
ACCELERATION
OF THE HARDWARE-SOFTWARE

INTERFACE OF A COMMUNICATION DEVICE
FOR PARALLEL SYSTEMS

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Mondrian Benediktus Nüßle
(Diplom-Informatiker der Technischen Informatik)

aus Mannheim

Mannheim, 2008

Dekan: Professor Dr. F. Freiling, Universität Mannheim
Referent: Professor Dr. U. Brüning, Universität Heidelberg
Korreferent: Professor Dr. R. Männer, Universität Heidelberg

Tag der mündlichen Prüfung: 18.02.2009

Für Carola

Abstract
Abstract
During the last decades the ever growing need for computational power fostered the devel-
opment of parallel computer architectures. Applications need to be parallelized and opti-
mized to be able to exploit modern system architectures. Today, scalability of applications
is more and more limited both by development resources, as programming of complex par-
allel applications becomes increasingly demanding, and by the fundamental scalability
issues introduced by the cost of communication in distributed memory systems. Lowering
the latency of communication is mandatory to increase scalability and serves as an enabling
technology for programming of distributed memory systems at a higher abstraction layer
using higher degrees of compiler driven automation. At the same time it can increase per-
formance of such systems in general.

In this work, the software/hardware interface and the network interface controller functions
of the EXTOLL network architecture, which is specifically designed to satisfy the needs of
low-latency networking for high-performance computing, is presented. Several new archi-
tectural contributions are made in this thesis, namely a new efficient method for virtual-to-
physical address-translation named ATU and a novel method to issue operations to a virtual
device in an optimal way which has been termed Transactional I/O. This new method needs
changes in the architecture of the host CPU the device is connected to. Two additional
methods that emulate most of the characteristics of Transactional I/O are developed and
employed in the development of the EXTOLL hardware to facilitate usage together with
contemporary CPUs. These new methods heavily leverage properties of the HyperTransport
interface used to connect the device to the CPU. Finally, this thesis also introduces an opti-
mized remote-memory-access architecture for efficient split-phase transactions and atomic
operations.

The complete architecture has been prototyped using FPGA technology enabling a more
precise analysis and verification than is possible using simulation alone. The resulting
design utilizes 95 % of a 90 nm FPGA device and reaches speeds of 200 MHz and 156 MHz
in the different clock domains of the design. The EXTOLL software stack is developed and a
performance evaluation of the software using the EXTOLL hardware is performed.

The performance evaluation shows an excellent start-up latency value of 1.3 µs, which
competes with the most advanced networks available, in spite of the technological perfor-
mance handicap encountered by FPGA technology. The resulting network is, to the best of
the knowledge of the author, the fastest FPGA-based interconnection network for commod-
ity processors ever built.

Zusam-
men-

fassung
Zusammenfassung
Der immer weiter steigende Bedarf nach Rechenkapazität führt zu einer fortschreitenden
Parallelisierung im Bereich der Rechnerarchitektur. Anwendungen müssen parallelisiert
und optimiert werden, um die Möglichkeiten moderner Architekturen ausnutzen zu können.
Die Skalierbarkeit von Anwendungen ist heute immer häufiger limitiert durch die man-
gelnde Verfügbarkeit von Entwicklern, da das Programmieren von immer komplexeren par-
allelen Anwendungen eine sehr fordernde Aufgabe darstellt, und durch die fundamentalen
Probleme der Skalierbarkeit, die durch die Kosten von Kommunikation in verteilten paral-
lelen Systemen entstehen, wird dieses Problem weiter verschärft. Es ist unbedingt notwen-
dig die Latenz der Kommunikation zu verringen, um dadurch die Skalierbarkeit zu steigern.
Niedrige Latenz ist dabei eine technologische Voraussetzung, um verteilte System leichter,
mit höherer Abstraktion und vermehrter compilerbasierte Automation zu programmieren.
Gleichzeitig kann sie die Leistung der Systeme im Allgemeinen erhöhen.

In dieser Arbeit werden die Software/Hardware Schnittstelle und die Funktionen des Netz-
werkcontrollers der EXTOLL Netzwerkarchitektur vorgestellt, welche speziell entwickelt
wurde, um die notwendigen Bedingungen eines Netzwerks mit niedriger Latenz für das par-
allele Rechnen zu erfüllen. Mehrere neue Beiträge im Bereich der Rechnerarchitektur wer-
den vorgestellt, insbesondere eine Methode zur effizienten Übersetzung von virtuellen in
physikalische Adressen durch ein Netzwerkgerät, welche ATU genannt wird, und ein neues
Verfahren, um Befehle an ein virtualisiertes Gerät abzusetzten, welches Transactional I/O
heißt. Dieses neue Verfahren setzt allerdings Änderungen an der CPU und dem Verbin-
dungsnetzwerk zwischen CPU und Gerät voraus. Um Systeme mit heutigen Prozessoren zu
ermöglichen, werden zwei weitere neue Methoden vorgestellt, die Transactional I/O
emulieren und die Haupteigenschaften von Transactional I/O aufweisen. Diese Verfahren,
welche in starkem Maße Funktionen der HyperTransport-Schnittstelle einsetzen, werden für
EXTOLL umgesetzt. Schließlich wird eine optimierte Remote-Memory-Access Architektur
eingeführt, die sehr effiziente Kommunikation sowie atomare Operationen ermöglicht.

Die komplette EXTOLL Architektur wird auf einem FPGA als Prototyp implementiert. Auf
diese Weise wird eine detailliertere Analyse und Verifikation der Architektur ermöglicht,
als sie durch die Verwendung von Simulation allein erreicht werden könnte. Im Ergebnis
werden 95 % der Ressourcen eines 90 nm FPGAs verwendet und das Design erreicht 200
MHz respektive 156 MHz in den verschiedenen Clock-Domains. Die Software für
EXTOLL wird vorgestellt und eine Evaluation der erreichbaren Leistung durchgeführt.

Die Ergebnisse zeigen, dass EXTOLL trotz den Leistungsnachteilen, die durch eine FPGA
Umsetzung entstehen, höchste Leistungen erreicht und mit einer Kommunikationslatenz
von 1.3 µs mit den schnellsten heute verfügbaren Netzwerktechnologie mithalten kann.
Nach bestem Wissen des Autors ist EXTOLL damit das schnellste FPGA-basierte Netz-
werk, das jemals zur Verbindung von handelsüblichen Computern gebaut wurde.

TOC
Contents
Contents I

1 Introduction 1
1.1 State of the Art . 6

1.2 Outline . 13

2 The ATOLL Software Environment 15
2.1 The ATOLL-Project . 15

2.1.1 ATOLL Software Environment - Overview . 16

2.2 PALMS . 18
2.2.1 Memory Layout of an ATOLL Hostport . 19
2.2.2 PALMS Design . 21

2.3 Managing ATOLL . 23
2.3.1 AtollManager . 27
2.3.2 Additional Tools . 28

2.4 MPICH2 for ATOLL . 30

2.5 Debugging the ATOLL ASIC . 33

2.6 Performance of ATOLL . 36
2.6.1 Microbenchmarks . 37
2.6.2 Application Level Benchmarks . 39
2.6.3 High-Performance LinPACK . 39

2.7 Evaluation of Larger Networks . 41

2.8 Zero-Copy and ATOLL . 48

2.9 Lessons Learned from ATOLL . 49
I

3 EXTOLL System Environment 51

4 Communication Paradigms 57
4.1 Two-sided Communication . 57

4.2 Remote Load/Store . 59

4.3 Introduction to One-Sided Communication 61

4.4 Important Communication APIs . 63
4.4.1 Sockets . 63
4.4.2 MPI-1 . 65
4.4.3 MPI-2 . 67
4.4.4 PGAS . 72

4.5 Conclusions for EXTOLL . 77

5 The Virtual Address Space Barrier 79
5.1 State of the Art . 80

5.1.1 X86-64 Processor MMU . 80
5.1.2 Classical Devices and the Linux DMA API . 82
5.1.3 Mellanox Infiniband HCA . 83
5.1.4 iWARP Verbs Memory Management . 86
5.1.5 Quadrics . 87
5.1.6 Myrinet MX . 87
5.1.7 SciCortex . 88
5.1.8 Graphics Aperture Remapping Table . 88
5.1.9 IBM Calgary IOMMU . 90
5.1.10 AMD IOMMU and Intel VT-d . 91
5.1.11 PCI Express and HT3 Address Translation Services 95
5.1.12 Virtual Memory Hooks in the Linux Kernel . 97

5.2 Design Space of the EXTOLL Address Translation 101
5.2.1 Interrupt Driven Software-Only Approach . 103
5.2.2 Software Pre-translation . 103
5.2.3 Managed TLB . 104
5.2.4 Autonomous TLB . 105
5.2.5 Full Hardware Table-Walk . 105
5.2.6 Reduced-Depth Hardware-Table Walk . 106
5.2.7 Registration Based versus Kernel-Hook Based Designs 106
5.2.8 VPID Handling . 106
5.2.9 On-Device ATS . 108
5.2.10 Conclusion . 109

5.3 The EXTOLL Address Translation Unit . 109

5.4 ATU Microarchitecture . 116

5.5 ATU Verification and Implementation . 117
II

5.6 Performance Analysis . 118

5.7 Future Extensions . 122

6 Transactional I/O 123
6.1 EXTOLL Requirements . 123

6.2 The Classical Approach . 124

6.3 Hardware Replication . 126

6.4 Self Virtualized Devices . 127
6.4.1 Triggerpage Study . 128
6.4.2 I/O Transactions . 130
6.4.3 Central-Flow-Controlled Queue . 132
6.4.4 Central-Flow-Controlled Queue with Direct Data Insertion 134
6.4.5 OS Synchronized Queue . 135

6.5 Completion Notification . 136

6.6 RX Virtualization . 138

6.7 Conclusion . 139

7 The EXTOLL Hardware 141
7.1 HT-Core and HTAX . 142

7.2 Registerfile . 143

7.3 EXTOLL Network Layer . 144

7.4 EXTOLL VELO Engine . 146

7.5 EXTOLL RMA Engine . 150
7.5.1 RMA Instructions . 151
7.5.2 PUT Instructions . 153
7.5.3 GET Instructions . 153
7.5.4 RMA Remote Lock Instruction . 153
7.5.5 Physical vs. Virtual Addressing . 160
7.5.6 RMA Microarchitecture . 160
7.5.7 RMA Registers . 162

7.6 EXTOLL URMAA engine . 163

7.7 EXTOLL FPGA Implementation . 163

7.8 EXTOLL ASIC . 166
III

8 The EXTOLL Software 169
8.1 The EXTOLL Kernel Space Software . 169

8.1.1 Base EXTOLL Driver . 169
8.1.2 EXTOLL Registerfile Driver . 170
8.1.3 VELO Driver . 171
8.1.4 RMA Driver . 171
8.1.5 ATU Driver . 171
8.1.6 Summary of Drivers . 171

8.2 Routing and Management . 172

8.3 The VELO Stack . 172

8.4 The EXTOLL RMA Software Stack . 173

8.5 EXTOLL Kernel-Level Communication . 173

8.6 EXTOLL MPI - Protocols . 174

8.7 EXTOLL GASNET - Protocols . 180

8.8 Software Summary . 181

9 Results and Performance Evaluation 183
9.1 Microbenchmark Results . 183

9.2 RMA one-sided MPI-2 Prototype . 188

9.3 MPI-1 Protocols . 188

9.4 Summary of Results . 191

10 Conclusion and Outlook 193

A Graphical Representation and Methods 197

B Acronyms 199

C List of Figures 203

D List of Tables 207

R References 209
IV

Chapter
1

Introduction
The need for efficient interconnection networks in parallel and distributed computing is
ever growing. The last decade saw the rise of cluster machines in the TOP500 list [1] of the
fastest super-computers of the world. Multi-core CPUs, multi-CPU SMP (symmetric multi-
processing) systems and clusters of SMPs demand highly parallel algorithms to use their
computing power efficiently. In the same time period the race for higher clock speeds has
diminished, mainly due to the excessive power dissipation of extremely high-clocked
designs. Instead, many-core architectures bring parallel computing increasingly to the main-
stream and consumer domains.

Efficient exploit of parallel architectures is a difficult and a demanding task to program-
mers. Algorithms only scale by a certain amount; a typical application speed-up curve is
shown in figure 1-1. When adding more and more processors beyond a certain number of
processors, the execution time of the application does not improve any more or even
degrades. Reasons for this behavior are the costs of communication and synchronization
which can only be overcome by either reducing the cost for these operations or hiding these
costs through clever algorithm and application design. At the same time it is crucial that
parallel application performance is improved; but without enhanced systems as base, the
programmer is left alone to realize the necessary improvement. The necessity to extremely
optimize and tune an application to reach the computational performance expected does fur-
ther increase the difficulty level of parallel programming.

Even more difficult than parallel programming in general, is designing applications for dis-
tributed memory systems. Programmers that truly understand distributed memory program-
ming and that are qualified to produce efficient code are a scarce resource today. It is for
these reasons that clusters are sometimes used as throughput systems, meaning they are
used as a pile of individual servers, each processing one job. While the time for each job is
not improved, at least a higher number of jobs can be executed. But the goal for the future
must be to improve the usage of parallel machines on all levels.

The necessity to address the problem of programming parallel systems has been accepted
by academia and the industry equally. For many-core shared-memory applications, new
development tools have appeared on the market by major vendors including the CPU manu-
facturers itself [3], who have also recognized the problem of programmability, as well as
numerous projects from research initiatives. In the area of distributed-memory-systems bet-
ter programmability is addressed by current research trends centered on Partitioned-Global-
Address-Space (PGAS) languages [4]. It is also one of the goals of the DARPA High Pro-
1

Introduction
ductivity Computing Systems Program [5] to foster the development of tools for better pro-
grammability of high-performance, distributed-memory systems. One of the primary goals
of all these initiatives is to increase the amount of automations when developing parallel
applications, i.e. raise the level of abstraction in the specification of the program. This can
help programmers in many ways and accelerate development times by removing difficult
machine-dependent decisions form their shoulders, but at the same time it creates new chal-
lenges for the runtime and development software to produce efficient applications. Now, it
is the compiler that needs to take into account the placement of threads and data on the
machine, and to insert the appropriate communication operations in such a way that perfor-
mance is optimized.

Consequently, an important component of parallel systems that influences the reachable
performance levels both in the case of careful manual tuning as well as automatically
machine-generated code is the interconnection network of the system. It was already men-
tioned, that the costs of communication and synchronization are probably the most impor-
tant factors limiting scalability of parallel applications. Interconnection networks have been
characterized and studied using different models, but two performance parameters have
always been identified as most important: latency and bandwidth.

Figure 1-1: Limited Speed-up of Parallel Applications [2]

Number of Processors

Speedup

0

0
4 8 16 3212 20 24 28

4

8

16

32

12

20

24

28 superlinear speedup

lin
ea

r s
pe

ed
up

performance reduction
by adding more processors

optimal number of processors

highest
achievable
speedup
2

Introduction
Bandwidth of commodity interconnection networks has expanded exponentially from 1998
to 2008, from a hundred megabits to in excess of 20 gigabits per second. However, at the
same time the latency to transport a message from sender to receiver has not seen such dra-
matic improvements. Due to this discrepancy Patterson states “Latency lags bandwidth” [6]
and there are many reasons for the lack of reduction of latency. One particularly trivial rea-
son is the marketing strength of bandwidth - bandwidth sells, latency is more difficult to
convey [6]. It is also fundamentally easier to increase bandwidth than latency - doubling of
the number of parallel wires doubles the bandwidth whereas to half the latency no such sim-
ple solution exists. However, today latency becomes the truly limiting system property for
parallel systems.

Low-latency systems drive future application scalability and low-latency interconnects are a
key factor for low-latency systems. This can considerably ease programming for such a sys-
tem, because less effort has to be spent to hide latency and optimize the application to cope
with the deficiencies of the system. The productivity of individual programmers is
increased and compiler and runtime for future PGAS systems can benefit tremendously
from low-latency communication in the system. Thus, optimized latency can become an
enabling technology for future systems. But even today, many markets that need high com-
putational power and rely on low- to medium-processor-count clusters can benefit from
reduced latency interconnection networks. In the enterprise market, applications are often
inherently latency sensitive: clustered and distributed databases need low-latency messag-
ing as a basis; on-line transaction processing (OLTP) benefits from it, and finally for many
financial and analysis applications (for example quantitative analysis systems) low-latency
communication and processing is absolutely mandatory. In [7] and [8] the implications for
the scalability of distributed OLTP databases are mentioned, albeit rather marketing ori-
ented. In a report from the 2007 Linux Kernel Summit Customer Panel, an information tech-
nology manager from Credit Suisse allegedly said that Credit Suisse “would like to get full
bandwidth out of high-performance network adapters while sending large numbers of small
(64 byte) packets” [9] for the in-house Linux based banking applications. Finally, in the
more traditional high-performance computing (HPC) markets, it is well known that techni-
cal and scientific codes benefit from low latency: new exploitations of parallelism become
possible, algorithms scale to larger node counts with a better overall performance, and, as
already mentioned, application developer productivity can be increased, which is a key cost
factor in times of ever growing application code sizes and complex systems.

To effectively lower system latency, the whole system architecture needs to be considered.
In the case of an interconnection network this also involves the host architecture, the inter-
face between host and the network interface controller (NIC), the NIC architecture itself,
the network layer and last but not least the software components of the system. On the soft-
ware side, standards have emerged to enable low-latency communication from application
to application. Besides the well known Message Passing Interface-1 standard (MPI-1),
one-sided communication as defined in MPI-2 and the PGAS model are noteworthy. While
these software standards describe a model to enable efficient communication with low
latency, many current implementations considerably lack performance in this area. This is
both due to non optimal software implementations and interconnection network structures.
3

Introduction
It will be shown in this thesis that the architectural improvements described do not suffer
from these limitations, but support a very efficient implementation of one-sided and two-
sided communication primitives effectively accelerating communication operations.

The EXTOLL (Extended ATOLL) project has the declared goal to bring node to node
latency down into the sub-microsecond area and help to build more efficient systems. In this
work, this new network interface architecture is presented. A holistic approach is needed to
decrease system communication latency and accelerate host-device interaction. Improving
system bandwidth can be obtained in a straight-forward manner, but only careful minimiza-
tion and optimization of latency will bring the necessary scalability and performance in
many areas of computing of tomorrow. Particular emphasis is put on acceleration and
improvement of the hardware-software interface, so both hardware structures on the NIC
and the corresponding software function of the host are considered. Coming from the expe-
riences with the development of the software environment of the ATOLL (ATOmic Low
Latency) [10][11][12] project presented in chapter 2, the design space for a complete new
network interface architecture is thoroughly analyzed, especially the problems associated
with host-device interaction. This covers the paradigm of communication between host and
NIC, the software necessary to implement this on the CPU side, and the problems of virtual-
ization, posting, and completion of operations, where several new contributions are made.
A very efficient method for virtual-to-physical address translation is presented, an essential
building block to enable true zero-copy and Remote-Memory-Access (RMA) NIC architec-
tures where the NIC is programmed directly from user-space. The architecture and the vir-
tualization features also heavily leverage features of the HyperTransport [13] interconnect
which is used to connect the NIC to the host. The design space analysis in these key areas is
then used to develop the host-device interface for the EXTOLL implementation.

Two completely new communication engines are presented in this thesis. VELO (Virtual-
ized Engine for Low Overhead) is a thoroughly optimized architecture to send and receive
messages of a size of up to one cacheline (64 byte). It uses a novel, virtualized programmed
Input/Output (PIO) method to post operations and completes them with the least possible
overhead using the minimum of DMA (direct memory access) operations on the receiving
side. This engine is able to reach an unprecedented low latency close to one microsecond
which is presented in the software and evaluation part of the thesis.

The second communication function presented is called Remote Memory Architecture
(RMA) engine. It is a function that is optimized to efficiently handle one-sided and larger
two-sided communication patterns. RMA is optimized for low latency and overlap of com-
munication and computation, a point that many interconnection networks (INs) with a low
microbenchmark latency lack. To facilitate these features, RMA takes advantage of the
novel and efficient virtualized command handling method presented in chapter 6. A mini-
mum, yet ample command set is developed to cover the necessary operation conditions for
the RMA unit. To implement optimal computation/communication overlap a novel notifica-
tion system for operation completion signaling and a locking architecture is designed which
enables very efficient split-phase transaction synchronization over the network. On the soft-
4

Introduction
ware side, all the protocols needed to make efficient use of the EXTOLL hardware architec-
ture are presented, including two efficient two-sided protocols on top of the RMA engine
for medium and large message sizes.

The performance of the system architecture of EXTOLL is not only based on the new,
improved host-device interaction, though, but also relies on other parts being optimized,
including the HyperTransport interface to connect the NIC functions to the host, and an
extremely efficient network layer. Both parts are out of the scope of this work and more
information about them can be found in [14][15][16][17][18] and [19].

With the growing complexity, hardware research has often focused on simulation since the
costs, development time and risk to develop and manufacture a custom chip, for example in
ASIC (application specific integrated circuit) technology are becoming more and more pro-
hibitive. System simulation may introduce errors in terms of system evaluation and, more
important, is limited in the amount of verification and information about correctness that it
can offer. Therefore, the implementation of a prototype of the EXTOLL architecture was
undertaken and after careful analysis of the technological options a full system implementa-
tion in FPGA (field-programmable gate arrays) technology was chosen.

The advent of large FPGA devices enables this kind of complete system prototypes of new
hardware without having to produce custom chips. FPGA devices have continuously been
improved both in capacity and performance in recent years and can increasingly support
such complex designs. Of course, an FPGA implementation of a given hardware architec-
ture will never be able to reach the performance levels that can be obtained using ASIC
technology for the same architecture, but today it is possible to implement designs that,
using superior architectural features, can compete against existing well-optimized ASIC
devices, as the results of this work will show. FPGAs also offer further advantages, because
of their reprogrammability features. It becomes possible to move hardware design closer to
the way software is developed so that a faster innovation cycle is possible. Furthermore, for
completely new architectures, the possibility to rapidly iterate over gradually improving
architectures and analyzing them in system is a priceless advantage. In the area of special
purpose architectures, FPGAs can also play their strength, since hardware devices with low
quantities of installed devices become possible and so special purpose variants of an archi-
tecture which reuse parts of a design become profitable; in fact components of EXTOLL are
already actively being used for other research projects.

As a result, the FPGA implementation of the EXTOLL architecture together with the neces-
sary software layers are presented here and the whole system is evaluated using
microbenchmarks and several specialized tests to cover the special features of the EXTOLL
network proving the great potential of the architecture. The full system prototype enables
detailed studies of the resulting architecture, provides support for software development and
gives the security that the resulting hardware actually co-operates with the different compo-
nents of the overall system, most importantly with the CPUs. Additionally, the prototype
functions as a baseline implementation for further research in the area of networking and
computer architecture.
5

Introduction
In short, the main contributions of this work are:
• a complete software environment for the ATOLL network,
• a novel address translation unit for virtual-address space handling in virtualized devices,
• design, analysis, benchmarking and implementation of new virtualization techniques,
• a new architecture for low-latency communication which also efficiently supports real-

world problems,
• analysis and implementation of the software to drive low latency from innovative hard-

ware architecture to complete system software, and
• a holistic, system-view driven approach to optimize the whole system from hardware

micro architecture to software middleware packages.

The evaluation of the resulting prototype is presented in chapter 9, which shows the impres-
sive potential and performance of the EXTOLL architecture. To better understand the con-
tributions of the EXTOLL architecture, the state of the art of networking for parallel,
distributed memory architectures, is outlined in the next section.

1.1 State of the Art
To implement a low-latency system, it is not enough to address the problem of accelerating
the host-device and hardware-software interface, which is the main topic of this work, but
the complete network and host system needs to contribute to this goal. Current networking
solutions generally lack some features necessary for the envisioned performance and char-
acteristics that the EXTOLL system will offer. The following overview highlights the
advantages and shortcomings of modern networks for parallel computing.

Probably the most widespread networking hardware is Ethernet and its many variants. In
the high-performance sector, both Gigabit Ethernet (GE) and also 10-Gigabit Ethernet (10-
GE) are used. Ethernet NICs are still mostly traditional devices which are tied very closely
to the use of the TCP/IP stack. The use of interrupt driven reception and the overhead of the
TCP/IP stack in the kernel are one reason, why Ethernet is not a low-latency network and
generally also not the best choice for parallel systems (exceptions exist of course). The
effects of these factors are concisely presented in [20]. Another point against Ethernet, and
in a way the reason why the TCP/IP stack is necessary, is the lack of efficient hardware
retransmission and flow-control features in the network. While there have been efforts to
integrate some flow-control into newer Ethernet standards, these solutions are far from the
effective flow-control needed for high-performance networks. This shortcoming causes the
need for elaborate end-to-end protocols such as TCP to enable reliable communication
between end-points. Another major problem is the waste of memory bandwidth by the clas-
sic stack. Usually each and every packet is copied by the CPU at least once when sending
and once when receiving, sometimes even more often. At 1 GB/s link rate this can amount
to several gigabytes of memory bandwidth wasted for the copying of packets in main mem-
ory. This is one major fact why zero-copy-protocols and RMA or remote-direct memory-
6

Introduction
access (RDMA) architectures are becoming more and more popular. Recent improvements
in classical Ethernet adapters include the support of multiple send and receive queues for a
more efficient use of multi-core and virtualized servers [21].

The next class of network devices contains the enriched Ethernet devices. The CPU load
that is caused by the higher-speed Ethernet variants is significant; TCP/IP processing alone
can completely utilize single processors, which is not desirable of course. To counter this
problem, some vendors have developed adapters that feature their own processors or pro-
cessors and memories which offload the TCP/IP processing completely or for the most part
from the host CPU. Such adapters are often called TOEs (TCP Offload Engines). TOEs do
not enable significantly lower latency than well tuned systems using standard Ethernet
adapters; this is apparent, since the embedded processors are still required to process the
TCP/IP protocol. An often quoted critique on TOEs is also, that they are prone to errors,
security flaws and incompatibilities since they are not as well supported as the TCP/IP stack
software in use by the major operating systems. Nevertheless they succeed in freeing CPU
resources for other work than network packet processing.

Ethernet networks and adapters are nearly always accessed from applications using the
BSD Sockets API (Application Programming Interface) or one of its variants (see also sec-
tion 4.4.1). The Sockets API is closely coupled with the POSIX standard library, and thus
communication can be caused by calls to the read() or write() system call. A host of other
functions exists, too. In the TCP case, connection management is clients/server oriented and
generally, all communication calls pass through the kernel.

In recent years a number of new networking devices appeared which promised to remedy
all the problems of Ethernet. These devices are currently represented by the Infiniband (IB)
and the iWARP host-channel-adapters and their respective networks. All of these adapters
use a variant of an API called Verbs [22]. Verbs as well as many other features of these net-
works were first invented for the Virtual Interface Architecture (VIA). Infiniband intro-
duces significantly lower latencies than Ethernet and also promises the use of RDMA. VIA
and then Infiniband are also examples for networks that offer virtualized hardware access.
The current many-core trend of more and more CPU cores in one system forces NIC archi-
tectures to become virtualized to support the ever growing number of end-points in a sys-
tem. In this work, end-point references the software abstraction which is used by one
process, thread or OS (Operating System) to communicate with a network device. A typical
SMP server only five years ago featured two to four CPUs and thus two to four concurrent
MPI process in a typical numerical computation environment; today, systems with 8-16
cores and the same number of MPI processes are common and it is expected that this num-
ber will increase considerably over the next years. This increase in cores causes the need to
support enough end-points and to move from a dedicated or replicated device structure to a
virtualized structure. The virtualization of the device can help to accelerate the hardware-
software interface to reach low latency in two main aspects: it can be leveraged to imple-
ment complete user-space access to the device and eliminate data copy operations. Virtual-
ized devices also offer interesting new possibilities in the area of virtual machines [23].
7

Introduction
The VIA specification from 1997 [24] was a predecessor to the Infiniband standard and lead
to many of the design decisions of IB. VIA used the architecture depicted in figure 1-2. The

interface to the network adapter is one Virtual Interface (VI). An most important idea of
VIA was, that a VI is virtual in the sense, that the actual hardware can provide a VI to liter-
ally hundreds or thousands of client processes on a single node, i.e. this is an implementa-
tion of a virtualized device (see also section 6.2). The user-level API of VIA is known as
VIPL (VI provider library). The important communication resources of the user interface
are the queue-pairs of a send queue (SQ) and a receive queue (RQ) and, as a third important
resource, the completion queue (CQ). To start a transaction, a descriptor is built and inserted
into the SQ and the send doorbell is rung (conceptually this could be a write to a register in
the network adapter updating a write-pointer). The operation is then processed by the VI
network adapter asynchronously to the application and once the operation finishes a com-
pletion descriptor is inserted into the CQ, on which the application can poll or wait. For
two-sided operations, receives are posted into the RQ by the application and the receive
doorbell is rung. The actual communication is processed very similarly to IB and described

Figure 1-2: Virtual Interface Architecture

Vi-aware
Application

Application

OS/Vendor API (i.e. Sockets, MPI)

VI Provide library (VIPL, also named VI User Agent)

one VI

VI Network Adapter

VI
Kernel
Agent

SQ

Descriptor

RQ

Descriptor

CQ

Descriptor

post sends

StatusStatus

User
Mode
Kernel
Mode

Send
Doorbell

Receive
Doorbell

post receives
8

Introduction
in more detail further on in this section. Connection management is a basic client/server
model. The server calls VipConnectWait() to wait for incoming connection requests, while
the client calls VipConnectRequest() to initiate a request to a given server. In peer-to-peer
applications, like MPI, processes can also act both as server and clients.

In VIA all memory to be used in data transfer operations must be registered prior to being
used. The memory registration is normally handled by the VI kernel agent (i.e. the kernel
driver of the VI NIC) and typically locks the physical pages, enters the pages to be regis-
tered in an internal data structure, which typically resides on the NIC, and returns a handle
for the newly registered memory region. The VIA specification states that the NIC is
responsible for the virtual to physical translation; memory is always referenced as a tuple of
{handle, virtual address}, where the handle is an opaque handle returned by the memory
registration function. Protection is handled by protection tags and memory protection
attributes (RDMA enable/disable, write access, read access, and per VI access) associated
with individual memory regions.

RDMA write (also known as put) operations are mandatory in the specification but RDMA
read operations (also known as get) are optional. Not many hardware implementations of
VIA were actually designed and built due to the relatively high hardware effort (for the
1990s) necessary to support the complete specification. One hardware design is described in
[25]; an open-source academic software-only implementation is M-VIA [26].

Today, VIA has been superseded by IB. The IB specification [22] specifies a software inter-
face to clients, like VIA did. This interface is specified as a semantic interface, so it
describes what must be provided and what it should do, but it does not specify how that
should actually work and it does not specify a concrete API, i.e. exact functions with param-
eters. This concept is called Verbs. In essence the Verbs specification defines an abstraction
above a concrete API and is similar in many respects to VIA’s VIPL. Several IB APIs
(Verbs) are available that are sometimes incompatible. Two of the most prominent Verbs are
Mellanox Verbs, the Verbs implementation for Mellanox HCAs (Host Channel Adapter, the
IB jargon equivalent of NIC), and the Verbs that is part of the OpenIB distribution, which is
now part of the Open Enterprise Fabric Distribution (OFED) [27]. The IB Verbs specifica-
tion is heavily influenced by the VIA specification which can be seen as a predecessor of
the IB specification.

But IB also specifies the other parts of a complete network. A number of different transport
layer services are defined which can be used via the API; namely these are reliable connec-
tion, reliable datagram, unreliable datagram and unreliable connection. The end-point of an
IB communication on the API side is again called a Queue-Pair (QP), and at the creation
time of such a QP the transport service can be chosen. The chosen service then has an influ-
ence on the communication semantics and on the availability of certain Verbs respectively
parameters to Verbs. Connection management is performed on the QP layer. All memory
used in IB Verbs as source or destination of an operation must be registered (see section
5.1.3 for more details). The notion of protection domains (i.e. memory management con-
9

Introduction
texts), memory regions (areas of registered memories), and memory windows (sub-regions
attached to individual QPs) can be used to control the access to registered process memory
which is necessary to support typical client-server datacenter use-cases.

An HCA generally provides a limited amount of resources; these can be queried using the
respective Verb. For example the number of contexts, QPs, the maximum size of a memory
region, the maximum number of memory regions, the maximum number of completion
queues and the maximum queue sizes can be queried. A Mellanox Connect X HCA pro-
vides 64k QPs and a maximum of 128k memory registrations which are shared by up to 510
user contexts (i.e. end-points).

IB Verbs supports a number of different communication transfer operations. The post send
request work-request (WR) causes the send part of a two-sided operation. The source buffer
has to reside in registered memory and is sent using a zero-copy send protocol. Send trans-
actions are completed using a receive request. When a send request reaches the receiving
HCA, the request is matched to the receiving QP and the top most posted receive WR is
removed from the receive queue to complete the send request. From the HCA’s point of
view this constitutes a zero-copy completion. This scheme poses several problems to higher
level protocol developers. First, it is necessary to always post enough receive WRs to the
receive queue of each and every QP of the application; the queue is never allowed to be
drained, since severe performance penalties or data loss can be the consequence. Also, each
posted receive must have an attached buffer which must have the size of the maximum
transfer unit (MTU) and must reside in registered memory. The large number of receive
buffers that need to be posted at all times leads to a high memory consumption of IB com-
munication.

Later revisions of IB introduced the concept of the shared receive queue (SRQ). If using a
SRQ, receives are posted to the SRQ instead of one of the RQs. Multiple queue pairs can be
associated with one SRQ. Whenever a send transaction arrives for any of the QP, which is
associated with the SRQ, the top-most receive WR from the SRQ is consumed and the send
transaction is completed using this WR. The completion notification is delivered to the CQ
of the QP and the completion entry is logically filled with values, as if the completion
would have been performed with a WR from the dedicated RQ of the receiving QP. This
scheme can be used to somewhat reduce memory footage.

Another down-side for the two-sided IB communication primitives is, that they do not allow
zero-copy two-sided receives natively. Since receive buffers are pre-posted and only
matched in posting order, it is very difficult to make sure data is placed in the correct appli-
cation buffers; an intermediate copy from the receive buffer to the application buffer will
often be necessary. One common idea to work around this is, to only send short messages
using send WRs and implement large send operations using a combination of a message
carrying matching information and source address of the send operation. The receiver
matches this information with its view of application side buffers and completes the two
sided operation through the use of a one-sided get WR which directly places the original
data into the application buffer. The added latency of one round-trip can often be tolerated
10

Introduction
for large bulk transfers, since the advantages of not having to copy the received payload and
replenishing the (S)RQ all the time. This idea actually can be used generally for RDMA/
RMA enabled NICs and is also a basic use-case idea for the EXTOLL RMA unit.

One sided WR requests are RDMA write and RDMA read operations, which have to operate
on registered memory on both sides. Local memory can be passed to the API in form of a
scatter-gather list. The HCA can optionally support atomic operations (compare and swap,
fetch and add). WRs can generate completions, which in turn generate entries in the CQ, on
which the application can poll (or sleep). Note that there is no remote notification, i.e. the
one-sided operations are truly one-sided and there is no direct way for a process to know
that it was the target of a RMDA operation.

In 2008 Mellanox has introduced its newest generation of IB HCAs called Connect X. This
adapters feature native PCI Express (PCIe) 2.0 support and provide very good latencies in
modern systems equipped with PCIe 2.0 slots. As low as 1.2 µs were measured on the MPI
level according to the authors of MVAPICH [28].

The host interface part of Infiniband does support some of the necessary operations for a
modern high-performance network. Unfortunately, it does lack some elegant features to
support upper-level protocols, such as remote notification of operation completion or
atomic operations that can be used to implement all of the variants of MPI_Lock. Also, the
tested HCAs feature a high overhead for memory registration and deregistration which is
prohibitive for highly dynamic buffer and memory usage (see also section 5.1.3). The mem-
ory registration latency for a single page is more than ten fold the time to send and receive a
message. The underlying network is also specified in the Infiniband specification, and while
it allows for flexible topologies, high-bandwidth and low-latency switches, it also has some
drawbacks, the most prominent being the lack of link based retransmission, so that error
checking and re-transmission must be completely accomplished by the end-points. Since
reliable communication in IB has to be combined with connected communications, each
connection to a peer needs at least some memory for management purposes. While SRQs
have diminished memory usage, it remains a problem that is often cited when scaling to
large systems. In one study, the amount of memory that has to be dedicated for communica-
tion management in a 4096 node cluster was stated to be 1 GB on each node [29].

A special case of an Infiniband HCA is the Qlogic Infinipath HTX adapter (formerly Path-
scale Infinipath) [30]. This adapter connects to a standard Infiniband fabric, but implements
a different host interface than defined in the specification. The Infinipath adapter does not
support standard Verbs operations but is optimized for send/receive MPI traffic. It is based
on the concept of on-loading, the opposite concept of off-loading. Not only is protocol pro-
cessing and matching performed on the host CPU, but all sending has to be performed based
on PIO, as Infinipath has no TX DMA engines. It leverages a fast HyperTransport interface
and achieves very good end-to-end latencies - 1.14 µs is the start-up latency using the
adapter back-to-back. Around 1.3 µs are achievable using an intermediate switch. These
numbers were measured at the MPI level. Critics of the adapter point out that the perfor-
mance is paid for by high CPU load, because sending is PIO based and it does not to employ
zero-copy techniques.
11

Introduction
Closely related to IB is the Internet Wide Area RDMA Protocol (iWARP), a standard speci-
fying RDMA services over TCP (it is actually based on the RDMA over TCP standard from
the RDMA Consortium). The iWARP standard is managed by the Internet Engineering Task
Force (IETF). In order to reduce the performance bottleneck caused by the TCP/IP stack in
kernel, especially in 10-GE network applications, TCP offload engines have been built,
which offload the TCP stack onto the NIC hardware. Still, the actual payload has to be cop-
ied from the user send buffer to a DMA send buffer on the NIC, and vice versa in opposite
direction. Often even more copies are necessary.

To further increase performance, iWARP introduces a zero-copy RDMA protocol between
the host-software and the NIC. iWarp builds strongly on the IB decisions, at least in terms of
the user level API. It employs the OFED stack; most API calls can remain the same whether
the underlying hardware is actually an IB HCA (Host Channel Adapter) or an iWARP
RNIC (Remote DMA NIC - iWARP term for an Ethernet NIC supporting the iWARP proto-
col stack). Many of the terms and definitions of iWarp are directly taken from the IB speci-
fication On the NIC the messages are packed into the Data Direct Protocol (DDP), and then
using a specially tweaked TCP are transmitted, usually over 10-GE Ethernet. Like for IB,
several other protocols are also available to run on top of iWARP, mainly Sockets Direct
Protocol (SDP), iSCSI and SCSI RDMA Protocol (SRP).

The actual RDMA interface of the suite defined in the RDMA Protocol Verbs Specification
[31] is a Verbs definition very close to the VIA or IB specification. An end-point generally
employs one or more QPs and one CQ to communicate with the RNIC. Memory Manage-
ment necessary for RDMA access is presented in section 5.1.4. The start-up latency
reported for an iWARP adapter is 9.78 µs [32].

Another network with a long history in high-performance computing is Myrinet [33]. The
current hardware is called Myrinet 10G and supports 10 gigabit link bandwidth both using
the Myrinet protocol and the 10-GE protocol. The preferred API to access Myrinet is called
Myrinet eXpress (MX) and offers start-up latencies over MPI of about 3.6 µs [32]. Myrinet
employs a processor on its adapters as well as additional SRAM chips to run the network
protocols and the protocol towards the host. MX does not offer RMA capabilities at the
moment but goes to great lengths to support send/receive efficiently including minimizing
the host CPU load. The Myrinet network and switch are good examples for a mature high-
performance network, but Myrinet is not able to reach really low latencies. Also the adapter
architecture is not slim but uses a processor and additional memory chips. Similar in many
ways is the current generation of Quadrics hardware [34] except that Quadrics also supports
RMA.

The optimal network for a high-performance system combines excellent performance val-
ues with a balanced design. A typical characteristic that is often unbalanced in network
adapters is the concept of on-loading or off-loading. On-loading means to let all of the pro-
tocols be handled by the host CPU, whereas off-loading means to let the NIC handle the
complete protocol. To this purpose off-loading NICs are often equipped not only with local
processors but also with a significant amount of (S)RAM chips. The EXTOLL architecture
has been designed to be a balanced design, offloading protocol parts that can efficiently be
12

Introduction
handled in hardware, and on-loading parts that can more efficiently be handled in software
on the host CPU. The architecture is also designed to deal with many of the problems men-
tioned above. It supports zero-copy protocols, a very low latency, hardware features for
retransmission and flow-control, and even the time for memory registration has been opti-
mized. To summarize the discussion of the different networks table 1-1 gives the key char-
acteristics of the individual networks.

1.2 Outline
The remaining work is organized as follows: The next chapter covers the hardware/software
interaction and the software design of the ATOLL project, as the lessons learned from this
project were fundamental for the EXTOLL project. Chapter 3 analyzes the implications of
modern systems on the design of communication devices. This chapter also introduces basic
performance numbers to asses design choices. The next chapter covers communication par-

Network Latency Bandwidth NIC Feature Network
Features

10-GE > 10 µs 1000 MB/s no offloading,
heavy CPU
load, no zero
copy

no retransmis-
sion, poor flow
control

Infiniband
Mellanox

Infinihost III

3-4 µs 1500 MB/s virtualization,
RDMA sup-
port, lacking
some features

no retransmis-
sion

Infiniband
Mellanox
Connect X

1.2 - 1.8 µs > 1500 MB/s same as above
IB

same as above
IB

iWARP 10 µs 1000 MB/s virtualization
and RDMA
support, high
latency

same as 10-GE

Myrinet MX 3.7 µs 1000 MB/s CPU offload-
ing, no RDMA,
not optimal
latency, com-
plex NIC

retransmission,
flow control

Infinipath 1.3 µs 1000 MB/s not much off-
loading

same as Infini-
band

Tabelle 1-1: Overview of Networks
13

Introduction
adigms (software) and how they can be mapped to (hardware) devices. Chapter 5 then
addresses the problem of address translation. After an analysis of related work and a design
space analysis, the novel ATU (Address Translation Unit) architecture is introduced.
Chapter 6 describes the design space for device virtualization including a number of studies
for a detailed assessment of the different methods of device virtualization considered. After
covering these fundamental problems, the actual hardware and implementation of EXTOLL
are presented. In chapter 8 the software stack for EXTOLL is described. An evaluation of
system performance follows. The results gained and an outlook for future developments of
EXTOLL are discussed in the final chapter.
14

Chapter
2

The ATOLL Software

Environment
The ATOLL network constitutes the predecessor of the EXTOLL project. The development
of a complete network environment lead to valuable experiences which guided many of the
design choices of the EXTOLL architecture. This chapter presents the results from the
ATOLL project, especially the software environment which formed the final work-package
of the project. The last section of this chapter summarizes the lessons learned for the
EXTOLL network.

2.1 The ATOLL-Project
ATOLL was a research project aimed to implement a high-performance interconnect, which
can be used as System Area Network (SAN) to build clusters of PCs or workstations. Most
notable, ATOLL was a true Network on a Chip: four independent network interfaces called
Hostports, an 8x8 crossbar switch and four link interfaces were integrated into one single
application specific integrated circuit (ASIC). The block diagram of the ATOLL chip is
shown in figure 2-1. There is no need for external switching hardware with ATOLL; the
four links directly enable 2-d grid topologies of interconnected SMP systems to form a
high-performance cluster.

The ATOLL chip features about 5 million transistors running at more than 250 MHz. The
ASIC was implemented using a 0.18 µm CMOS (complementary metal–oxide–semicon-
ductor) technology.

Connection to the host system is provided by a PCI-X (Peripheral Control Interface
eXtended) interface. Four replicated Hostports allow user-space communication with four
distinct processes. From the software side this is the equivalent of a NIC with a total of four
simultaneously usable contexts. To copy data from and to main memory each Hostport fea-
tures TX (transmit) and RX (receive) DMA engines. See [11] for an overview of the
ATOLL hardware; [35] and the ATOLL Hardware Reference manual [36] describe the hard-
ware architecture in greater detail. The ATOLL NIC is complemented with a complete soft-
ware suite to enable efficient usage in cluster environments, which is described in this
chapter.
15

The ATOLL Software Environment
2.1.1 ATOLL Software Environment - Overview
Three core components make up the ATOLL software stack: the user API (application pro-
gramming interface) library PALMS, the Linux kernel driver atoll_drv and the ATOLL man-
agement daemon (AtollD). In addition, an implementation of the MPI standard (MPICH2
for ATOLL), the AtollManager GUI (graphical user interface) management front end and a
number of utility, test and benchmarking applications are available. Figure 2-2 shows a
graphical overview of the ATOLL software environment. PALMS is a user-space API
library that enables applications (or libraries on top of PALMS) to directly interact with the
ATOLL network hardware for sending and receiving messages. System resources such as
Hostports, DMA memory, register file etc. are managed by the atoll_drv Linux kernel
driver. The ATOLL Management daemon implements network management, analysis,
topology management, routing, debug functionality, as well as connection management. A
typical user-application only links to PALMS or possibly an additional middleware library.
The PALMS library interfaces to the kernel driver to allocate resources when first started. It
connects with the ATOLL daemon to request virtual communications and trough memory
mapped I/O (Input/Output) and DMA memory regions directly with the hardware to insert
messages, retrieve messages, poll, update status, and control registers of the designated
Hostport.

Figure 2-1: ATOLL Block-Diagram

PCI-X
Core

Hostport 0

Hostport 1

Hostport 2

Hostport 3

ATOLL
Crossbar

Linkport 0

Linkport 1

Linkport 2

Linkport 3

Link 0

Link 1

Link 2

Link 3

PCI
16

The ATOLL Software Environment
The AtollManager application attaches to all ATOLL daemon instances of a cluster to mon-
itor and administrate the network. MPICH for ATOLL provides MPI services over ATOLL
and is the most commonly used method for message passing applications.

Great care was taken to program all of the software to be portable across different machine
architectures. In particular the x86, x86-64 and IA64 processor architectures are supported.
Thus the software runs on both 32-bit and 64-bit processor architectures. Besides careful
programming the consistent use of the GNU autotools suite [37] enables portable and well-
functioning build services across different machine types. All of the software packets also
use the doxygen [38] packet to provide source-code level documentation.

Figure 2-2: ATOLL Software Environment

User-Application

PALMS
(Library)

Middleware, i.e.
MPI

(Library)

ATOLL Hardware

Hostport Hostport Hostport Hostport

ATOLL Daemon
(Application, mandatory on each

node)

ATOLLManager
(Application,

optional)

atoll_drv
(Linux kernel

module)

Management
Network

(Ethernet,
 TCP/IP)

User-space

TCP/IP
Stack

Management-
PALMS
(Library)

Application Management

Kernel-space

Hardware

IPC

IPC
17

The ATOLL Software Environment
2.2 PALMS
The PALMS ATOLL Library and Management Software implements a user space API to
access the ATOLL network. Two major revisions of the API have been released, 1.4 and
2.1. PALMS offers point-to-point as well as basic multicast services to applications. The
communication paradigm used employs virtual connections. Connection oriented commu-
nication means, that prior to be able to send a message to a peer, a connection to this peer
must be established. In PALMS, virtual connections mean, that the connection itself does
not directly involve hardware resources of the Hostport such as queues etc. It is purely a
handle for subsequent communication operations that identify the peer. On the hardware
level virtual connections refer to locations of routing strings within the ATOLL routing
area. Establishment of a virtual connection always involves the ATOLL daemon to manage
the necessary routing string to reach the peer.

The PALMS 1.x implements basic user space send and receive features. PALMS 2 adds the
possibility to fill descriptors and messages in place, i.e. splitting the basic send operation
into multiple smaller units. Also, completion of messages with the associated freeing of
resources is decoupled from initiating communications. Thus, PALMS 2 implements a more
asynchronous mode of message transmission than was previously possible with the 1.x ver-
sions. Freeing of resources in the context of interaction with an ATOLL Hostport involves
access to control registers (read- respectively write-pointer registers), which is a relatively
costly operation. The new mechanism allows the aggregation of several free operations into
one. This scheme is a perfect example for a lazy pointer update algorithm.

These new abilities are especially useful to implement MPI semantics on top of PALMS.
Basically, it becomes possible to allocate a descriptor, allocate the necessary DMA buffer
for a MPI send request and then fill the different locations one by one. Actually this proved
to be rather effective in both simplifying the adaptation of MPICH to ATOLL as well as
improving performance.

All in all, several software optimizations have been established to increase the performance
of ATOLL message passing from PALMS 1.x to 2. In particular these were:
• Optimized copy routines: Since ATOLL message passing uses 2-copy semantics copy

performance is crucial for efficient communication.
• Aggressive use of in-lining: This saves some time by eliminating function calls, for

example eliminating the overhead of assembling the atoll_send function from several of
the building-block send functions (see below).

• Introduction of a maximum transfer unit (MTU) to facilitate pipelining of message
transfers: The ATOLL network hardware has an upper limit of transferable message size
between two peers which is equal to the minimum of the send DMA size of the sending
Hostport and the receive DMA size of the receiving Hostport. It is advantageous to use
a smaller MTU though. With smaller MTUs it becomes possible for the sending process
to commit the first part of a large message to the hardware. While the CPU sets the sec-
ond part up and copies the data to the send buffer, the ATOLL network hardware already
transports the first message fragment to the receiver. On the receiving side it is also pos-
sible to overlap receiving DMA of the hardware with CPU activity. The result is a sub-
18

The ATOLL Software Environment
stantial net-gain in bandwidth. Additionally, well behaved applications can send
messages of arbitrary sizes since the PALMS layer performs the fragmentation into
smaller message parts.

• Optional use of building-block functions: This feature enables more efficient middle
ware libraries on top of ATOLL. This feature proved very helpful with the implementa-
tion of MPICH on top of PALMS.

• Introduction of fast send and receive functions for very small messages: These mes-
sages can for example be used to implement barriers and the like. They are also very
useful for the ubiquitous 0-byte latency of benchmarks.

Starting with PALMS 2, the library also became portable and supported 32-bit Intel x86, 64-
bit x86-64 (also known as AMD64) and 64-bit Itanium architectures.

 In [39] some experimental additions to PALMS are described which add support for com-
munication with end-to-end significance (using an acknowledge based protocol), PIO
extensions and advanced multicast support.

2.2.1 Memory Layout of an ATOLL Hostport
To fully understand the functioning of the ATOLL hardware together with the PALMS API,
it is important to understand the memory layout of an ATOLL Hostport as it is the funda-
mental resource and interface used by the software environment.

The Hostport memory footprint, as shown in figure 2-3, is made up of two fundamentally
different types of memory: uncacheable mapping of device registers into user application
address space and physically contiguous main memory regions. The registers can be
divided into four sections, each managing one of the four memory sections of the second
type.

Theses regions are allocated in kernel space and are mapped cacheable into the user appli-
cations address space. The physically contiguous allocation makes it possible to manage the
regions using base-offset addressing, both from the device and from the applications. The
physical base registers are set by privileged software; the read- and write-pointer for the
regions are accessible by user software. All regions are managed as ring-buffers. The buffer
is empty when the pointers have the same value.

For the send DMA area and the send descriptor-table, the write-pointer is incremented by
software and the read-pointer is incremented by hardware. For the two receive-regions the
ownership is inverted.

To send a message, the payload is copied into the DMA send area first. Software then fills
the next entry in the send descriptor-table with values describing the message. By incre-
menting the send descriptor-table write-pointer, the hardware is triggered to start processing
of the message.
19

The ATOLL Software Environment
On the receive side, the hardware copies the message payload into the receive buffer using
the current write-pointer as starting point. Hardware then inserts a descriptor into the
receive descriptor-table and increments the two write-pointers accordingly. Software detects
the arrival of a new message by the changed descriptor write-pointer and can start to con-
sume the message.

Figure 2-3: ATOLL Hostport Memory Layout

Device registers (memory-mappable)

Main memory

Device registers (memory-mappable)

DMA
Send Area

DMA
Receive

Area

Send
Descriptor

Table

Receive
Descriptor

Table

Mapped
into

applicati
ons

virtual
address
space

Pointer
register for
the DMA
send area

Pointer
register for
the DMA

receive area

Pointer
register for

the Descriptor
send area

Pointer
register for

the Descriptor
receive area

Mapped
into

kernel
virtual

address
space
20

The ATOLL Software Environment
2.2.2 PALMS Design
Much effort was put into a simple yet efficient communication software interface with
PALMS. The complete library can be sub-divided into five different modules. Each module
deals with one of the key aspects of communication:

• port Open/Close functionality,
• message receiving functions,
• message sending functions,
• descriptor manipulation functions, and
• utility functions.

Messages are always send in 64-bit words across the network, therefore message sizes are
always multiples of 64-bit. Note that this is a hardware restriction. All API functions can
also be called with unaligned sizes, i.e. it is possible to send a 3-byte message and receive it
into a 3-byte buffer.

However, all functions on the receiver side will return a 64-bit aligned value for the size of
data/header segment, so user applications or additional middle ware libraries (such as MPI)
have to ensure that the correct size is received, if unaligned sizes are to be supported in the
user’s environment.

En lieu of execution speed almost no function of PALMS performs tests on pointers speci-
fied. It is therefore necessary that user applications ensure that pointers passed on to
PALMS are valid.

Internal memory is always allocated and de-allocated by PALMS without user-application
intervention. In normal operation it is necessary to provide memory for an Atoll_Port vari-
able (which in essence is a pointer variable), for an Atoll_Handle variable for every virtual
connection to be used, and of course for buffer space. On the receive side it is necessary to
have memory space available for tag and source ID (of type uint32_t respectively Atoll_Id).

To use ATOLL, a Hostport must be reserved for the application and mapped into the appli-
cation virtual address space. This functionality is performed by the atoll_open function.
Typically the last thing an application does is to give the Hostport back to the system using
the atoll_close functions. Both functions directly interact with the ATOLL kernel level
driver, and thus are considered slow functions in the sense that they contain a system call
and may put the calling process or thread to sleep.

After having allocated a Hostport, an application must initiate virtual connections to all
peers it wants to communicate with. The atoll_connect function communicates with the
ATOLL daemon on the local node to request the connection. The daemon makes sure that
the peer is available for communication, and that a valid routing path to the peer is available
in the ATOLL routing table, and then returns a suitable routing string offset to the applica-
tion. PALMS uses the routing string offset as an opaque handle for the virtual connection
with this peer. The atoll_disconnect function closes a connection.
21

The ATOLL Software Environment
To send messages PALMS provides several functions that can be further subdivided into
building-block functions and complete send functions. With building-block send functions
sending of a message is performed using a sequence of functions. This allows users or mid-
dle ware libraries a great flexibility in the implementation of their send functionality. An
example for a common send sequence is provided in figure 2-4. First, space for a send
descriptor slot and enough DMA memory for the message are allocated using
atoll_send_malloc. Using the atoll_copy_h message header data is copied into the message

Figure 2-4: ATOLL Send Sequence Diagram

Middleware Library PALMS

atoll_descriptor_set_route

atoll_send_cpy_h

atoll_send_cpy

atoll_send_commit

atoll_send_get_space

atoll_descriptor_set_tag

ATOLL Hostport

copy header data to DMA memory

copy payload data to DMA memory

increment write pointer

send message

done

Start
sending

of
message
22

The ATOLL Software Environment
header section. The atoll_copy or atoll_cpyv (gather copy) function is then called to collect
the data to be sent in the payload section of the message. The different ATOLL descriptor
manipulating functions are then used to fill in the fields of the ATOLL send descriptor for
example the destination or tag. The atoll_send_commit function is used to trigger sending of
the prepared message.

Complete send functions implement common sequences of building-block functions to sim-
plify programming. Internally they also call the building-block code. Specifically,
atoll_send, atoll_multicast and atoll_fast_send are of interest; atoll_fast_send sends a very
small message using the tag field of the descriptor. Only port handle, peer handle and one
32-bit operand are passed to this function.

On the receive side, again two function groups can be distinguished, building-block and
complete receive functions. Building block receive functions include support for such func-
tions as matching of descriptors, for example searching the next message received from a
specified peer, copying data or header section to a user buffer, and finally freeing the
resource associated with the message within the receive DMA queue. Again, ATOLL mes-
sage descriptor functions can be used to manipulate the ATOLL descriptor further, for
example getting the tag of a received message and the like. Figure 2-5 depicts a typical
receive flow. The receive function group includes functions to receive a message blocking,
non-blocking or fast. Fast receive is the counterpart to the fast-send operation described
above.

As mentioned, PALMS provides a number of functions to manipulate all fields of ATOLL
message descriptors, which makes the structure of the ATOLL descriptor completely trans-
parent to the user, yet retains the greatest possible flexibility. Actually, ATOLL descriptor
manipulation routines very much resemble the getter/setter methods in object-oriented lan-
guages. Finally, PALMS also implements a number of utility functions such as checking
available resources, translating error numbers into human-readable strings, setting water-
marks for the lazy-pointer update policy employed by PALMS, and querying the ATOLL ID
of the local node. Another interesting feature for some applications is the possibility to
query the ATOLL IDs of the neighboring nodes. This is especially useful to implement
nearest-neighbor or 2-d grid based parallel applications.

2.3 Managing ATOLL
The ATOLL daemon together with several other tools enables smooth operation of an
ATOLL network. The ATOLL daemon automatically enables and disables network links
(Linkports) if cables are plugged or unplugged. It also automatically recognizes the topol-
ogy of an ATOLL network and installs routing tables in each node. Additionally the net-
work is constantly monitored in terms of performance counters and to recognize possible
errors including message deadlocks which can occur if links fail permanently. The ATOLL
daemon has been described in more detail in [40]. The following sections describe the dif-
ferent features of the ATOLL daemon in the context of the complete software environment.
23

The ATOLL Software Environment
Automatic topology recognition

The automatic topology recognition algorithm consists of two distinct components. The
first is the Linkport management. A software finite-state-machine (FSM) implements a pro-
tocol which detects if a link is enabled, active and an active peer on the other side of the link

Figure 2-5: ATOLL Receive Sequence Diagram

Middleware Library PALMS ATOLL

receive message

atoll_recv_next

atoll_recv_cpy

atoll_recv_cpyh

atoll_descriptor_get_tag

atoll_descriptor_get_source

atoll_recv_free

done

message arrives at node

poll WP

poll WP

DMA

Update of
write-pointer
 in replicator

area

Lazy-pointer
update:

only performed if
watermark
surpassed!

sucess

copy payload to
user buffer

copy header
to user buffer

increment descriptor read pointer

increment DMA read
pointer
24

The ATOLL Software Environment
exists. Within the protocol the ATOLL IDs of the two neighbors are exchanged when the
link is brought-up. The new neighbor is inserted into the topology table. If it is torn down
again, the entry is removed from the local topology table.

The second component implements the distribution of topology information to the complete
cluster. The Linkport protocol enables the daemon to learn about its immediate neighbors.
When a daemon connects to a new neighbor, it transmits its complete topology table to it
and vice-versa. The tables are then merged on the node, and the resulting table is forwarded
to the other neighbors of the node. If a node receives the same update a second time, it dis-
cards the update. So, the topology is broadcast throughout the complete cluster and a short
time after a link has joined or left the network, the topology information of all nodes is
updated. This system provides for a good robustness and fault tolerance since everything is
distributed and no single master node is necessary. On the down side, the protocol generates
quite a bit of traffic when a cluster is first initialized and many nodes join the cluster in a
short period of time.

Routing Table Management

Based on the current topology and the configured routing strategy, the ATOLL daemon cal-
culates a routing table for the ATOLL cluster. This table features one entry for each possible
destination; and each entry specifies the source-path from the local node to the destination.

Several routing strategies or algorithms have been implemented for the ATOLL daemon.
These are dimension order, Dijkstra’s shortest path, West-First and Up*/Down*. Of these
dimension-order is the preferred method for mesh setups. Tori are discouraged since they
can not be used efficiently without at least two virtual channels. Custom topologies or irreg-
ular topologies can be used. In this case it is recommended to either use Up*/Down* routing
which is always deadlock free but sub-optimal in terms of average path length and diameter
or, if possible, the shortest path algorithm. For hypercubes the shortest path or dimension
order can be used.

Performance Monitoring

Atolld monitors the load on all links of the local node via the performance counter registers
available in the supervisor register set of ATOLL. One register is updated every clock cycle
and is used as a reference time base for the link load measurement. Other registers count the
characters send/received on the respective link. The measurement is performed periodically,
by default once every second. The numbers read from the registers are then used to calcu-
late relative load of the link and absolute used bandwidth.

Routing Service for Applications

PALMS applications request virtual connections from the ATOLL daemon via IPC (inter-
process communication) using UNIX domain sockets. The ATOLL daemon finds the rout-
ing entry that specifies the path to the requested destination host. The routing string is
inserted into the system wide routing area. This routing area is physically contiguous mem-
ory. The base address of this memory region is known to the ATOLL device via a supervisor
register. When ATOLL sends a message source path routing is specified within the message
25

The ATOLL Software Environment
descriptor by a routing offset into this memory area. After inserting the string into the rout-
ing area, the daemon hands out the offset of the routing string to the PALMS application. If
the topology changes the routing table is also updated. Existing handed-out routings that
need to be changed are invalidated. User-applications receive an error with their next send
call and need to re-request a routing to the destination node. If an application exits or calls
the disconnect function the routing string is freed from the routing area. Notice that the size
of the system wide routing area limits the number of virtual connections that can be active
at any given time. This is the reason why the area is shared by all Hostports.

Monitoring Interface

The ATOLL daemon exports a management and monitoring interface to client-manage-
ment-applications via a TCP socket. Applications can connect to this socket. An ASCII
based protocol is used to query information from the ATOLL daemon. Additionally the pro-
tocol supports logfile forwarding and a management mode enabling remote manipulation of
ATOLL features.

Debugging Services

The monitoring interface can also be used to request debug services from an ATOLL dae-
mon. This includes images of system memory regions including Hostport DMA areas,
descriptor ring buffers and the routing area.

The Linkports and the crossbar are also continuously monitored. Ports that are currently
unavailable are masked in the crossbar requester, effectively blocking the port. This applies
both to Host- and Linkports. If a message requests a blocked port, an interrupt is raised
which triggers the ATOLL daemon to pull the message out of the crossbar and pushing it
into an internal message queue. The error is logged and, via log forwarding, forwarded to
monitoring clients. This feature proved to be very effective for software development. Prior
to this, an error in an application could easily lock the whole network. For example if one of
the peers of a distributed application crashed due to a segmentation fault, the other peer
would still send messages to this application which would eventually block network
resources without ever freeing them. The blocking feature together with the routing services
also enables synchronization between peers of a distributed application in the sense that one
peer can only send a message to another peer after the receiving Hostport has been set-up
correctly again helping to make applications behave correctly. Finally, the pulling of
blocked or broken messages together with the ability to dump them to the log enables anal-
ysis of possible network failures and proved valuable during ATOLL bring-up and valida-
tion (see also section 2.5).

Sensor and Serial EEPROM

The ATOLL adapter card also features an EEPROM (Electrically Erasable Programmable
Read-Only Memory) device for serial number storage etc. which is accessible through an
I2C (Inter-Integrated Circuit) bus connected to two of the general purpose I/O pins (GPIOs)
of the ATOLL IC. Additionally a thermal sensor is accessible over this bus which can be
used to monitor the temperature of the ATOLL NIC. In [41] a software I2C stack suitable
26

The ATOLL Software Environment
for the ATOLL GPIO (general purpose I/O) is described. This I2C stack has been integrated
into ATOLL daemon and is used to access the thermal sensor periodically. If an over-tem-
perature is detected, a warning can be emitted.

2.3.1 AtollManager
For easy and efficient usage, a GUI is used to present the user the most relevant information
about the ATOLL network, including:

• a list of hosts,
• link connections per host,
• the topology (with graphical representation),
• routing information (with graphical representation),
• network load indicators,
• host (CPU-) load indicators, and
• Hostports in use.

At startup, the user must provide the hostname of one of the nodes of the cluster. The
AtollManager then connects to the management port of this node via the TCP management
interface of the ATOLL Daemon. The user must also provide a username and password to
authenticate to the ATOLL daemon. The management application then automatically
retrieves the members of the cluster and its topology from the initially connected node.
More detailed state information including CPU and network load information of individual
nodes is retrieved by connecting directly to the respective node and requesting the neces-
sary information.

To control and debug the network, redirection of messages from the logs of all of the dae-
mons of the cluster is possible, a feature called log aggregation which is a very powerful
tool for administrators to obtain an overview of the status of the whole cluster. Within a sin-
gle window, the user sees all relevant information about the state of the ATOLL network for
example the topology with the connected links is displayed. The administrator can interact
with the display to re-arrange the individual nodes and select one node for detailed state
information in the left-hand properties pane (figure 2-6).

If interaction of the user is required for example in the case of failures, the user can request
to enter maintenance mode. This mode enables direct control of advanced hardware fea-
tures. In maintenance mode it is possible to trigger resets of individual parts like Hostports,
Linkports or the crossbar of ATOLL NICs remotely. It is also possible to reset the ATOLL
daemons and force re-initialization and shutdown of a part of or the whole network. To this
purpose it is also possible to activate or deactivate selected links. Again, all of these activi-
ties are exported from the ATOLL daemon via its TCP based management interface
27

The ATOLL Software Environment
2.3.2 Additional Tools
To complete the basic software environment several additional tools have been developed.
There is a whole suite of command line driven management tools available, as well as dif-
ferent network test programs and the atollrun distributed execution environment.

Command Line Management Tools

A number of command line management tools are available to interact with the ATOLL
daemon using the same TCP based management interface of the ATOLL daemon as the
graphical ATOLLManager application. Using one tool, it is possible to request re-initializa-
tion of the different hardware parts of an ATOLL chip. This is especially useful when devel-
oping/debugging, since it allows the developer to put the hardware in a known state. Other
tools are available to activate or deactivate certain links, restart the ATOLL daemon, print
status information or dump the topology and the routing table.

Command Line Test Tools

A number of command line test utilities have been developed to test and benchmark ping-
pong latency, bandwidth, and multicast traffic. A sink tool is available, which receives all
incoming messages and discards them. Some of these tools were used to verify the PALMS
level; others serve as microbenchmarks on the PALMS level.

Figure 2-6: AtollManager
28

The ATOLL Software Environment
Atollrun

The atollrun utility allows remote invocation of distributed applications on an ATOLL clus-
ter, similar to the mpirun or mpiexec tools of MPI. The tool is written in Python. Via SSH
(Secure Shell) connection, PALMS based SPMD (single program - multiple data) applica-
tions can be invoked on remote hosts. A list of machines that should each execute a copy of
the application is passed to atollrun (like a MPI machinefile). The standard output and error
streams of the applications are redirected via SSH to the starting atollrun instance enabling
easy monitoring of jobs (output aggregation). Signals like SIGTERM (commonly caused by
pressing Ctrl-C on the console) are forwarded to the remote application, so that all of the
processes of the invocation behave similarly to a single job. Basically, atollrun completely
fills the role of mpirun for applications based directly on PALMS.

Figure 2-7: Atollrun Initialization Protocol

Atollrun Python Starter
Script Process n

Connect hosts and start processes

ready for initialization

request ATOLL id

send ATOLL id

sending number of processes and ids

acknowledge
request connection & test connection

return status
init done

atoll_open()

atoll_get_id()

Process
computes

program ends,
Atollrun

destructor
performs
cleanup

atoll_connect()
for each
partner
29

The ATOLL Software Environment
The atollrun package consists of a Python script used to run the SPMD application and the
atollrun library that is linked to the applications. Within the application, the libraries pro-
vides a C++ Atollrun class respectively C function wrapper for it, which are used to initial-
ize the SPMD application. This includes synchronization at startup, exchange of IDs,
connection establishment, and communication of rank and size of the application. This
mimics the behavior that MPI implementations typically perform in their MPI_init(),
MPI_rank() and MPI_comm_rank() functions. The Python script and the application com-
municate with each other using a simple ASCII based protocol. Figure 2-7 shows the typical
initialization phase for a 2-process SPMD application using atollrun. From the API side, the
Atollrun class provides three methods to configure atollrun prior to the actual initialization.
It is possible to specify if ATOLL connections are established automatically and if a com-
munication test is performed internally. The initialization function gets the commandline
passed and performs the above described initialization protocol. The utility functions get-
CommRank(), getCommSize(), getPort(), and getHandle() have to be used by the applica-
tion to query these parameters which are not directly accessible anymore since the PALMS
function calls that actually returns these parameters are already performed within the Atoll-
run initialization. The destructor of the Atollrun class performs the clean-up, the job typi-
cally performed by MPI_finalize() in MPI. For programs not written in C++ a C wrapper is
available that makes all the functionality available in plain C.

The actual atollrun Python script accepts several parameters on the commandline. First, a
machinefile defines the set of machines available to the application. The -p option defines
the number of processes started on these machines. The groupfile option defines sets of
machines having a single login for the user. The user has to provide his credentials (i.e.
username and login for remote access) only once for each group of machines. Instead of
connecting via SSH, it is also possible to connect using the (unsafe) RSH (Remote Shell)
program. The last parameters on an atollrun commandline are the name of the PALMS
application to be executed and potentially additional commandline parameters destined for
this application.

2.4 MPICH2 for ATOLL
MPICH2 [42], the successor of MPICH, is a very popular and free implementation of the
MPI standard. MPICH2-PALMS is the adaptation of MPICH2, which interfaces to the
PALMS software and thus allows MPI programs to communicate via the ATOLL network.
This implementation adds an ATOLL ch3 (channel device) interface to the MPICH2 library.
MPICH2 consists of three main layers: MPI, ADI (abstract device interface) and ch3. The
MPI layer is very thin. It implements MPI parameter checks and polls on requests and trig-
gers the process engine. The ADI layer is located beneath the MPI layer. It manages the dif-
ferent data types and protocols used by MPICH2. For the actual communication, the ch3
layer is used. The channel devices are then responsible for the communication including
connection set-up and shutdown.
30

The ATOLL Software Environment
The ch3 interface describes a non-blocking, point-to-point communication semantics. It
consists of a number of functions and macros, which can be grouped into send/recv func-
tionality, request handling, the progress engine, and initialize/finalize functionality. The
ATOLL ch3-device is implemented on the basis of the generic shared memory device. The
ATOLL ch3 device then uses sub-devices depending on the destination of a message. Mes-
sages on the same node are transported using the shared memory sub-device, messages to
remote processes are transported using the ATOLL sub-device which uses PALMS to inter-
act with the ATOLL hardware. Figure 2-8 shows the layers of ATOLL MPICH2. The blocks
with yellow background denote ATOLL ch3 specific code.

Intra-node communication is performed using the original shared memory code thus avoid-
ing the rollback path via PCI-ATOLL-PCI and improving local performance. The shmem
code already features a general structure that is very close to the structure necessary for
PALMS integration. The buffer layout for the shared memory protocol as well as the mes-
sage format used by MPICH2 is shown in figure 2-9.The structure was also defined so that
it is possible to add another sub-device later for example to support RDMA functionality of
a NIC. The top-level of ch3 thus is implemented as a switch which calls the corresponding
function of the actual sub-device that is responsible.

The intra-node shared memory device is implemented using standard System-V shared
memory segments. The basic idea is that each process allocates one shared buffer for each
communication partner. These buffers are used as receive queue. The corresponding partner
maps the receive queue into its virtual address space and uses it as send queue. The sending
process updates the write-pointer and the receiving process updates the read-pointer. The

Figure 2-8: MPICH2 CH3 Device with Sub-devices

MPI Layer

ADI Layer

Ch3 (switch between shared memory and ATOLL)

Shared memory
Atoll ch3

PALMS

Shared memory
segements

(System-V IPC)

ATOLL
Hostport
31

The ATOLL Software Environment
protocol is thus based on a classic ring-buffer and involves two memory copies, one to place
the actual message data into the shared buffer, and the other to move the data into the appli-
cation buffer on the receive side.

The ATOLL sub device uses the send area of a Hostport as sending queue and the receive
area as receive queue, effectively changing just enough of the buffer structure to efficiently
support the physical NIC. The message structure itself is maintained as in the physical
shared memory sub-device.

MPICH2 uses virtual connections to describe the path between two end-points in the net-
work. A channel device implementation can extend this structure to reflect network spe-
cific, additional data and state for a connection between two end-points. Unfortunately,
MPICH2 copies the complete structure when a new MPI communicator is created, which
can cause problems in the channel device which is not informed of such a (high-level) oper-
ation. So, the ATOLL implementation holds a local structure describing the low level data
and the state associated with a virtual connection. Only a pointer to this structure is added to
the MPICH2 virtual connection structure. The virtual connection of a message is coded
within in the header of a PALMS message and can thus be decoded at the receiving end-
point.

One other very important data structure used in the ch3 device is the MPI request, which
describes the state a high-level MPI operation is in at a given time. The progress engine tries
to make progress on currently outstanding requests. MPICH2 generally attempts to send or
receive messages immediately if certain constraints can be met, i.e. the message is smaller
than the MTU and enough space is available in the send buffer region. If it is not possible to
process an MPI operation immediately, often called eager, a MPI request is generated and
inserted into the corresponding request queues.

Figure 2-9: MPICH2 Shared Memory Buffer and Message Format

Send/recv-
Queue (ring buffer)

Write Pointer

Read Pointer

Data Size

Header Size

DataTag

Data

0

8

16

Base Pointer

Start Pointer

32 bitn
32

The ATOLL Software Environment
The progress function is called from the upper layer to make progress in receiving messages
from the ATOLL device. The function checks for the next ATOLL message and calls the
respective receive function if new data is available. The send progress function, advances
the progress of MPI send requests. While sending of small messages does not really need a
progress function (the message is sent eager), larger send requests need to be fragmented
into smaller ATOLL level messages and these fragments are sent sequentially. The ch3
progress functions make intensive use of the new PALMS 2 building block functions to
selectively first receive the header of a message, then copy the data part to a scatter-gather
list of buffers and finally free the DMA memory.

As a future enhancement, the ch3 design could also support a hypothetical RDMA enabled
ATOLL. Based on the structures already in place an RDMA sub-device can be imple-
mented. Instead of mapping the buffer into the sending processes address space and copying
the data from the application buffer into the shared queue as by the shared memory sub-
device, a RDMA put operation of the NIC would be used. This is done to implement send/
receive semantics on top of a shared memory/RDMA hardware. While the usage of
MPICH2 for EXTOLL designs has been abandoned in favor of OpenMPI [43], the basic
idea of implementing send/receive functions on this principle has remained the same.

The ATOLL MPICH2 implementation also has some limitations in regard to the full MPI-2
specification. Specifically, dynamic process management is not supported and true RDMA
support is missing. Implementing for MPICH2 has been partly challenging because the
interfaces were not as clear and good documented as it would be desirable. While it is said
that the design of MPICH2 is a huge improvement over MPICH1 it still suffers from exten-
sive usage of C macros, obscure functions and data structure dependencies. The complete
channel device is about 7500 lines of C code (without include-files but including com-
ments) and thus of moderate complexity.

2.5 Debugging the ATOLL ASIC
Bring-up and debugging of a complex hardware/software system is always challenging. In
particular, hardware bugs are sometimes difficult to identify and sometimes impossible to
remedy without a re-run of the ASIC production. In addition, software bugs or deficiencies
can interact with a hardware phenomenon producing completely unexpected results. Using
DMA directly from user-space and kernel-level device access can easily lead to machine
crashes and lockups making error analysis even more difficult since no access to the
machine is possible anymore neither through a debugger nor the console or a logfile.

To bring up and verify the ATOLL chip in real systems a number of software components
and test methods were developed and utilized. These methods also lead to the discovery of
several bugs in the ATOLL silicon.

Relatively early on it was discovered that operation of ATOLL in PCI-X 100 MHz mode
lead to frequent lock-ups of the complete machine. In PCI-X 66 MHz mode lock-ups were
less frequent; if only one Hostport is in use they could be completely avoided. Using an
advanced Tektronix logic state analyzer with PCI analysis software together with carefully
33

The ATOLL Software Environment
tuned test software on the host systems finally revealed a problem with the PCI-X flow-con-
trol feature. When the PCI-X host bridge cannot accept any more data during a long burst
transfer, it signals a “stop at next address boundary (ADB)” condition to the device. The
device has to stop transmission at the next 128-byte aligned address. If this condition hap-
pens very close to the next ADB, the PCI-X IP core employed in ATOLL ignores the stop
signal for the next ADB. The bridge receives data although it is not able to accept it and the
machine crashes. After this behavior was discovered the bug could also be provoked within
the ATOLL HDL (hardware description language) simulation environment. So finally it
was discovered that if the stop occurs to close to an ADB the core wrongfully accounts this
stop for the next ADB, but the bridge wants the stop for this ADB. A patch to fix the bug in
the PCI-X core was prepared and inserted into the ATOLL HDL model.

Another problem emerged when running in PCI mode. In this case the observed perfor-
mance of ATOLL was very low. The reason for this behavior was a wrong PCI command
used for DMA read transfers. Instead of issuing a read burst, the DMA read transfer was
executed as a sequence of individual reads. This bug was also fixed in the HDL.

Once a larger cluster with ATOLL became available (Karibik Cluster), a link-layer bug was
found. Initially when running applications involving more than 4 nodes, sometimes a lock-
up of the network was detected. It was in some cases possible to again use the network if all
relevant Linkports and crossbars where reset. After further analysis a test program could be
developed that only involved two active nodes (i.e. hosts which are actively involved) as
well as at least one intermediate node. This program was able to cause the error with a rela-
tively simple message pattern. The path between those active nodes had to be multi-hop,
though. The network lock-up could be deterministically reproduced with this setup. The
debugging features of the ATOLL crossbar were used to analyze the raw data that arrived at
the destination node. A special command-line tool was written to dump the raw link-layer
phits (physical units) into a text file on disk.

The dumped file was textually analyzed and a protocol violation was found: under certain
conditions the reverse flow-control misbehaved. It can happen that a stop character, a con-
tinue character and a second stop character are requested to be transmitted. In this case due
to the priority logic in the Linkport the order of the second stop character and the continue
character is exchanged. On the link the sequence “STOP,...,STOP,...,CONTINUE,...,CON-
TINUE,...” can be seen instead of “STOP,...,CONTINUE,...,STOP,..., CONTINUE”. The
result is that the link resumes transmission of data after the first continue, although logi-
cally, it should do so only after the second continue is received. Thus, buffers are partly
overwritten and data is corrupted.

Within the ATOLL HDL code it was discovered that the hysteresis for the stop/continue
generating circuit had been removed at some point in the design. This can cause a cycle-to-
cycle occurrence of STOP/CONTINUE characters enabling the occurrence of the above
problem.
34

The ATOLL Software Environment
This problem can be fixed with an HDL change. During the ATOLL test and analysis phase
an external solution was also tested involving a small FPGA board. This board was also
used to test an SFP Small Form-factor Pluggable (SFP) based optical link layer for ATOLL
and the bring-up of the OASE chip [44].

The link-cable FPGA board as depicted in figure 2-11 plugs into an ATOLL link connector
on the one side, on the other side a standard ATOLL link cable connects to another node. All
traffic is passed through the Xilinx Virtex II Pro FPGA where the stream is analyzed and the
protocol error from the above described bug is removed using a small state machine.

The link-correction logic within the FPGA runs at full link speed (250 MHz) and only adds
4 pipeline stages to the link path. The FSM uses five states and is shown in figure 2-12.

The XC2VP4 FPGA also features multi-gigabit transceivers called RocketIO which can be
used to serialize/deserialize data streams. As such the cable FPGA board is a prototype for
an ATOLL serializer/deserializer module. The OASE chip is an ASIC solution that was
planned to fill this role. An SFP module was placed on the FPGA board to enable direct
transmission and reception of serial data. An FPGA design called Optical-test-bed was
designed which enabled testing of both SFP based serial communication as well as testing
of the OASE chip. For testing the OASE board is connected to the FPGA board using an
ATOLL cable. Over this cable a parallel data-stream, either already 8b/10b coded or not, is
transmitted to the OASE chip which then operates as a serializer and outputs the serial
stream to the SFP connector on the OASE board, or directly drives a laser diode. The serial
data stream can then be received with the SFP on the FPGA board and the correctness of the

Figure 2-10: ATOLL Link Test Scenario

Seding
ATOLL
Device

Receiving
ATOLL
Ddevice

Intermediate
ATOLL
Device

 (forwding)

link link

Monitoring
and

pull-out of
message

Dump of
message

traffic
Receiving of

correct
messages
(start-up
phase)

Sending
Application

Receiving
Application

(Sink)

AtollD

Continously
sending of
messages
35

The ATOLL Software Environment
transmission is checked. Reception using OASE was not tested since the OASE3 revision
had several errata preventing successful use as a receiver and deserializer device. A newer
OASE revision will be tested with the Virtex4 based HTX-Board.

2.6 Performance of ATOLL
The performance of the ATOLL network was analyzed in a number of ways. First, several
microbenchmarks were used to characterize the basic communication parameters as latency
and bandwidth. Microbenchmark results were also reported in [12]. Then, standard applica-
tion level benchmarks were used to show the performance of the ATOLL network when
executing real parallel applications. The performance data presented here were obtained on

Figure 2-11: ATOLL Link-Cable FPGA Board

Figure 2-12: Link Correction FSM

T
o

c
a
b
l
e

I
n
p
u
t

R
e
g
I
s
t
e
r

Link-Protocol
Repair FSM

T
o

A
T
O
L
L

Serial FPGA
Configuration
from ATOLL

GPIO

O
u
t
p
u
t

R
e
g
I
s
t
e
r

Link Incoming
(not

corrected)

Link Outgoing
(corrected)

External Link
(corrected)

External Link
Incoming

(uncorrected)

Clock
Generation

Xilinx Virtex II Pro FPGA

Run Halted Replace Stop Replace Continue
[stop] [stop]

Wait

[continue]

[continue]

[stop]

[continue]
36

The ATOLL Software Environment
the first revision of ATOLL and a new revision of ATOLL should show higher performance
data because of a fixed PCI-X block. At the International Super Computer Conference 2004
an eight node ATOLL cluster was shown running the UG application [45]. In addition to
real-world analysis, the SWORDFISH (Simple Wormhole Routing and Fault Injection on
Simulated Hardware) simulator [46] was developed to enable modeling and analysis of
medium to large ATOLL networks.

2.6.1 Microbenchmarks
Microbenchmarks have been performed to measure latency and bandwidth of the ATOLL
communication system. Latency is measured as half-round-trip latency using ping-pong
tests, both proprietary code based on PALMS, as well as NetPIPE [47]. To this end, Net-
PIPE was used on top of MPICH2. Additionally, the NetPIPE communication routines were
ported to work directly on top of PALMS. In the ping-pong test, one node, the master node,
sent a message to the slave node. Once the slave node has received the message it answers
with a message to the master node. The master node then receives this message and the iter-
ation of the ping-pong test is completed. Time is only measured on the master node. The
half-round-trip latency is defined as half of the time measured. On low-latency systems
such as ATOLL, the timing of the used time measurement facility of the operating system
(gettimeofday) is not accurate enough to measure the latency of a single ping-pong iteration.
Additionally, all time measurements are subject to system noise, meaning time variation due
to periodic system book keeping tasks (triggered by the timer interrupt), scheduling, and
other hardware interrupts. So, it is necessary to repeat the ping-pong experiment appropri-
ately depending on latency to measure valid results. NetPIPE performs a dynamic algorithm
to use a large enough trial set. The proprietary ping-pong method uses a trial set that is suf-
ficiently large, larger than NetPIPE’s set actually. This gives accurate results, but bench-
mark runtimes are adversely affected.

The second microbenchmark method used is called streaming. In this benchmark, the mas-
ter node sends a continuous stream of messages of a given size to the receiver. After the net-
work has ramped up, the measurement takes place. The time is measured on the master
node for the transmission of a fixed number of messages. The number of the transmitted
messages multiplied by message size gives the streaming bandwidth or point-to-point band-
width. Actually, if the measurement is performed correctly this is the maximum payload
bandwidth of the network in steady state which is also called effective point-to-point band-
width. The point-to-point measurements have also been repeated with several intermediate
nodes, which only served as switches, thus making it possible to quantify the effects of sev-
eral stages of ATOLL switches onto the measured parameters.

In addition the Intel MPI benchmarks [48] and the Special Karlsruher MPI Benchmark
(SKaMPI) [49] were also used. These are MPI based microbenchmarks that test most of the
MPI provided functions. The individual benchmark results are omitted here, since they do
not give additional insight. But it is worth to note that these applications proved useful in
testing and debugging the MPICH implementation.
37

The ATOLL Software Environment
The measurement results were performed on Pentium 4 Xeon machines. The CPUs run at
2.8 GHz clock rate and used a Serverworks GC-LE chipset and 1 GB of RAM. The ATOLL
cards used were plugged into a dedicated PCI-X-100 slot. SuSE Linux version 9.1 with a
standard Linux kernel version 2.4.25 was used. The ATOLL was programmed to run at 300
MHz core frequency for these measurements.

The startup latency of ATOLL is 3.3 µs. Figure 2-13 shows the ping-pong latencies for dif-
ferent message sizes up to 0.5 MB. The small graph in the upper half shows a zoomed-in
version for small message sizes. In addition to the average latency, the minimum and maxi-
mum latencies are also plotted showing the maximum deviation. The last curve shows the
impact of traversing 7 hops instead of just one. With additional intermediate hops, a start-up
latency of 4 µs could be reached. With seven hops all nodes in a 64 node ATOLL cluster can
be reached.

The streaming bandwidth test resulted in a measured maximum of 269 MB/s. The peak
bandwidth is reached at transfer sizes of 32 kB. It is especially noteworthy that the
bandwidth is already reached at 512 byte-sized transfers and 90 % of the peak bandwidth
are available with 4 kB transfers. The complete streaming bandwidth results are depicted in
Figure 2-14.

Figure 2-13: ATOLL Ping-Pong Latencies [12]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 131072 262144 393216 524288

La
te

nc
y

[u
se

c]

Message size [Byte]

Results for ping-pong using PALMS

max (1 hop)
min (1 hop)
avg (1 hop)

avg (7 hops)

 3

 4

 5

 6

 7

 8

 9

 10

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

 L

at
en

cy
 [u

se
c]

 (d
et

ai
l)

n1 2⁄
38

The ATOLL Software Environment
2.6.2 Application Level Benchmarks
To analyze the performance of ATOLL in addition to the pure synthetical microbenchmarks
presented above, the High-Performance LinPACK (HPL) benchmark [50] was used. HPL is
the benchmark from which the semiannual TOP500 list of the fastest super computers of the
world is derived.

2.6.3 High-Performance LinPACK
HPL is an implementation of the LinPACK benchmark for distributed memory computers.
The LinPACK benchmarks solves a dense linear matrix problem Ax=b using 64-bit floating
point (double precision) arithmetic. The problem size is given by the dimension of the (qua-
dratic) matrix, i.e. problem size 1000 corresponds with a matrix size of 10002 which uses
approximately 8 MB of memory. The algorithm used to solve the linear equation system is
based on LU decomposition with partial pivoting. The result of the benchmark is given in
floating-point operations per second. The HPL package is written in C and uses BLAS
(Basic Linear Algebra Subprograms) and MPI for linear math respectively communication.
The BLAS routines from the AMD Math library were used and again MPICH2 served as
communication library. The benchmark was run with ATOLL and Gigabit-Ethernet as com-
munication device on the Karibik cluster1.

Figure 2-14: ATOLL Streaming Bandwidth [12]

1. 8 dual-processor Opteron 248 (2.2 GHz), 4 GB RAM.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 0 16384 32768 49152 65536 81920 98304 114688 131072

B
an

dw
id

th
 [M

B
yt

e/
s]

Results for streaming using PALMS

Bandwidth
Bandwidth (7 hops)

90% of peak Bandwidth
50% of peak Bandwidth

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 0 1024 2048 3072 4096 5120 6144 7168 8192

B
an

dw
id

th
 [M

B
yt

e/
s]

 (d
et

ai
l)
39

The ATOLL Software Environment
Figure 2-15 shows the result of the measurements for different matrix sizes up to 32.0002

(8 GB matrix size). In addition to the Gigaflop/s reached, the blue curve plots the relative
speedup gained by using ATOLL. This was performed with the first version of ATOLL, and
thus ATOLL was only operating in PCI mode and register access was not optimal. With a
completely fixed ATOLL version performance may have increased.

At the largest matrix size measured, ATOLL performed around 30 % faster better than GE
(Gigabit Ethernet). This is quite a difference, since HPL does not measure primarily com-
munication performance but also (and to a large extent) the performance of the CPU and the
memory subsystem.

To gain some more insights into the reasons for the performance advantage of ATOLL,
MPICH2 was instructed to instrument the binary and log all MPI function calls and timing
into a file. After completion of the run the logfile was analyzed using the Jumpshot visual-
ization tool. Using a timeline and histogram plot of the MPI logfile it becomes quickly clear
that the MPI library spent a lot less time in the relevant MPI functions used, namely send,
receive and sendrecv, when ATOLL was used. Both, the higher bandwidth of ATOLL and
the by far lesser latency causes this effect.

Figure 2-15: High-Performance LinPACK

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

G
ig

af
lo

p/
s

re
la

tiv
e

sp
ee

du
p

[fa
ct

or
]

Matrix size

Linpack Performance (8 processes)

Ethernet-based communication ATOLL-based communication relative speedup
40

The ATOLL Software Environment
The different times spent within the MPICH functions can bee seen in a histogram plot (Fig-
ure 2-16). The left histogram shows the result from a Gigabit Ethernet run, on the right side
an ATOLL run is shown. Each horizontal plot corresponds to one process. The plot on the
right has four unused process slots. In the vertical direction the time the process spent for
different functions is plotted: blue is send, dark green is sendrecv, light green is recv, red is
I/O (i.e. kernel time) and the dark-green on the far right of the GE plot is iprobe. The rest of
each timeline represents the relative time the process spent inside the application code, i.e.
for actual computation.

The theoretical peak LinPACK performance of one Opteron processor is the product of the
number of floating-point-operations per cycle finished by the floating-point pipeline and the
cycle rate. The Opteron processor can retire up to 2 floating point operations per cycle. At
2.2 GHz one processor of the karibik cluster can perform at a theoretical maximum of 4.4
GFlop/s. Thus 8 processors (as used for the measurements for Figure 2-15) provide up to
35.2 GFlop/s. The GE implementation with a measured peak execution rate of 16.4 GFlop/s
thus shows an efficiency of about 47 % whereas ATOLL showed an efficiency of 65 %. The
TOP500 list of the 500 fastest supercomputers of the world is also compiled from LinPACK
benchmarks. Contributors are not required to use the portable HPL implementation used
here; instead optimized variants can be used (for details see also [50]). Typical GE based
clusters in the June 2008 TOP500 [1] show efficiencies from 23 % up to 64 % (showing that
some installations go to great length to optimize the benchmark) with an average of 52 %.
Infiniband based clusters show an average efficiency of 67 % and BlueGene machines of
79 %.

2.7 Evaluation of Larger Networks
With Karibik an 8-node test cluster with ATOLL was available for software development,
tuning and system evaluation. To analyze the performance of ATOLL for larger networks of
up to thousands of nodes, other methods have been used. In particular a network simulator

Figure 2-16: Histogram of MPICH Function Time Use

(a) Gigabit Ethernet (b) ATOLL
41

The ATOLL Software Environment
called SWORDFISH [46] has been developed. The design goals for this simulator included
support for large networks, handling of deadlocks, injection of network faults, flexibility in
terms of scenarios, routing options etc. Another important point was a powerful mechanism
to interpret the simulation results.

SWORDFISH uses a discrete-event model to simulate complete, large-scale ATOLL-like
networks. The simulator is component- or plug-in-oriented and written in C++. This means
that different models for major components of the network can be selected at runtime and
new models can easily be added to the simulation framework. Figure 2-17 shows a picture
of the simulation flow of SWORDFISH. A central event queue holds the events to be dis-
patched to elements of the simulation environment. The central simulate function removes
events one at a time from the event queue and updates the global time when no new events
are available for the current time. The simulate function than calls the dispatch method of
the event object, a classic example for object oriented polymorphism. The dispatch method
for an event is different based on the type of event. Some events trigger operations in buffer
objects, one of the central models in a SWORDFISH simulation environment, others trigger
custom functions in arbitrary plug-ins. A complete simulation run is configured in a sce-
nario XML (Extensible Markup Language) file. Here, all used components, the topology,
routing strategy, traffic pattern and configurable options are set-up.

SWORDFISH version one specifically supported ATOLL like networks, version two added
some new features. Figure 2-18 shows the hardware model of SWORDFISH which is
closely modeled after the ATOLL hardware. For some of the hardware components several
alternative models exist, most notably there is a choice of FIFO and round-robin arbiters
which is the standard choice for hardware. The different propagation delays (denoted as for-
ward and switch delay in figure 2-18) can be configured in the scenario XML file. To actu-
ally feed messages to the network the traffic controller component loads scenario applets.
Such an applet is a user written program that uses the SWORDFISH messaging API to send

Figure 2-17: SWORDFISH Schematic Diagram [46]

Simulator Event Buffer

dispatch() processing function

Plug-in

custom function

notification function

processing function

processing function

processing function

processing function

processing function

event queue simulate()
42

The ATOLL Software Environment
and receive packets. One thread executing one copy of the applet is started per node, pro-
viding a MPI like environment for simulation. The functions of the API together with a
classification in function groups are given in table 1.

Figure 2-18: SWORDFISH Hardware Model of One Node [46]

Function class
Functions

(actual function name start with
SWORDFISH_ prefix)

Description

management functions SWORDFISH_Init initializes and finalizes system

SWORDFISH_Finish

SWORDFISH_Size returns number of processors/
returns number of own processor

SWORDFISH_Rank

time related functions SWORDFISH_Time returns current simulation time/
model computational time

SWORDFISH_ConsumeTime

sending of messages SWORDFISH_Send sends a message/packet

receiving of messages SWORDFISH_Recv receives a message/packet

SWORDFISH_RecvFrom

SWORDFISH_RecvTag

probing for messages SWORDFISH_Probe checks for new message(s)

SWORDFISH_ProbeFrom

SWORDFISH_ProbeTag

Table 1: SWORDFISH API

Host Crossbar

Hostports
0..n

Networkport
0..n

Linkkport
0..m

tf

tf

From remote linkport

To remote linkport

ts

tf

ts

Arbiter

Buffer

Forward Delay

Switch Delay

tf

tf

From remote linkport

To remote linkport
43

The ATOLL Software Environment
For routing, several routing strategies are supported including the well known dimension-
order, shortest-path-first, west-first and Up*/Down*. For port arbitration there are a choice
of a FIFO arbiter and a classic round-robin arbiter. To control the simulation, a command
line component or a GUI component, depicted in figure 2-19 (a), can be chosen. Basic sim-
ulation statistics are always printed to the console additional output is governed by the
choice of the statistics plug-in. A dummy or null plug-in and a plug-in rendering HTML
pages are available. Figure 2-19 shows an example output of the HTML statistics plug-in.

Using point to point microbenchmarks it was tested that SWORDFISH actually models the
ATOLL hardware accurately enough to analyze network behavior including switching
events, blocking of messages and deadlocks.

Simple scenarios of SWORDFISH with appropriate parameters haven been benchmarked
against ATOLL and a reasonable confidentiality was established. Simulation with networks
of 256+ nodes showed that the deadlock rate, using not deadlock-free routing strategies as
shortest path, is so high that the deadlock recovery abilities of ATOLL do not suffice to
reach competitive performance levels. For an ATOLL network dimension-order routing was
deemed to be most effective. One problem that arises from this choice is that it is not possi-
ble to optimally configure an ATOLL network as a torus, since ATOLL does not support
virtual channels for deadlock free routing even in the presence of wrap-around channels (for
further information see also [51]). It is possible to use a modified dimension-order routing
which does not yield minimum routing distances for all paths, though. In this variant, the
wrap-around channels are counted for as two additional dimensions. Results from a sce-
nario featuring traffic with a different locality (x-axis) are summarized in figure 2-20.

Figure 2-19: SWORDFISH (a) GUI and (b) Report [46]
44

The ATOLL Software Environment
SWORDFISH uses a deadlock-resolving algorithm, so routing deadlocks are actually
resolved and result in long blocking and high latency of messages. In the diagram it can be
seen that the (unconstrained) Dijkstra routing algorithm causes routing deadlocks in the net-
work. Dimension order routing, Up*/Down* and West-First routing are all deadlock free in
meshes and thus exhibit low blocking rates. The problem is shown explicitly in figure 2-21
where the deadlock probability and the deadlock cycle length for Dijkstra’s algorithm in a
mesh are shown.

Now, if the same experiment is repeated on a torus topology the results are somewhat differ-
ent. Dimension order as it is used in ATOLL is not deadlock-free any more and West-First is
no longer applicable. To illustrate this, figure 2-22 shows the deadlock figures for the same
scenario as above but using a torus topology.

SWORDFISH has also been used in turn to analyze the design space for the EXTOLL net-
work layer, including choices at the switch or crossbar level and the link level. An important
question that was analyzed using the simulator was the dimension of buffers and number of
virtual lanes implemented for the EXTOLL network layer [53].

Figure 2-20: SWORDFISH Blocking Rate in a 16x16 Mesh [52]
45

The ATOLL Software Environment
Figure 2-21: Deadlock Diagrams for a 16x16-Mesh (Locality) [52]
46

The ATOLL Software Environment
Figure 2-22: Deadlock Diagrams for a 16x16-Torus (Locality) [52]
47

The ATOLL Software Environment
2.8 Zero-Copy and ATOLL
The complete software environment for ATOLL described in this chapter relied on a two-
copy scheme. So, while other means to optimize network performance and reduce CPU
load like true user-level communication are implemented and used, every message has to be
copied from the user/application buffer to the send queue (send DMA area) by the CPU on
the sending node. Furthermore, the message has to be copied by the CPU a second time on
the receiving node. One worthwhile optimization would be the use of a zero-copy approach.
In a perfect world software could notify the hardware in user-space of a user/application
buffer to be sent and the NIC hardware would perform all necessary tasks. On the receiver
side, the NIC would perform some sort of receive packet matching and directly place
received packets in application buffers. If it is possible to implement both sides of a zero-
copy protocol, still a one-copy protocol could be interesting to explore.

While the ATOLL hardware was actually designed to support two-copy operations very
efficiently, some efforts were made to analyze possible zero-copy applications. One pro-
posal was to manipulate the kernel page tables in such a way, that memory that gets regis-
tered as a send buffer by the application is actually placed within a physical send DMA
area. At the point of the memory registration, the content of the registered memory is copied
into the page within the DMA area. Now, it is possible to send data from this registered
memory without an additional memory-to-memory copy. The problems that arise here are:

• ATOLL DMA areas have to be physically continuous memory, a scarce resource.
• As large regions of continuous memory can only be allocated at system start-up, it is

nearly impossible to allocate more than a few MB of physically continuous memory on a
fully booted Linux.

• Even worse, afore mentioned problems make it necessary to allocate this memory stati-
cally, while the needed size is not known.

• An additional problem arises from the problem of memory registration. For send/recv style
MPI, there is no such concept as buffer registration. Applications can request that any
memory region should be sent. One possible solution could be to move a specific page into
the send region for future zero-copy send, if it is detected to be source of repeated sends.
This idea follows a cache like approach.

With the availability of Graphics Aperture Remapping Table (GART) resources in each
Opterons Northbridge (see section 5.1.8) it would be possible to overcome the above prob-
lems by dynamically remapping pages using the GART which is restricted in size but at
least allows mapping of up to 2 GB of physical RAM.

Zero-copy receiving in a send/receive model is even more complex than sending of mes-
sages. One problem often encountered is the matching of the incoming message with an
appropriate receive buffer. Naive implementation could try to implement a posted receive
scheme, where buffers get posted to a receive queue, and the receive DMA engine copies
incoming messages into these buffers as they come in. Unfortunately it is generally
unknown in what order messages are received, for example because multiple nodes are
transmitting, and the size of the message to be received is also a priori unknown. So, for a
true zero copy it is necessary to match the incoming message with the most appropriate
48

The ATOLL Software Environment
receive buffer. If the receive has not been posted early enough the message must be received
in a general receive queue, the unexpected queue, and software copies the message to the
application buffer, once it becomes posted. Since ATOLL does not implement any matching
hardware it is for all practical purposes not possible to implement a zero-copy receive pro-
tocol.

In [54] a relatively simple extension to the ATOLL hardware is proposed which enables
zero-copy RDMA operation. The RDMA extension together with a rendezvous protocol
can be used to implement a true zero-copy message transfer protocol (at least for messages
of a certain length; smaller message are more efficiently transferred in an eager fashion).
The necessary virtual-to-physical address translation is straight forward, and based on a per-
Hostport translation buffer where memory is pinned and then inserted by the kernel driver.
A high-level software emulation of this method has been implemented.

2.9 Lessons Learned from ATOLL
With the end of the ATOLL project a résumé of the lessons learned from ATOLL can be
given. These lessons were especially interesting for the subsequent EXTOLL project.

While ATOLL showed impressive possibilities, some general short-comings for a next gen-
eration interconnection network were seen. Those were:

• ATOLL’s design is based around classic ring-based DMA based transfer methods. This has
two drawback: It is not possible to implement zero-copy protocols, a prerequisite for near-
DRAM bandwidth devices. Furthermore it is necessary to have continuous physical mem-
ory available for each queue (at least two per end-point).

• While ATOLL is a true user-space enabled communication device and with its four Host-
ports enables four user processes access to the hardware, a true virtualization layer is desir-
able. This would enable nearly arbitrary number of user level processes to access the
device concurrently while preserving user-level communication and keeping hardware
resources in reasonable bounds. With the advent of multi-core and many-core CPUs this
becomes more and more important. The current trend of virtualization on OS level
increases the interest for a virtualized device for the intra-datacenter transport in more
classic datacenter application environments.

• ATOLL does not handle virtual addresses at all. It is not necessary for ATOLL, since all
communication with the user space is performed via pinned, continuous physical memory.
For true zero-copy protocols and virtualization it is necessary to solve the problem of
physical-to-virtual address translation and vice-versa.

• The network layer of ATOLL offers high performance, but as the experiments with
SWORDFISH have shown the lack of any provisioning against head-of-line blocking in
the network layer is a problem when scaling to larger networks.

• With a node degree of four, ATOLL offers the possibility to implement different topolo-
gies. A 2-d torus seems to be especially interesting. Unfortunately the absence of a second
virtual channel prevents an efficient minimal routing in a 2-d torus. The dead-lock recov-
ery technology in ATOLL is very promising to solve problems that arise if a network com-
ponent fails and for a short period of time routing has not been updated in the whole
49

The ATOLL Software Environment
network. In this case deadlocks can happen in a system where deadlocks are prevented
during normal operation. Deadlock recovery features can help to make the system work
relatively smooth, albeit with a performance penalty shortly after a failure, even in case of
such network problems. The deadlock recovery algorithm is not an efficient way to enable
minimal routing in a torus, though, since the deadlock probability is too high and the costs
of redirecting in terms of software overhead and time are prohibitive. For a next generation
network to support tori, it is absolutely necessary to support at least two virtual channels
for the purpose of deadlock-free routing.

• The original ATOLL design featured a method to send small messages with very low
latency: PIO based sending and receiving. Unfortunately, PIO sending/receiving did not
work very well with ATOLL for two reasons. First, the buggy PCI interface proved to be a
problem. Secondly the ATOLL design did not take the host CPU to device latency into
account in a realistic way. The next generation system has to improve significantly in this
direction.

• ATOLL suffers from a lack of support of multicast and barrier operation.
• Last but not least, a hardware design that works very well in simulation may still have

numerous problems in a real system. Some situations are just not covered by the test vec-
tors, other problems are not even available because of missing features in models for exter-
nal IP. Rapid prototyping and verification in a real system environment has been identified
as a major improvement.

These lessons have contributed heavily to the design and the implementation of the
EXTOLL network as described in the rest of this thesis.
50

Chapter
3

EXTOLL System Environment
This chapter introduces the hardware system environment of the EXTOLL project. The pro-
totype platform and performance numbers of system operations are introduced. From the
performance numbers it is apparent why a HyperTransport and Opteron based system is the
best choice for the EXTOLL prototype implementation. Most importantly the system offers
a host-device access latency that is five times lower than possible with other competing
technologies.

In the previous chapter ATOLL was introduced. ATOLL is connected to the system using a
PCI-X Bus which alone contributed significantly to the overall system latency. Recent
improvements in the architecture of commodity machines enable lower latencies previously
not possible. System architecture has reduced memory system latencies as well as I/O to
host latencies. Figure 3-1 shows the architecture that was common until recently. Traffic
from the CPU passes several bridge chips, an I/O link and the front-side bus before reaching
the device. Also, memory transactions between the device and the main memory have to
travel over these links. The INs used are usually buses. For high-speed networking applica-
tions, buses exhibit significant disadvantages. They are unidirectional in the sense that a
transaction at one time may only travel in one direction, so incoming and outgoing transac-
tions from the same device may block each other. Even worse, buses are shared between all
end-points, thus blocking between different devices may occur.

The modern architecture found in AMD Opteron based machines since 2003 is shown in
figure 3-2. A similar architecture is being introduced by Intel with its codename “Nehalem”
processors. Here, the memory controller is integrated into the CPU together with a crossbar
switch that replaces the classic northbridge of the chipset. This architecture is sometimes
called direct connect architecture (DCA) because no additional chips are necessary to built
a multiprocessor machine. This new architecture enables devices to move closer to the CPU
cores and main memory, thus enabling lower latency transaction. Additionally, the link used
between these components is based on a modern bi-directional point-to-point link improv-
ing the situation further in contrast to traditional bus based systems. The same interconnect
structure is used to connect several CPUs together to form a non-uniform memory access
(NUMA) multiprocessor machine. The AMD family of processors uses the
HyperTransport [13] standard as system interconnect. The future will see high performance
I/O devices to move even closer to the CPU core and to the memory controllers of the sys-
tem, i.e. they will also be integrated into the CPU chip. Devices that do not require high-
speed are still connected using one or more bridges (southbridge) as well as traditional I/O
51

EXTOLL System Environment
interconnect standards based on PCI technology. Such an architecture also enables the use
of coherent devices, i.e. devices that participate in the cache coherence protocol of a multi-
processor machine [55].

Another recent trend is the transition from parallel, bus based PCI to serial, bi-directional,
packet based PCI-Express (PCIe) for many devices. PCIe-based devices can be found in
both architectures introduced above. PCIe devices are still connected to the CPU using a
bridge, typically using several bridges. PCIe needs the use of serializer technology on the
physical layer. FPGA prototypes for PCIe unfortunately suffer from excessive latency, since
the serial transceivers in current FPGAs are not optimized for low latency.

For EXTOLL, HyperTransport (HT) was chosen because it offers by far the lowest latency
for the host-device communication. The hardware was implemented on the HTX-FPGA
Board [56] (figure 3-3) which was designed by the Computer Architecture Group (CAG) at
the University of Mannheim (now University of Heidelberg). The HTX standard allows
adapter cards to communicate via HyperTransport with the CPU. The open-source HT-Core
intellectual property core (IP-core) [57] also developed at the CAG was used to implement

Figure 3-1: Traditional System Architecture

Front-Side Bus

Southbridge
(I/O Hub)

PCI-family Interface

NIC/device

Chipset Interface

FSB Interface

L3 Cache

L2
Cache

Core 0

L2
Cache

L2
Cache

Core 2

L2
Cache

Core 3Core 1

FSB Interface

L3 Cache

L2
Cache

Core 0

L2
Cache

L2
Cache

Core 2

L2
Cache

Core 3Core 1

Northbridge

Memory

Memory

Memory
Controller

PCI-family
Interface Chipset Interface

FSB Interface

NIC/device
52

EXTOLL System Environment
the HyperTransport interface on the FPGA. The HT-Core is specifically designed for
low-latency communication between the host and the device by minimizing the number of
pipeline stages.

For the analysis, literature and measurements of existing systems were taken as guides.
Most hardware design choices were modeled in terms of latency and other important
parameters using a set of system performance parameters summarized in table 3-1. This
table also gives the values for the parameters as measured on the prototype platform (the
HT400/16-bit column) and the extrapolated values expected for a platform where the FPGA
is replaced by an ASIC running with 3-5 times the clock frequency of the FPGA [58].

The performance numbers were measured using the HT-Example design, which is part of
the HT-Core package and which was also used to characterize the HT-Core performance in
[57]. They assume a device that is located immediately behind the HT-Core with no addi-
tional on-chip networking, buffering or clock domain crossing. The EXTOLL architecture
as it is implemented does not fulfill these requirements, so that the device access latencies
are somewhat higher. This fact was ignored for the design space analysis, since it is only a
minor issue and applies to all analyzed solutions. So the parameters given in table 3-1 must
be seen as a lower bound for the true latencies. Table 3-2 shows the differing parameters for

Figure 3-2: Modern System Architecture

Memory
Con-
troller

M
em

or
y

M
em

or
y

Directly
Connected
NIC/Device

IN (HT)

IN
(HT)

IN (HT)

IN
(HT)

L3 Cache

L2
Cache

Core
0

L2
Cache

L2
Cache

Core
2

L2
Cache

Core
3

Core
1

Memory
Con-
troller

M
em

or
y

M
em

or
y

Southbridge
(I/O Hub)

Directly
Connected
NIC/Device

IN (HT)

IN
(HT)

IN (HT)

IN
(HT)

L3 Cache

L2
Cache

Core
0

L2
Cache

L2
Cache

Core
2

L2
Cache

Core
3

Core
1

Xbar
Switch

Xbar
Switch
53

EXTOLL System Environment
a PCIe based system. The FPGA device access latency was measured using devices and
corresponding PCIe IP cores from two FPGA vendors. In both cases the read latency was
slightly higher than 1 µs, thus the write latency is estimated as a half-round trip with 500 to
600 ns. For an ASIC implementation the latency is expected to be cut in half, because of
better serial transceivers and a more optimized IP core for the upper layers of PCIe (link and
transport layer). Nevertheless, the ASIC performance given here is only an estimate and
must be taken with the necessary skepticism. In the future, FPGA technology will probably
also improve in terms of PCIe performance. A major step forward for this is the incorpora-
tion of hard-IP blocks for PCIe, i.e. fixed function ASIC technology blocks in the FPGA
device for PCIe access.

Parameter Abbr.
Value

(16-bit,
HT400)

Value
(16-bit,

HT1000)
Notes

CPU cache
access

tcc 6 ns 6 ns access of data in L1/2 cache, not
dependent on HT frequency

CPU main mem-
ory access

tcm 70 ns 70 ns not dependent on HT frequency

CPU device
access via HT

tcd 100 ns ~50 half round-trip latency; partly depen-
dent on HT, partly on CPU frequency

device to main
memory access

(via HT)

tdm 280 ns ~180 ns round-trip; partly dependent on mem-
ory latency

interrupt latency ti 1 µs < 1 µs latency from the device starting an
MSI and the actual interrupt handler
on the CPU being invoked

system call ts 170 ns 170 ns average time it takes to enter the ker-
nel from a user space program

CPU tablewalk ttrans 180 -
300ns

180 -
300

translation time includes pinning, but
not the system call

unpinning tunpin 135 ns 135 ns

device cycle time tcyc 6.4 ns 2 ns The cycle time for the HT400 case
reflects the actual clock speed of the
current EXTOLL FPGA implementa-
tion (156 MHz). For the HT1000 a
clock speed matching to the HT core
is assumed (500MHz).

Tabelle 3-1: Performance Parameters
54

EXTOLL System Environment
The AMD64 architecture of the system together with the HyperTransport interconnection
offers advantages besides a five times lower latency over using other processors together
with PCIe that are not immediately apparent, though. For example, modern processors fea-
ture write-combining buffers which can be used to bundle several individual I/O write oper-
ations into one operation, increasing PIO efficiency considerably. Opteron processors and
HyperTransport links can handle arbitrary packet sizes from one quadword (8-byte) to one
cacheline (64 byte). Other processors only handle 8-byte or full cacheline transfers. Thus,
the chosen architecture offers a greater capability when transferring messages from the CPU
to the device.

Figure 3-3: CAG HTX-Board

Parameter Abbr.
value

PCIe, x4
(10 Gb/s)

Notes

CPU device
access via I/O
interconnect

tcd >500 ns PCI Express; FPGA PCIe devices

CPU device
access via I/O
interconnect

tcd <250 ns PCI Express; estimated ASIC

Tabelle 3-2: Performance Parameters (PCIe)
55

EXTOLL System Environment
56

Chapter
4

Communication Paradigms
In parallel, distributed memory system programming several paradigms have been used and
are being used for inter-process communication. These communication paradigms and their
implementations are an important factor for the actual programming of user applications
since they influence the architecture of the applications. In the past and present, applications
often take advantage of NIC implementations by preferring a special subset of a communi-
cation interface for best performance. The different programming paradigms and the impli-
cations of the different concepts for NIC designs are introduced first. The selection of the
standards is based both on the importance of the interfaces, their expected future importance
and their representativeness of software interfaces to networking. This is followed by an
introduction to current and influential network application programming interfaces (APIs)
and their architectures. It is important to understand these models, their characteristics, up-
and down sides and use-cases in order to apply a correct design space analysis for the com-
munication functions that EXTOLL should support. It will be shown that, while two-sided
communication is still the most prevalent communication paradigm in scientific HPC
(High-Performance Computing), RDMA (in the IB Verbs sense) may become more and
more important both in enterprise computing and scientific computing and Global Address
Space systems promise to be very effective in solving new scientific problems. Require-
ments to efficiently support these paradigms will be pointed out.

Thus, it is important to perform the right choices for the communication functions of
EXTOLL to enable the NIC to work efficiently with a wide range of potential software and
applications. The design space analysis at the end of this chapter will show how the soft-
ware requirements extracted from the analysis of the software and API layers drive the
design of the hardware and which requirements have to be taken into account when design-
ing a new, modern NIC like EXTOLL. The results show that a low-latency architecture that
efficiently supports synchronization, locking, small two-sided and efficient one-sided com-
munication fits the software requirements. An important factor is also the possibility of high
computation/communication overlap.

4.1 Two-sided Communication
The classic approach to distributed memory parallel systems programming is the message
passing model, where messages are exchanged using matched pairs of send and receive
function calls from the sender respectively receiver thread. The basic sequence of commu-
57

Communication Paradigms
nication of this model is shown in figure 4-11.This well-known principle has gotten espe-
cially wide-spread with the use of MPI-1[59] in most parallel scientific codes. One
important concept in two-sided communications is the notion of matching. Matching
means, that a receive call does not deliver just the next message available from the transport
layer, but a message that matches certain criteria. Typical criteria implemented are sender
ID, size or the user specified tag. The intricate matching semantics of libraries like MPI
make it also difficult to implement this matching in hard-wired circuits. NICs that provide
advanced matching in hardware are nearly always processor based. It also regularly intro-
duces a host of problems from handling of unexpected messages (i.e. messages for which
no matching receive was posted by any receiver on the machine) to the exact semantics of
closest match and the handling of possible race conditions between arriving messages and
receives that are being posted. If a NIC performs receive matching, it can also provide for
zero-copy receives, because the message can be delivered right into the application buffer
given in the receive call. A design and prototype implementation for MPI matching using
associative data structures in hardware is described in [60]. The prototype for one queue
used ~15.000 slices of a Virtex2 Pro FPGA. This provides matching capacity for one queue
(i.e. the posted queue) with a match width of 42 bit, a tag of 16 bit and a queue depth of 256
entries. A real NIC would need one hardware unit for the posted and the unexpected queue
per end-point supported.

If an implementation chooses not to implement matching on the NIC, the matching has to
take place in the host CPU. The normal process here is to place the message into the host
main memory using DMA. The host CPU inspects the header of the message and performs
the necessary matching; using a memcopy() operation the reception of the message can be
completed. There are also proposals where the last memcopy is again offloaded from the

1. See appendix A for an explanation of sequence diagrams.

Figure 4-1: Basic Send/Receive Sequence

Process 1 Message Passing System Message Passing System Process 2

request send

send messagesend done

receive done

receive call
58

Communication Paradigms
CPU [61]. The possible solution to only deliver the header to the CPU for inspection and
matching while keeping the payload in an internal buffer of the NIC suffers mainly from
excessive buffer use on the NIC and the latency introduced by the additional device-CPU-
device roundtrip in signaling. Since large memory copy operations are expensive on stan-
dard CPUs it is generally agreed that zero-copy receive techniques are helpful and should
be employed whenever possible. It will later be shown, that RMA techniques allow to emu-
late zero-copy matching receives to a certain extent at the cost of an additional network
roundtrip.

Up until now the discussion has focused on the receiving side, since the sending side is
much less problematic. Actually, zero-copy sends need to solve the address translation
problem (see chapter 5) but the rest is straight forward copying of the payload to the NIC
using DMA since no special matching has to take place. Often discussions of two-sided pro-
tocols differentiate several transaction sizes that are handled considerably different. Usually
this involves small, large and sometimes also medium transactions. The background is, that
it is often effective to handle small messages with the least complicated protocol and to use
the CPU for matching and copying, while large messages can profit from additional offload-
ing of tasks. The message sizes that serve as threshold between the different protocols are
most often gained empirically.

4.2 Remote Load/Store
In the remote load/store paradigm, a process can issue a communication operation by just
performing a load or a store operation to a special address. A load operations triggers a net-
work request and the response to it carries the requested memory cell which is then used by
the NIC to complete the load operation. A remote store operation functions analog, though
no response is necessary (figure 4-2). This model requires only a simple NIC, actually more
of a bridge function. A simple way to implement such a system could be to use PCIe
switches which feature a non-transparent port [62].

While the remote load/store method looks tempting to many programmers and architects it
suffers from fundamental drawbacks for parallel computing, that are intensified by the char-
acteristics of today’s computing architectures. First, CPU load and store operations nor-
mally only support relatively small data movement granularities. So, without modifications
to the basic protocol, transactions are always in the register size region (32-128 bits) limit-
ing the network efficiency. Secondly, long load latencies will stall CPU cores, since there is
only a limited amount of outstanding memory transactions. Transactions to I/O space are
normally subject to tighter ordering rules than cacheable memory intensifying the problem
since transaction are executed strictly sequentially. Stalling a CPU for just 1 µs equals sev-
eral thousand wasted cycles. Also, remote operations can only target memory locations; it is
not possible to directly access CPU registers from the outside, which could increase the effi-
ciency. Because of the high access latency and the CPU core stalling it is thus necessary to
copy a remote variable to local memory. There, work on the variable can be performed effi-
ciently, and consequently the result can be copied back. This model implicates that the pro-
grammer or runtime system handles coherency issues of an explicit caching model. The
59

Communication Paradigms
resulting method actually looks exactly as the RMA one-sided model. Actually, an efficient
RMA NIC offers many advantages over a pure remote/load store model, for example CPU
offloading for copy operations, no CPU stalling for remote accesses, and asynchronous
access with completions.

With the necessary access to main memory and the cache-coherence protocol consequences
the effective communication latencies of remote load/store implementations do not outper-
form competing small-sized send/receive functions. One idea to at least improve the possi-
ble bandwidth is to transport whole cachelines and provide a remotely cached version of the
original memory in the remote NIC. This involves a cache-coherent NIC and the resulting
complications for the implementation [55]. The ultimate result of such considerations
would be an adapter that actually provides for a true distributed shared memory (DSM) sys-
tem with full cache coherency [63] which introduces a complete different set of problems.
DSM system architecture exceeds the scope of this discussion and the reader is kindly
referred to [64] for more information in this regard.

Figure 4-2: Remote Load and Store Operations

CPU 0 Device 0 Device 1 CPU 1

store instruction

send message

copy data into main memory

load instruction

send request

copy data from main memory

response

load completion

CPU is
blocked
60

Communication Paradigms
4.3 Introduction to One-Sided Communication
So called one-sided communication is an ever more present trend in modern interconnec-
tion network designs. In the one-sided communication paradigm, also called RDMA, RMA
or put/get-model, conceptually only one process is actively involved in a communication
transaction. In the classical send/receive paradigm, both processes, the source or initiator
and the target or destination process, participate in the transaction. An RDMA transaction
features always an active and a passive partner. The put operation also called RDMA write
operation writes the content of a local buffer of the initiator process into a specified buffer
of the target process. Notice that the initiator needs to know the address of the remote buffer
beforehand.

The get or RDMA read operation is the opposite; the initiator request the contents of a
remote buffer to be copied into the specified local buffer.

Figure 4-3: RDMA Operations

CPU 0 Device 0 Device 1 CPU 1

put request

send message

copy data into main memory

get request

get request

copy data into memory

response

get completion

CPU is
not

blocked

put completion

copy data from memory
61

Communication Paradigms
In a sense, the one sided-communication paradigm is influenced by retaining a small part of
the programming model of shared memory systems for distributed memory systems.
RDMA operations can also be used to effectively implement zero-copy receive strategies,
mostly for large messages. Consider the protocol shown in figure 4-4:

• Source sends match request to receiver including source address.
• Target receives request using normal receive semantics (w/o zero copy).

Figure 4-4: Zero-Copy Send/Recv using RDMA

API 0 Device 0 Device 1 API 1

send message

get payload

get request

response

CPU is
not

blocked

receive

recv done

Process 0 Process 1

send

receive

send buffer
can be
reused

donecopy data
into memory

copy from
memory

can yield
 CPU

wait/complete
call

wait/complete
call

send
metadata

get
completion
62

Communication Paradigms
• Receiver CPU performs message matching. If no matching receive buffer is available yet
further processing of the request will be postponed until such a request is available. A pos-
sible variant gets the data into a system buffer defeating the original zero-copy though, to
accelerate later reception.

• The receiver initiates an RDMA get (or read) to directly transfer the message data from the
source buffer into the destination application buffer.

• After the get has been completed, the receiving process can be informed about the com-
pleted receive and operate on the data.

• The original sender must also be informed that the buffer can now be reused. Often this
involves another network transaction to signal the completion to the sender.

• If the get operations can signal its completion at the remote part, this feature can be used to
signal completion to the sender.

The above protocol is compelling because it can leverage the flexibility and speed of gen-
eral purpose processors for the actual matching, while still providing true zero-copy. But the
protocol suffers from network latency, since at least one additional round-trip is necessary.
Low-latency service is thus beneficial for this protocol.

Another recent use-case for RDMA protocols evolves around distributed storage systems.
Here in-kernel protocols are used to let RDMA-enabled networks run improved versions of
well-known storage protocols such as NFS [65], iSCSI [66], and DAFS [67][68].

Currently quite a number of different one-sided implementations, standards and protocols
have been proposed and implemented. With the advent of ever higher I/O bandwidths, zero-
copy techniques become essential and one-sided communication techniques offer an elegant
model to handle a large number of distinct problems elegantly.

In the following sections, the current state of the art in communication models and APIs is
presented.

4.4 Important Communication APIs
Currently, both two-sided, one-sided, hybrid APIs and APIs supporting several models are
in use. The selection of protocols presented here is based on the prevalence in modern sys-
tems and to showcase important design options.

4.4.1 Sockets
The Berkeley Sockets API [69] is probably the most widely-used API for networking and
was first introduced with the release of 4.2 BSD in 1983. The goal of the Sockets API was a
generic interface for accessing computer networking resources. A large number of different
protocols, also on different protocol levels, are supported. Today, the most often used sock-
ets are bound to the TCP/IP, UDP/IP and the UNIX Domain sockets protocol.
63

Communication Paradigms
The Sockets API is based on the concept of a socket being the abstraction of the logical con-
nection between two end-points, thus it is generally formed by a tuple of end-points. The
addressing within the Sockets API is protocol dependent and abstracted using different
address families, for example AF_INET for IP based protocols.

Since sockets based communication is a generally well understood, and because of its wide
spread use, very well documented communication API, a very short overview is provided
here. If the used protocol is connection oriented as in the case of TCP, sockets generally fol-
low a client-server paradigm, where the server opens a socket and listens for incoming cli-
ent connect requests which are then accepted forming a new socket at the server side and
connecting the socket at the client side. In UDP (User Datagram Protocol) sockets, this step
is omitted. Often data is sent using the common POSIX standard library functions write
(respectively the corresponding systemcall) and received using the read function. There are
also a number of other functions available to optimize the communication, for example
sendfile to send the content of a file directly over a socket. This can be exploited to reduce
the number of copies in the sender path as the content of a file usually is already present in a
kernel level buffer. A typical sequence for a simple communication is shown in figure 4-5.
The two copy operations that are minimally performed by typical implementations are
shown. Each transition from the client or server to the API causes a transition into the OS,
each arrow from the API leaves the OS again.

The sockets API which is often but falsely synonymously identified with TCP/IP network-
ing suffers generally from high communication latencies. These are introduced because the
classical socket implementations are OS based (thus every operation includes a system
call), have to pass through a relatively deep and complex protocol stack including several
memory copies and finally because of suboptimal latency characteristics of the NIC and
network hardware. An instructive reading to understand latency characteristics of sockets,
TCP/IP, and Ethernet is [20]. The authors show that currently the minimum latency for the
stack is at least > 10 µs. This paper gives a detailed breakdown of the latencies of the send-
ing and the receiving path. The actual sockets interface (i.e. from application to the end of
the TCP layer, including the system call) is given with 950 ns.

There are also more optimized implementations available. For example in [70] a user space
implementation of a socket library is presented which communicates using Myrinet. Such a
user-space implementation with reduced copies promises good performance but also intro-
duces numerous new problems as correct systemcall interference, process fork behavior,
limited network end-point handling, and missing support of newer, optimized system calls
such as sendfile. The Socket Direct Protocol (SDP) [71] is OS based but uses Infiniband to
provide a better performance. Similar solutions exist for other high-speed networks.

So, the support of sockets is generally deemed necessary because of the high count of appli-
cation codes that use the API. Since the API has a strong usage and long history it is neces-
sary to support all aspects correctly, since otherwise problems with some applications will
occur sooner or later. The most compatible solution is still a kernel level solution and the
64

Communication Paradigms
features of modern high-performance NICs are very difficult to be exploited by Socket
based applications. This is also one of the reasons why standards such as Infiniband and
iWARP (RDMA over TCP) have occurred on the market.

4.4.2 MPI-1
MPI was originally standardized in 1994 [59] to form a consistent standard for the program-
ming of different distributed memory computers. Point-to-point communication operations
in different flavors form the basis for the MPI API. Additionally, different communication

Figure 4-5: Sockets Sequence

Server Sockets API Sockets API Client

socket

bind

listen

accept

write

return new socket

socket

connect

send connect request

send connection data

send data

return data count

read

copy data

close

close

copy data
65

Communication Paradigms
groups, a large variety of collective operations, topology related operations and a number of
a other functions are part of the standard. Here, the emphasis is on the point-to-point opera-
tions. MPI distinguishes between buffered and unbuffered send operations, blocking and
unblocking operations. Probably the most important feature of the API which complicates
implementations are the matching rules. A message arriving at a process must first be com-
pared to already posted receive operations, i.e. receive operations that have been posted by a
previous function call. If the message matches, the closest match according to the MPI
matching rules must be chosen and the receive completes. It is possible that no matching
receive is found; then the MPI implementation puts the send operation into the so called
unexpected queue. Whenever the local application posts a new receive operation, the
receive operation is first matched against pending entries in the unexpected queue before it
is forwarded to the posted receive queue, ready to be matched to newly incoming messages.
Messages have to be matched according to source (including wild-cards), size and tag (a
user provided integer).

Receive matching is the key problem to build an extremely efficient MPI-1 solution,
because only if one can somehow solve the matching problem, zero-copy receive-side pro-
tocols become possible. Receive matching has been implemented in a variety of ways. The
most simple way, and the only possible solution for many architectures, is to move the com-
plete matching into the host CPU and perform a memcopy operation after the match suc-
ceeded to copy the buffered message into the final application buffer. This protocol is
straight forward to implement and still performs relatively good if the rest of the system is
designed well. Examples that employ this approach are MPICH for ATOLL as well as all
TCP or UDP based MPI implementations. Even implementations with more elaborate solu-
tions may choose to implement this strategy for a subset of messages. Especially for small
messages the high-computation speed of current host processors enables fast matching.

There are NICs that perform the matching or parts of it. These NICs without exception use
an on-board or on-chip processor to implement this. While this solution offloads the host
CPU from the matching it introduces new problems and bottlenecks. Generally, the NIC
processors offer one order of magnitude less single thread performance than the hosts CPUs
adding to the latency of operations. The matching information has also always to be trans-
ported to the NIC and the processor on the NIC often has only a very limited amount of
memory available for message and descriptor queues. If a received message does not match
any of those posted to the queue on the NIC, the message is put into main memory (the
unexpected queue) and the host CPU must ultimately match and deliver the message. Per-
formance of such solutions may degrade dramatically, for example if the number of neces-
sary posted receives exceeds the NICs resources, or receives are constantly posted too late
to allow for timely matching. Note also that there is a potential race condition when a
receive is posted to the NIC, since the matching message may just be copied into main
memory by the NIC at the time the receive is posted to it.

One completely different implementation class often chosen to avoid the above mentioned
problems is the class of rendezvous based protocols. Rendezvous-protocols add additional
round-trips but offer the chance for true zero-copy which makes them especially attractive
for large messages. The RDMA based zero-copy protocol shown in figure 4-4 is one exam-
66

Communication Paradigms
ple for a rendezvous-protocol. It has been shown, that implementations using rendezvous-
based zero-copy-protocols exhibit high bandwidth for large messages with low CPU utiliza-
tion. At the same time is often necessary to use a buffered protocol for small messages to
keep latency reasonably low.

There have also been thoughts on how to accelerate the actual matching of messages. Pro-
cessors generally perform poor if associative searches have to be performed. Usage of
advanced data structures for the MPI queues helps. Good handling of large queues becomes
absolutely necessary for large parallel machines where thousands of communication peers
are present. In [60] a hardware architecture for message matching is described. This work
uses a hardware structure similar to a ternary CAM (content addressable memory). The
authors claim a reduction in latency but of course, the solution is resource constrained since
associative memory elements must be present for each slot of the matching queue and the
unexpected queue. The resource problem is aggravated by the fact that matching hardware
resources must be added for each end-point supported. If multiple end-points need to be
supported this solution does not scale.

In addition to the described point-to-point operation, MPI defines a number of collective
operations including synchronization calls like MPI_Barrier and collective calls transport-
ing data like MPI_Broadcast, MPI_Alltoall, MPI_Gather, and MPI_Scatter. Another
important group is the group of reduce operations which can be used to combine data from
all processes into one location at one specified root process using an operation given in the
function call. MPI even allows to use a user-specified operation. Collective operation have
to be called by all participating processes and are generally blocking in nature. There are
countless research projects, implementation proposals and implementations of collective
operation on different architectures and interconnection networks. Collective operations
play an important role in some codes and problems. Known hardware assisted implementa-
tions can follow strategies like hardware barriers, multicast communication primitives and
reduce computation in the NIC.

4.4.3 MPI-2
The MPI forum started on the second revision of the MPI standard shortly after the final
revision of MPI-1 was published. MPI-2 [72] introduced several new key features, namely
dynamic process management, parallel I/O functions, C++ bindings and one-sided commu-
nication routines. While the additional language binding is a pure software enhancement for
better interaction with the C++ language, the new dynamic process management is more of
a runtime extension and allows to dynamically spawn additional processes during the runt-
ime of an MPI job. MPI I/O introduces an API to perform efficient parallel I/O from the
processes of an MPI job. This is an important feature for many large codes; from a hard-
ware/software design perspective it does not add new requirements since all the feature can
be efficiently implemented using either one-sided or two-sided communication paradigms.
It would be interesting to see the effects of a dedicated, hardware assisted, distributed stor-
age system that directly interacts with MPI I/O.
67

Communication Paradigms
For this work, the one-sided extensions for MPI are most relevant as they introduce RMA
capabilities into the MPI standard. The one-sided MPI operations are MPI_Put, MPI_Get
and MPI_Accumulate. In addition, the standard defines memory or buffer management
functions and a number of synchronization functions that can be used to implement several
different communication/synchronization patterns. In order to share a region or memory, i.e.
open it for remote access, the function MPI_Win_create must be used. This is a collective
operation, which is passed the base address and the size of the region to be shared. The size
is not required to be same on each process; it is even possible to pass a size of zero, which
actually exposes no memory for this process. The function is collective, so that the creation
of the window and its parameters can be made known implicitly to all other participating
processes by the runtime system. The function returns a handle for the created window
which is used in subsequent calls to reference the window. There is of course a correspond-
ing MPI_Win_free function.

Once a window is created, the transfer functions can be used for data transport. The put
function writes data to the target process, while the get function reads from the target. The
accumulate function manipulates data at the target process. The parameters of the put and
get function are straight forward; the target address is given through a window handle and a
displacement within this window. MPI_Accumulate behaves in essence like a put where the
data at the target is not replaced but combined using one of the standard reduce operations
already defined by MPI-1, like sum, and, or etc. A purely hardware based implementation
of MPI_Accumulate is much more challenging than one of the other two functions, since
data must actually be transformed, that is there must be some form of computational
resource available. One way to implement this is to use an embedded processor on the NIC.
The complementary approach is to let the host CPU handle the computation by either get-
ting the value, updating it and writing it back or let the target CPU handle the combination.
Both strategies add latency to the implementation. The first is still truly one-sided but may
suffer from synchronization problems.

All MPI-2 one-sided operations are non-blocking and require synchronization calls to
ensure that changes are actually visible in the memory model of the involved processes (that
the operation has completed). To this end access epochs of windows are introduced. An
access epoch starts with a synchronization call and ends with a synchronization of the asso-
ciated window. After the epoch has ended, changes by one-sided operations to the memory
region of the window are guaranteed to be visible. MPI-2 distinguishes two basic synchro-
nization methods, namely active target and passive target synchronization.

In active target synchronization, the target process actively participates in the communica-
tion in the sense that the process calls synchronization functions. In passive target mode the
target process does not participate in synchronization calls. The simplest form of synchroni-
zation is the MPI_Win_fence function, which is a collective function associated with a win-
dow. It provides a barrier function for the referenced window and can act as the
synchronization call between two epochs in active target mode.
68

Communication Paradigms
The second method, also in active target mode, uses a set of functions for finer grain syn-
chronization. The functions for this method are MPI_Win_start, MPI_Win_complete,
MPI_Win_post and MPI_Win_wait. At the origin side(s), i.e. the process(es) initiating one-
sided operations, the epoch is started using a call to MPI_Win_start and after a number of
RMA calls closed again using the MPI_Win_complete function. On the target process(es),
the epoch is started using a call to MPI_Win_post and the epoch is closed again by
MPI_Win_wait. In a sense MPI_Win_start/MPI_Win_post and MPI_Win_complete/
MPI_Win_wait are pairs of functions that are collective synchronization operations to a
given group of processes only, namely the ones involved in the operation. These functions
are allowed to be non-blocking, i.e. the start function returns, although the post function has
not been called by the peer process and the actual communication operation has to be
delayed until that point in time.

Figure 4-6: MPI One-Sided Communication with Fence

Origin Process MPI MPI Target Process

MPI_Fence MPI_Fence

data message

MPI_Fence
MPI_Fence

MPI_Put

Epoch n

Access
Target
window

sychronization
messages

sychronization
messages
69

Communication Paradigms
Also, an implementor can exploit the non-blocking nature of the one-sided operations to
implement one-sided functions on point-to-point two-sided primitives in active target mode.
This is sometimes called one-sided emulation and is used for MPI implementations that run
on standard Sockets based TCP networks. Conceptually a put can be implemented using a
send which is initiated through the MPI_put call. The matching receive which completes the
function by copying the data to the final destination is started by the synchronization call of
the target at the end of the corresponding epoch.

Finally, passive target synchronization is enabled using MPI_Win_lock and
MPI_Win_unlock. These functions are only called at the origin (since the target has to
remain passive) and form an access epoch. While a process holds an exclusive lock on a tar-
get window, no other process is allowed to access this window. If processes hold a shared
lock, no processes requiring an exclusive lock can access the window during the time the
shared lock is held. No assumptions about ordering of the lock/unlock operations of differ-
ent origins are made, i.e. lock/unlock operations are not collective. The passive mode is
much more difficult to implement; one constraint exists, though. Lock/unlock can only be
used with windows whose backing memory has been allocated using MPI_Alloc_mem thus
allowing the run-time system to provide for special arrangements to handle locking and
unlocking correctly. Trivially, locking and unlocking always need an actual network trans-
fer on distributed memory systems and are probably most efficiently implemented using an

Figure 4-7: MPI Start/Complete/Post/Wait Synchronization

origin process MPI MPI target process

MPI_Win_start
MPI_Win_post

MPI_Win_waitMPI_Put Epoch n

Access
Target
window

data message

MPI_Win_complete

sychronization
messages

sychronization
messages
70

Communication Paradigms
atomic compare-and-swap or similar operation. Unfortunately many system do not provide
this operation over the network. In such a case an implementation may have to resort to an
asynchronous thread handling the actual locking/unlocking.,

From an implementors side, the active target synchronization mode is straight forward to
implement correctly even on low-level APIs and NICs that do not provide RMA operations.
The passive target synchronization may expose more overhead. It was originally devised for
shared memory operations. One way to implement it is based on an asynchronous agent, for
example a thread, on the target side, that periodically handles incoming locking requests
which is not the most elegant solution. In [73] the authors show, how exclusive locks are
implemented using IB’s atomic compare-and-swap (CAS) transaction. Shared locks still
require an asynchronous agent on the target, which issues a CAS transaction to set the lock
in shared state. It then uses internal counters to handle the shared lock. The problem of net-
work contention through excessive sending of IB CAS operations is not handled in [73], but
the authors propose to use exponential back-off as a the method of choice. Earlier IB MPI-2

Figure 4-8: MPI Passive Target Synchronization

Origin Process MPI MPI Target Process

MPI_Lock

data message

MPI_Unlock

MPI_Put

Access
Epoch

Access
target

window

update window lock

update window lock

sychronization
messages

sychronization
messages
71

Communication Paradigms
implementation used a two-sided approach to locking, where communication functions (get
and put) as well as lock calls are queued locally and only at the synchronization point, i.e.
the call to unlock, get propagated en-block to the target node, where they are completed. It
goes without saying that this method exhibits an extremely low overlap of communication
and computation defying the purpose of one-sided MPI.

In summary, MPI-2 one-sided operations have been met critically by many parallel code
developers since the performance goals were often not reached. One major reason for this is
the poor overlap of MPI implementations and the poor implementation of synchronization
functions both of which is paramount to reach good performance with MPI-2 one-sided
codes. In [74] a synthetic benchmark is studied that simulates a program that employs near-
est-neighbor ghostcell exchanges using one-sided communications. The authors found that
the code runs slower using one-sided communication than if implemented with two-sided
communication, regardless of the type of synchronization used on many MPI implementa-
tions. Even on a shared memory machine tested with SUN MPI, the point-to-point version
outperformed one-sided operations for all tested message sizes; for short messages point-to-
point was about six times faster than one-sided MPI-2. Similar results have been reported
from other researchers.

An excellent implementation of MPI-2 is difficult to develop and many efforts are currently
under way [73] which may prove in the future that one-sided communication is a better
communication style than two-sided communication.

4.4.4 PGAS
Partitioned global address space (PGAS) systems describe a class of systems where a global
address space is partitioned between the different participating threads of a parallel applica-
tion. Often, the global address space is divided using two orthogonal criteria: address space
can be shared or private, and address space belongs to one thread. This division is schemat-
ically shown in figure 4-9.The pointer a. is a pointer residing in the local, private space of
thread 0 and points to a location in the same region. This is the equivalent of a standard C
pointer. The pointer b. is shared pointer, that is every process has a copy of the pointer
which points to the same shared variable. The third version is not recommended, it is a
pointer that resides in shared space but points to a local variable. Although the pointer is
shared, only the owning thread can dereference it. The last pointer d. is a shared pointer that
points to a shared variable. In Universal Parallel C (UPC) [75] such a pointer is allocated at
thread 0.

PGAS maps both to shared memory and distributed memory architectures. In any case,
access to the local part of the address space is cheap for a thread regardless if the it refer-
ences shared or the private memory. Access to a remote private region is forbidden and ref-
erencing a remote shared region may incur a higher cost even on shared memory systems,
for example because of ccNUMA characteristics. On distributed memory architectures such
an access is mapped to network access(es). To make this model attractive and provide a
higher abstraction layer than message passing, it is used with a suitable programming lan-
guage. Well known PGAS programming languages are UPC [75], a parallel C dialect, Tita-
72

Communication Paradigms
nium [76], a compiled, Java based language, Co-array Fortran [77] and recently Fortress
[78] and X10 [79]. All of these languages can be implemented directly on shared memory
systems but require a network runtime environment for distributed memory systems. The
compiler decides where to place data objects: in the address space of which thread, in the
local or shared address space. The programmer can usually influence this if no at least
implicitly. The programming languages have primitives to express parallelism, parallel
loops etc. to implement SIMD (Single Instruction, Multiple Data) or SPMD style programs.
The actual programming in a PGAS language is not the topic of this analysis, though. The
necessities for the underlying runtime are of interest for the definition of a modern NIC
which optimally supports the PGAS model.

Access to local data objects can be compiled to normal load/store machine instructions;
remote accesses are handled by the compiler. Several suggestions exist on how to imple-
ment this. One suggestion uses remote load/store, possibly enriched by additional features
such as a local cache to accelerate some operations, while others are based on two-sided and
one-sided low-level operations. As an example for an existing, proven and open implemen-
tation, the GASnet library will be examined in the next sub-section. After that a short intro-
duction follows on how memory-mapper devices with remote load/store semantics can be
used to implement PGAS.

Figure 4-9: PGAS Address Space

Private

Shared

Thread 0 Thread 1 Thread 2 Thread 3

p2

d. share int * shared p4;

c. int *shared p3;

b. shared int *p2;

a. int *p1;

p2

p1

p3p3

p2 p2

d.

a.

b. b. b. b.

c.
73

Communication Paradigms
GASnet

GASnet [80] is a communication library which delivers low level services for PGAS runt-
ime environments. It is open-source and is used by the Berkeley UPC, Titanium and Co-
Array Fortran compilers and runtime environments. The GASnet API consists of two parts:
The core and the extended API. An implementation for a network must provide the com-
plete core API. For the extended API, one can use the reference implementation which is
implemented in terms of the core API, or, to reach better performance, it is possible to sup-
port the extended API directly.

The initialization routine of the core API gas_attach exhibits barrier semantics and initial-
izes a shared segment on all participating processes. The shared segment can be used for
zero-copy transactions by later API calls without further actions. Several parameters are
available to control how large the shared segment can get. In terms of the PGAS languages,
a segment incorporating the whole virtual address space of the process would be best. The
core communication operations are heavily influenced by the original Active Message
(AM) [81] specification. The current GASnet specification (version 1.8) is most closely
related to revision 1.2 of AM. GASnet uses requests that are sent to receiving threads. At
the receiver the request triggers a request-specific handler, which gets a (small) number of
arguments passed. The request handler may initiate a response to the sender which will trig-

Figure 4-10: PGAS: GASnet AM-style Messaging

Source Thread Target Thread

AM
handler
 function

AM handler function

async call
or am_poll

async call
or am_poll

gasnet_AMRequestXY
(destination, handler,...)

Payload (if Medium or
Long Requests)

gasnet_AMReplyShort(...)
74

Communication Paradigms
ger a corresponding handler at the sender. The different handler and their respective IDs are
registered at GASnet initialization time, they are thus static and consistent over the whole
application. It is not allowed to reply more than once and also a reply handler is not allowed
to reply again. GASnet discriminates three types of messages: short, medium and long mes-
sages. Short requests only carry the handler ID and the small number of (integral) parameter
values. Medium messages can carry an amount of payload. The maximum payload can be
set by the implementation but must be at least 512 bytes. Finally, long requests carry a pay-
load which is to be delivered to a sender specified address within the shared segment of the
receiver. Long requests are thus often implemented using RMA functionality, if available.
The core API is complemented with support for atomic operations for handlers and some
utility functions.

The extended API adds a number of put/get operations and synchronization operations. The
RMA functions defined by the extended API may use any address on the local side (i.e. also
addresses that are not within the shared segment). To implement this feature three options
are pointed out by the specification authors: either use the reference implementation in
terms of the core API, use a RMA enabled network which can map the complete virtual
address space of participating processes or use a registration strategy such as the one
described in [82] to enable good performance. Implementations are also required to support
216 -1 outstanding non-blocking operations. There are a number of synchronization func-
tions, which are used to ensure the completion of the RMA functions. Finally, the extended
API defines a split-phase barrier operation.

Note, that GASnet does not specify the exact address layout of actual applications generated
by PGAS language compilers. The API is also explicitly not targeted to be used by pro-
grammers directly, but to be used by machine generated code.

Memory-mapper Device for PGAS

A PGAS system using a memory-mapper device allows non-coherent access to remote
address space using accesses via the device. The shared memory of all processes is mapped
into the address space of the participating processes. A physical mapping possibility is
enough. The physical address space of each node is exported via the device and mapped to a
global physical address space. All processes can then mmap parts of this global physical
space via memory-mapping of device address space (BAR space) into its local, virtual
address space. The concept is shown in figure 4-11. Thread 0 exports a part of its virtual
address space; this becomes shared space. The operating system makes these pages known
to the device. The same happens on all other nodes. An access to the address space of the
device is then forwarded to the appropriate address at the target node. In its elementary form
no mapping tables are necessary, since all nodes export their complete physical RAM. More
complicated variants need to add mapping tables. The runtime software takes care that only
device addresses that correspond to physical address that are accessible to the job, can be
mapped into the corresponding application address space.

In its simplest form, remote accesses become remote load/stores. It is possible to add DMA
engines though, for CPU offloading and implementing of one-sided operations. This system
supposedly allows PGAS applications to run with the lowest possible overhead; it is diffi-
75

Communication Paradigms
cult to see though, why combined, efficient two-sided/one-sided low-latency implementa-
tions should not provide the same or better performance. Also, the inherent split-phase
characteristics of more traditional approaches can be beneficial for system performance.

Figure 4-11: Memory-Mapper Device Address Space

Unused

Private

Shared

Unused

Private

Shared

Private

Thread 0

Thread 1

Thread 2

Thread 3

Global
address
space

mapped

Private

Shared

Unused

Private

Shared

Private

Original Address
Space of Thread 0

Global Address
Space

Resulting
Address Space
76

Communication Paradigms
4.5 Conclusions for EXTOLL
From the above introduction of communication paradigms in parallel software requirements
for the EXTOLL NIC can be derived. Efficient support for two-sided communication is still
important, since this communication pattern is widely used. One-sided communication is
also deemed an important feature. The difficulties for MPI-1 implementations, mainly
because of matching and zero-copy, have been shown. Several approaches to implement
one-sided messaging have been taken into account; the design space explored is shown in
figure 4-12.1

Posted receive buffers, as for example defined by the VERBS API family have been
dropped for two reasons: the buffers have to have maximum message size, regardless what
they actually will hold, zero copy receive is not possible in the general case, MPI matching
is difficult. The second option, to use posted buffers together with an elaborate matching is
discarded because of the complexity of matching algorithms that would be needed to be
implemented in hardware (see section 4.4.2 for details).

Single ringbuffer implementations, as used by ATOLL, do not allow for zero-copy commu-
nication. They are very efficient for small messages though, were hardware latency is more
important then DMA offloading and zero-copy protocols.

The final possibility taken into account is two-sided emulation using RMA. This solution
brings a great flexibility, but also needs efficient algorithms on the software side to imple-
ment the different strategies. With the emulation strategy, medium copy protocols as well as
receiver side matching, efficient memory usage and true zero-copy are possible. Also, the
same hardware needed for one-sided communication can be reused for medium to large
two-sided communication, increasing hardware efficiency.

Figure 4-12: EXTOLL Two-Sided Communication Design Space

1. See appendix A for an explanation of design space diagrams.

Ring buffer

matching

Two-sided
communication

Posted buffers

sequential Rendez-vous Preallocated buffers

Emulation via RMA
77

Communication Paradigms
For two-sided communication, a two-way approach was chosen: efficient ring-buffer style
communication for messages of limited size. This enables low-latency communication for
small messages with shared queue semantics. A dedicated hardware function is used for this
protocol. Larger messages have to be transported using RMA. In the MPI-1 case, medium
sized messages use an explicit sender-side queue protocol without zero-copy while large
messages use an optimized RMA rendezvous protocol is used. The protocol for large mes-
sages has already been described in section 4.3. Details of the protocols are covered in sec-
tion 8.6.

For the one-sided communication it is required, that data transport operations can com-
pletely overlap with communication. To enable this, efficient synchronization protocols
must be employed. For active-target style synchronization, efficient small-message service
functions can be reused. Passive-target operations require an optimized atomic network
transaction which can efficiently implement the needed lock semantics which existing
designs can generally not achieve. A novel transaction protocol supporting concurrent
shared and exclusive MPI-2 locking will be introduced in this work (section 7.5.4). All of
the transactions are split phase and non-blocking; an orthogonal set of different completion
events (called notifications in the context of EXTOLL) can be generated, often reducing the
needed synchronization between processes, and simplifying two-sided and other higher
level protocols. To support zero-copy and virtual addresses (OS-bypass), an effective
address translation scheme must be developed. While GASnet can benefit from the sharing
of the complete virtual address space of a participating process, this is not strictly necessary,
advanced protocols may also be enough. For MPI-2, full virtual-address space exposure is
not necessary. All of the units need to be carefully optimized for lowest latency including
posting of operations and completion operations.

This analysis lead to the design of two functional units for communication; one for the
small message service and one for RMA. First, the problems of address translation (see
chapter 5), virtualization and posting of operations (chapter 6) are covered, though.
78

Chapter
5

The Virtual Address Space Barrier
A difficult set of problems for efficient I/O operations on current standard machines is
memory addressing. User space applications address memory using virtual addresses (VA).
These are translated by the memory-management unit of the CPU into physical addresses
(PA). These PAs are then used to access main memory or I/O resources from the CPU. I/O
devices access main memory via DMA also using PAs. Without a memory management
unit (MMU) a device can not use VAs at all. For user-space I/O, PA usage of devices poses
a serious problem since all addresses an application knows are VAs and it does not know the
corresponding PAs. It is also not allowed to know them for obvious security reasons. They
are only known to the operation system kernel. On some architectures devices do not use
physical addresses but bus addresses which are translated by the I/O bridge into physical
addresses when accessing main memory. An example for such an architecture were several
SPARC architecture machines [83]. But even with these machines the problem essentially
remains the same, only now it is bus addresses and not physical addresses.

For networking applications at least three questions arise, namely:
• How to most efficiently communicate the address of a (local) source buffer to the network

hardware?
• How to handle remote addresses respectively buffers?
• And how-to handle unmapping/freeing of memory previously allocated to an application?

In [83] a design space analysis for the problems was performed. While most of the perfor-
mance data is completely outdated by now, most of the requirements still hold true today so
that for EXTOLL the following requirements have been identified:

• The design should be as simple as possible.
• The translation must enable access to all of the physical memory of a node.
• The design should be high-performance, specifically it should exhibit

• low-latency translation using a translation look-aside buffer (TLB),
• low TLB miss-latency for a design with limited TLB performance (FPGA implementa-

tion), which also is useful to give relatively good worst-case performance for work-
loads that exhibit poor locality, and

• low memory registration/deregistration times to support efficient dynamic memory
usage patterns.

• Support for self-virtualized device with the possibility to support thousands of contexts
and user-space access.

• Flexibility in the integration of different types and number of TLBs.
79

The Virtual Address Space Barrier
• Streamlined design to support efficient implementation on different target architectures as
well as be able to reach high clock frequencies.

• On-device protocol between address translation unit and the functional units (FUs) for
translation and invalidation requests and responses.

To thoroughly understand and address the problem, the current state of address translation is
studied carefully. This leads to deeper understanding of the existing solutions, their advan-
tages, possible pitfalls and their short-comings. It is also necessary to gain a system level
view on the problem; so both software, CPU based and device oriented techniques are con-
sidered. This detailed analysis also reveals why current solutions fall short of providing a
design which meets the requirements for a high-performance virtualized device, as speci-
fied above. With the statement of requirements and the insight from current systems, the
innovative, streamlined design described later in the chapter is developed.

The remaining chapter is organized as follows: First, the current state of the art in handling
of physical versus virtual addressing will be thoroughly analyzed, giving the reader an
understanding and insight of current implementations, trends and their implications on sys-
tem performance and capabilities. This part is followed by a design space analysis for
address translation for EXTOLL. The chapter closes with the presentation of the ATU archi-
tecture, its implementation and the achieved performance.

5.1 State of the Art

5.1.1 X86-64 Processor MMU
AMD64 processors like the Opteron family as well as Intel X86-64 processors all imple-
ment a hardware MMU to translate memory accesses of applications into physical
addresses. All modern processors also implement some form of a TLB to accelerate transla-
tion from VAs to PAs. The methods used for CPU MMUs and TLBs are a well known field
within the computer architecture, details can be found for example in [64].

X86-64 processors use a 4-level page walk to translate a VA. Figure 5-1 illustrates the pro-
cess schematically and shows the four main memory accesses necessary to perform the
translation. This diagram is for long-mode (64-bit mode) of a K10 architecture AMD pro-
cessor (codename Barcelona) with a 52-bit physical address width. Other members of the
AMD64 CPU family may implement a smaller physical address width (for example 40 bits
on the original K8 Opteron cores). Different translations are used, if the processor is operat-
ing in legacy mode (32-bit). Also, the translation shown is for a page size of 4 kB, the most
common scenario. AMD64 processors also support other page sizes, notably 2 MB and
1 GB. For 2-MB pages, the page offset is 21 bits wide and the page-directory table becomes
the last translation level effectively removing one level; for 1-GB pages, the page offset
becomes 30 bits and the page-directory-pointer table becomes the last translation level leav-
ing a two level page walk.
80

The Virtual Address Space Barrier
Since main memory accesses are expensive, TLBs were introduced into CPU designs to
reduce the number of table walks. Also, translation tables are typically cached, which can
also help to accelerate address translation. Since address translation can have a significant
impact on overall system performance, the CPU’s TLBs have been improved and increased
in size over time. A K10 AMD CPU features a fully associative first level instruction TLB
with 32 entries for 4-kB pages and 16 entries for 2-MB pages. The second level instruction
TLB is 4-way set-associative and features 512 entries for 4-kB pages only. On the data side,
the first level TLB is fully associative and can hold 48 entries (either 4 kB or 2 MB). The
second level data TLB has a capacity of 512 standard page entries, again 4-way set-associa-
tive. There is an additional second level two-way set associative TLB for 2-MB pages with
a capacity of 128 entries [84].

Figure 5-1: X86-64 Page-Table Walk

Physical Page
Offset

12 bit

Page Table
Offset

Page-
Directory

Offset

9 bit

Page-
Directory

Pointer Offset

9 bit

Sign
ex-

tension

16 bit

Page-Map
Level-4 Offset

9 bit

PML-4 Base
Adress (CR3)

40 bit Page-
Map

Level-4
Table

PML4E

Page-
Directory-

Pointer
Table

PDPE

Physical-Page
Offset

12 bit

Physical-Page Base Adres

40 bit

9 9 9 9 12

52

52

9 bit

Page
Table

PTE

Page-
Directory

Table

PDE

5252 52
81

The Virtual Address Space Barrier
For the future, TLBs may become ever more important. The advent of virtualized comput-
ing in standard PCs and servers caused the Hypervisors to perform a large part of the mem-
ory translation management in software to hide the real, physical memory from the guest
operating systems (shadow paging). Hardware virtualization of processors now introduced
the concept of nested page tables [85], where the hardware can actually understand the
notion of different OS instances and the table walks are organized accordingly by augment-
ing the table walk hardware. In essence this means, the guest virtual address is translated to
a guest physical address. The guest OS has full control over the guest page tables. The
resulting guest physical address is then translated into a real physical address using a sec-
ond table walk using nested page tables. The complete process of translating a guest virtual
address into a real physical address is also called 2-d page walk in [85], because each refer-
ence to one the 4 table levels or the guest translation spawn a nested page walk. Such a table
walk can cause up to 24 main memory accesses with an according effect on performance.
Still, the CPU vendor hopes to increase the performance in respect to the software solution.

5.1.2 Classical Devices and the Linux DMA API
Traditionally, devices are controlled from kernel-space. In kernel-space it is possible to
translate virtual into physical addresses using software. The PAs can the be transferred to
the device. The Linux kernel provides a rather sophisticated library of functions to manage
the addressing of memory in a portable way when interacting with devices in the traditional
method. These functions are collectively known as the DMA API or DMA-mapping API
[86].

The API enables completely portable device drivers. The device driver neither needs to
worry if the architecture uses explicit bus addresses or only physical addresses, nor if there
are restrictions on the memory that can be addressed by devices1.

The API generally distinguishes two basic cases: using large DMA buffers and using small
DMA buffers. To use a large, consistent DMA buffer, the function dma_alloc_coherent() is
used. This function allocates a physically contiguous memory region of the given size and
returns both the kernel virtual address to reference this memory from software and a param-
eter named dma_handle of type dma_addr_t. The usage of a dma_addr_t instead of a
pointer, makes it possible to handle different architectures transparently to kernel drivers:
irrespective if the system uses physical addresses or an IOMMU (I/O memory management
unit), the API calls to allocate a DMA buffer are always the same. It is also guaranteed, that
the content of the dma_handle can be directly passed to the device in order to set-up a DMA
transfer2. The minimum size for such an allocation is often one page. The function
dma_free_coherent() frees such a DMA buffer again, after it has been used. Handing out
kernel virtual addresses and DMA address at the same time, the time of allocation of the

1. A very common problem here are devices, that can address memory only with 32-bit wide
addresses, but are used on modern systems with more than 2-4 GB of main memory.

2. Coherent memory means, that the memory takes part in the cache coherency protocol. There are
also non-consistent versions of the DMA API functions available; the Linux developers discour-
age their usage other than in special, often legacy cases, though.
82

The Virtual Address Space Barrier
buffer, saves later page table translations. It used to be the case, that the physical address of
a page could be very simply calculated from the linear kernel address by just subtracting a
constant; this is no longer the case since the kernel often does not even map the complete
physical address space into kernel virtual address space.

For drivers that use many DMA buffers of small size, the kernel offers the DMA pool API.
Using the function dma_pool_create(), a pool of memory for smaller buffers is created.
Using the function dma_pool_alloc(), a small buffer from the pool (i.e. usually smaller than
one page) can now be allocated from the pool and returned to the pool using
dma_pool_free(). The advantage is that allocating from the pool can potentially perform
much better, and the memory usage can improve, since one large memory region (the pool)
can serve multiple buffers.

One other important feature of the DMA API, which is essential for portability, is the sup-
port for different DMA address limitations. Using these functions it is possible to make
sure, that dma_alloc_coherent allocates only memory that is actually accessible from the
device.

There are also functions that can map an existing Linux kernel virtual mapping onto a
dma_addr_t. Using these functions makes it necessary for the driver programmer to worry
about alignment, DMA accessibility (the DMA mask), and physical contiguity of the mem-
ory. Additional functions exist to map single pages (dma_map_page()) or whole scatter lists
(dma_map_sg()). The scatter-list support is smart in the sense that it can potentially com-
bine physically adjacent entries into one segment. Scatter-lists are especially important and
used extensively by block devices and also for some network devices.

To map user application memory for I/O, Linux offers the get_user_pages() function. It
returns an array of struct pages which can then be used to get the physical address. The
pages are also implicitly locked in memory. By using put_page() a page can be unlocked
again. This interface is used by many drivers for zero-copy I/O. There is another interface
for zero-copy block-device I/O (bio_map_user()).

This API is reasonably simple and covers most cases for traditional I/O while preserving
full portability.

5.1.3 Mellanox Infiniband HCA
To support user-space initiated, zero-copy put/get and send/receive operations the Mellanox
HCA supports address translation. An HCA uses tables to store the context information.
Each context, which can be used by one process to communicate using the HCA, includes
queue-pair states, memory information, and firmware state. To manage memory a table of
registered memory regions (pages) called memory translation table (MTT) is used. The
HCAs implement on-chip caching of contexts and memory translations. Older HCA imple-
mentations from Mellanox used a dedicated DRAM on the card to store the context infor-
mation whereas the work queue and all data buffers were located in main memory.
Mellanox HCAs support millions of Queue Pairs, but a more limited amount of contexts. A
maximum of 510 possible user contexts was measured1.
83

The Virtual Address Space Barrier
1. Mellanox ConnectX SDR HCA, firmware version 2.3, Linux 2.6.24, OpenFabrics 1.3, 4x Quad-
core Opteron system (2.2GHz)

Figure 5-2: Mellanox Context and Translation Architecture [87]

InfiniHost Contex
Memory

(Translation unit)

Host Physical
Address
Space

ICM

Queue Pair
Context

Memory
Translation

Tables

Firmware

HCA
contigous

view of
context

Non-
contigous
pages in

main
memory
84

The Virtual Address Space Barrier
So the amount of DRAM on the adaptor card limited the number of contexts respectively
their size, for example the size of the MTT. Later, so called “memfree” HCAs move the
complete context information to host memory. The HCAs also support context information
in physically non-contiguous pages. The necessary logic to support this is called InfiniHost
Context Memory (ICM) and works similar to a Graphics Aperture Remapping Table
(GART, section 5.1.8), i.e. remaps contiguous addresses to non-contiguous physical
addresses. This layer seems to replace the memory controller logic on non-memfree HCAs.
The actual ICM table also resides in main memory. Thus, if no information is currently
cached on the device, an IB transaction involves quite a number of main memory accesses:

• fetch WQE (Work Queue Entry) from main memory,
• fetch context from memory (potentially cached),
• perform translation using the MTT (potentially cached),
• and fetch actual data from main memory.

In [88] the effects of caching on the performance of a “memfree” HCA are described. While
standard ping-pong test do not suffer, it is possible to implement cache trashing tests, so that
the context needed for the next transaction is never loaded into the on-chip context cache.
[87] claims that the RDMA write based latency only increases from about 9 µs to 11 µs
when moving to a memfree design in the case contexts are not cached, using a PCIe mem-
free InfiniHost III HCA. The presentation also shows that the half-roundtrip latency is
increased by 4-6 µs by cache misses.

The kernel driver manages these tables and it is necessary to register/deregister memory as
it is needed. Memory registration is an expensive operation since it involves at least a sys-
tem call to enter kernel mode. An analysis of the relevant part of the Infiniband low-level
driver in the Linux kernel1 shows that registration of user memory uses the
get_user_pages()/put_page() interface to pin and translate virtual user addresses in one
step. The resulting translations are then assembled in a scatter/gather list. The command to
load and register MTT entries is written to the HCA using memory mapped I/O. The HCA
reads in the translation entries using DMA and finally completes the action, which the
driver polls for.

In [89] the memory registration costs of previous generation PCI-X and PCIe based Infini-
band HCAs are analyzed in detail. The IB stack performs the usual three sequential opera-
tions to register memory (note that this uses an older kernel API based on a different set of
functions):

• pin the requested pages using mlock(), fault in the pages if not present
• translate the virtual address
• transmit them to the HCA

1. Linux kernel version 2.6.24
85

The Virtual Address Space Barrier
Interestingly enough, the most time consuming factor was the address transfer to the HCA
with more than 100 µs for a single page1! In contrast, the mlock() function only took ~2µs
and the actual translation ~2µs, too2. Beyond buffer sizes of 256 kB the run time became
dominated by pinning the pages. The high communication runtimes are caused by the HCA
only reacting after this amount of time.

The duration of the ibv_reg_mr() function was benchmarked on a current Mellanox Con-
nect X HCA3. In figure 5-13 the results are collected together with the results from the
EXTOLL ATU unit. Notice, that constantly the minimum registration time, i.e. for one
page, starts beyond 50 µs indicating that even with the newest HCA generation and soft-
ware revisions, pinning of memory is a very expensive operation on Mellanox hardware.
The time to deregister memory (ibv_dereg_mr()) was also benchmarked; the results are
shown in figure 5-14. Again it must be noted that deregistration times start beyond 50µs.
Repeated pinning of smaller sizes does not exhibit the peaks visible in the two graphs. The
reason for these peaks is unknown.

These very high memory (de-)registration times explain the large number of papers con-
cerned with optimizing the way memory is managed for IB based middlewares and applica-
tions [90][91][92]; an analysis of the impact of buffer re-use can be found in [93] and [32].

5.1.4 iWARP Verbs Memory Management
iWARP [94], as the specification of RDMA over TCP/IP is also known as, uses a Verbs API
closely related to VIA or IB [31]. The memory management employs the notion of memory
regions and memory windows.

Memory regions are identified by a steering tag (STag), a base tagged offset (base TO) and
a length. The base TO is the first virtual address of the region. Each memory region is asso-
ciated with a physical buffer list (PBL) through the STag. Memory regions are registered
with the kernel level driver, which translates the virtual address to a physical address, builds
the physical buffer list by translating involved pages, and hands the list to the NIC while
also associating it with an STag. The maximum size of the PBL is NIC specific. The STag is
composed of an 8-bit consumer key which can be used arbitrarily by the user and a 24 bit
STag index, basically enabling up to 224 different memory regions. There is a special STag
of zero which can be used by kernel-level clients like for example filesystem applications to
directly post physical addresses in work requests to the NIC.

1. Measurement System: memfree PCIe Infinihost III Adapter, Opteron 1.8 GHz, Linux 2.6.10, Mel-
lanox InfiniBand Gold Edition Package Software

2. Actually, the graph for the memfree HCA reports a translation latency of 22 µs for single page.
This seems a little too high and is probably a measurement error. This thesis is backed by the
results for the non-memfree HCA of 2 µs. For this reason, the lower number has been reported
here.

3. Mellanox ConnectX SDR HCA, firmware version 2.3, Linux 2.6.24, OpenFabrics 1.3, 4x Quad-
core Opteron system (2.2GHz), 16 GB RAM
86

The Virtual Address Space Barrier
iWARP Verbs also uses memory windows to enable more dynamic access control to mem-
ory regions. Memory windows are associated with Queue Pairs (i.e. connections). This fea-
ture allows to use one memory region for receive buffers and partition them between
different clients, so that one client cannot interfere with other clients. In all work requests,
memory is identified to the NIC using the STag (to identify the memory region or memory
window), a tagged offset to specify the offset of the starting address within the region/win-
dow and a length. All of the iWARP specifications is, by design, relatively general to sup-
port different NIC implementations.

5.1.5 Quadrics
The Quadrics network adapters feature an embedded processor and SRAM on the card.
Some installations used part of the SRAM as an IOTLB and managed the contents from
host kernel software. This is a patched Linux kernel which promotes unmapping of pages to
the SRAM on the adaptor. The patches to the kernel to support to transparent page transla-
tion by the adapter have been rejected from mainline kernel so far (see also section 5.1.12).

The Quadrics website [95] states that there are actually two variants being used, one based
on callbacks/notifier functions being called whenever the mapping of an application
changes so that Quadrics driver software can update the translation structures on the
adapter; the other variant uses memory registration techniques like IB does, too, and does
not require a patched kernel.

5.1.6 Myrinet MX
The Myrinet eXpress (MX) [96] suite is a combined library, kernel driver, and firmware
approach, where the firmware part runs on the LanAI RISC processor located on Myrinet
adapter boards. Myrinet boards traditionally feature on-board SRAM which is accessible to
both the LanAI and the host processor. With the current MX software, Myrinet uses direct,
zero-copy DMA for large messages (> 32 kB). Smaller messages use copy protocols.

Closer examination of MX reveals that MX employs an approach where “DMA windows”
are implicitly registered when needed. This means the kernel pins the pages associated with
a communication operation, and then transfers the resulting translations to the adapter using
several PIO transactions. The translations are associated with an ID, which is passed to the
user application. It can then initiate as many operations on this buffer as it wants; it just
passes the window ID to the adapter which can look up the translation in on-board SRAM.
Since the on-board SRAM is quite limited (2 MB are reported), the number of DMA win-
dows is limited. The registration can be freed after the operation is finished. MX can also
employ a sort of registration cache, where windows are only removed if they become
invalid or the resources are needed for other windows. In registration cache mode only
straight matches (address and length match exactly) can reuse the same registration (this
may change in future revisions, since this seems to be a software issue). Using GLIBC
hooks, MX tries to invalidate registrations if the user space memory mapping changes. So,
in case of a registration cache hit, large send operations can proceed as pure user-space
87

The Virtual Address Space Barrier
operations, else, the kernel is invoked to first provide a DMA window for the buffer. MX
does not provide complete RDMA, the above described scheme is only used for a zero-copy
two-sided protocol.

In [97] a software solution to emulate the MX API on standard Ethernet hardware is pre-
sented. This is notable because it employs kernel-based zero-copy techniques at the sender
side. The developer reports a latency of 200 ns for the necessary call to get_user_pages() on
an Intel Xeon E5345.

5.1.7 SciCortex
SciCortex uses a proprietary network for their family of MIPS processor based supercom-
puters [98]. The NIC, called DMA Engine, supports RDMA operations via a microcoded
engine. Access to the application’s VA from user-level communication is implemented via
an address translation table called Buffer Descriptor Table (BDT). Applications can register
memory, i.e. buffers, with the scdma Linux kernel driver. The driver then pins the memory
and inserts an entry (a Buffer Descriptor or BD) into the BDT for each page referenced by
the memory region. The white paper states that BDs are invalidated when the kernel
unmaps a virtual page. It is unclear how or if this is actually performed. The BDT is only
accessible from kernel space. The memory registration returns an index into the BDT which
is used by subsequent commands to the DMA engine.

5.1.8 Graphics Aperture Remapping Table
The Graphics Aperture Remapping Table (GART) is a method to translate discontinuous
physical address space into continuous physical address space. It was first introduced for
graphics applications with the Accelerated Graphics Port [99]. In essence this creates an
alias of a physical address within a window of physical address space called the aperture.
Such translation tables can be found in Intel integrated graphics chipsets, many other
chipsets and PEG/AGP bridges and, most important within this context, in all AMD64
northbridges. In [100] the programming interface for the AMD GART is described which
uses four PCI configuration space registers of PCI function 3 of the northbridge. They are
listed and described in table 5-1.

The size of the aperture can either be 32, 64, 128, 256, 512, 1024 or 2048 MB. The transla-
tion table is a flat table in contiguous physical main memory holding one 32-bit entry for
each 4-kB page frame of the aperture. Each entry specifies a valid bit, a coherent bit (if the
entry is to be held coherent with CPU caches) and the physical address, which backs this
part of the aperture. Only main memory addresses below one terabyte (i.e. lower 40 address
bits) can be remapped even on systems with larger physical address space (K10 and newer
Opterons).

Figure 5-3 shows an example for a GART operation. The upper half of the displayed physi-
cal address space is used for memory mapped I/O mappings, while the lower part is actually
used by physical DRAM, the main memory. Using the GART Aperture Base register and the
GART Aperture Control Register, an aperture is established in the memory mapped I/O
88

The Virtual Address Space Barrier
Register Offset Name Description

0x90 GART Aperture Control Register enable/disable the GART and set aper-
ture size

0x94 GART Aperture Base Register set the physical base address of the
aperture

0x98 GART Table Base Register set the physical base address of the
translation table

0x9C GART Cache Control Register trigger GART TLB flushing and also
for translation error reporting

Tabelle 5-1: AMD GART Registers

Figure 5-3: GART Remapping

Physical Address Space

Aperture

Physical page, 4Kb

original physical mapping

Aliased physical mapping
Access a

Access b

Memory
Mapped

I/O
Space

Physical
DRAM
space
89

The Virtual Address Space Barrier
space. For each 4 kB of address space in the aperture, one entry is used in the GART table.
The example shows the mapping of three pages from their respective mapping in the GART
to their backing, physical memory location. The two memory references shown, access a
and access b actually address the same physical memory location.

The GART is widely used to enable physically discontinuous buffers for graphics process-
ing. User space buffers (virtually contiguous) can be mapped so that they are contiguous for
the DMA engine of the graphics controller. The user can then send commands to the GPU
(graphics processing unit) using only offsets into the region. The offsets are the same,
whether the application accesses the memory using its virtual base address plus offset or if
the device accesses the memory using the aperture base address and the offset. The GART
can also be used in other applications, for example Cray uses it on their XD-1 range of
machines to make more then 2 MB of DMA buffer available for applications using the inte-
grated FPGA [101].

Generally, the GART can be used whenever it is necessary or useful to access large chunks
of physically contiguous memory from a device, while it is not feasible to allocate the mem-
ory in this way on the machine. While a system is up and running it becomes increasingly
difficult to acquire large chunks of contiguous memory; on Linux one is limited to 2 MB in
one allocation call even right at boot time. So, this mechanism can be used to increase the
feasible DMA area of device functions like the ATOLL Hostport (see also section 2.2.1) or
the VELO mailbox (see section 7.4). For ATOLL it actually would enable a clever zero-
copy send concept.

5.1.9 IBM Calgary IOMMU
The IBM Calgary IOMMU is used on x86-64 (X-series with Hurricane chipset) machines
from IBM as well as some p-series machines. Its primary use is to enable 32-bit devices to
efficiently function in 64-bit environments and to provide DMA isolation which is espe-
cially useful in a virtualized environment.

As can be seen in figure 5-4, Calgary uses a table in main memory which contains Transla-
tion Control Entries (TCE). Each entry holds the host physical address as well as permis-
sion bits for the device. A TLB caches TCEs on chip for faster operations. Whenever a
device behind the IOMMU, which is located in a PCI-X bridge, accesses the system the
given address is used to address a TCE and the resulting translated address is used for the
up-stream transaction if all protection checks succeed.

The Calgary IOMMU is fully supported on Linux and the driver has been merged in version
2.6.21 into the main kernel tree. The driver code interacts with the DMA API to enable
transparent operations. A driver for a device behind the IOMMU calls a DMA API function
to allocate a DMA buffer, for example. Since the device is behind a Calgary IOMMU, a
TCE is allocated for the new buffer. In this case, the dma_handle_t returned by the DMA
API functions represents not a physical address but the one used on the subordinate bus to
address the correct TCE, i.e. an index into the TCE table. The address space accessible with
the Calgary IOMMU is a full 64-bit address space. The table size can be configured in eight
90

The Virtual Address Space Barrier
steps from 64 kB up to 8 MB in powers of two. Thus the minimum sized table provides for
8192 entries, while a Calgary IOMMU with a maximum sized table can handle at most 220

entries corresponding with 220 x 212 bytes = 232 bytes = 4 GB of DMA addressable memory
at one time.

In [102] some performance aspects of this IOMMU are discussed. One major drawback is
the lack of the availability of a command to invalidate a single entry of the IOTLB. Instead
there is only a command available that flushes the complete TLB. This means deregistration
of memory becomes an expensive operations; even worse, other subsequent DMA opera-
tions are adversely influenced.

The COC925 also known as U3 northbridge that was used in Apple G5 machines and is
used on IBM JS20/21 blades features an IOMMU called DMA Address Relocation Table
(DART) which is similar to the Calgary TCE table. The main difference is that only validity
of entries and no access rights are tracked. The maximum address space that can be trans-
lated is 36-bit.

5.1.10AMD IOMMU and Intel VT-d
The AMD IOMMU specification [103] defines a full IOMMU to be used mainly in server
systems. AMD identifies DMA security, support for direct device access by virtualized
operating systems, and substituting of the GART as main usage models for its future imple-
mentation. Figure 5-5 shows a block diagram of a system with one CPU, two southbridges,
an IOMMU and several peripheral devices. Southbridge 1 implements an IOMMU with on
chip TLB. All DMA requests from downstream devices will be translated by this IOMMU.
Requests initiating in integrated peripherals will also be translated since they are logically
downstream. Requests initiating from southbridge 2 or its down-stream devices will not be
translated at all, since no IOMMU is located on the way to the CPU hostbridge. This also
implies that any directly connected device (i.e. a HyperTransport device which is connected
directly to a CPU) cannot use the service of an IOMMU. The IOMMU specification also
arranges to be compatible with PCIe Address Translation Services (ATS), which is neces-
sary if a down-stream device implements an IOTLB (device 3 in the diagram).

A full table walk first accesses the device table followed by up to six levels of page tables
accounting for a total of up to seven main memory accesses for a single translation.
IOMMU page walks are a generalization of the AMD64 page walk. If certain rules are fol-
lowed, the IOMMU and CPU MMU can share the same set of page tables. An IOMMU can
use a full 64-bit address space (other than the CPU). The introduction of the next level field
into the page table entries allows individual levels to be skipped. Furthermore, the size of
the page, which an entry references, can be individually given.

Requesters (i.e. devices) are identified by a requester ID. One set of translation tables exists
per requester ID. For PCIe packets, the requester ID is formed by the Bus:Device:Function
(BDF) triple of the PCI device. This gives a 16-bit ID, albeit if not misused, only up to 8
contexts per device are possible since the function field has a width of 3 bits. A virtualized
device with more contexts would have to allocate the according number of device IDs and,
91

The Virtual Address Space Barrier
subsequently, would be seen as a number of devices by the whole system. In a HyperTrans-
port fabric, the requester ID is formed by the 5 bit UnitID and the 8 bit bus number of the
device, thus further reducing the context/device address space. Logically, a requester ID is
now used instead of a process ID for the table walk. The necessary data structures, which
are stored in main memory (figure 5-6), are:

• A device table. The device table entry is indexed by the requester ID of the request to be
translated. Each device table entry has a size of 256 bits and (besides other bits) encodes
the base address of the top level translation table for the page tables of this device and also,
the base address for an interrupt remapping table.

• Up to 6 levels of page tables. The number of page table levels is not fixed. Each page table
uses one 4-kB page and features 512 entries of 64 bit size. The 3 bit next-level-field of an
entry specifies if another level follows (encoded as 000 or 111) or if this is the last table in
the sequence (all other encodings). The next-level-field also selects the corresponding 9 bit
block from the device address to be used as index for the next table. If levels are skipped,

Figure 5-4: IBM Calgary IOMMU Architecture

Xeon MP

Hurricane
Memory Controller

Xeon MP Xeon MP Xeon MP

Memory

Memory

Memory

Memory

Sub-
ordinate
PCI-X
Bus

Sub-
ordinate
PCI-X
Bus

Sub-
ordinate
PCI-X
Bus

Sub-
ordinate
PCI-X
Bus

Calgary
IOMMU

With
TLB

Translation Control
Table

Translation Control
Entry

0

n

Located in Main
Memory

Each TCE is 64-bit and gives the PA and permissions for a given index

Cached
Subset
of TCEs

RWReservedPhysical AddressUnused

12 bit32 bit16 bit

HUB ID

Calgary
PCI-X 2.0 Host Bridge
92

The Virtual Address Space Barrier
the skipped 9 bit device address blocks must be zeroed. The IOMMU specification assigns
a default page size per level (which is given by the remaining lower bits of the device
address, i.e. 212 bytes for 1st-level, 29+12=221 bytes for 2nd-level etc.). Additionally, the
default page size can be overridden by an base address encoding like it is used by the PCI
address translation services (see section 5.1.11).

• A command queue. Implemented as a circular buffer, into which commands are inserted
by system software and from which commands are consumed by the IOMMU. The buffer
is managed using registers in the MMIO PCI space of the IOMMU.

• An event log queue. Implemented as a circular buffer, into which event entries are inserted
by the IOMMU and from which entries are consumed by system software. The buffer is
managed using registers in the MMIO PCI space of the IOMMU.

• Interrupt remapping tables. An interrupt remapping table holds entries to remap or trans-
late the interrupts originating from a device to another interrupt.

All IOMMU commands are 128-bits in size with an 4-bit op-code and two 60- respectively
64-bit sized operands. Commands are fetched in order from the command queue, but the
specification allows the IOMMU to execute several of them in parallel; the
COMPLETION_WAIT command is specified for synchronization purposes. The other
commands are rather straight forward: INVALIDATE_DEVTAB_ENTRY invalidates a
device table entry upon modification, INVALIDATE_IOMMU_PAGES invalidates transla-
tion table, INVALIDATE_IOTLB_PAGES causes an invalidation ATS request to down-
stream IOTLB devices, and INVALIDATE_INTERRUPT_TABLE invalidates interrupt
remapping table entries.

Figure 5-5: AMD IOMMU System Architecture

CPU

Peripheral \
Device 1

Peripheral
Device 2

Southbridge 2

Peripheral
Device 3

IOTLB

NorthbridgeMemory Memory

Peripheral
Device 4

Peripheral
Device 5

Southbridge 1

TLBIOMMU
93

The Virtual Address Space Barrier
The IOMMU reports errors using the second circular buffer, the event log queue. It is possi-
ble to configure the IOMMU to trigger an interrupt upon adding an entry to the queue.
Reported errors include illegal table entries, illegal accesses by down-stream devices, ATS
timeouts (down-stream devices not responding in time to an invalidation request). If the
queue ever overflows event logging is automatically disabled.

The performance impact when an IOMMU is introduced into the systems is not only depen-
dent by the IOMMU implementation but also dependent on system software, since the
choice of different translation strategies can have a dramatic effect on the number of main
memory accesses necessary for a single translation. The IOMMU proposal does not scale

Figure 5-6: IOMMU Data Structures

Main Memory

IOMMU

base
register
for the
device
table

Device

Table

L6 page table

(bits 63:58)

L5 page table

(bits 57:49)

L4 page table

(bits 48:40)

L3 page table

(bits 39 :31)

L2 page table

(bits 30:22)

L1 page table

(bits 21:12)

Interrupt

Remappin

g Table

event log

queue

command
queue
base

register

event log
queue
base

register

command

queue
94

The Virtual Address Space Barrier
very well to self-virtualizing devices or functions as EXTOLL, since the requesting context
is a device ID in the underlying peripheral interconnect. Also, the IOMMU functions as a
kind of bridge between the link to the northbridge/CPU complex and the devices south of it.
For directly connected devices, which communicate directly with the CPUs host-bridge
without intermediate bridges, it is not possible to leverage future system chipset implemen-
tations of the specification.

The Intel Virtualization Technology for Directed I/O (VT-d) [104] specifies a similar
IOMMU for the Intel architecture. Since Intel systems feature discrete northbridges, VT-d is
located in the northbridge of the system. VT-d covers largely the same issues as the AMD
IOMMU, however some small differences exist. One example is the protection domain
table (known as device table in the AMD specification) which feature two levels of lookup,
one based on the bus number, and the second level based on the device and the function
number.

5.1.11PCI Express and HT3 Address Translation Services
To enable faster address translation for DMA accesses initiated by a device, a device may
employ an IOTLB, as it is for example described in the AMD IOMMU specification. The
PCI SIG (Special Interest Group) has recognized the necessity to support such an architec-
ture and has recently specified the PCIe ATS [105]. In the PCIe jargon, the IOTLB is
dubbed Address Translation Cache (ATC), an up-stream IOMMU is called address transla-
tion agent (TA). The PCI SIG states, that typical purposes of DMA address translation are
sandboxing of DMA I/O functions, providing scatter/gather support, redirecting interrupts,
converting from 32-bit to 64-bit address space and supporting OS virtualization. Figure 5-5
shows the system architecture with an IOMMU which also is an example for a system
where ATS must be employed between the IOTLB of device 3 and the IOMMU in south-
bridge 1.

The PCIe ATS protocol involves the following changes to the original PCIe specification:
• Memory requests are extended by a 2-bit AT field (previously reserved). These two bits

encode, if the device wishes the address associated with the request to be translated or, if
the request contains an already translated address (via an ATC/IOTLB). If the request is a
translation request a third coding must be used. If the request is initiated by a device that is
not allowed to access main memory with physical addresses, this is an error.

• A new PCIe request called translation request which is initiated by an ATC and destined to
a TA. A translation requests has no data attached, and is used by a device with ATC to
request the translation of an address from the TA. An PCIe address translation request for
a 64-bit address has a size of 4 quadwords (i.e. 32 bytes). By specifying a larger length
value, the ATC can request multiple translations for a contiguous amount of virtual
addresses.

• A new PCIe completion called translation completion. This is the completion packet sent
by a TA to the ATC in response to a translation request. A translation completion has a
header of 32-bytes (64-bit addressing) and, if the translation was successful, the translated
addresses are returned in the data payload of the completion packages using 8 bytes each.
A tricky encoding allows the TA to specify the length of this translation to be between
95

The Virtual Address Space Barrier
4 kB and 4 GB. If one special bit is set in the translation, the translation applies to blocks
larger than 4 kB and the receiver has to check the address bits starting from bit 12 (the
lowest address within a translation). If bit 12 is set, the translation applies to a block size
larger than 8192 bytes, if bit 13 is set, the block is larger than 16 kB. Thus, the least signif-
icant zero within the address gives the size of the block (note that for larger blocks the
lower address bits are not necessary, since blocks must be naturally aligned). While this
can be rather efficient in terms of number of translations, it is more difficult to handle in
hardware, both in the control logic and TLBs, than a fixed format.

• A new PCIe request called invalidate request, which flows from TA to ATC. An invalidate
request causes an ATC to invalidate a number of translations which have been changed in
upstream entities. The format includes a 32-byte header plus 8-byte payload containing the
untranslated address of a block that is to be invalidated. Encoding of block size is the same
as with translation completions. Invalidate Requests are broadcast in the fabric, since an
TA does not know, which device actually uses ATS, respectively if a device has a cached
copy of the translation.

• A new PCIe completion called invalidate completion. An ATC responds to an invalidate
request with an invalid completion to indicate that it is safe to proceed with an updated
translation. Before it can issue the completion, the ATC must be sure that the translation is
removed from the cache and that no transactions currently in execution by the device are
using this translation. If a device does not understand an invalidate request, it issues an
error response which can be handled accordingly by the TA.

• A PCI configuration space capability to enumerate and configure the ATS capabilities of
devices.

Since revision 3.0 HyperTransport [13] defines packets to support the PCIe ATS protocol.
This becomes necessary since ATS is designed to operate between an IOMMU and IOTLBs
on devices, and the IOMMU in AMD64 systems may well reside upstream on a Hyper-
Transport chain. Since the EXTOLL design is closely coupled with HyperTransport, a
description of the packet format of the HyperTransport ATS protocol follows. The PCIe
packet formats are very similar; indeed, the HT ATS protocol is defined in Appendix B.7 of
the HT specification which is located in Appendix group B called Ordering Rules and Map-
ping of Other I/O Protocols.

In table 5-2, the packet format for the HT3 ATS Request is shown. It has a length of 96 bit.
The translation response (table 5-3) features a 32-bit control packet followed by 8-byte pay-
load for every page returned as translation. Up to 8 translations may thus be completed with
a single packet, which is a difference from PCIe that supports more translation in the
response packet.

A translation invalidation request consists of a 96-bit control packet followed by a 64-bit
payload and is transported using the posted channel. The format of the packet is shown in
table 5-4. Note bit 2 of bit-time 7 which is shaded in the table. This bit, called invalidate
response is the only bit to distinguish ATS invalidation request packets from invalidation
response packets.
96

The Virtual Address Space Barrier
The translation invalidation response (table 5-5) also travels in the posted channel (despite
of its name) and uses a 96-bit control format followed by a 32-bit one-hot coded response
payload. Here, bit 2 of bit-time 7 (again shaded) holds a 1 to state that this is an Invalidation
Response packet. Theoretically up to 32 invalidation can be completed with one invalida-
tion response packet. There is one response required for each traffic class in PCIe respec-
tively for the normal and isochronous channels of a HT link; the completion count field is
used to indicate the number of responses sent for the invalidation.

ATS complements techniques like the AMD IOMMU or Intel’s Directed I/O and enables
complex systems with distributed IOTLBs. Still, the problems for close-coupled, self-virtu-
alized devices are not solved.

5.1.12Virtual Memory Hooks in the Linux Kernel
The different NICs mentioned in the previous sections use memory registration with pinned
pages, a notable exception being Quadrics Elan network adapters. Locking (or pinning)
ensures that the memory-mapping is valid during the time the device accesses main mem-
ory. If the mapping ever becomes invalid while the device still accesses the memory unde-
fined behavior can result, most likely data corruption. One point that is often raised against

Bit-
Time CTL 7 6 5 4 3 2 1 0

0 1 2’b10 Cmd[5:0]=6’b111110

1 1 Device [4:0] Function[2:0]

2 1 Bus[7:0]

3 1 Reserved Address
Type[1:0]=2’b01

4 1 SeqID[3:2] Cmd[5:0]=01x1x0

5 1 PassPW SeqId[1:0] UnitID[4:0]

6 1 Count[1:0] Cmp=0 SrcTag[4:0]

7 1 Ignored Count[3:2]

8 1 Virtual Address [15:12] Ignored

9 1 Virtual Address [23:16]

10 1 Virtual Address [31:24]

11 1 Virtual Address [39:32]

Tabelle 5-2: HT3 ATS Translation Request
97

The Virtual Address Space Barrier
pinned-down registration based memory management is the stress the method puts on the
virtual memory subsystem and the over-subscription of memory resources by applications
using the device since such memory resources can not be swapped out. Another point
against memory pinning is the cost of memory registration and pinning which can be quite
expensive (see section 5.1.3) thus causing applications to map as much space as possible
and never returning it to the system, aggravating the first problem.

But sometimes it is argued, that a system that is designed for high-performance must
accommodate enough physical memory to handle this kind of load. If the target memory of
a user-level initiated RDMA request is swapped out, the low latency of the communication
is by far outweigh by the cost of swapping.

There are quite a few further problems, some of which are discussed in an LWN.net article
of 2005 [106]:

• get_user_pages() is not designed for this use-case.
• Forking can pose a problem since normally copy-on-write is employed.
• Freeing of all resources when a process exits must be assured
• The special case of overlapping registrations must be handled.

An alternative approach to pinned memory registration is to add virtual memory system
hooks to the operating system. Whenever a page gets mapped or unmapped, functions that
are registered with the respective hook get called and can perform appropriate actions. This

Bit-
Time CTL 7 6 5 4 3 2 1 0

0 1 Isoc Rsv Cmd[5:0]=6’b110000

1 1 PassP
W

Bridge Rsv UnitID[4:0]

2 1 Count[1:0] Error 0 srcTag[4:0]

3 1 Rsv/RqUID Error 1 Rsv/RspVCSet Count[3:2]

4 0 Reserved U W R

5 0 Physical Address 1 [23:16] Size Coh Reserved

...

11 0 Physical Address 1 [63:56]

12-... 0 up to 7 more 8 byte translations

Note: U=untranslated flag, W=write permissions, R=read permission, coh=coherent access
required to this region, Isoc=isochronous, Rsv=reserved for future use

Tabelle 5-3: HT3 ATS Translation Response
98

The Virtual Address Space Barrier
is exactly the method Quadrics uses to enable full virtual memory system integration.
Unfortunately, patching the operating system kernel, especially in such an intricate and
important part as the virtual memory system raises reliability and correctness concerns.

There is quite a history of attempts that have been made to establish such a hook within the
mainline Linux kernel. In 2003 Thomas Schlichter [107] proposed a patch called TLB hooks
which enabled attaching to the TLB flushing within the kernel. In 2005 David Addison
from Quadrics proposed in a post to the Linux kernel mailing list a patch dubbed

Bit-
Time CTL 7 6 5 4 3 2 1 0

0 1 2’b10 Cmd[5:0]=6’b111110

1 1 Device [4:0] Function[2:0]

2 1 Bus[7:0]

3 1 Reserved Address
Type[1:0]=2’b00

4 1 SeqID[3:2] Cmd[5:0]=6’b1011x0

5 1 PassP
W

SeqId[1:0] UnitID[4:0]

6 1 Count[1:0] Cmp=0 Error 1’b0 Reserved

7 1 Reserved 1’b0 Count[3:2]

8 1 Target Device [4:0] Target Function [2:0]

9 1 Target Bus [7:0]

10 1 Addr[31:24]=8’hFB

11 1 Addr[39:32]=8’hFD

12 0 Invalidation Tag [4:0] Reserved

13 0 Virtual Addr[15:12] Size Reserved

14 0 Virtual Address [23:16]

15 0 Virtual Address [31:24]

16 0 Virtual Address [39:32]

17 0 Virtual Address [47:40]

18 0 Virtual Address [53:48]

19 0 Virtual Address [63:54]

Tabelle 5-4: HT3 ATS Translation Invalidation Request
99

The Virtual Address Space Barrier
ioproc_ops, for I/O Processor Operations, the name owing to the fact that devices using vir-
tual memory resemble processors in their own right. The patch basically proposes some-
thing very similar to the patch from Schlichter but adding hooks to all important functions
in the virtual memory area. The patch was not taken over into the mainline kernel but
remains available from the Quadrics Website [95]. One of the key disadvantages of out-of-
kernel patches can be seen here, since only a small number of kernels is supported, and usu-
ally these are relatively old. Of course it is often possible to apply the patch to a newer ker-
nel, but it is untested and may or may not work without problems.

Then, SGI’s Jack Steiner tried to get a driver into the mainline kernel for their GRU hard-
ware. Apparently GRU is an offload engine within the system chipset for memcopy like
operations. The engine is fed with commands directly from user-space and, must access vir-
tual addresses to copy data on behalf of the user. This GRU hardware also contains a TLB.
GRU seem to be the next generation of DMA hardware used in large NUMA systems by

Bit-
Time CTL 7 6 5 4 3 2 1 0

0 1 2’b10 Cmd[5:0]=6’b111110

1 1 Device [4:0] Function[2:0]

2 1 Bus[7:0]

3 1 Reserved Address
Type[1:0]=2’b00

4 1 SeqID[3:2] Cmd[5:0]=6’b1011x0

5 1 PassP
W

SeqId[1:0] UnitID[4:0]

6 1 Count[1:0] Cmp=0 Error 1’b0 Reserved

7 1 Reserved Completion Count [2:0] 1’b1 Count[3:2]

8 1 Target Device [4:0] Target Function [2:0]

9 1 Target Bus [7:0]

10 1 Addr[31:24]=8’hFB

11 1 Addr[39:32]=8’hFD

12 0 Invalidation Tag Bitmap [7:0]

13 0 Invalidation Tag Bitmap [15:8]

14 0 Invalidation Tag Bitmap [23:16]

15 0 Invalidation Tag Bitmap [31:24]

Tabelle 5-5: HT3 ATS Translation Invalidation Response
100

The Virtual Address Space Barrier
SGI for shared memory communication. Lameter [108] states that the next generation,
Xeon based NUMA machines from SGI actually have to run several instances of Linux run-
ning on the same shared memory machine, since the amount of memory in the machine
exceeds the addressing limit of the processor (16 TB). Thus, the GRU may be of use to sup-
port fast message passing between different Linux instances. The GRU driver uses another
virtual memory system hook patch, the mmu notifier patch from Andrea Arcangeli which
has been accepted into the mainline kernel tree starting with Linux version 2.6.27 and basi-
cally provides the same features as the earlier ioproc_ops patch. Another very important
driving force behind the acceptance of the mmu notifier patch are OS virtualization tech-
niques. Today, Hypervisors have to manage shadow page tables, table structures mimicking
a real table structure for guest operating systems, in addition to the real table structures (see
also section 5.1.1). To keep everything consistent the current KVM implementation has to
pin all pages that are currently used by a guest system, and therefore puts a high pressure on
the virtual memory system. The mmu notifier patches are expected to help tremendously in
improving KVM memory behavior.

The rational from all of this is that new RDMA-enabled hardware or other hardware that
wishes to directly operate on user virtual memory should be designed to work with both
registration based and hook based memory management.

5.2 Design Space of the EXTOLL Address
Translation
For the EXTOLL RMA units address translation is necessary. The unit that will perform
this function is called Address Translation Unit (ATU). After the analysis of the previous
paragraphs about different current, state-of-the-art memory management methods, this sec-
tion presents a design space analysis for the EXTOLL ATU. The requirements have already
been stated in the introduction to this chapter.

All of the different aspects of the design space have been summarized in figure 5-7. The
blue shaded entries are analyzed in more depth in the following sections. One decision is if
hardware- or software-based translation should be used. Software based mechanisms
include the interrupt-driven approach, i.e. always triggering a CPU interrupt and continuing
when the result has been returned by the CPU, and the pre-translated approach. Pre-transla-
tion means that actually only PAs are given to the device, so translation in the device in
unnecessary. Pre-translation also implies kernel-based virtualization (see section 6.2). For
hardware based translation there is the choice of direct mapping or inverted mapping.
Inverted mapping is discarded since it does not map well to the problem at hand, since the
methods available either perform badly or are not possible to implement. In the direct map-
ping domain, it can be differentiated between designs implementing a full system table-
walk or a reduced table-walk. TLBs can help speeding up the process of translation, for the
design space TLB-less designs, software managed and hardware managed designs are ana-
lyzed. With a software managed TLB all operations are completely controlled from CPU
software, hardware only performs lookups and interrupts the CPU in case of misses. A
101

The Virtual Address Space Barrier
hardware managed TLB functions largely autonomously, much like the TLB in modern
CPUs. Table-walk-less designs with a TLB need to interrupt the CPU on every miss. Table-
walk-less designs without a TLB are the same as the above mentioned software based, inter-
rupt-driven design. Full-depth designs require up to 5 or 6 levels of table walks, like the
AMD IOMMU. Reduced depth table-walk engines are restricted to a smaller amount of
table walk depth, an example being the IBM Calgary engine. Reduced depth lowers the
needed number of memory accesses to perform the table walk and thus the time it takes to
complete one translation.

Additional choices are shown in the lower part of the diagram. Translation tables can be
located in main-memory, on-board memory (i.e. dedicated memory devices directly con-
nected to the EXTOLL device) or on-chip. Memory can either be registered or managed
using kernel hooks. Different end-points or process contexts can either be handled using

Figure 5-7: EXTOLL Address Translation Design Space Diagram

Software
based

Hardware
based TLB

HW man-
aged TLB

SW man-
aged TLB

TLB-less

Interrupt
driven

Pre-
translated

Full system
table-walk

Reduced level
table-walk

Table
location

Main
memory

On-board
memory

Region
handling

Registration
based

Kernel-
hook
based

Virtual context
handling

Distinct
table

structures

Shared
tables

Process of
Translation

Translation
caching

Address
Translation

Address
Translation,

cont.

Hashing

Inverted
mapping

Direct
mapping
102

The Virtual Address Space Barrier
distinct tables or using a shared table method. A choice largely unrelated to the other deci-
sions concerns the address translation service protocol used on chip (not shown in the
design diagram).

The following discussion focuses on main memory based designs for the following reasons:
On-chip tables are prohibitive because of the sheer size of the tables. Off-chip, dedicated
memory is a choice - it can always be substituted for main memory if available. It does
increase costs, though, also the I/O-pin count of the device goes up. The following para-
graphs describe the resulting design choices resulting from reasonable combinations of the
blue marked leafs in the design space diagram. All of the performance estimations below
are based on the model presented in chapter 3 (see table 3-2). The numbers for the HT400
link are used to provide a baseline, lower-bound of the performance numbers. Of course,
faster HT links increase performance, while a PCIe connection will slow the performance
down.

To estimate the expected performance of a given design the following metrics (where appli-
cable) are used:

• tlat: the latency for a single translation
• tmiss: the latency incurred if a translation misses the TLB
• treg and tdereg: the latencies to register respectively deregister a memory region. This

latency is especially important if large memory spaces are to be mapped or the memory
used by the device is highly dynamic as in PGAS applications.

5.2.1 Interrupt Driven Software-Only Approach
This approach, one of the most basic ones, interrupts the CPU for each request, both at the
initiator and the completer side. The interrupt causes the CPU to search for the appropriate
translation and passes it back to the NIC which can then actually start the memory transfer.

Since this approach does not employ a TLB, the latency is always the same and can be
approximated by

resulting in a latency of > 1.5 µs on each side. The method is exhibits thus a prohibitive
aggregated latency of more than 3.0 µs per complete communication operation and is thus
discarded.

5.2.2 Software Pre-translation
In this design the translation for both, source and destination address, is performed at the
sender in kernel space prior to initiating the operation. The actual initiation and passing of
the PAs to the device must also occur in kernel space to enforce basic security rules.

The latency for such an operation is approximated by

tlat ti ttrans tcd+ +=

tlat ts 2 ttrans⋅+=
103

The Virtual Address Space Barrier
This would amount to ~ 1 µs. Unfortunately, the translation for the destination (i.e. remote)
address must be known to the kernel; this introduces significant complexity and overhead
into the overall scheme. If only registered memory is supported, ttrans must be substituted by
the time it takes to lookup the memory region in a flat table which is in the order of tcm. The
complete translation latency becomes then

which evaluates to 310 ns. Unfortunately, this does not include all overheads. Nevertheless,
since this scheme is also one possibility for the device virtualization, it was implemented as
one of two address translation solutions for the EXTOLL RMA unit. The results, also in
comparison to the hardware ATU, are discussed in section 7.5.5.

The time to (de-) register memory is

and

.

This evaluates to 470 ns respectively 370 ns.

5.2.3 Managed TLB
This design involves an on chip TLB which is used to translate addresses. Whenever there
is a TLB miss, an interrupt request is sent to the CPU. The interrupt handler on the CPU
retrieves the address, translates the address into a PA, chooses a TLB entry and writes the
new entry into the TLB. Now, the functional unit can continue with the PA and perform its
memory access. This design enables a very flexible architecture which is mostly defined by
software, since the TLB is completely managed by software, i.e. which entry actually gets
replaced is completely left to the software. This also means the method involves a relatively
simple hardware, depending on the TLB architecture of course. It turns out that the design
has several flaws, though, which makes it ultimately not the best solution for the above
stated requirements: while latency is very good when the TLB is hit (~60 ns), it is cata-
strophic in case of a TLB miss. Consider the time it takes to service a TLB miss:

where ti is approximately 1 µs for modern systems in the best case. The translation time
depends on the tables used by the software and involves from one to 6 memory accesses
corresponding with the depth of the translation tables used. So, ttrans can be estimated to be
between a few nanoseconds (one level of translation, cache hit) up to more than 500 ns (4
levels of translation, cache misses). Actually, the translation time may be higher than given
in table 3-2, since the translation is triggered from an interrupt context and the right process
context must first be searched and loaded. The management time (i.e. choose an entry to be
replaced with the new entry) is largely dependent on the associativity of the TLB, which
defines the amount of different choices, and uses aging methods possibly involving addi-

tlat ts 2 tcm⋅+=

treg ts ttrans tcm+ +=

tunreg ts tunpin tcm+ +=

tmiss ti ttrans Tmanage tcd+ + +=
104

The Virtual Address Space Barrier
tional device access. So an estimation runs from a few nanoseconds to > 200 ns if additional
device access is necessary. To insert the entry into the TLB it is mandatory to at least per-
form a single write transaction to the device which takes in the order of 100-200 ns.

In the best case, the interrupt latency, a number of accesses to cached data-structures and the
writing of the resulting entry back into the device must be considered, leaving tmiss to be
about 1.6 µs. The average case, including interrupt context related overheads is more likely
to be around 2 µs.

Again the design can be somewhat optimized by using registered memory. The interrupt
handler thus has only to lookup the PA in a flat table of registered memory which also
removes the necessity to find out the right page table base address. tmiss can be expressed as

and evaluates to 1.3 µs in the best-case and to 1.6 µs average-case latency. The time to
(de-)register pages is the same as in the previous section.

5.2.4 Autonomous TLB
The only difference to section 5.2.4 is to let the TLB mange itself. Advantages are that the
TLB can keep better information about usage patterns to manage entries more efficiently,
also the is slightly reduced since the CPU has not to
search for an appropriate entry and the TLB can search for the entry while the CPU is per-
forming the actual translation. This design is expected to perform slightly better than the
one described above with a more hardware-intensive TLB implementation. In [109] a
design and an implementation of such a TLB are presented. The design uses several stages
of a CAM to implement a fully associative TLB. The complete design features eleven pipe-
line stages. A mapping to a Virtex4 FPGA with a number of limitations was performed,
yielding 100 MHz clock frequency with 16 entries using 48 % of the slices of a
Virtex4 FX60. The design was later improved mainly in terms of resource utilization [110].
The usage of CAM modules on FPGA architectures like the Virtex4 shows prohibitive
resource consumption due to the necessity to emulate associative matching with standard
dual-port SRAM blocks. For many applications the addition of CAM blocks to FPGA archi-
tectures would be a very promising features which the (somewhat specialized) CSwitch
architecture already features [111].

5.2.5 Full Hardware Table-Walk
Full tablewalk in this context means, that the ATU performs a full X86 table walk, either
directly on the processor page tables (shared page tables) or using dedicated page tables that
show the same or a similar structure as the processor page tables. So, this approach exhibits
similarities with the AMD IOMMU specification from section 5.1.10. One principal differ-
ence of course is the support of the virtualized EXTOLL units with its VPIDs (Virtual Pro-
cess IDs), which identify one end-point, instead of the use of RIDs (bus:device:function
requester ids) as protection domain identifiers.

tmiss ti tcm Tmanage tcd+ + +=

tmiss ti ttrans Tmanage tcd+ + +=
105

The Virtual Address Space Barrier
The TLB miss latency can be calculated by the following formula:

where m is the number of page table levels. The number of levels depends somewhat on the
exact scheme chosen. It is reasonable though to assume a maximum of five levels, four of
them for the normal page tables and the top level to manage different VPIDs. Each level
costs one read transaction to main memory accounting for 280 ns. Additionally several
clock cycles are needed to check the result and insert the result it into the TLB. So, in sum-
mary this approach gives an approximate maximum Tmiss of ~1.4 µs. This is better then the
previous two possibilities analyzed. Another advantage is that the translation is off-loaded
from the CPU. On the downside it can be said, that the latency is still relatively high and the
method only plays its strengths if it is used together with a virtual memory hook system to
enable consistent, shared used of page tables.

5.2.6 Reduced-Depth Hardware-Table Walk
This design chooses to use a reduced-depth set of page tables for the device. These tables
must be set up, managed and kept coherent with host tables by kernel software. It offers the
possibility to reduce the miss latency considerably and free the CPU from translations. The
use of TLBs is possible. With a single level translation the miss latency calculates to ~280
ns. When applied twice for an RDMA transactions it accounts for ~0.5 µs. Also, hardware
complexity is simpler and it is not necessary to use the host table format which increases
portability.

5.2.7 Registration Based versus Kernel-Hook Based Designs
As discussed in section 5.1.12, the design chosen should be able to support both methods
efficiently. The most promising methods so far, pre-translation and reduced-depth table
walk fulfill this requirement. Kernel-hook-based software designs offer the possibility to
reduce the load on the virtual memory system of the OS, since fewer pages have to be
locked at one time.

5.2.8 VPID Handling
Two possible approaches were identified. The first employs a different set of page tables for
each protection domain, which is a Virtual Process Identifier (VPID) for EXTOLL. This is
the traditional approach which is used by CPUs and the AMD IOMMU specification. It
must be noted though, that some parts of a page-table-set may be shared with the page-
table-set of a different protection domain. The whole approach has the disadvantage for
devices like EXTOLL that it makes one additional level of indirection necessary just to

tmiss tdm

0

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

x tcyc⋅+=
106

The Virtual Address Space Barrier
fetch the context. This is the device table in the AMD IOMMU specification. One way to
address this problem would be to hold the context completely on chip or employ a large
enough context cache.

This approach which is called VPID private tables in table 5-6, does not use the bits of an
individual entry of the lowest level of the translation table optimally. The entry must carry
the physical address (which should be 40 bits equaling support for 52 bits of physical
address space) plus access and present bits. So, with a 64-bit-entry there is quite a number
of reserved bits. A physical address space of 52 bits seems reasonable because the next gen-
eration of processors will first introduce this amount of physical address space. Notice that
this is the addressable memory. The mappable memory may be different and is based on the
number of entries in these tables.

A novel approach uses one set of page tables for all contexts, called shared context page
tables. Here, each entry holds the context ID it belongs to next to the actual translated
address and the typical status bits. When the MMU fetches the entry, its ID is compared
against the context ID which is associated with the translation request. Only if this compar-
ison succeeds the translated address is returned, otherwise a fault is returned. This com-

Method Advantages Disadvantages

VPID private tables • Smaller amounts of
physically contigu-
ous memory neces-
sary

• Base address table
necessary: either one
indirection via main-
memory or on-
device table for each
context

• Entry format bits are
not optimally used

Single shared context table • Just one base address
in device register

• Uses bits in entry
format efficiently

• One large table for
all

• Large amounts of
physically contigu-
ous memory neces-
sary

Multiple shared context tables • No restrictions on
physical placement
of table pages

• Incremental growth
of tables is easily
implemented

• Uses bits in entry
format efficiently

• At least 2 levels of
tables necessary. Top
level either via main
memory or on-
device table

Tabelle 5-6: Strategies of Context Handling in Page Tables
107

The Virtual Address Space Barrier
pletely eliminates the context indirection level and it leads to the new situation, that all
contexts see one virtual address space, called Network Logical Addresses (NLA), but only
some of these addresses are reachable for the context. This approach can easily support the
mapping of all of the physical memory present in a machine. The amount of memory spent
to manage the tables is in the same order as the traditional approach. In fact, it is even some-
what less. The individual entry uses the available space better. Taking 40 bits for the physi-
cal page number, 3 bits for access and management and 16 bits to store the owning VPID,
still 5 bits in a 64-bit entry can remain reserved for future extensions. There are two vari-
ants, one is using a single table and the other is using a scatter-gather like implementation.
The scatter-implementation uses a number of chip registers to address more than one physi-
cal region for the translation table. In essence this creates a two-level translation with a nar-
row first level which fits completely on-chip. Table 5-6 summarizes the advantages and
disadvantages of the two designs called single shared context table and multiple shared con-
text tables. Note that the system is secure, because user space software cannot access mem-
ory that is not registered for its VPID.

5.2.9 On-Device ATS
The EXTOLL devices use an on-chip communication network. Currently this is the HTAX
[15]. The on-chip protocol is closely related to HyperTransport. It is necessary to transport
address translation service messages back and forth between the translation agent and the
individual FUs using this service.

The PCIe ATS protocol was shortly introduced in section 5.1.11. HyperTransport 3.0 fea-
tures a very similar protocol (see Appendix B.7, Address Translation Packets [13]). This
protocol is designed to support multiple translations in one request and also to implement
different sizes of translation. This is especially useful if the latency for ATS is high, and to
be as general as possible. Both of the reasons are not true for the EXTOLL system. The
packet format in standardized ATS protocols uses at least 96 bits for a request. The actual
information carried, though, can be encoded in 64-bit.

The HTAX interconnect features multiple Virtual Channels to support different packet traf-
fic classes. Three virtual channels are used by the standard traffic types of posted requests,
non-posted requests and responses. For the HTAX ATS, a fourth VC can be used with virtu-
ally no additional cost, which is in turn dubbed ATS VC. Over this VC, ATU ATS packets
are routed from client FUs to the ATU and back. Routing is done purely on port numbers.
There is no possibility to pack more than one request/translation in one packet, but since
each packet is 64 bit in size, it only takes one cycle plus the arbitration latency to transfer it
over the HTAX. The HTAX supports an maximum of one 64-bit-transfer every other cycle,
so the ATS protocol sets a theoretical limit of fclk/2 requests per second. A 156 MHz HTAX
can thus sustain up to ~78 million translations per second.
108

The Virtual Address Space Barrier
5.2.10 Conclusion
From the design space analysis it becomes clear, that a full table walk engine must be
rejected since it accounts for too much latency. Designs that employ CPU managed TLBs
and CPU based table-walks are also limited by high miss latencies and can only perform
competitively through the use of very large on-chip TLB structures.

A case in point is to study the overhead of CPU translation and kernel space transitions
which offers an interesting option to implement a physical address space only device, and
tunnel all requests through kernel space. One could say this is a minimal kernel involvement
device. Short message service actually does not need address translation, it is always faster
to perform a copy instead of performing a translation. This design choice has been incorpo-
rated in the VELO unit (see section 7.4).

To implement translation for RMA in EXTOLL a novel shared context page table design is
used. This new design minimizes tmiss through minimization of table depth. At the same
time it does not impose a high memory overhead on the system. A TLB should be imple-
mented for highest performance; but the design should also perform well in case of a small
or no TLB. This is especially important for EXTOLL implementations mapped on FPGA
technology. The standard ATS protocol was also analyzed and it was shown that a much
more streamlined protocol should be used for EXTOLL. A further advantage of the design
are low treg and tdereg latencies.

The following sections introduce the detailed architecture, implementation, verification and
results of the ATU.

5.3 The EXTOLL Address Translation Unit
The requirements for the EXTOLL ATU have been formulated at the beginning of this
chapter and the results of the design space analysis have been summarized in the previous
section. Now, the actually chosen architecture which incorporates several novel features and
ideas is presented. The resulting table structure is visualized in figure 5-8.

There are two levels of translation. The first is performed on chip. The high-order bits of the
NLA are used to select one of the Global Address Table (GAT) base registers. The selected
GAT base address is then concatenated with the low-order NLA bits to get the main mem-
ory address of the Global Address Table Entry (GATe). A 64-bit value is fetched from mem-
ory, which forms the translation. The high-order bits of the translation contain the VPID, the
lowest-order bits contain management information (read/write access). All of them are
checked, and if access to the page is granted for the requesting VPID, the translation is suc-
cessfully concluded and the PA returned.

The supported physical address space has been chosen to be 52 bits, which is the maximum
size for any main stream x86 server processor for the next 3 years to come and will proba-
bly be enough for more years to come. Very important is also the mappable physical address
space since the design should be able to map all of the physically available RAM of the
109

The Virtual Address Space Barrier
machine. The on-chip translation level is implemented in an SRAM block. The width of the
RAM block is 32 bit and the depth is 29. Thus the on-chip translation for 512 GATs fits into
one standard 18-kBit block RAM.

The second level translation tables resides in main memory with 2 MB of size each. This
size matches good into existing OS and CPU virtual memory design, since it supports a
choice of either implementing a table in a single 2-MB page (hugetlb in Linux) or support-
ing it through a number of physically contiguous 4-kB pages. And for the second case,
2 MB also mark the limit of memory that can be relatively easily allocated contiguously by
the Linux kernel. For larger chunks it becomes increasingly impossible to allocate the
amount of contiguous memory.

One GATe is 8 bytes in length and handles one page of physical memory. So, to be able to
map 2x bytes of physical memory, 2x-12 entries with a total size of 2x-9 must be allocated
with a minimum mappable area of one page (4096 bytes). To put it differently, a single
2 MB GAT filled with 64-bit entries, hosts translations for 256k pages equaling 1 GB (230

bytes) of mappable address space. The offset within one of the GATs is 18 bits wide. The
final page offset is 12 bit. So, to be able to map all of the physical RAM in one machine, one

Figure 5-8: ATU Data Structures

On chip Main memory

First translation level

Table base address

GAT

GAT

256k entries
per table

VPID Network Logical
Address

PA VPID

from
CPU

For access check

PA for access

1 BRAM
=

512 entries

GATe
110

The Virtual Address Space Barrier
needs to allocate one GAT for every GB of mappable main memory. With one block RAM
(9 bits), the total mappable address space is thus 39 bits, or 512 GB. This makes sure the
first requirement is met, to be able to map all of the physical RAM of a machine. For the
future, larger RAM sizes are envisioned. The short- to mid-term path is to implement a
larger GAT base address table, using up to 10 block RAMs and thus supporting up to 5 TB
of mappable main memory. For the long term, the base address table can be mapped to main
memory and the on-chip memory becomes a cache of the first level table. The main-mem-
ory instantiation uses 2 MB of memory and thus supports 219 entries increasing the mappa-
ble address space to 49 bits (0.5 Exabyte).

Practically, this scheme means, that the overhead of being able to map all of the physical
memory of a server amounts to 2 MB of tables for each GB of main memory, so a typical
high-end 2-socket server with 32 GB of memory uses up to 64 MB of translation tables.

The architecture maps very well to FPGAs as well as ASICS and provides for a low worst
case latency overhead of ~ 500 ns for a single RMA operation. To further improve perfor-
mance, even a simple TLB can help. The architecture accounts for the inclusion of a TLB.
The choice of the actual TLB is technology dependent and for the FPGA implementation, a
simple direct-mapped TLB was chosen, since large associativity increases resource usage
dramatically on today’s FPGAs. If special associative matching hardware is available,
either by the use of an external IC or by the use of on-chip macro blocks, a more sophisti-
cated TLB can be used. Actually, the architecture does not dictate the position of the trans-
lation tables.

The ATU design can be used either with software that supports registering/deregistering of
memory or with a design taking advantage of kernel features enabling a tighter integration
into the kernel virtual memory system (e.g. the mmu notifier patch). In either case, an entry
is inserted into a free entry of a GAT, the concatenated GAT base index plus the GAT entry
index is returned to the user application and called NLA. It can then be used in user-level
commands to a RMA unit.

The complete process of registering and using a memory region is shown in figure 5-9. The
individual steps are:

1. The user process calls the API function to register memory.
2. Kernel code allocates an empty entry in GAT in main memory. The entry is written to main

memory, this includes the physical address of the user page to be registered and the VPID
as well as some other access restriction bits.

3. The index of the new GATe into the table is returned to the user application.
4. The user application can now use this GATe index instead of a physical or virtual address

to signal the correct memory location to the device. Note that this implies the usage of
some sort of translation data structure and algorithm in the application.

5. The user application sets up a command descriptor involving a reference to user memory.
It passes the NLA to the device. The corresponding VPID is passed through the device by
means of the physical address space used to issue the command (see section 6.4.3).

6. The request with the untranslated GATe index arrives at a functional unit (FU) of the
device.
111

The Virtual Address Space Barrier
7. The index along with the VPID the request originates from is sent to the on-chip ATU.
8. ATU first performs a TLB lookup operation. During the TLB lookup, the base address of

the GAT to be used in case of a TLB miss can be calculated using the high-order bits of the
NLA as index into the GAT base table.

9. The TLB performs a lookup using the NLA. It also tests VPID and access permissions. If
the TLB returns a match this entry can be used.

10. In case of a TLB miss, a single 64-bit sized read from a main-memory location yields the
correct GATe. The entry is checked if it belongs to the correct VPID and all access restric-
tions apply.

11. If all checks succeed, the translation can be returned to the requesting FU and the FU can
continue with request processing.

The process is very similar if the translation is triggered from a network packet arriving at a
FU. In this case, the EXTOLL network packet carries a tuple of {VPID, NLA} which is then
handled as described above.

In the case a mapping of a page has to be revoked, either because the process is terminated
or the respective memory is freed, system software is invoked, again either explicitly
because of a deregistration call or implicitly because of a kernel callback function. It
removes the translation from the in-memory tables (i.e. overwrites the GATe with zeroes)
and then notifies the ATU of the flushing of the NLA (ATS flush request). This is performed
via control register writes. The ATU then notifies all FUs that the NLA is to be flushed from
their registers and caches. At the same time the entry is removed from the ATU TLB. Once
the FU(s) have answered with an ATS response, the corresponding status register is set. Sys-
tem software can check the register and the memory is free to be used for other purposes.
FUs have to answer with a flush response as soon as they can be sure, that the address is not
stored in internal state and not currently used for a DMA transfer. For example, the RMA
unit checks against the transfers currently under way, and as soon as the NLA in question is
not used, the response is sent back. If a new request for this NLA arrives immediately after
sending the flush response, the mapping is already gone, and the transfer fails, which is the
correct behavior in this case and should be handled by system software correctly, for exam-
ple as the remote equivalent of a segmentation fault.

The ATS protocol of the EXTOLL ATU extensively uses the features of the EXTOLL on-
chip HTAX interconnection network. All ATS transactions travel across a dedicated ATS
virtual channel. There are four transactions defined, all of them with a size of 64 bit, sum-
marized in figure 5-10. The first pair of transactions is the translation request and its
response initiated by FUs needing an NLA to be translated. The second set is the flush
request and flush response, initiated by ATU to inform FUs of NLAs being flushed and col-
lect their responses. The fixed size and format of the transactions together with the ATS VC
account for a streamlined protocol implementation that also exhibits a very good perfor-
mance and latency characteristic.
112

The Virtual Address Space Barrier
For system software, the programming interface of the ATU consists of the GAT and GATe
data structures, already defined in figure 5-8 and the register level interface summarized in
figure 5-11. To enter a new translation, no register has to be manipulated. To enter a new
GAT, the physical base address of the table has to be entered into the corresponding GAT
base address register involving a single store operation.

Flush operations need to first invalidate the GATe in main memory and then access the ATU
Flush Request register. Software can either request to invalidate an TLB entry, perform an
ATS flush request or both. Subsequently software can poll on ATU count registers or the
ATU Flush Request register to monitor the state of pending flush operations. With the cur-

Figure 5-9: ATU Address Translation Process

Register/unregister
memory

Global
Address

TableIOTLB
Kernel
Code

RPhysical Page AddressVPID W

Control Logic

Device
Main

Memory CPU

GATe

Inse
rt/d

eleteIn
de

x

User process

Device
Function

R
eq

ue
st

 tr
an

sl
at

io
n

1

2

3

4

5

7

8

9

6

10
Internal
GAT base
table
GAT base

reserved

GATe format

Fetch on miss

Issue command

16 bit

11

6 bit 40 bit 2 bit
113

The Virtual Address Space Barrier
rent RMA application, an ATS request spawns 3 ATS requests which are eventually
answered by the RMA sub-modules. The current RMA implementation guarantees, that any
ATS flush requests flushes all internal buffers.

The remaining registers are all event counters and are useful to keep track of the perfor-
mance of the ATU and for debug reasons. The events that can be monitored are TLB hits,
TLB misses, TLB flushes, and ATU flushes completed.

One last aspect of the architecture remains to be explained, the aspect of memory manage-
ment by system and user level software components. System software must insert transla-
tions into free GATes upon request of client applications. Usually it is a good idea to set a

Figure 5-10: EXTOLL ATS Protocol Overview

Adress-
Translation

Request

Coding
2'b00
2'b01
2'b10
2'b11

Command
Translation Request
Translation Response
Flush Request
Flush Response

Glossary
Cmd
VPID
NLA
NPA
OK
R/W
RSV

Command
Virtual Process ID
Network logical address
Network physical address
1 if access is ok, 0 otherwise
Read/Write access
Reserved

Source
Tag WR

2 bit

Cmd:
2'b00

2 bit 4 bit

VPID*Source
Tag

O
K

Cmd:
2'b01 NPA** Adress-

Translation
Response

Flush
RequestVPID*Source

Tag RSVCmd:
2'b10 NLA**

Source
Tag

Cmd:
2'b11 RSV Flush

Response

All traffic runs on the dedicated ATUVC of the HTAX. In current Implementations that is VC 3.

VPID*

16 bit 40 bit

NLA**

RS
V

* Implementation notice: Only the least significant 5 bits are currently implemented yielding
up to 32 different VPIDs

** Implementation notice: Only the least significant 32 bits are currently implemented
yielding up to 232 addressable 4kB pages (=16 Tbyte)
114

The Virtual Address Space Barrier
GAT aside for single page requests and try to serve multi-page requests en-block. While
user-level software is required to handle non-contiguous NLAs, it may still be more effi-
cient for system software to try to reduce fragmentation to ease search for free entries.

The process of memory registration eventually returns with a vector of NLAs to user soft-
ware. The user API is recommended to treat such a list as the representation of a memory
region. An opaque data structure or handle is used to represent the registered memory
region in the program. So, to send from a registered memory region, the handle to the region
is passed on to the send API function, which can then, based on the offset within the region,
select the right NLA(s) to issue the actual command to the device.

Figure 5-11: ATU Register Interface

Physical base address [51:22]

Physical base address [51:22]

Flush Address (NLA)

40 bit

5

1 bit

Reserved

24 bit

4) Watchdog IRQ bit (clear on read), set after an IRQ was triggered

TLB Hit counter

32 bit

TLB miss counter

TLB Access Denied CounterTLB Update Counter

TLB Flush CounterFlush Response Counter

Reserved

Reserved

Flush
Register

Cnt 1
Register

Cnt 2
Register

Cnt 3
Register

Base
Address
Register

RAM

Watchdog

10 bit

Reserved

24 bit

4

1 bit
IRQ &
WD

Register

3) Enable the watchdog timer & IRQ (which is started, when a Flush request initially arrives)

2) Flush IRQ bit (clear on read), set after an IRQ was triggered

1) Enable bit for IRQ messaging of completed Flush requests

5) The Valid bit set by software when writing a new flush request to the register. It is cleared by
 Hardware, when the new request has been accepted.

3 2 1

32 bit

1 bit 1 bit1 bit
115

The Virtual Address Space Barrier
The notion of handles for registered memory regions actually blends in with most existing
APIs and software architectures in the realm of communication and parallel computation.
For example, one-sided MPI primitives feature a window argument which can be used to
reference the memory region. In GasNET, core operations always reference the remote
access memory segment; extended API operations are more difficult to support [80]. Rela-
tive straight-forward solutions to this problem involve either to register all memory actually
mapped by a process (limiting memory resources of parallel applications to the physical
memory size) or using an algorithm similar to the Firehose algorithm [82]. One particular
exception, which unfortunately may be an important one, can be found in two-sided MPI
communications. Here, the mapping from virtual address to NLA must be performed by
user-space software. For 2-sided MPI communications, an often quoted method is to use a
2-copy mode for small to medium messages and switch to a RMA and rendezvous based
zero-copy protocol only for large messages. The aggregated overhead for large bulk trans-
fers allows to register/deregister memory on the fly in this case. Details of the integration of
the ATU into the EXTOLL software stack are presented in section 8.1.

This concludes the description of the ATU architecture. The next sections provide a descrip-
tion of the microarchitecture for the ATU implementation and some remarks about ATU
verification and performance.

5.4 ATU Microarchitecture
The ATU has been implemented for the EXTOLL prototype. The complete code of the unit
covers ~1800 lines of Verilog HDL code including the code for four FSMs that were gener-
ated with the FSMDesigner tool [112] but excluding the register interface. This demon-
strates the lean and efficient design.

Figure 5-12 shows the block level architecture of the ATU. The location of FSMs is marked
with circles inside its respective top-level block. The HTAX Inport and Outport handle the
communication with the on-chip system interconnect. The Request FIFO buffers incoming
Translation requests from the FUs which are then read-out by the Requester unit. The
Requester unit starts a TLB request and, simultaneously, prepares to read a GATe using the
right GAT base address from the register file. When the TLB answers, the Request unit
either forwards the GATe read request information to the HTAX outport (in case of a TLB
miss) or forwards the necessary information to the Responder unit (in case of a TLB hit).
The Reorder buffer accepts incoming GATe responses and reorders them in request order
(read responses may arrive out-of request order in a HyperTransport system, as in most
modern system interconnects). The reordered responses are then forwarded to the
Responder unit. The Responder gets ATS response requests either from the Reorder buffer
as result of a GATe read request or jointly from the TLB and Requester if it the result of a
TLB hit. The Responder builds an ATS response and forwards it to the HTAX Outport
which transmits the packet across the HTAX to the requesting FU. Flush requests originate
at the registerfile and are passed through the same units. The flush responses are collected at
the Responder unit and the result written to the register file. Flush commands also trigger a
corresponding flush of the TLB entry through the TLB connection to the register file.
116

The Virtual Address Space Barrier
Not shown in figure 5-12 are the actual control and status registers, which reside in the
EXTOLL register file. The EXTOLL register file is specified and generated using a unique
flow described in section 7.2.

5.5 ATU Verification and Implementation
The ATU was verified on three different levels. First the individual modules were verified
using custom testbenches to establish the specified functionality of these modules. Next the
ATU core, that is all modules except the HTAX ports were tested using a testbench. Differ-
ent requests were simulated. Lastly, the unit was verified within the full EXTOLL system
simulation including all of the other EXTOLL modules and the HyperTransport Bus func-
tional model [113] to drive the HT core of EXTOLL. Testing in this stage was performed
closely coupled with the RMA unit since this is the client FU of the ATU.

The ATU was implemented on a Virtex4 FPGA, within the current EXTOLL implementa-
tion platform. The result in resources if the unit is synthesized, placed and routed alone are
summarized in table 5-7.

Figure 5-12: ATU Architecture: Block Diagram

HTAX
Inport

HTAX
Outport

ATU
Requester

ATU
Res-

ponder

FSM

FSM

FSM

FSM

HTAX
interface

HTAX
interface

ATS Requests ATU Request FIFO

ATUReorder Buffer

GAT responses

TLB

To/from Registerfile

To/from Registerfile
117

The Virtual Address Space Barrier
For this test the unit was synthesized using a 1024-entry direct mapped TLB, a 32 entry
reorder buffer and a 64 entry request FIFO using Xilinx ISE version 10.1 with a Virtex 4
FX100-11 FPGA as target device. Within the EXTOLL implementation the ATU uses about
2 % of the resources of the complete design (see also section 7.7).The ATU alone reaches
~ 250 MHz of clock frequency on the FPGA, so the EXTOLL core clock frequency of
156 MHz is easily reached. These results shows the excellent performance and resource uti-
lization that is reachable through the optimized architecture and implementation of ATU.

5.6 Performance Analysis
The first performance numbers that are of interest are the microarchitecture related results
that are gained using cycle accurate simulation of the Verilog HDL specification of the
module.

Resource type absolute relative

Flip-Flops 829 of 84.352 ~ 1 % of FPGA

Slices 936 of 42.176 ~ 2 % of FPGA

18 kb block rams 8 of 376 ~ 2 % of FPGA

Tabelle 5-7: ATU Resource Usage

Path cycles

absolute
timing in
EXTOLL
prototype

TLB Hit 9 ~58 ns

TLB Miss complete 20 + main
memory
access

~128 ns +
main memory

access

from ATS request to GAT read 11 ~71 ns

from GAT response to ATS
response

9 ~58 ns

Invalidation complete 7 + variable
time in FU

~ 45 ns + vari-
able time

from RF to ATS request 4 ~26 ns

from ATS response to RF 3 ~19.2 ns

Tabelle 5-8: ATU Latencies
118

The Virtual Address Space Barrier
The raw hardware latencies are summarized in Table 5-8. So the minimal translation latency
is nine cycles and in the case of a TLB miss 20 cycles plus a main memory access have to
be accounted for. In the real system a translation latency between 50 and 330 ns can be
expected. For the invalidation, there is the time spent within ATU and then, in addition the
FUs can delay the completion of the invalidation by a variable amount of time. It is possible
to flush TLB entries every second cycle.

ATU was benchmarked in the same system as the Mellanox HCA1 to enable a direct com-
parison. If operations caused only TLB hits, in excess of 10 million operations were mea-
sured on the prototype hardware running at 156 MHz. With TLB misses the throughput
diminishes, of course. Only about 1.2 million operations have been measured in this case.
So, depending on the communication pattern, a throughput of between 1 to 10 million trans-
lations can be performed by ATU in the prototype system.

The same measurements regarding memory registration that have been performed using the
Mellanox Connect X IB HCA were repeated with the ATU. The results of the registration
latencies for different registrations sizes are plotted in figure 5-13. The results from the
Connect X HCA are also plotted for reference. Memory registration latency starts below 2
µs and then increases mostly linearly with the number of pages that need to be registered.
The plot is not completely smooth, but has no very high peaks as the Mellanox measure-
ment features. While the difference is not as important for large sizes, the plot shows that
ATU outperforms Connect X at all sizes

Figure 5-14 shows the plot of the deregistration latencies. Deregistration latency starts also
at about 2 µs and then linearly increases. As with the registration latency, ATU outperforms
Connect X at all sizes. For the deregistration the advantage in latency is a little more pro-
nounced than in the registration case.

Finally, the distribution of registration and deregistration latency of a multitude of runs of
16 kB size each was measured. This measurement gives an insight how stable the registra-
tion/deregistration operations are in terms of consumed time. The results are shown in
figure 5-15 and figure 5-16. The plot clearly shows the high stability and predictability of
the ATU registration and deregistration processes.

The goal of an efficient address translation unit for the EXTOLL project was reached with
ATU. The analysis showed, that ATU is very economically in terms of resources and at the
same time delivers very good performance. Besides the good translation performance,
which will become even more apparent when analyzing the performance of EXTOLL
RMA, ATU also provides for an excellent registration/deregistration performance. This can
help in developing middlewares and applications with highly dynamic memory access pat-
terns and increases the flexibility of ATU and EXTOLL by a great deal. ATU is a novel con-
tribution featuring a highly compact, very high-performance architecture for address
translation in devices. The approach of tables that are shared by the same context both sim-
plifies and accelerates the design and makes it possible to reach performance rates that com-
pete very well even if the ATU implementation is only done in an FPGA.

1. Linux 2.6.24, 4x Quadcore Opteron system (2.2GHz), 16 GB RAM
119

The Virtual Address Space Barrier
Figure 5-13: ATU/Connect X Registration Latency

Figure 5-14: ATU/Connect X Deregistration Latency

 0

 50

 100

 150

 200

 0 500 1000 1500 2000

EXTOLL ATU
Mellanox Connect X

re
gi

st
ra

tio
n

la
te

nc
y

[µ
s]

registration size in kB

 0

 50

 100

 150

 200

 0 500 1000 1500 2000

EXTOLL ATU
Mellanox Connect X

de
re

gi
st

ra
tio

n
la

te
nc

y
[µ

s]

registration size in kB
120

The Virtual Address Space Barrier
Figure 5-15: Distribution of 16 kB Registration Latency

Figure 5-16: Distribution of 16 kB Deregistration Latency

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

EXTOLL ATU
Mellanox Connect X

re
gi

st
ra

tio
n

la
te

nc
y

[µ
s]

Trials

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

EXTOLL ATU
Mellanox Connect X

de
re

gi
st

ra
tio

n
la

te
nc

y
[µ

s]

Trials
121

The Virtual Address Space Barrier
5.7 Future Extensions
There are a number of extensions that can be developed for the ATU. One modification is to
move the GAT from host main memory to memory connected directly to the device.
Depending on the memory technology this may improve translation latency in the miss
case. For example, the HTX Board features 256 MB DDR2 SDRAM which can be used to
hold the GAT tables. The latency to access this memory was measured to be 75 ns at
200 MHz; the necessary DDR2 IP core uses about 906 Flip-Flops, 1090 LUTs and
32 BRAMs on the Xilinx chip. Conceptually, the architecture is not changed from this
extension. The extension can reduce tmiss down to ~200 ns. An implementation using high-
speed external SRAM will of course run even faster, but this modification increases the
costs for an adapter considerably.

The second improvement is to substitute the direct-mapped TLB for a more complex and
more powerful design. One possibility is to implement a set-associative or fully-associative
TLB on chip, or to use a commercially available network search engine chip for the associa-
tive search. These chips have been designed for IP routers and can handle 64k entries in
four associative sets, providing a powerful TLB mechanism. Again, the extensions are
improvements to the implementation but do not change the fundamental architecture.

The last improvement is to add a memory-mapped command interface which would allow
to pass larger jobs to the ATU asynchronously. This can be used to further improve deregis-
tration performance but increases the area utilization of ATU.
122

Chapter
6

Transactional I/O
This chapter analyzes the problem of issuing operations to a device in the most efficient and
virtualized way. This chapter presents a design space analysis for this problem. Also, sev-
eral studies have been performed and are presented here to quantify the effects of several
promising solutions. Device virtualization is a problem encountered at the TX function of a
NIC first. The RX side is often more straight-forward, as is the notion of operation comple-
tion (for asynchronous and split-phase transactions). All of these aspects fall under the cate-
gory of device virtualization and are thus covered in this chapter. Note that device
virtualization is orthogonal to the memory virtualization issues which have already been
discussed in the previous chapter.

A new mechanism to access devices is introduced which addresses the problems by specu-
latively issuing an I/O operation with data operands. In the case the operation is interrupted
or fails on the device, the state of the system before the operation was started is restored and
the operation can be retried. Since these semantics are very similar to the well known
method of Transactional Memory [114] which is used to access memory in an efficient,
atomic way, the new method was named Transactional I/O. The mechanism needs special
support in the CPU, though, but it will be shown how emulation of the behavior using avail-
able technology can be accomplished.

6.1 EXTOLL Requirements
Device virtualization names the process of making a single device (I/O resource) simulta-
neously available to multiple clients (processes or threads). Since concurrent client access
has been identified as a mandatory feature of EXTOLL and the employed method can have
a major impact on performance and latency of the system, this chapter analyzes the different
approaches for EXTOLL.

Traditionally, access to devices has been virtualized by the OS; more recently, high-perfor-
mance applications have driven the need to access devices from user-space. The growing
increase of the number of CPU cores in systems and the more and more pervasive nature of
HPC to enterprise work-loads drives the need for low-latency device access with simulta-
neous device virtualization to serve all these clients. Device virtualization can roughly be
classified into the traditional approach, hardware replication and self-virtualizing devices.
123

Transactional I/O
The requirements for device virtualization for the EXTOLL project can be summarized as
follows:

• EXTOLL should support an arbitrary number of contexts (in the architecture; there may be
implementational limits imposed).

• It is necessary to achieve low latency and high bandwidth.
• The method should strive to minimize the amount of state information and if possible

eliminate state altogether.
• Operations may fail due to resource constraints, but if they do, this needs to be gracefully

and software needs to be able to retry them. Finally, this needs to lead to a successful ter-
mination of the operation. The access to the device needs to be fair.

• At all times, standard security rules need to be obeyed (one process may not interact with
another process unauthorized etc.).

The third point actually is a corollary of the first two points, since statelessness (or at least
state minimization) makes it easier for the architecture and a particular implementation to
support a large number of contexts. At the same time, less state information means that less
access to state information is necessary to perform an operation. This causes a minimization
(or elimination) of the latency cost of device virtualization. Usually bandwidth is no prob-
lem with all device virtualization approaches considered, so it will be omitted from the dis-
cussion. Following from the points above, three additional requirements can be identified:

• The device must be virtualized.
• It must be possible to insert commands including some payload directly to facilitate low

latency communication.
• Self-virtualized devices demand atomic insertion of work queue elements.

The following sections briefly introduce the three main virtualization classes. The class of
self-virtualized devices is analyzed in more depth. Several studies have been performed to
better quantify the performance metrics for self-virtualized devices. Next, an ideal solution
to the virtualization problem is presented called Transactional I/O. Unfortunately, this
method can only be implemented with changes in both the CPU and the CPU-device inter-
connection network. Thus, the solution chosen for EXTOLL emulates some of the Transac-
tional I/O behavior using facilities available in today’s system. This method is based on
Central-Flow-Controlled Queues (CFCQ).

The last sections are dedicated to the problem of operation completion and receive side con-
texts. The chapter closes with the presentation of the actual virtualization architecture
employed by EXTOLL.

6.2 The Classical Approach
The classic approach for device virtualization is software based. Typically, the operating
systems multiplexes and also abstracts access to the device. This involves a system call for
every I/O operation to first change into the OS context. Often, this approach also involves
one or more memory copies before the operation has finished. Another typical characteristic
is the usage of interrupts to enable asynchronous progress and completion of operations.
124

Transactional I/O
Besides user space communication, the recently intensified interest in OS virtualization
adds another dimension to the virtualization approach. In virtual machine environments,
several trends can be identified to handle I/O:

• Actual devices are handled by one domain, other domains access the device via special
virtual devices (a software construct) which communicate with the original device driver
via the Hypervisor.

• The device is exclusively owned and used by one domain.
• The device is owned and handled by the Hypervisor; access to the device is possible via a

special virtual device which connects domains with the Hypervisor.

Since high-performance storage and network access plays an important role in enterprise
computing, the performance penalty introduced by these software virtualization techniques
is relevant and active efforts are under way to reduce this.

For HPC, user-space access to I/O is generally regarded as an important measure to ensure
low latency and high bandwidth for computing intensive applications. Classic devices
which use the OS cannot employ user-space access and thus suffer from the increased over-
head by always going through the OS. Traditional devices only have one context, so that
there can only be one user. OS mitigates this constraint by performing request multiplexing/
de-multiplexing. This is the actual process of device virtualization.

In terms of performance, many traditional I/O mechanisms also apply an elaborate software
stack in addition to OS multiplexing before the actual data is transferred from or to the
device. A good example is the TCP/IP stack for networking. To send/receive data to/from
the network, applications do not only have to perform a system call to enter kernel space,
but all communication is also passed up respectively down the stack involving typically at
least one additional copy. See [20] for a detailed breakdown of the latencies involved in a
modern, kernel-based communication system. It shows that large parts of the latency are
due to software stack and interrupt related issues. In the evaluation part of this thesis, a
comparison of user-space versus (stackless) OS based communication is presented quanti-
fying the overhead of OS passing in a best case scenario. Measurements performed for this
analysis have shown that the pure overhead of performing a system call is in the order of
250 - 300 ns on a 2 GHz Opteron processor. Additional software overhead has to be taken
into account to manage multiplexing/demultiplexing of different clients. At the receiver
side, polling or interrupt driven completion are possible. Traditionally, interrupt driven
approaches have been employed. There is an important reason to do so: polling in a kernel
driver usually leads to problems, from processor time accounting to not being trivially able
to kill a process. Interrupt driven completion adds more overhead to the communication.
Again, measurements on the test platform show an interrupt latency of at least 600 ns. It is
also often necessary to check the cause or source of an interrupt and clear it which may lead
to even higher latency. After an interrupt has been received, the process that is the receiver
of the message can be woken up. This is the final part of the overhead of this method and
the time until the process is actually scheduled to run again on the CPU may be relevant
since this involves a real context switch which can easily take in the order of several micro-
125

Transactional I/O
seconds. So in summary, the traditional solution is not latency optimized and thus, while the
method of choice for many I/O tasks, is not the right choice for a low-latency, high-perfor-
mance network for parallel computing.

6.3 Hardware Replication
One way to at least give a small number of users access to the function of a device is repli-
cation. For example TX and RX DMA engines of a NIC may be replicated four times allow-
ing four concurrent clients to use the NIC. Examples of this design are ATOLL (chapter 2)
and the recently announced SUN 10GE Ethernet Adapter [21]. The block diagram of Sun’s
architecture is shown in figure 6-1. The adapter uses several replicated ports which support,

Figure 6-1: SUN 10GE Adapter

X8 PCIe

Phycal Ports (XAUI, RGMII)

Packet
Classification

TCAM

24 Channel
TX DMA

24 Channel
TX DMA

24 Channel
TX DMA

24 Channel
TX DMA

24 Channel
TX DMA

16 Channel
RX DMA

24 Channel
TX DMA

24 Channel
TX DMATX MAC

24 Channel
TX DMA

24 Channel
TX DMA TX Controller

24 Channel
TX DMA

24 Channel
TX DMARX Controller

24 Channel
TX DMA

24 Channel
TX DMARX MAC
126

Transactional I/O
as SUN states, “efficiently virtualized environments”. The classification unit together with
the associated TCAM allows the adapter to enqueue incoming packets based on their affili-
ation to a traffic or stream class.

As was already mentioned in section 2.9, the generally very limited amount of possible cli-
ents is a major drawback of this method. Therefore the architectural family of self-virtualiz-
ing devices was introduced [115].

6.4 Self Virtualized Devices
A number of self-virtualizing devices and architectures have been proposed. These devices
often feature maximum context counts in the hundreds (512 in a recent Mellanox ConnectX
HCA) and are most often firmware based, i.e. not fixed function but to a certain amount
programmable. [115] first introduced a completely self virtualizing NIC architecture which
enables a fixed function device to scale to many thousands of simultaneously active con-
texts. It is generally believed that fixed functions (i.e. FSM based) devices provide a better
performance as programmed devices (micro-coded or processor based) which often reach
lower clock rates.

As a general rule, self virtualizing devices can be classified by context organization and
command issuing; the different design choices are shown in figure 6-2.

Context state can be held in on-chip memory, on-board memory or main memory. One
design principle useful for low-latency designs is to minimize state to enable as much on-
chip state as possible. For certain functions it is actually possible to eliminate context state
altogether leading to stateless virtual functions, a special case off on-chip state. Early Mell-
anox HCAs are an example for context state held in on-board memory. Later, state moved to
main-memory and the InfiniHost Context Memory (ICM) was added to the HCA as an
intermediate layer which translates scattered physical main memory holding state informa-
tion in a contiguous memory space suitable for the Mellanox HCA. This process is similar
to the function of a GART (section 5.1.8). The virtualized device in [115] stores all of the
state information in main memory but employs extensive on-chip caching to accelerate the
common case.

The method of issuing commands to a virtualized device is also an important property of the
device. Several possibilities have been proposed including: kernel-based triggering, mem-
ory-mapped door-bell registers, the triggerpage mechanism in conjunction with a condi-
tional store buffer (CSB) [115] [116] and here the novel approaches of Transactional I/O
and the Central-Flow-Controlled Queue. The triggerpage design incorporates a central
command queue for all contexts. Commands are issued to this queue using a load instruc-
tion from the CPU. The offset within an address space window which maps to the queue is
used to carry the actual command. The response to the load instruction then designates if the
command issue was successful or not. The main reasons for failure include resource prob-
lems (the queue is full) or security violations. This method is very appealing and offers an
elegant way to manage a central, shared command queue for a virtualized device regardless
of the host-device interconnect. The downsides are very limited command size (only a few
127

Transactional I/O
bits in the address are available) and the blocking semantic of an I/O read instruction in
today’s processors stalling the CPU unnecessarily. The first problem is remedied by the
introduction of off-chip, per context command-descriptor queues. The central queue then
only serves as a kind of a doorbell to notify the device of new entries and is one of the
exclusive context-associated main-memory queues. This of course leads to additional
latency due to main memory access(es) by the device.

6.4.1 Triggerpage Study
This method has been tested and analyzed on the HTX-Board. An RTL (Register Transfer
Level) model of the triggerpage was written in Verilog HDL. Together with the HT-Core an
FPGA design was completed which was implemented on the HTX Board. Figure 6-3 shows
a diagram of the system and a block-level diagram of the implemented hardware.

The second part of the this study involved to write the necessary test software to actually
use the triggerpage hardware. To this end two programs were written: one client program
and one master program. Client programs simulate user threads accessing the triggerpage
from user-space, i.e. issuing commands to the hardware. The master program controls the
triggerpage design and removes entries from the CSB. The removal of entries from the mas-
ter program as well as the insertion of new commands from the clients can be caused from

Figure 6-2: Virtualization Design Space

On-chip On-board

Kernel
AccessTriggerpage

Context
Location

Command
Issue

Device
Virtualzation

Main Memory

Central-Flow-
Controlled Queue Doorbells

Conditional
Store Buffer

Direct-Flow-
Controlled Queue

Transactional
IO Queue
128

Transactional I/O
pseudo-random number generators. Both programs directly access the hardware from user
space. To this end, the PCI base address region (BAR) of the hardware design was mem-
ory-mapped into the applications virtual address space. The page offset of the mapped
region (i.e. the address bits beyond bit 11) decide which context an access is assigned to.
Page 0 is the master context and used to remove entries from the FIFO. Page 1 to N are then
used to insert commands originating from context 0 to N-1. The context can be given to the
client test application on the commandline; so it is possible to simulate traffic from different
contexts.

Two tools were used for measurements which confirmed the theoretical analysis to be true:
measurement of CPU clock ticks in software and hardware measurements using Xilinx
ChipScope [117].

Triggerpage Results

The most important result is that the triggerpage method performs as expected. The trigger-
ing of a command, i.e. the notification of the arrival of a new command is as fast as the first
half of a read-round-trip from the CPU to the device. Generally, the device has then to issue

Figure 6-3: Triggerpage Experiment

Consumer Process
(CPU core 0)

Produced Process 0
(CPU core != 0)

Produced Process 0
(CPU core != 0)

Triggerpage
Design

(HTX Board)

Read

Read

Read

HT
Core

Conditional Store Buffer

FSM

Non-posted
Requests

Responses
129

Transactional I/O
a DMA read command to fetch the complete command descriptor since usually the avail-
able bits that can be encoded in the trigger address are not sufficient. For the hardware to be
able to start working on a new request, a minimum latency of

is necessary. From table 3-1, it becomes clear that on the tested system the startup latency
can be given with ns. On a system where the device is located
at a greater distance from the CPU, for example current PCIe systems, the startup latency
grows linearly with the interface latency. Current FPGA based PCIe designs feature round-
trip latencies in the order of 1 µs, resulting in a ns, more
than 3 times the HyperTransport startup latency.

Another important characteristic is the command issue rate, which forms an upper bound on
the number of communication transactions that can be performed by such an architecture.
The command issue rate is fixed by the read latency of the architecture in conjunction with
the associated software overhead:

So, if a of 0 is assumed, the tested system can sustain an with a
 ns. Again, since the CPU-device roundtrip latency goes into the equation, a low

latency is mandatory for a good performance.

To asses the NIC transmit latency when employing the triggerpage method, it is necessary
to also take the complete NIC architecture into account. For a NIC architecture as presented
in [115], the transmit latency can be approximated by

Where tstart is the above triggerpage latency, and tcontext is the time to fetch the necessary
context. tvci denominates the time to fetch the virtual communication instruction (i.e. the
TX descriptor) and tdma the time to actually copy the payload using DMA and pass it on to
the network. As a simple lower bound, each tvci and tdma need to access main memory; the
loading of the context needs either to access main memory (context cache miss) or on-chip
resources (context cache hit). In the HTX Board case this sets the lower bound (without
address translation and assumed context cache hit) for TX start-up latency at about

 ns. Address translation adds at least 50-60 ns (using ATU tim-
ing), so the complete TX latency would be more than 700 ns on the current EXTOLL tech-
nology.

6.4.2 I/O Transactions
Ideally, the complete command with all necessary operands (i.e. the command descriptor)
can be inserted into a central command queue in an atomic fashion. Since the queue can be
full, the operation can fail. A new method that satisfies these requirements is named Trans-
actional I/O. This methods introduces a device structure together with an instruction set

tstart tnp req– tdequeue tdma+ +=

tstart 90 10 280+ +> 380=

tstart 500 10 1000 1510≈+ +>

rissue
1

tread toverhead+
-------------------------------------=

toverhead rissue 5.2< 106⋅
tread 190≈

ttx tstart tcontext tvci tdma+ + +=

ttx 100 2 280⋅+()> 660=
130

Transactional I/O
architecture (ISA) extension and an interconnect extension to support I/O much more effi-
ciently. This extension allows true atomic transactions of up to 64 byte in size. If the trans-
action can either not be handled atomically or not be completed by the device, the
transaction is aborted and software is informed so that the transaction can be retried.

The idea for Transactional I/O is very simple:
• A direct I/O operations in a virtual environment can fail, if resources are not pre-allocated

which leads either to poor resource usage or considerable management overhead.
• I/O operations must be atomic, so that the device is able to efficiently distinguish opera-

tions from different sources and does not have to keep state for started but not yet finished
operations 1.

• Operation start-up should be latency optimized: a single I/O transfer should suffice.

These requirements lead to the Transactional I/O method. A special CPU instruction called
iocommit is introduced which transfers a number of registers (the use of wide, multimedia
registers like XMM in X86-64 is suggested) in one non-posted I/O transfer directly from the
CPU to the device. The operation should support the transfer of at least 64 byte en-block.
The operation itself is atomic. If the process is un-scheduled right before the instruction is
issued, the CPU registers are part of the architectural state of the CPU and saved by the con-
text switching mechanism.

The iocommit instruction causes a non-posted transfer, meaning a response is expected.
This response is generated by the device and sent back up-stream to the CPU where it is
directly stored in a register available for immediate inspection by software. If the return
value indicates success, the application can proceed, otherwise a retry mechanism is used.
Since the response is transported to a register, a full scalar integer data type can be used to
indicate additional information to software.

The whole sequence of triggering a command in the CPU is summarized in the following
pseudo-code:

1. Load command descriptor and data into CPU registers.
2. Call iocommit instruction.
3. Check return value in general purpose register (for example in RAX in X86-64).
4. If value indicates failure, jump to step two.

On the device the following sequence of events is triggered:
1. A non-posted packet containing the command descriptor/data arrives at the host interface.
2. The device checks if it can accept the packet.
3. If the packet was accepted the necessary response packet carries a success indicator value.
4. Otherwise a response containing failure is generated.

1. While the idea of holding the state of started operations seems appealing at first, consider the case
of a process that gets unscheduled during the posting of the operation. It may well be that the pro-
cess is resumed milliseconds or more later. In this time potentially thousands of other operations
may get started and finished. In essence, this solution would mean to hold memory space for one
unfinished operation for every supported context.
131

Transactional I/O
The needed transaction on the interconnect is a standard non-posted write (as defined in HT
or PCIe) with one additional feature: generally non-posted writes only generate a target
done or target abort response. In this case a response packet analogous to a read response
must be provided, carrying data.

A somewhat more restricted, but still useful implementation could also use non-posted
write transactions and target done packets to signal success or failure. The error bits in the
response control packet encode the operation status. This possibility needs no changes to
the host-device interconnection network.

This method performs in the average case, i.e. no contention on the queue, very good. The
start-up latency can be approximated by , thus around 200 ns on the HTX-
Board platform. Since the complete command descriptor is transferred to the queue directly,
the issue rate remains the same as in the triggerpage study, since the non-posted (read)
latency still causes the upper bound of this rate.

6.4.3 Central-Flow-Controlled Queue
The newly introduced Transactional I/O method is not applicable to current systems; so a
method was developed which sacrifices a minimum of the capabilities but is implementable
on a current system. This reduced but innovative solution, called the central-flow-controlled
queue (CFCQ), is used for the functional units in this work. It becomes possible because
HyperTransport is a flow-controlled interconnect. Thus, the HyperTransport flow-control
ensures that the central queue never overflows. This approach allows commands (or entries)
of up to 64-bytes to be inserted into the queue at once leveraging the write-combining fea-
ture of modern CPUs. If the queue is full and a thread posts an additional command, the
CPU core gets stalled until the device returns a credit. This characteristic is also one of the
two problems this solution still lacks to the optimal one: the CPU gets blocked if it posts an
operation when the queue is full; the second problem relates to the use of the write-combin-
ing buffer for larger transactions. Such a transaction may be interrupted and in this case the
queue operation is not atomic. The design has to handle this in a well defined way.

For the CFCQ method to work, the write transaction containing the command must be
atomic. This is the case for all simple store instructions on x86 CPUs1. The method has to
be used with commands or command descriptors which are smaller or equal in size to the
maximum CPU store size, so that no additional DMA is necessary to start the operation. On
AMD64 the largest data type that can currently be stored in one instruction is a 128-bit vec-
tor value using the SSE2 instruction set2. Thus, commands with a descriptor size of 16 bytes
or less can be issued directly. Some additional bits are available by encoding them in the
store address of the command issue transactions. Prior to implementing an actual design
using this method, a study was performed to clarify two questions:

• Is an SSE2 store truly uninterruptible?

1. This is actually implementation dependent, and there are x86 processors which may divide a 64-
store to I/O into two 32-bit stores

2. Mid-term future CPU generations may support 512-bit memory accesses.

tstart tnp req–=
132

Transactional I/O
• What happens if the queue is full?

Figure 6-4 shows the block-diagram of the used test design.

Software issues stores to the hardware. The controller block handles the stores and directs
them to on-chip memory. For the study the actual values could also be discarded, but to
check the correct functionality it is useful to be able to actually check the content of the
individual transactions. To effectively view what is happening in the system several IP
blocks from Xilinx ChipScope [117] were used. The general ChipScope core allows to
instantiate an logic state analyzer in an FPGA design which was used here to monitor the
timing of individual transactions. Additionally, the controller implements a number of
counters, for example one counting all store transactions and one counting only transactions
of a certain size or smaller. Using the Virtual I/O core of ChipScope, the counter could be
read and written to from the ChipScope GUI. This design was used to prove in system, that
the AMD64 CPUs really generate 128-bit stores if an movntdq instruction is executed. The
result of this test was positive.

The next question was what happens when the central command queue runs full and the
credit based flow-control of HyperTransport puts back-pressure on the load/store unit of the
requesting CPU core. The result is actually, that the load-store unit of the CPU core causes
the complete core to stall. This can be the cause of system deadlock so it is absolutely man-
datory to ensure progress of the system.1

The performance of this method is excellent. The start latency is given by
and evaluates thus to < 100 ns on the HTX-Board platform. The Transmit latency can thus
be approximated with a lower bound of which equals the Transactional
I/O. But since only a posted transfer is necessary, the issue rate is actually even higher and
is with an assumed overhead of zero and
ns.

Figure 6-4: Central Flow-Controlled Queue Block Diagram

1. It may be possible to use the Machine Check Architecture features of the CPU to detect a queue
full condition. It is unclear though, what can be done to remedy the problem subsequently.

HT
Core Controller On-chip

Memory

FSM

ChipScope
LSA

probe probe

Posted
Requests

JTAG

tstart tp req–=

ttx tstart tdma+=

rissue
1

twrite toverhead+
--------------------------------------- 11.2 106⋅<= twrite 90≈
133

Transactional I/O
6.4.4 Central-Flow-Controlled Queue with Direct Data
Insertion
This is a special case of the previous method. In addition to the command itself the com-
plete payload of a communication operation is given to the hardware using a direct write
interface to the requester to increase small-message bandwidth and throughput as well as
reduce small message latency. To this end the write-combining buffers present in modern
CPUs can be leveraged to transfer up to one cache-line (64 byte) of data in one direct trans-
fer. SSE2 store instructions can be used to transfer the data in chunks of up to 16 bytes.
After 64 bytes have been assembled in a write combining buffer, the buffer is flushed to
actually trigger a single transaction on the I/O link containing the complete cache line. Par-
tially filled write-combining buffers can also be flushed; the AMD64 processors cause a
write transaction with the size of the fill-level of the buffer at this point.1

Usage of write-combining enables high bandwidth on I/O links using PIO accesses. Origi-
nally write-combining features were added to modern CPUs to accelerate interaction with
graphics devices respectively video frame buffers. Write-Combining buffers get flushed,
either if this is explicitly asked for using a fence or serializing machine instruction or if they
need to be re-used. Context switching normally also causes the buffers to get flushed.

One difficulty arises, when an application writing to a device is interrupted: the write com-
bining buffer can be flushed prematurely. Once the application is resumed it continues stor-
ing into the now again empty write-combining buffer and finally flushes the buffer. The
result is a transaction to the device that is fragmented into two smaller sub-transactions. In
an extreme case a transaction can be interrupted multiple times, between each instruction
that is in the path of storing all of the data. Two important rationales follow these observa-
tions:

• The device needs to be able to deal with fragmented transactions.
• Minimization of fragmented transactions is desirable.

The hardware/software design from the previous section was reused to analyze the fragmen-
tation behavior of a modern system. On the software side, three implementations of the
actual function performing the transaction were considered:

• memcopy from glibc,
• a compiler intrinsics based SSE2 based implementation, and
• a hand optimized SSE2 based implementation.

The probability of an interruption is dependent on the length of the critical code path and
the interrupt probability on the local CPU. To model different system environments the test
software executed the transaction function both single-threaded and multi-threaded (to
model a system were multiple threads/applications use a virtualized engine). Also the influ-
ence of the usage of different cores of a system was explored, since different cores may han-

1. Intel CPUs cause a sequence of individual integer size stores in this case which is of course less
efficient and also not necessarily atomic on the I/O link.
134

Transactional I/O
dle different external interrupts. Another important factor is the tick frequency, i.e. the
frequency of the time keeping interrupt which is also used for process scheduling. This
interrupt occurs on every core, but its frequency can be configured within the Linux kernel.

Transactions of size 16 byte or smaller can always commit atomically, since they can be
triggered by a single x86-64 transaction. Figure 6-5 shows the interrupt rate in ppm of
32-byte sized transactions for different parameters, including the core and the number of
threads. It can be seen, that even under heavy load (high number of threads) the number of
interruptions is very small. An interesting anomaly results of using only core 3 of the sys-
tem, which exhibits very a very high rate of interrupted transactions. The reason for this
phenomenon is that core 3 handles all of the external interrupts in the tested system includ-
ing network and storage. Since the system was accessed using ssh a steady stream of net-
work interrupts was generated on this core. But the interruption rate is still low in this case,
less than one transaction in every 100,000 transactions is disrupted. These measurements
were made using SSE2 based storing of the data. If moves with a smaller granularity are
used, the interrupt rate is somewhat higher. The result is, that a hardware function imple-
menting this method must be able to handle interrupted transactions. It may do so with a
reduced efficiency, since the average case is a non-interrupted transactions. The VELO
functional unit of EXTOLL which employs the CFCQ scheme with direct data as defined
here, can recover from a split transaction and delivers such a transaction using two distinct
network transactions. Software on the receiving node can detect the situation from bits in
the message header and is responsible to reassemble the message.

The general performance parameters of this method are similar to the base CFCQ design,
the difference being that the network transaction can be started without any further DMA,
since the payload is already part of the command. Thus, tx reduces to tstart.

6.4.5 OS Synchronized Queue
Since a transition into the privileged kernel space is relatively cheap on modern processors,
It is worthwhile to study a device with a user-level software stack, but where the actual
access to the device for example to trigger an action is performed in kernel space. This
method offers three potential advantages: First, less resource usage is needed, for example
address space, since context information can be passed to the hardware more efficiently (the
OS is a trusted entity in the system). Secondly, the OS can perform additional multiplexing/
demultiplexing if hardware resources are exhausted (available end-points) thus enabling a
seamless transition to pure software virtualization. Finally, this goes together with a pure
software based address virtualization (section 5.2.2).

Measurements performed of the time it takes to enter and leave the OS on the same
machines that were used above showed the cost to be around 170 ns. The result of this mea-
surement is the latency given in table 3-1. So, starting of an operation from kernel-space
costs at least an additional 170 ns. The results of this approach to a complete NIC applica-
tion can be found in 7.5.5.
135

Transactional I/O
6.5 Completion Notification
In all the above designs, the completion of an operation is also an important factor. For
example, when requesting a NIC to transmit some data, it is mandatory to know if and when
the buffer to be transmitted can be re-used. Figure 6-6 summarizes the design space which
is available for completion notifications.

The first choice is whether the CPU be informed using interrupts or if software has to
actively poll some register or memory location. Interrupt driven notification enables asyn-
chronous behavior and may remove CPU load in certain scenarios. On the other side, poll-
ing features a much lower latency. Consider the hardware interrupt latency measured using
the HTX-Board of at least 700 ns. Additionally, the interrupt handler has to execute some
code, possibly accessing main memory or even worse device registers. Usually it is a user-
space application that is actually interested in the completion event. The interrupt handler
thus, has to mark the process runnable and trigger a scheduling event in the OS kernel. In
[20] approximately 5 µs are used for interrupt handling, soft IRQ handler call and applica-
tion wake-up. For the EXTOLL communication units a hybrid solution was chosen: the
architecture is optimized for low-latency polling solutions, but interrupt generation can be

Figure 6-5: CFCQ 32-Byte Transaction Interrupt Rate

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Single Thread, Core 0
Single Thread, Core 1
Single Thread, Core 2
Single Thread, Core 3
Four Threads, all Core
Eight Threads, all Core
16 Threads, all Cores
32 Threads, all Cores
64 Threads, all Cores
128 Threads, all Coresra

tio
 o

f i
nt

er
ru

pt
ed

 tr
an

sa
ct

io
ns

 [p
pm

]

136

Transactional I/O
turned on. Since interrupt generation is selectable per VPID, interrupts can be used from a
VPID that is used by an in kernel EXTOLL client (for example a cluster file system) while
synchronous polling is used for other VPIDs in use by MPI processes.

The question of the queue design is resolved using one queue per VPID as this offers the
most advantages. Solely in-kernel solutions can be dropped since it is an EXTOLL require-
ment to support user-space communication. The per-connection queue design has the major
drawback, that a number of queues must be polled simultaneously. That means that the poll-
ing latency (i.e. the latency from the actual event until the notification arrives at the applica-
tion via polling) increases linearly with the number of communication partners. Single
queue designs eliminate this overhead all together. On the downside single-queue designs
may cause a more complicated flow-control scheme to be necessary. For both communica-
tion units described in this thesis, a single queue design was used.

The preceding paragraph already touched the subject of completion queue congestion. If an
operations causes a completion event which needs to be recorded in a queue, the question
arises, what happens if that queue is full. Three possible solutions were identified: The sim-
plest solution is to actually drop the completion. In this case it is an software error to cause
a queue to become full. This solution is also adopted by other networks for example Infini-
band. Watermark and interrupt based solutions inform the host CPU whenever a queue
reaches a certain fill-level. In this case, the OS is responsible to clear the situation. The
downside of this solution are increased overhead, as generally access to the queue can only
be given through a critical section, since both OS and application may consume entries.
Also, it may be difficult to estimate the right fill level at which to inform the OS. A last
solution would involve a completion queue credit system, where requesters need to acquire
a credit for the destination completion queue before they can initiate the operation. This can
be implemented in software (and in fact is one solution for the software problem possibly
arising when using the first solution) or in hardware or hardware assisted. It was estimated

Figure 6-6: Design Space of Completion Notification

Interrupt
Driven Polling Completion

Dropping
End-to-end

Credits

Notification Queue Congestion
Handling

Completions

Kernel-based
central Queue

Watermark IRQ

Queue Design

Per VPID Per
Connection
137

Transactional I/O
that in the usage scenarios of EXTOLL, the first solution is sufficient. Note, that dropping
of completion may be necessary in contrast to just waiting, since completion queue conges-
tion plus CFCQ congestion may lead to system deadlock if a CPU tries to insert a new
request that can not proceed because every resource is congested including the completion
queue at the far end of the communication. Here, the local CPU tries exactly the same and is
also blocked. A circular dependency has evolved. Since the HyperTransport flow-control
stalls the CPU, the non-preemptive condition for a deadlock is satisfied as all of the other
classical conditions. Figure 6-7 shows this situation which needs to be avoided by all
means.

6.6 RX Virtualization
Virtualization on the RX side is based on the RX queue management and address manage-
ment. Generally, queue based operations need to fetch the base address for the queue which
applies to the receiving context. This is the reason why context-less, virtualized RX func-
tions for two-sided functions are not possible. The same argument holds true for devices
employing posted-receive queues or similar design schemes. One-sided accesses must
translate the address but other than that need no context state. However, EXTOLL zero-
copy functions still employ context state, since the completion of a receive operation can
always be flagged to the receiving application using a completion queue.

Figure 6-7: Queue Deadlock

CFCQ CFCQ

Receive
Queue
(in Main
Memory)

Receive
Queue
(in Main
Memory)

CPU CPU

CPU 0 inserts a command into CFCQ 01

CPU 1 performs the same operation as CPU 0, resulting in a similar situation4

CFCQ0 is not drained because Receive Queue 1 is also full3

CFCQ0 is full and thus stalls CPU0 through the HT flow control2

Both CPUs are stalled, receive queues can not be drained, deadlock results5

1

2

4
5

3

138

Transactional I/O
Kernel based RX virtualization moves de-multiplexing into kernel space software, so it is
necessary to inspect header data for the addressed communication end-point (queue or
address), before the payload can be processed. There are several possibilities how this can
be handled. Either the payload is copied into kernel buffers and the kernel copies the data
then to its final destination (standard in TCP/IP stack implementations), or the payload is
held back by the device and the copy is only performed by the device after the kernel has
given the final physical address to the device. No current implementation of this method is
known. It needs very large device buffers to handle the time between the arrival of a mes-
sage and the time information about the final destination has been given by the OS.

Another path has been proposed and implemented by Intel with their Intel I/O Acceleration
Technology [61]. This technique employs a programmable DMA engine located in the
northbridge of the chipset. This engine can be programmed by the host in kernel mode (it
uses physical addresses) to copy payload data from one spot to another (actually it can copy
any data). This offloads the CPU of the final copy in a communication stack, for example
the Linux TCP/IP stack. Yet, another special case is the kernel based translation approach as
taken by the physical address RMA prototype, where the final address is already inserted
into the communication by the kernel software on the TX side, so the RX side is trivial and
the device can immediately deliver the payload to its final destination.

6.7 Conclusion
The above analysis show that device virtualization and operation issuing are an important
point for a low-latency device. The CFCQ design is the most promising, implementable
derivative of the true Transactional I/O method. Both communication functions of
EXTOLL use such a queue design for commands. In the case of VELO (section 7.4), the
queue is used as a combined command and data queue whereas in the case of RMA
(section 7.5) the CFCQ is used as a command queue only. VELO employs state minimiza-
tion and elimination: the transmit function of VELO is stateless while the RX function has
to employ minimized state information per context. These are receiving queue’s base
address and read/write-pointers. Something similar holds true for the RMA unit architec-
ture; all three sub-units employ extensive state minimization and only completion state has
to be held per context. Both of these sub-units could benefit from true Transactional I/O,
removing some more software overhead and the deadlock problem. Both functional units
are primarily designed for polling completion on single queues but optionally also support
completion notification through interrupts. The complete design of Transactional I/O or
CFCQ can also be leveraged for other I/O devices; specifically accelerator/coprocessors
applications are promising.
139

Transactional I/O
140

Chapter
7

The EXTOLL Hardware
In this chapter the hardware of EXTOLL is described. As mentioned EXTOLL consists of a
number of building-block components. It is possible to adapt the architecture depending on
the requirements for a given system environment. The prototype implementation covered in
this thesis chooses components and a configuration which optimizes communication
latency especially for small communication operations in AMD64 host systems while it is
at the same time able to support a general set of communication operations and fits into an
FPGA based hardware platform.

The platform EXTOLL is mapped to, the CAG HTX-Board, has been described in [56].
One goal of this development was to provide a platform for NIC prototyping [118]. In short,
the main features are an HTX compliant HyperTransport interface, 6 SFP optical transceiv-
ers for the network and a Virtex-4 FX platform FPGA as central, reconfigurable logic
resource.

The general EXTOLL block diagram is given in figure 7-1. The complete architecture is
formed through a number of major blocks, namely the host interface, the on-chip network,
the functional units, one or more Networkports, the EXTOLL crossbar and a number of
Linkports. The host interface is implemented by the HT-Core [14], which was also devel-
oped with EXTOLL in mind and which was optimized for low-latency operation. Another
possible option for the host interface, which was developed, is a the combination of a
PCIe [119] core and the CAG PCIe-to-HTAX bridge IP [120]. Because of the interface
characteristics, system topology and FPGA based SERDES implementation this option
would lead to a significantly lower hardware performance on an FPGA prototype though.
The on-chip interconnection network which both connects the host-interface with the vari-
ous functional units and the functional units with each other is another IP block developed
at the CAG named HyperTransport Advanced Crossbar (HTAX). There have a number of
functional units been developed for the EXTOLL architecture including the ATU which was
analyzed in detail in chapter 5, several communication units (the requirements for them
were analyzed in chapter 4) and the status and control register file unit.

The network part of EXTOLL is formed by the Networkports, Linkports and the EXTOLL
crossbar. A short overview is given below, but since the network layer is not topic of this
thesis, the reader is kindly referred to [14][15][16][17][18][19] for more information about
the network layer.
141

The EXTOLL Hardware
In the next three sections, the host interface and HTAX, registerfile and the network layer
components will be shortly introduced. The rest of this chapter is devoted to the architecture
of the EXTOLL communication units.

7.1 HT-Core and HTAX
The HT-Core forms the preferred host interface for EXTOLL, enabling low latency and
high-bandwidth. Latency of the core itself is as low as 12 respectively 6 pipeline stages
from outside the chip to the application layer FIFO interfaces. With a peak bandwidth of
1.4 GB/s on a FPGA and one-way latencies below 100 ns the core forms an ideal building
block for EXTOLL. To connect more than one functional unit to the host interface, the
HTAX [15] forms a dynamic network-on-a-chip for EXTOLL. HTAX not only connects the
functional units with the HT-Core and vice-versa, it also connects functional units with each
other, for example for the ATS protocol within EXTOLL. HTAX is a completely new
design which features among others virtual channels, overlapping arbitration and split-
phase transaction. An adapter unit, the HTAX-to-HT bridge connects the HTAX to the HT-
Core. This component also provides for source tag translation. This feature enables

Figure 7-1: EXTOLL Block Diagram

NIC NetworkHost Interface

Hyper-
Transport
IP Core

HTAX
XBar

ATU

VELO

C&S
Registerfile

RMA

EXTOLL
XBar

Net-
work-
port

Link-
port

Link-
port

Link-
port

Link-
port

Link-
port

Link-
port

Net-
work-
port

Net-
work-
port
142

The EXTOLL Hardware
EXTOLL components to virtually use the full source tag space of 5-bit for split phase trans-
actions. The actual sharing of the source tags of all of the units onto the source tags avail-
able in the HT fabric of the system is transparently handled by the bridge. The introduction
of the bridge as one component also allows the exchange of the HT-Core with another host
interface IP while keeping all of the remaining architecture completely unchanged (an
example being the HTAX-to-PICe bridge [120]).

The latency for the HTAX connection is 6 respectively 3 cycles for the incoming or outgo-
ing path. The HTAX and bridge both live in the EXTOLL core clock domain, whereas the
HT-Core uses its own set of clock domains. The application interface FIFOs of the core
form the clock domain crossing, decoupling the EXTOLL clock domain from the host inter-
face.

In summary, the components form a capable and very high-performance path to the host for
EXTOLL. In the FPGA prototype a 16-bit, HT400 implementation is used, for an ASIC
analysis suggests that the HT-Core can operate a 16-bit HT1000 link, increasing the peak
bandwidth to nearly 4 GB/s per direction and also reducing latency significantly.

7.2 Registerfile
The EXTOLL register file serves as a central component for control and status functions. A
central versus a distributed design was chosen to significantly ease the implementation.
Within the agile development style of EXTOLL, a nearly completely automated design flow
for the control and status registers proved to be very useful.

The register file design relies on the System Register Description Language (RDL) [121]
and the Denali Blueprint [122] RDL compiler. In an RDL, registers and sets of registers can
be easily and efficiently modeled at a much higher abstraction layer than for example an
HDL language allows. The Blueprint compiler analyses RDL sources and generates an
internal representation. Using different output generators, the original RDL can be trans-
lated to representations in other languages. For the EXTOLL registerfile, 5 different output
generators are used concurrently: the Verilog generator creates RTL-level HDL code used
for the hardware implementations, the HTML output generator creates HTML reference
documentation of the registers and SGML output for usage in FrameMaker. The
FrameMaker output is used for the EXTOLL reference manual [123]. The XML generator
is used to build a representation of the register file used in a later step. Finally, the ANSI-C
module generates header files modeling the complete registerfile using C-datatypes. Addi-
tionally, a large set of macros is generated to enable access to individual fields of registers.

This whole process reduces changes to the register space to a simple RDL patch followed
by an automated process. The integrated documentation facilities are especially useful,
since this ensures that documentation is up to date. RDL and blueprint are also useful,
because they are highly flexible and a number of special features is used by the EXTOLL
register file which would have been needed to be implemented by hand otherwise. To name
just a few:
143

The EXTOLL Hardware
• defining and implementation of Interrupt, Interrupt Mask and Interrupt Clear registers
including the needed inter-register semantics

• definition of arrays of registers as RAM blocks for the implementation
• definition of counting registers, thus making it very simple to introduce performance- or

debug-counters into a functional unit. The unit only has to assert one signal to increment
the counter; the rest is handled by the registerfile logic

To connect the generic bus interface of the generated hardware implementation to the
HTAX protocol, a wrapper module was developed. A TCL script was written to automati-
cally instantiate the register file, the wrapper and add RAM blocks as needed. The wrapper
module also handles the translation of wire based interrupts from the registerfile to MSI
style messages required for HT.

To further automate the process and reduce possible sources of errors, a tool was developed
which uses the XML output of Blueprint together with the ANSI-C macros to generate a
complete Linux kernel driver for such a generated registerfile. The kernel driver imple-
ments complete access to all registers using the /sys pseudo-filesystem [124] and provides
for a comfortable API to access the register from other modules within the kernel.

As a last component, the source revision the register file1 was built from is automatically set
in the version register at offset 0 of the register file, making it possible for system software
to check if the hardware and software revisions match. Again, this process is fully auto-
mated.

The complete flow of the generation of the registerfile and all dependant modules is shown
in figure 7-2. This automatic flow has proven to be a very efficient way to handle control,
status, debug, and performance analysis registers in a design which is actively developed.

7.3 EXTOLL Network Layer
The Networkports, Linkports and the EXTOLL crossbar constitute together the network
block or network layer of EXTOLL2. The EXTOLL network protocol used by these compo-
nents is built from 16+2-bit sized phits (network characters). Up to 64 phits form one flow
control unit, flit. The flit is the unit of buffer sizes in the EXTOLL network and thus one
credit of the flow control protocol means buffer place for one flit. Above the flit protocol,
messages, more accurately packets, are assembled from up to three frames, the routing
frame containing the packet routing information, the command frame for packet header
information (communication function specific) and the payload frame. Each flit is protected
by a CRC.

1. The EXTOLL project used the Subversion[125] version control system to manage the source tree
of the project.

2. Additionally the SERDES/MGT block implementing the physical layer are also logically part of
the EXTOLL network block.
144

The EXTOLL Hardware
The Networkport converts packets to the network layer format and also handles virtual
lanes for functional units. Another notable attribute is that the Networkport serializes the
64-bit wide data format of the functional units into the 16+2 bit wider format of the
EXTOLL network and back again. The Linkports convert packets to the link layer format
and implement a hardware retransmission protocol to ensure reliable network operation.
The EXTOLL crossbar finally implements the switching and routing resources of the
EXTOLL network.

Figure 7-2: Registerfile Design Flow

Blueprint-
Compiler

HTML-
Generator

ANSI-C
Generator

Verilog-
Generator

XML
Generator

Extoll_map.v
HW Register

C Data
Structures
 & Macros

Wrapper-
Script

Extoll_rf_
wrapper.v

rfdrvgen
Driver Generator

Linux
Module

HTML
Reference

SGML
Representation

Import into
FrameMaker

Reference
Manual

Synthesis

HW
Netlist

D
oc

um
en

ta
tio

n

H
ar

dw
ar

e

So
ftw

ar
e

RDL
Specification
145

The EXTOLL Hardware
Switching in EXTOLL is cut-through and routing is based on a modified source-path/delta
routing. Each routing character in the routing string determines the direction a packet
should take at the next switching stage. It also determines one of two virtual channels to
enable deadlock free routing in a torus topology. Finally, to optimize routing string size, a
run-length encoding of the routing strings is employed. That is, if a packet has a number of
sequential switches to the same output port, this is encoded in one routing character using a
6-bit counter. At each crossbar, the counter is decremented by one and only if the counter
reaches zero, the routing string is consumed as in classic source-path routing. To further
optimize this scheme, counters for both virtual channels are coded within one character.
With this method, dimension order routing for a 3-D torus with
nodes can be encoded in one 64-bit word.

An important trait of the network layer which will appear again in the evaluation part of this
thesis is the performance characteristic. The network protocol is a tagged 16-bit wide for-
mat enabling a raw bandwidth of twice the network clock frequency in bytes. The exact
latency characteristics will be shown in the evaluation of the architecture.

As an example, simulation shows that to transport a 56-byte payload VELO message, 41
cycles are needed by the link. The number of cycles would be enough to transport 82 bytes.
Thus, at 56-byte package size, the EXTOLL protocol operates at ~68 % link efficiency. The
link efficiency grows up to about 80 % for large RMA messages. Several proposals exist to
improve the efficiency, mainly increasing the flit size and or widening the data path. This
may be required to reach high bandwidth, for example to use 4x serial links. Both, larger
flits and wider data paths, have not been implemented because of FPGA resource limita-
tions. See also [126] for an in depth discussion of the link protocol and efficiency effects.

7.4 EXTOLL VELO Engine
VELO is a communication engine for small, two-sided messages. It is designed around the
ideas of a CFCQ to post messages. Messages are received into one DMA ring buffer per
VPID. An earlier version of the unit, missing some features, was described in [127]. Since
then, support for asynchronous receive mode (i.e. interrupts), message type tags (MTT) and
variable size DMA buffers has been introduced.

Figure 7-3 shows the sequence of a typical VELO message transfer. The sender copies the
data from the original buffer to a requester address. The requester address decodes to the
VELO requester unit. At the same time the address carries several pieces of information to
the requester unit: destination node, destination VPID, source VPID, length of the message
and a 2-bit message type tag (MTT). The first four pieces are all encoded in address bits
beyond the 12th, thus enabling system software to control whether a process can communi-
cate with another or not by mapping or not mapping the respective physical page into the
virtual address space of the process. The address bits 6 to 11 are used to encode the message
lengths and the MTT. The MTT can be used to differentiate software dependent four types
of messages, for example user messages, flow-control messages, synchronization messages
and ULP control messages. The length of a VELO message can be in between 8 and 64

26 26 26⋅ ⋅ 262.144=
146

The EXTOLL Hardware
bytes (in steps of 8 bytes). The specification of the message length in the start address,
together with the fact that the length of a HT packet is given in its header allows the VELO
requester to differentiate if a message has been split or not. Theoretically, messages should
be posted atomically. As discussed in section 6.4.4, a write-combining access may be inter-
rupted though. VELO generates a different header for the parts of a split message to allow
software on the receiver to reassemble the message again. The address layout for VELO as
implemented by the EXTOLL prototype is given in figure 7-4.

Figure 7-3: VELO Sequence

Figure 7-4: VELO Requester Address Layout

Sending thread Receiving threadVELO requester Network

Data Copy

velo_send

Network
Packet

Network
Packet

VELO completer

Payload to
Mailbox

Status Update
to Mailbox

velo_recv

Reserved (6 bit)Length
(3 bit)

MTT
(3 bit)

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

System PageHigher Order Address
Selects Page
147

The EXTOLL Hardware
On the receiving side, the DMA ring buffer for one VPID is divided into slots of one cache-
line (64 bytes). When receiving a message the completer writes an 8 byte status word
including source node, source VPID, message length, length of the current fragment and
MTT to the first quadword of a slot. The rest of the slot is filled up with data until the length
of the message. A slot is always written using one HT packet, writing of one slot is thus
atomic. The CPU can poll on the status word (which is initialized with all zeroes). When the
status word content changes, a new message has arrived. Note that the status word for a
received message is always unequal to zero. Software copies the payload of the data to the
final buffer. The DMA ring-buffer space is freed by writing to the associated write-pointer
register. Generally, software implements a lazy pointer scheme to statistically lower the
impact of the register access on message latency.

A special case arises for message of 64 byte length. They do not fit in one slot and are thus
divided up into two slots by the Completer. The first slot is filled with a status word and the
first 56 bytes of the message. The second slot gets a second status word and the remaining
bytes. Software is required to poll again on the second status word to avoid any race condi-
tions. The whole memory layout of the completer side is depicted in figure 7-5.

VELO Implementation Constraints

The actual implementation of VELO puts a number of constraints on the design which will
be briefly explained here. The number of destination nodes, destination VPIDs and source
VPIDs is limited by the amount of physical address space available. The requester address
space is mapped into its own BAR in the EXTOLL prototype and was decided to be limited
< 256 MB to avoid problems with buggy PC firmware (BIOS) implementations which will
not accept larger bars. Furthermore, the number of VPIDS and nodes supported determines
the number of entries needed in the diverse registers. For the prototype 32 VPIDs and 64
nodes were deemed large enough. These constraints are already present in the following
register space description.

VELO Registers

While VELO is designed around the idea of state minimization, a number of status and con-
trol registers are necessary for VELO. On the requester side, this is mainly the routing look-
up table used to generate the correct EXTOLL routing string for a message. On the compl-
eter side, the different DMA regions for the VPIDs have to be managed. Additionally, inter-
rupt control and counter registers are available. All of VELO’s registers are summarized in
figure 7-1, a more detailed reference can be found in [123]. All of the registers are part of
the EXTOLL registerfile and are thus created from an RDL specification.

VELO Asynchronous Mode

The interrupt control register enables configuration of interrupt generation per VPID. This
feature enables asynchronous notification of the CPU of incoming messages. The use-case
for this feature is mainly for in-kernel communication protocols and management, or syn-
chronization protocols in passive target applications.
148

The EXTOLL Hardware
Of course, using interrupts introduces a relatively high latency penalty, especially when
compared to the extremely low-latency or normal VELO operations. Nevertheless, this con-
stitutes a faster way to send a message asynchronously between two nodes than any other.

VELO Microarchitecture

VELO is implemented in two components, the requester and the completer unit. Each of
them connects to the HTAX, albeit only unidirectional, and they actually share one bidirec-
tional port of the HTAX crossbar. The same holds true for the Networkport interface on the
other side of the units.

Figure 7-5: VELO Completer Memory Layout

Device Registers (memory-mappable)

Device Registers (memory-mappable)

Main Memory

Mapped into
Applications

Virtual
Address
Space

Mapped into
Kernel Virtual

Address
Space

Message Slot

Receive
DMA
Ring

Base
Address

Write
PointerSize

Read Pointer

Per VPID

Status Word

Data Word 0

Data Word 6

Data Word 5

Data Word 4

Data Word 3

Data Word 2

Data Word 1

CPU

Polls for
unequal

0

149

The EXTOLL Hardware
Within each unit, an FSM (designed using the FSMDesigner tool [112]) forms the control
path, while the data-path is written in Verilog HDL. The HDL code involves about 440 lines
of code for the completer and 310 lines of code for the requester not counting the FSMDe-
signer generated code. All of the registers and lookup tables reside in the registerfile and are
thus specified in the RDL code of the register file.

7.5 EXTOLL RMA Engine
The EXTOLL RMA unit provides for put, get and lock network transactions. This hardware
unit is designed to support medium to large data transfers with efficient CPU offloading by
using virtualized user-level access, the CFCQ approach, and DMA engines. Address trans-
lation can be provided for using ATU or using the kernel. In general the ATU solution is
preferred.

The RMA instruction set has been designed to be highly orthogonal enabling efficient map-
ping of different upper-level-protocols on top of the basic RMA service. For example the
choice of notification events at remote and local end-point of a network transaction is useful
to implement different rendezvous or send/receive protocols. The lock transaction as well as
the notifications can be used to implement overlapping, extremely efficient one-sided oper-
ations for example for MPI-2.

Name Size Description

Routing Lookup Table (RLT) 64 x 8 byte Routing strings for VELO
Destinations

MBox Enables (general register) 8 Byte Holds an enable bit for
each mailbox

VELO Counter Register 8 Byte General message counters
(sent, received, discarded)

Mailbox Size Lookup Table
(MSLT)

32 x 8 byte Holds the size of each
mailbox, thermocode

Base Address Lookup Table
(BALT)

32 x 8 byte Physical base address of
each mailbox

Write-pointer Lookup Table
(WPLT)

32 x 8 byte Write-pointer of each
mailbox, updated by HW

Read-pointer Lookup Table
(RPLT)

32 x 8 byte Read-pointer of each
mailbox, updated by SW.
Each pointer resides on its
own page in the address
space to enable user-space
mapping

Tabelle 7-1: VELO Registers
150

The EXTOLL Hardware
The completion of transactions or part of transactions is flagged to software using notifica-
tions. A notification is a 128-bit value which is written into a notification queue. Each VPID
has one notification queue, which is managed from the register file using read-, write-
pointer and a base address. The queue is implemented as a ring-buffer. As an optimization,
each read-pointer resides alone in one page allowing user-level mapping of the pointer and
read-pointer updates directly from user space (like VELO). There are three classes of notifi-
cations, requester-, completer- and responder notifications named after the unit that gener-
ates them. Software can poll on a notification to detect that a transaction was completed
meaning for example that a buffer can be reused, that data is valid or that a lock is now held.

7.5.1 RMA Instructions
The different instruction for the RMA unit can be categorized into four groups: put, get,
lock and special put operations. Put and get operations move data to or from a remote node
to the other partner. Lock transactions use the novel remote fetch-compare-and-add (FCAA)
method described in section 7.5.4. The special put operations are immediate and notifica-
tion put. An immediate put carries the payload already in the descriptor of the command.
The payload is limited to 64-bit in this case, but a fast path for remote single-word-stores is
provided for. The notification put operation only generates a notification at the remote end
with a part of the remote notification descriptor being set again by the payload of the com-
mand descriptor. This command is especially useful for synchronization and management
purposes. For example it allows exchanging data even if no remote address is known (yet).

Finally, put and get transactions, the real workhorses of the RMA unit are provided in two
size flavors: quadword and cacheline sized. The operand size command bit decides whether
the size field of the requester descriptor is to be interpreted as the number of quadwords or
cachelines to be transported. This allows for a minimum transfer size of 64 bit up to 4 kB
using one RMA request. Not all transfer sizes are possible, for example transfers larger than
64 byte can only occur in multiples of 64 bytes. Also, no transfer is allowed to cross a page
border (4 kB). If misaligned data or data of not matching length has to be transferred, the
complete transfer has to be built using a number of transfers of different sizes; the same
holds true for buffers crossing page boundaries. The page boundary rule makes the address
management much more efficient in hardware.

Requests are posted by writing a 128-bit descriptor to a special address within the requester
memory-mapped I/O space. The address encoding is shown in figure 7-6. The descriptor
format (in the most common case) is shown in figure 7-7. These 128 bits have to be written
to the requester atomically using an SSE2 operation as described in section 6.4.3.
151

The EXTOLL Hardware
For each instruction four command modifier bits can be set: requester notification, compl-
eter notification, responder notification and operand size qualifier. As described above, the
operand size qualifier sets the transfer size to be either cacheline or quadword size based.
This bit is ignored for special put transactions and remote locks. The notification bits con-
figure at which point a notification is written back to the respective node’s main memory.
All of the combinations of the notification bits and the RMA instructions are summarized in
table 7-2; obviously some combinations are not supported, hardware has been designed to
ignore the bit in this case.

An instruction or command is transformed to a network descriptor by an RMA unit and then
forms the command frame of an EXTOLL packet. Finally, a command frame is transformed
to a notification entry at a receiving RMA unit if the corresponding notification bit is set.
The process is illustrated in figures 7-7 and 7-8 which show the descriptors of an RMA put
command. The network and the notification descriptor contain the same fields and are thus
shown in one illustration. Note that a put command can generate both a requester and a
completer notification, which differ only in the notification bit that is set and the exchange
of source and destination in all fields.

Figure 7-6: RMA Requester Address Encoding

Figure 7-7: RMA Requester Command Descriptor (Put/Get) [128]

Reserved (6 bit)Command
(6 bit)

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

system pageHigher address part selects
page

Interrupt enable bit
AT enable bit

Source Address, 29 bit
[31:3]

Source Address, 32 bit
[63:32]

3 2 1 0

1

0

Count
[2:0]

Destination Address, 29 bit
[31:3]

Destination Address, 32 bit
[63:32]

Count
[2:0]

Byte

Q
ua

dw
or

d
Ti

m
e

152

The EXTOLL Hardware
Finally, depending on the interrupt bit, notifications from a command can trigger an inter-
rupt. The interrupt bit is located beyond the page border enabling supervisor software to
control the usage of interrupts for user-space software by mapping the corresponding pages.
Interrupt driven execution is expected to be of use especially for enterprise applications and
kernel level applications like storage or sockets emulation.

7.5.2 PUT Instructions
The put operation is the equivalent to a remote write. The payload size ca either be given in
quadwords or cachelines (64 byte). A maximum of 64 units can be transported. Thus, up to
4 kB can be put in one command. For the put command at least three combinations of the
notification modifier bits are useful, for details see table 7-2.

7.5.3 GET Instructions
The get command represents a remote read transaction. Payload sizes are the same as for the
put command. Again, the instruction table lists the useful notification modifier combina-
tions (table 7-2).

7.5.4 RMA Remote Lock Instruction
The remote lock command requires a more comprehensive description and analysis. The
goal of the remote lock (sometimes called atomic operation) is to enable efficient mapping
of software algorithms using memory region locking as in MPI-2. A fully satisfactory solu-
tion was not found in the literature (see also section 4.4.3). In this section, a novel remote
lock operation and the operation’s semantics are introduced first, followed by the descrip-
tion how the remote lock operation is efficiently implemented for RMA and EXTOLL.

Figure 7-8: RMA Put Requester Notification Descriptor [128]

empty

empty

Destination Address, 32 bit
[31:0]

Destination Address, 32 bit
[63:32]

Destination VPID
8 bit

Error Code
5 bit

CMD
Grp
3 bit

CMD
3 bit

Source Node ID
16 bit

Remote VPID
8bit

3 2 1 0

1

0

Byte

Q
ua

dw
or

d
Ti

m
e

Source VPID
8bit

Count
6 bit

Notification
bits
153

The EXTOLL Hardware
Basic
command

Requester
Notification

Completer
Notification

Responder
Notification Description

Put 0 0 0 No notification, intermediate
transfers

1 0 0 standard one-sided put

0 1 0 n.a.

1 1 0 put for two-sided emulation

X X 1 not possible

Get 0 0 0 n o notification, intermediate get

1 0 0 n.a.

0 1 0 standard one-sided get

1 1 0 n.a

0 0 1 n.a

0 1 1 for two-sided, rendezvous protocol

1 0 1 n.a.

1 1 1 n.a

Lock 0 0 0 n.a

1 0 0 n.a

0 1 0 normal lock operation

1 1 0 n.a

0 0 1 n.a

0 1 1 lock operation, remote side
informed

1 0 1 n.a

n.a.

Immediate
Put

X 1 X used to put one quad-word

Notification
Put

X 1 X synchronization, management

1 - Bit is set in command, 0 - Bit is not set in command, X -value is ignored

Tabelle 7-2: RMA Instruction Set
154

The EXTOLL Hardware
The FCAA operation

We first define a compound atomic operation that is called fetch-compare-and-add (FCAA)
which is complex in comparison to atomic operations available in modern CPUs and may
be comparable in complexity with the CAS2 instruction introduced with the Motorola
68020. The FCAA operation has three source operands: the destination address (a memory
location), a compare value and a 2-complement value designating the value to be added. It
returns two values: the new value of the memory location and a success flag. In pseudo-
code the operation can be described as follows:

FCAA (destination, compare, add):

if (*destination <= compare)

*destination += add;

return (*destination, true);

else

return (*destination, false);

At the completer side the operation proceeds as follows:
1. The value is fetched from its memory location.
2. The value is compared with the compare operand. If the value is smaller or equal, the oper-

ation proceeds with the next step, otherwise the current value is returned together with the
failed flag.

3. The third operand is added to the value. Since this is a 2-complement, it is also allowed to
add a negative value and so actually subtract a value.

4. The new value is written back, returned to the initiator together with the flag set to success.

This operation can be used to directly implement a large number of atomic transactions used
in parallel distributed applications. Three examples are given below. The first is a general
fetch-and-add (FAA) operation, the second is an implementation for the MPI-2 passive tar-
get synchronization with shared and exclusive locking. The third example shows how the
MPI-2 active target MPI_start/post/complete/wait semantic can be implemented using
FCAA.

FCAA Examples

To implement the basic FAA operation, the compare value is set to the maximal value that
can be held within the value operand. The operation will always succeed, and the addition
will proceed atomically.

MPI_lock and MPI_unlock can also be implemented using FCAA. The specialty of these
kinds of locks is, that they can be in one of three states: unlocked, exclusive and shared. The
rational is, that it is possible to lock a memory window for multiple (remote) readers (shared
state), or to lock it exclusively for one writer. Table 7-3 summarizes the operand values for
the different cases. The actual lock variable has the encoding specified in table 7-4.
155

The EXTOLL Hardware
MPI_start/post/complete/wait is an active target synchronization method for MPI-2 one-
sided communication. Since it is active target, it can also relatively efficiently be imple-
mented using two-sided communication. Here, a method to implement the operation using
FCAA is proposed. Table 7-5 shows the operand values and table 7-6 the lock variable
encoding. The FCAA semantics enforce that the target only advances if its post operation
was successful and the originating process only if its start operation was successful. So, the
MPI_post/start semantics as required by the standard (see also section 4.4.3) are fulfilled.
The same holds true for the MPI_complete and MPI_wait pair. Successive MPI_post/start
operations only succeed once an MPI_complete/wait operations have been performed.

Implementation Requirements

For the hardware implementation in a NIC the following requirements must be met:

Operation Compare value Add value

Lock Exclusive 0 n+1

Lock Shared n 1

Unlock Exclusive MAX_INT -(n+1)

Unlock Shared MAX_INT -1

n - the number of processes in the MPI Job
MAX_INT - maximum value that fits in the operand

Tabelle 7-3: FCAA: MPI_Lock/MPI_Unlock Operands

State Lock Variable Encoding

Locked Exclusive n+1

Lock Shared m, m is between 0 and n

Unlock Exclusive 0

Unlock Shared 0

Tabelle 7-4: FCAA: MPI_Lock/Unlock Encoding

Operation Compare Value Add Value Local/Remote

Post 3 -1 local

Start 2 -1 remote

Complete 1 -1 remote

Wait 0 3 local

Tabelle 7-5: FCAA: MPI_Start/Post/Complete/Wait Operands
156

The EXTOLL Hardware
• The NIC must no interrupt processing of a single operation (atomicity of the completer).
• The NIC may choose to queue up a request and answer at a later point in time (allowing

for an optimization by postponing the completion of a failing request, until it succeeds).
• The NIC may choose to immediately answer a request.
• The local process must also use the same NIC function to manipulate a lock variable.

The FCAA network operations employ a non-blocking split-phase protocol. With above
requirements it is clear, that a request may fail or be delayed until it finally succeeds. Thus,
software must be prepared to retry a failing request while the hardware only guarantees a
best effort to not send failing answers. This mechanism is expected to reduce network load
due to lock polling considerably and to improve locking performance. Also, the need to
employ an exponential back-off algorithm for lock polling is mostly eliminated.

Remote Locking Hardware Architecture

The remote lock operation can be elegantly integrated into the RMA engine reusing hard-
ware components. Other possibilities considered were to add FCAA to VELO or implement
a new functional unit. A new functional unit would add a complete new bidirectional HTAX
port, a bidirectional Networkport and an EXTOLL crossbar port, which was rejected
because of resources. VELO does not include the necessary interface to the host, since
DMA read transactions are not provided for. But RMA includes already all the basic opera-
tions needed.

Using RMA, kick-off is always done at the requester. The format of the associated RMA
command descriptor is shown in figure 7-9. Operand sizes for the FCAA operation have
been chosen to be 32-bits. The command and notification bits necessary to compute the
address where to store the command have already been given in table 7-2.

Incoming atomic requests are destined to the RMA responder unit, which usually handles
incoming get requests. The RMA responder gets the associated value from main memory
and performs all necessary computations. It then generates an answer message to the compl-
eter of the initiating process which finally writes a notification with the result of the FCAA
request (figure 7-10).

state lock variable encoding

Idle 3

Posted 2

Started 1

Completed 0

Tabelle 7-6: FCAA: MPI_Start/Post/Complete/Wait Encoding
157

The EXTOLL Hardware
For processes wanting to lock their local window, two possible solutions exists: either mes-
sage are routed through the local crossbar, thus they appear as remote requests at the
responder, or the necessary amount of special purpose communication between the units is
introduced. The preferred solution is the first method using internal crossbar routing
because of symmetry, simplicity and resource usage.

The lock variables can be organized in two ways. Either they are variables addressed using
NLAs as used by put/get operations, or they reside in their own lock address space. The first
version is more flexible and general but needs an address translation to complete a FCAA
operation; the other option is somewhat less flexible but does not need an address comple-
tion, instead a base address register addresses a physically contiguous memory region.
Within the region a page is selected by the VPID, the page offset by the lock address. A lock
variable is a 32-bit double word. So, each VPID has 1024 locks available. The memory and

Figure 7-9: RMA Lock Command Descriptor

Figure 7-10: RMA Lock Notification Descriptor

Lock Number

Compare Operand, 32 bit

3 2 1 0

1

0
Rsv

Rsv

Add Operand, 32 bit

Rsv

Byte

Q
ua

dw
or

d
Ti

m
e

3 2 1 0

1

0
Lock Number

Value

Empty

empty Destination VPID
8 bit

Error Code
5 bit

CMD
Grp
3 bit

CMD
3 bit

Source Node ID
16 bit

Remote VPID
8bit

Source VPID
8bit

rsv

Result

Q
ua

dw
or

d
Ti

m
e

Byte

Notification
bits
158

The EXTOLL Hardware
address scheme is depicted in figure 7-11. Lock 2 of VPID 1 is shown shaded darker. The
base address of the lock region is stored in a register. The VPID forms the high-order bits of
the lock offset and the lock number the low order bits of the lock offset. Together with the
base address the lock offset directly forms the lock address. The physically contiguous
memory region necessary is in size 128 kB for the EXTOLL prototype; an implementation
with 512 VPIDs needs a 2 MB region.

A future extension refers to the optimization of failing lock requests. For this purpose
requests that failed the compare stage of the process can be stored in an associative data
structure at the completer. If a new operation is processed at the completer, the next opera-
tion stored in the failed operation buffer which targets the same lock must be re-evaluated.
It is expected that good results can be obtained with a low number of outstanding operations
Larger buffers are possible within the specification and architecture if resources allow for it
(ASIC implementation). The simplest solution for an FPGA implementation seems to be a
linear search of outstanding FCAA operations if the queue is not empty after the completion
of an operation. This can simply be implemented in the corresponding responder FSM and
requires a small FIFO and a number of cycles proportional to the number of outstanding
operations. This optimization was not included in the prototype implementation.

Figure 7-11: RMA Lock Addressing

Main memory

Device Register
(Memory-Mappable, Part of Registerfile)

Physically
contigous
Memory

(n * 4 kB)

Mapped into
Kernel
Virtual

Address
Space

Base address

Lock 0

Lock 1

Lock 1023

Lock 5

Lock 4

Lock 3

Lock 2

Lock space of VPID 0
(4 kB)

Lock Space of VPID n-1
(4 kB)

Lock Space of VPID 2
(4 kB)

Lock space of VPID 1
(4 kB)

...

...
159

The EXTOLL Hardware
7.5.5 Physical vs. Virtual Addressing
Devices can usually only access physical memory. To enable true user-level communica-
tion, ATU was introduced to the architecture. Furthermore, we can also use kernel-level ser-
vices and communication using physical addresses. In this model, each communication
request is passed through the kernel on the requester side. The driver translates all
addresses; for this purpose the driver also manages a table of all remotely available win-
dows. The descriptor is then passed as quickly as possible to the underlying hardware. All
completions are also preprocessed by the kernel, again translating addresses this time from
physical back to virtual addresses before they are delivered to the user space application.
This scheme saves the address translation capabilities in the hardware at the expense of a
much higher complexity at the kernel level and increased latency. The complexity at the
kernel level mainly stems from the management of the memory tables, both local and
remote, that have to be kept consistent across the network. The kernel trap is the main con-
tributor to the additional latency.

Table 7-7 shows the resulting performance numbers of a comparison of both methods. The
bandwidth does differ by a small amount, the latency is about 600 ns higher for the kernel
level case. Also, the CPU load is increased by the kernel based solution.

7.5.6 RMA Microarchitecture
The RMA micro architecture is composed of three main modules, the requester, the compl-
eter and the responder. Each module is made up of one FSM and a datapath. Additionally,
the requester features a command buffer to de-couple the HyperTransport interface respec-
tively the CPU from the network. The responder and requester unit both feature a reordering
buffer which is necessary to bring DMA read responses from the host back into request
order.

The requester receives incoming posted packets from the CPU and stores them inside the
command FIFO. Entries are removed from the FIFO and interpreted as RMA work
requests. Depending on the type, data is requested from the host using DMA reads and the
re-order buffer or the network packet is sent immediately (in case of an immediate put or a
get operation, for example.

Metric Physical Addressing
(kernel based pre-translation)

Virtual Addressing
(ATU & NLAs)

min. Latency 2.59 µs 1.99 µs

max. Bandwidth 264 MB/s 275 MB/s

n½ size, ping-pong 1024 bytes 576 bytes

Tabelle 7-7: RMA Virtual vs. Physical Addressing
160

The EXTOLL Hardware
Figure 7-12: RMA Block Diagram

RMA Requester

RMA Completer

RMA Responder

HT Reorder
Buffer

HT Command
Queue

HTAX
Inter-
face

EXTOLL
Network

Inter-
face

HTAX
Inter-
face

HTAX
Inter-
face

EXTOLL
Network

Inter-
face

EXTOLL
Network

Inter-
face

FSM

NP Data
Queue

HT Reorder
Buffer

Datapath

FSM

Datapath

FSM

Datapath

64 bit

64 bit

64 bit64 bit

64 bit

64 bit
161

The EXTOLL Hardware
The completer receives put-packets from the network and completes them by writing them
to the host memory. This unit also receives the get-responses which have been generated by
a remote responder.

The responder handles incoming get-request and lock requests. Figure 7-12 shows the sche-
matic block diagram of the different units.

7.5.7 RMA Registers
The RMA units feature a number of registers and look-up tables (virtualized registers).
Again, they are created from a RDL specification and the complete reference can be found
in [123]. A short summary is given in 7-8.

Name Size Description

Notification Write-Pointer 32 x 8 byte one per notification queue

Notification Read-Pointer 32 x 8 byte one per notification
queue; each pointer

resides in its own page

Notification Queue Size 8 byte size of the notification
queues

Requester PUT Command Counter 2 byte operation counter

Requester GET Command Counter 2 byte operation counter

Responder GET Command Counter 2 byte operation counter

Responder PUT Command Counter 2 byte operation counter

Completer PUT Command Counter 2 byte operation counter

Completer GET Command Counter 2 byte operation counter

Completer Enable 4 x 8 byte 256 bit to support 256
VPIDs; only 32 VPIDs

used currently

Lock Base Register 8 byte physical base address of
the lock region

Lock Size Register 8 byte size of the lock region

Tabelle 7-8: RMA Registers
162

The EXTOLL Hardware
7.6 EXTOLL URMAA engine
One other communication function that had been designed for EXTOLL and was originally
envisioned to form the communication function is called Unified Remote Memory Access
Architecture (URMAA). A Verilog HDL prototype simulation model for the URMAA was
implemented [110]. The design of this unit builds heavily on the work of [115] and [129].
The URMAA engine is not completely finished because of resource constraints, since it
requires more resources than the other functions described so far. Also, the URMAA is an
engine which is more optimal for throughput communication than low latency with its mul-
tiple, simultaneous contexts. To reach low latency in the usual case, URMAA requires large
on-chip caches which are not available for the FPGA technology. The high complexity of
the URMAA design also puts requirements for verification, implementation and test very
high.

7.7 EXTOLL FPGA Implementation
The EXTOLL prototype as an implementation of the EXTOLL architecture was conducted
for the Xilinx FPGA Virtex-4 architectures. For the FPGA implementation parameter
choices had to be made, for example the number of VPIDs was fixed to be 32 both for RMA
and VELO. This was chosen because it allows a 32 simultaneous processes, a perfect match
for coming 32 CPU-core systems and also of good size for 16 core systems which are
expected to be the target system for the next step in the project.

Most of the design is coded using Verilog HDL. Most state machines have been developed
using the FSMDesigner tool [112] which allows a graphical design of a finite state machine.
The FSM can then automatically be converted into Verilog RTL code. Additionally, simula-
tion and verification features help to verify the functionality of the design. As stated above,
the register file is based on an automatic flow based on the RDL language. The crossbar
components are generated from building blocks using scripts, thus they are available as
parametrizable blocks with differing widths, number of ports etc. Additionally, the
EXTOLL project uses a number of IP blocks to implement certain parts of the design.
Namely, a CAG developed general FIFO block is used, RAM blocks, FPGA I/O blocks and
clocking resources (digital clock managers, clock multiplexer etc.). The host interface is
formed by the open-source HyperTransport IP developed and supported by the CAG.

The Verilog source code that is the result of the above tools is then used together with a
standard Xilinx tool-flow to generate a final FPGA bitstream file. Xilinx XST is used for
synthesis, ISE 10.1 map and place & route are used for the design [130]. Additionally Xil-
inx PlanAhead has been used for floor planning and design performance analysis for timing
closure [131].
163

The EXTOLL Hardware
The complete simulation and verification is built on Cadence tools, notably ncsim and sim-
vision are used. To model the host, the AMD HyperTransport Bus Functional Model 3.0 has
been used [113]. The individual blocks were tested alone at first, and then in a design con-
stituting one EXTOLL in loopback-link configuration as well as a simulation set-up where
two EXTOLL instances were connected. These EXTOLL models were then used with ran-
dom generated test vectors both for VELO- as well as RMA-communication. Additionally,
corner cases were simulated using directed tests.

Some errors were still not found in simulation, mostly because it takes too long to simulate
the system to get to this point or because of missing congruence of simulation with reality.
For example the AMD Bus Functional Model does not exactly model an actual AMD CPU.
Also in-depth post-place-and-route simulation was extremely difficult because of resource
usage1. So, as a last stage the hardware was thoroughly tested in system. In addition to sim-
ulation the code base was linted.

The resulting netlist uses approximately 95 % of the slices of a Virtex-4 FX-100 FPGA,
which is a very high usage rate for an FGPA design. A compilation of resource usage is
given in table 7-9. Figure 7-13 shows a tree plot of the resource usage for the different
blocks of the EXTOLL design as generated by the Xilinx PlanAhead tool (screenshot).
From the plot one can see the distribution of resources to the different parts of EXTOLL.
The largest part is the EXTOLL network layer with more than 50 % of the resources fol-
lowed by the NIC. The HyperTransport core and other modules (I2C, clock management)
make up a small part. Figure 7-14 shows the design placed and routed; the different big
blocks have been highlighted to show their relative usage and their placement. The
EXTOLL network layer is shown in red, the NIC layer in blue, the HyperTransport core in
green and the rest in grey. All blocks except the Linkports and the MGT wrapper module are
automatically placed. The rectangular regions that were allocated for the Linkports and the
MGT wrapper can be seen in the lower middle of the floor plan. The HT-Core clock domain
runs at 200 MHz, the EXTOLL clock domains run at 156 MHz. All in all, the design
employs 10 different clock domains.

The efficient HDL coding leads to high performance of the design despite the resource
usage of the FPGA being at the limit.

1. A dual EXTOLL post-place-and-route simulation takes > 9 GB of RAM and simulates very
slowly.

Resource Count % of a VP4-FX100 device

Flip-Flops 27063 32 %

LUTs 74137 87 %

Slices 40355 95 %

RAM blocks 139 36 %

Tabelle 7-9: Design Resource Usage
164

The EXTOLL Hardware
Figure 7-13: Resource Usage by Block (PlanAhead Screenshot)

Figure 7-14: EXTOLL Placed and Routed on FX100 FPGA

EXTOLL Network layer EXTOLL NIC layer
Hyper-
Transport

Other
Modules
165

The EXTOLL Hardware
7.8 EXTOLL ASIC
Preliminary experiments show, that an ASIC implementation of the same design is expected
to reach 500 MHz even when implemented on a conservative process. The HyperTransport
IP has been successfully mapped to a conservative standard cell implementation reaching
more than 400 MHz without any optimization efforts. A design study synthesized the
EXTOLL crossbar and a number of Linkports to form an EXTOLL switch. This design
reached 1 GHz post synthesis on a current CMOS process technology.

The higher clock speed of an ASIC implementation will have a dramatic effect on overall
performance numbers. For example, the bandwidth for one link scales with the clock fre-
quency, thus reaching 1 GB/s at 500 MHz. Latencies of all paths within the EXTOLL chips
scale linearly with the clock frequency. Figure 7-15 shows the hardware latency of
EXTOLL broken down into the latency due to the physical network layer (serializers/dese-
rializers and synchronization), the network layer, the NIC and the HyperTransport connec-
tion. All of the latencies include the sending and the receiving side. These numbers were
measured using a cycle accurate HDL simulation of two connected EXTOLL instances. The
network latency also includes two switches, since the message passes at least two EXTOLL
crossbars. The numbers do not include the latencies induced by the processor and the host
cache-coherence and memory subsystem. This is the reason why the measured system
latencies (Chapter 9) are higher. Table 7-10 summarizes the overall message latency as well
as other key performance parameters for different technology scenarios. For reference, the

Figure 7-15: EXTOLL Latency Breakdown and Scaling

0

200

400

600

800

1000

1200

HT-400 / 156 MHz
EXTOLL

HT-400 / 200 MHz
EXTOLL

HT-800 / 500 MHz
EXTOLL

HT-1000 / 800
MHz EXTOLL

La
te

nc
y

[n
s]

Trail (Time to Complete Message from
first to last Byte at receiving HT Link)
Physical Layer

Network Layer

NIC (including On-Chip Network)

HyperTransport Core
166

The EXTOLL Hardware
number for a Mellanox Connect X DDR HCA are given in the last row of the table. Startup
latencies of both VELO and RMA are estimated to fall below 600 ns at 500 MHz EXTOLL
clock frequency and reach 500 ns end-to-end latency at 800 MHz EXTOLL frequency.
Even higher frequencies are imaginable for an EXTOLL ASIC, featuring an HT 3.x host
interface and > 1 GHz of internal frequency. Higher frequencies of the HT interface also
benefit the overall latency.

An ASIC implementation also opens the possibility to extend the design in certain areas to
increase performance even further. Obvious candidates are the ATU unit and the lock opera-
tion in the RMA, which can both benefit from the availability of associative memory
blocks. The ATU TLB can be changed from a direct-mapped version to a set-associative or
even fully associative implementation. The higher integration possible for an ASIC also
means that the number of VPIDs can be increased, for example to 128 or 512 VPIDs as well
as the routing tables to accommodate for more nodes. A last improvement that promises sig-
nificant advantages is to move the network layer from 16 bit to 32 bit. The actual code of
the EXTOLL network layer can handle 32-bit phits without many modifications. This
increase of the phit size can improve effective bandwidth (i.e. percentage of theoretical
bandwidth that can be used for payload) by increasing the flit size. Also, latency is
improved a little (the Networkport serializes/deserializes only 2:1 instead of 4:1). Finally,
this change doubles the theoretical bandwidth in the network layer. The 800MHz design
would show an aggregate bidirectional bandwidth of all 6 links of 16.8 GB/s. The NIC to
network bandwidth would be in excess of 8 GB/s, and the singe link bandwidth would be >
2.8 GB/s. These high bandwidth numbers come together with the extremely low-latency
characteristics of less than 500 ns of application-to-application latency.

HT Frequency Start-up Latency Bandwidth Comment

HT-400 156 MHz 1300 ns 274 MB/s FPGA, current prototype

HT-400 200 MHz 1000 ns 400 MB/s FPGA, optimized

HT-800 500 MHz 800 ns 880 MB/s ASIC

HT-1000 800 MHz 500 ns 2.8 GB/s ASIC, 32-bit phit

n.a. Reference:
Mellanox
ConnectX

DDR

~1200 - 1500 ns ~1.5 GB/s There are also ConnectX
SDR and QDR adapters,
their actual bandwidth

may differ.

Tabelle 7-10: Effects of Technology
167

The EXTOLL Hardware
168

Chapter
8

The EXTOLL Software
In this chapter the software stack for the EXTOLL environment is presented. A hardware
design is futile without software that can actually use it. The schematic diagram in
figure 8-1 shows an overview of the different components. A set of kernel level drivers
forms the basis, complemented by a number of user-level APIs and middlewares. On the
right side the network management software components are shown. Currently theses are
limited to a simple tool. Not shown in the diagram is the possibility to also use kernel level
services for data transport operations. This chapter describes the different software compo-
nents in turn starting with the kernel level and ending with the APIs. For the middlewares
(i.e. MPI and GASnet) design studies, concepts and protocols are presented complementing
the analysis in chapter 4. The performance evaluation shows the capabilities of the
EXTOLL system.

8.1 The EXTOLL Kernel Space Software
The EXTOLL kernel space software components are made up of five Linux kernel mod-
ules. The extolldrv component forms the basic EXTOLL driver. The extoll_rf component is
responsible for the EXTOLL register file and the sysfs connection. atudrv manages ATU,
while velodrv and rmadrv manage their respective functional units.

8.1.1 Base EXTOLL Driver
extolldrv detects the presence of a device, performs the basic configuration and enumeration
of the device, remaps the PCI BAR spaces into the kernel virtual address space etc. In sum-
mary, extolldrv forms a PCI device driver for Linux. extolldrv does not expose any interface
to user-space. Instead, it offers the possibility to get the physical and virtual addresses of
important device resources for usage by other kernel modules. One other important feature
of extolldrv is interrupt management. Other modules may register callback functions for dif-
ferent interrupt cause bits. Whenever an interrupt is triggered by EXTOLL the interrupt
handler in extolldrv is executed, calls the registered interrupt callback functions, and clears
the interrupt cause register.
169

The EXTOLL Software
8.1.2 EXTOLL Registerfile Driver
The extoll_rf driver forms the interface to the EXTOLL registerfile. As described in section
7.2, this driver is generated fully automatic. It registers itself with the EXTOLL base driver
and then exports a kernel-level API for convenient and hardware independent register
access to the other modules. The extoll_rf driver also implements a sysfs interface for all of
the registers. The sysfs pseudo-filesystem is a Linux feature to expose driver level configu-
ration and status data to user-space. Within the sysfs filesystem, the EXTOLL registers are
represented as a set of files in one common directory. By reading or writing from or to these
files, the corresponding register is read from or written to. This interface is used by manage-
ment and debugging tools to interact with the hardware. One interesting aspect of the inter-
face is the ease of interaction with scripting languages from shell scripts to Python. Both the
sEru management tool and the registerfile GUI application are based on this interface.

Figure 8-1: EXTOLL Software Stack

EXTOLL Basedriver

atudrv

User-Application

libVELO

Middleware, i.e.
MPI

(Library)

EXTOLL Hardware

VELO RMA RegisterfileATU

User
Space

NIC

Kernel
Space

Application Management

libRMA

extoll_rfrmadrvvelodrv

sEru

Middleware, i.e.
MPI

(Library)

PCI
Config-
space
170

The EXTOLL Software
8.1.3 VELO Driver
The velodrv Linux module implements the complete handling of the VELO functional unit.
It provides resource management including allocation of receive DMA memory areas,
VPID management, opening and closing of end-points, requesting access to VELO
requester pages. Additionally, the asynchronous read and write methods of the driver imple-
ment kernel level communication for user level programs. RX notifications can be based on
polling or can be interrupt driven for VELO kernel communication. The interrupt driven
code uses the interrupt callback service of the EXTOLL base driver. In the default operation
mode of a VELO application, the driver is only invoked at startup to allocate and map
needed resources and at the end of the application’s lifetime to free the resources again.

8.1.4 RMA Driver
The RMA driver is analogous to velodrv but manages the RMA functional unit. The driver
supports kernel level virtualization and full user-space communication. This requires an
operational ATU. For ATU management the rmadrv uses services exported by atudrv.
Again, the driver usually manages resources at startup and stop. In normal operation the
registering and deregistering of memory regions are passed through rmadrv before using
low-level routines from atudrv.

8.1.5 ATU Driver
The final kernel level component of the EXTOLL software stack is the atudrv module
which manages the ATU. The driver exports an API to other kernel modules, notably the
RMA driver, to allocate and free pages and ranges of pages. A best effort service to allocate
contiguous NLAs for a given vector of virtual pages is provided. The API allows other driv-
ers to use the ATU in different ways, particularly to implement different policies regarding
NLA allocation. For example it is possible to allocate first level NLA regions to completely
belong to one VPID. The API also enables the integration with a future kernel feature to
allow dynamic memory unmapping (see also section 5.1.12).

8.1.6 Summary of Drivers
The EXTOLL kernel level software is complete in the sense that all hardware capabilities
can be used and are exposed to APIs for applications. Communication is possible from user-
space and kernel space. Kernel space communication so far has only been tested by initiat-
ing and completing requests from user applications. The integration with kernel initiated
and completed communication layers remains to be implemented, for example NFS-over-
EXTOLL and IP-over-EXTOLL. The current level of kernel code encompasses about 3800
lines of code plus 3000 lines which are automatically generated.
171

The EXTOLL Software
8.2 Routing and Management
Network management traditionally serves two main purposes, routing and fault handling.
The current EXTOLL software stack does not include a polished network management
solution as ATOLL did; rather a basic implementation was performed. To this purpose the
Simple EXTOLL Routing Utility (SERU) was developed. SERU is written in Python and
leverages the sysfs interface of the extoll_rf driver to communicate with the hardware. The
tool supports the definition of the network topology. In initialization mode SERU reads the
network topology from /etc/extoll/topology and the node ID of the current node from /etc/
extoll/nodeid and then performs a shortest-path routing strategy for the network. This route
management is sufficient for smaller networks as used for the analysis and bring-up of the
prototype. A more elaborate and complete management system for EXTOLL remains to be
developed. Experience with SERU and other projects suggest to implement this future
EXTOLL Network Manager using the Python language.

To help debugging the network, the Registerfile GUI was developed, a C++ application
using the Qt GUI framework which gives convenient access to the register values of
EXTOLL.

For a future full-fledged EXTOLL Network manager, many requirements have to be con-
sidered, namely robust topology detection, routing policies, fault handling, performance
monitoring and visualization of network properties.

8.3 The VELO Stack
The VELO stack is comprised of the kernel level velodrv already described and a low-level
user-space API called libvelo. On top or in addition to this library several components have
been developed to test and evaluate the VELO hardware.

The API, libvelo, provides all basic services available from the VELO unit. In particular, it
is possible to open a port, the software abstraction of a completer mailbox. A port is always
associated with a VPID, identifying the port on this node. Opening a port also means to
remap the DMA region and the page containing the VELO read-pointer into user-space thus
enabling to receive VELO messages completely independent from the kernel. Once a port is
opened, an application is able to connect to other end-points identified by a {nodeid, VPID}
tuple. Connecting actually is a virtual operation, in the same sense as this was the case with
ATOLL, i.e. no actual connection is made, but the necessary resources are provided so as to
be able to communicate with the specified peer. In the VELO case that means, the right
requester page corresponding to the tuple {source VPID, destination VPID, destination
node} is remapped into the user application space. Care is taken to remap the page using
write-combining memory semantics.

Once a port is opened and the application has connected to its peers, messages can be sent
using the velo_send function which accepts a source buffer of up to 64 bytes and a tag. The
tag is allowed to be in the range of 0 to 7 and is translated to an MTT on the hardware side.
172

The EXTOLL Software
On the receiving side, two functions are available velo_probe and velo_recv. While
velo_recv receives blocking in the sense that it polls until a message is available,
velo_probe is unblocking by just checking if a message is available. Additional receive-side
functions are a matching receiving function and the velo_check function which only checks
if a message is available.

The API also includes a number of utility functions to set and query different parameters.
For easier parallel programming, the atollrun environment was ported to the VELO envi-
ronment, and then called velorun. Velorun accepts the same parameters as atollrun and in
essence performs the same steps. It is also written in Python and allows for a parallel appli-
cation to be started in parallel on a cluster of nodes. Finally, an experimental byte-transfer-
layer (BTL) component for OpenMPI has been developed, which allows MPI programs to
transfer messages of a size of up to 48 bytes using VELO. The remaining 16 byte of a max-
imum sized VELO message are used for the MPI header.

Finally, a number of evaluation applications and tools has been written for VELO and the
NetPIPE [47] benchmark application has been ported to VELO. Evaluation applications
perform transmission and reception of messages, ping-pong traffic patterns, bandwidth
measurements as well as a multi-threaded latency measurement tool which shows the
exceptional behavior of the virtualized VELO unit when used by multiple cores of a node.

8.4 The EXTOLL RMA Software Stack
The RMA user-space software consists of an API library, which provides the services the
hardware offers to the software. It is possible to request and open an end-point (a VPID),
register and deregister memory regions, post work requests and poll for notification events.
Descriptors and notifications are represented with their own data type each and there are
functions available to manipulate all of the aspects of the datatypes. The design mimics the
object-oriented approach in C and it also resembles design principles that have been suc-
cessfully applied to the PALMS API. Using the provided datatypes and functions, the com-
plete power and flexibility of the RMA engine is made available to user-space applications.
There are also functions available that are shortcuts for a sequence of function calls, which
are expected to occur often. For example, there is a function that performs a put operation
directly instead of having to allocate a descriptor, fill it with values and then post it to the
hardware. Again this procedure is very similar to the techniques that have been used with
PALMS.

8.5 EXTOLL Kernel-Level Communication
As mentioned above, both VELO and RMA also have the capability to provide for kernel
level communication thus avoiding user-space communication. The main reason to include
this in the system is to enable compatible behavior with legacy applications, for example
sockets-based applications, and an efficient implementation of kernel-only protocols like
NFS or other storage protocols. There are also people that claim user-space communication
173

The EXTOLL Software
to be a concept from the past that is superfluous with today’s systems providing very high
performance with traditional OS based I/O or even I/O in VMM environments using virtual
software devices and software based virtualization to shared I/O devices in a single domain.

The VELO kernel communication capabilities can be used to perform a comparison of dif-
ferent I/O methods on a given platform presenting insight into the question what the impact
of the OS is on performance of a high-performance device. It could be shown that the differ-
ence in start-up latency equals 300 ns on the sender-side and another 300 ns on the receiver-
side for a total of 600 ns of overhead. The bandwidth was not further affected. Experiments
using interrupt driven communication yielded again different results. Depending on the
configuration of the kernel in terms of timer interrupt frequency and activated preemption
start-up latency increases substantially, because the receiving thread is awoken after an
interrupt occurred and the time for the thread to become scheduled on a CPU varies
amongst others with the mentioned parameters. In summary it can be said that the latency
was increased by approximately another microsecond through interrupts. For RMA, the
first prototype implemented was based on kernel communication [128] and did not need an
ATU unit for RMA. The results of a comparison between kernel-space and user-space
based communication have been presented in section 7.5.5 (both use polling receives).

8.6 EXTOLL MPI - Protocols
MPI is comprised of several distinct parts, as already discussed in chapter 4. The design
space for actual MPI implementations is rather large. One question is for example which
MPI to base support for EXTOLL on. The candidate chosen is OpenMPI, which offers a
component oriented architecture (figure 8-2) well suited for rapid integration of new fea-
tures. On the downside, the component and plug-in oriented software architecture of Open-
MPI causes some decrease in performance numbers. To implement point-to-point MPI
functionality, i.e. MPI-1 features, at least two different components can be chosen in Open-
MPI. Implementing a component for the BTL is the most general solution. In this case,
higher level OpenMPI components implement request matching and completion. Another
possibility is to implement a message-transfer-layer (MTL) component. In this case, more
functionality has to be provided by the network specific component, but the MTL also
enables to implement more network specific optimizations. An experimental VELO BTL
component has been written. It is far from full production quality code, does not actually
exploit the hardware features of EXTOLL and does not deliver the performance expected
(see also [127]). The VELO BTL is just capable of sending and receiving messages of a
restricted size. An RMA BTL could be implemented that allows to send messages of up to 4
kB using put-operations into previously allocated and exchanged memory regions, basically
implementing a 2-copy emulation protocol for send/receive based on RMA. Requester noti-
fications are used to manage freeing of resources when sending and completer notifications
are used to detect the arrival of new messages. Notification puts are used to implement the
needed receiver-controlled flow-control for the protocol.
174

The EXTOLL Software
Since the BTL is a low-layer component of OpenMPI, and a considerable amount of layers
is located on top of it, the performance numbers for both BTL components are lower than if
communicating using the low-level API directly. A method to optimize MPI behavior is to
reimplement higher levels of OpenMPI, respectively provide a higher level specialized for
EXTOLL. For example the Myricom MX [96] communication framework is integrated into
OpenMPI at the MTL level providing a very low overhead MPI integration. The same or a
similar implementation ultimately has to be provided for EXTOLL.

Such a high-level MPI integration calls for a number of protocols and algorithms to solve
the most important MPI problems. For EXTOLL a small message, medium message and
large message protocol are envisioned as analyzed in chapter 4. All of them are described in
detail in the following paragraphs. Together with a matching function, they are expected to
form an efficient, high-performance point-to-point MPI-1 implementation. The collective
operations can then use the reference OpenMPI implementation which is built on top of
point-to-point requests. If collective hardware features become available to the EXTOLL
architecture, the collective component can also be exchanged. In this case, the functions that
are hardware accelerated will be rewritten selectively while keeping the reference imple-
mentation for the rest.

For the small message protocol, a straight forward VELO implementation is the best per-
forming choice. The messages are sent using VELO; the actual payload is prepended with a
minimal header containing the necessary data for message matching which are not automat-
ically present within the VELO status word. The user tag, communicator context ID and
exact size in bytes have to be added to the message. Depending on encoding either 8 or 16
byte are used by this header. Thus the effective payload for small MPI messages is 56 or
48 bytes (figure 8-3). Matching is performed entirely in software, unexpected messages are
moved from the VELO DMA area to the central unexpected message queue.

For messages larger than 56 bytes, a different protocol must be used. Two candidates were
identified. First, it is possible to send a larger message by splitting it up into several frag-
ments each being transported by VELO. This protocol uses the MTT feature to distinguish a
multi-segment message from a normal message. A multi-segment message features an MTT

Figure 8-2: OpenMPI Architecture

MPI Layer

One-sided (OSC)Point-to-point (PML)

Bit Management Layer (BML)

Byte Transport
Layer (BTL)
for specific

network

Byte Transport
Layer (BTL)
for specific

network

...

Message-Transfer-Layer
(MTL)
175

The EXTOLL Software
tag of one instead of zero. In the MPI header of the first message, the number of fragments
is stored in the last remaining byte of the 8-byte MPI header area. The size field now gives
the number of bytes valid in the last fragment. All previous fragments have maximum size,
i.e. 56 bytes for the first segment and 64 for the following. Thus, it is possible to send up to

 bytes using VELO. The packet format is shown in figure 8-4.

The second candidate for medium-sized messages is based on RMA. Each process allocates
a block of memory as receive buffer for each peer. This memory block can be allocated vir-
tually contiguous, because it will be accessed using normal RMA put operations. The loca-
tion and size of each of these blocks is sent to the corresponding peer. A process manages a
write-pointer and a read-pointer for each remote buffer it knows about. Whenever the pro-
cess wants to send a message, the message is sent to the location starting at the offset given
by the write-pointer within the receive buffer exported from the receiving process. The
actual sending is done using a one-sided put transaction. On the receiving side, the put oper-
ation causes a remote completion to be generated, which the receiving process polls for.
Remote completions are a novel concept introduced by the RMA unit of EXTOLL, where a
one-sided operation can also cause a completion to be generated on the target side. Now, the
receiver can proceed just like in the ring-buffer style messaging. The receiver also manages
a read-pointer to the buffer. Whenever a certain threshold is reached, the receiver sends a
message to the original sender indicating how many received bytes have been consumed by
it, so freeing this part of the buffer again for new messages. A typical sequence for this pro-
tocol for medium messages is shown in figure 8-5.

Figure 8-3: Small-Message Layout

MPI-Tag RSV

Payload (Byte 0 – 7)

Payload (Byte 48 – 55)

Payload (Byte 40 – 47)

Payload (Byte 32 – 39)

Payload (Byte 24 – 31)

Payload (Byte 16 – 23)

Payload (Byte 8 – 15)

MPI
Communicator Size

Reserved (6 bit)VELO
Length

MTT of
0

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

VELO Request:

VELO Packet:

28 1–() 64⋅ 56+ 16.376=
176

The EXTOLL Software
Which of the two protocols is used or even if both protocols are used for different message
sizes, remains to be empirically determined. This also holds true for the question when to
switch to the last of the protocols, the large message protocol which is based on an RMA
rendezvous protocol and is the only protocol so far that is a true zero-copy protocol. The
large message protocol is based on the idea described in chapter 4.3. If a large message is to
be sent, the sender posts a VELO message with a MTT reserved for this protocol. The
VELO request has a size of 16 byte and the structure shown in figure 8-6.

Figure 8-4: VELO-Based Medium Message Layout

Reserved (6 bit)Length
of 8

MTT of
0

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

1st fragment VELO Request:

1st fragment VELO Packet:

of
fragments of
this messag

Bytes in the last fragment

Reserved (6 bit)Length
of 8

MTT of
0

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

Following VELO Request:

Following VELO Packet: only payload data

Reserved (6 bit)VELO
Length

MTT of
0

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

Last VELO Request:

Following VELO Packet: X quadwords only payload data, last quadword only size bytes
valid (from very first quadword)

MPI-Tag Frag-
ments

Payload (Byte 0 – 7)

Payload (Byte 48 – 55)

Payload (Byte 40 – 47)

Payload (Byte 32 – 39)

Payload (Byte 24 – 31)

Payload (Byte 16 – 23)

Payload (Byte 8 – 15)

MPI
Communicator Size
177

The EXTOLL Software
Figure 8-5: RMA-Based Medium Size Protocol

Figure 8-6: Large-Message Request Layout

API Device Device APIProcess 0 Process 1

Init

Send

Init

Put Transaction
Recv

DMA

Poll

Update
Read-
Pointer

in
Memory

Copy to
User
Buffer

Send
Exported

Buffer
Address

Send
Exported

Buffer
Address

Recv
Buffer

Address

Recv
Buffer

Address

Send
Read-
Pointer

MPI-Tag RSVMPI
Communicator

Reserved (6 bit)Length
3

MTT of
2

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

VELO Request for large
messages:

VELO Packet for large messages:

Message Length RSV

NLA of the Source Buffer
178

The EXTOLL Software
Once the receiver obtains the message it can be matched against the already posted receive
requests. If no match is available, the request is stored in the unexpected queue. Once the
request can be matched, the second part of the protocol is executed. The receiver posts a
number of RMA get operations to directly read the complete data payload from the sender’s
original buffer into the final application buffer in the receiving application. The last get
transaction uses the responder notification modifier bit to generate a notification at the
sender. This enables the sender to efficiently detect when the application buffer can be
reused. For this last bit the completer notification bit is also set so that the receiver can
detect the completion of the overall operation. This protocol implements a true zero-copy
rendezvous protocol shown in figure 4-4. The solution also employs the minimum number
of network roundtrips, since the sender notification can be achieved implicitly.

As a proof of concept the described protocols have been implemented outside MPI and
tested. The resulting performance numbers are presented in the evaluation section of this
chapter.

All of the MPI discussion in this section was focused on MPI-1 until here. As we have seen
in chapter 4, MPI-2 is becoming more and more important if the performance problems that
many implementations suffer from are solved. EXTOLL provides a nearly one-to-one hard-
ware solution for MPI-2. In OpenMPI, the one-sided communication is handled by an
instance of an one-sided component (OSC) (figure 8-2). In the base distribution, only one
implementation is available which implements one-sided communication on top of point-
to-point messaging, a non-optimal solution leaving room for significant enhancements. An
OpenMPI OSC was developed which directly leverages EXTOLL hardware functionality.

The MPI-2 implementations compromises the following MPI functions: MPI_Put,
MPI_Get, MPI_Fence, MPI_Post/Start/Complete/Wait and the MPI_Window handling
functions. The MPI_Accumulate function has been implemented using a get transaction fol-
lowed by the data transformation and a subsequent put operation to complete the accumu-
late function at the target. Actually, it is very difficult for any hardware to implement
MPI_Accumulate satisfactorily and the solution chosen suffers from an additional network
round-trip of all of the data. The alternative is to implement the accumulation at the target
side, but this defeats the passiveness of the target.

Put and get operations are straight forward assembled from RMA put and get transactions
using the RMA API library. Only requester side notifications are used to mimic the seman-
tics of MPI-2 in respect of the completion of events. The MPI_Fence function is imple-
mented using mutual, immediate put operations. The MPI_Post/Start/Complete/Wait
operations as well as the passive target synchronization using MPI_Lock/Unlock has been
implemented using RMA lock transactions. Finally, MPI_Windows are implemented using
RMA API level memory regions.

The complete MPI-2 component puts a thin layer on top of the librma. The performance and
also the overlap of communication and computation is presented in the evaluation section.
179

The EXTOLL Software
8.7 EXTOLL GASNET - Protocols
The GASnet specification for the support of PGAS languages has been introduced in sec-
tion 4.4.4 and identified as an important target for EXTOLL based systems. The GASnet
Core API maps nearly 1:1 on VELO and RMA transactions. Communication in GASnet is
based on the Active Message [81] idea. Three different message types are differentiated by
GASnet: short, medium and long requests. All three carry a handler and a up to 16 parame-
ters in the AM message. Each parameter has a size of 32 bit. Unfortunately this is too much
for one VELO operation; the design decision is to send one VELO message if possible and
split the request into two messages if it is too big. See figure 8-7 for an illustration of the
mapping of AM request parameters to VELO messages.

Figure 8-7: GASnet Request Layout

Argument 0 AM
HandlerRSV Size

Reserved (6 bit)VELO
lengthTypeSource VPID

(5 bit)
Target VPID

(5 bit)
Target Node

(5 bit)

First Fragment VELO Request:

First fragment VELO Packet:

Reserved (6 bit)Length
of 1

MTT of
3

Source VPID
(5 bit)

Target VPID
(5 bit)

Target Node
(5 bit)

Following VELO Request (if 16 arguments are needed):

Following VELO Packet:

Argument 2 Argument 1

Argument 14 Argument 13

Argument 12 Argument 11

Argument 10 Argument 9

Argument 8 Argument 7

Argument 6 Argument 5

Argument 4 Argument 3

RSV Argument 15

MTT Type encondig:
- 0 – short request
- 1 – medium request
- 2 – long request
180

The EXTOLL Software
Replies can be handled the same way: the VELO MTT feature can be used to distinguish
requests from replies quickly. Short requests do not carry additional payload, however
medium and long requests carry additional payload. The medium requests use a non-zero
copy protocol. Implementations are free to chose the maximum size of medium requests as
long as it is bigger than 512 bytes. The payload can be transported using one of the medium
size MPI protocols introduced in the previous section. So, a medium GASnet request causes
one or two VELO messages transporting the actual request and additionally the RMA
requests for the payload. Long requests are a combination of an AM and a one-sided put
into the (registered) shared segment of the receiving GASnet peer. It is obvious, that long
requests are implemented using again VELO messages for the request and a direct RMA
put for the payload.

The extended API actually proves to be much more difficult to implement. A first shot may
reuse the Firehose library [82] that is part of the GASnet source distribution to implement
memory management. Besides memory registration the different one-sided operations can
be mapped to RMA transactions straight forward. Other parts of the Extended API of GAS-
net can be provided by the reference implementation, which is based on an realization of the
base API. Successively, more functions of the Extended API can then be replaced by more
optimized variants for EXTOLL.

The actual implementation for GASnet for EXTOLL remains to be done and the resulting
PGAS platform and its performance will be most promising. The basic protocols are well
understood and tested for the MPI implementation.

8.8 Software Summary
The EXTOLL architecture has already proven to exhibit very interesting properties with the
prototype implementation that was described in chapter 7. This chapter introduced the
EXTOLL software stack for the hardware. It was shown how the hardware and software
components interact and are designed to optimally work together in implementing methods
for communication. Specifically, the low-level system integration, API level software and
protocol design to support higher level software were shown.

The software development is still at an early stage and full fledged, production ready pack-
ages to support MPI-1, MPI-2, GASnet and middlewares to support enterprise clients are
needed. In addition, the network management part has to be greatly expanded, either in the
direction of the ATOLL daemon AtollD [40] or the IB subnet manager.
181

The EXTOLL Software
182

Chapter
9

Results and Performance

Evaluation
This chapter describes the performance of the EXTOLL prototype system as it was bench-
marked in a real two-node configuration. It proves the functionality of the architecture, the
design, implementation, and the excellent performance of EXTOLL. A number of different
microbenchmarks and special programs were run to give an overview of the different prop-
erties.

9.1 Microbenchmark Results
A basic ping-pong microbenchmark was executed on two nodes. The ping-pong benchmark
varied the size of the transaction. Also, the different methods for sending data using
EXTOLL were used. All of the latency and bandwidth plots that follow use a logarithmic
scaling for the x-axis, the operation size.

The resulting plot for VELO messages, RMA put and RMA get transactions is shown in
figure 9-1. The RMA get operation actually performs one get operation (round-trip). The
latencies for the other two operations is plotted as half-round-trip, i.e. the measured latency
for one complete round-trip is halved prior to plotting it. It can be seen, that VELO starts
with a lower latency then RMA, mostly caused by the necessary additional DMA transfers.
At a size of about 400 bytes, RMA already surpasses VELO and provides a lower latency.

To further the understanding of the start-up latency of EXTOLL, figure 9-2 shows the laten-
cies for a single operation of each communication type in the EXTOLL system. The numer-
ical values can be found in the last column of table 9-1. VELO starts with the lowest latency
of 1.3 µs. It is closely followed by an RMA notification put transaction. Figure 9-3 shows a
plot of the predicted latency per operation based on an analysis of the sub-operations that
form the operation and the time to complete each sub-operation. All operations are divided
into DMA reads, ATU translations, network trips, DMA writes, PIO writes and the software
overhead. The estimated values for the sub-operations are listed in table 9-2.

It is clear that a VELO transaction and an RMA notification put operation have very similar
characteristics. The additional 100 ns of an RMA notification put are due to additional
FIFOs and pipeline stages within the RMA hardware. The next lowest latency is exhibited
by the immediate put operation without notification. Its startup latency is a little higher than
the notification put although they cause the same number of DMA accesses. The difference
of 70 ns is caused by the ATU translation necessary at the RMA Completer. If the immedi-
183

Results and Performance Evaluation
Figure 9-1: EXTOLL Ping-Pong Latencies

Figure 9-2: EXTOLL Start-up Latencies

 1

 2

 3

 4

 5

 6

 7

 8

 10 100 1000

EXTOLL VELO
EXTOLL RMA Put
EXTOLL RMA Get

 L
at

en
cy

 [µ
s]

Size [bytes]

0

0.5

1

1.5

2

2.5

3

La
te

nc
y

[n
s]

VELO
Notification Put
Immediate Put without notification
Immediate Put with notification
Put without notification
Put
Get
Remote Lock
184

Results and Performance Evaluation
ate put operation is performed with a completer notification, 200 ns additional latency can
be seen stemming from the additional DMA write operation performed. The same effect is
also visible from the latencies of a normal put with and without completer notification. The
higher latency of the get transaction is finally caused by the double network latency of a full
roundtrip and the additional passing of the RMA responder.

The bandwidth reached using the ping-pong test is summarized in Figure 9-4. It can be
seen, that VELO never reaches the maximum possible bandwidth, whereas put reaches it
and get remains very close below it.

Besides the ping-pong latency, the streaming bandwidth was also tested. This microbench-
mark measures the maximum bandwidth that can be transported from one peer to another
for a given operation type and a given operation size. The results are shown in Figure 9-5.
VELO already reaches its maximum bandwidth with operations of 64 bytes - which is also
the maximum size for a single VELO operation. Both put and get bandwidths rise very
steep and surpass VELO bandwidth at 384 respectively 512 bytes. The maximum band-
width is reached by put and get with operations of ~4 kB size. Half of the maximum band-
width (n½) is already reached at an operation size of 32 bytes (VELO operation).

One other performance measure that is closely related to the streaming bandwidth and that
is sometimes cited is the message rate of a network interface. EXTOLL reaches the message
rates summarized in table 9-3. VELO’s number is especially impressing with more than five
million messages that can be sent per second.

Figure 9-3: EXTOLL Latency Details

0

500

1000

1500

2000

2500

3000

VELO Notification
Put

Immediate
Put without
Notification

Immediate
Put with

Notification

Put without
Notification

Put Get Remote Lock

La
te

nc
y

[n
s]

Internal RMA DMA Reads ATU Translations Network Trips DMA Writes PIO Write Software Overhead
185

Results and Performance Evaluation
The difference in user-space versus kernel based communication was already mentioned.
Both VELO and RMA can be driven from the kernel. If an additional transition from user-
space to kernel-space is performed for an operation, this adds about 600 ns to the start-up
latency of the operation, regardless if it is an RMA or VELO operation. If the operation also
completes via an interrupt, the actual latency increase can be higher than that, since addi-
tional interrupt latencies have to be taken into account.

Operation
of

DMA
Reads

of
ATU

Trans.

of
Net.

Trips

of
DMA
Writes

of
PIO

Write

of
RMA
Units

Latency
Prognosis

[ns]

Latency
Measured

[ns]

VELO 0 0 1 1 1 0 1300 1300

Notif. Put 0 0 1 1 1 2 1400 1400

Imm. Put
w. Notif.

0 1 1 1 1 2 1470 1470

Imm. Put
w/o. Notif.

0 1 1 2 1 2 1670 1670

Put w/o.
Norif.

1 2 1 1 1 2 1890 1990

Put 1 2 1 2 1 2 2090 2100

Get 1 2 2 2 1 3 2790 2820

Lock 1 0 2 2 1 3 2650 2700

Tabelle 9-1: Sub-operation Composition of EXTOLL Transactions

Sub-Operation Time [ns]

DMA Read 350

ATU Translation (TLB Hit) 70

Network Trip 650

DMA Write 200

PIO Write 150

Software Overhead 300

RMA Units Passed 50

Tabelle 9-2: Sub-operation Timing
186

Results and Performance Evaluation
Figure 9-4: EXTOLL Ping-Pong Bandwidth

Figure 9-5: EXTOLL Streaming Bandwidth

 50

 100

 150

 200

 250

 10 100 1000 10000

EXTOLL VELO
EXTOLL RMA Put
EXTOLL RMA Get

Theoretical peak payload bandwidth

Size [bytes]

B
an

dw
id

th
 [M

B
/s

]

 50

 100

 150

 200

 250

 10 100 1000

EXTOLL Velo
EXTOLL Put
EXTOLL Get

Theoretical peak payload bandwidth

Size [bytes]

B
an

dw
id

th
 [M

B
/s

]

187

Results and Performance Evaluation
9.2 RMA one-sided MPI-2 Prototype
The basic characteristics of the operations used for MPI-2 have been presented in the previ-
ous section. One additional microbenchmark is very interesting when talking about one-
sided communications and that is computation-communication overlap. The benchmark
used is similar to the test described in [73].

The benchmark performs synchronization, followed by a put operation and finishes with
another synchronization operation. An increasing amount of simulated computation is
inserted between the put operation and the synchronization that concludes the test. The per-
centage given is the percentage of the time measured for the communication operation with-
out computation in relation to the time that can be spent computing without increasing the
overall runtime. A high overlap is very desirable.

The normal OpenMPI one-sided communication1 implements all one-sided communication
using two-sided primitives. Not surprisingly, the measurement shows an overlap of nearly
zero for all tested scenarios using OpenMPI. The MVAPICH MPI implementation for
Infiniband is reported to perform better, at least in certain cases. In [73] an improved
MVAPICH implementation reaches overlap rates of 10 to 70 % for different message sizes
with 30 % for messages sizes of 4 kB. The EXTOLL implementation is able to reach over-
lap as high as 80 %. The results of the test are shown in figure 9-6. Even small message
sizes such as 32 byte show significant potential for overlap. This is due to the low overhead
necessary to initiate a put operation. These measurements have been performed with a
development version of the OpenMPI one-sided component for EXTOLL.

9.3 MPI-1 Protocols
To analyze the performance and the handover point for the protocols suggested for MPI-1,
test implementations of all protocols were developed and the resulting latencies for the four
protocols were measured. Figure 9-7 shows the results of the test. The Tiny protocol uses a

Operation Message Rate

VELO

Notification Puts

Standard Put

Tabelle 9-3: EXTOLL Message Rates

1. OpenMPI version 1.2.6

5.5 106⋅

2.6 106⋅

1.375 106⋅
188

Results and Performance Evaluation
Figure 9-6: EXTOLL MPI-2 Overlap

Figure 9-7: EXTOLL MPI Protocols: Ping-pong Latency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32 64 128 256 512 1024 2048 4096

Message size [byte]

O
ve

rla
p

pe
rc

en
ta

ge

 10

 20

 30

 40

 50

 60

 10 100 1000

Tiny Protocol
Small Protocol

Medium Protocol
Long Protocol

 L
at

en
cy

 [µ
s]

Size [bytes]
189

Results and Performance Evaluation
single VELO message to transport data, the Small protocol uses repeated VELO messaging
and the Medium protocol is the two-copy protocol based on VELO and RMA puts, while
the Long protocol uses the rendezvous zero-copy protocol. From the graph it is apparent
that the Long protocol is slower than the other protocols for small messages, as expected
due to the additional network round-trip. For very small messages, VELO in the Tiny or
Small incarnation is the fastest method to communicate. As the message size grows, the
Medium protocol tracks the Small protocol very closely. Even if the latency is a little bit
higher, it may be advantageous to switch to the Medium protocol at about 512-1024 bytes,
due to better buffer management, flow-control possibilities, and lower CPU load (DMA).
The Long protocol reaches the Medium protocol at a size of 2 kB. A detailed view of the
results acquired with messages from 1 to 3 kB is given in figure 9-8. The test does not take
into account the cost for an additional registration for send and receive buffers that may be
necessary. But it seems that 4 kB is a very good candidate to switch to the zero-copy proto-
col. While the latency may be higher sometimes, if one or both of the buffers are not regis-
tered beforehand, this will often not be the case because of buffer reuse. Additionally, the
protocol removes load from the CPU and thus increases communication/computation over-
lap. A size of 4 kB is very small in comparison to traditional network solutions, where a
zero-copy rendezvous protocol is so costly that it is often only used for message sizes of
32 kB and larger.

Figure 9-8: MPI-protocols: Detailed View

 6

 8

 10

 12

 14

 16

 18

 20

 1000 1500 2000 2500 3000

Tiny Protocol
Small Protocol

Medium Protocol
Long Protocol

Size [bytes]

 L
at

en
cy

 [µ
s]
190

Results and Performance Evaluation
9.4 Summary of Results
This chapter gave a comprehensive evaluation of the EXTOLL hardware and software pro-
totype. It could be shown that EXTOLL indeed provides an excellent communication
latency across all tested operations. It was also pointed out that the architecture is able to
deliver the bandwidth that it promises. Finally, benchmarking demonstrated that the archi-
tecture enables very efficient communication/computation overlap both in two-sided and
one-sided applications.

In regard of other high-performance networks, the EXTOLL prototype either performs best
or at least comparably in all categories except bandwidth. EXTOLL exhibits latencies that
are much better than most networks and equal to the Connect X chip from Mellanox, the de-
facto standard provider of IB HCA silicon and the most modern chip in the family of Mell-
anox HCAs. Measurements of Connect X show a ping-pong half-round trip latency of
1.3 µs on an Opteron based system equalling the EXTOLL latency exactly. The Qlogic
Infinipath HTX adapter, which is well known for being the network adapter with the lowest
send/receive latency, beats the start-up latency of EXTOLL with a value of 1.14 µs using
ASIC technology and no switch; the EXTOLL prototype is only 160 ns slower but already
includes a 6-port switching stage. Infinipath’s latency including a switch is equal to VELO’s
and Mellanox Connect X.

The small message bandwidth of EXTOLL (8-byte) is 50 % higher than the best competitor
as well as the message rate, though. EXTOLL also performs best when it comes to overlap
and memory registration/deregistration. The bandwidth reachable in the EXTOLL proto-
type is severely restrained by area and frequency constraints. With the advent of FPGAs
offering higher capacity or an ASIC, the link bandwidth of EXTOLL can easily be brought
up to values of other networks (section 7.8). To the best of the knowledge of the author,
EXTOLL is the best performing network for cluster computing ever constructed using
FPGA technology.
191

Results and Performance Evaluation
192

Chapter
10

Conclusion and Outlook
The goal of this work was to improve and accelerate the hardware-software interface of a
network interface controller to support distributed memory applications in a very efficient
way. The main contributions of this work are focused around the problems of defining and
implementing the necessary NIC hardware structures and host software components to
facilitate minimum communication latency and high computation/communication overlap.
The resulting hardware architecture was implemented using FPGA technology and the per-
formance of the developed design was shown and evaluated in a real system. The excellent
performance results gained show the acceleration of the NIC interface and prove the effec-
tiveness of the contributions developed. An old English proverb says “the proof of the pud-
ding is in the eating”; in computer architecture the proof is in actually implementing a new
architecture in a real system, testing it for functionality and evaluating its performance. The
software components plus the EXTOLL prototype hardware are the proof for the EXTOLL
architecture and actually show that EXTOLL works and performs as expected. This result is
much more reliable than a pure system level simulation can ever be.

The individual, architectural contributions of this work are the latency optimized, virtual-
ized CFCQ and Transactional I/O methods, the novel address translation unit ATU, the
EXTOLL units using these novel contributions, the software architecture to support all this
hardware and finally the complete system putting all of these concepts into a complete,
working prototype.

The Transactional I/O and CFCQ methods were introduced as means of supporting virtual-
ized devices with a minimized latency. Methods to implement the receiver side in a virtual-
ized fashion were also shown. The concept of state minimization as an important factor for
latency minimization of a virtualized device was introduced. Using this method the VELO
functional unit can reach microsecond application-to-application latencies using the FPGA
based prototype.

The next contribution revolves around the question how to handle the virtual-to-physical
address translation problem. It is necessary to solve this in hardware - the effects of the soft-
ware approach using kernel level communication were also briefly shown in this thesis. The
hardware solution has to follow design choices to minimize latency. The latency of an
address translation is generally based on the number of memory accesses necessary. The
developed ATU minimizes the main memory accesses necessary for an address translation.
To further optimize latency a TLB was added to the architecture which lowers the commu-
nication latency in the average case significantly. The ATU unit as well as a simple TLB
193

Conclusion and Outlook
were implemented for an FPGA architecture and integrated into the EXTOLL architecture
to solve the address translation problem for EXTOLL. The evaluation later showed the effi-
ciency of the ATU approach.

The EXTOLL RMA unit together with the described software protocols implements a
method that combines extremely low latency and good computation/communication over-
lap characteristics. The careful design of the instruction set of RMA allows the use of the
unit in a wide range of scenarios, from MPI-2 one-sided communication and MPI-1 point-
to-point communication to PGAS-style communication. Advanced features like the FCAA
remote atomic operation and fine-grain control over completion notification contribute to
the effectiveness of the unit. The results also show, that the combination of RMA and ATU
offers exceptionally low latency paired with good overlap and bandwidth characteristics.
With its start-up latency of 1.3 µs the EXTOLL prototype performs already en-par with the
best networks available and is the fastest FPGA based network for commodity clusters ever
built.

On the software side, both kernel level and user level software were developed. Using this
software it was possible to operate the hardware and perform the evaluation in a real sys-
tem. The complete EXTOLL software written to support this work exceeds 15.000 lines of
C-Code. It must be noted, that all performance numbers were gained using an FPGA imple-
mentation of the hardware model. The Verilog RTL code used is about ~85.000 lines in size.
As described in section 7.8, an ASIC implementation easily increases the performance of
EXTOLL by a factor of ~3 in latency and ~6 in bandwidth. Simulation based latency analy-
sis and real system measurements (chapter 9) suggest that an EXTOLL ASIC will reach
start-up latencies of less than 500 ns between two nodes which is only twice or thrice the
latency of a cache miss in a modern server machine thus moving distributed memory nodes
closer and closer together. An ASIC implementation also increases bandwidths both in the
network and the host interface section by a factor of ~10 offering in the range of 20-30 Gb/s
per link.

In summary, the goals formulated in the introduction of this thesis were all reached and a
very promising architecture was developed and implemented. Still, a large amount of future
work remains to be done. The implementation of an EXTOLL ASIC would enable new per-
formance levels not reachable with traditional architectures. Full software implementations
and optimizations of MPI-1, MPI-2 and GASnet are necessary on the middleware side of
the software. Possibly the implementation of other middlewares and basic protocols could
prove to be very interesting in terms of supporting more applications for example from the
enterprise sector. Also, protocols to support remote storage and I/O operations could benefit
greatly from the EXTOLL performance characteristics. Finally, a concise management soft-
ware component for the EXTOLL system remains to be developed. On the architectural
level several proposals for the EXTOLL network hardware architecture that have previ-
ously been discussed could not be included in the EXTOLL hardware prototype due to
resource constraints of the FPGA platform. It is most interesting to add the implementation
of these advanced networking features to the EXTOLL system, namely the EXTOLL Hard-
ware Barrier, the multicast port and the High Availability Port (HAP). These features could
194

Conclusion and Outlook
improve collective operations by a great deal and the HAP can be used to further increase
reliability and serviceability features of EXTOLL beyond the hardware retransmission and
data protection features already present in the prototype implementation.

The EXTOLL architecture can also lead the way to a more generalized architecture in the
area of acceleration or coprocessing. Recent trends in computer architecture have brought
back the concept of coprocessing or acceleration which can also be viewed as heteroge-
neous multi-processing. So, this concept is not quite the same as the one of the traditional
floating point coprocessors from the 1980s; instead accelerators implement some complex
function that is expensive to compute on a main processor core. Examples for accelerator
hardware used today are GPUs, FPGA boards or boards featuring specialized processors
like Clearspeed’s [132]. In the accelerator area several problems exist: on the higher level
the problem of hardware virtualization and hardware abstraction exists, on a lower level,
software-hardware interfaces, hardware enumeration and configuration. There are proposals
to tackle some of these problems, for example APIs to standardize the reconfiguration of an
FPGA coprocessor in system [133].

The EXTOLL architecture can serve as a methodology or construction kit for a whole fam-
ily of accelerators which are closely coupled to the CPU. This accelerator architecture can
heavily leverage the experiences and results from the EXTOLL project. Many of the
EXTOLL components can be re-used as building blocks for new accelerators and devices.
The complete host interface (the HyperTransport core), the HTAX on-chip network, the
EXTOLL register file methodology and the ATU unit can be used unaltered for such an
accelerator. The CFCQ method for command management in the EXTOLL communication
units and the notification strategy of the EXTOLL RMA units can also be included in the
FUs of other devices. Besides accelerators in the network and computational area, it is also
feasible to employ EXTOLL architectural concepts to other I/O accelerators, for example
for storage devices.

Finally, with a generalized accelerator architecture, the proposed Transactional I/O can find
a broader application than a single network controller. Transactional I/O as introduced in
section 6.4.2 promises to be a very efficient technique to integrate a coprocessor into a sys-
tem. In this area further research including system level simulation is necessary since then it
becomes possible to integrate the new instruction and communication semantics into the
main CPU of the system.

The EXTOLL prototype implementation will soon be evaluated in a greater network with
more nodes enabling a better understanding of application scalability and behavior of the
system. At the Computer Architecture Group of the University of Heidelberg, a 10-node
cluster is being built and the Parallel Architectures Group of the Universidad Politécnica de
Valencia is building a 64-node Opteron cluster featuring 1024 CPU cores and
64 HTX-Boards which will initially be shipped with an EXTOLL configuration.

Recent other developments include an HTX 3 board and HT3 IP efforts which may lead to
EXTOLL implementation with vastly improved bandwidths even using FPGA technology.
Other directions that could be valuable are the division of the EXTOLL host interface
blocks and the network layer. The network layer can also be used in different special pur-
195

Conclusion and Outlook
pose applications for example in high energy physics. The EXTOLL host interface block,
main topic of this work, can also be combined with other networks to form novel NICs for
that network. A prominent candidate for this approach is undoubtedly Infiniband. Finally,
again, a complete EXTOLL ASIC will prove to be a veritable best-in-class network.
196

Appendix
A

Graphical Representation and Methods
This thesis uses several graphical representation methods for visualization. These include:
• design space diagrams,
• sequence Diagrams,
• state diagrams,
• flow diagrams, and
• block diagrams.

The design space diagrams are based on [134]. Orthogonal aspects are visualized by per-
pendicular connections (figure A-1). Different design options use straight connectors. Addi-
tionally, items that are covered in-depth in the text are highlighted in blue (option 1 of
aspect 2 in the example diagram).

The sequence, state and flow-diagrams are closely referring to the Unified Modeling Lan-
guage (UML) [135] standard diagrams. Sequence diagrams are used to show a protocol or
sequences of events. An example diagram is shown in figure A-2. The acting entities are
shown at the top, each featuring a timeline extending downwards. If one entity, for example
a process or a CPU, sends a message to another entity, this is shown by a solid arrow (1).
This could also be a function call, if a sequence in software is described. The return of the
call or the response to a message is indicated by a dashed arrow (2). In this thesis, an arrow
is sloped (3) if it exemplifies a message across a physical network, i.e. if this action involves
sending of at least one network packet. Memory copy operations performed by hardware or

Figure A-1: Design Space Diagram

Option 1 Option 2

Aspect 1 Aspect 2

Topic

Option 2 Option 1
197

Graphical Representation and Methods
software entities are shown as curved arrows (4). No other active entity in the system is
involved; memory is passive and was thus chosen to be not represented by an own entity.
Finally, entities activated by a message and the state of being activated is depicted by verti-
cal, yellow boxes. Generally, activation is started by an incoming message (arrow). An
entity that started an action at a different location may be blocked or not blocked until the
other entity responds (if ever). A typical example is a CPU that may be blocked by an
access to a device or not. Entities that are blocked are shown through red boxes (5). Non-
blocked entities, that may perform other tasks while another entity is active, are shown
without box for this time (6).

To analyze different design alternatives, three main methods were employed:
• Theoretical modeling/analysis,
• Empirical studies,
• Prototype implementation and analysis using FPGA technology.

For the analysis, literature and measurements of existing systems were taken as guides.
Major hardware design choices were modeled in terms of latency and other important
parameters using a set of empirically gained system performance parameters. The prototype
system used for the measurements in this work was, if not mentioned otherwise, a pair of
dual processor systems with dual Opteron 870 2.0 GHz processors, an IWILL DK8-HTX
mainboard, 2 GB memory and SuSE 10.3 operating system. The FPGA platform used is a
Xilinx part (Virtex4 FX100-11) on the CAG HTX-Board [56] (figure 3-3).

Figure A-2: Sequence Diagram

entity 2 entity 3

(3)

entity 1

(1)

(2)

(5)

(6)

(4)
198

Appendix
B

Acronyms
10-GE 10 Gigabit Ethernet

ADB Allowable Disconnect Boundary (PCI-X)

ADI Abstract Device Interface (MPICH)

AM Active Messages

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ATC Address Translation Cache

ATOLL ATOmic Low Latency

ATS Address Translation Service

ATU Address Translation Unit

BAR Base Address Region

BLAS Basic Linear Algebra Subprograms

CAM Content Addressable Memory

CAS Compare-And-Swap

CFCQ Central-Flow-Controlled Queues

Ch3 Channel Device (MPICH)

CMOS Complementary Metal-Oxide-Semiconductor

CQ Completion Queue

CSB Conditional Store Buffer

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

EXTOLL Extended ATOLL

FAA Fetch-And-Add
199

Acronyms
FCAA Fetch-Compare-And-Add

FPGA Field Programmable Gate Array

FSM Finite State Machine

FU Functional Unit

GART Graphics Aperture Remapping Table

GE Gigabit Ethernet

GPU Graphics Processing Unit

GUI Graphical User Interface

HAP High Availability Port

HCA Host Channel Adapter

HDL Hardware Description Language

HPC High-Performance Computing

HPL High-performance LinPACK

HT HyperTransport

I²C Inter-Integrated Circuit

IB Infiniband

ICM InfiniHost Context Memory

IOMMU I/O Memory Management Unit

IP Internet Protocol

IPC Interprocess Communication

MPI Message Passing Interface

MPICH an MPI implementation

MPICH2 an MPI-1 and 2 implementation

MTT Memory Translation Table (IB) or Message Type Tag (VELO)

MTU Maximum Transfer Unit

MVAPICH MPICH derivative for Verbs based networks

NIC Network Interface Controller

NLA Network Logical Address

NUMA Non-Uniform Memory Access

OFED Open Fabrics Enterprise Distribution
200

Acronyms
OLTP Online-Transaction Processing

OpenMPI an MPI-1 and 2 implementation

OS Operating System

PA Physical Address

PCI Peripheral Control Interface

PCI SIG PCI Special Interest Group

PCIe PCI Express

PCI-X Peripheral Control Interface eXtended

PGAS Partitioned Global Address Space

PIO Programmed Input/Output

QP Queue Pair

RDMA Remote Direct Memory Access

RMA Remote Memory Access or Remote Memory Architecture

RQ Receive Queue

RTL Register Transfer Level

RX Receive

SAN System Area Network

SDP Sockets Direct Protocol

SFP Small Form-factor Pluggable

SMP Symmetric Multiprocessing

SPMD Single Program - Multiple Data

SQ Send Queue

SRAM Static Random Access Memory

SRQ Shared Receive Queue

TA Translation Agent

TCE Translation Control Entries

TCP Transmission Control Protocol

TLB Translation Lookaside Buffer

TOE TCP Offload Engine

TX Transmit
201

Acronyms
UDP User Datagram Protocol

UPC Universal Parallel C

VA Virtual Address

VELO Virtualized Engine for Low Overhead

VI Virtual Interface

VIA Virtual Interface Architecture

VIPL Virtual Interface provider library

VPID Virtual Process Identifier

WR Work Request

XML Extensible Markup Language
202

Appendix

C
List of Figures
Figure 1-1: Limited Speed-up of Parallel Applications [2] 2
Figure 1-2: Virtual Interface Architecture .. 8
Figure 2-1: ATOLL Block-Diagram.. 16
Figure 2-2: ATOLL Software Environment.. 17
Figure 2-3: ATOLL Hostport Memory Layout.. 20
Figure 2-4: ATOLL Send Sequence Diagram....................................... 22
Figure 2-5: ATOLL Receive Sequence Diagram 24
Figure 2-6: AtollManager .. 28
Figure 2-7: Atollrun Initialization Protocol ... 29
Figure 2-8: MPICH2 CH3 Device with Sub-devices.............................. 31
Figure 2-9: MPICH2 Shared Memory Buffer and Message Format...... 32
Figure 2-10: ATOLL Link Test Scenario ... 35
Figure 2-11: ATOLL Link-Cable FPGA Board... 36
Figure 2-12: Link Correction FSM... 36
Figure 2-13: ATOLL Ping-Pong Latencies [12] 38
Figure 2-14: ATOLL Streaming Bandwidth [12] 39
Figure 2-15: High-Performance LinPACK... 40
Figure 2-16: Histogram of MPICH Function Time Use 41
Figure 2-17: SWORDFISH Schematic Diagram [46] 42
Figure 2-18: SWORDFISH Hardware Model of One Node [46].............. 43
Figure 2-19: SWORDFISH (a) GUI and (b) Report [46].......................... 44
Figure 2-20: SWORDFISH Blocking Rate in a 16x16 Mesh [52] 45
Figure 2-21: Deadlock Diagrams for a 16x16-Mesh (Locality) [52]......... 46
Figure 2-22: Deadlock Diagrams for a 16x16-Torus (Locality) [52] 47
Figure 3-1: Traditional System Architecture.. 52
Figure 3-2: Modern System Architecture .. 53
Figure 3-3: CAG HTX-Board... 55
Figure 4-1: Basic Send/Receive Sequence .. 58
Figure 4-2: Remote Load and Store Operations................................... 60
Figure 4-3: RDMA Operations .. 61
Figure 4-4: Zero-Copy Send/Recv using RDMA................................... 62
Figure 4-5: Sockets Sequence ... 65
Figure 4-6: MPI One-Sided Communication with Fence....................... 69
Figure 4-7: MPI Start/Complete/Post/Wait Synchronization 70
203

Figure 4-8: MPI Passive Target Synchronization71
Figure 4-9: PGAS Address Space...73
Figure 4-10: PGAS: GASnet AM-style Messaging74
Figure 4-11: Memory-Mapper Device Address Space76
Figure 4-12: EXTOLL Two-Sided Communication Design Space...........77
Figure 5-1: X86-64 Page-Table Walk ..81
Figure 5-2: Mellanox Context and Translation Architecture [87]84
Figure 5-3: GART Remapping...89
Figure 5-4: IBM Calgary IOMMU Architecture.......................................92
Figure 5-5: AMD IOMMU System Architecture......................................93
Figure 5-6: IOMMU Data Structures..94
Figure 5-7: EXTOLL Address Translation Design Space Diagram102
Figure 5-8: ATU Data Structures ...110
Figure 5-9: ATU Address Translation Process113
Figure 5-10: EXTOLL ATS Protocol Overview114
Figure 5-11: ATU Register Interface..115
Figure 5-12: ATU Architecture: Block Diagram117
Figure 5-13: ATU/Connect X Registration Latency120
Figure 5-14: ATU/Connect X Deregistration Latency120
Figure 5-15: Distribution of 16 kB Registration Latency121
Figure 5-16: Distribution of 16 kB Deregistration Latency121
Figure 6-1: SUN 10GE Adapter...126
Figure 6-2: Virtualization Design Space ..128
Figure 6-3: Triggerpage Experiment..129
Figure 6-4: Central Flow-Controlled Queue Block Diagram133
Figure 6-5: CFCQ 32-Byte Transaction Interrupt Rate........................136
Figure 6-6: Design Space of Completion Notification..........................137
Figure 6-7: Queue Deadlock ...138
Figure 7-1: EXTOLL Block Diagram ..142
Figure 7-2: Registerfile Design Flow ...145
Figure 7-4: VELO Requester Address Layout147
Figure 7-3: VELO Sequence ...147
Figure 7-5: VELO Completer Memory Layout149
Figure 7-6: RMA Requester Address Encoding152
Figure 7-7: RMA Requester Command Descriptor (Put/Get) [128]152
Figure 7-8: RMA Put Requester Notification Descriptor [128]153
Figure 7-9: RMA Lock Command Descriptor.......................................158
Figure 7-10: RMA Lock Notification Descriptor158
Figure 7-11: RMA Lock Addressing...159
Figure 7-12: RMA Block Diagram..161
Figure 7-13: Resource Usage by Block (PlanAhead Screenshot).........165
Figure 7-14: EXTOLL Placed and Routed on FX100 FPGA165
Figure 7-15: EXTOLL Latency Breakdown and Scaling166
Figure 8-1: EXTOLL Software Stack ...170

Figure 8-2: OpenMPI Architecture .. 175
Figure 8-3: Small-Message Layout ... 176
Figure 8-4: VELO-Based Medium Message Layout 177
Figure 8-5: RMA-Based Medium Size Protocol 178
Figure 8-6: Large-Message Request Layout 178
Figure 8-7: GASnet Request Layout... 180
Figure 9-1: EXTOLL Ping-Pong Latencies.. 184
Figure 9-2: EXTOLL Start-up Latencies.. 184
Figure 9-3: EXTOLL Latency Details .. 185
Figure 9-4: EXTOLL Ping-Pong Bandwidth .. 187
Figure 9-5: EXTOLL Streaming Bandwidth... 187
Figure 9-6: EXTOLL MPI-2 Overlap.. 189
Figure 9-7: EXTOLL MPI Protocols: Ping-pong Latency 189
Figure 9-8: MPI-protocols: Detailed View ... 190
Figure A-1: Design Space Diagram... 197
Figure A-2: Sequence Diagram... 198

AppendixAppendix

D
List of Tables
Table 1-1: Overview of Networks.. 13
Table 3-1: Performance Parameters .. 54
Table 3-2: Performance Parameters (PCIe) ... 55
Table 5-1: AMD GART Registers ... 89
Table 5-2: HT3 ATS Translation Request... 97
Table 5-3: HT3 ATS Translation Response.. 98
Table 5-4: HT3 ATS Translation Invalidation Request 99
Table 5-5: HT3 ATS Translation Invalidation Response..................... 100
Table 5-6: Strategies of Context Handling in Page Tables................. 107
Table 5-8: ATU Latencies ... 118
Table 5-7: ATU Resource Usage.. 118
Table 7-1: VELO Registers... 150
Table 7-2: RMA Instruction Set... 154
Table 7-5: FCAA: MPI_Start/Post/Complete/Wait Operands 156
Table 7-3: FCAA: MPI_Lock/MPI_Unlock Operands.......................... 156
Table 7-4: FCAA: MPI_Lock/Unlock Encoding................................... 156
Table 7-6: FCAA: MPI_Start/Post/Complete/Wait Encoding 157
Table 7-7: RMA Virtual vs. Physical Addressing 160
Table 7-8: RMA Registers .. 162
Table 7-9: Design Resource Usage.. 164
Table 7-10: Effects of Technology.. 167
Table 9-1: Sub-operation Composition of EXTOLL Transactions....... 186
Table 9-2: Sub-operation Timing .. 186
Table 9-3: EXTOLL Message Rates... 188
207

2

R

References
[1] TOP500 Supercomputer Sites; http://www.top500.org, retrieved Dec. 2008

[2] U. Brüning; Vorlesung Rechnerarchitektur 2; Script, 2008 available from ra.ziti.uni-
heidelberg.de; retrieved Sept. 2008

[3] Intel Software Development Products; http://www.intel.com/cd/software/products/
asmo-na/eng/index.htm, retrieved Dec. 2008

[4] K. Yelick, D. Bonachea, W. Chen, P. Colella, K. Datta, J. Duell, S. L. Graham, P. Har-
grove, P. Hilfinger, P. Husbands, C. Iancu, A Kamil, R. Nishtala, J. Su, M. Welcome,
T. Wen; Productivity and performance using partitioned global address space lan-
guages, Proceedings of the 2007 International Workshop on Parallel Symbolic Com-
putation, London, Canada, July 2007

[5] DARPA High Productivity Computing Systems Program; http://www.highproductivi-
ty.org/, retrieved Nov. 2008

[6] D. A. Patterson; Latency lags Bandwidth; Communications of the ACM, Vol. 47,
No.10, Oct. 2004

[7] R. Srinivasan; Achieving Mainframe-Class Performance on Intel Servers Using In-
finiBand Building Blocks; White Paper, Oracle, 2003

[8] M. Ronström, M. Ronström; MySQL Cluster on Multi-Core Intel Xeon using Dolphin
Express: Delivering ‘Real-Time’ Response to the database market; White Paper, Dol-
phin Interconnect, 2007 available from www.dolphinics.com/solutions/wp-down-
load.html; retrieved Sept. 2008

[9] J. Corbet, KS2007: The customer panel; LWN.net, http://lwn.net/Articles/248878/,
retrieved July 2008

[10] U. Brüning, L. Schaelicke; ATOLL: A High- Performance Communication Device for
Parallel Systems; In Proceedings of the 1997 Conference on Advances in Parallel and
Distributed Computing, Shanghai, China, March 1997

[11] L. Rzymianowicz, U. Brüning, J. Kluge, P. Schulz, M. Waack; ATOLL: A Network on
a Chip; Cluster Computing Technical Session (CC-TEA) of the PDPTA'99 confer-
ence, in Las Vegas, USA, June 1999
09

References
[12] H. Fröning, M. Nüssle, D. Slogsnat, P. R. Haspel, U. Brüning; Performance Evalua-
tion of the ATOLL Interconnect; In IASTED Conference, Parallel and Distributed
Computing and Networks (PDCN), Innsbruck, Austria, February 2005

[13] HyperTransport Technology Forum; HyperTransport™ I/O Link Specification; Re-
vision 3.00c; 2007

[14] D. Slogsnat, A. Giese, M. Nüssle, U. Brüning; An open-source HyperTransport core;
ACM Transactions on Reconfigurable Technology; Syst. 1, 3, Article 14, September
2008

[15] H. Litz; The HyperTransport Advanced Crossbar (HTAX); Internal Technical Docu-
mentation, 2008

[16] F. Ueltzhöffer; Design and Implementation of a Virtual Channel Based Low-Latency
Crossbar Switch; Diploma Thesis presented to the Computer Engineering Depart-
ment, University of Mannheim, 2005

[17] B. Geib; Improving and Extending a Crossbar Design for ASIC and FPGA Implemen-
tation; Diploma Thesis presented to the Computer Engineering Department, Univer-
sity of Mannheim, 2007

[18] N. Burkhardt; Fast Hardware Barrier Synchronization for a Reliable Interconnection
Network; Diploma Thesis presented to the Computer Engineering Department, Uni-
versity of Mannheim, 2007

[19] S. Schenk; Architecture Analysis of Multi-Gigabit-Transceivers for Low Latency
Communication; Diploma Thesis presented to the Computer Engineering Depart-
ment, University of Mannheim, 2008

[20] S. Larsen, P. Sarangam, R. Huggahalli; Architectural Breakdown of End-to-End La-
tency in a TCP/IP Network; Proceedings of the 19th International Symposium on
Computer Architecture and High Performance Computing, Gramado, Brazil, Octo-
ber, 2007

[21] Sun Inc.; Unleashing 10 Gigabit Networks; White Paper, March 2007

[22] Infiniband Trade Association; InfiniBand Architecture Specification Volume 1; Re-
lease 1.1, 2002

[23] J. Liu, W. Huang, B. Abali, D. K. Panda; High Performance VMM-Bypass I/O in Vir-
tual Machines; USENIX’06, Boston, USA, 2006

[24] Intel, Compaq, Microsoft; Virtual Interface Architecture Specification Version 1.0;
December 16, 1997, ftp://download.intel.com/design/servers/vi/
VI_Arch_Specification10.pdf, retrieved August 2008

[25] W. E. Speight, H. Abdel-Shafi, J. K. Bennett; Realizing the performance potential of
the virtual interface architecture; Proceedings of the 13th ACM-SIGARCH Interna-
tional Conference on Supercomputing (ICS'99), Rhodes, Greece, 1999
210

References
[26] M-Via - A High performance Modular VIA for Linux; http://www.nersc.gov/research/
FTG/via/, retrieved August 2008

[27] OpenFabrics Alliance; www.openfabrics.org

[28] MVAPICH MPI; http://mvapich.cse.ohio-state.edu, retrieved Dec. 2008

[29] R. Brightwell, D. Doerfler, K. D. Underwood; A Preliminary Analysis of the Infini-
Path and XD1 Network Interfaces; Parallel and Distributed Processing Symposium
(IPDPS), Rhodes, Greece, 2006

[30] L. Dickman, G. Lindahl, D. Olson, J. Rubin, J. Broughton; PathScale InfiniPath: A
First Look; Proceedings of the 13th Symposium on High Performance Interconnects,
Stanford, USA, 2005

[31] J. Hilland, P. Culley, J. P, R. Recio; RDMA Protocol Verbs Specification (Version 1.0);
2003, available from www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-
v1.0-RDMAC.pdf, retrieved Sept. 2008

[32] M. J. Rashti, A. Afsahi; 10-Gigabit iWARP Ethernet: Comparative Performance
Analysis with InfiniBand and Myrinet-10G; IEEE International Parallel and Distrib-
uted Processing Symposium, Long Beach, USA, March 2007

[33] N.J. Boden, D. Cohen, R. E. Felderman,A.E. Kulawik, C.L. Seitz, J.N. Seizovic, W.
Su; Myrinet: A Gigabit-per second Local Area Network; In IEEE Micro, 15(1):29-36,
1995

[34] F. Petrini, W. Feng, A. Hoisie, S. Coll, E. Frachtenberg; The Quadrics Network: High-
Performance Clustering Technology; In IEEE Micro, Volume 22, Issue 1, 2002

[35] L. Rzymianowicz; Designing Efficient Network Interfaces for System Area Networks;
Ph.D. Thesis, CSE, University of Mannheim, 2002

[36] ATOLL Link Chip - Hardware Reference Manual; Internal Documentation, Computer
Architecture Group at the Department of Computer Engineering, University of Man-
nheim, 2003

[37] G. V. Vaughan, B. Elliston, T. Tromey; Gnu Autoconf, Automake, and Libtool; New
Riders Publishing, 2000

[38] Doxygen Project; www.doxygen.org

[39] T. Hettinger; Design and Implementation of Efficient and Reliable Network Protocols
for the ATOLL System Area Network; Diploma Thesis presented to the Computer En-
gineering Department, University of Mannheim, 2004

[40] M. Nuessle; Design and Implementation of a distributed management system for the
ATOLL high-performance network; Diploma Thesis presented to the Computer Engi-
neering Department, University of Mannheim, 2003
211

References
[41] D. Franger; Software Implementation of the I2C Protocol on the ATOLL Network
Card to access an EEPROM Device and a Temperature Sensor; Project Report, Uni-
versity of Mannheim, 2004

[42] MPICH2; http://www.mcs.anl.gov/research/projects/mpich2/; retrieved August 2008

[43] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sa-
hay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Gra-
ham, T. S. Woodall; Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation; Proceedings of the 11th European PVM/MPI Users' Group
Meeting (Euro-PVM/MPI04), Budapest, Hungary, 2004

[44] B. Strohmeier; Design and implementation of a high speed serializing multipurpose
interconnect with improved testability as a key aspect; Diploma Thesis presented to
the Computer Engineering Department, University of Mannheim, 2003

[45] P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, C. Wieners, G. Wit-
tum, C. Wrobel; A parallel software-platform for solving problems of partial differ-
ential equations using unstructured grids and adaptive multigrid methods; In W.
Jäger and E. Krause (ed): High performance computing in science and engineering,
pages 326--339. Springer, 1999.

[46] M. Nüssle, H. Fröning, U. Brüning; SWORDFISH: A Simulator for High-Perfor-
mance Networks; IASTED Conference: Parallel and Distributed Computing and Sys-
tems (PDCS), Phoenix, USA, Nov. 2005

[47] Q. O. Snell, A. Mikler, J. L. Gustafson; NetPIPE: A Network Protocol Independent
Performance Evaluator; Proceedings of the IASTED International Conference on In-
telligent Information Management and Systems, Washington D.C., USA, 1996

[48] Intel MPI Benchmarks (IMB); available from http://www.intel.com/cd/software/
products/asmo-na/eng/219848.htm; retrieved Sept. 2008

[49] R. Reussner, P. Sanders, J. L. Träff; SKaMPI: a comprehensive benchmark for public
benchmarking of MPI; Scientific Programming Vol. 10, Issue 1, Jan. 2002

[50] J. J. Dongarra, P. Luszczek, A. Petitet; The linpack benchmark: Past, present, and fu-
ture; Concurrency and Computation: Practice and Experience, Vol. 15, p. 820, 2003

[51] W. J. Dally, C. L. Seitz; Deadlock-Free Message Routing in Multiprocessor Intercon-
nection Networks; IEEE Transactions on Computers, vol.C-36, no.5, pp.547-553,
May 1987

[52] H. Sattel; A Scalable Generic Wormhole-Routing Simulator - SWORDFISH; Diploma
Thesis presented to the Computer Engineering Department, University of Mannheim,
2004

[53] R. Sohnius; Creating an Executable Specification Using SystemC of a High Perfor-
mance, Low Latency Multilevel Network Router; Diploma Thesis presented to the
Computer Engineering Department, University of Mannheim, 2005
212

References
[54] T. X. Jakob; Multilevel Optimization of Parallel Applications Utilizing a System Area
Network; Diploma Thesis presented to the Computer Engineering Department, Uni-
versity of Mannheim, 2002

[55] D. Slogsnat; Tightly-Coupled and Fault-Tolerant Communication in Parallel Sys-
tems; Dissertation, Ph.D. Thesis, CSE, University of Mannheim, 2008

[56] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U. Brüning; The HTX-Board: A Rapid
Prototyping Station; 3rd annual FPGAworld Conference, Stockholm, Sweden, Nov.
2006

[57] D. Slogsnat, A. Giese, M. Nüssle, U. Brüning; An Open-Source HyperTransport
Core; ACM Transactions on Reconfigurable Technology and Systems (TRETS), Vol.
1, Issue 3, p. 1-21, Sept. 2008

[58] I. Kuon, J. Rose; Measuring the gap between FPGAs and ASICs; In Proceedings of
the 14th international Symposium on Field Programmable Gate Arrays, Monterey,
USA, Feb. 2006

[59] Message Passing Interface Forum; MPI: A Message-Passing Interface Standard Ver-
sion 1.3; 2008; available from http://www.mpi-forum.org/docs/docs.html; retrieved
Sept. 2008

[60] K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, R. Brightwell; A Hard-
ware Acceleration Unit for MPI Queue Processing; Proceedings of the 19th IEEE In-
ternational Parallel and Distributed Processing Symposium, Denver, USA, April
2005

[61] Intel Inc.; Server Network I/O Acceleration; White Paper, 2004, http://download.in-
tel.com/technology/comms/perfnet/download/ServerNetworkIOAccel.pdf, retrieved
August 2008

[62] J. Regula; Using Non-transparent Bridging in PCI Express Systems; White Paper,
PLX Technology Inc., June 2004

[63] R. Kota; R. Oehler; Horus: large-scale symmetric multiprocessing for Opteron sys-
tems; IEEE Micro, Volume 25, Issue 2, March 2005

[64] J. L. Hennessy, D. A. Patterson, David Goldberg; Computer Architecture: A Quanti-
tative Approach, Third Edition; Morgan Kaufmann, 2002

[65] R. Noronha, L. Chai, T. Talpey, D. K. Panda; Designing NFS with RDMA for Security,
Performance and Scalability; International Conference on Parallel Processing, XiAn,
China, Sept. 2007

[66] M. Ko, M. Chadalapaka, U. Elzur, H. Shah, P. Thaler, J. Hufferd; iSCSI Extensions
for RDMA Specification; Internet Standard RFC 5046, available from http://
www.ietf.org/rfc/rfc5046.txt. retrieved 08/2008
213

References
[67] K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer; Making the Most out of Direct-
Access Network Attached Storage; In Proceedings of the Second USENIX Confer-
ence on File and Storage Technologies (FAST’03), San Francisco, USA, March 2003.

[68] M. Rangarajan, L. Iftode; Building a User-level Direct Access File System over Infini-
band; Proceedings of the 4th Annual Workshop on System Area Networks (SAN-4),
Madrid, Spain, Feb. 2004

[69] R. Stevens; UNIX Network Programming, Volume 1, Second Edition: Networking
APIs: Sockets and XTI; Prentice Hall, 1998

[70] M. Fischer; Efficient and Innovative Communication Mechanisms for System Area
Networks; Dissertation, Ph.D. Thesis, CSE, University of Mannheim, 2002

[71] D. Goldenberg, M. Kagan, R. Ravid, M. S. Tsirkin; Zero Copy Sockets Direct Proto-
col over InfiniBand - Preliminary Implementation and Performance Analysis; Pro-
ceedings of the 13th Symposium on High Performance Interconnects, Stanford, USA,
Aug. 2005

[72] Message Passing Interface Forum; MPI-2: Extensions to the Message-Passing Inter-
face; http://www.mpi-forum.org/docs/mpi2-report.pdf; 2003; retrieved August 2008

[73] G. Santhanaraman, S. Narravula, D. K. Panda; Designing passive synchronization for
MPI-2 one-sided communication to maximize overlap; IEEE International Sympo-
sium on Parallel and Distributed Processing IPDPS, Miami, USA, 2008

[74] R. Thakur, W. Gropp, Brian Toonen; Minimizing Synchronization Overhead in the
Implementation of MPI One-Sided Communication; Proceedings of the 11th Europe-
an PVM/MPI Users' Group Meeting (Euro PVM/MPI 2004), Budapest, Hungary,
Sept. 2004

[75] UPC Consortium; UPC Language Specifications V1.2; May 31, 2005

[76] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Liblit, G. Pike, J. Su, K.
Yelick; Titanium Language Reference Manual; U.C. Berkeley Tech Report, UCB/
EECS-2005-15, 2005

[77] R. W. Numrich, J. Reid; Co-array Fortran for parallel programming; SIGPLAN For-
tran Forum, Volume 17, Issue 2, Aug. 1998

[78] E. Allen et al.; The Fortress Language Specification, Version 1.0; March 31, 2008; ht-
tp://research.sun.com/projects/plrg/Publications/index.html, retrieved August 2008

[79] V. Saraswat, N. Nystrom; Report on the Experimental Language X10, Version 1.7;
June 18, 2008; http://x10.sourceforge.net/x10doc.shtml, retrieved August 2008

[80] D. Bonachea; GASNet specification, v1.1; Technical Report UCB/CSD-02-1207,
U.C. Berkeley, October 2002.
214

References
[81] A. M. Mainwaring, D. E. Culler; Active Messages: Organization and Applications
Programming Interface; Technical Document, University of Berkeley, 1995; avail-
able from http://now.cs.berkeley.edu/Papers/Papers/am-spec.ps, retrieved Sept. 2008

[82] C. Bell, D. Bonachea; A New DMA Registration Strategy for Pinning-Based High;
Performance Networks; Workshop on Communication Architecture for Clusters
(CAC'03), Nice, France, 2003

[83] I. Schoinas, M. D. Hill; Address Translation Mechanisms in Network Interfaces; Pro-
ceedings of the Fourth International Symposium on High-Performance Computer Ar-
chitecture, Las Vegas, USA, Feb. 1998

[84] AMD Inc.; Software Optimization Guide for AMD Family 10h Processors; Revision
3.06, April 2008

[85] R. Bhargava, B. Serebrin, F. Spadini, S. Manne; Accelerating two-dimensional page
walks for virtualized systems; ACM Thirteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Seattle, UAS,
Mar. 2008

[86] J. E.J. Bottomley; Dynamic DMA mapping using the generic device interface; Linux
Kernel documentation, version 2.6.25, retrieved July 2008

[87] D. Goldstein; MemFree Technology; Presentation, OpenIB Workshop, Sonoma,
USA, Feb. 2005

[88] Mellanox Technologies; InfiniHost III Ex MemFree Mode Performance; White Paper,
retrieved July 2008

[89] F. Mietke, R. Rex, R. Baumgartl, T. Mehlan, T. Hoefler, W. Rehm; Analysis of the
Memory Registration Process in the Mellanox Infiniband Software Stack; European
Conference on Parallel Computing (EURO-PAR), Dresden, Germany, Aug. 2006

[90] L. Ou, X. He, J. Han; A Fast Read/Write Process to Reduce RDMA Communication
Latency; Proceedings of the 2006 International Workshop on Networking, Architec-
ture, and Storages, Shenyang, China, Aug. 2006

[91] T. S. Woodall, G. M. Shipman, G. Bosilca, A. B. Maccabe; High Performance RDMA
Protocols in HPC; Proceedings of the 13th European PVM/MPI Users' Group Meet-
ing (Euro PVM/MPI 2006), Bonn, Germany, Sept. 2006

[92] F. Mietke, R. Rex, T. Mehlan, T. Hoefler, W. Rehm; Reducing the Impact of memory
registration Infiniband; 1. Workshop Kommunikation in Clusterrechnern und Clus-
terverbundsystemen (KiCC), Chemnitz, Germany, Nov. 2005

[93] D. K. Panda et al.; Performance Comparison of MPI Implementations over Infini-
band, Myrinet and Quadrics; Proceedings of the International Conference on Super-
computing (SC’03), Phoenix, USA, 2003

[94] R. Recio, P. Culley, D. Garcia, J. Hilland; An RDMA Protocol Specification; 2002,
www.rdmaconsortium.org, retrieved July 2008
215

References
[95] Quadrics; Quadrics Linux Kernel Integration; Website, http://web1.quadrics.com/
downloads/ReleaseDocs/hawk/LinuxKernelIntegration.html, retrieved July 2008

[96] Myricom Inc.; Myrinet Express (MX): A High-Performance, Low-Level Message-
Passing Interface for Myrinet; version. 1.2, 2006

[97] B. Goglin; Design and Implementation of Open-MX: High-Performance Message
Passing over generic Ethernet hardware; IEEE International Parallel and Distributed
Processing Symposium, Rome, Italy, May 008

[98] L. C. Stewart, D. Gingold; A New Generation of Cluster Interconnect; White Paper,
SciCortex, Dec. 2006/revised Apr. 2008

[99] Intel; AGP V3.0 Interface Specification; Sept. 2002

[100] AMD Inc.; AMD64 BIOS and Kernel Developer’s Guide for AMD Family 10h Pro-
cessors; Revision 3.06, Sept. 2008

[101] K. D. Underwood, K. S. Hemmert, C. Ulmer; Architectures and APIs: Assessing Re-
quirements for Delivering FPGA Performance to Applications; Proceedings of the In-
ternational Conference on Supercomputing (SC’06),Tampa, USA, Nov. 2006

[102] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer, L. Van Doorn;
The Price of Safety: Evaluating IOMMU Performance; Proceedings of the Linux
Symposium, Ottawa, Canada, Jun. 2007

[103] AMD Inc.; AMD I/O Virtualization Technology (IOMMU) Specification; version 1.2,
Feb. 2007

[104] D. Abramson et al.; Intel Virtualization Technology for Directed I/O; Intel Technolo-
gy Journal, Volume 10, Issue 3, 2006

[105] PCI-SIG; Address Translation Services; Revision 1.0, Mar. 8, 2007

[106] J. Corbert; Supporting RDMA on Linux; LWN.net, 26. Apr. 2005, retrieved July 2008

[107] T. Schlichter; Exploration of hard- and software requirements for one-sided, zero
copy user level communication and its implementation; Diploma Thesis presented to
the Computer Engineering Department, University of Mannheim, 2003

[108] C. Lameter; Bazillions of Pages; Proceedings of the 2008 Ottawa Linux Symposium,
Ottawa, Canada, May 2008

[109] F. Rembor; Exploration, Development and Implementation of different TLB Func-
tions and Mechanisms; Diploma Thesis presented to the Computer Engineering De-
partment, University of Mannheim, 2006

[110] M. Kunst; A Unified Multi Context Networking Engine; Diploma Thesis presented to
the Computer Engineering Department, University of Mannheim, 2007

[111] CSwitch; www.cswitch.com, retrieved July 2008
216

References
[112] F. Lemke; FSMDesigner4 - Development of a Tool for Interactive Design and Hard-
ware Description Language Generation of Finite State Machines; Diploma Thesis
presented to the Computer Engineering Department, University of Mannheim, 2006

[113] AMD Inc.; HyperTransport™ 3.0 Bus Functional Model User Guide; Revision 0.20,
2007

[114] M. Herlihy, J. Eliot, B. Moss; Transactional Memory: Architectural Support For
Lock-free Data Structures; Proceedings of the 20th Annual International Symposium
on Computer Architecture, San Diego, USA, May 1993

[115] H. Fröning; Architectural Improvements of Interconnection Network Interfaces; Dis-
sertation, Ph.D. Thesis, CSE, University of Mannheim, 2007

[116] L. Schaelicke, A. Davis; Improving I/O performance with a conditional store buffer;
Proceedings of the 31st Annual ACM/IEEE international Symposium on Microarchi-
tecture, Dallas, USA, 1998

[117] Xilinx Inc.; ChipScope Pro 10.1 Software and Cores User Guide; version 10.1, 2008

[118] M. Nüssle, H. Fröning, A. Giese, H. Litz, D. Slogsnat, U. Brüning; A Hypertransport
based low-latency reconfigurable testbed for message-passing developments;
2.Workshop Kommunikation in Clusterrechnern und Clusterverbundsystemen
(KiCC'07), Chemnitz, Germany, Feb. 2007

[119] PCI-SIG; PCI Express Base Specification; Revision 1.0, 2002

[120] T. Reubold; Design, Implementation and Verification of a PCI Express to Hyper-
Transport Protocol Bridge; Diploma Thesis presented to the Computer Engineering
Department, University of Mannheim, 2008

[121] Denali Software Inc.; SystemRDL 2.6A: Standard for System Register Description
Language (SytemRDL); 2007

[122] Denali Software Inc.; Blueprint Compiler Users Guide; version 3.7.2, 2008

[123] EXTOLL Reference Manual; Internal Documentation, CAG, University of Heidel-
berg, 2008

[124] P. Mochel; The sysfs Filesystem; Proceedings of the 2005 Linux Symposium, Ottawa,
Canada, Jul. 2005

[125] Subversion - an open-source version control system; http://subversion.tigris.org/; re-
trieved Sept.2008

[126] C. Leber; A hardware-oriented simulator for high performance interconnection net-
work architectures; Diploma Thesis presented to the Computer Engineering Depart-
ment, University of Mannheim, 2007

[127] H. Litz, H. Fröning, M. Nüssle, U. Brüning; VELO: A Novel Communication Engine
for Ultra-low Latency Message Transfers; 37th International Conference on Parallel
Processing (ICPP-08), Portland, USA, Sept. 2008
217

References
[128] M. Scherer; Implementation, Synthesis and Verification of a Remote Shared Memory
Access Functional Unit; Diploma Thesis presented to the Computer Engineering De-
partment, University of Mannheim, 2008

[129] D. Franger; A Multi-Context Engine for Remote Memory Access to Improve System
Area Networking; Diploma Thesis presented to the Computer Engineering Depart-
ment, University of Mannheim, 2004

[130] Xilinx Inc.; Xilinx ISE 10.1 Design Suite Software Manuals and Help; version 10.1,
2008

[131] Xilinx Inc.; PlanAhead User Guide; version 10.1, 2008

[132] Clearspeed Technology plc; Clearspeed Advance e710 Accelerator; available from
www.clearspeed.com, retrieved Dec. 2008

[133] OpenFGPA Inc.; OpenFPGA GenAPI version 0.4 Draft Specification; available from
http://www.openfpga.org/, retrieved Sept. 2008

[134] D. Sima, T. Fountain, P. Kacsuk; Advanced Computer Architectures: A Design Space
Approach; Addison Wesley, 1997

[135] M. Fowler, K. Scott; UML Distilled Second Edition A Brief Guide to the Standard Ob-
ject Modelling Language; Addison Wesley, 1999
218

	Introduction
	1.1 State of the Art
	1.2 Outline

	The ATOLL Software Environment
	2.1 The ATOLL-Project
	2.1.1 ATOLL Software Environment - Overview

	2.2 PALMS
	2.2.1 Memory Layout of an ATOLL Hostport
	2.2.2 PALMS Design

	2.3 Managing ATOLL
	Automatic topology recognition
	Routing Table Management
	Performance Monitoring
	Routing Service for Applications
	Monitoring Interface
	Debugging Services
	Sensor and Serial EEPROM
	2.3.1 AtollManager
	2.3.2 Additional Tools
	Command Line Management Tools
	Command Line Test Tools
	Atollrun

	2.4 MPICH2 for ATOLL
	2.5 Debugging the ATOLL ASIC
	2.6 Performance of ATOLL
	2.6.1 Microbenchmarks
	2.6.2 Application Level Benchmarks
	2.6.3 High-Performance LinPACK

	2.7 Evaluation of Larger Networks
	2.8 Zero-Copy and ATOLL
	2.9 Lessons Learned from ATOLL

	EXTOLL System Environment
	Communication Paradigms
	4.1 Two-sided Communication
	4.2 Remote Load/Store
	4.3 Introduction to One-Sided Communication
	4.4 Important Communication APIs
	4.4.1 Sockets
	4.4.2 MPI-1
	4.4.3 MPI-2
	4.4.4 PGAS
	GASnet
	Memory-mapper Device for PGAS

	4.5 Conclusions for EXTOLL

	The Virtual Address Space Barrier
	5.1 State of the Art
	5.1.1 X86-64 Processor MMU
	5.1.2 Classical Devices and the Linux DMA API
	5.1.3 Mellanox Infiniband HCA
	5.1.4 iWARP Verbs Memory Management
	5.1.5 Quadrics
	5.1.6 Myrinet MX
	5.1.7 SciCortex
	5.1.8 Graphics Aperture Remapping Table
	5.1.9 IBM Calgary IOMMU
	5.1.10 AMD IOMMU and Intel VT-d
	5.1.11 PCI Express and HT3 Address Translation Services
	5.1.12 Virtual Memory Hooks in the Linux Kernel

	5.2 Design Space of the EXTOLL Address Translation
	5.2.1 Interrupt Driven Software-Only Approach
	5.2.2 Software Pre-translation
	5.2.3 Managed TLB
	5.2.4 Autonomous TLB
	5.2.5 Full Hardware Table-Walk
	5.2.6 Reduced-Depth Hardware-Table Walk
	5.2.7 Registration Based versus Kernel-Hook Based Designs
	5.2.8 VPID Handling
	5.2.9 On-Device ATS
	5.2.10 Conclusion

	5.3 The EXTOLL Address Translation Unit
	5.4 ATU Microarchitecture
	5.5 ATU Verification and Implementation
	5.6 Performance Analysis
	5.7 Future Extensions

	Transactional I/O
	6.1 EXTOLL Requirements
	6.2 The Classical Approach
	6.3 Hardware Replication
	6.4 Self Virtualized Devices
	6.4.1 Triggerpage Study
	Triggerpage Results

	6.4.2 I/O Transactions
	6.4.3 Central-Flow-Controlled Queue
	6.4.4 Central-Flow-Controlled Queue with Direct Data Insertion
	6.4.5 OS Synchronized Queue

	6.5 Completion Notification
	6.6 RX Virtualization
	6.7 Conclusion

	The EXTOLL Hardware
	7.1 HT-Core and HTAX
	7.2 Registerfile
	7.3 EXTOLL Network Layer
	7.4 EXTOLL VELO Engine
	VELO Implementation Constraints
	VELO Registers
	VELO Asynchronous Mode
	VELO Microarchitecture

	7.5 EXTOLL RMA Engine
	7.5.1 RMA Instructions
	7.5.2 PUT Instructions
	7.5.3 GET Instructions
	7.5.4 RMA Remote Lock Instruction
	The FCAA operation
	FCAA Examples
	Implementation Requirements
	Remote Locking Hardware Architecture

	7.5.5 Physical vs. Virtual Addressing
	7.5.6 RMA Microarchitecture
	7.5.7 RMA Registers

	7.6 EXTOLL URMAA engine
	7.7 EXTOLL FPGA Implementation
	7.8 EXTOLL ASIC

	The EXTOLL Software
	8.1 The EXTOLL Kernel Space Software
	8.1.1 Base EXTOLL Driver
	8.1.2 EXTOLL Registerfile Driver
	8.1.3 VELO Driver
	8.1.4 RMA Driver
	8.1.5 ATU Driver
	8.1.6 Summary of Drivers

	8.2 Routing and Management
	8.3 The VELO Stack
	8.4 The EXTOLL RMA Software Stack
	8.5 EXTOLL Kernel-Level Communication
	8.6 EXTOLL MPI - Protocols
	8.7 EXTOLL GASNET - Protocols
	8.8 Software Summary

	Results and Performance Evaluation
	9.1 Microbenchmark Results
	9.2 RMA one-sided MPI-2 Prototype
	9.3 MPI-1 Protocols
	9.4 Summary of Results

	Conclusion and Outlook
	Graphical Representation and Methods
	Acronyms
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

