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1 Introduction

Starting with the seminal contribution of Lucas (1978), theoretical models that

determine asset-prices in a rational expectations equilibrium (REE) of a repre-

sentative consumer economy have become the workhorses of the macroeconomic

finance literature. As their main virtue these models derive the relationship be-

tween the consumer’s uncertainty with respect to future consumption growth and

equilibrium asset prices. However, as first demonstrated by Mehra and Prescott

(1985), asset returns predicted by theses models are, by some large margin, at

odds with actually observed asset returns when structural model parameters are

calibrated with realistic values. Three major asset pricing puzzles have emerged

from this literature, the “equity premium puzzle”, the “risk-free rate puzzle” and

the “excess-volatility puzzle”. The focus of this paper is on the “risk-free rate

puzzle” according to which a realistically calibrated standard consumption based

asset pricing model yields a return on risk-free assets of about 5%−6% compared

to a real-world actual risk-free rate in the range of 1− 2%.

In this paper we address the risk-free rate puzzle under the assumption that

the representative agent’s long-run estimator for the mean of the consumption

growth-rate may be biased because the agent’s Bayesian learning process is prone

to ambiguity attitudes. In order to focus our analysis, we adopt the preference

structure of the original asset pricing model by sticking to the standard assump-

tions that the representative consumer’s expected utility from an infinite con-

sumption stream is additively time-separable and that the consumer’s period t

utility of consumption is derived from a CRRA (constant relative risk aversion)

function. Also in line with standard specifications of the original consumption

based asset pricing model, we assume that the agent can observe arbitrarily large

sample information drawn from an independently and normally distributed con-

sumption growth rate process.

Unlike standard models of Bayesian learning, however, we consider ambigu-

ous beliefs about the mean of the consumption growth-rate that are formally

described as non-additive probability measures (=capacities). Non-additive prob-

ability measures arise as generalizations of subjective additive probability mea-

sures in Choquet expected utility (CEU) theory which relaxes Savage’s sure thing

principle in order to accommodate for ambiguity attitudes as elicited in Ellsberg

(1961) paradoxes (cf. Schmeidler 1986, 1989; Gilboa 1987). In particular, we fo-

cus attention on neo-additive capacities in the sense of Chateauneuf, Eichberger
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and Grant (2007), according to which the decision maker’s attitudes towards am-

biguity are reflected by decision weights attached to the best, respectively, worst

outcome in a given situation. Neo-additive capacities thus formally capture the

empirical observation that real-life decision-makers tend to put too much decision-

weight on extreme outcomes thereby offering an alternative (=non-additive) way

for modelling so-called “fat-tail” phenomena.

As our main technical contribution we develop a closed-form model of Bayesian

learning with respect to ambiguous beliefs about the mean of an independently

and identically normally distributed stochastic process such that the resulting

Choquet Bayesian estimator remains bounded away from the sample mean also

in the long-run. As one formal property of this Choquet estimator, we obtain

that its bias is the greater the more surprised the agent is by the information

he receives. Finally, we use the biased long-run Choquet estimator for the con-

sumption growth rate in the equilibrium conditions of the standard consumption

based asset pricing model according to which the equilibrium return of a risk-free

asset is given as the inverse of the agent’s expectation of the stochastic discount

factor.

As our main conceptual result we demonstrate that our approach contributes

to a resolution of the risk-free rate puzzle for a sufficiently large degree of ambigu-

ity whereby this ambiguity is resolved in a rather pessimistic way. This possible

resolution of the risk-free rate puzzle has a lot of intuitive appeal: the equilibrium

return of a riskless asset remains low in the long run because agents will always

have a high demand for such assets since, firstly, they will never fully trust their

estimation based on the data sample and, secondly, they react to this lack of

trust in a rather pessimistic, i.e., cautious, way.

There are several different proposals in the literature on asset return puzzles

that also relax the REE assumption according to which the representative agent’s

subjective estimator must coincide with the corresponding “objective” expected

value given as relative frequencies in the economic data. Along this line, Cec-

chetti, Lam and Mark (2000) consider the implications of rules of thumb with

respect to estimates of the consumption growth process and Abel (2002) studies

the effects of pessimism and doubt on asset returns. Related to this literature

but with less of an ad hoc flavor are robust control applications to asset pric-

ing puzzles where pessimism results from an agents’ caution in responding to

concerns about model misspecification (Hansen, Sargent and Tallarini 1999; An-

derson, Hansen, Sargent 2004; Maenhout 2004; Hansen and Sargent 2007). An
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apparent drawback of both approaches is, however, their incompatibility with

standard learning models with Bayesian features or overtones by which subjec-

tive beliefs converge to their objective counterparts in the long-run, cf. Barsky

and DeLong (1993), Timmermann (1993), Brav and Heaton (2002), Cogley and

Sargent (2008) and Adam, Marcet and Nicolini (2008). As our main contribution

to this literature, our Choquet Bayesian learning model thus provides a consistent

theoretical foundation for why a subjective estimator for the stochastic discount

factor may remain biased even in the long-run.

Several authors also obtain long-run biases of subjective beliefs in Bayesian

learning models. E.g., Brennan and Xia (2001) and Lewellen and Shanken (2002)

consider cases in which the mean of an exogenous dividend process may not

be constant over time. Consequently, the consumer can never fully learn the

objective parameters of the underlying distribution because observed frequencies

do not admit any conclusions about objective probabilities even in the long run.

Along the same line, Weitzman (2007) considers a setup in which the variance of

the consumption growth rate is a hidden parameter whereas the mean is known.

In contrast to these approaches that specify unstable stochastic processes, the

representative consumer in our model observes data that is drawn from a stable

stochastic process but the posterior distribution is biased away from the objective

distribution due to psychological attitudes that do not vanish in the long-run.

Epstein and Schneider (2007) also consider a model of learning under ambi-

guity sharing with our approach the feature that ambiguity does not necessarily

vanish in the long run. Their learning model is based on the recursive multiple

priors approach (Epstein and Wang 1994; Epstein and Schneider 2003) which,

basically, restricts conditional max min expected utility (MMEU) preferences of

Gilboa and Schmeidler (1989) in such a way that dynamic consistency is satis-

fied.1 While MMEU theory is closely related to CEU theory restricted to convex

capacities (e.g., neo-additive capacities for which the degree of optimism is zero),

our learning model differs substantially from Epstein and Schneider’s approach.

Epstein and Schneider establish long-run ambiguity under the assumption that

the decision maker permanently receives ambiguous signals, which they formalize

via a multitude of different likelihood functions at each information stage in ad-

1Similarly, the aforementioned robust control applications to asset pricing puzzles are also
related to the max-min expected (multiple priors) utility theory of Gilboa and Schmeidler
(1989), cf. Hansen and Sargent (2001) and Hansen, Sargent, Turmuhambetova and Williams
(2006).
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dition to the existence of multiple priors. In the case of learning from ambiguous

urns without multiple likelihoods, ambiguity obviously vanishes in the learning

process (for a formal analysis also see Marinacci 2002). However, the introduction

of multiple likelihoods lacks an axiomatic and/or psychological foundation going

beyond the mere technical property that long-run ambiguity is sustained by mul-

tiple likelihoods. In contrast, our—comparably simple—axiomatically founded

model of a Bayesian learner who is prone to psychological attitudes in the in-

terpretation of new information offers a rather straightforward explanation for

biased long-run beliefs even when the decision maker receives signals that are

not ambiguous. Finally, notice that the restriction of Epstein and Schneider’s

approach to dynamically consistent preferences excludes preferences that violate

Savage’s sure-thing principle as elicited in Ellsberg paradoxes. Since our learn-

ing model does not exclude dynamically inconsistent decision behavior, it can

accommodate a broader notion of ambiguity attitudes.

Our approach—which exclusively focusses on biased Bayesian learning of pa-

rameter values—is also related to a literature on asset pricing puzzles that in-

vestigates alternative preference structures.2 For example, Weil (1989), Epstein

and Zin (1989, 1991) and others examine the asset pricing implications of gen-

eral recursive non-expected utility preferences, whereas Campbell and Cochrane

(1999), building on Abel (1990), Constantinides (1990) and others, consider pref-

erences with habit formation. As illustrated by Kocherlaokta (1996), realistic

calibrations using such alternative preference structures help resolve the risk-free

rate puzzle but not the equity premium puzzle. Since we exclusively focus on the

risk-free rate puzzle, our own approach is complementary to this strand of the

literature. We also regard it as a viable avenue for future research to combine

such preference structures with the possibility that subjective beliefs may remain

biased in the long-run.

The remainder of our analysis is structured as follows. Section 2 restates

the risk-free rate puzzle in the standard model. In Section 3 we describe the

benchmark case of Bayesian learning in the absence of ambiguity. Our formal

Choquet Bayesian learning model is presented in Section 4. In Section 5 we

then apply the resulting estimator of our Choquet Bayesian learning model to

2A review of this literature is given in the survey articles by Kocherlakota (1996), Campbell
(2003), Mehra and Prescott (2003) and the textbook treatments in Cochrane (2001) and Duffie
(2001).
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the standard equilibrium conditions of the risk-free rate puzzle framework and

present a possible resolution of the puzzle by our approach, both qualitatively and

quantitatively. Finally, Section 6 concludes. Our decision theoretic framework of

ambiguous beliefs as well as Bayesian updating of ambiguous beliefs is described

in more detail in Appendix 1. All proofs are relegated to Appendix 2.

2 The risk-free rate puzzle

According to the risk-free rate puzzle, the return on a risk-free asset derived from

a standard Lucas (1978) type asset pricing model is substantially higher than

observed in the data. As point of departure we here describe a simple variant of

the standard asset-pricing economy. In the macro-finance literature on the equity

premium puzzle, it is often assumed that there is one single productive unit which

produces the perishable consumption good and that there is accordingly one

equity share that is competitively traded. The other security usually considered

is a one-period risk-free asset, which pays one unit of the consumption good

next period with certainty. As we will later be concerned only with the risk-

free rate of return, our setup is even simpler and we start by considering at first

one arbitrary asset. Consider a representative period-t agent and let cs and ys

denote the random variables for the consumption level and dividend payment

in period s > t respectively. Conditional on information It the representative

period-t agent chooses asset holdings zs for periods s > t as the solution to the

maximization problem

max

(
u (ct) +

∞∑
s=t+1

βs−tE [u (cs) , π (cs | It)]

)
(1)

subject to

cs = ys · zs + ps · (zs − zs+1) for all s (2)

where β < 1 is the agent’s time-discount factor, ps is the ex-dividend asset price

in period s and E [u (cs) , πt (cs | It)] is the agent’s expected utility of period s

consumption with respect to the conditional probability measure πt (cs | It). The

corresponding first order conditions imply for any equilibrium

1 = E
[
R∗

t+1 ·Mt+1, π (ct+1 | It)
]

for t = 0, 1, .... (3)

whereby

R∗
t+1 =

p∗t+1 + yt+1

p∗t
(4)
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denotes the asset’s equilibrium gross-return in period t + 1 at equilibrium prices

p∗t , p
∗
t+1, and

Mt+1 = β · u
′
(ct+1)

u′ (ct)
(5)

denotes the so-called stochastic discount factor.

In order to state Mehra and Prescott (1985)’s version of the risk-free puzzle,

we resort to a standard utility structure and assume that the per period utility

function features constant relative risk aversion (CRRA),

u (ct) =
c1−γ
t

1− γ
for t = 0, 1, ..., (6)

where γ > 0 is the coefficient of relative risk aversion. With this parametric

assumption, the constant equilibrium gross-return of the risk-free asset in (3)

becomes

R∗
t+1 = E [Mt+1, π (Xt+1 | It)]

−1 for t = 0, 1, .... (7)

such that

Mt+1 = β · exp (−γXt+1) (8)

where the random variable Xt+1 = ln ct+1 − ln ct is the stochastic consumption

growth, which coincides in equilibrium with the stochastic dividend-payment

growth ln yt+1 − ln yt. Under the assumption that the conditional probability

measure π (Xt+1 | It) converges for large t to the unconditional “objective” distri-

bution π∗ of consumption growth, the long-run equilibrium return of the risk-free

asset (7) writes as

R∗ = E [M, π∗]−1 (9)

(with probability one), or equivalently stated in logarithmic terms with r∗ =

ln R∗,

r∗ = − ln β + γµ∗ − 1

2
γ2σ2 (10)

since

E [M, π∗] = E [β · exp−γX, π∗]

= β · exp

(
−γµ∗ +

1

2
γ2σ2

)

for the log-normally distributed random variable M .

While (10) provides relevant insights into the qualitative relationship between

the agent’s uncertainty about consumption growth and the equilibrium price of
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a risk-free asset, the quantitative implications of the model are strongly at odds

with the data as first demonstrated by Mehra and Prescott (1985). For example,

calibrating the model with a discount factor of β = 0.98, a coefficient of relative

risk-aversion of γ = 2 (conventional values of γ range from 1 to 4) and using

data for the period 1950-20043 to compute the mean and variance of annual

consumption growth giving µ∗ = 2.13% and σ∗ = 1.07%, results in an equilibrium

risk-free rate of 6.25%. This is about 4.06 percentage points higher than our point

estimate of the risk-free rate of 2.19%.

It is our aim in this paper to decrease this gap between empirical estimates

for the return of a risk-free asset and the equilibrium return as derived from a

consumption-based asset pricing model. To this end we consider the equilibrium

condition

R∗ = E [M, π∗∗]−1 ⇔ (11)

r∗ = − ln β + γµ∗∗ − 1

2
γ2σ2 (12)

where π∗∗ = N (µ∗∗, σ2) such that µ∗∗ is not the “true” value of the mean of

the consumption growth rate. Quite trivially, condition (11) for the equilibrium

return of a risk-free asset would better fit the data than (9) whenever

E [M, π∗∗] À E [M,π∗] ⇔ (13)

µ∗∗ ¿ µ∗. (14)

The non-trivial contribution of our paper deals with the question:

How can Bayesian learners end up in the long run with a biased

Bayesian estimator for the stochastic discount factor, i.e., E [M,π∗∗],

rather than the standard (unbiased) estimator E [M, π∗]?

The standard justification for using an “objective” probability distribution

in the statement of the risk-free rate puzzle refers to the fundamental result of

the rational Bayesian learning literature that Bayesian estimators are consistent,

i.e., will converge in the long-run to the true parameter value. In the following

section we develop a specific closed-form model of rational Bayesian learning that

will serve at the basis of a closed-form model of biased Bayesian learning, which

we present in Section 4. According to this non-rational Bayesian learning model

a biased long-run estimator—satisfying, e.g., (14)—will emerge whenever agents

have ambiguity attitudes that are reflected in their estimation.

3See section 5 for a description of data sources and definitions.
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3 Bayesian learning of the consumption growth

rate: The rational benchmark case

This section develops our model of Bayesian learning for the benchmark case in

which the representative period-n agent’s belief is given as an additive probabil-

ity measure so that this belief does not reflect any ambiguity in our sense. In

particular, we consider a consumption growth rate with “objective” normal dis-

tribution π∗ = N (µ∗, σ2) whereby we assume that the agent’s subjective belief

about the consumption growth rate is also given by a normal distribution. While

we further stipulate that the variance of this distribution, σ2, is known to the

agent, we assume that the agent is uncertain about this distribution’s mean. In

the absence of ambiguity, we model this uncertainty by a random variable with

a truncated normal distribution so that the expected value of this random vari-

able is the agent’s best estimator of the mean of the consumption growth-rate

distribution. Thereby, we condition the expectation on the period-n agent’s in-

formation, denoted In, given as the n observed past consumption growth rates.

The assumption of a truncated rather than an untruncated distribution is, in our

opinion, more realistic because no agent would regard any number between minus

and plus infinity as a possible expected value of the growth-rate. Furthermore,

the truncation ensures that extreme outcomes are well-defined in terms of an

infimum and supremum, respectively, which will be analytically relevant for our

concept of ambiguous beliefs.

Formally, we consider a probability space (π, Ω,F) where π denotes a subjec-

tive additive probability measure defined on the events in F . In what follows, we

describe the construction of the state space, of the event space, and of the additive

probability measure. The event space is thereby closely related to our information

structure, which we also construct in detail. Finally, we establish consistency of

the additive estimator for this closed-form model of Bayesian learning.

Construction of the state space Ω. For some numbers µ and a > 0, denote

by Θ = (µ− a, µ + a) the parameter-space that collects all “values of the mean

of the consumption growth rate distribution” that the agent regards as possible.

We make the following epistemic assumption:

Assumption 1. The agent always regards the “true” parameter value, denoted

µ∗, as possible, i.e., µ∗ ∈ (µ− a, µ + a).
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Denote by X∞ = ×∞i=1Xi with Xi = R, the sample-space that collects all

possible infinite sequences of observations about the consumption growth rates

in periods i = 1, 2, .... The state space of our model is then defined as

Ω = Θ×X∞, (15)

with generic element ω = (θ, x1, x2, ...).

Construction of the information structure. The information structure of our

learning model is described by an infinite sequence of ever finer information

partitions P1,P2, ... such that each Pn, n = 1, 2, ..., is defined as the collection of

information cells

Θ× {x1} × ...× {xn} ×Xn+1 ×Xn+2 × ... for all (x1, ..., xn) ∈ ×n
i=1Xi. (16)

According to this information structure, the agent will never receive any direct

information about the true parameter value. That is, regardless of how many

observations n the agent makes and regardless of the specific value (x1, ..., xn)

of observations, he will always regard any parameter value in (µ− a, µ + a) as

possible. The distinctive feature of any model of Bayesian learning of a parameter

value is that learning exclusively follows from (indirect) likelihood considerations

but never from (direct) knowledge about the parameter value. Loosely speaking,

this feature gives rise to the possibility that the agent of our model may never

learn the true parameter value when his likelihood considerations are described

by a non-additive probability measure.

Construction of the event space F . Endow Θ with the Euclidean metric and

denote by B the Borel σ-algebra in Θ, i.e., the smallest σ-algebra containing all

open subsets of the Euclidean interval (µ− a, µ + a). Similarly, endow each Xi

with the Euclidean metric and denote by Xi the Borel σ-algebra in Xi. Our

event space F is then defined as the standard product σ-algebra generated by

B,X1,X2, ... .

In a next step, define by Σn the σ-algebra generated by Pn, for n = 1, 2, ....

That is, Σn is the smallest collection of subsets of Ω that is a σ-algebra and that

contains all information cells in Pn. Observe that Σ1 ⊂ Σ2 ⊂ ... ⊂ F so that the

sequence of σ-algebras (Σ1, Σ2, ...,F) constitutes a filtration.
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Construction of the additive probability measure π. Define by θ̃ : Ω → Θ such

that

θ̃ (θ, x1, x2, ...) = θ (17)

the F -measurable coordinate random variable that assigns to every state of the

world the corresponding “true” parameter value, i.e., the corresponding true mean

of the consumption growth rate process. We assume that the agent’s prior over

θ̃ is given as a truncated normal distribution with support on (µ− a, µ + a) such

that, for all A ∈ B,

π
({

ω ∈ Ω | θ̃ (ω) ∈ A
})

=

∫

θ∈A

ψθ̃ (θ) dθ (18)

where the density function is given by

ψθ̃ (θ) =





1
F (µ+a)−F (µ−a)

· 1√
2πτ2

exp
[
−1

2
(θ−µ)2

τ2

]
for τ < ∞

1
2a

for τ = ∞,
(19)

for θ ∈ (µ− a, µ + a) whereby F (·) denotes the cumulative distribution function

of the corresponding untruncated normal distribution with mean µ and variance

τ 2, i.e.,

F (z) =

z∫

−∞

1√
2πτ 2

exp

[
−1

2

(θ − µ)2

τ 2

]
dθ. (20)

Define by Xn : Ω → R, with n = 1, 2, ..., such that

Xn (θ, x1, x2, ...) = xn (21)

the Σn-measurable coordinate random variable whose value stands in for the con-

sumption growth rate in period n. We assume that, conditional on the parameter-

value θ ∈ Θ, each Xn is independently and normally distributed with mean θ

and variance σ2 whereby the true variance is known to the agent. That is, for all

θ ∈ (µ− a, µ + a) and all A ∈ Xn,

π
({

ω ∈ Ω | θ̃ (ω) = θ, Xn (ω) ∈ A
})

=

∫

x∈A

ψXn (x | θ) · ψθ̃ (θ) dx (22)

where the conditional density function is given by

ψXn (x | θ) =
1√

2πσ2
exp

[
−1

2

(x− θ)2

σ2

]
for x ∈ R. (23)
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Consider now the Σn-measurable random variable X̄n which denotes the av-

erage of the consumption growth rates up to period n, i.e.,

X̄n =
1

n
(X1 + ... + Xn) . (24)

Under the above distributional assumptions, X̄n is—conditional on parameter

θ—normally distributed so that, for all θ ∈ (µ− a, µ + a) and all Borel-subsets

A of the Euclidean line,

π
({

ω ∈ Ω | θ̃ (ω) = θ, X̄n (ω) ∈ A
})

=

∫

x∈A

ψX̄n
(x | θ) · ψθ̃ (θ) dx (25)

with conditional density function

ψX̄n
(x | θ) =

1√
2πσ2/n

exp

[
−1

2

(x− θ)2

σ2/n

]
for x ∈ R. (26)

Bayesian estimation. Let ψ denote the joint density function of θ̃ and X̄n.

Then, by Bayes’ rule, the posterior density function of θ̃ conditional on observa-

tion x̄n ∈ X̄n (Ω) is given by

ψθ̃ (θ | x̄n) =
ψ (θ, x̄n)

ψX̄n
(x̄n)

(27)

=
ψX̄n

(x̄n | θ) · ψθ̃ (θ)∫ µ+a

µ−a
ψX̄n

(x̄n | θ) · ψθ̃ (θ) dθ
. (28)

The expected value of θ̃ with respect to this posterior density function, i.e.,

E
[
θ̃, ψθ̃ (θ | x̄n)

]
, is then the agent’s estimator of the mean of the consumption

growth rate in the light of new information In =
{
ω ∈ Ω | X̄n (ω) = x̄n

}
. Be-

fore presenting our first main result, which characterizes the Bayesian estimator

for the additive benchmark case, we introduce the following additional objects.

Consider the normal density function

fn (x) =
1√
2πρ2

n

exp

[
−1

2

(x− µ∗n)2

ρ2
n

]
for x ∈ R. (29)

and the corresponding cumulative distribution function

Fn (z) =

z∫

−∞

fn (x) dx for z ∈ R. (30)
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where

µ∗n =
σ2/n

σ2/n + τ 2
· µ +

τ 2

σ2/n + τ 2
· x̄n (31)

and

ρ2
n =

τ 2σ2/n

τ 2 + σ2/n
. (32)

Proposition 1.

(i) Conditional on observation x̄n ∈ X̄n (Ω), the agent’s estimator of the

mean of the consumption growth-rate X = ln cn+1 − ln cn, is given as

E
[
θ̃, ψθ̃ (θ | x̄n)

]
= µ∗n − ρn

fn (µ + a)− fn (µ− a)

Fn (µ + a)− Fn (µ− a)
. (33)

(ii) Let µ∗ ∈ (µ− a, µ + a). Then the estimator (33) converges in proba-

bility to the true value

E [X, π∗] = µ∗ (34)

when n approaches infinity. That is, for every c > 0,

lim
n→∞

prob
(∣∣∣E

[
θ̃, ψθ̃

(
θ | X̄n

)]− µ∗
∣∣∣ < c

)
= 1. (35)

Part (ii) of proposition 1 demonstrates that the consumer’s subjective esti-

mator converges to the true mean of the growth rate distribution in the long run

if his beliefs about the mean are described by a probability distribution as in

(19). This convergence result for the closed-form Bayesian estimator (33) can be

regarded as a special case of more general results on the consistency of (addi-

tive) Bayesian estimates, in particular Doob’s consistency theorem (Doob 1949;

for extensions see Breiman, LeCam, and Schwartz 1964; Lijoi, Pruenster, and

Walker 2004). Roughly speaking, Doob’s consistency theorem ensures us that

only for some subset of parameter values with measure zero an additive Bayesian

estimator for an F -measurable θ̃ may not converge to the true parameter value.

4 Learning in the case of ambiguity

In this Section we develop a Bayesian framework in which the estimator is not de-

rived from additive but rather from non-additive probability measures which arise
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in Choquet decision theory.4 Because a non-additive probability measure may ad-

ditionally reflect ambiguity attitudes, the corresponding non-additive Bayesian

estimator will, in general, not converge to the true parameter value. Recall the

learning situation as described in Section 3 but assume that the representative

agent resolves his uncertainty by an ambiguous rather than an additive belief.

That is, instead of the additive probability space (π, Ω,F) we consider the non-

additive probability space (ν (· | ·) , Ω,F) with conditional neo-additive capacity

ν (· | ·) so that, for all A, I ∈ F with A /∈ {∅, Ω},

ν (A | I) = δI · λ + (1− δI) · π (A | I) (36)

with

δI =
δ

δ + (1− δ) · π (I)
(37)

and additive probability measure π as defined in Section 3. The ambiguity pa-

rameter δ ∈ [0, 1] is thereby naturally interpreted as degree of the agent’s doubt

in his additive belief π whereby the optimism parameter λ ∈ [0, 1] determines

whether this doubt is resolved in a rather optimistic (high λ) or pessimistic (low

λ) way (cf. Appendix 1). In particular, we have for all A ∈ B that

ν
({

ω ∈ Ω | θ̃ (ω) ∈ A
})

=

∫

A

χθ̃ (θ) dθ (38)

where the non-additive density function is given by

χθ̃ (θ) = δλ + (1− δ) · ψθ̃ (θ) for θ ∈ (µ− a, µ + a) (39)

with ψθ̃ defined by (19). Because of µ = E
[
θ̃, ψθ̃ (θ)

]
, the agent’s prior estimator

for the mean of the growth rate is, by observation 2, then given as the Choquet

expected value (cf. Appendix 1)

E
[
θ̃, χθ̃ (θ)

]
= δ (λ (µ + a) + (1− λ) (µ− a)) + (1− δ) µ. (40)

Conditional on new information x̄n about the average growth rate the agent forms

the following conditional non-additive density function in accordance with (71):

χθ̃ (θ | x̄n) = δx̄n · λ + (1− δx̄n) · ψθ̃ (θ | x̄n) (41)

4For the decision-theoretic foundations as well as the corresponding mathematical concepts,
e.g., non-additive probability measures, Choquet integration, Bayesian update rules for non-
additive probaility measures, we refer the interested reader to Appendix 2.
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whereby

δx̄n =
δ

δ + (1− δ) · ψX̄n
(x̄n)

. (42)

The Choquet expected value of θ̃ with respect to χθ̃

(
θ | X̄n

)
, i.e., E

[
θ̃, χθ̃

(
θ | X̄n

)]
,

then represents the agent’s posterior estimator for the mean of the stochastic con-

sumption growth rate.

Proposition 2.

(i) Conditional on observation x̄n ∈ X̄n (Ω), the agent’s Choquet estimator

of the mean of the consumption growth-rate X = ln Cn+1 − ln Cn is

given as

E
[
θ̃, χθ̃ (θ | x̄n)

]
(43)

= δx̄n · (λ (µ + a) + (1− λ) (µ− a)) + (1− δx̄n) · E
[
θ̃, ψθ̃ (θ | x̄n)

]

with

δx̄n =
δ

δ + (1− δ) · ψX̄n
(x̄n)

(44)

and E
[
θ̃, ψθ̃ (θ | x̄n)

]
defined as (33).

(ii) Let µ∗ ∈ (µ− a, µ + a). Then the Choquet estimator (43) converges in

probability to

E [X, ν∗] = δµ∗ · (λ (µ + a) + (1− λ) (µ− a)) + (1− δµ∗) · µ∗ (45)

with

δµ∗ =
δ

δ + (1− δ) · ψθ̃ (µ∗)
(46)

whereby ψθ̃ is given by (19).

Observe that the Choquet Bayesian estimator (45) is in general biased if δ > 0.

Thus, whenever there is some ambiguity in our model, the process of Bayesian

learning does not converge towards the true parameter value but to a weighted

average between this true value and the agent’s attitudes towards optimism ver-

sus pessimism under ambiguity as expressed by the parameter λ. Furthermore,

observe that the Choquet Bayesian limit estimator (43) puts the more weight
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δµ∗ on the ambiguity part the smaller the value of ψθ̃ (µ∗), i.e., the prior density

function of the unknown parameter evaluated at the true parameter value.5 That

is, the long-run degree of ambiguity is the larger the less prior additive probabil-

ity had been attached by the agent to some neighborhood around the true value

µ∗ of the consumption growth rate. This means that the more surprising the

information is for an agent with ambiguous beliefs, the more decision weight is

attached to the ambiguity part of his limit beliefs. More precisely, we have that

δµ∗ ≥ δ (δµ∗ < δ)—that is, the ambiguity receives more (less) weight in the course

of the learning process—if ψθ̃ ≤ 1 (ψθ̃ > 1).

5 The risk-free rate puzzle revisited

To illustrate how our model contributes to a resolution of the risk-free rate puzzle,

we first summarize a number of qualitative insights form our model in subsection

5.1. These insights provide guidance for a calibrated version of our model which

follows in subsection 5.2.

5.1 Qualitative analysis

If the representative agent is a biased Bayesian learner in our sense, the economy’s

risk-free interest rate will converge (in probability) to

R∗∗ = (E [M,π∗∗])−1 =

(
β · exp

(
−γµ∗∗ +

γ2σ2

2

))−1

(47)

whereby we have for the biased mean

µ∗∗ = E [X, ν∗] (48)

with E [X, ν∗] given by (45). In case there is no ambiguity, i.e., δ = 0, the

equilibrium condition (47) coincides with the standard equilibrium condition (9)

of the additive model which is subject to the risk-free rate puzzle. In case there

is some ambiguity, i.e., δ > 0, however, (47) can the better fit the data than

(9) the more the true mean exceeds its biased estimator. That is, our approach

5Formally, the density function ψθ̃ in (46) results as the pointwise limit of the density
function ψX̄n

in (44), and µ∗ results as limit (in probability) of the sequence (x̄n)n∈N (cf. the
proof of proposition 2).
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contributes towards a resolution of the risk-free rate puzzle whenever we have

µ∗ − µ∗∗ À 0 ⇔
δµ∗ [µ∗ − (λ (µ + a) + (1− λ) (µ− a))] À 0 ⇔

δµ∗ [µ∗ − µ + a(1− 2λ)] À 0. (49)

Throughout, we further make the following behavioral assumption:

Assumption 2. The agent resolves his ambiguity in a weakly pessimistic way,

that is, λ ∈ [0, 0.5].

Under assumption 2, equation (49) then highlights four key channels through

which our model contributes towards a resolution of the risk-free rate puzzle. The

risk-free rate is the lower

1. the higher the final degree of ambiguity, δµ∗ ,

2. the stronger the initial downward bias6 of the agent’s belief with regard to

the consumption growth rate as measured by the distance µ∗ − µ,

3. the bigger the truncation range as measured by a—which can be interpreted

as a measure of surprise because the larger a the bigger is the uncertainty

and the more surprised the agent will be to observe information µ∗—and

4. the higher the degree of pessimism with which the agent resolves his ambi-

guity, that is, the smaller λ.

Next, observe from (46) that the final degree of ambiguity, δµ∗ , is thereby

increasing in the initial degree of ambiguity, δ, and decreasing in the value of the

truncated density function of the agent’s prior evaluated at the true parameter

value, ψθ̃(µ
∗), cf. (19). With regard to this interaction between δµ∗ and ψθ̃(µ

∗),

three noteworthy extreme cases emerge in our learning model:

1. Consider the case in which µ = µ∗ so that ψθ̃(µ
∗) monotonically decreases

in τ , cf. equation (19). Assume now the situation of an agent who is

ex-ante very certain that the true parameter value is actually given as his

6We refer to a situation of initial pessimism in which µ < µ∗ as downward bias in order
to not confuse terminology with the degree of pessimism, λ, with which the agent resolves his
ambiguity.
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information µ∗—i.e., the possible parameter range Θ = (µ− a, µ + a) is

either very small (that is, diam (Θ) ' 0) or τ is very small (or both). We

refer to such a situation as confidence of the agent in the correctness of his

prior belief. As µ = µ∗, the empirical observations accordingly confirm the

correctness of his belief. Therefore, δµ∗ is close to zero because ψθ̃ (µ∗) is

a large number (it converges to infinity in the limit) so that the Choquet

Bayesian estimator (45) is very close to the true parameter value.

2. Continue to assume that µ = µ∗ but now consider the converse case in which

the agent is ex ante very uncertain that µ is indeed the true value—i.e.,

the possible parameter range Θ = (µ− a, µ + a) is very large or τ is very

large (or both). Assume the extreme case in which a →∞, i.e., there is no

truncation, then ψθ̃ (µ∗) → 0 which readily implies that δµ∗ → 1. Such a sit-

uation characterizes extreme non-confidence of the agent in the correctness

of his prior belief. Observe that the non-confident agent’s Choquet Bayesian

estimator (45) then (almost) completely ignores the observed sample infor-

mation and exclusively expresses his ambiguity attitudes regardless of the

fact that the sample information actually confirmed his additive prior.

3. Now assume that µ < µ∗, i.e., the agent’s prior belief features a downward

bias with regard to the mean consumption growth rate. Then, two offsetting

effects of τ on ψθ̃(µ
∗) are at work so that the density function peaks at τ̄ =

µ∗ − µ, cf. equation (19). For τ ≥ τ̄ , ψθ̃(µ
∗) behaves as in cases 1 and 2.

For τ < τ̄ , ψθ̃(µ
∗) monotonically increases in τ . For low τ we then have

the situation in which the agent is very convinced in his false belief and

the actual observations do not confirm this belief. Accordingly, the agent

will be surprised to observe the information µ∗. In the extreme, τ → 0

and hence ψθ̃ (µ∗) → 0 which readily implies that δµ∗ → 1. As in case 2,

the agent’s Choquet Bayesian estimator (45) (almost) completely ignores

the observed sample information and exclusively expresses his ambiguity

attitudes. Observe that an interesting knife-edge case is where ψθ̃(µ
∗) = 1

so that the degree of ambiguity remains unaltered in the course of the

learning process, i.e., δµ∗ = δ. This knife-edge case will play a role in our

calibration below.

To further focus our analysis, we make the following behavioral assumption:

Assumption 3. The truncation parameter satisfies a < 1
2
.
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By this assumption the agent regards extremely high or low values of the mean

of the consumption growth rate as unrealistic. In fact, our calibration below will

consider a value for a which is substantially smaller than 1
2
. This implies that,

for τ →∞, the value of the truncated density is bounded from below by 1
2a

> 1

for any 0 < a < 1
2
, cf. equation (19). Consequently, the form of extreme non-

confidence discussed above in case 2 is ruled out. On the other hand, assumption

3 allows for the situation discussed in case 3 in which confidence about a wrong

belief is paired with surprise. In our opinion, this last situation has the most

intuitive appeal as a description of learning behavior for the situation at hand.

5.2 Quantitative analysis

While it is relatively straightforward to calibrate the new7 parameters δµ∗ , λ,

µ and a such that the standard formulation of the risk-free rate puzzle can be

avoided altogether, the question arises whether such parameter-values are actu-

ally plausible. For example, while Mehra and Prescott (1985) observe that the

standard model can only avoid the equity premium puzzle for an unrealistically

high degree of relative risk-aversion, it might be the case that our model can only

avoid the risk-free rate puzzle for unrealistically high degrees of ambiguity and

pessimism. It is therefore the purpose of our quantitative exercise to analyze the

scope of our model to contribute to a resolution of the risk-free rate puzzle under

a reasonable parametrization.

To illustrate the quantitative implications of our model, we take as data up-

dated versions of those studied, e.g., by Shiller (1981) and Mehra and Prescott

(1985).8 The data are annual and we focus on the postwar period 1950 to 2004.

The risk-free rate is computed as government bond yields and consumption is real

per capita consumption of non-durables and services. Both series are inflation-

adjusted by the annual consumer price index (CPI). The resulting moments are

µ∗ = 2.13%, and σ = 1.08%. As already discussed in section 3, further setting

β = 0.98 and γ = 2, these moments imply a risk-free rate of about 6.25% under

the standard rational expectations model. This exceeds our point estimate of the

risk-free rate of 2.19% by about 4.06 percentage points.

We then consider the effects of psychological biases on the risk-free rate under

7”New” in the sense that these parameters are relevant to our Bayesian learning model but
not to the standard Bayesian learning model with additive beliefs.

8We take the data from Robert Shiller’s website http://www.econ.yale.edu/shiller/data/chapt26.xls.
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three alternative scenarios in which we compute the risk-free rate for the Cho-

quet limit beliefs as expressed in equations (45) and (46). These scenarios are

distinguished by different parameterizations of the agents prior belief as captured

by the truncated density function, ψθ̃ (θ), cf. equation (19) which we evaluate at

θ = µ∗, cf. equation (46). In all these scenarios, we assume that the agent only

regards a relatively narrow range of mean consumption growth rates as possible

and set the truncation width, a to a = µ∗ = 0.0213. We summarize all calibration

parameters in table 1.

Table 1: Calibration parameters

Per capita consumption

Average growth rate, µ∗ 0.0213

S.D. of growth rate, σ 1.08

Preferences

Discount factor, β 0.98

Coeff. of relative risk aversion, γ 2.0

Parameters in prior distribution

Scenario S1 S2 S3

Mean, µ µ∗ = 0.0213 0.015 0.015

Standard deviation, τ ∞ ∞ 0.002

Truncation parameter, a a = µ∗ = 0.0213

Truncation range, [µ− a, µ + a] [0.0, 0.043] [−0.006, 0.036] [−0.006, 0.036]

In our first scenario (S1), we assume that µ coincides with the true mean per

capita consumption growth rate as estimated from the data so that µ = µ∗ =

0.0213. Consequently, the truncation range in scenario S1 is given by [0.0, 0.043]

so that the minimum real consumption growth rate that the agent perceives as

possible is zero. In this scenario, we also assume a flat prior and accordingly

set τ = ∞. This implies that ψθ̃ (µ∗) = 1
2a

= 23.49 so that δ∗ < δ, cf. equation

(46).

In our second scenario (S2) we stick to the flat prior assumption but now

consider a significant downward bias of the mean consumption growth rate in

the agents prior by setting µ = 0.015. This coincides with the long-run esti-
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mate of per capita income growth in OECD countries (Maddison 2007). As we

hold the truncation parameter a constant across all scenarios, we consequently

assume that the truncation range is [−0.006, 0.036] so that the minimum per

capita consumption growth rate that the agent perceives as possible is negative

at −0.6%. This may result from a combination of, e.g., a perceived minimum

nominal growth rate of 1% and an inflation rate of 1.6%.

Finally, in scenario 3 (S3) we combine downward bias with confidence, that

is, we assume that the agent is convinced that his wrong prior belief of µ =

0.015 is correct. We thereby depart from the flat prior assumption underlying

scenarios S1 and S2. While we continue to assume that the range of possible

values is [−0.006, 0.036] we shift almost all probability weight to the center of the

distribution. To keep the analysis as parsimonious as possible, we here consider

the knife-edge case discussed in subsection 5.1 and accordingly set τ such that

ψθ̃ (µ∗) = 1 which implies that δ = δ∗, cf. equation (46). The resulting standard

deviation in the agents prior is τ = 0.002.

Figure 1—which plots values of the truncated density function ψθ̃ (µ∗) against τ ∈
[0.0, 0.05] for µ = µ∗ and µ = 0.015—better helps to understand how the choice

of τ affects ψθ̃ (µ∗) under assumption 1. While for µ = µ∗ the density func-

tion monotonically decreases in τ to its limit of 1/(2a), the two offsetting effects

of τ described above are at work for µ 6= µ∗ so that the density function peaks

at τ̄ = µ∗ − µ = 0.0063, cf. equation (19). Consequently, for µ = µ∗ and a < 1
2
,

we always have that δ > δ∗, cf. equation (46). The converse may only be true

for a < 1
2

whenever µ 6= µ∗. For sake of simplicity, when looking at the com-

bined effects of an initial downward bias and of a high confidence in this last

scenario S3, we here compute the flip point and set τ accordingly.

“Full” resolution

For all three scenarios, we next illustrate how the initial degree of ambiguity, δ,

and the degree of pessimism, λ, by which the agent resolves his ambiguity, affects

the risk-free rate in our model. To this end, we consider values for δ ∈ [0, 1) and

λ ∈ [0, 0.5]. Figures 2-4 display, for the corresponding scenarios S1-S3, surface

plots of the risk-free rate on the grid Gδ,λ = [0, 1) ⊗ [0, 0.5]. The point where

δ = 0 (=no ambiguity) and λ = 0.5 (=no pessimism or optimism) gives the result

under rational expectations. As expected, the risk-free rate increases in δ and λ

in all scenarios. However, only for scenario S3, in which the agents prior belief
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Figure 1: Truncated density for µ = µ∗ and µ = 0.015
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expresses both, some degree of downward bias and a high degree of confidence,

we observe a strong and about linear decrease of the risk-free interest rate along

both dimensions, cf. figure 4. In fact, when combining extreme ambiguity (i.e.,

δ close to one) with high pessimism (i.e., λ close to zero), our parametrization in

scenario S3 would enable us to exactly match the observed risk-free rate.

Partial resolution

While we have just demonstrated that our model could—in principle—fully re-

solve the risk-free rate puzzle, we regard the corresponding parameter combi-

nations as rather unrealistic. For this reason, we now ask how much potential

our model has in adding to other theories that were developed in the litera-

ture and that contribute to a resolution of the risk-free rate puzzle, cf. our

discussion on alternative preference structures in section 1. To this end, we now

analyze which parameter constellation of our model may explain one percentage

point, that is, about a quarter of the 4.06 percentage point difference between

the observed risk-free rate and the predicted rate under the rational expecta-

tions hypothesis. Consequently, we take as calibration target a risk-free interest
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Figure 2: Risk-free rate in S1: µ = µ∗, τ = ∞
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Figure 3: Risk-free rate in S2: µ = 0.015, τ = ∞
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Figure 4: Risk-free rate in S3: µ = 0.015, τ = 0.002
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rate of 5.25% (= 6.25% − 1%). Given this target, we then compute from equa-

tions (45) and (47) the final degree of ambiguity δµ∗ that would be required

to match a risk-free rate of 5.25%. Next, we compute from equation (46) the

corresponding initial degree of ambiguity, δ. Results of this experiment for our

previous scenarios S1-S3 are displayed in figure 5. According to these results,

e.g., a combination of a degree of pessimism of λ = 0.3 and an initial degree of

ambiguity of δ = 0.3 are required in scenario S3 to match the calibration target.

These numbers can be regarded as reasonable. In scenarios S1 and S2, however,

the required initial degree of ambiguity is still too high.

We can therefore conclude that our model can provide a contribution to the

resolution of the risk-free rate puzzle if (i) the agent’s prior expresses some degree

of a downward bias paired with (ii) confidence and if (iii) the agent’s belief ex-

presses moderate ambiguity and (iv) the agent resolves this ambiguity in a rather

pessimistic way.

6 Conclusion

As our main contribution we develop—based on the axiomatic framework of Cho-

quet decision theory—a closed-form model of Bayesian learning with ambiguous
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Figure 5: Ambiguity for ∆rf = 0.01
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(b) Initial ambiguity, δ
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beliefs for an environment of normally distributed observations combined with

an additive part of the prior that is truncated normally distributed over possible

parameter values.9 We apply this framework to the standard consumption based

asset pricing model (Lucas 1978; Mehra and Prescott 1985) by assuming that the

representative agent has ambiguous beliefs about the mean of the consumption

growth rate. Provided that the agent resolves his ambiguity in a pessimistic way,

we demonstrate that our approach contributes to a resolution of the risk-free rate

puzzle (Weil 1989). In contrast to existing Bayesian explanations of the risk-free

rate puzzle, our agent’s estimator for the mean of the consumption growth rate

will not converge to the sample mean in the long-run. Furthermore, unlike in

the learning model of Epstein and Schneider (2007), we offer a straightforward

psychological interpretation why limit estimators may still reflect ambiguity.

We also employ a calibrated version of our model to ask whether our model

has interesting quantitative implications. Under rational expectations, the risk-

free rate in our model exceeds the observed risk-free rate by 4.06 percentage

points. The key question we ask in the quantitative analysis is which parameter

constellation in our extended model with psychological biases would explain one

percentage point of this difference. With this calibration target we show that

our model can indeed contribute to a resolution of the risk-free rate puzzle. This

holds for moderate degrees of ambiguity and pessimism if the agent’s prior belief

features a downward bias of the mean consumption growth rate which comes

along with a high degree of confidence in the accuracy of this biased prior belief.

Evidently, these calculations are mainly illustrative. By restricting attention

to learning of the mean consumption growth rate, our learning model does not

give rise to sufficient moment conditions to identify parameter values of our model

from the data. In our future research, we will extend our analysis to include learn-

ing of the variance of the consumption growth rate, which would enable us to also

address other asset pricing puzzles. We also plan to use the moment conditions

derived from such an extended framework to estimate the free parameters of our

model. In this respect, our parsimonious representation of biased beliefs will be

particularly useful.

Despite such limitations, the main virtue of the present paper is to represent

a flexible and axiomatically founded alternative to existing approaches in the

9For closed-form models of biased Bayesian learning within an environment of Bernoulli
trials and Beta-distributed priors see Zimper (2009) and Zimper and Ludwig (2009).
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asset pricing literature with biased beliefs such as the recursive multiple priors

approach (Epstein and Wang 1994) as well as to robust control applications

(Hansen, Sargent and Tallarini 1999; Hansen and Sargent 2007). As shown in

Hansen and Sargent (2001) and Hansen, Sargent, Turmuhambetova and Williams

(2006), robust decision rules—while incompatible with Bayesian learning—are

related to the max-min expected (multiple priors) utility theory of Gilboa and

Schmeidler (1989). As in the recursive multiple priors approach (Epstein and

Wang 1994; Epstein and Schneider 2003, 2007) such “robust” decision makers

are therefore purely pessimistic with respect to the moves of nature which, in

our framework, corresponds to the special case of neo-additive beliefs with a

zero degree of optimism. However, the decision maker of our approach may also

express optimistic attitudes with respect to the moves of nature in that he does

not only have the “worst” but also the “best” possible outcome in mind. In this

respect, our framework is more general and more in line with recent psychological

evidence on decision making under risk and uncertainty than the above cited

literature (see, e.g., Wakker 2004 and the cited literature therein). In our future

research we plan to further exploit this flexibility of our approach.

To focus our analysis, we here stick to the standard preference structure of the

consumption based asset pricing model and only alter its model of estimators for

the mean of the consumption growth-rate. We use this simplified framework to

establish a relationship between long-run pessimistic beliefs and low returns on

risk-free assets. As our approach is in line with intuition and empirical observa-

tions that pessimistic rather than optimistic agents choose secure assets as their

favorite saving device (Puri and Robinson 2007), the established relationship is

a viable contribution to the long list of possible explanations for the low risk-free

rate. Moreover, pessimism in our sense is a hard-wired property of an agent’s per-

sonality that does not simply vanish through new information but rather affects

the interpretation of new information. We thereby provide a decision theoretically

sound foundation of Abel (2002)’s concept of pessimism.

27



7 Appendix 1: Decision-theoretic foundations

7.1 Ambiguous beliefs

We consider a measurable space (Ω,F) with F denoting a σ-algebra on the state

space Ω. As a generalization of the concept of additive probability measures, how-

ever, we now consider non-additive probability measures, i.e., capacities, that are

used for modeling ambiguous beliefs within the decision-theoretic framework of

Choquet expected utility (CEU) theory.10 In contrast to an additive probability

measure, a capacity ν : F → [0, 1] must only satisfy the conditions of normaliza-

tion and monotonicity w.r.t. set-inclusion, i.e.,

(i) ν (∅) = 0, ν (Ω) = 1

(ii) A ⊂ B ⇒ ν (A) ≤ ν (B) for all A, B ∈ F .

Additional properties of capacities are used in the literature for formal def-

initions of, e.g., ambiguity and uncertainty attitudes (Schmeidler 1989; Epstein

1999; Ghirardato and Marinacchi 2002), pessimism and optimism (Eichberger

and Kelsey 1999; Wakker 2001), as well as sensitivity to changes in likelihood

(Wakker, 2004). The Choquet expected value of a bounded random variable

Y : Ω → R with respect to capacity ν is formally defined as the following Rie-

mann integral extended to domain Ω (Schmeidler 1986):

E [Y, ν] =

∫ 0

−∞
(ν ({ω ∈ Ω | Y (ω) ≥ z})− 1) dz+

∫ +∞

0

ν ({ω ∈ Ω | Y (ω) ≥ z}) dz.

(50)

Our own approach focuses on non-additive beliefs that are defined as neo-

additive capacities in the sense of Chateauneuf, Eichberger and Grant (2007).

Definition. For a given measurable space (Ω,F) the neo-additive capacity, ν,

is defined, for some δ, λ ∈ [0, 1] by

ν (A) = δ · (λ · ωo (A) + (1− λ) · ωp (A)) + (1− δ) · π (A) (51)

for all A ∈ F such that π is some additive probability measure and we have

10Schmeidler (1986, 1989) provides a decision-theoretic axiomatization of CEU theory within
the Anscombe-Aumann (1963) framework. Gilboa (1987) provides an according axiomatic
foundation within the Savage (1954) framework.
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for the non-additive capacities ωo

ωo (A) = 1 if A 6= ∅ (52)

ωo (A) = 0 if A = ∅ (53)

and ωp respectively

ωp (A) = 0 if A 6= Ω (54)

ωp (A) = 1 if A = Ω. (55)

Observe that for non-degenerate events, i.e., A /∈ {∅, Ω}, the neo-additive

capacity ν in (51), simplifies to

ν (A) = δ · λ + (1− δ) · π (A) . (56)

Neo-additive capacities can thus be interpreted as non-additive beliefs that stand

in for deviations from additive beliefs such that a parameter δ (degree of ambi-

guity) measures the lack of confidence the decision maker has in some subjective

additive probability distribution π. The following proposition extends a result

(Lemma 3.1) of Chateauneuf, Eichberger and Grant (2007) for finite random

variables to the more general case of random variables with a bounded range.

Observation 1. Let Y be a random variable with bounded range, i.e., diamY (Ω) <

∞. Then the Choquet expected value (50) of Y with respect to a neo-additive

capacity (51) is given by

E [Y, ν] = δ (λ sup Y + (1− λ) inf Y ) + (1− δ) E [Y, π] . (57)

Proof. By an argument in Schmeidler (1986), it suffices to restrict attention

to a non-negative valued random variable Y so that

E [Y, ν] =

∫ +∞

0

ν ({ω ∈ Ω | Y (ω) ≥ z}) dz, (58)

which is equivalent to

E [Y, ν] =

∫ sup Y

inf Y

ν ({ω ∈ Ω | Y (ω) ≥ z}) dz
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since Y is closed and bounded. We consider a partition Pn, n = 1, 2, ..., of Ω with

members

Ak
n = {ω ∈ Ω | ak,n < X (ω) ≤ bk,n} for k = 1, ..., 2n

such that

ak,n = [sup Y − inf Y ] · (k − 1)

2n
+ inf Y

bk,n = [sup Y − inf Y ] · k

2n
+ inf Y .

Define the step functions an : Ω → R and bn : Ω → R such that, for ω ∈ Ak
n,

k = 1, ..., 2n,

an (ω) = ak,n

bn (ω) = bk,n.

Obviously,

E [an, ν] ≤ E [Y, ν] ≤ E [bn, ν]

for all n and

lim
n→∞

E [bn, ν]− E [an, ν] = 0.

That is, E [an, ν] and E [bn, ν] converge to E (Y, ν) for n → ∞. Furthermore,

observe that

inf an = inf Y for all n, and

sup bn = sup Y for all n.

Assume next that

E [bn, ν] = δ (λ sup bn + (1− λ) inf bn) + (1− δ) E [bn, π] . (59)

for all n. Since limn→∞ inf bn = limn→∞ inf an and E [bn, π] is continuous in n, we

have

lim
n→∞

E [bn, ν] = δ
(
λ lim

n→∞
sup bn + (1− λ) lim

n→∞
inf bn

)
+ (1− δ) lim

n→∞
E [bn, π]

= δ (λ sup Y + (1− λ) inf Y ) + (1− δ) E (Y, π) .

In order to prove proposition 3, it therefore remains to be shown that (59) holds

for all n. Since bn is a step function, (58) becomes

E [bn, ν] =
∑

Ak
n∈Pn

ν
(
A2n

n ∪ ... ∪ Ak
n

) · (bk,n − bk−1,n)

=
∑

Ak
n∈Pn

bk,n ·
[
ν

(
A2n

n ∪ ... ∪ Ak
n

)− ν
(
A2n

n ∪ ... ∪ Ak−1
n

)]
,
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implying for a neo-additive capacity

E [bn, ν] = sup bn

[
δλ + (1− δ) π

(
A2n

n

)]
+

2n−1∑

k=2

bk,n (1− δ) π
(
Ak

n

)

+ inf bn

[
1− δλ− (1− δ)

2n∑

k=2

π
(
Ak

n

)
]

= δλ sup bn + (1− δ)
2n∑

k=1

bk,nπ
(
Ak

n

)
+ inf bn [δ − δλ]

= δ (λ sup bn + (1− λ) inf bn) + (1− δ) E [bn, π] .

¤

According to observation 1, the Choquet expected value of a random variable

Y with respect to a neo-additive capacity is a convex combination of the expected

value of Y with respect to some additive probability measure π and an ambiguity

part. If there is no ambiguity, i.e., δ = 0, then the Choquet expected value in

(57) reduces to the standard expected value of a random variable with respect to

an additive probability measure. In case there is some ambiguity, however, the

second parameter λ measures how much weight the decision maker puts on the

best possible outcome of Y when resolving his ambiguity. Conversely, (1− λ) is

the weight he puts on the worst possible outcome of Y . As a consequence, we

interpret λ as an “optimism under ambiguity” parameter whereby λ = 1, respec-

tively λ = 0, corresponds to extreme optimism, respectively extreme pessimism,

with respect to resolving ambiguity in the decision maker’s belief.

7.2 Bayesian updating of ambiguous beliefs

In contrast to Bayesian updating of additive probability measures, there exist

several perceivable Bayesian update rules for non-additive probability measures

(cf. Gilboa and Schmeidler 1993; Sarin and Wakker 1998; Eichberger, Grant and

Kelsey 2006; Siniscalchi 2001, 2006). Since Bayesian updating of neo-additive

capacities is central to our formal model of learning under ambiguity, this section

describes in detail how such update rules arise in the subjective probability frame-

work from preferences over Savage acts conditional on the fact that some event

has occurred. We thereby focus attention on the so-called full (or generalized)

Bayesian update rule.
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Define the Savage-act fIh : Ω → R such that

fIh (ω) =

{
f (ω) for ω ∈ I

h (ω) for ω ∈ ¬I
(60)

where I is some event which we interpret as “new information”. Recall that

Savage’s sure-thing principle claims that, for all acts f, g, h, h′ and all events I,

fIh º gIh implies fIh
′ º gIh

′. (61)

Let us interpret event I as new information received by the agent. The sure-

thing principle then implies a straightforward way for deriving preferences ºI ,

conditional on the new information I, from the agent’s original preferences º
over Savage-acts. Namely, we have

f ºI g if and only if fIh º gIh for any h, (62)

implying for a subjective expected utility maximizer

f ºI g if and only if E [u (f) , π (· | I)] ≥ E [u (g) , π (· | I)] (63)

where u (f (ω)), ω ∈ Ω, are von Neumann-Morgenstern utility indices for the

consequences realized by act f and π (· | I) is the standard additive conditional

probability measure defined on (Ω,F).

In order to accommodate ambiguity attitudes as elicited in Ellsberg paradoxes

(Ellsberg 1961), CEU theory drops the sure-thing principle. As a consequence,

conditional CEU preferences are no longer derivable from (62) since the speci-

fication of the act h is now relevant. As one possible specification of h, let us

consider conditional CEU preferences satisfying, for all acts f, g,

f ºI g if and only if fIh º gIh (64)

where h is the so-called conditional certainty equivalent of g, i.e., h is the constant

act such that g ∼I h. The corresponding Bayesian update rule for the non-

additive beliefs of a CEU decision maker is the so-called full Bayesian update

rule which is given as follows (Eichberger, Grant, and Kelsey 2007):

ν (A | I) =
ν (A ∩ I)

ν (A ∩ I) + 1− ν (A ∪ ¬I)
(65)

where ν (A | I) denotes the conditional capacity for event A ∈ F given informa-

tion I ∈ F .
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Observation 2. Suppose that π (I) > 0. Then an application of the full

Bayesian update rule (65) to a prior neo-additive capacity (56) results in

the posterior neo-additive capacity

ν (A | I) = δI · λ + (1− δI) · π (A | I) (66)

such that

δI =
δ

δ + (1− δ) · π (I)
(67)

and

π (A | I) =
π (A ∩ I)

π (I)
. (68)

Proof. Observe that

ν (A | I) =
δ · λ + (1− δ) · π (A ∩ I)

δ · λ + (1− δ) · π (A ∩ I) + 1− (δ · λ + (1− δ) · π (A ∪ ¬I))

=
δ · λ + (1− δ) · π (A ∩ I)

1 + (1− δ) · (π (A ∩ I)− π (A ∪ ¬I))

=
δ · λ + (1− δ) · π (A ∩ I)

1 + (1− δ) · (π (A ∩ I)− π (A)− π (¬I) + π (A ∩ ¬I))

=
δ · λ + (1− δ) · π (A ∩ I)

1 + (1− δ) · (−π (¬I))

=
δ · λ + (1− δ) · π (A ∩ I)

δ + (1− δ) · π (I)

=
δ · λ

δ + (1− δ) · π (I)
+

(1− δ) · π (I)

δ + (1− δ) · π (I)
π (A | I) for π (I) > 0

= δI · λ + (1− δI) · π (A | I)

with δI given by (67).¤

Observe that we have, by observation 2, the following characterization of a

conditional neo-additive capacity with respect to the full Bayesian update rule

ν (A | I) · (δ + (1− δ) · π (I)) = δ · λ + (1− δ) · π (A ∩ I) . (69)

Consider now the case that the information I is an event in which a continuously

distributed random variable X with density function ψ takes on some value in the

Euclidean Borel set B, i.e., I = {ω | X (ω) ∈ B}. Then π (I) =
∫

x∈B

ψ (x) dx =
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0 whenever I = {ω | X (ω) = x} so that (68) is not well-defined for “point”

information. In that case—relevant to our framework—we can nevertheless use

(69) for the characterization of the conditional neo-additive capacity ν (A | x) as

follows: for all I ∈ F , ν (A | x) has to satisfy

∫

x∈B

ν (A | x) · (δ + (1− δ) · ψ (x)) dx = δ · λ + (1− δ) · π (A ∩ I) . (70)

Obviously, one version of ν (A | x) is then given as

ν (A | x) = δx · λ + (1− δx) · π (A | x) (71)

where

δx =
δ

δ + (1− δ) · ψ (x)
(72)

and π (A | x) satisfies

∫

x∈B

π (A | x) · ψ (x) dx = π (A ∩ I) . (73)

By (66) with (67) and (68) we now possess a formal rule that describes a

plausible way of how a Bayesian decision maker revises his ambiguous beliefs in

the light of new information. Moreover, (71) with (72) and (73) characterizes this

update rule whenever the information is drawn from a continuous probability

distribution. In the next section we will apply this update rule to a model of

Choquet Bayesian learning of the average consumption growth rate.++++
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Appendix 2: Proofs of the propositions

Proof of proposition 1

Standard calculation (cf., e.g., Berger (1985, p.127)) shows that, for θ ∈ (µ− a, µ + a),

ψ (θ, x̄n) =
1

F (µ + a)− F (µ− a)
(74)

· 1√
2πρ2

n

exp

[
−1

2

(θ − µ∗n)2

ρ2
n

]
· 1√

2π (τ 2 + σ2/n)
exp

[
−1

2

(x̄n − µ)2

τ 2 + σ2/n

]

where

µ∗n =
σ2/n

σ2/n + τ 2
· µ +

τ 2

σ2/n + τ 2
· x̄n (75)

and

ρ2
n =

τ 2σ2/n

τ 2 + σ2/n
. (76)

Consequently,

ψX̄n
(x̄n) =

∫ µ+aε

µ−aε

ψ (θ, x̄n) dθ (77)

=
1

F (µ + a)− F (µ− a)
·

1√
2π (τ 2 + σ2/n)

exp

[
−1

2

(x̄n − µ)2

τ 2 + σ2/n

]
·
∫ µ+aε

µ−aε

1√
2πρ2

n

exp

[
−1

2

(θ − µ∗n)2

ρ2
n

]
dθ,

so that, by an application of Bayes’ rule,

ψθ̃ (θ | x̄n) =
ψ (θ, x̄n)

ψX̄n
(x̄n)

(78)

=

1√
2πρ2

n

exp
[
−1

2
(θ−µ∗n)2

ρ2
n

]

∫ µ+a

µ−a
1√
2πρ2

n

exp
[
−1

2
(θ−µ∗n)2

ρ2
n

]
dθ

(79)

=
1

Fn (µ + a)− Fn (µ− a)

1√
2πρ2

n

exp

[
−1

2

(θ − µ∗n)2

ρ2
n

]
, (80)

by the definition of Fn. Observe now that the conditional density function

ψθ̃ (θ | x̄n) corresponds to a truncated normal distribution of θ̃ with support on

(µ− a, µ + a). Conditional on x̄n, θ̃ has therefore the expected value

E
[
θ̃, ψθ̃ (θ | x̄n)

]
=

∫ µ+a

µ−a

θ · ψθ̃ (θ | x̄n) dθ (81)

= µ∗n − ρn
fn (µ + a)− fn (µ− a)

Fn (µ + a)− Fn (µ− a)
. (82)

35



This proves part (i) of proposition 1.

In order to prove part (ii) observe that

lim
n→∞

ρn = lim
n→∞

τ 2σ2

n · τ 2 + σ2
= 0 (83)

as well as

lim
n→∞

fn (µ + a) = 0 (84)

lim
n→∞

fn (µ− a) = 0 (85)

lim
n→∞

Fn (µ + a) = 1 (86)

lim
n→∞

Fn (µ− a) = 0 (87)

(in probability) whenever µ∗ ∈ (µ− a, µ + a). The equations (84) - (87) follow

thereby from the fact that all probability mass gets eventually concentrated at

µ∗ with probability one when n approaches infinity. Collecting equations (83) -

(87) gives

lim
n→∞

E
[
θ̃, ψθ̃ (θ | x̄n)

]
= lim

n→∞
µ∗n − lim

n→∞
ρn

fn (µ + a)− fn (µ− a)

Fn (µ + a)− Fn (µ− a)
(88)

= lim
n→∞

µ∗n − 0, (89)

which proves part (ii) of proposition 1.¤

Proof of proposition 2

Part (i) follows from propositions 1 and 2 and (71) with (72) and (73).

Part (ii). Combining the characterization (77) of ψX̄n
with the definition (30)

of Fn gives

ψX̄n
(x̄n) =

1

F (µ + a)− F (µ− a)
·

1√
2π (τ 2 + σ2/n)

exp

[
−1

2

(x̄n − µ)2

τ 2 + σ2/n

]
· [Fn (µ + a)− Fn (µ− a)] .

By (86) and (87), we have

lim
n→∞

ψX̄n
(x̄n) =

1

F (µ + a)− F (µ− a)
· 1√

2πτ 2
exp

[
−1

2

(x̄n − µ)2

τ 2

]

whenever µ∗ ∈ (µ− a, µ + a), whereby x̄n coincides with probability one with

µ∗. Consequently, ψX̄n
(x̄n) converges in probability to ψθ̃ (µ∗) when n gets large,

which proves (46). Finally, observe that the additive estimator E
[
θ̃, ψθ̃ (θ | x̄n)

]

converges in probability to µ∗ whenever µ∗ ∈ (µ− a, µ + a).¤
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