 2 of Krishna (2002)).

In the standard case the seller chooses a first–price auction and he is committed to

selling to the highest bidder. In this case it is optimal for him to set a reserve price

only, i.e. to choose a set of admissible bids B = [r,∞). Such sets of admissible bids

implement the following bidding behavior:

Proposition 3.1 (Bid function, standard case)

Let B = [r,∞) with r ∈ [0, 1] and suppose the seller has to sell to the highest bidder.

Bid function βr : P → R+ is implementable by set B if and only if P = [r, 1] and

βr(θi) := θi −
∫ θi

r

F (s)

F (θi)
ds. (3.1)

If no buyer participates in the auction, the seller keeps the object and obtains E[θ0].

Thus, when choosing a reserve price, he behaves as if his valuation is E[θ0]. By another

standard result, the optimal reserve price can be described by the inverse of the virtual

valuation function v(θi) = θi − 1−F (θi)
f(θi)

.

Proposition 3.2 (Optimal reserve price, standard case)

If the seller has to sell to the highest bidder and his valuation is y, the revenue maximizing

first–price auction can be implemented by the set of admissible bids B∗ = [ρ(y),∞) with

ρ(y) := v−1(y). (3.2)



40 CHAPTER 3. FIRST–PRICE AUCTIONS

3.3.2 The Non–Standard Case: The Seller Cannot Commit to

Selling to the Highest Bidder

At the time the seller has to decide between keeping the object and selling it to the

highest bidder, he possesses all information which is payoff–relevant for him. He behaves

opportunistically by always choosing his best option.

Proposition 3.3 (Selling decision)

The seller keeps the object if and only if either no buyer participates or if the highest bid

lies strictly below his reservation value θ0.

Knowing the seller’s selling behavior, we are able to describe how a buyer’s bid affects

his probability of getting the object. If buyer i submits bid b and buyer −i bids according

to bid function b∗(·), buyer i obtains the object with probability

H(b) := G(b) ·
[
Prob(−i does not participate)

+Prob(b∗(θ−i) < b) +
1

2
Prob(b∗(θ−i) = b)

]
.

Since a buyer’s payoff is increasing in his valuation, the set of participating buyer

types is always an upper interval, say P . The following Proposition gives implicit nec-

essary and sufficient conditions for bid functions to be implementable for a given set of

participating buyer types P = [r, 1].

Proposition 3.4 (Bid function, non–standard case)

Let b∗ : [r, 1] → R+ with r ∈ [0, 1]. b∗ is implementable if and only if

b∗ is non–decreasing, and (3.3)

b∗(θi) := θi −
∫ θi

r

H(b∗(s))

H(b∗(θi))
ds. (3.4)

Condition (3.4) looks similar to condition (3.1) that characterizes bidding in the

standard case, but it is only implicit since the integrand depends on the absolute level

of bids and not only on types.
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3.4 The Seller Designs the Auction Before He Learns

His Value

In this section we show that for general distributions of buyer types the optimal first–

price auction might not be implementable by setting a reserve price only. This can be

shown by considering only reservation values that are distributed according to a two–

point distribution. Furthermore, restricting attention to such distributions makes it

easier to explain the relevant effects. Therefore we stick to the following assumption

throughout subsections 3.4.1 and 3.4.2:

Assumption 3.2

θ0 =





0 with probability p

x with probability 1 − p

with p ∈ (0, 1) and x ∈ (0, 1).

One can think of this assumption in the following way: The object has no value to the

seller, but with probability 1−p he obtains the possibility to sell it at price x to someone

not taking part in the auction.

In subsection 3.4.1 we show how the structure imposed by Assumption 3.2 simplifies

the conditions for bid functions to be implementable. Then we analyze the seller’s

revenue maximization problem in subsection 3.4.2. Finally, we show in subsection 3.4.3

that it is not crucial for our results that the seller’s value is discretely distributed.

3.4.1 Implementable Bid Functions (Revisited)

In Proposition 3.4 we derived necessary and sufficient conditions for bid functions to be

implementable. However, these conditions are only implicit and not very tractable. In

this subsection we use the specific structure of Assumption 3.2 to obtain better tractable

conditions.

If the seller sets a reserve price which is higher than his highest possible valuation,

i.e. r ≥ x, his commitment problem is never binding so that we are back in the standard

case. Standard theory states that in this case the seller might set a reserve price but

has no incentive to restrict the set of admissible bids further. For B = [r,∞) there is
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a unique symmetric equilibrium in which each buyer bids according to the bid function

βr(·) (see Proposition 3.1).

In the remainder of this subsection we consider the case in which the seller sets

a reserve price below his highest possible value, i.e. r < x. We first explain which

bid function is implemented if the seller does not restrict bidding beyond setting a

reserve price, then we explain how he can change the implemented bidding behavior by

restricting B further.

In the standard case a buyer’s trade–off is between the probability of being the highest

bidder and his payoff conditional on winning. If the seller cannot commit to selling after

observing the bids, there is an additional effect. By increasing his bid, a buyer might

not only increase the probability of being the highest bidder but also the probability

with which the seller is willing to sell to him. For the specific distribution of the seller’s

reservation value we consider here, a buyer must increase his bid above x to make the

seller more eager to sell. But if a buyer’s valuation is low, at least if θi < x, bidding

above x is not attractive for him. If a buyer has such a type, he faces the same trade–off

as in the standard case, and, as a consequence, he displays the same bidding behavior

as in the standard case, i.e. he bids according to βr(·). However, as the buyer’s type

increases, some type θ̂ is eventually reached that is indifferent between bidding βr(θ̂) and

obtaining the object with probability p (conditional on being the highest bidder), and

bidding just x in order to obtain it for sure (conditional on being the highest bidder).

This type is specified by the condition

p(θ̂ − βr(θ̂)) = θ̂ − x ⇔ x = (1 − p)θ̂ + pβr(θ̂).

By defining

σr(θ̂) := (1 − p)θ̂ + pβr(θ̂) (3.5)

we can describe this type by θ̂ = σ−1
r (x). In equilibrium, all types larger than σ−1

r (x)

increase their bids relative to the standard case and bid above x. An example for such

a bid function is depicted in figure 3.1(a). The gray region depicts the set of admissible

bids, the black curve is the equilibrium bid function. The bidding behavior is described

in the following Proposition:
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(a) B = [r,∞)
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(b) B = [r, x) ∪ [σr(θ̂
′),∞)

b∗(·)
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(c) B = [r, x) ∪ [σr(θ̂
′′),∞)

Figure 3.1: Equilibrium bid functions (θi ∼ U [0, 1], x = 0.5, p = 0.5, r = 0.2)

Proposition 3.5 (Bid function, two–point distribution, B connected)

Let B = [r,∞) with r ∈ [0, x). Bid function b∗ : P → R+ is implementable by set B if

and only if P = [r, 1] and

b∗(θi) =





βr(θi) if θi ∈ [r, θ̂)

βr(θi) + F (θ̂)
F (θi)

(σr(θ̂) − βr(θ̂)) if θi ∈ [θ̂, 1]
(3.6)

with θ̂ = σ−1
r (x).

Note that if σ−1
r (x) > 1, all types bid below x. In this case x is so high that bidding

above x is not attractive for any buyer type.

We consider now how the seller can affect the implemented bid function by restricting

the set of admissible bids. Recall that type θ̂ = σ−1
r (x) is just indifferent between bidding

βr(θ̂) and bidding x when B = [r,∞). If we do not permit this type to choose bid x, he

strictly prefers bidding βr(θ̂) < x to any other admissible bid. In the same manner, if we

do not only prohibit bid x but all bids in [x, y), all types in [θ̂, θ̂′) := [σ−1
r (x), σ−1

r (y)) bid

below instead of above x. An example for the resulting bidding behavior is displayed in

figure 3.1(b). The figure shows how the equilibrium bid function in figure 3.1(a) changes

if we prohibit bids in [x, σr(θ̂
′)). The gray region displays, again, the set of admissible

bids and the solid curve shows the implemented bid function. To emphasize the change

in the bidding behavior, we indicate the bid function from figure 3.1(a) by the dotted

curve.

For the subsequent explanations it will be convenient to introduce a specific notation

for types in [0, θ̂′), types in [θ̂′, 1], and for type θ̂′. Henceforth we will refer to types bid-
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ding below x as low bidders and to types bidding above x as high bidders. Furthermore,

we will refer to the type θ̂′ separating low bidders from high bidders as separating type.

By appropriately restricting the set of admissible bids the seller can induce a higher

separating type. In Proposition 3.6 we show that for any θ̂′ ∈ [σ−1
r (x), β−1

r (x)] there

is a set of admissible bids B that implements a strictly increasing bid function with

separating type θ̂′. Furthermore, those are the only strictly increasing bid functions

that are implementable.

Proposition 3.6 (Bid function, two–point distribution, B arbitrary)

Let r ∈ [0, x). A strictly increasing bid function b∗ : [r, 1] → R+ is implementable if and

only if condition (3.6) is satisfied with θ̂′ ∈ [σ−1
r (x), β−1

r (x)].

The set B by which bid function b∗ is implemented must not contain bids from

[x, σr(θ̂
′)). A particular way of implementing b∗ is by choosing B = [r, x) ∪ [σr(θ̂

′),∞).

We did not explain yet why the seller cannot choose a separating type larger than

β−1
r (x). For separating type θ̂′′ = β−1

r (x), the implemented bid function is as displayed

in figure 3.1(c). The highest low bidders prefer bids lying just below x. If the seller

tried to enforce an even higher separating type, some types would want to bid above

x, even if this did not increase the seller’s eagerness to sell. But since bids just above

x are not permitted, these types are effectively constrained by a bid cap. Therefore

the implemented bid function would exhibit pooling just below x. Thus, the seller can

implement bid functions in which the separating type is larger than β−1
r (x), but no

strictly increasing ones.

3.4.2 The Revenue Maximizing Auction

In the preceding subsection we derived all implementable bid functions that are strictly

increasing. We found that the seller basically has two degrees of freedom, the reserve

price r and the separating type θ̂′. In particular, we found that by prohibiting some

intermediate bids the seller can increase the mass of low bidders. In this subsection we

first derive the optimal separating type for a given reserve price and explain the rationale

for why the seller may actually want to have more low bidders. Then we analyze the

optimal choice of the reserve price.
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(a) Structure of bidding; H: only high bid-

ders, L: only low bidders, LH: low and high

bidders

r

0

1

x
0 1
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gions: B∗ connected, dark gray regions: B∗

non–connected

Figure 3.2: Structure of bidding and structure of the optimal set of admissible bids

(θi ∼ U [0, 1], p = 0.5)

The Optimal Separating Type Given a Reserve Price

If r ≥ x (region H in figure 3.2(a)), or if r < x and σ−1
r (x) ≥ 1 (region L), a unique

strictly increasing bid function is implementable. In the former case the reserve price

forces all participating types to bid above x, in the latter case the reserve price is so

much lower than x, that all types prefer bidding below x. Only if r < x and σ−1
r (x) < 1

(region LH), a multiplicity of strictly increasing bid functions is implementable. While

those bid functions have in common that some types bid below and others bid above x,

they differ in the type separating low from high bidders.

The separating type does not affect the identity of the highest bidder, but it affects

to which types the seller sells the object only if his reservation value is low, and to which

types he sells for any realization of his reservation value. A reserve price determines to

which types the seller is going to sell with probability zero and with a positive probability.

Thus, the separating type and the reserve price have in common that they both determine

which buyer types obtain the object with a higher probability and which ones obtain

it with a lower probability. By consequence, changes in the reserve price and in the

separating type induce similar strategic effects. If the seller increases the reserve price,

some types stop participating in the auction, but types that still participate bid higher.

If he increases the separating type, some types are forced to bid below x, but types who

still bid above x increase their bids (see figure 3.1(b), again). In both cases the seller
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faces a trade–off between the probability of making an efficient sale and the level of bids

(of types who decide to make a high bid).

It turns out that we can describe the optimal separating type using the function ρ(·)
which describes the optimal reserve price in standard auctions (see subsection 3.3.1).

We obtain the following Proposition:

Proposition 3.7 (Optimal separating type)

Let r ∈ [0, x) and let σ−1
r (x) < 1. The optimal strictly increasing and implementable bid

function is specified by separating type

θ̂∗ =





σ−1
r (x) if ρ(x) < σ−1

r (x)

ρ(x) if σ−1
r (x) ≤ ρ(x) ≤ β−1

r (x)

β−1
r (x) if ρ(x) > β−1

r (x)

. (3.7)

The optimum cannot be implemented by a connected set of admissible bids if ρ(x) >

σ−1
r (x).

By applying a revenue equivalence argument (e.g., by extending Proposition 23.D.3

in Mas-Colell, Whinston, and Green (1995) by a stochastic seller valuation) we obtain

that the seller’s revenue depends only on the allocation of the object.7 Furthermore,

using standard reasoning (see, e.g., Example 23.F.2 in Mas-Colell, Whinston, and Green

(1995)), it is optimal for the seller to sell the object only if the highest bidder’s virtual

valuation exceeds his reservation value. Hence, if the seller’s reservation value turns out

to be x, it is optimal for him to sell only to types for which

v(θi) ≥ x ⇔ θi ≥ ρ(x).

Thus, if the seller can implement a strictly increasing bid function with separating type

ρ(x), he achieves the optimal allocation (for a given reserve price). However, as we know

from Proposition 3.6, the seller is only able to implement separating types from set

[σ−1
r (x), β−1

r (x)]. Although his preferred separating type does not depend on the reserve

price, the reserve price determines which separating types are implementable. If ρ(x) ∈
7The seller’s revenue depends on (i) for which combinations (θ0, θ1, θ2) he sells the object to the

highest bidder and for which combinations he keeps it, and (ii) on the expected payoff of the lowest

buyer type. Since we assumed bids to be non–negative and participation in the auction to be voluntary,

the lowest buyer type always obtains a payoff of zero. Therefore the seller’s revenue depends only on

the allocation.
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[σ−1
r (x), β−1

r (x)], the seller can implement his preferred separating type. If ρ(x) lies

outside this interval, he chooses the closest separating type which is still implementable.

From Proposition 3.5 we already know that only separating type θ̂ = σ−1
r (x) can be

implemented by a connected set of admissible bids. Hence, when ρ(x) > σ−1
r (x), the

optimum can only be implemented by a non–connected set of admissible bids.

Figure 3.2(b) illustrates the structure of the optimal separating type if the buyers’

values are uniformly distributed for different combinations of x and r. Recall that only

in the gray regions there is a separating type. In the light gray region the connected

set B∗ = [r,∞) implements the optimal separating type (the implemented bid function

looks like in figure 3.1(a)). In the dark gray region the optimal separating type can

only be implemented by a non–connected set B∗. The dark gray region is divided by a

dashed curve into a left and a right part. In the right part the seller can implement his

preferred separating type. In the left part his preferred separating type is higher than

what he can implement. He therefore chooses the highest separating type possible. This

makes the implemented bid function look like in figure 3.1(c).8

The Optimal Reserve Price

Up to now we analyzed the optimal choice of a separating type for a given reserve price.

Now we address the question how the reserve price should be chosen. First, we show

that for general distributions of buyer types there is always an interval of x–values such

that the optimal first–price auction can only be implemented by a non–connected set

of admissible bids. Then we explain how the optimal reserve price and the optimal

separating type depend on the parameter x.

Using a similar reasoning as in the preceding subsection, we easily obtain the allo-

cation which is optimal if the seller has no commitment problem. In this case the seller

should sell the object to the highest buyer if this buyer’s virtual valuation exceeds his

reservation value, otherwise he should keep the object. I.e., if his reservation value is

8In this case the seller may have an incentive to implement a bid function which exhibits pooling

just below x in order to obtain a higher separating type. Considering also such bid functions may thus

further increase the seller’s incentive to choose a non–connected set of admissible bids. However, it

turns out that restricting attention to strictly increasing bid function suffices to show that for general

distributions of buyer types the seller may have an incentive to choose a non–connected set of admissible

bids.
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Figure 3.3: Optimal reserve price and optimal separating type; dark gray region: B∗

non–connected, white and light gray regions: B∗ connected (θi ∼ U [0, 1], p = 0.5)

zero, he should sell only to buyers with v(θi) ≥ 0 ⇔ θi ≥ ρ(0), and if his reservation

value is x, he should sell only to buyers with v(θi) ≥ x ⇔ θi ≥ ρ(x). A specific way

of implementing this allocation is by choosing a first–price auction with reserve price

r = ρ(0) and separating type θ̂ = ρ(x). Yet, in presence of the commitment problem

it might not be possible for the seller to obtain this allocation. While the seller can

always choose reserve price r = ρ(0), he might not be able to implement separating type

θ̂ = ρ(x). This is only possible if ρ(x) ∈ [σ−1
ρ(0)(x), β

−1
ρ(0)(x)] (Proposition 3.6). However,

we can prove that for general distributions of buyer types this is possible at least for some

x–values. Moreover, there are always x–values such that the optimal first–price auction

can only be implemented by a non-connected set of admissible bids. This happens if

ρ(x) ∈ (σ−1
ρ(0)(x), β

−1
ρ(0)(x)] (Proposition 3.7). We obtain the following Proposition:

Proposition 3.8 (Optimal reserve price)

(i) For any distribution function F (·) and any probability p there is a non–empty

interval of x–values such that ρ(x) ∈ (σ−1
ρ(0)(x), β

−1
ρ(0)(x)].

(ii) If ρ(x) ∈ (σ−1
ρ(0)(x), β

−1
ρ(0)(x)], the first–price auction with set of admissible bids

B∗ = [ρ(0), x)∪[σρ(0)(ρ(x)),∞) implements the generally optimal mechanism. Fur-

thermore, this mechanism would be optimal even if the seller knew his reservation

value upfront and he had no commitment problem.
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We conclude this subsection by describing the dependence of the optimal reserve

price and the optimal separating type on the parameter x when the buyers’ values are

uniformly distributed and the seller’s value is high and low with equal probability. Figure

3.3(a) depicts the optimal reserve price for different values of x (thick black curve) and

the regions introduced in figure 3.2. Figure 3.3(b) shows the optimal reserve prices (solid

curve) together with the optimal separating types (dashed curve). The dark gray regions

indicate where the optimal set of admissible bids is non–connected, the white and the

light gray regions show where it is connected.

If x is small (x < x1), it is optimal for the seller to choose a reserve price which

is higher than both possible realizations of his value. The equilibrium bid function is

continuous and lies above x everywhere. Since the seller obtains expected payoff E[θ0]

when no buyer is willing to pay the reserve price, the seller chooses the reserve price

which is optimal when his value is E[θ0], i.e. r∗ = ρ(E[θ0]).

If x is large (x > x4), it is too costly for the seller to provide the buyers with incentives

to bid above x. Without providing such incentives, he keeps the object if his value is

x and sells it through the auction only if his value is zero. Effectively, there is only an

auction if the seller’s value is zero. Therefore the optimal reserve price is r∗ = ρ(0). The

equilibrium bid function is continuous and lies everywhere below x.

For intermediate values of x (x1 < x < x4) the seller chooses a reserve price such that

there are low and high bidders. The equilibrium bid function jumps at the separating

type θ̂∗ from below x to above x. If x lies between x2 and x3, the generally optimal

mechanism can be implemented (see Proposition 3.8). In this case types below r∗ = ρ(0)

do not participate, types between r∗ = ρ(0) and θ̂∗ = ρ(x) do participate but bid below

x, and types above θ̂∗ = ρ(x) participate and bid above x. This leads to the same

allocation that would occur if the seller learned his reservation value first and only then

designed the auction. If x lies between x1 and x2, the commitment problem prevents

the seller from obtaining the optimal allocation. He can only induce separating types

below the revenue maximizing one. To implement a higher separating type, he chooses

a reserve price below ρ(0). This makes bidding below x more attractive such that the

separating type, i.e. the buyer type that is indifferent between bidding above and below

x, increases. For x lying between x3 and x4 it is the other way around. In this case

the seller cannot have the separating type as low as he wants. By increasing the reserve

price, he makes bidding above x more attractive such that the separating type decreases.
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3.4.3 Robustness: The Seller’s Value Is Distributed According

to a Continuous Distribution Function

Until now we considered only the case in which the distribution function according to

which the seller’s reservation value is distributed is discontinuous at x (see Assumption

3.2). We now show that the discontinuity is not crucial for obtaining our results. We

can show this by modifying Assumption 3.2 slightly. In this subsection we assume that

the seller’s value is zero with probability p and is drawn from a uniform distribution on

[x− ǫ, x] with probability 1 − p.

Assumption 3.3

θ0





= 0 with probability p

∼ U [x− ǫ, x] with probability 1 − p

with p ∈ (0, 1), x ∈ (0, 1) and ǫ ∈ (0, x).

If ǫ is small, the cumulative distribution function is similar to that induced by Assump-

tion 3.2 but it is continuous at x. It turns out that when the seller chooses a first–price

auction with B = [r,∞) and r < x, the same bid function that is implemented under

Assumption 3.2 is also implemented under Assumption 3.3 if ǫ is sufficiently small.

The reason for this is the following: Suppose that ǫ is small enough such that r < x−ǫ.
Then the implement bidding behavior could only differ if some types had an incentive

to submit bids from (x − ǫ, x). Otherwise each type would basically face the same

decision problem under both environments such that the same bidding behavior would

be induced. Therefore assume to the contrary that it is optimal for some type to choose

a bid b ∈ (x−ǫ, x). If this type increases his bid marginally, his probability of getting the

object increases at least at rate 1/ǫ, while his payoff conditional on getting it decreases

at rate 1/(θ̂ − b). If ǫ < θ̂ − b, the type in question has a strict incentive to deviate by

increasing his bid. Thus, if ǫ is sufficiently small, nobody wants to submit bids from set

(x−ǫ, x). Hence, we can conclude that the same bidding behavior is implemented under

both assumptions.9

9Note that only types θi > x − ǫ might have an incentive to submit bids b ∈ (x − ǫ, x). Since

assumption r < x− ǫ implies that those types obtain a strictly positive information rent, θ̂− b must be

bounded away from zero. Therefore there is a threshold ǫ such that for all ǫ < ǫ the inequality holds.
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This proves that if ǫ is sufficiently small, the seller has the same incentives to restrict

the set of admissible bids under Assumption 3.3 as he has under Assumption 3.2. As a

consequence, the same reasoning as in subsections 3.4.1 and 3.4.2 applies and we obtain

the same results.

3.5 The Seller Does Not Want to Learn His Value

Before He Designs the Auction

Up to now we assumed that the seller has to fix the rules of the auction before he

learns his value. However, it is often not clear why the seller is not able to postpone

at least the announcement of some specifics of the auction, e.g. the set B, until he is

better informed. In this section we consider a slightly modified version of our model to

give a rationale for why the seller might not want to wait. We assume that the seller’s

information improves at some fixed point in time and that he can choose between fixing

rules already before this point in time or only thereafter. From the time at which the

auction rules are announced the buyers can infer whether the seller was informed or

uninformed when he designed the auction. Furthermore, we now assume that the seller

is risk–averse instead of risk–neutral.

Thus, except for assuming that the seller’s expected utility is now E[ν(uI)] with ν(·)
being a strictly increasing and concave function,10 and except for endogenizing the time

at which the auction rules are announced, we stick to the model analyzed in subsections

3.4.1 and 3.4.2. In particular, we assume again that the seller’s value is zero with

probability p and x with probability 1 − p (Assumption 3.2).

Case 1: The Seller Designs the Auction After He Learns His Value

Consider first the case in which the seller’s reservation value is common information. In

this case it is optimal for the seller to set a reserve price without restricting the set of

admissible bids further.11 In contrast to the case in which the seller is risk–neutral, the

10See Waehrer, Harstad, and Rothkopf (1998) for a discussion of auctions with a risk–averse seller

and risk–neutral buyers.
11If the seller restricts bidding further, the implemented bid function exhibits pooling. Since virtual

valuations are strictly increasing, it is however better for him to avoid pooling.
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Figure 3.4: Equilibrium bid functions (θi ∼ U [0, 1], x = 0.6, p = 0.5)

reserve price that is optimal for a risk–averse seller can only be specified implicitly. In

the subsequent reasoning we will denote this reserve price by ρ̃(θ0).

Now consider the case in which the seller’s reservation value is private information.

In this case multiple equilibria exist, but the equilibrium in which the seller behaves

as in the standard case Pareto dominates the other equilibria.12 I.e., in the Pareto

dominant equilibrium he chooses a first–price auction with reserve price r′ := ρ̃(0) > 0

if his reservation value turns out to be zero and one with reserve price r′′ := ρ̃(x) > x if

it turns out to be x. An example of what the implemented bid functions might look like

is displayed in figure 3.4(a). Since the seller chooses a reserve price that is higher than

the actual realization of his reservation value in both cases, his commitment problem is

never binding.

12In this footnote we sketch how the Pareto dominant equilibrium can be derived. First note that

an equilibrium is characterized by the sets of admissible bids that a seller with valuation zero and one

with valuation x choose, the bidding behavior in these cases, and a system of beliefs.

A proof can proceed in three steps: Step 1: The ex ante expected joint surplus of the two seller types

is maximized by choosing a first–price auction with reserve price ρ̃(0) when the seller’s value is zero and

one with reserve price ρ̃(x) when the seller’s value is x. Step 2: For any system of beliefs and for any

set of admissible bids that the seller with type zero might choose, it is optimal for the seller with type x

to choose a first–price auction with reserve price ρ̃(x). Step 3: Given Step 1 and Step 2 there cannot be

an equilibrium in which the seller with type zero does better than when he chooses a first–price auction

with reserve price ρ̃(0). Furthermore, there are beliefs which support this behavior.
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Case 2: The Seller Designs the Auction Before He Learns His Value

The only difference between this case and the case analyzed in section 3.4 is that the seller

is risk–averse. Since his selling decision is not affected by risk–aversion, the same bid

functions that were implementable in section 3.4 are implementable in this case. From

Proposition 3.6 we know that not all combinations of reserve price and separating type

are implementable, but if the bid function described by reserve price r′ and separating

type r′′ is implementable, the same allocation is implemented as in the Pareto dominant

equilibrium of case 1. This bid function is in general not optimal for an uninformed

risk–averse seller, but it can serve as a lower bound for the optimum. An example of

how a bid function described by a reserve price r′ and a separating type r′′ looks like is

displayed in figure 3.4(b). What is important is that the implemented bidding behavior

does not vary with the seller’s information.

Comparison of the Two Cases

We now explain why the seller prefers not to wait until he gets informed if the same

allocation that is implemented in case 1 can also be implemented in case 2. By a revenue

equivalence argument the same expected revenue is generated in both cases. Hence, a

risk–neutral seller would be indifferent between the two cases. However, a risk–averse

seller also cares about the induced distribution of bids.

A buyer with a type below r′′ displays the same bidding behavior in both cases

(see Figure 3.4(a) and 3.4(b)). Next consider a buyer whose type is larger than r′′. If

the seller designs the auction after learning his value, he obtains a high bid when his

reservation value is θ0 = x and a low bids when it is θ0 = 0 (see Figure 3.4(a)). On the

other hand, if he does not learn his value before he designs the auction, the resulting bid

lies between these values (see Figure 3.4(b)). More precisely, the distribution of bids in

the informed case is a mean–preserving spread of the bid distribution in the uninformed

case. Thus, not waiting and prohibiting intermediate bids induces a smaller dispersion

of bids without changing expected bids. This renders not waiting as clearly optimal for

a risk-averse seller. We obtain the following Proposition:

Proposition 3.9 (Seller risk–averse)

If the seller is risk–averse, he strictly prefers not waiting and choosing an auction with

reserve price r′ and separating type r′′ over waiting and choosing an auction with reserve
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price r′ when his value turns out to be zero and an auction with reserve price r′′ when it

turns out to be x.

3.6 Conclusion

In this paper we studied the problem of an either risk–neutral or risk–averse seller who

wants to sell an indivisible object via an auction with a first–price payment rule. The

setting we considered differs from standard auction settings because the seller does not

know his reservation value at the time he has to design the auction and because he

cannot commit to selling the object after observing the buyers’ bids. We showed that

the structure of the optimal first–price auction in this setting might differ from that in

the standard setting. More specifically, the seller might want to prohibit intermediate

bids in addition to setting a reserve price. Furthermore, we showed that if the seller is

risk–averse, he might have a strict incentive to design the auction before he learns his

reservation value. He is sometimes strictly better off fixing an auction format in which

he is allowed to set a secret reserve price before he gets informed, than waiting until he

gets informed and choosing an auction with an announced reserve price then. Therefore

this paper contributes also to the literature which tries to explain the frequent use of

secret instead of announced reserve prices.



Chapter 4

Asymmetric Procurement Systems

4.1 Introduction

Although the automotive industries in Europe, North America and Asia are facing sim-

ilar tasks and incentives in their procurement process, the pattern of procurement has

evolved differently. At first glance, the Asian car producers largely engage in a protective

long term contract model. As pointed out by Dyer (1996), this system relies on close co-

operation between the procurer and his suppliers to build mutual knowledge about each

others’ production processes and on the sharing of profits achieved through cooperation.

Other evidence suggests a downside interpretation with highly demanding car produc-

ers exercising high pressure onto the suppliers without using the market. The North

American car industry instead relies on frequent competitive auctions between potential

suppliers, thus extracting benefits from contracting with the most efficient supplier.

While this difference may largely be rooted in industry history and business cul-

ture, one should ask whether there are deeper trade–offs between the two procurement

systems. In the recent past, Western car producers tried to imitate their Asian coun-

terparts, as has been observed by McMillan (1990), Dyer (1996) and Liker and Choi

(2004). Hence, it seems worth understanding under which circumstances one system is

preferable over the other. The main objective of this paper is to analyze and to compare

two procurement systems with respect to the expected profit to the procurer, one of

which relies more on competitive forces (the “American system”), and the other one

relying more on the protection of the incumbent supplier (the “Asian system”).

A procurer usually needs to procure goods in regular time intervals. Due to the

55
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repetition, the procurement problem becomes inherently asymmetric. At any point in

time there are incumbent and entrant suppliers who may differ in several respects in the

sense that, for instance, the incumbent may have acquired relationship–specific skills

through his collaboration with the procurer.

Thus, the procurer is confronted with the following trade–off: On the one hand, he

can realize benefits by continuing the relationship with his incumbent supplier, for in-

stance from a well–functioning just–in–time production and from his engineers working

well together with the incumbent’s engineers. The level of these benefits can be influ-

enced by the incumbent.1 Thus, the procurer may want to favor the incumbent in order

to provide him with incentives to invest in the relationship. On the other hand, he wants

procurement prices to be competitively bid down. Therefore he also has an incentive to

use the entrants to exercise competitive pressure on the incumbent, in order to extract

information rents. As Hahn, Kim, and Kim (1986) and McMillan (1990) already point

out, these goals are conflicting because higher competitive pressure and thus a higher

probability of losing the incumbency status lowers the incumbent’s incentive to invest.

The procurement problem is related to three economic problems: (i) a hold–up prob-

lem due to the relationship–specific investment that hooks the procurer to the incumbent,

(ii) a problem of asymmetric information concerning the suppliers’ production costs, and

(iii) the relevance of repetition and the influence of future periods on the behavior in

the current period.

A procurement mechanism describes how the procurer handles the procurement prob-

lem in a specific period. It determines to whom the procurement contract is awarded

and which monetary transfers have to be made. In contrast, a procurement system can

be interpreted as a set of general rules concerning the procurement process. The pro-

curer is committed for a longer period of time to the rules imposed by the procurement

system,2 but within the system he can construct mechanisms.

The two procurement systems we are interested in differ only in a procedural aspect.

1As Greenstein (1993) and Greenstein (1995) show, investments are sizable and can typically be

influenced to a large extent by the incumbent supplier. McMillan (1990) also emphasizes that “there are

actions an incumbent can undertake during the course of the initial contract that improve productivity

or quality.”
2This assumption should be interpreted in the light that we model longer term procurement rela-

tionships in which the procurer needs to build up reputation with the suppliers for his procurement

procedures.
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In the Protective System (henceforth PS), the procurer is committed to choose a mech-

anism in which he only negotiates with the entrants after the current relationship with

the incumbent irrevocably broke down, while in the Competitive System (henceforth CS)

he underlies no such restrictions. The two systems differ in the procurer’s ability to use

the entrants to exercise competitive pressure on the incumbent. This shall reflect the

fact that in America the focus is on competition, whereas in Asia incumbent suppliers

have a distinct standing. There relationships between procurer and incumbent are deep

and the procurer normally tries first to come to an agreement with his incumbent before

he looks for possible replacements.3

Given either of the procurement systems, we consider the infinite repetition of the

procurement problem. Each period begins with the incumbent making an observable in-

vestment which generates additional benefits when the relationship is continued. There-

after, the procurer chooses a procurement mechanism which has to be consistent with

the rules imposed by the procurement system he uses. Then, all suppliers learn their

production costs as private information and play the chosen mechanism.

Implicit in this way of modeling the strategic interaction between procurer and suppli-

ers is the assumption that the procurer cannot commit himself prior to the incumbent’s

investment decision to a certain course of action afterwards. This commitment assump-

tion is similar to that made by Dasgupta (1990) who analyzes a non–repeated symmetric

procurement problem and contrary to Laffont and Tirole (1988) and Bag (1997) who

analyze the case in which the procurer can commit himself.4 When the procurer can

commit himself, he chooses a mechanism in order to provide the incumbent with the

optimal incentives to invest, while when he cannot commit himself and when investment

is observable, the causality is reversed: The incumbent invests in order to affect the

procurer’s mechanism choice.

We are interested in the no commitment case with observable investment for two

3Taylor and Wiggins (1997) also compare the American with the Japanese system, but their analysis

focuses on different punishment mechanisms within the two systems: In their model the good procured is

characterized by an unobservable quality which can be affected by the supplier. In the American system,

the procurer can reject delivery and withhold payment if he finds the shipment to be unsatisfactory

after a costly inspection. In the Japanese system, there is no inspection, but the procurer punishes

unsatisfactory deliveries by cutting the supplier off from his procurement process.
4In a more recent paper Arozamena and Cantillon (2004) analyze the incumbent’s investment in-

centives when the procurer is committed to different commonly used (non–optimal) mechanisms.
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reasons: First, the kind of investment we have in mind happens gradually over the entire

procurement period, for instance through the exchange of technicians or the learning and

adjusting to the other’s production process. It seems therefore plausible that investment

is observable by the procurer but hard to quantify and thus non–verifiable. Second,

procurers often seem to behave opportunistically in the short run. For instance, in the

automotive industry supply contracts become often binding only when the first part

has been delivered, long after sizable investments have been made. It seems therefore

not implausible to assume that the procurer is unable to commit himself to a certain

procurement mechanism long before he actually needs to procure.

The paper closest to ours is Lewis and Yildirim (2005). They analyze a repeated

procurement problem in which a procurer incurs switching costs when he awards the

contract to an entrant and they adopt similar commitment assumptions as we do. Their

paper complements ours by considering the case in which switching costs, and thus

asymmetries, are a strategic choice of the procurer instead of the incumbent.

Results

The procurement mechanism choice in the two systems affects the procurer’s revenue in

two ways: First, it affects the incumbent’s incentives to invest and thus the investment

level that prevails in equilibrium. Second, it determines the extent to which competitive

pressure is exercised on the suppliers and thus the extent to which the procurer can

extract rents from them. We can distinguish two different kinds of competitive pressure:

Direct competitive pressure can be interpreted as the extent to which there is competition

for the current period’s procurement contract between the incumbent and the entrants.

The more the procurer favors the incumbent, the lower is direct competitive pressure

and the worse is his ability to extract information rents from the suppliers. By contrast,

indirect competitive pressure arises from the asymmetries between the incumbent and

the entrants in the next period. If it is more valuable to a supplier to be incumbent in the

next period rather than an entrant, the procurer can bargain for this future advantage

and thus extract a future rent today.

Since the procurer behaves opportunistically when he chooses a mechanism, he fo-

cusses on direct competitive pressure. He optimizes the extraction of information rents

in the current period. Because the procurer is limited in the PS to use the entrance

threat to exert pressure on the incumbent, direct pressure is clearly higher in the CS.
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However, investment incentives and indirect pressure may be better in the PS.

Regarding the optimal investment level in the two systems we get different results

for low, intermediate and high investment costs.

The higher the incumbent’s investment, the more to his advantage will the procurer

construct the mechanism, i.e. the lower the competition he has to face. If investment

costs are low, investment costs are only a minor issue for the incumbent and the optimal

investment decision is mainly determined by the effect investment has on competition.

In the CS the incumbent competes against the currently best entrant, whereas in the

PS, in which the procurer has to negotiate first bilaterally with the incumbent, he only

competes against the procurer’s expectation thereof. Thus, if the incumbent is very

keen on staying in the contract, he must choose an investment level that makes him in

the CS preferable to the best conceivable realization of entrants’ types, while in the PS

it suffices to be preferable to some expected realization. This unambiguously triggers

higher investments in the CS when investment costs are low.

In the other polar case with high investment costs, the optimal investment level is

negligible in both systems and is thus not crucial for the assessment of the two systems.

If investment costs are intermediate, optimal investment is higher in the PS. The con-

sequence of a higher investment is that the relationship with the incumbent is continued

with a higher probability. Since the procurer negotiates in the PS first bilaterally with

the incumbent, the continuation probability increases independent of what the entrants’

types are. By contrast, since the incumbent is directly confronted with the entrants in

the CS, the effect of investment on the continuation probability depends in this system

on the entrants’ types. In particular, if it turns out that all entrants are very bad,

the procurer is willing to continue the relationship with the incumbent independent of

whether he increases his investment or not. Thus, a higher investment increases the

continuation probability in the CS only if the highest entrant’s type is not too bad. This

makes the incumbent’s marginal revenue from investment structurally higher in the PS

and leads to a higher investment there.

The procurer’s preferences over the two procurement systems differ for low, inter-

mediate and high investment costs. While for low costs the CS is preferable because

investment is higher there, the CS is preferable for high costs because it induces more

direct competitive pressure. However, for a region of intermediate cost parameters the
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procurer prefers the PS due to higher indirect pressure and investment.

Our result that either system may be preferable depending on the characteristics of

the part procured is consistent with findings in the empirical literature on procurement

systems. Hahn, Kim, and Kim (1986) come to the conclusion that the choice between the

systems is not clear–cut and that “a sound purchasing management strategy generally

requires a good mix of both approaches for an optimal result.” Dyer (1996) presents

evidence that for complex products (= products for which investment is important / not

so expensive relative to its benefits) the Japanese way of procuring is superior while for

simple products (= products for which investment is unimportant / expensive relative

to its benefits) the American way is.

Structure of the Paper

In section 4.2, we introduce the model. Then we derive in section 4.3 the optimal

procurement mechanism (given investment and procurement system) and in section 4.4

the optimal investment (given a procurement system). In section 4.5 we compare the

two systems. Before we conclude in the last section, we qualify our results with respect

to case study observations. All proofs can be found in the Appendix.

4.2 The Model

Our model features the infinite repetition of a stage game, which represents one pro-

curement period. We first introduce the stage game, and subsequently we describe the

properties of the infinite repetition.

4.2.1 The Stage Game

The model features one procurer who needs to procure an indivisible good from one of

n+ 1 suppliers. The suppliers are of two different types: there is one incumbent, I, and

n entrants, E1, . . . , En. Throughout the paper we will denote a generic entrant by Ej

with j ∈ {1, . . . , n} and a generic supplier by k ∈ {I,E1, . . . ,En}.
The only difference between the two types of suppliers is that the incumbent has

the opportunity to make an observable relationship–specific investment i ≥ 0. The

investment causes costs Cγ(i) := γC(i) to the incumbent and generates a benefit of i in
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case the relationship between him and the procurer is continued. We assume that the

benefit accrues to the incumbent in the first place, but this assumption does not affect

our results (as we will discuss below) and is for ease of notation only. Investment costs

are the product of a continuously differentiable, strictly increasing and strictly convex

cost function C : R+ → R+ with a parameter γ > 0. The parameter γ measures the

height of investment costs relative to the benefits from investment.5

If the procurer comes to an agreement with supplier k, they sign a procurement

contract. It is common knowledge that the procurer’s value of procuring the good

is π, but the costs of providing the good are private information to supplier k. We

denote supplier k’s costs of providing the good by π − θk such that the value generated

by the procurement contract (net of potential relationship–specific benefits) is θk. As

with the relationship–specific benefits, we assume that the entire value generated by the

procurement contract accrues to the supplier in the first place. This allows us to describe

the contract allocation problem as a standard auction problem instead of a reverse one.

As in auction theory, we will refer to θk either simply as supplier k’s value or as his type.

The suppliers’ values are independently and identically distributed according to a

cumulative distribution function Φ(·) with a strictly positive probability density function

φ(·) on the connected support Θ = [θ, θ] ⊂ R+. As common in auction theory, we assume

that the hazard rate φ/(1−Φ) is increasing in order to prevent bunching in the optimal

mechanism. This assumption is satisfied by most of the commonly used distributions

and ensures that the virtual valuation function, v(θ) := θ − (1 − Φ(θ))/φ(θ), is strictly

increasing. Furthermore, we assume the distribution to be such that the virtual valuation

function is continuously differentiable.

For the illustration of our results, we will either consider uniformly distributed values

or a class of distributions with linear densities on the support [0, 1]. Such distributions

are completely characterized by the slope of the density function a, a ∈ [−2, 2]. The

uniform distribution is a special case in this class, with a = 0.

5Instead of interpreting γ as a parameter measuring the relative costs of investment, we can also

interpret it as a parameter describing the importance of the investment. If we do the monotone trans-

formation i = C−1(̃i/γ), the costs caused by an investment of level ĩ become just ĩ and thus independent

of γ. However, the benefits from investment depend after the transformation on γ and are the higher

the higher 1/γ is. Hence, we can reinterpret a cheap investment as an important investment, i.e. an

investment generating high benefits, and an expensive investment as an unimportant investment, i.e.

an investment generating low benefits.
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The outcome of the procurement process is completely characterized by probabilities

with which the different suppliers obtain the contract and by transfers that they have to

make to the procurer. We denote the vector of probabilities by y = (yI , yE1, . . . , yEn) ∈
∆n with ∆n being the set of all vectors y ∈ Rn+1 with

∑
k yk = 1 and yk ≥ 0,6 and

we denote the vector of transfers by t = (tI , tE1, . . . , tEn) ∈ Rn+1. Using this notation,

we can describe the expected stage game payoffs of the incumbent, an entrant and the

procurer: ũI := −Cγ(i) + yI · (θI + i) − tI , ũEj := yEj · θEj − tEj and ũP := tI +
∑

j tEj.

Which outcome is chosen is determined by a procurement mechanism. We will denote

such a mechanism by Γ = (SI , SE; y, t). SI and SE are strategy sets for the incumbent

and the entrants, respectively, y : SI × Sn
E → ∆n is a contract allocation rule and

t : SI × Sn
E → Rn+1 is a transfer rule. To allow for the possibility that a supplier

decides not to participate in the procurement process, we assume that SI and SE contain

messages leading to a zero probability of obtaining the object and a zero transfer. We

denote the set containing all possible mechanisms by M.

We identify a procurement system with a set of mechanisms to which the procurer

can commit himself upfront and we are interested in comparing two specific systems:

In the Competitive System (CS) the procurer is allowed to choose any procurement

mechanism, i.e. Γ ∈ MCS := M. In the Protective System (PS) he is restricted

in the choice of a mechanism, as he decides about continuing the contract with the

incumbent before considering alternative options. Formally, this is Γ ∈ MPS := {Γ ∈
M|yI(sI , sE1, . . . , sEj) = yI(sI)}.

The timing of the stage game is such that given either of the procurement systems, the

incumbent first chooses an investment. Then the investment is observed and the procurer

picks a procurement mechanism out of the relevant procurement system. Finally, the

suppliers observe the mechanism chosen, learn their private information θk and play the

mechanism.

6By assuming
∑

k yk = 1, we implicitly assume that the procurer always has to award the contract

to one of the suppliers. Think of a situation in which the procurer produces a complex product, e.g. a

car, and the part in question is crucial for production. In such situations it is often not an option for

the procurer not to procure. Moreover, this property arises endogenously in equilibrium if π ≥ v(θ).
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4.2.2 The Repeated Game

We consider the infinite repetition of the stage game and we assume that future payoffs

are discounted by a discount factor δ ∈ (0, 1). Moreover, we assume contract values

to be serially independent such that the identity of the incumbent is the only payoff

relevant information that carries over from one period to the next one.

Since we are interested in the case in which the procurer is able to commit himself to

a procurement system, but that within the system he behaves opportunistically at any

point in time,7 we consider Markov perfect equilibria8 given either of the procurement

systems. Since under this equilibrium notion equilibrium behavior depends only on

payoff relevant information, each period is played in the same way and the only part of

history that matters for a supplier is whether he enters the current period as incumbent

or as one of the entrants. Thus, the strategy of a supplier is completely characterized by

his behavior as incumbent and as one of the entrants. Moreover, we restrict attention

to equilibria in which the suppliers’ strategies are symmetric such that an equilibrium is

completely characterized by an equilibrium investment i∗ for the current incumbent, a

rule mapping investments into mechanism choices for the procurer, and for each possible

mechanism choice profiles describing the behavior of the current incumbent, s∗I(·), and

the current entrants, s∗E(·).
By the one-stage-deviation-principle9 equilibrium can be computed by considering

the non–repeated stage game, however adjusted by continuation values reflecting the

payoffs of equilibrium play in all future periods. We denote the continuation values of

the next period’s incumbent, of one of the next period’s entrants, and of the procurer

by VI , VE and VP , respectively. Total payoffs are then

uI = −C(i) + yI · (θI + i+ VI) + (1 − yI) · VE − tI ,

uE = yEj · (θEj + VI) + (1 − yEj) · VE − tEj, and

uP = tI +
∑

j
tEj + VP .

In equilibrium continuation values have to be consistent with the actual equilibrium

play, i.e. they are recursively defined by VI = δE[uI ], VE = δE[uE] and VP = δE[uP ].

7This means in particular that he cannot credibly threaten a supplier to penalize him in future

periods and that he cannot reward suppliers with multi–period contracts.
8A Markov perfect equilibrium is a subgame perfect equilibrium in Markov strategies (see Maskin

and Tirole (2001)).
9See Fudenberg and Tirole (1991) section 4.2.
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4.3 The Optimal Procurement Mechanism for a Given

Investment Level in the CS and in the PS

In this section we derive and interpret the procurer’s optimal procurement mechanism

given a procurement system and an investment. First, using standard mechanism de-

sign results,10 we give conditions for direct mechanisms to be implementable (subsection

4.3.1). Then we derive the optimal mechanisms for both procurement systems (subsec-

tion 4.3.2) and describe a convenient way of implementing them indirectly (subsection

4.3.3). Afterwards we compare the optimal mechanisms in both systems regarding pro-

tection of the incumbent (subsection 4.3.4), the effect of investment on the implemented

contract allocation (subsection 4.3.5) and the efficiency properties of the implemented

contract allocation (subsection 4.3.6).

4.3.1 Implementable Direct Mechanisms

By a revelation principle11 we can without loss of generality restrict attention to direct

mechanisms Γ = (Θ,Θ; y, t) and equilibria in which all suppliers reveal their types

truthfully in equilibrium. Because of quasi–linearity of preferences, a supplier’s optimal

behavior depends only on the contract allocation rule and the transfer rule via the

probability with which he expects to obtain the object,

yk(θ) := E[yk(θI , θE1, . . . , θEn)|θk = θ],

and the expected transfer he has to make,

tk(θ) := E[tk(θI , θE1, . . . , θEn)|θk = θ].

Applying an Envelope Theorem we obtain necessary and sufficient conditions for a direct

mechanism to be implementable.

Proposition 4.1 (IC and IR)

The contract allocation rule y : Θn+1 → ∆n and the transfer rule t : Θn+1 → Rn+1 specify

a direct mechanism for which truth–telling is optimal for all suppliers and individual

rationality constraints are binding for the worst types if and only if

10See Chapter 23 in Mas-Colell, Whinston, and Green (1995).
11See Proposition 23.D.1 in Mas-Colell, Whinston, and Green (1995).
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yk(θ) is non-decreasing,

tI(θ) = yI(θ)(θ + i+ VI − VE) −
∫ θ

θ
yI(s)ds and

tEj(θ) = yEj(θ)(θ + VI − VE) −
∫ θ

θ
yEj(s)ds.

Applying integration by parts we obtain simple expressions for expected transfers.

Lemma 4.1 (Expected transfers)

(i) E[tI(·)] = E[yI(·)(v(θI) + i+ VI − VE)]

(ii) E[tEj(·)] = E[yEj(·)(v(θEj) + VI − VE)]

Lemma 4.1 allows us to describe how the expected payoffs of all players depend

on investment, allocation rule and continuation values. The current incumbent’s total

payoff is

E[uI ] = −Cγ(i) + E[yI(·)(θI − v(θI))] + VE . (4.1)

The incumbent obtains an information rent, E[yI(·)(θI−v(θI))], and the continuation

value of an entrant, VE , even though he might stay incumbent with positive probability.

Since values are serially independent there is in the current period no asymmetric infor-

mation about the expected advantage of being the next period’s incumbent. Therefore

the procurer can completely extract this future advantage today.

Although the incumbent does not directly obtain any part of the benefits from in-

vestment, he has to bear its total costs. However, as we will see in the next subsection,

the optimal allocation rule depends on investment. If the incumbent invests more, he

obtains the contract more often. This increases his informational rent and provides him

with an incentive to invest. Since investment is observable and the incumbent’s payoff is

additively separable in his private information and investment, the investment does not

directly affect the information rent the procurer has to leave to him. As consequence,

the procurer can extract the entire benefits from investment. This is the reason why it

is not important in our model to whom the relationship–specific benefits accrue in the

first place.

An entrant’s total rent has the same structure as the incumbent’s total rent, except

for the costs of investment:

E[uEj] = E[yEj(·)(θEj − v(θEj))] + VE . (4.2)
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Finally, we obtain the procurer’s per period revenue which is the sum of expected

transfers:

E[tI(·) +
∑

j
tEj(·)] = E[yI(·)(v(θI) + i) +

∑
j
yEj(·)v(θEj)] + VI − VE (4.3)

The procurer’s revenue consists of two parts: The first part depends on the current

period’s allocation and the benefits from investment, the second part is a supplier’s

monetary advantage of being the next period’s incumbent instead of one of the entrants.

Since the suppliers have private information about their current period’s production

costs, the procurer has to leave them an information rent. He can only extract the

virtual valuation from the supplier who obtains the contract, which is less than his actual

valuation. The virtual valuation of an entrant is given by the function v(θEj) known

from standard auction theory,12 the incumbent’s virtual valuation has to be adjusted by

the benefits from investment and is thus v(θI) + i.

Due to the asymmetries in our model, i.e. the investment in both systems and

additionally the asymmetries which are inherent in the PS by the construction of the

system, the supplier who becomes the incumbent in the next period can expect to get

a different information rent than a supplier who starts the next period as an entrant.

However, the procurer can bargain for the incumbent’s advantage in the next period

today and thus extract a future rent today. This suggests that asymmetries between the

incumbent and the entrants might be valuable for the procurer.

4.3.2 The Optimal Mechanisms

Knowing how the procurer’s revenue depends on the chosen procurement mechanism,

we can go on to derive the optimal mechanism in each procurement system. Recall that

the two systems differ only in the set of feasible mechanisms. Whereas in the CS the

procurer can freely choose a mechanism, he is in the PS committed to make his decision

about continuing the relationship with his incumbent before gathering information about

the realization of the entrants’ values.

For both systems the optimal mechanism is obtained from expression (4.3). Since

virtual valuations are monotonic, it is optimal to award the contract to the entrant with

the highest value if the relationship with the incumbent is not continued. To abbreviate

the description of our results, we introduce notation θE := maxj θEj for the highest

12See, e.g., Myerson (1981) or, for an economic interpretation, Bulow and Roberts (1989).
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of the entrants’ values. θE is a random variable with cumulative distribution function

Ψ := Φn and probability density function ψ := nφΦn−1.

Proposition 4.2 (Optimal mechanisms)

(i) The optimal mechanism in the CS awards the contract to the incumbent if v(θI) +

i > v(θE) and to the entrant with the highest value otherwise.

(ii) The optimal mechanism in the PS awards the contract to the incumbent if v(θI) +

i > E[v(θE)] and to the entrant with the highest value otherwise.

Transfers can take any form that is consistent with the interim expected transfers

specified in Proposition 4.1.

In the CS it is optimal to allocate the contract to the supplier with the highest virtual

valuation. In the PS the procurer has to decide about continuing the relationship with

the incumbent before he learns anything about the realization of the entrants’ virtual

valuations. The best he can do is comparing the incumbent’s actual virtual valuation,

v(θI)+ i, with the virtual valuation he can expect to get from the best entrant, E[v(θE)].

Because maximization in the CS is over a larger set of mechanisms, i.e. MPS ⊂ MCS,

the procurer would clearly prefer the CS if there were neither differences in investment

nor differences in the incumbency advantage. But since these generally differ for the

two systems, the commitment to a smaller set of mechanisms may be beneficial for the

procurer. Whether and when this is the case is what we analyze in the remainder of the

paper.

4.3.3 Indirect Implementation of the Optimal Mechanisms

A simple way of implementing the optimal mechanisms is to use a first–price auction plus

a take–it–or–leave–it offer: In the CS the seller holds an auction among the entrants,

observes the highest bid and confronts the incumbent with an offer that depends on

the outcome of the auction. The entrant who submits the highest bid only obtains the

contract if the incumbent does not accept the offer. In the PS the order is reversed. The

seller first makes an uninformed offer to the incumbent and holds a first–price auction

among the entrants only if the offer is declined.
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4.3.4 Protection of the Incumbent

For an outsider observing procurement procedures, procurement tenders and auctions are

the main observable characteristics.13 Looking at the two systems from this perspective,

the incumbent seems to be better protected in the PS. In the CS, there are procurement

tenders in each and every period suggesting that there is a steady threat of switching

to one of the entrants and that the entrants are employed to exercise pressure on the

incumbent. By contrast, public tenders are only observed in the PS after a relationship

actually broke down. Therefore the incumbent appears to be much less jeopardized

there. This notion might be misleading, as we will discuss below. A better indicator

for protection of the incumbent might be the probability with which the relationship is

continued. In this subsection we analyze whether the incumbent is in our model indeed

better protected in the PS, i.e. whether it is justified to call this system protective.

A crucial difference between the two systems is that the incumbent competes against

the actually best entrant in the CS, whereas he competes only against what the procurer

expects to be the best entrant in the PS. Since there are always realizations of the highest

entrant’s type that are better than some expected realization, the investment necessary

to win for sure is structurally higher in the CS. Thus, if the incumbent wants to get full

protection against the entrants, he gets it already for a smaller investment in the PS

than in the CS. In this respect the incumbent is indeed better protected in the PS.

Proposition 4.3 (Continuation of the relationship for sure)

The incumbent obtains the contract in the CS for sure if i ≥ iCS := v(θ) − v(θ) and in

the PS if i ≥ iPS := E[v(θE)] − v(θ). We have iPS < iCS.

From Proposition 4.3 we know that for higher investments the incumbent is indeed

better protected in the PS. Now we show that this is not necessarily true for lower

investments. We show this by considering the case in which the incumbent does not

invest. In this case all suppliers are symmetric and thus the optimal mechanism in the

CS is also symmetric, as can be seen from Proposition 4.2 (i). As consequence, each

supplier is awarded the contract with probability 1/(n + 1). By contrast, in the PS, in

13This is, e.g., observable from newspapers. While there are articles about newly established relation-

ships, this is normally not the case for relationships which are just continued without having engaged

in public tender procedures.
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Figure 4.1: Probability that I wins when i = 0; gray curve: PS, black curve: CS (φ

linear with support [0, 1] and slope a, n = 4)

which the procurer has to negotiate first bilaterally with the incumbent, mechanisms are

necessarily asymmetric. We know from Proposition 4.2 (ii) that the incumbent’s virtual

valuation, v(θI), is compared with the expected virtual valuation of the highest entrant,

E[v(θE)], instead of with the actual virtual valuation of the highest entrant, v(θE), as

in the CS. This has the consequence that the incumbent obtains the contract in the

PS but not in the CS if v(θE) turns out to be high (i.e. if E[v(θE)] ≤ v(θI) < v(θE))

and he obtains it in the CS but not in the PS if v(θE) turns out to be low (i.e. if

v(θE) < v(θI) ≤ E[v(θE)]). From this we can infer that there is an advantage for the

incumbent in the PS relative to the CS if the probability that v(θE) lies above E[v(θE)]

is high. Whether this is the case depends on the curvature of v and Φ.

Proposition 4.4 (Continuation of the relationship when i = 0)

Let i = 0. The probability that the contract with the incumbent is continued in the CS is

1/(n+ 1). The probability that this happens in the PS is strictly larger, equal or strictly

smaller than 1/(n+1), if Φ◦v−1 is strictly convex, linear or strictly concave, respectively.

How these probabilities look like for distributions with linear densities is displayed

in figure 4.1. The horizontal axis displays the slope parameter of the density function,

the gray curve depicts the probability in the PS and the black curve that in the CS.

For the uniform distribution, i.e. for a = 0, the incumbent is equally well protected in

both systems. If the slope is positive, he is better protected in the PS than in the CS.

If the slope is negative, the reverse is true. This is consistent with the explanation we

gave above. There is an advantage for the incumbent in the PS relative to the CS if the
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Figure 4.2: Contract allocation; black line: I obtains the contract in the CS above this

line; gray line: I obtains the contract in the PS above this line (θk ∼ U [0.5, 2], n = 2)

probability that v(θE) lies above E[v(θE)] is high. This is just the case for positive slope

parameters.

We can draw two conclusions about the protection of the incumbent. First, observ-

ability of procurement tenders might be a bad indicator for protection. For example,

when investment is low and the density function is linear with a negative slope, there

are much less observable market interactions in the PS, but the probability that the

relationship is continued is higher in the CS. Second, for higher levels of investment, i.e.

when asymmetries between the entrants and the incumbent are stronger, the incumbent

is indeed better protected in the PS.

4.3.5 The Effect of Investment on the Contract Allocation

In this subsection we explain how investment affects the optimal contract allocation in

the two systems. Figure 4.2 displays the contract allocations for uniformly distributed

values and for three different levels of investment. The square indicates the joint support

of θE and θI . The incumbent obtains the contract in the CS for value combinations

(θE , θI) above the black line and in the PS for combinations above the gray line. The

lines describing the contract allocation shift downwards as investment increases such

that the incumbent obtains the contract more often.

For the further discussion it will be convenient to introduce a special notation for

the lowest of the incumbent’s types who obtains the contract for a given realization of
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the highest entrant’s type, θE . We will call this type the incumbent’s lowest winning

type and we will denote this type by θ̃I(θE).

In the PS the lowest winning type is defined as the lowest type θI for which

v(θI) + i ≥ E[v(θE)].

Thus,

θ̃I(θE) =





v−1(E[v(θE)] − i) if i ≤ iPS

θ if i > iPS

.

As long as i < iPS, a marginal increase in investment decreases the lowest winning type

at rate |dθ̃I/di| = 1/v′(θ̃I) ∈ (0, 1).14 The marginal effect of investment on the contract

allocation does not depend on the actual realization of the highest entrant’s type θE . If

i > iPS, the incumbent obtains the contract already for sure such that an increase in

investment cannot be rewarded by a further decrease in the lowest winning type.

In the CS the lowest winning type is defined as the lowest type θI for which

v(θI) + i ≥ v(θE).

Thus,

θ̃I(θE) =




v−1(v(θE) − i) if i ≤ iCS and θE > v−1(v(θ) + i)

θ if i > iCS or θE ≤ v−1(v(θ) + i)
.

Again, for high levels of investment (i > iCS) the incumbent obtains the contract already

for sure such that a further increase in investment cannot be rewarded by a decrease in

the incumbent’s lowest winning type. For lower levels of investment (i ≤ iCS) the lowest

winning type depends in the CS, in contrast to the PS, on the actual realization of the

highest entrant’s type θE . This can be seen in figure 4.2(b). If the highest entrant’s

type is bad (i.e. if θE ≤ θ′ in figure 4.2(b)), the procurer is very eager to obtain the

relationship–specific benefit and awards the contract to the incumbent irrespective of

his type. In this case a marginal increase in investment cannot further decrease the

incumbent’s lowest winning type (i.e. |dθ̃I/di| = 0). Only if the highest entrant’s type

14When we denote the hazard rate by h(x) := φ(x)/(1 − Φ(x)), we have v(x) = x − 1/h(x) and

v′(x) = 1 + h′(x)/h(x)2. Thus, it follows from the increasing hazard rate property that 1/v′(x) < 1.
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is high (i.e. if θE > θ′ in figure 4.2(b)), an increase in investment decreases the lowest

winning type (i.e. |dθ̃I/di| = 1/v′(θ̃I) ∈ (0, 1)).

We conclude this subsection by emphasizing two properties which we will use re-

peatedly later on: First, when i < iPS, investment alters the contract allocation in the

PS with certainty, i.e. for any realization of θE , whereas this happens in the CS only

with some probability, i.e. when θE is sufficiently high. When investment increases in

the CS from i = 0 to i = iCS, this probability decreases from one to zero. Second, the

incumbent’s lowest winning type decreases in both systems less than proportional in

investment, i.e. |dθ̃I/di| < 1.

4.3.6 Efficiency of the Contract Allocation

In this subsection we assess the optimal contract allocations in the two systems from an

efficiency point of view. This will help us deriving the procurer’s preferences over the

two procurement systems in section 4.5.

While the contract allocation that maximizes the procurer’s revenue is determined

by virtual valuations and investment, efficiency of the contract allocation depends on

real values and investment. It is efficient to award the contract to the incumbent if

θI + i ≥ θE .

To obtain clear effects, we will sometimes make use of the following assumption:

Assumption 4.1 E[v(θE)] − v(θ) ≥ θ − θ

This assumption ensures that it is for an investment of iPS efficient that the incumbent

obtains the contract for sure. The assumption is satisfied for any distribution if there

are sufficiently many entrants,15 and for any number of entrants if the density is at θ

smaller than the average density.16 In the class of distributions with linear densities on

[0, 1], the assumption is, e.g., satisfied for slope parameters a ∈ [−0.75, 2] when n = 2

and for any slope parameter when n ≥ 7.

15For n → ∞ the left hand side converges towards θ − θ + 1/φ(θ) which is strictly larger as the right

hand side.
16Since E[v(θE)] > θ the left hand side is larger than 1/φ(θ). Hence, a sufficient condition for the

assumption to be satisfied is φ(θ) ≤ 1/(θ − θ).
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Figure 4.3: Contract allocation and efficiency; gray region: it is efficient that I obtains

the contract; black line: I obtains the contract in the CS above this line; gray line: I

obtains the contract in the PS above this line (θk ∼ U [0.5, 2], n = 2)

In the following Proposition we state our efficiency results for the two procurement

systems, before we use a graphical example to explain them.

Proposition 4.5 (Efficiency of the contract allocation)

(i) If i = 0, the contract allocation is efficient in the CS, but not in the PS.

(ii) If i ∈ (0, iPS), neither system allocates efficiently. There are type combinations

(θE , θI) for which the PS allocates efficiently but the CS does not, and vice versa.

Furthermore, in the CS, the highest entrant always obtains the contract when this

is efficient, but the incumbent obtains it too seldom.

(iii) If i ∈ [iPS, iCS) and Assumption 4.1 is satisfied, the contract allocation is efficient

in the PS, but not in the CS.

(iv) If i ∈ [iCS,∞), the contract allocation is efficient in both systems.

Figure 4.3 depicts the same contract allocations that are depicted in figure 4.2 to-

gether with the efficient contract allocations. For type combinations in the gray shaded

area it is efficient that the incumbent obtains the contract.

If there is no investment, all suppliers are symmetric. In this case it is efficient that

the supplier with the highest value obtains the contract and this is what happens in

the CS. Since only asymmetric mechanisms are feasible in the PS, efficiency cannot be
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achieved there. This is depicted in figure 4.3(a).

Consider now i ∈ (0, iPS). We know from part (i) of Proposition 4.5 that for i = 0

the allocation in the CS is efficient and we know from subsection 4.3.5 that the incum-

bent’s lowest winning type decreases at a rate less than one when investment increases.

However, since investment i and type θI are perfect substitutes regarding efficiency, the

incumbent’s lowest winning type has to decrease at rate one to sustain efficiency. Hence,

the incumbent obtains the contract too rarely in the CS (see figure 4.3(b)). An anal-

ogous reasoning does not go through for the PS since the allocation is for i = 0 not

efficient in this system.

As for i ∈ (0, iPS) the curves describing the allocations implemented in the CS and

in the PS intersect in the interior of the type space, there are regions close to the point

of intersection in which the incumbent obtains the contract in the CS but not in the

PS and vice versa. By the reasoning in the previous paragraph, it is however efficient

that the incumbent always obtains the contract in these regions. As a consequence, we

cannot rank the two systems regarding efficiency: For some combinations of types the

CS allocates the contract efficiently but the PS does not and vice versa.

Thirdly, figure 4.3(c) depicts the case in which i ∈ (iPS, iCS). For such investments

it is by Assumption 4.1 efficient that the incumbent obtains the contract for sure. This

happens however only in the PS, rendering this system more efficient.

Finally, for i ∈ [iCS,∞) it is efficient that the incumbent always obtains the contract

and this happens in both systems.

4.4 The Optimal Investment Level in the CS and in

the PS

In this section we analyze the incumbent’s investment choice for a given procurement

system. We first derive the structure of the incumbent’s revenue from investment (sub-

section 4.4.1), then we add the cost function into our considerations and analyze optimal

investment (subsection 4.4.2), before we make some statements concerning efficiency of

the optimal investment decision (subsection 4.4.3).
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4.4.1 The Incumbent’s Revenue from Investment

The incumbent invests in order to maximize his expected payoff as specified in (4.1)

with the contract allocation rule yI(·) being as described in Proposition 4.2 (i) and (ii)

for the CS and the PS, respectively. To abbreviate notation we will denote the revenue

part of his expected payoff by R(i) := E[yI(·) · (θI − v(θI))].

In this subsection we proceed in three steps: First, we derive the incumbent’s

marginal revenue from investment, then we compare the height of marginal revenue

in the two procurement systems, before we analyze the curvature of revenue.

Marginal Revenue

Using the notation introduced in subsection 4.3.5, the incumbent’s revenue is

R(i) =
∫ θ

θ

∫ θ

θ̃I(θE)
(θI − v(θI))dΦ(θI)dΨ(θE)

such that his marginal revenue is

R′(i) =
∫ θ

θ

∣∣∣dθ̃I(θE)/di
∣∣∣ (1 − Φ(θ̃I(θE)))dΨ(θE). (4.4)

Since the benefits from investment are relationship–specific, the procurer has to continue

his relationship with the incumbent to obtain the benefits. Thus, although the procurer

does not directly reward investment (see subsection 4.3.1), he rewards it indirectly by

awarding the contract more often to the incumbent (see subsection 4.3.5). This increases

the incumbent’s information rent and provides him with incentives to invest. We can

see these effects from expression (4.4): |dθ̃i/di| describes how fast the incumbent’s low-

est winning type decreases when investment increases marginally, and 1 − Φ(θ̃I(θE))

describes how fast the incumbent’s information rent increases when his lowest winning

type decreases marginally.

By imposing the specific structure that the lowest winning type has in the two systems

(see subsection 4.3.5), we obtain the following Lemma:

Lemma 4.2 (Marginal revenue)

Let w := 1−Φ
v′

.

(i) R′
PS(i) =





w(v−1(E[v(θE)] − i)) if i < iPS

0 if i > iPS

.
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Figure 4.4: Marginal revenue; gray curves: PS, black cuves: CS (φ linear with support

[0, 1] and slope a, n = 2)

On the left of iPS marginal revenue is continuous and bounded from below by a

strictly positive number. At iPS it drops to zero.

(ii) R′
CS(i) =





∫ θ

v−1(v(θ)+i)
w(v−1(v(θE) − i))dΨ(θE) if i < iCS

0 if i > iCS

.

Marginal revenue is everywhere continuous. In any interval (0, i′) with i′ < iCS it

is bounded from below by a strictly positive number.

Relative Height of Marginal Revenue in the Two Systems

Now we derive some structural differences in the height of marginal revenue in the

two systems. Figure 4.4 shows how marginal revenue looks like in the two systems for

different distributions. Figure 4.4(a) is for a distribution with decreasing density, figure

4.4(b) for the uniform distribution and figure 4.4(c) for a distribution with increasing

density. The gray curves depict marginal revenue in the PS, the black ones marginal

revenue in the CS.

We can identify three regions as indicated by the dotted vertical lines in figure 4.4:

At first, marginal revenue is on a similar level in both systems, then it becomes relatively

higher in the PS. At some point, however, it eventually drops to zero in the PS, whereas

it stays positive in the CS.

It is easy to see why the third region arises: As soon as the incumbent obtains the

contract for sure, marginal revenue drops to zero. From Proposition 4.3 we know that
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this happens in the PS already for a smaller investment than in the CS. Thus, there

exists a region in which marginal revenue is zero in the PS but still positive in the CS.

This region is (iPS, iCS).

Why the first two regions arise is more involved. For the reasoning that we will apply

it is helpful to rewrite expression (4.4) in the following way:

R′(i) = Prob
(

dθ̃I(θE)

di
6= 0

)
E
[
w(θ̃I(θE))

∣∣∣∣
dθ̃I(θE)

di
6= 0

]
.

= (Probability that θ̃I(θE) decreases)

× (Marginal change in I’s information rent

conditional on that θ̃I(θE) decreases)

In subsection 4.3.5 we observed that in the first two regions (i.e. for i < iPS) investment

decreases the incumbent’s lowest winning type θ̃I(θE) in the PS for any realization of the

entrants’ types, but in the CS only if the highest entrant’s type is not too bad. Thus,

the probability term is always one in the PS but generally smaller than one in the CS.

The heuristics for the first two regions are the following: When investment is low, the

probability term is only slightly lower in the CS than in the PS and it is ambiguous in

which system the marginal change in the incumbent’s information rent is higher. This

renders the compound effect ambiguous (region 1). However, as investment increases,

the probability term stays one in the PS, whereas it falls substantially below one in

the CS. Although the information rent effect is still ambiguous, the probability effect

dominates and renders marginal revenue higher in the PS (region 2).

That the heuristics for regions 1 and 2 are indeed true for the entire class of distribu-

tions with linear densities is confirmed in figure 4.5. Figure 4.5(a) shows that marginal

revenue is for i = 0 on a similar level in both systems and that it is ambiguous in which

system it is higher. Figure 4.5(b) shows that marginal revenue at iPS is for all slope

parameters higher in the PS. If the slope parameter is not too large, the difference is

significant.

The following Lemma states sufficient conditions for marginal revenue being higher

in the PS for investment levels close to iPS:

Lemma 4.3 (Higher marginal revenue in the PS)

(i) If w is decreasing, i.e. if RPS(i) is convex, then there exists a i ∈ (0, iPS) such

that R′
PS(i) > R′

CS(i) for all i ∈ (i, iPS).
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Figure 4.5: Marginal revenue; gray curves: PS; black curves: CS (φ linear with support

[0, 1] and slope a, n = 2)

(ii) If w ◦ v−1 is weakly concave on [v(θ) − iPS, v(θ)], then R′
PS(i) > R′

CS(i) for all

i ∈ (0, iPS).

The condition in (i) is satisfied for many distributions (see the discussion about the

curvature of revenue below), but allows no statement about the length of the interval in

which marginal revenue is higher in the PS. The result in (ii) is very strong, marginal

revenue is everywhere higher in the PS, but the condition that needs to be satisfied

to obtain this result is only met by a few distributions, for instance by the uniform

distribution.

Curvature of Revenue

As figure 4.4 suggests, marginal revenue is in many cases not monotonous, i.e. the cur-

vature of revenue differs for different levels of investment. In the subsequent paragraphs

we discuss the structure of the curvature of revenue in the two systems.

Since revenue depends in both systems only via the incumbent’s lowest winning type

on investment, we analyze first how this type depends on investment. While we already

know from subsection 4.3.5 that the procurer lets more of the incumbent’s types win

when investment increases, we don’t know yet whether his incentive to decrease θ̃I(θE)

becomes larger or smaller when investment increases. I.e., we don’t know the second–

order effect of investment on θ̃I(θE). This effect depends on two countervailing effects,

a positive direct effect and a negative strategic effect.
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The positive direct effect arises as follows: Because the procurer extracts the total

benefits from investment when he awards the contract to the incumbent, investment

affects his expected payoff via the term Prob(I wins) · i. Since the probability term

and the investment level are complementary, the procurer’s incentive to increase the

probability by decreasing θ̃I(θE) becomes stronger for larger levels of investment.

On the other hand, there is a negative strategic effect : By awarding the contract more

often to the incumbent, the procurer has to leave a higher information rent to all types

of the incumbent to which he is already willing to award the contract, i.e. to all types

above θ̃I(θE). As a consequence, the expected information rent he has to leave with the

incumbent increases the stronger the more of the incumbent’s types already win, i.e.

the lower θ̃I(θE) becomes. Due to this effect, the procurer’s incentive to decrease θ̃I(θE)

becomes weaker for higher levels of investment.

Thus, the second–order effect of investment on θ̃I(θE) is ambiguous and depends on

the relative height of the positive direct and the negative strategic effect.

We are now able to discuss the curvature of revenue in the PS. For i < iPS marginal

revenue possesses for this system the structure

R′
PS(i) = |dθ̃I/di|(1 − Φ(θ̃I)).

|dθ̃I/di| is, as discussed above, increasing or decreasing depending on whether the pos-

itive direct effect or the negative indirect effect is stronger. (1 − Φ(θ̃I)) describes the

rate at which the incumbent’s information rent increases when θ̃I decreases. Since the

information rent increases the stronger the larger investment becomes, we obtain that

revenue is in the PS convex if the direct positive effect is either stronger as the indirect

negative effect, or at least not too much weaker.

In the class of distributions with linear densities, revenue is only not convex when

the slope of the density is sufficiently positive. Examples in which revenue is convex in

the PS, i.e. in which marginal revenue is increasing, are depicted in figures 4.4(a) and

4.4(b). An example in which the slope of the density function is large enough to make

revenue non–convex is given in figure 4.4(c). In this case revenue is first convex and

then concave.

In the CS, marginal revenue can be written as

R′(i) = Prob
(

dθ̃I(θE)

di
6= 0

)
E
[
w(θ̃I(θE))

∣∣∣∣
dθ̃I(θE)

di
6= 0

]
.
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Figure 4.6: Marginal revenue and optimal investment; gray curves: PS, black curves:

CS (θk ∼ U [0, 1], n = 2, Cγ(i) = γi2/2)

The expectation term exhibits similar effects as marginal revenue in the PS. In partic-

ular, this term is increasing in investment when marginal revenue is increasing in the

PS. However, the probability term is decreasing and tends towards zero as investment

approaches iCS. This makes revenue inevitably concave for investment levels close to

iCS. All in all, in the CS revenue is likely to be first convex and then concave. Examples

for this are the cases depicted in figures 4.4(a), 4.4(b) and 4.4(c).

4.4.2 The Optimal Investment Levels

In this subsection we include the convex cost function Cγ(i) = γC(i) into our consider-

ations. Since revenue is generically non–concave in investment, the analysis of optimal

investment is involved: second–order effects are relevant, multiple local optima may ex-

ist, optimal investment may jump in the parameters of the model, etc. By consequence,

optimal investment can look quite differently for different cost functions. Nevertheless,

we will derive some properties that hold for general cost functions, C(i), and depend

only on the relative height of costs and benefits from investment, i.e. on the parameter

γ. We derive results for low, intermediate and high cost parameters resembling cheap

investment, intermediate expensive investment and highly expensive investment.

We illustrate our results for uniformly distributed values and for two different cost

functions C(i). Figures 4.6 and 4.7 display marginal revenue, marginal costs and optimal
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Figure 4.7: Marginal revenue and optimal investment; gray curves: PS, black curves:

CS (θk ∼ U [0, 1], n = 2, C̃γ(i) = γi)

investment for quadratic and for linear costs,17 respectively. The gray curves are for the

PS, the black ones for the CS. The dotted lines in figure 4.6(a) and 4.7(a) show marginal

costs for different values of the cost parameter. The dotted vertical lines in figures 4.6(b)

and 4.7(b) indicate the respective cost parameters.

Cheap Investment

If investment is cheap (consider C ′
0.1 in figure 4.6(a) and C̃ ′

0.1 in figure 4.7(a)), optimal

investment is higher in the CS. This holds generally and arises because marginal revenue

is positive over a larger range in the CS. Moreover, optimal investment is for small cost

parameters generally flat in the PS. This is because in the PS marginal revenue eventually

drops to zero such that corner solutions arise for sufficiently small cost parameters.

Proposition 4.6 (Optimal investment, γ small)

For γ sufficiently close to zero we have i∗PS = iPS. For γ → 0 we have i∗CS → iCS. The

limit is, however, not reached for positive γ.

It follows from this Proposition that when investment is cheap, there is no conflict

between providing the incumbent with incentives to invest and exercising competitive

pressure on him. This runs somewhat counter the intuition that the better protection

17Since we assumed that the cost function is strictly convex, one might think of an almost linear cost

function. For example of C(i) = i + ǫi2 with ǫ > 0 very small.
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of the incumbent in the PS should increase his incentives to invest. However, protection

can be positive as well as negative for incentives. There are two important features of

investment: First, the incumbent has to bear the costs of investment even if he does not

obtain the contract, and second, investment gives him an advantage in the competition

with the entrants. If investment is very cheap, only the second effect is relevant and

stronger competition leads to higher investments. Thus, when investment costs are only

a minor issue, protection clearly decreases the incumbent’s incentive to invest.

Highly Expensive Investment

If investment is expensive (consider C ′
1 and C̃ ′

0.45), investment is similarly low in both

systems. Which system induces a higher investment depends on the local structure of

marginal costs and marginal revenue at i = 0. For instance, there is no investment if

marginal costs are positive at zero (see figure 4.7(b)) and a small but positive investment

if marginal costs are zero (see figure 4.6(b)). In the latter case marginal revenue at

i = 0 determines in which system investment is higher. Since it is ambiguous in which

system marginal revenue is higher (see figure 4.5(a)), either system may induce a higher

investment.

Proposition 4.7 (Optimal investment, γ large)

(i) For γ → ∞ we have i∗PS → 0 and i∗CS → 0.

(ii) If E[w(θE)] < w(v−1(E[v(θE)])), the PS is better at inducing investment when γ

is sufficiently high.18 If the inequality is reversed, the CS is better.

Intermediate Expensive Investment

In both examples there is an interval of intermediate cost parameters for which invest-

ment is higher in the PS. However, the structure of optimal investment may differ more

drastically for intermediate cost parameters. Particularly important is the relative cur-

vature of costs and revenue, i.e. the relative slope of marginal revenue and marginal

18We need to define what we mean with the statement “system 1 is better at inducing investment

than system 2 when γ is sufficiently high”: If C′(0) = 0, then there exists a γ′ such that investment

in system 1 is higher for all γ > γ′. If C′(0) > 0, then there exist values γ′ < γ′′ such that there is

no investment in both system for γ > γ′′ and there is investment in system 1 but not in system 2 for

γ ∈ (γ′, γ′′).
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Figure 4.8: Property 4.1 (φ linear with support [0, 1] and slope a, n = 2, Cγ(i) = γi2/2)
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Figure 4.9: Property 4.1 (φ linear with support [0, 1] and slope a, n = 2, Cγ(i) = γi)

costs. Figure 4.6(a) shows the case of quadratic costs in which the cost function is for

i < iPS more convex than the revenue functions. This induces interior optima and op-

timal investment varies continuously in the cost parameter. In contrast, for linear costs

revenue is everywhere in the PS and partly in the CS more convex than costs, as depicted

in figure 4.7(a). This causes corner solutions and jumps in the optimal investment level.

Crucial for the comparison of the two procurement systems in section 4.5 will be that

marginal revenue being higher in the PS for intermediate investment levels (see Lemma

4.3) carries over to investment being higher in the PS for intermediate cost parameters.

More specifically, we will need that for decreasing cost parameters investment level iPS

is reached in the PS before it is reached in the CS:
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Property 4.1 There exists a γ̃ for which i∗PS = iPS ≥ i∗CS.

Figures 4.8 and 4.9 show that Property 4.1 does indeed hold for any distribution with

linear density when costs are either quadratic or linear and there are two entrants.19 In

figure 4.8(a) we plot the highest γ, say γ̃, for which it is still optimal for the incumbent

to choose investment level iPS in the PS when costs are quadratic. In figure 4.9(a) we

do the same for linear costs. Figures 4.8(b) and 4.9(b) display the optimal investment

level in the CS relative to the optimal investment level in the PS for cost parameter γ̃.

It can be seen that the optimal investment level is in the PS always higher than in the

CS, i.e. i∗CS/i
∗
PS ≤ 1. Hence, Property 4.1 holds in these cases.

Although Property 4.1 seems to hold quite generally, the non–concavity of revenue

makes it difficult to find general conditions on the primitives of the model which ensure

that it holds. When we compare the two procurement systems in section 4.5, we will

impose Property 4.1 directly.

4.4.3 Efficiency of Investment

For the comparison of the procurement systems in section 4.5 it will be helpful to know

whether there is over– or under–investment in the two systems.

We can determine the jointly efficient investment level and contract allocation rule

in a two–step procedure: First, we have to determine the efficient contract allocation for

a given investment level (as we have already done in subsection 4.3.6), then we have to

determine the efficient investment choice given the efficient contract allocation rule. For

the CS we obtain the following under–investment result:20

Proposition 4.8 (Efficiency of investment)

If it is efficient to have a positive level of investment, then there is under–investment in

the CS.

The result is driven by two effects: First, to obtain the benefits from investment, the

relationship with the incumbent has to be continued. By the analysis in subsection 4.3.6,

19The plots are derived numerically using Maple.
20Proposition 4.8 is consistent with findings in Tirole (1986) and Dasgupta (1990) who analyze settings

in which a procurer is also not able to commit himself to a mechanism prior to an investment decision.

In these papers opportunistic behavior by the procurer leads to under–investment.
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this happens too rarely in the CS. Second, it follows from the analysis in subsection

4.3.5 that even if the relationship with the incumbent is continued, the incumbent is

(marginally) under–compensated for investment. Both effects together imply that the

incumbent’s incentive to invest is too low such that the efficient investment level is not

achieved in the CS.

An analogous reasoning as for the CS does not go through for the PS since the in-

cumbent does not necessarily obtain the contract too rarely in this system. For instance,

if assumption 4.1 is violated, he may obtain the contract for sure although this is not

efficient.

4.5 Comparison of the Procurement Systems

After having discussed the incumbent’s optimal investment decision, we can now turn

to discussing the procurer’s preferences over the two procurement systems. We do this

for the cases in which repetition is not and very important.

4.5.1 Repetition Unimportant

When the discount factor goes to zero, only the payoffs in the current period are rele-

vant. We obtain the procurer’s expected revenue from expression (4.3) by setting the

continuation values to zero:

E[tI(·) +
∑

j
tEj(·)] = E[yI(·) · (v(θI) + i) + (1 − yI(·)) · v(θE)]. (4.5)

yI(·) is as described in Proposition 4.2 (i) and (ii) in the CS and the PS, respectively.

The determinants of the procurer’s revenue are the level of investment and the degree

of extraction of the information rents in the current period.

Due to his commitment problem, the procurer takes investment as given und chooses

a procurement mechanism in order to extract as much rents from the suppliers as pos-

sible. I.e., he chooses yI(·) to maximize just expression (4.5). Since the procurer is in

the CS, in contrast to the PS, not restricted in his mechanism choice, rent extraction is

clearly better in this system. Thus, the PS could only be preferable for the procurer if

investment was higher there. However, for small values of cost parameter γ investment

is higher in the CS (Proposition 4.6) and for large values it is negligible in both systems
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determinant γ low γ intermediate γ high

level of investment (+) CS better ambiguous negligible

rent extraction (+) CS better

optimal system CS ambiguous CS

Table 4.1: Determinants of the procurer’s preferences over the systems when repetition

is unimportant

(Proposition 4.7). Hence, only for intermediate values the PS might perform better.

This result is stated in the following Proposition, the relevant effects are summarized in

table 4.1.

Proposition 4.9 (Optimal system, repetition unimportant)

If repetition is unimportant, then the procurer either never prefers the PS over the CS,

or he does so only for intermediate cost parameters γ. If he prefers the PS, this is due

to a higher investment there.

Since for intermediate cost parameters investment is likely to be higher in the PS,

it is not unlikely that an intermediate region of cost parameters exists for which the

procurer prefers the PS.

4.5.2 Repetition Very Important

When the discount factor goes to one, the procurer’s ability to extract future rents mat-

ters. He is able to extract in each period a supplier’s advantage of being the incumbent

instead of one of the entrants in the next period, VI − VE . From expressions (4.1) and

(4.2) we obtain the incumbency advantage

VI − VE = −C(i) + E[yI(·)(θI − v(θI)) −
1

n
(1 − yI(·))(θE − v(θE))]. (4.6)

In the CS the incumbency advantage is always positive by a revealed preferences argu-

ment: If the incumbent does not invest, he is treated like an entrant. If he nevertheless

decides to invest, he must be better off. An analogous reasoning does not work in the

PS, because the incumbent is in this system not treated like an entrant if he refrains

from investing. It turns out that in the PS the incumbent can indeed be worse off than
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an entrant such that the incumbency advantage may actually be a disadvantage.21

Inserting the incumbency advantage (4.6) in (4.3), we obtain the procurer’s expected

per period revenue:

E[tI(·) +
∑

j
tEj(·)] = −C(i) + E[yI(·) · (θI + i) + (1 − yI(·)) · θE ]

−(n + 1)E[
1

n
(1 − yI(·)) · (θE − v(θE))]. (4.7)

yI(·) is as described in Proposition 4.2 (i) and (ii) in the CS and the PS, respectively.

Except for the expected rent of an entrant, i.e. the expectation term in the second line

of (4.7), which the procurer has to leave to each of the n + 1 suppliers because of their

outside options, he can extract the entire value that is created in each period. Therefore

he is interested in investment and contract allocation being efficient, and in the rent of

an entrant being as small as possible.

We now compare efficiency of investment, efficiency of contract allocation and the

rent of an entrant in the two systems for small, high and intermediate investment cost

parameters.

If γ is sufficiently small, investment is higher in the CS (Proposition 4.6). Since, there

is never over–investment in the CS (Proposition 4.8), investment is also more efficient in

the CS. Since investment is such that the contract is (almost) with certainty continued in

both systems, the contract allocation is (almost) efficient in both systems (Proposition

4.5 (iv)) and entrants obtain (almost) no rent in both systems. Combining these effects,

we obtain that the higher investment in the CS makes this system preferable when the

cost parameter is low.

If γ is sufficiently high, there is (almost) no investment in both systems (Proposition

4.7), but the contract allocation induced by the CS is (almost) efficient, whereas that

induced by the PS is not (Proposition 4.5 (i)). Thus, it would only be possible that the

procurer preferred the PS over the CS if the entrants obtained a smaller rent in the PS.

However, heuristically, the stronger competition in the CS drives the rent an entrant

obtains in the CS below what he obtains in the PS. We can prove this formally for the

21For the entire class of distributions with linear densities the incumbency advantage is negative if

there is no investment. Heuristically, the procurer is in the PS better than in the CS at screening the

incumbent. This lowers the incumbent’s information rent in the PS relative to the CS. Although the

incumbent has an advantage regarding the probability of winning if the slope parameter is positive, the

negative information rent effect is strong enough to make him worse off than an entrant.
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determinant γ low γ intermediate γ high

efficiency of (+) CS better equal or negligible

investment PS better in both

efficiency of (+) both efficient PS efficient CS efficient

allocation

an entrant’s (–) none in both none in the PS, CS better

rent positive in the CS

optimal system CS PS CS

Table 4.2: Determinants of the procurer’s preferences over the systems when repetition

is important

case in which the entrants have in the CS a disadvantage regarding the probability of

obtaining the contract relative to the PS,22 but it is also likely to be true otherwise.

For instance, in our example with linear densities it is true in the entire class. Hence,

when the cost parameter is high, the procurer prefers the CS because it induces fiercer

competition.

If Property 4.1 holds, there exists an intermediate γ for which investment level iPS

is reached in the PS, an investment level (weakly) below this is obtained in the CS, and

there is no over–investment in the PS. The reasoning why there is no over–investment

for the γ in question is involved and can be found in the proof of Proposition 4.10. If

Assumption 4.1 is satisfied, the incumbent obtains the contract in the PS for sure but

not in the CS such that the contract allocation is more efficient in the PS (Proposition

4.5 (iii)). Moreover, the entrants obtain positive rents in the CS but not in the PS.

Hence, if Property 4.1 and Assumption 4.1 hold, the procurer clearly prefers the PS for

a region of intermediate cost parameters.

These results are stated in the following Proposition, the relevant effects are summa-

rized in table 4.2.

Proposition 4.10 (Optimal system, repetition important)

(i) If γ is sufficiently small, the procurer prefers the CS.

(ii) If Assumption 4.1 is satisfied and Property 4.1 holds, there exists an interval of

intermediate cost parameters γ for which the procurer prefers the PS.

22This is, for instance, the case for a > 0 in our example with linear densities.
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(iii) If γ is sufficiently large and Prob(I wins in the PS|i = 0) ≤ 1/(n+1), the procurer

prefers the CS.

We can conclude that none of the two procurement systems in question is preferable

for the procurer for all cost parameters. Instead the procurer will prefer the CS, if invest-

ment is cheap and thus very effective / important compared to the procurement value

or very expensive and thus very ineffective / unimportant compared to the procurement

value. In–between there will be a range of intermediate costs, for which the PS proves

to be preferable for the procurer. Thus, there seems to be an edge for both systems

depending on the investment properties of the part procured and a procurer who has to

purchase a great variety of different parts should engage in both systems at a time.

4.6 Empirical Evidence

This paper was developed in the context of broader research on supply networks in the

automotive industry. One centerpiece is a series of deep case interviews with suppliers

and car manufacturers on their strategic supply and purchasing behavior.23 The authors

interviewed 15 suppliers and three car manufacturers on issues concerning the parts

supplied, the organization of purchasing, the supply strategies, the information about

other players in the market, the contractual arrangements, and the competitive situation.

We draw on the empirical evidence of this case study to comment on the assumptions

and results of the theoretical model.

In the automotive industry, the structure of one incumbent and multiple entrant

suppliers is very common. The incumbency advantage due to idiosyncratic process

knowledge is sizeable. A switch from one supplier to another is legally possible without

complications, as the manufacturer mostly owns the tools to produce the parts. However,

in practice switching is very expensive, as the tools come together with very specific

process knowledge, that cannot easily be replicated by a new supplier. Thus, the bigger

part of the incumbency advantage is constituted by a special type of switching cost. The

level of switching cost is endogenous, and can be affected by the incumbent. Furthermore

the case study suggests, that modeling infinite repetition of a stage game is adequate.

The manufacturers as well as the suppliers are long–lived and the possible interactions

23See Mueller, Stahl, and Wachtler (2006).



90 CHAPTER 4. ASYMMETRIC PROCUREMENT SYSTEMS

should not induce end game behavior. In the same sense also the commitment to a

certain purchasing strategy (i.e. to a certain procurement system) is long-term. The

purchasing strategy only becomes effective if the manufacturer can build up reputation

for a certain strategy. Thus, we model long–term strategies concerning the choice of a

purchasing system. By contrast, the case study shows evidence for a widely opportunistic

behavior of all players in the short–run. Consequently we set up the model without ex–

ante commitment on decisions within the stages. Usually, supply contracts become

binding only when the first part has been delivered, long after sizable investments in

development, capacity, and idiosyncratic tools have been made.

4.7 Conclusion

The presented model tries to make a contribution to the literature by modeling a pro-

curement process while adopting features from observed procurement processes in real-

ity. It features infinite repetition, relationship–specific investment with the associated

hold–up problem, asymmetric information, and short–term opportunistic behavior of

the procurer.

We analyze the main trade–off for the procurer between exploiting competitive pres-

sure and creating investment incentives for the incumbent. The two proposed procure-

ment systems, resembling the Western and the Asian procurement procedures, differ in

how the procurer uses competition to exercise direct market pressure on his incumbent

supplier. By choosing the PS, the procurer weakens up his ability to use direct market

pressure, but he maintains the ability to exercise indirect market pressure by threatening

to replace the incumbent for an entrant.

We show that the optimal procurement depends on characteristics of the part pro-

cured: The procurer will prefer the CS, if investment is cheap thus very effective /

important compared to the procurement value or very expensive thus very ineffective /

unimportant compared to the procurement value and in–between there will be a range of

intermediate investment cost, for which the PS proves to be preferable for the procurer.

Concerning direct versus indirect market pressure we can see, that depending on the

investment characteristics of the part, indirect pressure may serve the procurer better.

Furthermore, we find that the frequency of observed market interactions, like public

tender auctions, might be a bad indicator for the total pressure a supplier experiences.



Appendix A

Appendix to Chapter 2

A.1 Proofs of Section 2.2

Proof of Lemma 2.1

(i) In footnote 6 we show that decision function d∗1(θ1, . . . , θn) = 1
n

∑
i θi maximizes

the sum of utilities. Since welfare is a positive linear transformation thereof (see

footnote 7), it possesses the same maximizers.

(ii) The optimal decision function that uses only the median information maximizes

−nE[(d − d∗1(·))2|θm:n]. The maximizer is directly obtained from FOC −2nE[d −
d∗1(·)|θm:n] = −2n(d− 1

n
θm:n − 1

n
n−1

2
E[θi|θi < θm:n] − 1

n
n−1

2
E[θi|θi > θm:n])

!
= 0.

(iii) The optimal decision function using no information maximizes −nE[(d − d∗1(·))2].

The maximizer is directly obtained from FOC −2nE[d− d∗1(·)] = −2n(d− 0)
!
= 0.

Proof of Lemma 2.2

(i) The definition of welfare, (2.1), and Lemma 2.1 (i) imply

W(d∗1) = −nE[(d∗1(·) − d∗1(·))2] = 0.

(ii) The definition of welfare, (2.1), and Lemma 2.1 (ii) imply

W(d∗2) = −nE[(d∗2(θ1, . . . , θn) − d∗1(θ1, . . . , θn))2]

= −nE[(δ∗2(θm:n) − d∗1(θ1, . . . , θn))2]

91
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= −nE[δ∗2(θm:n)2] + 2nE[δ∗2(θm:n)d∗1(θ1, . . . , θn)]

−nE[d∗1(θ1, . . . , θn)2].

Independence of signals implies nE[d∗1(θ1, . . . , θn)2] = nE[( 1
n

∑
i θi)

2] = E[θ2
i ] = σ2.

Hence, to prove the result it remains only to show that E[δ∗2(θm:n)d∗1(θ1, . . . , θn)] =

E[δ∗2(θm:n)2].

E[δ∗2(θm:n)d∗1(θ1, . . . , θn)]

=
∫

Θ

n!

(m− 1)!2
δ∗2(θm)

∫

θ1,...,θm−1≤θm

θm≤θm+1,...,θn

(
1

n

n∑

i=1

θi

)
∏

j 6=m

dΦ(θj)

dΦ(θm)

=
∫

Θ

n!

(m− 1)!2
δ∗2(θm)Φ(θm)m−2(1 − Φ(θm))m−2

∫

θ1≤θm
θm≤θn

(
1

n
θm +

1

n
(m− 1)(θ1 + θn)

) ∏

j=1,n

dΦ(θj)

dΦ(θm)

=
∫

Θ

n!

(m− 1)!2
δ∗2(θm)Φ(θm)m−1(1 − Φ(θm))m−1

(
1

n
θm +

1

n
(m− 1)(E[θ1|θ1 < θm] + E[θn|θn > θm])

)

dΦ(θm)

=
∫

Θ
δ∗2(θm)2 n!

(m− 1)!2
Φ(θm)m−1(1 − Φ(θm))m−1dΦ(θm)

= E[δ∗2(θm:n)2]

(iii) The definition of welfare, (2.1), and Lemma 2.1 (iii) imply

W(d∗3) = −nE[(0 − d∗1(·))2] = −E[θ2
i ] = −σ2.

A.2 Proofs of Section 2.3

Proof of Proposition 2.1

(i) The proof proceeds in two steps. First, we derive all equilibria of mean mechanism

Γ = ([v, v], x1), then we show that there is a unique symmetric equilibrium.
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Notation

In this proof we denote agent i’s ad interim expected utility if he has signal θ,

votes for v ∈ [v, v], and all other agents vote according to voting rule vj(θj) by

Ũ(θ, v) := E
[
−
(

1

n
v +

1

n

∑

j 6=i

vj(θj) − θ∗i (θi, θ−i)
)2∣∣∣∣θi = θ

]
.

Step 1: Derivation of all equilibria of Γ = ([v, v], x1)

Since Ũ(θ, v) is strictly concave in v, local incentive compatibility is necessary and

sufficient for global incentive compatibility.

If v < v, the upward incentive compatibility constraint

Ũ(θ, v) ≥ Ũ(θ, v′) ⇔ 0 ≥ Ũ(θ, v′) − Ũ(θ, v)

v′ − v

must hold for any v′ ∈ (v, v]. Taking limit v′ → v, the constraint becomes

0 ≥ −2
1

n

(
1

n
v +

1

n

∑

j 6=i

E[vj(θj)] − (1 − α)θ
)

⇔ v ≥ n(1 − α)θ −
∑

j 6=i

E[vj(θj)].

Analogously, if v < v, the downward incentive compatibility constraint

v ≤ n(1 − α)θ −
∑

j 6=i

E[vj(θj)]

must hold. Let ci :=
∑

j 6=i E[vj(θj)]. Both incentive compatibility constraints are

satisfied at the same time if and only if

vi(θ) =






v if v < n(1 − α)θ − ci

n(1 − α)θ − ci if v ≤ n(1 − α)θ − ci ≤ v

v if n(1 − α)θ − ci < v

.

Step 2: The unique symmetric equilibrium of Γ = ([v, v], x1)

Symmetry allows us to omit indices. Parameter c is in the symmetric case implicitly

specified by c = (n− 1)E[v(θi)]. Using this we obtain

v(θ) :=






δ1(τ) − c if τ < θ

δ1(θ) − c if τ ≤ θ ≤ τ

δ1(τ) − c if θ < τ
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with τ := δ−1
1 (v + c) and τ := δ−1

1 (v + c). Since E[v(θi)] is weakly decreasing in c,

the solution to c = (n− 1)E[v(θi)] is unique.

(ii) Now we derive the welfare level attained in the unique symmetric equilibrium of

Γ = ([v, v], x1):

W(d1) = −nE[(d1(·) − d∗1(·))2] = −nE[(
1

n

∑

i

(v(θi) − θi))
2]

Using independence of signals this becomes

. . . = −E[(v(θi) − θi)
2].

Proof of Proposition 2.2

The interval [δ1(θ), δ1(θ)] is the smallest set of admissible votes for which each agent

is able to pick his preferred vote such that voting is effectively not restricted. In the

following we show that it is beneficial to choose at least a slightly smaller interval.

Consider V = [δ1(θ + ǫ), δ1(θ − ǫ)] with ǫ, ǫ ≥ 0 but small. For ǫ = ǫ = 0 we have

c = 0, but for most other combinations of ǫ and ǫ this is not true. Suppose, however,

that it was true for the time being. Then from Proposition 2.1 (ii) we obtain

W(d1) = −
∫ θ+ǫ

θ
(δ1(θ + ǫ) − θ)2 dΦ(θ) −

∫ θ−ǫ

θ+ǫ
(δ1(θ) − θ)2 dΦ(θ)

−
∫ θ

θ−ǫ

(
δ1(θ − ǫ) − θ

)2
dΦ(θ)

and applying Leibnitz’s rule we get

dW
dǫ

(d1) =
∫ θ+ǫ

θ
2n(1 − α) (θ − δ1(θ + ǫ)) dΦ(θ) (A.1)

and

dW
dǫ

(d1) =
∫ θ

θ−ǫ
2n(1 − α)

(
δ1(θ − ǫ) − θ

)
dΦ(θ). (A.2)

Since we have δ1(θ) < θ and δ1(θ) > θ if preferences are not common, both derivatives

are strictly positive when ǫ and ǫ are sufficiently small (but strictly positive). Thus,

forbidding extreme votes enhances welfare.

Recall that the preceding argument is only valid when ǫ and ǫ are such that c = 0.

Although this is not generally true, we can always construct a particular restriction
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of the set of admissible votes for which it is. Consider the restriction specified by ǫ

and ǫ = γǫ. Since c is strictly increasing and continuous in ǫ, and strictly decreasing

and continuous in ǫ, it is always possible to find a positive γ such that the marginal

effects of ǫ and of ǫ on c just cancel out. In this case c stays marginally constant when ǫ

changes rendering derivatives (A.1) and (A.2) valid. This proves that there exists always

a particular restriction of the set of admissible votes which is beneficial.

Proof of Proposition 2.3

We already know that it is optimal to have no (binding) restriction of V when preferences

are common. For this case the condition in the Proposition becomes E[θi|θi > v] = v

and possesses the solution v = θ. Since v = θ imposes no binding restriction on the

agents’ voting behavior, the condition in the Proposition is consistent with the optimal

restriction of votes. It remains to show that the condition is also valid for the case when

preferences are not common. The argument proceeds in four steps.

Step 1: There is at least one interior local extremum

Symmetry of distribution and voting behavior imply c = 0 and

W([−v, v], x1) = −2

(∫ τ

0
(δ1(θi) − θi)

2dΦ(θi) +
∫ θ

τ
(δ1(τ) − θi)

2dΦ(θi)

)

with τ ∈ [0, θ] and v = δ1(τ). Applying Leibnitz’s rule we obtain

d

dτ
W([−v, v], x1) = 2n(1 − α)

∫ θ

τ
(θ − δ1(τ)) dΦ(θ)

︸ ︷︷ ︸
:=ξ(τ)

. (A.3)

Since ξ(0) > 0, ξ(τ) < 0 for τ close to θ, and since ξ is continuous, the first–order

condition possesses at least one interior solution by the Intermediate Value Theorem.

Step 2: There is at most one interior local extremum

Sufficient for the existence of at most one interior solution to the first–order condition is

that ξ(τ) changes sign only once on (0, θ). We prove that ξ(τ) has at most one zero by

showing that ξ(τ) < 0 for τ close to θ, and that ξ is first decreasing and then increasing.

We already know from step 1 that the first part of this statement is true, now we show

that this is also the case for the second part.
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Applying Leibnitz’s rule we obtain

ξ′(τ) = −(1 − n(1 − α))τφ(τ) − n(1 − α)(1 − Φ(τ))

= (1 − Φ(τ))

[
(n(1 − α) − 1)τ

φ(τ)

1 − Φ(τ)
− n(1 − α)

]
.

The term in front of the bracketed expression is always positive for τ ∈ (0, θ), the term

inside the bracketed expression is strictly increasing in τ by the increasing hazard rate

property. Furthermore, ξ′(0) < 0 and ξ′(θ) > 0. This implies that ξ(τ) is first decreasing

and then increasing.

Step 3: The unique interior local extremum is a global maximum

We already know that the first–order condition changes sign only once on (0, θ). If

this change is from positive to negative, the unique interior local extremum is a global

maximum. Since ξ(0) > 0 and ξ(τ) < 0 for τ close to θ, this is the case.

Step 4: The condition characterizing the optimum

From (A.3) and the reasoning in steps 1, 2 and 3 we obtain that the global maximum is

characterized by ξ(τ) = 0. Or, equivalently, by E[θ|θ > τ ] = δ1(τ) ⇔ E[θ|θ > τ ] = v.

Proof of Proposition 2.4

We derive the optimal welfare level attainable by mechanisms belonging to a subclass

of mean mechanisms. This welfare level serves as a lower bound on what the generally

optimal mean mechanism achieves. The proof proceeds in three steps. In the first two

steps we derive the unique symmetric equilibrium of mechanism Γ = ({−v, v}, x1) and

the welfare level attained by this equilibrium. In the third step we determine the optimal

v and compute the respective welfare level.

Notation

For agent i’s ad interim expected utility if he has signal θ, votes for v ∈ [v, v], and all

other agents vote according to voting rule vj(θj) we use the same notation as in the

proof of Proposition 2.1:

Ũ(θ, v) := E
[
−
(

1

n
v +

1

n

∑

j 6=i

vj(θj) − θ∗i (θi, θ−i)
)2∣∣∣∣θi = θ

]
.
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Step 1: The symmetric equilibrium of mechanism Γ = ({−v, v}, x1)

Incentive compatibility requires that an agent votes for v if Ũ(θ, v) > Ũ(θ,−v). I.e., if

E−i

[
−
((

1

n
v − (1 − α)θ

)
+
∑

j 6=i

(
1

n
vj(θj) −

α

n− 1
θj

))2]

> E−i

[
−
((

− 1

n
v − (1 − α)θ

)
+
∑

j 6=i

(
1

n
vj(θj) −

α

n− 1
θj

))2]

⇔ −
(

1

n
v − (1 − α)θ

)2

− 2
1

n
v
∑

j 6=i

1

n
E[vj(θj)]

> −
(
− 1

n
v − (1 − α)θ

)2

+ 2
1

n
v
∑

j 6=i

1

n
E[vj(θj)]

⇔ θ >
1

n(1 − α)

∑

j 6=i

E[vj(θj)].

In the symmetric equilibrium this condition becomes

θ >
(n− 1)

n(1 − α)
E[v(θj)].

Suppose now E[v(θj)] is positive. Then agent i votes only for v if his signal is strictly

positive, i.e. with a probability smaller than 1/2. As consequence, his expected vote

is negative. This, however, contradicts symmetry. Since an analogous statement goes

through if E[v(θj)] is negative, E[v(θj)] = 0 is true in any symmetric equilibrium.

To sum up, except for the behavior of an agent with type zero, equilibrium is unique.

Each agent votes for v if his signal is positive and for v if it is negative.

Step 2: Welfare attained in the symmetric equilibrium

Using independence of signals again, we obtain

W({−v, v}, x1) = −E[(v(θi) − θi)
2]

= −
( ∫ 0

θ
(−v − θi)

2dΦ(θi) +
∫ θ

0
(v − θi)

2dΦ(θi)
)
.

Using symmetry, this becomes

. . . = −
(
2
∫ θ

0
(v − θi)

2dΦ(θi)
)

= −E[(v − θi)
2|θi > 0].

Step 3: The optimal v and the optimal welfare level

Since

d2

dv2
W({−v, v}, x1) = −2 < 0,
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utility is globally concave in v such that there is a unique global maximum. The first–

order condition

d

dv
W({−v, v}, x1) = −

(
4
∫ θ

0
(v − θi)dΦ(θi)

)
!
= 0

implies v∗ = E[θi|θi > 0]. Thus,

W({−v∗, v∗}, x1) = −
(
E[θ2

i |θi > 0] −E[θi|θi > 0]2
)
.

Since we have E[θ2
i |θi > 0] = E[θ2

i ] = σ2 by symmetry of the distribution, welfare can

be written in the following way:

W({−v∗, v∗}, x1) = −σ2 + E[θi|θi > 0]2.

Proof of Proposition 2.5

(i) Step 1: The stated behavior specifies an equilibrium

Since, by construction, each agent is required to vote for his preferred decision

from set V conditional on what he can infer from the other agents’ equilibrium

behavior, no agent has an incentive to deviate.

Step 2: This is the only equilibrium in which the agents’ voting behavior

is strictly monotonic on [δ−1
2 (v), δ−1

2 (v)]

For agents with signals in [δ−1
2 (v), δ−1

2 (v)], the same reasoning as in Lemma 2 and

Lemma 3 in Grüner and Kiel (2004) applies. If such an agent, say agent i, votes for

some decision in [v, v] and it happens that he is pivotal, symmetry of equilibrium

and the monotonicity property imply that he can infer that half of the agents have

smaller signals and half of the agents have higher signals. Note that this is also

true for votes which are chosen with strictly positive probability in equilibrium.

Such votes do occur because of the pooling at the upper and the lower end of the

distribution. By the reasoning in Grüner and Kiel (2004) the stated monotonicity

property can only be satisfied (locally) if agent i votes for δ2(θi). Hence, there is

no other possibility of getting the stated monotonicity property as by the stated

voting behavior.
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(ii) Welfare attained in this equilibrium

We use (2.1) to compute the welfare level attained by the equilibrium in (i):

W([v, v], x2) = −nE[(d2(θ1, . . . , θn) − d∗1(θ1, . . . , θn))2]

= −nE[(v(θm:n) − d∗1(θ1, . . . , θn))2]

= −nE[v(θm:n)2] + 2nE[v(θm:n)d∗1(θ1, . . . , θn)]

−nE[d∗1(θ1, . . . , θn)2].

Since we have E[d∗1(θ1, . . . , θn)2] = E[( 1
n

∑
i θi)

2] = 1
n
E[θ2

i ] we obtain

W([v, v], x2) = B2 − nE[δ∗2(θm:n)2] − nE[v(θm:n)2]

+2nE[v(θm:n)d∗1(θ1, . . . , θn)].

It remains only to show that E[v(θm:n)d
∗
1(θ1, . . . , θn)] = E[v(θm:n)δ∗2(θm:n)].

E[v(θm:n)d∗1(θ1, . . . , θn)]

=
∫

Θ

n!

(m− 1)!2
v(θm)

∫

θ1,...,θm−1≤θm

θm≤θm+1,...,θn

(
1

n

n∑

i=1

θi

)
∏

j 6=m

dΦ(θj)dΦ(θm)

=
∫

Θ

n!

(m− 1)!2
v(θm)Φ(θm)m−2(1 − Φ(θm))m−2

∫

θ1≤θm
θm≤θn

(
1

n
θm +

1

n
(m− 1)(θ1 + θn)

) ∏

j=1,n

dΦ(θj)

dΦ(θm)

=
∫

Θ

n!

(m− 1)!2
v(θm)Φ(θm)m−1(1 − Φ(θm))m−1

(
1

n
θm +

1

n
(m− 1)(E[θ1|θ1 < θm] + E[θn|θn > θm])

)

dΦ(θm)

=
∫

Θ
v(θm)δ∗2(θm)

n!

(m− 1)!2
Φ(θm)m−1(1 − Φ(θm))m−1dΦ(θm)

= E[v(θm:n)δ∗2(θm:n)]

Proof of Proposition 2.6

We show in this proof that the seller can improve welfare by forbidding large votes.

From Proposition 2.5 we know

W([v, v], x2) = B2 − nE[(v(θm:n) − δ∗2(θm:n))2].
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Define v = δ2(θ) and v = δ2(τ). Then we get

. . . = B2 − n
[ ∫ τ

θ
(δ2(θ) − δ∗2(θ))

2dΦm:n(θ) +
∫ θ

τ
(δ2(τ) − δ∗2(θ))

2dΦm:n(θ)
]
.

Applying Leibnitz’s rule we get

d

dτ
W([v, v], x2) = −2n

∫ θ

τ
δ′2(τ)(δ2(τ) − δ∗2(θ))dΦm:n(θ).

Since δ2 and δ∗2 are continuous and since δ′2 > 0, it suffices to show that δ2(θ) > δ∗2(θ) in

order to prove that it is strictly beneficial to decrease τ below θ:

δ2(θ) − δ∗2(θ) = (1 − α)θ +
α

2
(E[θi|θi ≤ θ] + E[θi|θi ≥ θ])

−1

n
θ − 1

2

n− 1

n
(E[θi|θi ≤ θ] + E[θi|θi ≥ θ]).

Using E[θi|θi ≤ θ] = E[θi] = 0 and E[θi|θi ≥ θ] = θ, this becomes

. . . =
1

2

(
n− 1

n
− α

)
θ.

This expression is strictly positive if preferences are not common, i.e. if α < αn = n−1
n

.

This proves that for all but common preferences it is optimal to restrict voting.

A.3 Proofs of Section 2.4

Proof of Proposition 2.7

The proof proceeds in four steps. First, we derive the welfare level attained by the

unrestricted mean mechanism. Then, we show that the welfare level attained by the

unrestricted median mechanism is increasing in the degree of interdependence, which

allows us to derive a tractable lower bound on this level in the third step. Finally, we

show that for any degree of interdependence except for common preferences the lower

bound on median welfare is higher than mean welfare when the number of agents is

sufficiently large.

Step 1: Welfare attained by the unrestricted mean mechanism

From Proposition 2.1 we obtain

W(R, x1) = −E[(n(1 − α)θi − θi)
2] = −(n(1 − α) − 1)2σ2.
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Note that if (n(1−α)−1)2 > 1, i.e. if n > 2/(1 − α), the unrestricted mean mechanism

performs worse than the best uninformed mechanism.

Step 2: Welfare attained by the unrestricted median mechanism is (weakly)

increasing in α

By Proposition 2.5 we have

W(R, x2) = B2 − nE[(δ2(θm:n) − δ∗2(θm:n))2].

Taking the derivative with respect to α we get

d

dα
W(R, x2)

= −2nE

[
dδ2(θm:n)

dα
(δ2(θm:n) − δ∗2(θm:n))

]

= 2n
(
n− 1

n
− α

)
E[(θm:n − 1

2
(E[θi|θi ≤ θm:n] + E[θi|θi ≥ θm:n]))2].

This expression is strictly positive if preferences are not common and zero if they are.

Step 3: Lower bound on welfare attained by the unrestricted median

mechanism

Using the definition of welfare, (2.1), directly, we obtain a second way of describing

welfare attained by the unrestricted median mechanism:

W(R, x2) = −nE[(δ2(θm:n) − d∗1(·))2].

We already know from step 2 that welfare attained by the unrestricted median mecha-

nism is (weakly) increasing in α. Hence, welfare is for any degree of interdependence at

least as high as welfare for α = 0, i.e. as welfare in the case in which δ2(θ) = θ. Thus,

W(R, x2) ≥ −nE[(θm:n − 1

n

∑
i
θi)

2] = −E[θ2
i ] + 2E[θm:n

∑
i
θi] − nE[θ2

m:n].

Since the median type and the mean type are positively correlated, we have E[θm:n
∑

i θi] >

0 such that we can write

W(R, x2) > −E[θ2
i ] − nE[θ2

m:n].

By a standard result in order statistics (see, e.g., David and Nagaraja (2003) page

69) we have E[θ2
m:n] ≤ σ2. Hence,

W(R, x2) > −(n + 1)σ2.
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Step 4: Comparison of the lower bound on welfare attained by the unre-

stricted median mechanism with welfare attained by the unrestricted mean

mechanism

Sufficient for the unrestricted median mechanism to be preferable over the unrestricted

mean mechanism is

−(n + 1)σ2 ≥ −(n(1 − α) − 1)2σ2 ⇔ (n + 1) ≤ (n(1 − α) − 1)2

⇔ n ≥ 1 + 2(1 − α)

(1 − α)2
.

Since the right hand side is finite for any α < 1, we obtain that the unrestricted median

mechanism is preferable over the unrestricted mean mechanism when n is sufficiently

large.

Proof of Proposition 2.8

The proof proceeds in four steps. First, we compute an analytical expression of the upper

bound on welfare attainable by a median mechanism. Then, for private preferences, we

derive a lower bound on welfare obtained by the optimally restricted mean mechanism

and we show in the third step that this lower bound is even higher when preferences

are not private. Finally, we show that the lower bound on mean welfare lies above the

upper bound on median welfare for any degree of interdependence.

Without loss of generality we can consider a uniform distribution on a normalized

support of length 2, i.e. Θ = [−1, 1]. In this case we have φ(θ) = 1/2, Φ(θ) = (1 + θ)/2

and

φm:n(θ) =
n!

(m− 1)!2
1

2n
(1 + θ)m−1(2 − (1 + θ))m−1

=
n!

(m− 1)!2
1

2n
(1 − θ2)m−1. (A.4)

Step 1: Computation of an analytical expression of the upper bound on

welfare attainable by a median mechanism

For uniformly distributed signals we have enough structure to obtain a tractable expres-

sion of bound B2 (for a definition of this bound see Lemma 2.2).

The optimal decision conditional on using only the median information is

δ∗2(θ) =
1

n
θ +

1

2

n− 1

n

(
θ + θ

2
+
θ + θ

2

)
=

1

2

n + 1

n
θ.
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Using this we get

B2 = −σ2 + nE[δ∗2(θm:n)2] = −σ2 +
1

4

(n + 1)2

n

∫ 1

−1
θ2φm:n(θ)dθ.

By using (A.4) and rearranging the constants this becomes

. . . = −σ2 +
1

4

n+ 1

n+ 2

n + 1

n

(n+ 2)!

m!22n+2

∫ 1

−1
(−θ)(−2mθ)(1 − θ2)m−1dθ,

and after applying partial integration we obtain

. . . = −σ2 +
1

4

n+ 1

n+ 2

n + 1

n

(n+ 2)!

m!22n+2

∫ 1

−1
(1 − θ2)mdθ.

Using a formula for the integral from a formulary and using properties of the Gamma–

function Γ̂,1 we can make the transformation

∫ 1

−1
(1 − θ2)mdθ =

Γ̂(m+ 1)
√
π

Γ̂(m+ 1 + 1
2
)

=
m!

√
π

(2(m+1))!
√

π

(m+1)!22(m+1)

=
m!22n+2

(n+ 2)!

such that we finally obtain

B2 = −σ2 +
1

4

n+ 1

n+ 2

n+ 1

n
.

Step 2: Welfare attained by mechanism Γ = ([−1/2, 1/2], x1) for private

preferences

Although we can explicitly compute the optimal restriction of votes when signals are

uniformly distributed, we derive welfare for the non–optimal set of admissible votes

V = [−1/2, 1/2]. This welfare level serves as a lower bound on optimal welfare. For the

considered set of admissible votes all agents with signals θ ∈ [−1/(2n), 1/(2n)] are not

restricted in voting. From Proposition 2.1 (ii) we obtain

W([−1/2, 1/2], x1) = −E[(v(θi) − θi)
2]

= −σ2 + 2
∫ 1

0
v(θ)(2θ − v(θ))

1

2
dθ

= −σ2 +
∫ 1

2n

0
nθ(2θ − nθ)dθ +

∫ 1

1
2n

1

2
(2θ − 1

2
)dθ

= −σ2 +
1

4

(
6n2 + 2n− 1

6n2

)
.

1In particular, Γ̂(m + 1) = n! and Γ̂(m + 1 + 1
2 ) = (2(m+1))!

√
π

((m+1)/2)!22(m+1) . See (Bronstein, Semendjajew,

Musiol, and Mühlig, 2001, p. 478).
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Step 3: Welfare attained by a mechanism Γ = ([−v, v], x1) is increasing in

the degree of interdependence

We have

W([−v, v], x1)

= −2

(∫ δ−1
1 (v)

0
(δ1(θi) − θi)

2dΦ(θi) +
∫ θ

δ−1
1 (v)

(v − θi)
2dΦ(θi)

)
.

Taking the derivative with respect to α and using that dδ1(θi)/dα = −nθi, we obtain by

applying Leibnitz’s rule

dW
dα

([−v, v], x1) = −2
∫ δ−1

1 (v)

0
2(−nθi)(δ1(θi) − θi)dΦ(θi) > 0.

Step 4: Comparison of the upper bound on median welfare with the lower

bound on mean welfare

Note that the upper bound on median welfare computed in step 1 is independent of the

degree of interdependence and that the lower bound on mean welfare is increasing by

step 3. Hence, if the lower bound is higher than the upper bound for private preferences,

then it is also higher for any other degree of interdependence. We conclude this proof

by showing that even for private preferences the lower bound is higher:

W([−1/2, 1/2], x1)
?
> B2 ⇔ −σ2 +

1

4

(
6n2 + 2n− 1

6n2

)
?
> −σ2 +

1

4

n+ 1

n+ 2

n+ 1

n

⇔ (2n+ 1)(n− 2)
?
> 0

Since the last inequality is true for n ≥ 3, we are done.

Proof of Proposition 2.9

If preferences are private, we have δ2(θm:n) = θm:n and the level of welfare attained by

the unrestricted median mechanism is

W(R, x2) = −nE[(θm:n − d∗1(·))2]

= −E[(
√
nθm:n)2] + 2E[(

√
nθm:n)(

√
n

1

n

∑

i

θi)] − E[(
√
n

1

n

∑

i

θi)
2].

Using a result stated, e.g., in Ferguson (1999), the asymptotic distribution of the

median signal and of the average signal is jointly normal. Under our assumptions we
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obtain

√
n




1

n

∑

i

θi

θm:n




L→ N (
(

0

0

)
,




E[θ2
i ]

E[θi|θi > 0]

2φ(0)
E[θi|θi > 0]

2φ(0)

1

4φ(0)2


).

Hence,

lim
n→∞

W(R, x2) = − 1

4φ(0)2
+ 2

E[θi|θi > 0]

2φ(0)
−E[θ2

i ]

= −σ2 −
(

1

2φ(0)

)2

+ 2

(
1

2φ(0)

)
E[θi|θi > 0]. (A.5)

By Proposition 2.4 we have for any number of agents

max
V

W(V, x1) ≥ max
v

W({−v, v}, x1) = −σ2 + E[θi|θi > 0]2. (A.6)

Comparing (A.5) with (A.6) we obtain

max
v

W({−v, v}, x1)
?
≥ lim

n→∞
W(R, x2)

⇔ −σ2 + E[θi|θi > 0]2
?
≥ −σ2 −

(
1

2φ(0)

)2

+ 2

(
1

2φ(0)

)
E[θi|θi > 0]

⇔
(
E[θi|θi > 0] − 1

2φ(0)

)2
?
≥ 0.

Since this inequality is true, we obtain that the optimally restricted mean mechanism is

asymptotically preferable.

Proof of Proposition 2.10

Step 1: δ2(θMed) 6= 0

Since E[θ] = 1
2
E[θi|θi < θMed] + 1

2
E[θi|θi > θMed]

!
= 0, we obtain δ2(θMed) = (1 − α)θMed.

This expression differs from zero for α < 1.

Step 2: Welfare attained by the optimally restricted mean and the unre-

stricted median mechanism

The welfare level attained by the unrestricted median mechanism is

W(R, x2) = −nE[(δ2(θm:n) − d∗1(·))2].



106 APPENDIX A. APPENDIX TO CHAPTER 2

Asymptotically, δ∗1(·) differs only on a set of measure zero (significantly) from zero and

δ2(θm:n) differs only on a set of measure zero (significantly) from (1−α)θMed. Hence, we

get

lim
n→∞

W(R, x2) = lim
n→∞

−n(1 − α)2θ2
m:n = −∞.

Since the level of welfare attained by the optimally restricted mean mechanism is

necessarily higher than the level of welfare attained by the best uninformed mechanism,

i.e. higher than −σ2, we obtain the result stated in the Proposition.

A.4 Implementable Decision Functions

Proposition A.1 (Implementable decision functions)

Let Ui(θ) := E[−(d(·)−θ∗i (·))2|θi = θ]. A decision function d : Θn → R is implementable

if and only if

(I1) E[d(θ1, . . . , θn)|θi = θ] is weakly increasing in θ,

(I2) U ′
i(θ) = 2(1 − α)(E[d(θ1, . . . , θn)|θi = θ] − (1 − α)θ) for all θ at which

E[d(θ1, . . . , θn)|θi = θ] is continuous in θ, and

(I3) Ui(θ) is continuous.

Proof. By a Revelation Principle we can restrict attention to direct mechanisms Γ =

(Θ, d) and the case in which each agent reveals his type truthfully in equilibrium. Note

that for direct mechanisms decision rule and decision function coincide.

Notation

To simplify notation within this proof we introduce a special notation for an agent’s

expected utility from a unilateral deviation. We denote by

Ui(θ, θ̂) := E[−(d(θ̂, θ−i) − θ∗i (θi, θ−i))
2|θi = θ]

agent i’s ad interim expected utility if he has signal θ, reveals signal θ̂ and all other

agents reveal their signals truthfully. Furthermore, we denote the partial derivatives of

Ui(θ, θ̂) with respect to its first and to its second argument by U
[1]
i (θ, θ̂) and U

[2]
i (θ, θ̂),

respectively, and we denote by Ui(θ) := Ui(θ, θ) agent i’s ad interim expected utility

from truth–telling.
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Necessity: IC implies (I1), (I2) and (I3)

Step 1: (I1). E[d(θ1, . . . , θn)|θi = θ] is weakly increasing in θ.

IC implies Ui(θ, θ) ≥ Ui(θ, θ
′) and Ui(θ

′, θ′) ≥ Ui(θ
′, θ). From this it follows

Ui(θ, θ) + Ui(θ
′, θ′) ≥ Ui(θ, θ

′) + Ui(θ
′, θ)

⇒ E−i[2d(θ, θ−i)θ
∗
i (θ, θ−i)] + E−i[2d(θ

′, θ−i)θ
∗
i (θ

′, θ−i)]

≥ E−i[2d(θ
′, θ−i)θ

∗
i (θ, θ−i)] + E−i[2d(θ, θ−i)θ

∗
i (θ

′, θ−i)]

⇒ E−i[d(θ, θ−i)](θ − θ′) ≥ E−i[d(θ
′, θ−i)](θ − θ′)

⇒ E[d(θi, θ−i)|θi = θ](θ − θ′) ≥ E[d(θi, θ−i)|θi = θ′](θ − θ′).

This condition can only be satisfied if (I1) holds.

Step 2: (I2). U ′
i(θ) = U

[1]
i (θ, θ) for all points θ at which E[d(θ1, . . . , θn)|θi = θ]

is continuous in θ.

IC implies

Ui(θ) ≥ Ui(θ, θ
′)

= E−i[−(d(θ′, θ−i) − θ∗i (θ
′, θ−i) + (1 − α)(θ′ − θ))2]

= Ui(θ
′) − 2(1 − α)(θ′ − θ)(E[d(θi, θ−i)|θi = θ′] − (1 − α)θ′)

−(1 − α)2(θ′ − θ)2. (A.7)

If θ′ < θ, this becomes

Ui(θ) − Ui(θ
′)

θ − θ′
≥ 2(1 − α)(E[d(θi, θ−i)|θi = θ′] − (1 − α)θ′) − (1 − α)2(θ − θ′).

For θ′ > θ the inequality is reversed. Thus, by taking the limit θ′ → θ, we obtain for

any θ at which E[d(θi, θ−i)|θi = θ] is continuous in θ

lim
θ′→θ

Ui(θ) − Ui(θ
′)

θ − θ′
= 2(1 − α)(E[d(θi, θ−i)|θi = θ] − (1 − α)θ)

⇒ U ′
i(θ) = U

[1]
i (θ, θ).

This is (I2).

Step 3: (I3). Ui(θ) is continuous.

By taking the limit θ → θ′ in (A.7), we obtain limθ→θ′ Ui(θ) ≥ Ui(θ
′). By changing

the roles of θ and θ′ and taking the limit again, we obtain Ui(θ
′) ≥ limθ→θ′ Ui(θ). This

establishes limθ→θ′ Ui(θ) = Ui(θ
′), i.e. continuity.
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Sufficiency: (I1), (I2) and (I3) imply IC

Assume to the contrary that (I1), (I2) and (I3) hold, but that IC is violated. Then there

exist θ and θ̂ such that some agent i can profit from a unilateral deviation, i.e.

Ui(θ, θ̂) − Ui(θ, θ) > 0

⇒ [Ui(θ, θ̂) − Ui(θ̂, θ̂)] + [Ui(θ̂, θ̂) − Ui(θ, θ)] > 0.

Since Ui(θ, θ̂) is partially differentiable in its first argument we can rewrite the first

bracketed expression as
∫ θ

θ̂
U

[1]
i (t, θ̂)dt. By (I1) and (I2) Ui(θ) is differentiable almost ev-

erywhere and by (I3) it exhibits no jumps such that we can rewrite the second bracketed

expression as
∫ θ̂
θ U

′
i(t)dt. Hence, we have

∫ θ̂

θ
−U [1]

i (t, θ̂)dt+
∫ θ̂

θ
U ′

i(t)dt > 0.

Using the definition of Ui(θ, θ̂) and (I2), we obtain

∫ θ̂

θ
−2(1 − α)(E[d(θ1, . . . , θn)|θi = θ̂] − (1 − α)t)dt

+
∫ θ̂

θ
2(1 − α)(E[d(θ1, . . . , θn)|θi = t] − (1 − α)t)dt > 0

⇒
∫ θ̂

θ
(E[d(θ1, . . . , θn)|θi = t] −E[d(θ1, . . . , θn)|θi = θ̂])dt > 0.

This contradicts (I1). q.e.d.

A.5 Remark on Stochastic Mechanisms

In an earlier version of this paper we considered also stochastic mechanisms. If a stochas-

tic mechanism is used, there are two sources of uncertainty. First, the decision (condi-

tional on the agents’ signals), and second, the signals itself. Since utility is quadratic, the

first source of uncertainty matters only through its variance, Var[d|θ1, . . . , θn], and its

expectation, E[d|θ1, . . . , θn]. In principle, any expected decision function E[d|θ1, . . . , θn]

can be implemented through a stochastic mechanism since incentive compatibility can be

restored by adding an ad interim expected variance Var[d|θi] having the right marginal

behavior. However, while it is easy to construct some function Var[d|θ1, . . . , θn] which

supports any marginal behavior of Var[d|θi], it is involved to find the one inducing the

lowest expected variance.



Appendix B

Appendix to Chapter 3

B.1 Proofs of Section 3.3

Proof of Proposition 3.1

This result can be obtained as special case from Proposition 3.5 by assuming that the

seller has value θ0 = 0 with probability one, i.e. by assuming p = 1, or from any textbook

on auction theory.

Proof of Proposition 3.2

This is Example 23.F.2 in Mas-Colell, Whinston, and Green (1995).

Proof of Proposition 3.3

This follows directly from payoffs and Assumption 3.1.

Proof of Proposition 3.4

Notation

In this proof we use notation

U(θ, θ̂) := H(b∗(θ̂))(θ − b∗(θ̂)) (B.1)

for the expected payoff of a buyer who unilaterally deviates from equilibrium by behaving

as if he had type θ̂ ∈ P although he has type θ. Furthermore, we denote the expected

109
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equilibrium payoff of a buyer with type θ by U(θ) := U(θ, θ).

Necessity, i.e. IC+IR for some B imply (3.3) and (3.4)

Step 1: Bids are weakly increasing

Let θ̂ < θ. IC implies

U(θ) ≥ U(θ, θ̂) = U(θ̂) +H(b∗(θ̂))(θ − θ̂)

and

U(θ̂) ≥ U(θ̂, θ) = U(θ) +H(b∗(θ))(θ̂ − θ).

Thus,

H(b∗(θ)) ≥ U(θ) − U(θ̂)

θ − θ̂
≥ H(b∗(θ̂)). (B.2)

This implies that H ◦ b∗ is weakly increasing. If b∗ was somewhere strictly decreasing,

then there would exist θ > θ̂ with H(b∗(θ)) ≥ H(b∗(θ̂)) but b∗(θ) < b∗(θ̂). Since this

contradicts IC, we obtain (3.3).

Step 2: b∗(r) = r and U(r) = 0

Consider first r = 0. If b∗(0) > 0, step 1 implies that a buyer with value b∗(0)/2 bids

at least b∗(0) and that his bid is not lower than the bids of all lower buyer types. Thus,

he obtains the object with a probability of at least G(b∗(0))[0 + 1
2
F (b∗(0)/2)] which is

strictly positive since we assumed G(ǫ) > 0 for any positive ǫ. Since he obtains the object

with positive probability and since his payoff conditional on obtaining it is negative, he

is better off not participating. Thus, we obtain a contradiction to r = 0 as long as

b∗(0) > 0. Since we assumed bids to be positive, we must have b∗(0) = 0. This implies

U(0) = 0.

Consider now r ∈ (0, 1]. If b∗(r) = 0, type θ = r/2 would have a strict incentive

to participate contradicting that the lowest participating type is r. Thus, b∗(r) > 0.

Because we assumed G(ǫ) > 0 for ǫ > 0, the lowest participating type obtains the object

with positive probability, i.e. H(b∗(r)) > 0. Therefore type r only participates if his

payoff conditional on obtaining the object is non–negative, i.e. if b∗(r) ≤ r. If b∗(r) < r,

also some types in θ ∈ (b∗(r), r) would have a strict incentive to participate. Hence,

b∗(r) = r. This implies U(r) = 0.
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Step 3: U(θ) is continuous

This follows from multiplying (B.2) by (θ − θ) and letting θ̂ → θ.

Step 4: The condition characterizing the equilibrium bid function

Since H ◦ b∗ is non-decreasing by (B.2), H ◦ b∗ is differentiable almost everywhere and

thus also continuous almost everywhere. Letting θ̂ → θ we obtain U ′(θ) = H(b∗(θ)) at

all points at which H ◦b∗ is continuous. Since U(θ) is continuous by step 3, we can write

U(θ) = U(r) +
∫ θ

r
H(b∗(s))ds

Step 2
= 0 +

∫ θ

r
H(b∗(s))ds. (B.3)

Setting (B.1) equal to (B.3) and dividing by H(b∗(θ)) (which is possible since H(b∗(θ))

is strictly positive for θ > r), we obtain (3.4).

Sufficiency, i.e. (3.3) and (3.4) imply IC+IR for some B

Any bid function b∗ : P → R+ that is implementable by some set of admissible bids is in

particular implementable by the set B = b∗(P ). Adding further elements to B adds only

additional incentive compatibility constraints and makes incentive compatibility harder

to be satisfied. Thus, it suffices to consider the smallest set of admissible bids that is

consistent with b∗, i.e. B = b∗([r, 1]). Since only bids which are actually chosen by some

buyer type belong to B, it suffices to show that no type has an incentive to imitate any

other type in order to prove IC.

U(θ, θ) − U(θ, θ̂)
(B.1)
= H(b∗(θ))(θ − b∗(θ)) −H(b∗(θ̂))(θ − b∗(θ̂))

= (H(b∗(θ)) −H(b∗(θ̂)))θ +H(b∗(θ̂))b∗(θ̂) −H(b∗(θ))b∗(θ)

(3.4)
=

∫ θ

θ̂
(H(b∗(s)) −H(b∗(θ̂)))ds

(3.3)

≥ 0

This proves that no type has a strict incentive to imitate the bidding behavior of any

other type.

Since b∗(r) = r by (3.4), the buyer with value r is just indifferent between participat-

ing and not doing so. Because type r obtains the object with positive probability and

because payoffs are strictly increasing in value, all types below r have a strict incentive

to not participate, all higher types have a strict incentive to participate. This is IR.



112 APPENDIX B. APPENDIX TO CHAPTER 3

B.2 Proofs of Section 3.4

Proof of Proposition 3.5

Necessity, i.e. IC+IR for B = [r,∞) imply P = [r, 1] and (3.6) with θ̂ = σ−1
r (x)

In contrast to Proposition 3.4 we now use the specific structure imposed by Assumption

3.2 and are only interested in bid functions implementable by a connected set B = [r,∞).

If we do not impose any restrictions on B, we can choose for any function b∗ the set of

admissible bids B = b∗(P ) which contains only bids chosen by some buyer type. Thus,

IC is satisfied for b∗ if no type has an incentive to imitate any other type. If B has to be

connected, it may contain bids not chosen by any type. This adds additional incentive

compatibility constraints. Thus, the necessary conditions from Proposition 3.4 are still

necessary, but the set of implementable bid functions becomes smaller. For instance, no

bid functions which exhibit pooling are implementable.

Lemma B.1 If b∗ is implementable by B = [r,∞), then b∗ is strictly increasing.

Proof. If b∗ was not strictly increasing, some of the pooling types would have an incen-

tive to increase their bids marginally. This would increase their probabilities of obtaining

the object discretely, while it would increase their payments conditional on obtaining

the object only marginally. q.e.d.

We now use the specific structure imposed by Assumption 3.2:

Lemma B.2 If b∗ is implementable and strictly increasing, then there exists a θ′ ≥ r

such that

b∗(θ) =





βr(θ) if θ < θ′

βr(θ) + F (θ′)
F (θ)

(σr(θ
′) − βr(θ

′)) if θ ≥ θ′
(B.4)

with b∗(θ) < x for θ ∈ [r, θ′) and b∗(θ) ≥ x for θ ∈ [θ′, 1].

Proof. Using the specific structure imposed by Assumption 3.2 and using that b∗ is

strictly increasing the necessary condition (3.4) becomes

b∗(θ) = θ −
∫ θ

r

G(b∗(s))

G(b∗(θ))

F (s)

F (θ)
ds
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=





θ − ∫ θ
r

p
p

F (s)
F (θ)

ds if b∗(θ) < x

θ − ∫
{s∈[r,θ]|b∗(s)<x}

p
1

F (s)
F (θ)

ds− ∫
{s∈[r,θ]|b∗(s)≥x}

1
1

F (s)
F (θ)

ds if b∗(θ) ≥ x
.

This characterization is still only implicit, but we can obtain explicit conditions by

distinguishing three cases:

Case 1: b∗(r) = r < x and b∗(1) ≥ x.

Since b∗ is strictly increasing, there exists a unique θ′ ∈ (r, 1] such that b∗(θ) < x for

θ < θ′ and b∗(θ) > x for θ ≥ θ′. Thus,

b∗(θ) =





βr(θ) if θ < θ′

θ − ∫ θ′

r pF (s)
F (θ)

ds− ∫ θ
θ′

F (s)
F (θ)

ds if θ ≥ θ′

=





βr(θ) if θ < θ′

βr(θ) − F (θ′)
F (θ)

(σr(θ
′) − βr(θ

′)) if θ ≥ θ′
.

Case 2: b∗(θ) ≥ x for all θ ∈ [r, 1].

In this case we have b∗(θ) = βr(θ). Using βr(r) = σr(r) = r, we can write this in a more

complicated way:

b∗(θ) =





βr(θ) if θ < θ′

βr(θ) + F (θ′)
F (θ)

(σr(θ
′) − βr(θ

′)) if θ ≥ θ′

with θ′ = r.

Case 3: b∗(θ) < x for all θ ∈ [r, 1].

In this case we have b∗(θ) = βr(θ), or more complicated:

b∗(θ) =





βr(θ) if θ < θ′

βr(θ) + F (θ′)
F (θ)

(σr(θ
′) − βr(θ

′)) if θ ≥ θ′

with θ′ > 1.

Thus, there is always a θ′ such that b∗ can be written as in (B.4). q.e.d.

In the subsequent two Lemmas we show how θ′ must look like:

Lemma B.3 If b∗ is implementable and strictly increasing, (B.4) holds with θ′ ≥ σ−1
r (x).
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Proof. Assume to the contrary that θ′ < σ−1
r (x) is true. By Lemma B.2 we obtain

b∗(θ′) = βr(θ
′)+ F (θ′)

F (θ′)
(σr(θ

′)−βr(θ
′)) = σr(θ

′) < x. However, by Lemma B.2 type θ′ has

also to bid above x. Contradiction. q.e.d.

Lemma B.4 If b∗ is implementable by B = [r,∞), (B.4) holds with θ′ = σ−1
r (x).

Proof. Assume to the contrary that θ′ > σ−1
r (x), i.e. σr(θ

′) > x. Since b∗(θ′) = σr(θ
′)

by Lemma B.2, type θ′ could decrease his bid from b∗(θ′) to x without changing the

probability of obtaining the object. This contradicts IC. q.e.d.

The four Lemmas imply P = [r, 1] and (B.4) with θ′ = σ−1
r (x).

Sufficiency, i.e. P = [r, 1] and (3.6) with θ̂ = σ−1
r (x) imply IC+IR for B = [r,∞)

Condition (3.6) with θ̂ = σ−1
r (x) is a special case of condition (3.4) in Proposition 3.4.

Since we have already proven in this Proposition that no type has an incentive to imitate

any other type and that IR is satisfied, this must also be true here too. It remains to

show that no type has a strict incentive to choose a bid not chosen by any other type,

i.e. a bid from B\b∗([r, 1]). There are three cases to consider:

Case 1: θ′ = σ−1
r (x) > 1.

In this case all types bid below x in equilibrium. Admissible bids not chosen in equi-

librium are those in (b∗(1),∞). However, all bids in (b∗(1), x) are dominated by bid

b∗(1) because those bids only decrease payoffs without increasing the probability of ob-

taining the object. Analogously, all bids in (x,∞) are dominated by bid x. It remains

only to show that no type has a strict incentive to choose bid x. If we had x = σr(1),

type θi = 1 was indifferent between bidding b∗(1) and bidding x. But since we assume

σ−1
r (x) > 1 ⇔ x > σr(1), type θi = 1 has a strict incentive not to choose x. By a

monotonicity argument, we obtain that all lower types have also no strict incentive to

choose x.

Case 2: σ−1
r (x) = r.

In this case all types bid above x. Bids not chosen are those in (b∗(1),∞). However, all

these bids are dominated by bid b∗(1).
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Case 3: θ′ = σ−1
r (x) ∈ (r, 1].

In this case some types bid below and others bid above x. Admissible bids not chosen are

those in (b∗(1),∞) and in [βr(σ
−1
r (x)), x). However, any bid in (b∗(1),∞) is dominated

by bid b∗(1) and any bid in (βr(σ
−1
r (x)), x) is dominated by bid βr(σ

−1
r (x)). Thus,

it remains only to show that no type has a strict incentive to choose bid βr(σ
−1
r (x)).

Since the lowest type bidding above x is just indifferent between bidding βr(σ
−1
r (x))

and bidding x, we obtain by a monotonicity argument that no higher type can have a

strict incentive to choose bid βr(σ
−1
r (x)). Finally, types below θ′ = σ−1

r (x) have no strict

incentive to choose bid βr(σ
−1
r (x)) for the same reason they have no such incentive in

the standard case.

Proof of Proposition 3.6

Necessity, i.e. IC+IR for some B and b∗ strictly increasing imply that (3.6)

holds with θ̂′ ∈ [σ−1
r (x), β−1

r (x)]

Lemma B.2 and Lemma B.3 in the proof of Proposition 3.5 rely only on IC and b∗

being strictly increasing such that they remain valid under the assumptions made here.

From this we know that any strictly increasing implementable bid function must satisfy

condition (3.6) with θ̂′ ≥ σ−1
r (x). However, in contrast to the case in which B is

connected, θ̂′ = σ−1
r (x) needs not to be true here, but we can derive an upper bound for

θ̂′:

Lemma B.5 If b∗ is implementable and strictly increasing, (3.6) holds with θ̂′ ≤ β−1
r (x).

Proof. Assume to the contrary that θ̂′ > β−1
r (x). Then, condition (3.6) and strict mono-

tonicity of bids imply that any type θ ∈ (β−1
r (x), θ̂′) submits a bid βr(θ) > βr(β

−1
r (x)) =

x. This contradicts that types on the left of θ̂′ bid below x (see Lemma B.2 in the proof

of Proposition 3.5). q.e.d.

Sufficiency, i.e. (3.6) with θ̂′ ∈ [σ−1
r (x), β−1

r (x)] implies IC+IR for some B and

b∗ strictly increasing

Condition (3.6) with θ̂′ ∈ [σ−1
r (x), β−1

r (x)] is a special case of condition (3.4) in Propo-

sition 3.4. From this it follows that no type has an incentive to imitate any other type
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and that IR is satisfied. Since we only have to find some set of admissible bids for which

IC and IR is satisfied, we can simply choose B = b∗([r, 1]) and are done.

B must not contain bids from [x, σr(θ̂
′))

Lemma B.6 If b∗ is implementable by set B and b∗ induces separating type θ̂′ > σ−1(x),

then B is non–connected and does not contain bids from [x, σr(θ̂
′)).

Proof. Assume to the contrary that B contained bids from [x, σr(θ̂
′)). Then type θ̂′

would have a strict incentive to choose such a bid. This would increase his payoff

conditional on obtaining the object without decreasing his probability of obtaining it.

Contradiction. q.e.d.

Proof of Proposition 3.7

We denote the distribution function of the highest of two independently F–distributed

random variables by Φ := F 2 and the respective density function by φ := Φ′ = 2fF .

Using this notation we obtain the following expression for the seller’s expected utility as

function of the separating type:

E[u0] = p
[
0 +

∫ θ̂

r
βr(θ)dΦ(θ) +

∫ 1

θ̂
(βr(θ) +

F (θ̂)

F (θ)
(σr(θ̂) − βr(θ̂)))dΦ(θ)

]

+(1 − p)
[ ∫ θ̂

0
xdΦ(θ) +

∫ 1

θ̂
(βr(θ) +

F (θ̂)

F (θ)
(σr(θ̂) − βr(θ̂)))dΦ(θ)

]

=
∫ 1

θ̂

F (θ̂)

F (θ)
(σr(θ̂) − βr(θ̂))dΦ(θ)

+p
[ ∫ 1

r
βr(θ)dΦ(θ)

]
+ (1 − p)

[ ∫ θ̂

0
xdΦ(θ) +

∫ 1

θ̂
βr(θ)dΦ(θ)

]

= 2F (θ̂)(σr(θ̂) − βr(θ̂))(1 − F (θ̂))

+p
[ ∫ 1

r
βr(θ)dΦ(θ)

]
+ (1 − p)

[ ∫ θ̂

0
xdΦ(θ) +

∫ 1

θ̂
βr(θ)dΦ(θ)

]

Note that F (θ̂)(σr(θ̂)−βr(θ̂)) = (1− p)
∫ θ̂
r F (s)ds such that d

dθ̂

(
F (θ̂)(σr(θ̂) − βr(θ̂))

)
=

(1 − p)F (θ̂). Using this we obtain

dE[u0]

dθ̂
=

[
(1 − p)

1 − F (θ̂)

f(θ̂)
− (σr(θ̂) − βr(θ̂))

]
2f(θ̂)F (θ̂)

+
[
(1 − p)(x− βr(θ̂))

]
2f(θ̂)F (θ̂)
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and using σr(θ̂)−βr(θ̂) = (1−p) ∫ θ̂
r

F (s)

F (θ̂)
ds as well as (1−p)βr(θ̂) = (1−p)[θ̂− ∫ θ̂

r
F (s)

F (θ̂)
ds]

we get

. . . = (1 − p)
[
x− θ̂ +

1 − F (θ̂)

f(θ̂)

]
2f(θ̂)F (θ̂) = (1 − p)

[
x− v(θ̂)

]
2f(θ̂)F (θ̂).

Since v is strictly increasing the sign of dE[u0]/dθ̂ can only change from positive to

negative such that the solution to x − v(θ̂) = 0 specifies a global maximum. However,

we have to respect that θ̂ can only be chosen from [σ−1
r (θ̂), β−1

r (θ̂)]. Therefore we obtain

θ̂∗ =






σ−1
r (x) if ρ(x) < σ−1

r (x)

ρ(x) if σ−1
r (x) ≤ ρ(x) ≤ β−1

r (x)

min{β−1
r (x), 1} if ρ(x) > β−1

r (x)

.

Since ρ(x) ≤ 1, it cannot happen that ρ(x) > β−1
r (x) > 1. This leads to condition (3.7).

That the optimum can only be implemented by a non–connected set of admissible

bids if θ̂∗ > σ−1
r (x) follows from Lemma B.6 in the proof of Proposition 3.6.

Proof of Proposition 3.8

(i) We have to show that there exists a set of x–values such that

ρ(x) ≤ β−1
ρ(0)(x) ⇔ x ≥ βρ(0)(ρ(x)) = ρ(x) −

∫ ρ(x)

ρ(0)

F (ρ(s))

F (ρ(x))
ds

and

ρ(x) > σ−1
ρ(0)(x) ⇔ x < σρ(0)(ρ(x)) = ρ(x) − p

∫ ρ(x)

ρ(0)

F (ρ(s))

F (ρ(x))
ds.

Since p < 1, we have βρ(0)(ρ(x)) < σρ(0)(ρ(x)). Hence, if the first condition holds

with equality, the second one holds strict. We now show that there are always

x–values for which the first condition holds with equality, i.e.

ρ(x) −
∫ ρ(x)

ρ(0)

F (ρ(s))

F (ρ(x))
ds− x = 0. (B.5)

Because the left–hand side of (B.5) is continuous in x, we can apply an Intermediate

Value Theorem: Since the left-hand side is positive for x = 0 (it is ρ(0) > 0) and

negative for x = 1 (it is ρ(1) − ∫ ρ(1)
ρ(0)

F (ρ(s))
F (ρ(1))

− 1 < 0), there exists a x′ ∈ (0, 1) such

that (B.5) holds and such that the left–hand side of (B.5) is negative for slightly
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higher values of x. This and the second condition being also continuous in x and

holding strictly imply that both inequalities must hold for an entire interval of

x–values.

(ii) Suppose the seller knew his value upfront and he could commit himself to any

mechanism. Following standard reasoning, the optimal general mechanism is such

that the seller keeps the object if the virtual valuation of the highest buyer type

is smaller than his reservation value and he sells it to the highest buyer otherwise.

One way of implementing this mechanism is by holding a first-price auction with

reserve price ρ(0) if the seller’s value is zero and a first–price auction with reserve

price ρ(x) if the seller’s value is x.

Hence, if the seller cannot commit to selling and he learns his value only after

designing the auction, he can still implement the generally optimal mechanism if

ρ(x) ∈ (σ−1
ρ(0)(x), β

−1
ρ(0)(x)] (Proposition 3.6).

B.3 Proofs of Section 3.5

Proof of Proposition 3.9

If the seller postpones the design of the auction until he is informed, bid function

βr′′(θ) = θ −
∫ θ

r′′

F (s)

F (θ)
ds (B.6)

is implemented if the seller’s value turns out to be x and bid function

βr′(θ) = θ −
∫ θ

r′

F (s)

F (θ)
ds (B.7)

is implemented if it turns out to be zero.

In contrast, if he does not wait, bid function

b∗(θ) =





θ − ∫ θ

r′
F (s)
F (θ)

ds if θ ∈ [r′, r′′)

θ − p
∫ r′′

r′
F (s)
F (θ)

ds− ∫ θ
r′′

F (s)
F (θ)

ds if θ ∈ [r′′, 1]
(B.8)

is implemented.

We now compare obtaining bid function (B.6) if the seller’s value is θ0 = x and

obtaining bid function (B.7) if it is θ0 = 0 with always obtaining bid function (B.8): We

have b∗(θ) = pβr′(θ) + (1 − p)βr′′(θ) for any θ ∈ [ρ(0), 1]. Strict concavity of ν implies
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ν(b∗(θ)) > pν(βr′(θ)) + (1 − p)ν(βr′′(θ)) for any θ ∈ [ρ(0), 1]. Thus, the seller strictly

prefers staying uninformed over waiting until he gets informed.
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Appendix C

Appendix to Chapter 4

C.1 Proofs of Section 4.3

Proof of Proposition 4.1

This is Proposition 23.D.2 in Mas-Colell, Whinston, and Green (1995) with an individual

rationality constrained added and a specific structure of payoffs.

We first consider incentive compatibility for a player who obtains utility

U(θ, θ̂) := yk(θ̂)(θ + c1k) + c2k − tk(θ̂)

if he has value θ but announces having value θ̂. Let U(θ) := U(θ, θ) be his utility from

truth–telling. We show that incentive compatibility is satisfied if and only if (i) yk(θ) is

weakly increasing and (ii) U(θ) = U(θ) +
∫ θ
θ yk(s)ds.

Remark: We obtain the utility of the incumbent (k = I) by choosing c1I = i+VI −VE

and c2I = VE , and the utility of an entrant (k = Ej) by choosing c1Ej = VI − VE and

c2Ej = VE .

IC implies (i) and (ii).

Let θ̂ < θ. Then IC implies

U(θ) ≥ U(θ, θ̂) = U(θ̂) + yk(θ̂)(θ − θ̂) (C.1)

and

U(θ̂) ≥ U(θ̂, θ) = U(θ) + yk(θ)(θ̂ − θ). (C.2)

121
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Thus,

yk(θ) ≥
U(θ) − U(θ̂)

θ − θ̂
≥ yk(θ̂). (C.3)

This is (i).

Suppose U(θ) is not continuous. Then there exists a sequence {θl}∞l=1 → θ with

liml→∞ θl = θ but U(θ) 6= liml→∞ U(θl). However, taking limits in (C.1) and (C.2) we

obtain U(θ) ≥ liml→∞ U(θl) as well as U(θ) ≤ liml→∞ U(θl). Contradiction.

Letting θ̂ → θ in (C.3) we obtain for any θ at which yk is continuous U ′(θ) = yk(θ).

Since it follows from (i) that yk is continuous almost everywhere and since U(θ) is

continuous, we can write (ii).

(i) and (ii) imply IC.

If θ > θ̂, then

U(θ) − U(θ̂)
(ii)
=
∫ θ

θ̂
yk(s)ds

(i)

≥
∫ θ

θ̂
yk(θ̂)ds = (θ − θ̂)yk(θ̂).

From this it follows U(θ) ≥ U(θ̂) + (θ − θ̂)yk(θ̂) = U(θ, θ̂). If θ > θ̂, then

U(θ) − U(θ̂)
(ii)
=
∫ θ

θ̂
yk(s)ds

(i)

≤
∫ θ

θ̂
yk(θ)ds = (θ − θ̂)yk(θ).

From this it follows U(θ̂) ≥ U(θ) + (θ̂− θ)yk(θ) = U(θ̂, θ). Both conditions together are

IC.

Individual rationality.

Since any supplier can ensure himself a zero–probability of obtaining the object and a

zero–payment, individual rationality is satisfied for player k if U(θ) ≥ c2k. If we choose

tk(θ) such that it is just satisfied for player k’s worst type, condition (ii) becomes

tk(θ) = yk(θ)(θ + c1k) −
∫ θ

θ
yk(s)ds.

Proof of Lemma 4.1

This is basically Proposition 23.D.3 in Mas-Colell, Whinston, and Green (1995).

Using notation c1I = i+VI −VE and c1Ej = VI −VE again, we obtain from Proposition

4.1

E[tk(θI , θE1, . . . , θEn)] = E[tk(θk)] =
∫ θ

θ

[
yk(θk)(θk + c1k) −

∫ θk

θ
yk(s)ds

]
dΦ(θk).
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Applying integration by parts we get

∫ θ

θ

∫ θk

θ
yk(s)dsφ(θk)dθk =

[∫ θk

θ
yk(s)dsΦ(θk)

]θ

θ

−
∫ θ

θ
yk(θk)Φ(θk)dθk

=
∫ θ

θ
yk(θk)

1 − Φ(θk)

φ(θk)
dΦ(θk).

Hence,

E[tk(θ)] =
∫ θ

θ
yk(θk)

[
θk + c1k −

1 − Φ(θk)

φ(θk)

]
dΦ(θk) =

∫ θ

θ
yk(θk)(v(θk) + c1k)dΦ(θk).

Proof of Proposition 4.2

(i) This follows directly from (4.3).

(ii) Using yI(θI , θE1, . . . , θEn) = yI(θI) in condition (4.3), we see that the procurer’s

expected revenue is maximized if for any θI expression

yI(θI)(v(θI) + i) + E[
∑

j
yEj(θI , θE1, . . . , θEn)v(θEj)|θI ]

is maximized. Since, for a given value of yI(θI), it is clearly optimal to award

the contract with probability 1 − yI(θI) to the entrant with the highest virtual

valuation, the optimal y(θI) maximizes

yI(θI)(v(θI) + i) + (1 − yI(θI))E[max
j
v(θEj)].

Thus, it is optimal to award the contract to the incumbent if v(θI) + i > E[v(θE)]

and to the entrant with the highest value otherwise.

Proof of Proposition 4.3

The incumbent obtains in the CS the contract for sure if we have v(θI)+i ≥ v(θE) for all

θI and all θE . This is satisfied if v(θ)+ i ≥ v(θ). Analogously, he obtains it in the PS for

sure if we have v(θI) + i ≥ E[v(θE)] for all θI . This is equivalent to v(θ) + i ≥ E[v(θE)].

Finally, we obtain iPS < iCS from E[v(θE)] < v(θ).
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Proof of Proposition 4.4

If the incumbent does not invest, he obtains the contract in the CS if v(θI) > v(θE),

i.e. if θI > θE . Hence, he obtains it if his value is higher than the value of each of

the n entrants. Since the values of all suppliers are iid, this happens with probability

1/(n+1). To compare this probability with that in the PS, it is helpful to write it down

in a more complicated way:

Prob(I wins in the CS) = Prob(θI > v−1(v(θE)))

=
∫ θ

θ

∫ θ

v−1(v(θE))
1dΦ(θI)dΨ(θE) = E[1 − Φ(v−1(v(θE)))].

The incumbent obtains the contract in the PS if v(θI) > E[v(θE)]. Thus,

Prob(I wins in the PS) = Prob(θI > v−1(E[v(θE)]))

=
∫ θ

v−1(E[v(θE)])
1dΦ(θI) = 1 − Φ(v−1(E[v(θE)])).

Hence,

Prob(I wins in the PS) > Prob(I wins in the CS)

⇔ Φ ◦ v−1(E[v(θE)]) < E[Φ ◦ v−1(v(θE))].

A sufficient condition for this inequality to be true is by Jensen’s Inequality that Φ◦ v−1

is strictly convex. Analogously, we obtain that the probability is equal (smaller), if

Φ ◦ v−1 is linear (concave).

Proof of Proposition 4.5

(i) For i = 0 the incumbent obtains the contract in the CS if v(θI) ≥ v(θE), i.e. if

θI ≥ θE . This is just the condition for efficiency. In the PS, the contract allocation

differs from that in the CS and thus cannot be efficient.

(ii) Step 1: For i > 0 the incumbent obtains the contract too seldom in the CS, i.e.

θI ≥ v−1(v(θE)−i) implies θI > θE−i. This is equivalent to v−1(v(θE)−i) > θE−i
and to v(θE) > v(θE − i)+ i. Since both sides of the inequality are equal for i = 0,

it suffices to show that the right hand side is strictly decreasing in i. The derivative

of the right hand side with respect to i is −v′(θE − i) + 1. It is negative since the

derivative of the virtual valuation function is larger than one by the increasing

hazard rate property.
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Step 2: If i < iPS, the functions describing the contract allocations in the CS and

in the PS intersect in the interior of the joint support. The functions describing

the contract allocations are θ̃I(θE) = v−1(v(θE) − i) in the CS and θ̃I(θE) =

v−1(E[v(θE)] − i) in the PS. Sufficient for an intersection is that there exists a θ′E

such that v(θ′E) = E[v(θE)]. Since we have v(θ) < E[v(θE)], v(θ) > E[v(θE)] and

since v is continuous there exists by the Intermediate Value Theorem a θ′E ∈ (θ, θ)

for which v(θ′E) = E[v(θE)]. Since v−1(E[v(θE)] − i) ∈ (θ, θ) for the relevant

investment levels, the intersection is in the interior of the joint support.

Step 3. From step 2 it follows that there are regions close to the point of intersection

in which the incumbent obtains the contract in the CS but not in the PS and vice

versa. From step 1 we know that the incumbent should always obtain the contract

close to the point of intersection. Hence, there exist regions in which he should

obtain the contract and he obtains it in the CS but not in the PS and vice versa.

(iii) For an investment of iPS = E[v(θE)] − v(θ), it is efficient that the incumbent

obtains the contract for sure if θ + iPS ≥ θ, i.e. if E[v(θE)] − v(θ) ≥ θ − θ. This

is just Assumption 4.1. Thus, for i ∈ [iPS, iCS) it is efficient that the incumbent

obtains the contract for sure and this happens in the PS but not in the CS.

(iv) For i ∈ [iCS,∞) the incumbent obtains the contract for sure in both systems. It

remains to show that this is efficient. I.e., we have to show that θ + iCS ≥ θ is

true. By rewriting this inequality as θ − v(θ) ≥ θ − v(θ) ⇔ 1
φ(θ)

≥ 0 we see that

this is the case.

C.2 Proofs of Section 4.4

Proof of Lemma 4.2

(i) Using the specific structure of the lowest winning type in the PS (see subsection

4.3.5) in expression (4.4) we obtain

R′
PS(i) = −dθ̃I

di
(1 − Φ(θ̃I)) =






1−Φ(θ̃I )

v′(θ̃I )
= w(θ̃I) if i < iPS

0 if i > iPS

with θ̃I = v−1(E[v(θE)] − i).
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Note that w(θ̃I) is strictly positive for θ̃I < θ. Since we have v−1(E[v(θE)]−i) << θ

for all i, we obtain for i < iPS that R′
PS(i) is strictly positive and bounded away

from zero. Furthermore, R′
PS is for i < iPS continuous as composition of continuous

functions.

(ii) Using the specific structure of the lowest winning type in the CS (see subsection

4.3.5) in expression (4.4) we obtain

R′
CS(i) = −

∫ θ

θ

dθ̃I(θE)

di
(1 − Φ(θ̃I(θE)))dΨ(θE)

=





∫ θ

θ̃−1
I

(θ)

1−Φ(θ̃I (θE))

v′(θ̃I (θE))
dΨ(θE) if i < iCS

0 if i > iCS

=





∫ θ

θ̃−1
I

(θ)
w(θ̃I(θE))dΨ(θE) if i < iCS

0 if i > iCS

with θ̃I(θE) = v−1(v(θE) − i).

The integrand is for the same reason as in part (i) strictly positive and bounded

away from zero. However, for i → iCS, the set over which integration happens

converges to a set of measure zero. This has two consequences: First, for any

interval (0, i′) with i′ < iCS marginal revenue is positive and bounded away from

zero, for instance by bound (1 − Ψ(θ̃−1
I (θ))) infi<i′,θE∈Θ w(θ̃I(θE)). However, for

i→ iCS the probability term converges to zero. Since w(·) is bounded from above,

also marginal revenue converges to zero. This leads to the second consequence,

marginal revenue is everywhere continuous, even at iCS.

Proof of Lemma 4.3

(i) Using Lemma 4.2 we obtain

R′
CS(iPS) =

∫ θ

v−1(v(θ)+iPS)
w(v−1(v(θE) − iPS))dΨ(θE)

w decr.
≤ (1 − Ψ(v−1(v(θ) + iPS)))w(θ).

Since for investment i = iPS the incumbent does not obtain the contract for sure

in the CS, we have (1 − Ψ(v−1(v(θ) + iPS))) < 1. Thus,

R′
CS(iPS) < w(θ) = lim

i↑iPS

R′
PS(i).
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Since the inequality is strict and marginal revenue is in both systems continuous,

there is an open interval (i, iPS) such that R′
PS(i) > R′

CS(i) for any i ∈ (i, iPS).

(ii) We want to show that R′
CS(i) < R′

PS(i) for any i ∈ (0, iPS).

From Lemma 4.2 we obtain

R′
CS(i) = E[w(v−1(v(θE) − i))] − Ψ(v−1(v(θ) + i))w(θ).

If w ◦ v−1 is weakly concave on the support of v(θE) − i, i.e. on [v(θ) − iPS, v(θ)],

we can apply Jensen’s Inequality to obtain

R′
CS(i) ≤ w(v−1(E[v(θE)] − i)) − Ψ(v−1(v(θ) + i))w(θ)

< w(v−1(E[v(θE)] − i)) = R′
PS(i).

Proof of Proposition 4.6

Since R′
PS(i) is on (0, iPS) bounded from below by a strictly positive number (Lemma

4.2 (i)), there exists a strictly positive γ′ such that for all γ < γ′ and for all i < iPS

marginal costs are smaller than marginal revenue. Hence, we obtain the corner solution

i∗PS = iPS already for strictly positive values of γ.

R′
CS(i) is bounded from below by a strictly positive number on any set (0, i′) with

i′ < iCS (Lemma 4.2 (ii)). However, marginal revenue at i′ converges to zero as i′ → iCS.

Thus, for any i′ < iCS we can find a γ′ such that marginal costs lie below marginal revenue

on (0, i′), but the marginal costs function never lies completely below the marginal

revenue function. Hence, i∗CS converges to iCS, but it does not reach it for positive

values of γ.

Proof of Proposition 4.7

(i) This follows from marginal revenue being finite for investments close to i = 0, but

marginal costs becoming arbitrarily large as γ → ∞.

(ii) Note that we have R′
CS(0) = E[w(θE)] and R′

PS(0) = w(v−1(E[v(θE)])).

Case 1: C ′(0) = 0. Since marginal revenue is continuous in investment close to

i = 0, R′
CS(0) = E[w(θE)] < (>)R′

PS(0) = w(v−1(E[v(θE)]) implies that optimal

investment is strictly larger (smaller) in the PS for γ → ∞.
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Case 2: C ′(0) > 0. If R′
CS(0) < (>)R′

PS(0), then there exists a γ′ such that

there is no investment in either of the systems for γ > γ′, but investment is larger

(smaller) in the PS for values of γ just below γ′.

Proof of Proposition 4.8

Marginal social revenue

When the efficient contract allocation rule is used, the joint revenue from investment is

Re(i) = E[1θI+i≥θE
(θI + i) + (1 − 1θI+i≥θE

)θE ]. For i > θ − θ we have R′
e(i) = 1. For

i < θ − θ we have

Re(i) =
∫ θ+i

θ

∫ θ

θ
(θI + i)dΦ(θI)dΨ(θE)

+
∫ θ

θ+i

[ ∫ θE−i

θ
θEdΨ(θI) +

∫ θ

θE−i
(θI + i)dΦ(θI)

]
dΨ(θE)

and by applying Leibnitz’s rule we get

R′
e(i) =

∫ θ+i

θ
1dΨ(θE) +

∫ θ

θ+i
(1 − Φ(θE − i))dΨ(θE).

Note that when the efficient contract allocation rule is used, marginal joint revenue is

for any i just the probability with which the incumbent obtains the contract.

Marginal revenue in the CS

From Lemma 4.2 we obtain for i ∈ (0, iCS)

R′
CS(i) =

∫ θ

v−1(v(θ)+i)

1 − Φ(v−1(v(θE) − i))

v′(v−1(v(θE) − i))
dΨ(θE)

v′>1
<

∫ θ

v−1(v(θ)+i)
(1 − Φ(v−1(v(θE) − i)))dΨ(θE)

<
∫ v−1(v(θ)+i)

θ
1dΨ(θE)

+
∫ θ

v−1(v(θ)+i)
(1 − Φ(v−1(v(θE) − i)))dΨ(θE).

The latter expression is just the probability with which the incumbent actually obtains

the contract in the CS.

Comparison

For i > iCS we have R′
CS(i) = 0 < 1 = R′

e(i).
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For i ∈ (0, iCS) we obtain from Proposition 4.5 that the set of type combinations for

which the incumbent obtains the contract in the CS is a strict subset of the set of type

combinations for which it is efficient that he obtains the contract. Thus, R′
CS(i) < R′

e(i).

Hence, when the efficient contract allocation rule is used, marginal joint revenue is

for i > 0 strictly larger than marginal revenue in the CS. This implies that if it is efficient

to have a positive level of investment, investment is smaller than efficient in the CS.

C.3 Proofs of Section 4.5

Proof of Proposition 4.9

We have to compare (4.5) for both systems. By construction of the systems, the extracted

information rent is for a given investment strictly higher in the CS (Proposition 4.2).

Thus, it could only be that the procurer preferred the PS if it induced a strictly higher

investment. However, if γ goes to zero, investment is higher in the CS (Proposition

4.6 and Proposition 4.3). Furthermore, if γ tends to infinity, investment converges

towards zero in both systems (Proposition 4.7). Hence, the PS is at best preferable for

intermediate cost parameters.

Proof of Proposition 4.10

We have to compare (4.7) for both systems. This expression consists of two parts, the

expected value that is generated, and the rent that has to be left to the entrants. To

prove the results we will make use of the following two properties regarding the expected

value that is generated:

[A] If the contract allocation is efficient in system 2 and if i∗1 < i∗2 ≤ efficient

level of investment, then the expected value that is generated is larger in

system 2.

[B] If investment is equal in system 1 and system 2 and the contract allocation

in system 2 is efficient but that in system 1 is not, then the expected value

that is generated is larger in system 2.

(i) Consider γ → 0.
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(a) Expected value that is generated. By Proposition 4.6 we have i∗PS = iPS and

i∗CS → iCS. By Proposition 4.5 (iv) the contract allocation is efficient in the PS and

converges towards the efficient allocation in the CS. Since Proposition 4.3 implies

that investment is strictly higher in the CS and since by Proposition 4.8 there is

never over–investment in the CS, the expected value that is generated is larger in

the CS by property [A].

(b) An entrant’s rent. By Proposition 4.3 the incumbent obtains the contract with

probability one in the PS and a probability converging towards one in the CS.

Thus, the entrants obtain no rent in the PS and a rent converging towards zero in

the CS.

Hence, in the limit, the procurer prefers the CS because it induces a strictly higher

investment.

(ii) Note that we have i∗PS ≥ i∗CS for γ = γ̃ (by Property 4.1) and i∗PS < i∗CS for γ close

to zero (by Proposition 4.6). If optimal investment was continuous in the cost

parameter, we could apply an Intermediate Value Theorem to obtain that there

must also be a cost parameter for which investment is equal in both systems. Since

we don’t have this continuity property, we obtain only that there exists either a

γ̃′ ∈ (0, γ̃] such that i∗PS = iPS = i∗CS, (C.4)

or a

γ̃′′ ∈ (0, γ̃] such that limγ↑γ̃′′ i∗CS > i∗PS = iPS > limγ↓γ̃′′ i∗CS. (C.5)

Consider γ = γ̃′ first.

(a) Expected value that is generated. Investment is equal in both systems by (C.4).

From Assumption 4.1 and Proposition 4.5 (iii) we obtain that the contract allo-

cation is efficient in the PS but not in the CS. Thus, the expected value that is

generated is larger in the PS by property [B].

(b) An entrant’s rent. By Proposition 4.3 the incumbent obtains the contract with

certainty in the PS but not in the CS. Thus, entrants obtain a positive rent in the

CS but a rent of zero in the PS.
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Hence, both (a) and (b) are better in the PS such that the PS is clearly superior.

Consider now γ = γ̃′′ + ǫ.

(a) Expected value that is generated. Since γ scales marginal costs monotonically

down, investment is weakly decreasing in γ. Hence, (C.5) implies that for cost

parameter γ̃′′ + ǫ we have i∗CS < iPS. Since investment is in the PS flat for γ ≤ γ̃,

we still have i∗PS = iPS. Thus, investment is higher in the PS.

For cost parameter γ̃′′ the incumbent is in the CS indifferent between an invest-

ment level strictly above iPS and one strictly below of iPS. Since there is never

over–investment in the CS (Proposition 4.8), there is even no over–investment if

the incumbent chooses the investment strictly above iPS. Because the efficient

investment level varies continuously in the cost parameter γ, there can also be

no over–investment in the PS when the incumbent invests iPS for cost–parameter

γ̃′′ + ǫ as long as ǫ is sufficiently small. Thus, for cost parameter γ′′ + ǫ investment

is clearly more efficient in the PS.

Furthermore, Assumption 4.1 and Proposition 4.5 (iii) imply that the contract

allocation is efficient in the PS. Thus, the expected value that is generated is

larger in the PS by property [A].

(b) An entrant’s rent. By Proposition 4.3 the incumbent obtains the contract with

certainty in the PS but not in the CS. Thus, entrants obtain a positive rent in the

CS but a rent of zero in the PS.

Hence, both (a) and (b) are better in the PS such that the procurer clearly prefers

this system.

(iii) Consider γ → ∞.

(a) Expected value that is generated. By Proposition 4.7 investment is negligible

in both systems. However, the contract allocation converges towards the efficient

allocation in the CS, but not in the PS (Proposition 4.5). Thus, by property [B],

the expected value that is generated is larger in the CS.

(b) An entrant’s rent. The highest entrant obtains the contract in the CS but

not in the PS if E[v(θE)] ≤ v(θI) < v(θE) and he obtains the contract in the

PS but not in the CS if v(θE) < v(θI) ≤ E[v(θE)]. Thus, relative to the PS, the
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highest entrant obtains the contract in the CS in additional cases when his value is

above E[v(θE)], but he does not obtain the contract in some cases when it is below

E[v(θE)]. From (4.2) and the increasing hazard rate assumption we obtain that

it is more profitable for the entrant to obtain the contract in cases in which his

value is low. Hence, the cases in which the entrant obtains the contract in the CS

but not in the PS are less profitable for him than those in which the reverse is the

case. If, in addition, the probability with which an entrant obtains the contract is

lower in the CS, an entrant is clearly worse off there. By Proposition 4.4 this is

just the case if Prob(I wins in PS|i = 0) ≤ 1/(n+ 1).

Hence, (a) is always better in the CS and (b) is at least better in the CS if

Prob(I wins in PS|i = 0) ≤ 1/(n+ 1).
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anderer als der in ihr angegebenen Hilfsmittel nicht bedient habe, insbeson-

dere, dass aus anderen Schriften Entlehnungen, soweit sie in der Dissertation

nicht ausdrücklich als solche gekennzeichnet und mit Quellenangaben verse-

hen sind, nicht stattgefunden haben.

Mannheim, den 15.10.2007 Frank Rosar





Curriculum Vitae

1979 Born in Wadern, Germany

1998 Graduation from Secondary School,

Hochwald-Gymnasium, Wadern, Germany

1998-2001 Undergraduate Studies in Business Administration,

Saarland University, Saarbrücken, Germany

2002-2007 Graduate Studies in Economics at the Center for Doctroal Studies

in Economics and Management (CDSEM),

University of Mannheim, Germany

2003-2007 Research and Teaching Assistant at the Chair for Applied Microeconomics,

University of Mannheim, Germany

2006-2007 Graduate Studies in Economics at the MPSE (visiting),

University of Toulouse I, France


