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Chapter 1

Introduction

Providing an abstract view of data is one of the main advantages of a database manage-
ment system (DBMS). In DBMSs this is achieved by making available modeling concepts
to map the real world to the database. These concepts are called the data model of a
database. The predominant data model today is the relational model, which is ideal for
modeling business applications. However, new applications have emerged that are difficult
to map to existing data models. Therefore many data models supporting new applica-
tions have been introduced, like the object-oriented model [14], object-relational model
88], fuzzy data models [10, 11, 19], and models for semi-structured data (e.g. XML [96]).
We investigate two areas where DBMSs are confronted with new demanding applications.
First, we look at the introduction of set-valued attributes in DBMSs, an area that has
attracted little attention so far. The negligence of this area is likely to change with the
growing importance of commercial object-relational database systems, as many of them
already provide set-valued attributes or will do so in the near future. Studies on data
modeling allowing sets [73, 99] also support the notion of introducing set-valued attributes
to the relational world, since it allows users to formulate many queries in a more natural
way. This is the case in image [9, 52|, genetic or molecular databases [2, 28]. Second,
we investigate the challenges that have to be taken on in Data Warehouse environments.
Data Warehouses aim at supporting the decision processes of managerial staff by holding
huge amounts of historical data that can be analyzed to check the quality of decisions.
From the viewpoint of DBMSs the sheer size of the tables in Data Warehouses poses a
problem that needs to be addressed.

A lot of important work has been done on the logical level concerning new data mod-
els. However, the performance of actual DBMSs is a very important criterion for the
acceptance of new data models. The introduction of the relational model by Codd in
the early 1970s is a prime example for reluctant acceptance. The relational model was
not able to replace the network model and become the dominant model until efficient
algorithms and data structures had been developed. Experience has shown that to realize
efficient DBMSs for new applications, we do not necessarily have to redesign and rebuild
database systems from scratch. Nevertheless, just mapping new data models to older ones
and using existing database systems does not get the job done, either. The mapping, if
possible at all, results in an overhead to bring applications into line with DBMSs that
have not even been optimized for them. This may lead to severe performance losses.
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Thus we propose to modify the physical level of existing systems. Areas on the physical
level of DBMSs that have contributed considerably to performance gains in the past are
efficient join algorithms and methods for associative access. Ever since the invention of
relational database systems, tremendous efforts have been undertaken to develop efficient
join algorithms. The reason for this is that joins are frequent operations that are very
expensive to evaluate during query processing. Another important prerequisite for the
fast processing of data in a DBMS is the fast retrieval of this data from secondary storage.
In order to accelerate the access, index structures are used. We focus on these two areas,
join algorithms and index structures, in our work.

We investigate the efficient processing of set-valued attributes in object-oriented and
object-relational databases. The main problem concerning sets is the fact that sets cannot
be ordered totally. Many traditional algorithms and data structures in DBMSs, however,
rely on ordered data (e.g., sort-merge join, BT-trees). We cannot apply these techniques in
our case; therefore we developed new, efficient join algorithms supporting equality, subset,
and superset predicates and compared these algorithms to the naive nested-loop variant.
We also devised new index structures for evaluating quickly queries with predicates in-
volving set-valued attributes. We examined the performance of these access methods
theoretically (by developing cost models for each index structure) and practically (by
exposing the index structures to extensive experiments). For the Data Warehouse en-
vironment we dealt with join algorithms for joining very large relations, resulting in an
efficient algorithm for 1:N relationships. This algorithm exploits special characteristics
of data stored in Data Warehouses, the most important being the relation of content to
location. We compared our new algorithm to traditional techniques demonstrating the
effectiveness.

This thesis is organized as follows. First of all in Chapter 2 we introduce concepts and
terms that are needed later on. Then we give a general overview of join algorithms in
Chapter 3. Next we present our new join algorithms in Chapter 4 and Chapter 5. This
is followed by an introduction to indexing in DBMSs in Chapter 6. We are then ready
to present our work on index structures for set-valued attributes in Chapter 7. Chapter
8 concludes our thesis.



Chapter 2

Preliminaries

We introduce concepts and terms that are needed in later chapters. In Section 2.1, we
show how to represent sets using superimposed coding and how this technique can be
used to compare sets efficiently. For subset/superset comparisons, we also need a way to
rapidly generate all subset/supersets of a given set. We deal with this matter in Section
2.2.

2.1 Superimposed coding

Superimposed coding is a technique based on the idea to hash attribute values into random
k-bit codes in a b-bit field and to superimpose the codes for each attribute value in a record
[62]. A code word created by superimposing bit fields is called a signature [27]. We use
signatures to represent sets in our join algorithms and index structures. There are two
advantages to signatures. One is their constant length; keys of constant length are easier
to manage than keys of variable length. The other advantage is the great speed with which
signatures can be compared by using only bit operations. In this section, we explain how
to encode sets as signatures.

2.1.1 Basic principles

A signature is a bit field of fixed length b called the signature length. Signatures are used
to represent or approximate sets. The signature of a set is generated by hashing all the
elements of the set into binary code words of length b. For each element, a binary code
word is generated, in which exactly k£ bits are set. Afterwards all binary code words are
superimposed using a bitwise or operation creating the final signature (see figure 2.1 for
the algorithm). For a set s, let sig(s) denote the signature of s.

We cannot assume that the signatures of distinct sets are also distinct, due to the hashing
and the bitwise or-operation. But still, the following property holds:

st — sig(s) O sig(t) forf € {=C,DO,N} (2.1)

7
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generateSig(set s)
{
sig = 0;
for all items s; in s {
tmpSig = 0;
i=0;
srandom(s;); /* set seed in random number generator */
while(i < k) {
do {
rnd = random() % b;
} while(rnd-th bit is set in tmpSig)
set rnd-th bit in tmpSig;
i++;
}
sig |= tmpSig;
}

return sig;

}

Figure 2.1: Algorithm for generating signatures

where sig(s) 6 sig(t) and [sig(s)| are defined as

sig(s) Csig(t) = sig(s)&—sig(t) =0
sig(s) D sig(t) = sig(t)&—sig(s) =0
sig(s) Nsig(t) := sig(s)&sig(t) #0
|sig(s)| := number of bits set in s, also called the weight of sig(s)

with & denoting bitwise and and — denoting bitwise complement. Hence, a pretest based
on signatures can be very fast since it involves only bit operations.

Example 2.1.1 Let us illustrate the technique of superimposed coding with an exam-
ple taken from a course database. In this database we store information on students,
in particular which courses students attend. Assume for a moment that Alice attends
the courses “Computer Science 1017, “Math 101”7, “Programming 1017, Bob attends the
courses “Math 1017, “Physics 1017, and Eve attends the courses “Computer Science 1017,
“Math 1017. So we have three sets, Saiice, SBob, and Sgye With

Saiice = { “Computer Science 101”7, “Math 1017, “Programming 1017}
Spw = { “Math 1017, “Physics 1017}
Sgve = { “Computer Science 101”7, “Math 1017}
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Let us now encode these sets. We use a signature length b of 8 bits and set exactly 2 bits
in the binary code words of each element, so k = 2. We have a hash function H(x) at our
disposal that maps the elements from our sets to binary code words.

H( “Computer Science 101”7) = 0100 1000
H(“Math 1017) = 1001 0000

H( “Physics 101”) = 0100 0100

H( “Programming 101”) 0000 1100

Superimposing the code words via an (inclusive) bitwise or-operation, we get the following
signatures:

sig(Sauce) = 11011100
Sig(SBob) = 1101 0100
sig(Spwe) = 11011000

As can be clearly seen in this example, s 6 t only implies sig(s) 0 sig(t) for 8 € {=,C
72; ﬂ} For emample; SEve g SAlice and Sig(SEve) g Sig(SAlice); but SBob Z SAlice and
Sig(SBob) - Sig(SAlice)- %

2.1.2 Query Evaluation with Signatures

Signatures can also be used to evaluate queries involving set-valued attributes. Assume
that we have data items oy, 09,...,0, in our database and all have a set-valued attribute
A. Also consider a query set (). We are interested in all data items for which @) 6 0;.A
with § € {=,C,D,N} holds. Instead of comparing @ directly with each data item,
we first compare sig(Q)) with each sig(o;.A). This is much faster, because signatures
can be compared using a few, fast bit-operations. During the evaluation of a query, if
sig(Q)fsig(0;.A) holds, we call o; a drop. We then fetch o; and compare @ directly to o;.A.
If @ 0 o;.A also holds, we have a right drop, else o; is a false drop. False drops occur,
because @ 6 0;.A only implies sig(Q)8sig(0;.A). We go into details on this matter in the
following section.

2.1.3 False drop probabilities of signatures

The probability that a data item turns out to be a false drop—called false drop probability
dg—has been studied intensively [27, 51, 60, 78, 80] and can be approximated by formulas
(2.3) to (2.6). Here, |Q| denotes the size of the query set, i.e. the number of elements in
Q. |o;.A| is the size of the attribute value A of data item o;. The weight of a signature,
i.e. the number of bits set to 1, can be estimated as follows. Assume we have a set M
with cardinality |M|. The weight of its signature, |sig(M)|, can be approximated by
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Isig(M)] ~ b- (1 _ (1 _ %)Wl) (2.2)

where b is the number of bits in a signature and k£ the number of bits set in a single
code word. % is the probability that an arbitrary bit in a single code word is set to 1, so
1— % is the probability that is set to 0. A bit is set to 0 in the final signature, if this
bit is 0 in all of the |M| superimposed code words. Subtracting the result from 1 yields
the probability that a bit is set in the final signature. This formula is an approximation
because we assume that all bits in a code word are set independently of the others, which
is not always the case in real-world applications.

We now present the false drop probabilities for each comparison type as described in [60].

d_ (b k,|Q|,or.Al) = + for [sig(Q)| = [sig(os.4) (23)
(|sig<c2>|>
dc (b,k,|Q|, |01 A]) ~ (1 — e slosAlyklal (2.4)
d5 (b, k, Q) 0. A]) ~ (1 — e #lQhyklonAl (2.5)
k—1 . .
dn(b, 1@ Jor Al &~ 1— 3 ( e ) (1= (1= Dyfeelyi(1 — )lou A1) (3.
j=0

Each query produces a certain number of drops ¢4. Among these drops are ¢, right drops,
which are the answer to the query, and c; false drops with

cr=(n—c)-dp (2.7)

We cannot distinguish between right drops and false drops by comparing only signatures.
So all ¢4 data items which are drops have to be fetched and checked for false drops. We
strive for a low false drop probability to keep c; and with it the number of accesses to data
items small. There is an optimal ratio between k and b for which dy becomes minimal.

For equality predicates d— becomes minimal, when
k 1\ 19l
—=(1=(Z 2.8
= (1) 29
For subset predicates dc becomes minimal, when

k In2

b oA

(2.9)
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For superset predicates d> becomes minimal, when

k  In2
5Tl (2.10)

For intersection predicates no closed formula exists to calculate the optimal ratio dn be-
tween k and b. Fortunately (2.6) only contains discrete values and for a fixed b an optimal
value for k£ can be calculated relatively fast with a brute force algorithm, computing dn
for all possible values of k.

2.2 Fast enumeration of subsets/supersets

For the algorithms and index structures presented in the next chapters, we also need a
way to rapidly step through all subsets and supersets of a signature for a given set. We
use the algorithm utilized by Vance and Maier in their blitzsplit join ordering algorithm
[92]. The algorithm to generate all subsets of a given bit-string sig(s) is given below
(& denotes bitwise and and ~ denotes bitwise complement). When executed, x traverses
through all possible subsets of sig(s). (f(x) denotes a function applied to the current
subset /superset. )

x = sig(s) & -sig(s);

f(x);

while(x) {
x — sig(s) & (x - sig(s));
f(x);

}

Generating all supersets is achieved by inverting the signature a, stepping through the
subsets of the inverted a and inverting the generated sets.

x ="sig(s) & - sig(s);

f("x);

while(x) {
x ="sig(s) & (x -"sig(s));
f("x);

}
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Chapter 3

Introduction to Join Algorithms

A join operation combines tuples from two different relations such that a join predicate
is satisfied. Due to normalization in relational databases different relations often contain
related data, so join operations are commonly used during query evaluation. However, join
operations are not only found in relational database systems, but also in object-oriented
database systems [55] and XML repositories [29]. Unfortunately, join operations are
expensive to execute and difficult to implement efficiently. This explains the considerable
effort that has been undertaken in order to develop efficient join algorithms. Starting
from a simple nested-loop join algorithm, the first improvement was the merge join [8].
Later, the hash join [12, 22] and its improvements [54, 61, 71, 87] became alternatives.
(For overviews see [70, 85] and for a comparison between the sort-merge and hash joins
see (35, 36].) A lot of effort has also been spent on parallelizing join algorithms based
on sorting (25, 67, 69, 82| and hashing [21, 32, 84|. Another important research area
is the development of index structures that allow to accelerate the evaluation of joins
41, 57, 56, 72, 91, 95].

In this chapter we give a quick review of the most important join methods: nested-loop
join in Section 3.1, sort-merge join in Section 3.2, hash-based joins in 3.3, and last but
not least index joins in Section 3.4.

3.1 Nested-Loop Join

A naive strategy for joining two relations is simple iteration. When joining the relations
R and S, we traverse the tuples of R (called the outer relation) and compare them to
each tuple in S (called the inner relation). If a tuple r from R matches a tuple s from S,
we add the pairing of the two tuples to the resulting relation. Figure 3.1 illustrates the
algorithm and the concept of nested loops.

Fetching each tuple individually from secondary storage would lead to very low perfor-
mance. Therefore, in practice, tuples are retrieved in blocks. Let us assume we have
n blocks of main memory at our disposal. We read n — 1 blocks of the outer, smaller
relation. Then we read the inner relation block by block, joining the tuples in each block
to the tuples in the blocks of the outer relation. When we reach the end of the inner
relation, we read the next n — 1 blocks of the outer relation and repeat the process. This

13
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for each tuple r in R {
for each tuple s in S {
if r matches s {
combine r and s
add to result

Figure 3.1: Nested-loop join

version is called blockwise nested-loop join (see Figure 3.2). Note that the two innermost
loops are performed completely in main memory.

The algorithm can be tuned further by reversing the direction in which the inner relation
is retrieved each time we have completed one step of the outer loop. In this way we start
a new step of the outer loop with the last retrieved block of the inner relation (no I/0 is
necessary to fetch this block).

for n-1 blocks B_r of R {
for each block B_s of S {
for each tuple r in B_r {
for each tuple s in B_s {
if r matches s {
combine r and s
add to result

Figure 3.2: Blockwise nested-loop join

3.2 Sort-Merge Join

An improvement to nested-loop joins is the sort-merge join. The algorithm is divided into
two phases. In the first phase, both relations are sorted physically on the join attributes.
In the second phase both relations are scanned in the order of the join attributes. If two
tuples satisfy the join predicate, they are combined and added to the result. Figure 3.3
shows the algorithm (to simplify things, we assume a and b are the join attributes).

This algorithm has to be modified slightly when joining relations of non-unique attributes.
When encountering a duplicate value 7(a) in the outer relation, we have to back up in
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sort R on a
sort S on b

read first tuple s in S
for each tuple r in R {
while s(b) < r(a) {
read next tuple s in S {
if r(a) == s(b) {
combine r and s
add to result

Figure 3.3: Sort-merge join

the inner relation to the first value of s(b) that is equal to r(a). This results in higher
execution costs for the algorithm, especially when the block of matching tuples in S does
not fit into main memory. Without further modification, it is not possible to process
non-equijoins, i.e. join predicates with other comparison operators than equality, with
this algorithm.

When comparing the performance of sort-merge join to nested-loop join we notice that
the improvement in performance of sort-merge join compared to nested-loop join stems
from the fact that it avoids comparing tuples that cannot possibly match by ordering the
relations. This fact, however, also restricts its use, as it is not possible to define a total
order on all domains.

3.3 Hash Join

As we have seen in Section 3.2, we can improve the performance of a join algorithm by
filtering out tuples that have no possible chance to be joined. A different approach (apart
from sorting the relations) is to hash the tuples of the relations. Hashing can be employed
in different ways, some of which will be discussed in the following subsections.

3.3.1 Simple Hash Join

In the most straightforward method of joining using hash tables, the tuples of the inner
relation are divided into different buckets by using a hash function on the join attribute
values. After that, we hash the join attribute value of each tuple of the outer relation
using the same hash function. Each tuple of the outer relation is compared to all tuples
in the corresponding bucket (which may be empty) and joined to the matching tuples.
Figure 3.4 illustrates the algorithm. This algorithm is only viable, if the relation S fits
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for each tuple s in S {
hash s(b)
put s in appropriate bucket

for each tuple r in R {
hash r(a)
for each tuple s in corresponding bucket {
if r(a) == s(b) {
combine r and s
add to result

Figure 3.4: Simple hash join

completely into main memory. Otherwise, we traverse S blockwise, i.e., we load the tuples
of each block into main memory, hash them, and then traverse all of R for each block.
This is very inefficient for large relations, consequently better alternatives of hash join
algorithms were developed (see next section).

3.3.2 Hash-partitioned join

In the simple hash join method, only the inner relation was partitioned into buckets.
Techniques for hash-partitioned join partition both relations, thereby dividing the problem
into smaller subproblems. One example is GRACE hash join [32, 85]. As it plays a role
in Chapter 5, let us give a brief description. When joining two relations R and S, we
partition them in a way such that the following two conditions are met. First, each of
the partitions of the smaller relation fits into main memory. Second, matching tuples are
always found in corresponding partitions of the other relation. The algorithm performs
the steps depicted in Figure 3.5 (assuming R is the smaller relation). Obviously, the hash
function h2 for the main memory hash table is different from the hash function hi.

3.4 Index Join

There is still another approach to eliminating unnecessary comparisons of tuples that
cannot possibly join. We can use an index to access the matching tuples (see Figure 3.6).

This algorithm assumes that an index has been created on the join attribute of relation
S. This causes additional costs besides the join costs as the index needs not only to be
created but also to be maintained. Also, the look-up costs can be prohibitive, if the join
attribute in R takes on many different values, because we need to scan the index for each
value.
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for each tuple r in R {

hash r(a) using hash function hil

put r in appropriate output buffer R_i
+
flush all buffers to disk

for each tuple s in S {

hash s(b) using hash function hi

put s in appropriate output buffer S_i
}
flush all buffers to disk

for i =1 to N {
for each tuple r in R_i {
hash r(a) using hash function h2
put tuple in appropriate main memory hash table
}
for each tuple s in S_i {
probe for matching tuples r in main memory hash table of R_i
if r(a) == s(b) {
combine r and s
add to result

Figure 3.5: GRACE join

for each tuple r in R {
look up matching tuples s in S using index
combine r and s
add to result

Figure 3.6: Index join
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Chapter 4

Join Algorithms for Joins with Set
Predicates

All of the algorithms presented in Chapter 3 concentrate on simple join predicates based
on the comparison of two atomic values. Predominant is the work on equijoins, i.e., where
the join predicate is based on the equality of atomic values. Only a few articles deal with
special issues like non-equijoins [24], non-equijoins in conjunction with aggregate functions
[17], and pointer-based joins [23, 86]. An area where more complex join predicates occur
is that of spatial database systems. Here, special algorithms for supporting spatial joins
have been developed [13, 38, 66, 49, 74].

Despite this large body of work on efficient join processing, apparently up to now there
has been no work describing join algorithms for the efficient computation of the join if
the join predicate is based on set comparisons like set equality (=) or the subset relation
(C). These joins were irrelevant in the relational context since attribute values had to be
atomic. However, newer data models like NF? [79, 83], object-oriented models like the
ODMG-Model ([14]), or object-relational models [88] support set-valued attributes, and
many interesting queries require a join based on set comparison. Consider for example a
query looking for faithful couples. There we join persons with other persons on condition
that they have the same children. Another example would be matching jobs to persons.
In this case we join job offers with persons such that the set-valued attribute required-skills
is a subset of the persons’ set-valued attribute skills.

We propose several different main memory join algorithms for joining relations on set-
valued attributes that are based on nested-loop, sort-merge, index and hash variants
[47]. The design parameters for the different alternatives are discussed and evaluated
thoroughly before comparing the algorithms to each other. The results of our experiments
show that there are much better alternatives to the naive nested-loop algorithm.

The rest of this chapter is organized as follows. In the next subsection, we introduce
some basic notions needed in order to develop our join algorithms. Sections 4.2 and 4.3
introduce and evaluate several join algorithms where the join predicate is set equality and
the subset relation. Section 4.4 concludes the chapter.
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4.1 Preliminaries

4.1.1 General Assumptions

For the rest of this chapter, we assume two relations R; and R, with set-valued join
attributes a and b. We do not care about the exact type of the attributes a and b— that is,
whether they are a relation, a set of strings, or a set of object identifiers. We just assume
that the attribute values are sets and that the elements of these sets provide a way of
checking whether they are equal.

Our goal is to compute the join expressions
Ry Wa—p Ry

and
Ry Mucp Ry

efficiently. More specifically, we introduce join algorithms based on sorting and hashing
and compare their performance with a simple nested-loop strategy. In addition to this,
we describe a tree-based join algorithm and evaluate its performance.

For convenience, we assume that there exists a function m which maps each element
within the sets of R;.a and R,.b to the domain of integers. The function m depends on
the type of the elements of the set-valued attributes. For integers, the function is the
identity, for strings and other types, techniques like folding can be used. From now on,
we assume without loss of generality that the type of the set elements is integer. If this
is not the case, the function m has to be applied before we do anything else with the set
elements.

4.1.2 Set Comparison

The costs of comparing two sets using = or C differ significantly depending on the algo-
rithm. Consider the case in which we want to evaluate s C ¢ for two sets s and ¢. We could
check whether each element in s occurs in ¢. If ¢ is implemented as an array or list, then
this algorithm takes time O(|s| * [¢|). Set equality can then be implemented by testing
s C tand t C s, doubling the running time. For small sets, this might be a reasonable
strategy. For large sets, however, the comparison cost with this simple strategy can be
significant. Hence, we consider further alternatives for set comparison.

One obvious alternative is to have a search tree or a hash table representation of ¢. Since
we assume that the representation of set-valued attributes is not of this kind but instead
consists of a list or an array of elements, we abandoned this solution since the memory
consumption and cpu time needed in order to construct this indexed representations are
too expensive for a main memory algorithm in comparison to the methods that follow.

Another alternative for implementing set comparison is based on sorting the elements. As-
sume an array representation of the elements of the set, and denote the i-th element of the
array representing set s by sli], then the following algorithm implements set comparison
s = t, if the sets are sorted:
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if(s->setsize != t->setsize)
return false;
for(int i=0; i < setsize; i++) {
if (s[il != t[il)
return false;

by

return true;

We comment on two details of this algorithm. First, note that we introduced a pretest by
comparing the cardinality of the sets. This kind of pretest is used in every set compar-
ison algorithm we implemented— also in the above mentioned trivial one. Second, when
applying this sort-based algorithm for set equality within our join algorithms, we do not
assume that the elements of the set are sorted. Instead, the sort is performed by the join
algorithms explicitly. This way, the comparison with other join algorithms is not biased
by additional assumptions. Note that this algorithm runs in time O(|s|). Since we do not
assume that the sets are sorted, we have to add O(|s|log |s| + || log|t|) for sorting s and
t.

A predicate of the form s C ¢ can also take advantage of sorting the sets. Again, we
start by comparing the smallest elements. If s[0] is smaller than ¢[0], there is no chance
of finding s[0] anywhere in t. Hence, the search result will be negative. If s[0] is greater
than ¢[0], then we compare s[0] with ¢[1]. In case s[0] = t[0], we can start comparing s|[1]
with ¢[1]. The following algorithm implements this idea:

if(s—>setsize > t->setsize)
return false;
i=j=0;
while(i < s->setsize && j < t->setsize) {
if(s[i]l > t[j1) {
jtts
} else if (s[i] < t[j]1) {
return false;
} else { /x (sl[i] == t[j]) */
i++;
jtts
}
}
if (i==s->setsize)
return true;
return false;

Note that the running time of this algorithm is O(|s|+|¢|). Again, since we do not assume
that the sets are sorted, we have run time complexity of O(|s|log|s| + |¢|log |t]).

The third alternative we considered for implementing set comparisons is based on signa-
tures. This algorithm first computes the signature of each set-valued attribute and then
compares the signatures before comparing the actual sets using the naive set comparison
algorithm. This gives rise to a run time complexity of O(|s| + |t|). Signatures and their
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computation are the subject of the next section. Furthermore, the next section introduces
some basic results that will be needed for tuning some of the hash join algorithms.

4.1.3 Implementation of Signatures

As we are implementing main memory algorithms, the signatures have to be generated as
fast as possible. Consequently we set only one bit within the signature for each element of
the set whose signature we want to compute (i.e. k = 1, see also Section 2.1). Assuming a
function mg;, that maps each set element to an integer in the interval [0, b[, the signature
can be computed by successively setting the mg;,(z)-th bit for each element z in the set.
Based on m;,(x) we can now give the algorithm to compute the signature sig(s) for a set
S.

sig = 0;

for(int i=0; i < s.setsize; i++)
sig |= 1 << m_sig(s[i]);

return sig;

The function mg, can be implemented in several different ways. We investigated two
principal approaches. The first approach uses a random number generator whose seed
is the set element. The resulting number gives the bit to be set within the signature.
In our implementation, we used two different random number generators: rand() of the
C-library and DiscreteUniform of the GNU-Library. The second approach just takes the
set element modulo the signature length. The advantage of the former is a reduction of
the false drop probability, the advantage of the latter is a much better run time. We will
investigate this trade-off experimentally.

4.2 Joins with Equality Predicates

This section describes the algorithms we evaluated for implementing a join of the form
R, X,—, Ry where R; and R, are relations with set-valued attributes a of R; and b of
R>. We discuss several variants of four major approaches. First, we briefly evaluate three
variants of the nested-loop approach. Subsequently, the sort-merge join and the tree-join
are described. Last, we introduce the hash join variants.

4.2.1 Nested-Loop Joins

The nested-loop join is implemented by two nested loops ranging over the tuples of the
inner and outer relation, respectively. We implemented the nested-loop join algorithm
with the three different set comparison operations described above: the naive one, the
one based on sorting the sets, and the comparison based on signatures.

In Figure 4.1, these three variants are evaluated. The top row shows the results for varying
set sizes, the bottom row gives the results for fixed set sizes. Hence, the pretest on set
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Figure 4.1: Performance of different nested-loop join algorithms (for equality predicates)
1

sizes only accelerates the set comparison for the top row. In most cases—except for small
relations and varying set sizes— the fastest comparison is that by signatures. Hence, we
will use this a reference point for comparing subsequent algorithms.

4.2.2 Sort-Merge Join

The main idea of sort-merge join algorithms is to sort the relations to be joined on their
join attributes and to merge subsequently the two sorted relations. If the join attributes
have a simple, ordered domain, this approach is well known. However, ordering set-valued
attributes seems less obvious on first sight. The idea is to use a lexicographical ordering
on sets.

More specifically, our sort-merge join sorts the relations in two steps. In a first step, the

'In the top row, the number of elements per set varies uniformly between 5 and 15 for the left-hand side
of the figure and between 50 and 150 for the right-hand side of the figure. In the bottom row, the number
of elements is always 10 for the left-hand side figure and 100 for the right-hand side figure. Along the
z-axes relation sizes are varied. The y-axes shows the cpu-time in milliseconds necessary for completing
the join as measured on a Sun Sparc Station 20 with 64MB Main Memory. Note the logarithmic scale
on both axes.
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sets within the join attributes are sorted. In a second step, the relations themselves are
sorted on their join attributes. We use a lexicographic ordering for sorting the tuples
according to the set-valued join attributes. For example, the list of sets

{1,4,7},{1,5,7},{2,5}

is lexicographically ordered, whereas the list of sets

{1,5,7},{1,4,7},{2,5}

is not. At first glance this looks quite complicated and is not needed for equality predi-
cates. However, as we want to use the same technique for subset predicates, we already
introduce it right here.

Now, the merge phase proceeds as follows. For the outer relation—say R;—exist two point-
ers (low and high) to tuples within it. These pointers indicate the lowest and the highest
tuples within the sorted relations that are equal. A third pointer (j) is used to range over
the inner relation—say R,. The join attributes of the first two tuples ¢; and ¢5 of the rela-
tions to be joined are compared. If the set a of ¢; lexicographically precedes the set b of
to, then we can advance the low pointer of R;. If the set b of t5 precedes lexicographically
the set a of t;, then we advance the pointer (j) of Rs. If they are equal, a result tuple
can be built. Further, we have to check subsequent tuples in R; whether they have the
same a value. We do so by advancing the second pointer (high) and checking separately
each tuple it points to until we meet a tuple whose a value is unequal to the current .5
value. If the next tuple in Ry does not match the tuples in R; between the low and high
pointer, these tuples can be skipped. We also have to be careful that the loop variables
stay in bounds.

low = O;
high = 0;
j=0;
while(low and j in bounds) {
while(R1[low].a !'= R2[j].b && low and j in bounds) {
if (R1[1low].a < R2[j].b) {
low++;
+
else {
jtts
}
}
do {
build result tuple;
high++;
} while(R1l[high].a == R2[j].b && high in bounds);
jt+t;
if (R1[low].a != R2[j]1.b) {
low = high;
}
}
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Since sorting has to be done before applying this algorithm, the set comparison algorithm
is the one based on sorted sets. The performance evaluation of sort-merge join can be
found in Section 4.2.5

4.2.3 Tree Join

The basic idea behind a tree-based join algorithm is to use a temporary index. We
consider a binary tree as the temporary index structure (in the next section we look at
hash tables). Let us give an example. Consider a relation containing the following four
tuples with a set-valued attribute a:

1. tl.a = {1,3}
2. ty.a ={1,3,4}
3. t3.CL = {1,5}

4. t4.a = {2, 3, 4}

The corresponding tree is

1
Ay WA
2\ /2
3\ / 3{\
4:(ty) 5:(ty) 4:(ty)

Every node in the tree consists of a key, a list, and two pointers:

struct treenode {
int key;
list tuplelist;
treenode* match;
treenode* nomatch;

}

The key is equal to a set element that can be found in at least one of the relation’s tuples.
Each node in the tree (denoted by its key in the diagram above) represents a different
set. The node’s list (in parantheses, following the colon) contains all tuples that have
a set-valued attribute that is equal to this set. The pointers lead to further sets. All
sets that contain the node’s key are found by following the match pointer (black tipped
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arrow). All sets that do not contain the node’s key are found by following the nomatch
pointer (white tipped arrow).

Finding all matching tuples for a given set-valued attribute of a query tuple is now an
easy task. Starting with the smallest element in the sorted query set and the root of the
tree, we compare the element with the key of the current node. If they are not equal, we
try to find the element in the nomatch path of the node. If they are equal, we follow the
match edge and continue searching for the next element of the set. If we have found all
elements in the tree, then the list of the node that matched the last element of the set
contains all matching tuples.

list find(tuple t) {
treenode* currentNode = root;

for all elements in t.a in ascending order {
while(currentNode->key != element) {
currentNode = currentNode->nomatch;
if (currentNode == NULL) {
/* matching tuples do not exist */
return empty list;
}
}
if(last element) {
return currentNode->tuplelist;
}
else {
currentNode = currentNode->match;
if (currentNode == NULL) {
/* matching tuples do not exist */
return empty list;
}
}
}
}

Building the tree is a little more complex. Before inserting the tuples into the tree, the
elements within each set-valued attribute are sorted. (We do not need to sort the relations
themselves as we did for the sort-merge approach.) The insertion of a tuple proceeds as
follows. We start with the first set element of the tuple and go down the tree along the
nomatch edges until we find a node with a key that is greater or equal to our element. If
the key is greater, we know that the node we are looking for has not been inserted into
the tree, yet. At this point we have already passed the correct place for insertion. So we
have to create a new node with an empty list and a key equal to our current element.
Then we back up and insert it between the current node and the parent of the current
node. We have to be careful to insert it correctly, i.e. at the match or no match pointer.
This depends on whether we followed a match or nomatch edge to reach our current node.
Now we are at a node whose key is equal to our current element (regardless of inserting
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the node or finding it already existing). If the current element is the last element of the
set to be inserted, we insert the set an the current node. If not, we have to continue with
the match edge and the next element of the set.

void insert(tuple t) {
treenode* currentNode = root;

for all elements in t.a in ascending order {
while(currentNode->key < element) {
if (currentNode->nomatch == NULL) {
create new node with key = element and empty list;
insert new node at currentNode->nomatch;
}
currentNode = currentNode->nomatch;
}
if (currentNode->key > element) {
create new node with key = element and empty list;
connect new node to parent of currentNode;
connect new node to currentNode;
currentNode = new node;
}
if (last element) {
insert t into currentNode->tuplelist;
return;
}
if (currentNode->match == NULL) {
create new node with key = element and empty list;
insert new node at currentNode->match;
}

currentNode = currentNode->match;

4.2.4 Hash-Loop Join

The basic idea behind a tree join was to use a binary tree structure as a temporary index.
Instead of a tree we now build a hash table for the tuples of the inner relation hashed
on their join attributes. We have several techniques for hashing at our disposal. For
the simplest alternative we hash the sets by their cardinality. This only yields a good
distribution if the sets vary greatly in cardinality. However, since this is not applicable in
general, we consider two other alternatives:

e direct hashing

e signature hashing
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Direct hashing means that we map each set directly to a hash key (as opposed to signature
hashing, where we map a set to a signature and then map the signature to a hash key).
As we assume that the set elements have already been mapped to integers, we use the sum
of the set elements modulo the hash table size as our hash key. We label this alternative
with sum. When looking up sets in the hash table we resolve collisions by comparing the
sets in the collision chain using the naive set comparison algorithm. We also implemented
a variant with sorted sets to accelerate the comparison. However, the average collision
chain length is too short for this approach to pay off. (see Table 4.1).

Signature hashing is based on superimposed coding (from Section 2.1). Several aspects
have to be considered when using signatures for hashing:

e choosing the right signature length,
e allocating memory for signatures,
e computing signatures, and

e mapping signatures to hash values.

Signature Length

The performance of signatures depends on their size. For a fixed set size, the larger the
signature, the smaller the false-drop probability. Hence, a large signature seems to be the
best. However, several effects complicate the issue. First, the mapping of larger signatures
is more expensive in terms of computing time (more data has to be processed). Second, if
the size of the hash key remains constant for increasing signature sizes, the probability that
two different signatures are mapped to the same hash key grows. This leads to a larger
number of collisions. Third, we store the signatures in the hash table, because we not
only use them as an intermediate step for computing hash keys (this would not pay off).
We also employ signatures for resolving collisions during a lookup. We compare sets only
if their signatures match. If the signatures become too large, the storage overhead would
not be negligible anymore. Hence, we have a trade-off between lowering the false-drop
probability on one hand and minimizing storage overhead on the other hand. Considering
the formula for false-drop probabilities in case of set equality, we can use a signature of 32
bits to obtain a false-drop probability below 1.4e-06 for up to 60 elements per set. Beyond
60 elements, the false drop probability increases dramatically. Hence, we use 64 bits for
sets containing up to 150 elements. The resulting false-drop probability is then less than
2.1e-09. These values are valid for sets with constant cardinalities.

Allocating Memory for Signatures

We have to distinguish two different cases when allocating memory for signatures. On
one hand we can extend the tuples by a certain number of bytes to hold the signatures.
On the other hand we can allocate the memory for the signatures dynamically and attach
the signatures to their tuples. We implemented both alternatives in order to derive an
upper bound on the performance loss of dynamic signature creation.
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The question of dynamic versus static memory allocation applies to the tuples of the inner
relation, which are inserted into the hash table with their respective signatures. For the
tuples of the outer relation we allocate memory for one signature. As we go through the
tuples of the outer relation this signature is cleared and reused for each tuple.

Computing Signatures

As mentioned in Section 4.1.3 there are several alternatives for computing signatures. We
employ the following scheme to denote the different approaches:

ran for computing the signatures using the C-library rand() function
dis for computing the signatures using the GNU-library Discrete Uniform function

mod for computing the signatures by simply calculating the modulus of the element sum
with respect to the signature length b.

Mapping Signatures to Hash Keys

The general problem of mapping signatures to hash keys is the smaller size of the hash
keys. It is not unusual to have signatures containing a few hundred bits. Using a full
signature as hash key would result in huge hash tables in this case. Consequently we have
to map large signatures to smaller hash keys.

For our experiments we assume hash keys smaller than 232, When mapping signatures
to hash keys we distinguish three different cases. If a signature fits into a 32-bit integer,
we map it directly onto a hash key by evaluating signature modulo hash table size. If
the signature is larger we consider two alternatives. Either we partition the signature
into bitvectors of maximally 32 bits and fold these bitvectors with a bit-wise exclusive
or operation obtaining a bitvector with maximally 32 bits (denoting this alternative by
fold), or we just consider the lowest 32 bits of the signature and ignore the rest. This
alternative is called truncate.

Implemented Alternatives

Having discussed the different approaches for implementing hash-based joins in the last
few paragraphs let us now list the different combinations we have implemented. For direct
hashing we have two alternatives sum and sumS. Both of them add the set elements to

calculate the hash keys. Additionally sumsS uses sorted sets to speed up the resolution of
collisions.

sum sum of set elements modulo hash table size

sumS sum of set elements modulo hash table size and sorted sets
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For signature hashing we have more variety. We implemented different signature sizes,
32 and 64 bits. Furthermore we realized all three variants of computing signatures: ran,
dis, and mod. For signatures larger that 32 bits we had to decide how to fit them into
32 bits. Both variants, folding and truncating, were implemented. This gives us another
nine different algorithms:

ran [32] 32 bit signature using rand

dis [32] 32 bit signature using Discrete Uniform

mod [32] 32 bit signature using mod

ran [64x] 64 bit signature using rand, folding (bit exclusive or) to 32 bit

dis [64x] 64 bit signature using Discrete Uniform, folding (bit exclusive or) to 32 bit
mod [64x] 64 bit signature using mod, folding (bit exclusive or) to 32 bit

ran [64t] 64 bit signature using rand, use only lowest 32 bits for hashing (truncate)

dis [64t] 64 bit signature using DiscreteUniform, use only lowest 32 bits for hashing
(truncate)

mod [64t] 64 bit signature using mod, use only lowest 32 bits for hashing (truncate)

In addition to these variants we experimented with dynamically allocated signatures. We
implemented two different techniques:

ZF [nn,32] arbitrary signature length, mod for building signature, folding (bit exclusive
or) to 32 bit, nn denotes the actual signature length

ZT [nn,32] arbitrary signature length, mod for building signature, use only lowest 32
bits for hashing (truncate), nn denotes the actual signature length

Evaluating Hash-based Joins

We ran several experiments in order to evaluate the performance of the different hash-
based alternatives. We start by investigating the two direct hashing variants, then take a
close look at the signature-based techniques.

The main question that we want to answer for direct hashing is whether the overhead
for sorting the sets pays off during the resolution of collisions in the hash table. Figure
4.2 shows typical results of some of the experiments we conducted. It can be clearly seen
that the variant that does not sort the sets is always faster than the other algorithm. It is
also interesting to note that for larger sets the performance of the non-sorting algorithm
even improves. On account of the larger sets the sums of the elements have a greater
variation which results, on average, in shorter collision chains. The sorting algorithm
cannot capitalize on this, because it now has the additional overhead of sorting large sets.
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Figure 4.2: Direct hashing: sort-based versus naive set comparison (for equality predi-
cates)
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Figure 4.3: Signature hashing: folding vs. truncation (for equality predicates)

For future comparisons of direct hashing algorithms we restrict ourselves to the superior
sum alternative.

For signature hashing we have several parameters that need to be examined. Let us
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start with the mapping from signatures to hash keys. For large signatures we need to
fold or truncate the signatures to 32 bits. Figure 4.3 show a comparison between folding
and truncating. The performance of these two techniques is very similar, with a small
advantage for folded signatures. Folding spreads out the hash key values slightly better
resulting in a smaller collision chain length. We investigated the maximal chain length by
inserting 500 tuples into a hash table for each alternative. Table 4.1 depicts the results
for various set sizes. Usually the collision chain lengths for folded signatures are smaller
than those for truncated signatures.

Set Size || sum 32bit sig 64bit sig, fold  64bit sig, 32bit truncate
dis ran mod ‘ dis ran mod ‘ dis ran mod

10 6 5 6 6 7 7 8 9 7 7
9-11 4 6 6 7 7 7 6 8 8 8
44 5 7 8 7 5 5 6 5 5 5
40-48 6 7 7 7 5 5 5 7 4 5
100 4 | 119 128 128 | 7 6 6 8 6 9
90-110 5 (109 126 126 | 7 5 6 8 6 8

Table 4.1: Maximal collision chain lengths for different alternatives

Next we look at the different computation techniques for signatures (see Figure 4.4). The
simple mod alternative is also the fastest. The quality of the signatures produced by the
dis and rand algorithms in regard to collision chains is superior to mod (see Table 4.1),
but they need much more time to achieve this goal. Thus for main memory environments
the use of random number generators is too costly.

We were also interested in the performance of the join algorithms when allocating memory
dynamically. As expected there is an observable overhead for the dynamic allocation. For
small sets and small signatures (left hand side of Figure 4.5) static allocation of memory
is about 2 to 3 times faster than dynamic allocation. For large sets and large signatures
(right hand side of Figure 4.5) the overhead of dynamic allocation is below 10%, on
account of the more complex computation of signatures, which consumes much more time
than the creation. Using static memory allocation is quite reasonable, since the query
optimizer determines the evaluation plan and is able to consider the additional space when
allocating memory for the tuples.

In summary, we can say that there are several different ways to implement hash-based join
algorithms and it is not always obvious which one is the most efficient (see Figure 4.6).
For small sets the mod variant (with static memory allocation) performs best, whereas for
large sets the sum variant catches up on the signature-based algorithms. For large sets
the performance of the direct hashing algorithm improves slightly (see also Figure 4.2).
By contrast, large sets have a negative influence on the signature-based algorithms. We
are forced to use larger signatures, with the known consequences.
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Figure 4.4: Signature hashing: alternative approaches generating signatures (for equality
predicates)

4.2.5 Comparison of Algorithms for Equality Predicates

In Figure 4.7 we compare the nested-loop, sort-merge, tree and hash-based join variants.
The signature-based mod alternative (with static memory allocation) is a very strong
contender. Only for large sets is the direct hashing sum alternative able to catch up.
If, for some reason, a hash-based join cannot be applied, then the sort-merge join is the
algorithm of choice. The tree-join is close behind the sort-merge join, but there is not
enough compensation for the significant storage overhead of the index. The nested-loop
join seems to be an alternative for small relations only, in view of its high running time.

For us, the most important conclusion was that there exist algorithms which are much
more efficient than the naive nested-loop variant. The alternative algorithms are surpris-
ingly efficient. Joining two relations with 10,000 tuples each based on the equality of
their set-valued attributes consisting of 100 elements within a second or two seems to be
a reasonable result, especially when we consider that the best nested-loop variant needs
almost one and a half minutes for the same task.
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Figure 4.5: Signature hashing: overhead of dynamic signature creation (for equality pred-
icates)

4.3 Joins with Subset Predicates

This section discusses algorithms to compute Ry Xpg, 4cr,» R2 for two relations R; and
Ry with set-valued attributes a and b. Obviously, these algorithms will also be useful for
Computing jOiIlS like R1 MRl.aZ_)Rg.b Rg, R1 NRl.aCRg.b Rg, and R1 NRLQDRQ.I, RQ. For the
latter two only slight modifications are necessary. Like in Section 4.2 we discuss different
variants of nested-loop, sort-merge, tree-, and hash-join.

4.3.1 Nested-Loop Joins

We implemented three different variants of nested-loop joins. The first is based on naive
set comparison, the second employs sorted sets, and the third utilizes signatures. For
details on the different implementations of set comparisons with subset predicates see
Section 4.1.2. We compared these algorithms experimentally. The results of these experi-
ments (Figure 4.8) resemble those for equality predicates. The signature-based algorithm
performs best, whereas the naive algorithm performs worst. Hence, we use the signature-
based variant for further comparisons with other join algorithms.
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Figure 4.6: Signature hashing: comparison of the best alternatives (for equality predi-
cates)

4.3.2 Sort-Merge Join

As already mentioned in Section 3.2 a simple sort-merge join cannot be used to join two
relations on a non-equijoin predicate. Consequently, we have to modify the sort merge
algorithm, arriving at a nested loop/sort-merge hybrid. Let us describe the modifications
in detail.

In both relations R, and Ry we sort each set-valued attribute. In addition to that, we sort
the tuples of the inner relation R, lexicographically on the join attribute. We step through
the (unsorted) outer relation R; tuple by tuple. For each tuple in R; we loop through
R,, aborting the loop as soon as the smallest element in the set-valued attribute of the
current tuple in R; is smaller than the smallest element in the attribute of the current
tuple in Ry. We can do this because the smallest element in the attributes of subsequent
tuples in (the lexicographically sorted) relation Ry will all be larger. We can also avoid
unnecessary set comparisons by checking the largest elements in the set-valued attributes
and comparing the size of the attributes. Finding the smallest and largest element in an
attribute can be done in constant time as we have sorted the attributes and store the size
explicitly. We summarize these ideas in the following code fragment.

sort each set in R1 and R2;
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Figure 4.7: Performance of different join algorithms (for equality predicates)

sort R2 lexicographically;

for(i = 0; i < size of R1; i++) {
for(j = 0; j < size of R2; j++) {
if(smallest element of R1[i].a < smallest element of R2[j].b) {

break;

}

if (largest element of R1[i].a > largest element of R2[j].b) {
continue;

}

if(size of R1[i].a > size of R2[j].b) {
continue;

}

if(R1[i].a is subset of R2[j].b) {
build result tuple;
b
by
by

Unlike the sort-merge variant for equality predicates this algorithm has quadratic running
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Figure 4.8: Performance of different nested-loop join algorithms (for subset predicates)

time (O(|Ry| - |Ra|) instead of O(|Ry| - log |R1| + |Rz| - log | Ra|)). Nevertheless, with the
added pretests that avoid expensive set comparisons we expect a better performance for
this algorithm than for the naive evaluation of joins with subset predicates.

4.3.3 Tree Join

The tree-join algorithm for equality predicates can be easily adapted to joins with subset
predicates. The procedure to insert tuples into the tree structure does not need to be
changed at all. We modify the find procedure as follows. As we are looking for supersets
of the set-valued attribute of the query tuple, we have to find a node in the tree for each
element of the attribute. Contrary to set equality the set-valued attributes of the tuples
we are searching for may contain additional elements.

Again we start at the root of the tree with the first element of the attribute of the query
tuple. If we reach a node that has a key that is smaller than the current query element,
we have found an additional element that is not present in the query set. In this case we
have to follow the match and nomatch edge. If we reach a node with a key equal to the
current query element, we check whether this is the last element we are looking for. If
this is the case, we return the tuple lists of the current node and of all descendants of the
current node. Otherwise we have to continue searching for the remaining elements of the



38 CHAPTER 4. JOIN ALGORITHMS FOR JOINS WITH SET PREDICATES

query tuple in the match branch. Finally if the key of the current node is larger than the
current element, we know that the node we are looking for has never been inserted into
the tree and we can stop searching in this branch of the tree. The following procedure is
called with 7 equal to the index of the first element of t.a and currentNode equal to the
root of the tree.

list find(tuple t, int i, treeNode* currentNode) {
if (currentNode == NULL) {
return empty list;
}
if (currentNode->key < i-th element of t.a) {
result = find(t, i, currentNode->match);
concatenate find(t, i, currentNode—->nomatch) to result;
return result;
}
if (currentNode->key == i-th element of t.a) {
if (last element of t.a) {
result = currentNode->tuplelist;
concatenate tuplelists of all descendants
of currentNode to result;
return result;
}
return find(t, i + 1, currentNode->match);
}
/* currentNode->key > i-th element of t.a */
return empty list;

It is important to note that the find procedure in most cases traverses more than one
path in the tree. In the worst case we have to visit each node of the tree. The complete
join algorithm proceeds as follows: first, the tree is built for the inner relation. Then, for
each tuple in the outer relation, the find procedure is used to retrieve the joining tuples.
For both relations, the set-valued attributes are sorted beforehand. Sorting the relations
lexicographically on their join attributes is not necessary.

4.3.4 Signature-Hash Join

While the concept of hashing is well suited to joins with equality predicates, applying this
concept to the evaluation of joins with subset predicates is not straightforward. Principally
we have two ways to implement a hash join for subset predicates.

On one hand we could insert every tuple ¢ of relation Ry into a hash table redundantly,
i.e. for every subset of t.b t is inserted into the hash table with the hash key of the
corresponding subset. During query evaluation we would then search with an ordinary
equality predicate. In view of the exponential storage overhead and the dynamic allocation
of the hash table we abandon this idea.
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On the other hand we could leave it at inserting each tuple into the hash table once.
During query evaluation we would have to generate the hash keys of all supersets of a
given query set, which seems infeasible. Therefore we switch the inner and outer relations
for hash joins, i.e., we compute Ry Mg, or,.« 1 instead of Ry Mg, ocrop B2 So we
transform the problem of finding supersets of a given set to finding subsets. The number
of subsets of a given set s, which is 2%, is usually much smaller than the number of supersets
of s, which is 2(P==%) (D, being the domain of the elements of s). Generating the hash
keys of all subsets of a given set seem to result in an exponential runtime. Nevertheless,
this approach is practicable because we use signatures to derive hash keys and not the
elements of the sets (we elaborate on the precise costs later while discussing Formula
(4.2)). If we can keep the signatures small enough, we are able to generate all subsets
of the signatures fast enough by using the idea of Vance and Maier (see Section 2.2).
The size of the signatures depends on the size of the given sets, so we have the problem
of keeping signatures small for large sets. We solve this problem by using only part of
a signature, more specifically the lowest d bits. We call this the partial signature of a
set s, or abbreviated partsigq(s). This corresponds to the fixed prefix/suffix partitioning
technique for signatures [64], except that we neglect the rest of the signature. The partial
signature of its set-valued attribute is used as a hash key for a tuple. Given that the size d
of a partial signature is crucial to the performance of the hash join algorithm, we address
this issue after describing the join algorithm.

The Join Algorithm

We start by inserting the tuples ¢; in R; into a hash table with hash keys equal to
partsigy(t;.a). For each tuple ¢; in R, we generate the hash keys of all subsets of
partsigy(t;.b) and probe for matching tuples of R; in the hash table. We compare the
full signature of the current tuple of Ry with the full signatures of the tuples retrieved
from the hash table. If the full signatures indicate a match, we compare the set-valued
attributes directly to eliminate false drops.

When mapping partial signatures directly onto hash keys, the size of the hash table is
restricted to powers of 2. If a hash table of another size, say n, is needed, we cannot
employ this direct mapping. In this case we use partsig(s) modulo n as hash key.

Tuning the parameters

As we have already mentioned, the size of partial signatures is a crucial parameter for the
performance of the hash-join algorithm. The first step in optimizing partial signatures is
to optimize the full signatures. Since we set only one bit per set element in a signature
(k = 1) the false drop probability is controlled by the signature length b. If we choose
a value of b that is too small, almost all bits in the full signature and partial signature
will be set. On the other hand if we choose a value of b that is too large, we expect very
sparsely filled signatures. Both of these cases lead to long collision chains in the hash
table. The optimal value for b can be calculated by using formula 2.10 from Section 2.1.3.
For our special case (k = 1) it translates to
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b
o = ] (4.)
where | Ry.b| is the average cardinality of the join attribute of relation Ry. Using the value
of byt leads to signatures in which on average half of the bits are set. From the viewpoint
of information theory these signatures contain maximal information. We can verify the
theoretical findings with some experiments. For a set cardinality of 100 elements the value
of by is approximately 144 bits (according to (4.1)). Provided that on average half of
the bits are set in a full signature, we also expect that half of the bits are set in a partial
signature. The left hand side of Figure 4.9 shows the results for some partial signature
sizes. We can clearly see that for the optimal full signature size b, about half of the bits
are also set in the partial signatures. We also investigated the influence of the signature
sizes on the collision chain lengths of the hash tables (right hand of Figure 4.9). For small
full signature sizes the collision chains are quite long. With increasing signature sizes the
lengths of the collision chains decrease. After passing the optimal point the chains slowly
grow in length again. We have some leeway in choosing the full signature size, values from
100 to 200 all seem acceptable. Using slightly larger signatures seems attractive as less
than half of the bits are set in partial signatures. On average fewer subsets would have to
be generated and consequently fewer lookups would be needed. Although we would have
more collisions, the collision chain length grows only slowly for increasing signature sizes
(Figure 4.9). Experiments showed that using signatures that are 30% larger than b,
resulted in running times that were 20% to 50% lower than those for b,,;. One more effect
can be seen in Figure 4.9. As expected increasing the partial signature size decreases the
collision chain length because we have a wider range of hash keys.
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Figure 4.9: Tuning partial signature sizes (for subset predicates)

Next we wanted to find out how to choose d, the partial signature size. We want to keep
it low to be able to rapidly generate and lookup subsets during query evaluation. Small
partial signatures, however, lead to longer collision chains (witness Figure 4.9). So we
have to balance these two factors.
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Figure 4.10: Performance of the hash join depending on the partial signature size (for
subset predicates)

Figure 4.10 illustrates the experimental results using different partial signatures sizes.
Small partial signature are very fast for small relations as few lookups with few collisions
occur. For large relations, however, these partial signatures are not sufficient since the
number of collisions increases dramatically. For larger relations larger partial signatures
become more interesting. In general the partial signature size should be the largest d such
that 27 is approximately equal to the cardinality of the hashed relation. The theoretical
costs C(d) for retrieving all matching tuples from a hash table for a given query tuple are
proportional to the number of lookups times the (average) length of the collision chains.
On average g bits are set in a partial signature. Assuming simple uniform hashing, one
lookup takes time ©(1 + ) where n is the number of tuples and m the size of the hash

table [18]. So C'(d) can be approximated by

C(d) =~ 2%-<1+@>
- 25+@ (4.2)

where |R| is the cardinality of the hashed relation. These costs are minimal if d = log, | R|
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(that is 2¢ = |R|). For a proof see Appendix A. Inserting this optimal value into (4.2),
we get:

R

1
— log, |R|\ 2
O<10g2 |R|) B (2 ¢ ) - (2log2 \R|)%

SN

B
= 2. m (4.3)

As we can see, the costs only look exponentially at first glance. If the size of the partial
signatures is carefully chosen, the lookup costs are actually proportional to the square
root of the cardinality of the relations.

Subsetequal (10 elements) Subsetequal (50-150 elements)

1e+06 1e+07 —
nested-loop join (sig) —— nested-loop join (sig).-—+—
100000 - sort-merge join j 1e+06 F sort-merge-join -+ |
tree join = _-Treejoin s~
hashjoin™> 1 100000 | Lo hashjoir
10000 | S
g e . g 10000 | :
< 1000 | L 13
£ £ 1000 ¢~
00t - 7 x J
. 100 [~
10 10}
1 : 1 :
100 1000 10000 100 1000 10000
Relation Size Relation Size
Subsetequal (10 elements) Subsetequal (100 elements)
1e+06 ; 1e+07 ‘ —
nested-loop join (sig) —— nested-loop join (sig;»#
100000 | sort-merge join —+—-] 1e+06 sort-merge join -4
tree Jm% . tee join.~&"
héihla}ﬂi x 100000 L L EﬂS,h»TOIn x
10000 ¢
g g £ 10000 v
< 1000 | . 13 o
£ E 1000 ¢
100 | ;
- . 100 ¥
10 10}
1 : 1 :
100 1000 10000 100 1000 10000
Relation Size Relation Size

Figure 4.11: Performance of different join algorithms (for subset predicates)

4.3.5 Comparison of Algorithms for Subset Predicates

We compared the nested-loop, sort-merge, tree-, and hash join algorithms experimentally.
The results of these experiments can be seen in Figure 4.11. The first thing that strikes



4.4. CONCLUSION AND OUTLOOK 43

us is the performance of the nested-loop join compared to the performance of the other
algorithms. The nested-loop algorithm itself has not changed much when compared to
the version for equality queries. The performance of the other algorithms, however, has
deteriorated significantly, so nested-loop join becomes competitive again. The numerous
modifications to sort-merge and tree join to adapt them to subset predicates have influ-
enced their performance severely. Hash join also does not perform as well as for equality
predicates, but is still able to beat nested-loop join for large relations.

4.4 Conclusion and Outlook

We proposed and investigated several different main memory join algorithms for set equal-
ity and subset predicates. We have found efficient alternatives to the naive nested-loop
algorithm. For set equality predicates the hash-based algorithms proved to be superior to
all other algorithms. For subset predicates the hash join is still on top, while nested-loop
join is only competitive for small relations. This is, however, not the naive variant but a
modified and tuned algorithm based on signatures.

Although this has been an important first step in filling a gap, there are still interest-
ing questions left for future research. Some of these include set-valued join algorithms
with different predicates (e.g. set intersection), algorithms for secondary storage, and
parallelization of the join algorithms.
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Chapter 5

Diag-Join: A Join Algorithm for 1:NN
Relationships

Online analytical processing (OLAP) plays an ever more important role in the world of
information processing. In contrast to online transaction processing (OLTP) it involves
complex queries requiring the scanning of huge amounts of data, but seldomly updating or
deleting. On account of the different requirements, special database systems called Data
Warehouses have been developed. During the evaluation of queries in Data Warehouses,
relations containing millions or even billions of tuples need to be joined. Joining these large
relations (usually the central fact tables in Data Warehouses) is very costly. Evidently,
fast join algorithms are very important in this environment.

The main strategy for lowering join costs is to filter out many non-qualifying tuples
beforehand. Bit-vector indexing is predominantly used for this purpose, like in O’Neil’s
and Graefe’s multi-table join [72]. However, it is not always possible to filter out a
significant number of tuples. The join attribute may also take on many different values,
leading to huge bit-vectors, so that the overhead of filtering does not pay off. We were
wondering if properties of relations exist that can be exploited during a join operation.
During our analysis we made the following observations. When inserting new tuples
into a Data Warehouse, those tuples are usually appended to existing relations [50, 58].
Therefore time of creation is the predominant—though often implicit—clustering strategy.
Another important observation was that in the context of data-warehousing, relations are
typically joined on foreign keys [50, 58]. Backed by these observations, we developed a
join algorithm—called Diag-Join— which takes advantage of these facts [48]. It exploits
time-of-creation clustering for 1:n relationships.

Let us illustrate these two points by an example taken from [58]. All companies selling
products have to ship these products to their customers. Assume that in the Data Ware-
house of such a company a central fact table Shipments exists, that contains the data on
all deliveries made. In a dimensional table CustomerOrders we store information on all
orders that the company received. See Figure 5.1 for an illustration. Soon after appending
an order from a customer, we expect the corresponding tuples to be added to Shipments,
resulting in clustering by time of creation.

The Diag-Join exploits this clustering. In essence, Diag-Join is a sort-merge join without
the sort phase. An important difference, however, is that the merge phase of Diag-Join

45



46  CHAPTER 5. DIAG-JOIN: A JOIN ALGORITHM FOR 1:N RELATIONSHIPS

Shipments CustomerOrders

ProdKey Price ShipDate | ShipMode | OrderNo OrderNo | CustomerID | TotalPrice | OrderDate
123 24.00 | 10/12/96 | Mail K-323 K-323 1943 156.00 | 10/10/96
234 35.00 | 10/13/96 | Air K-323 K-326 432 1751.00 | 11/20/96
012 97.00 | 10/13/96 | Air K-323 K-351 129 45020.00 | 12/02/96
635 1298.00 | 11/23/96 | Truck K-326 ..

534 453.00 | 11/23/96 | Truck K-326

239 20.00 | 12/10/96 | Air K-351

978 10000.00 | 12/18/96 | Rail K-351

174 35000.00 | 12/20/96 | Ship K-351

Figure 5.1: The relations Shipments and CustomerOrders

does not assume that the tuples of either relation are sorted on the join attributes. Instead,
it relies on the physical order created by the (implicit) time-of-creation clustering strategy.
More specifically, Diag-Join joins the two tables by scanning them simultaneously. The
scan on the outer relation proceeds by moving a sliding window of adjustable size over the
relation. Only within this window do we search for join partners for the inner relation.
A special mechanism takes care of those tuples of the inner relation for which no join
partner could be found in the window. They are called mishits. Though simple, this idea
proves to be very effective. There are, however, some subtleties that are addressed later
on. These are the buffer management, the window size, the organization of the window,
and the sliding speed of the window. We also present a method which allows Diag-Join
to join non-base relations (resulting from intermediate operations).

Diag-Join has two advantages over other join algorithms for appropriately clustered rela-
tions:

e Even if the relations do not fit into main memory, in many cases Diag-Join will be
able to avoid the creation of large temporary files, unlike the sort-merge join [8], the
hybrid hash join [22, 85], and the GRACE hash join [32, 85].

e Contrary to other join algorithms, output tuples can be produced right away without
an interruption of the query evaluation pipeline.

The rest of this chapter is organized as follows. We present the Diag-Join algorithm in
the next section. Section 5.2 contains performance evaluations and comparisons with
blockwise nested-loop join, GRACE hash join, and index nested-loop join (for a brief
sketch of these join algorithms, see Chapter 3). Section 5.3 concludes the chapter.

5.1 The Diag-Join

The first subsection briefly summarizes some preliminaries and notations used throughout
the rest of the chapter. We then present a basic version of the Diag-Join explaining the
principle of the algorithm in subsection 5.1.2. We proceed by giving an advanced version
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‘ Symbol ‘ Definition
Ry (smaller) relation to be joined
K key of relation R;
Ry (larger) relation to be joined
(with foreign key k)
| R | cardinality of relation R, in
number of tuples (z € {1, N})
|| Rz|| size of relation R, in number of pages
R, [i] tuple at position 4 in relation R,
1 <i<|R,|
t an arbitrary tuple
my size of buffer/window in
number of tuples
my size of buffer/window in
number of pages
[ size of array of hash tables
P hash table size in pages (= {%J)
interOp(R,;) | intermediate operator on R,

Table 5.1: Used symbols

of the algorithm illuminating implementation details in 5.1.3. We deal with the subtleties
mentioned in the introduction. Further, we discuss how to join non-base relations (result-
ing from intermediate operations). The last two subsections contain a cost model and the
derivation of formulas to calculate the mishit probability (i.e. the probability that a tuple
turns out to be a mishit).

5.1.1 Preliminaries

For the rest of the chapter we use the symbols listed in Table 5.1. Given two relations R;
and Ry to be joined, we assume that R; contains the key &, which is a foreign key of Ry .
That is, a 1:n relationship exists between R; and Ry. |R,| denotes the cardinality (in
number of tuples) of a relation R, (with x € {1, N}), while || R,|| stands for the size of R,
in pages. We further assume that the tuples in each relation are (implicitly) numbered
by their physical occurrence. The i-th tuple in R, is denoted by R,[i] with 1 <i < |R,|.

Let us assume that a tuple of R; and all matching tuples in Ry are created by the same
transaction and are written to disk at the same time. We can easily figure out the physical
position of the joining tuple in R; for a given tuple in Ry. We call this situation “perfect”
clustering by time of creation. In the special case of 1:n relationships, i.e. every tuple
in Ry joins exactly with one tuple from R;, we expect for each tuple Ry|i] to find the
matching tuple in Ry at position [m]. If the number of join partners of each tuple
in Ry varies, the calculated position is only an approximation. Figure 5.2 illuminates a
perfect situation. On the x-axis we have the positions of the tuples in Ry, on the y-axis
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the expected positions of their join partners in R;. Here, each tuple in R; joins with
exactly two tuples from Ry. Hence, the join partner of Ry[5] is R;[3], because [S_?J = 3.
It is important to note that, even for perfect clustering, the relations will almost certainly

not be sorted on the join attributes.

Joining R1 with RN
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Figure 5.2: Expected positions of matching tuples

5.1.2 Basic Diag-Join

If the tuples in the relations are perfectly clustered, then a simple merge phase suffices
to join the two relations. However, in reality this is not always the case. There may be
some exceptions, because the number of join partners for each tuple in R; varies, the
tuples are not inserted simultaneously into R; and Ry, or they are reorganized later (e.g.
deletion of tuples, insertion of additional tuples, replacements). Hence we do not just look
at one tuple of R; at a time, but hold m; tuples—those in the vicinity of the expected
position—in a buffer. We call the part of R; held in the buffer a window on R;.

The basic Diag-Join algorithm works as follows. We initialize the window with [%1
tuples from R;[1] to le%h We expect the matching tuple for Ry[1] to be at R;[1] or
in the range from R;[— {%J} to le%h Since there are no negative positions in Rj,

the interval from — {%J to 0 is cut off. Then Ry is scanned sequentially starting with

Rx[1]. No buffering is applied to Ry, except for the current tuple. For every tuple Ry|i]
we search the window for a matching tuple from R;. If the lookup is successful (we call
this a hit), we immediately produce an output tuple and go on to the next tuple in Ry.
We can do this, because there can be at most one hit (1:n relationship). If the lookup fails
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Diag-Join(R_1, RN, m_t) {
/* phase 1 */

ratio IR_N| / IR_11;
curTup = m_t/2;
fill buffer with R_1[1] to R_1[curTup];
for(i = 1; i <= |R_N|; i++) {
if(tuple t in buffer matches R_N[i]) {
join t with R_N[i];
output result;

}
else {
write R_N[i] to tmpfile;
}
if(i % ratio == 0) {
curTup++;
if (buffer is full) {
replace tuple with lowest position with R_1[curTup];
}
}

/* phase 2 x/

join R_1 with tmpfile using any standard join algorithm;

Figure 5.3: Basic Diag-Join algorithm

(called mishit), then Ry[i] is written into a temporary file. Whenever |Ry|/|R:| tuples
from Ry have been processed, we add the next tuple from R; to the window. If there
is no free space left in the window, we replace the tuple with the lowest position. When
we have finished scanning Ry, we join the tuples in the temporary file (which should be
much smaller than ||Ry||) with R; using some standard join algorithm. Figure 5.3 gives
a summary of the basic Diag-Join algorithm.

Before presenting a more elaborate version of Diag-Join, let us briefly highlight some
problems of the basic version. First, the algorithm is not very efficient, because it uses
a tuple-oriented buffer, while most DBMSs use page-oriented structures. Second, the
organization of the window is crucial for the efficiency and needs to be discussed. Third,
the algorithm only works on base relations, e.g. no selections prior to the join are possible.
We resolve these problems in the next section.
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5.1.3 Advanced Diag-Join

We kept the algorithm in the last section very simple, because we intended to illustrate
the basic principle of the algorithm. The implementation details are presented in this
section.

Page-oriented Buffer

We change from a tuple-oriented buffer to a page-oriented buffer. We do not read single
tuples into the window, but all tuples on the next p pages, which is much more efficient.
We call p the step size of Diag-Join. As a consequence, we replace tuples in the window
whenever p - [|Ry||/||R1|| pages have been scanned in Ry.

Hashing the Window

Searching the window sequentially for matching tuples is too expensive; therefore we use
hash tables to look up join partners in the window. We have two alternatives to organize
these hash tables. On one hand we can use one large hash table with a size of m,, pages,

on the other hand an array of [ hash tables with a size of L%J pages each. Using only a
single hash table is disadvantageous. If we apply a step size p equal to the window size
m,, we also replace a part of the vicinity inserted during the last step that is needed in
the current step (i.e. the scrolling of the window on R; is very coarse). If we apply a step
size p smaller than the window size m,,, we have to replace the oldest tuples in the hash
table with those just read. Organizing a hash table to allow the deletion of individual
tuples according to time of insertion is burdensome. Therefore we allocate an array of [

hash tables. Each hash table has a size equal to {%J We equate the hash table size with

the step size, hence p = {%J Then in each step we free an entire hash table, which is
much cheaper than deleting individual entries. Figure 5.4 depicts an exemplary window
organization. The window size is six pages, organized into three chunks of two pages
each. Therefore the step size is also equal to two pages. The broken lines indicate how
the pages are replaced when no free buffer space is left.

After describing the organization of the window let us now look at the algorithm. Sliding
the window is done as follows. Whenever p - ||Ry||/||R1|| pages have been scanned in
Ry, the least recently loaded hash table is cleared. Then the next p pages from R; are
loaded into this hash table. How do we look up matching tuples in the hash table array?
First of all we search the middle table at position %W in the array. If Ry and Ry are
perfectly clustered, we expect to find the matchinf tuple in this table. If we are not able

to find it there, we search the table at position [% -+ 1. On failure the tables at positions

[%W -1, [ﬂ + 2, [é] — 2, and so on are searched. We call this technique zig-zag search.
This is the best technique when the deviation of the relations from perfect clustering can
be described by a normal distribution (see Figure 5.7 in Section 5.1.5). If the matching
tuple is found, we join the tuples immediately and output the result. Otherwise the tuple
from Ry is written into a temporary file. To speed up the algorithm, we could hold the
mishits in a main memory buffer. Only if this buffer overflows, we flush it to disk. We
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Window size:
m,= 6 pages

Step size:
p =2 pages

Hash table directories

Figure 5.4: Window organization for Diag-Join

also recommend to use an odd number for [, so that the searching range for the lookups
is symmetrical.

Joining non-base relations

We have to take special care when joining non-base relations. If we feed tuples from
intermediate operators (working on Ry) straight into a Diag-Join operator, this may
destroy the synchronization, i.e. we may slide the window on R; incorrectly. We solve
this problem by using the Observer pattern described in [33]. The intent of the Observer
pattern (also known as publish-subscribe) is to notify all dependent objects 01, 09, ..., 0,
of a state change in an object s. For a description in C++ notation see Figure 5.5.

The methods attach and detach connect and disconnect objects to a subject object s.
When s changes its state, it calls the method mnotify which in turn calls the method
update of all observer objects currently attached. In our case the operator accessing the
tuples from Ry (scan, index scan, etc.) notifies Diag-Join about the position within Ry
from which the current tuples are fetched. Then Diag-Join is able to slide the window
with the right speed or even skip some pages of R;. Note that this technique allows
any intermediate operator to occur between the scan on Ry and Diag-Join, as long as
it preserves the relative order of the tuples. The algorithm is summarized in Figure 5.6.
Please note that the current middle table is not always at position [ﬂ, because we reuse
the hash tables in the array.

A similar technique can also be applied to handle intermediate operators between the scan
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class Observer

{
update (Subjectx*) ;
}

class Subject

{
attach(Object*);
detach(Object*);
notify();

}

Figure 5.5: Observer Pattern

on R; and Diag-Join. When loading a hash table during the advancement of the window,
it is always filled completely. If an intermediate operator discards many tuples, the scan
on R; may hurry ahead in order to fill the hash table. If the scan on R; notifies Diag-Join
of the positions of the currently scanned tuples, Diag-Join will be able to recognize this
case. As a consequence, Diag-Join will delay the window sliding on R; until the scan on
Ry has caught up. We would also like to draw attention to the fact that the tuples of
R, that enter the Diag-Join operator need to be stored in a temporary relation for the
second phase of the algorithm. Otherwise the scan on R; and all operations between it
and the Diag-Join would have to be repeated.

The technique of modifying the sliding speed is not as effective on the R; branch of the
join as on the Ry branch, however. If a tuple in R; is filtered out between the scan and
the Diag-Join, it will not be placed into the hash table. Consequently potential matching
tuples in Ry will not find it and be classified as mishits. We will not find out that they do
not belong in the resulting relation until the second phase of the algorithm. If this happens
to many tuple in Ry, we do a lot of unnecessary work while trying to join these tuples.
A possible solution to this problem is to mark the filtered out tuples of R; as deleted but
nonetheless pass them on to the other operators. Then in the Diag-Join operator, if a
tuple in Ry finds a matching partner that is marked as deleted, it can be discarded and
need not be treated as a mishit. When writing the tuples of R; to a temporary relation
on disk for the second phase, we do not need to consider the tuples that are marked as
deleted unless they are needed in yet another Diag-Join operator further on.

5.1.4 Cost model

Our cost model for Diag-Join is based on the cost models presented in [42]. The parameters
needed for the cost model are shown in Table 5.2. The cost Cp/o for transferring a set of
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Diag-Join(R_1, interOp(R_N), m_p, 1) {
/* phase 1 */

ratio = |R_N| / |R_11;
allocate array arr[l] of hash tables;
fill arr[1] to arr[l/2] with tuples from R_1;
do {
t_N = next tuple from interOp(R_N);
zig-zag search hash tables for matching tuple;
if (matching tuple found) {
join tuples;
output results;

}
else {

write t_N to tmpBuf;
}

if (notified from access operator on base relation R_N) {
if(all hash tables are full) {
clear least recently loaded hash table;
load next pages from R_1 into cleared hash table;

}
} while (tuples from interOp(R_N) remain);

/* phase 2 */

join R_1 with tmpBuf using any standard join algorithm;

Figure 5.6: Advanced Diag-Join algorithm

||R:|| pages from disk to memory, or vice versa, through a buffer of size B, is given by

|| Be |

ol B2) — |1

[mes a7 (1)

where T}, is the sum of the average seek and latency time and 7} is the cost for transferring
a page between disk and memory.

The costs for Diag-Join consist of the costs for the first and the second phase.

CDIAG(Rh RN) - CPhasel + CPhase2 (52)

In the first phase we have to read R; and Ry, hash all tuples of R;, look for matching
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‘ Symbol ‘ Definition ‘

Cr/o | cost for transferring pages between disk
and memory

B, arbitrary buffer

Ty sum of average seek and latency time

T; time for transfer of one page

Tc

T;

time for hashing a tuple
time for finding the join partner of a tuple

Table 5.2: Parameters for cost model

tuples and join them or write the mishits to disk.

CPhasel - CRead R + CCreateHash + C’Read Ry +
C’Join + CWrite (53)

The individual parts of Cppqse1 are defined as follows:

Cheadr, = Crio([|R1l],p) (5.4)
Coreateriash = | Fa| - T, (5.5)
Cread Ry = Crjo(||Bnl];1) (5.6)
Cron = |Rn|-Tj (5.7)

(5.8)

C(Wm'te = CI/O(HtmszleH?l)

The costs in the second phase depend on the join algorithm used. In our case we applied
GRACE hash join in the second phase (for cost models of GRACE hash join see [40, 42]),
hence

Cphase2 = Caracr(R1,tmpFile) (5.9)

Even though we present an estimation for normally distributed tuples in Section 5.1.5
approximating ||tmpFile|| will not be a trivial task. As the assumption of normally
distributed tuples is probably not valid for all applications we recommend the following
procedure. During times of low workload (or an issued run-stat command) a shortened
version of the first phase of Diag-Join is processed. This shortened version is used to
determine |[tmpF'ile|| without actually creating the temporary file or any result tuples.
Details on the estimation of the size of the temporary file and the shortened version of
Diag-Join are subject of Section 5.1.5.

The query optimizer of a DBMS needs to be supplied with the above cost model and its
parameters (especially an estimation of ||tmpFile||) to enable it to make a decision about
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‘ Symbol ‘ Definition
N(a,b, p,0) | normal distribution
n(z, u,o) | density function of normal distribution
4(1) expected position of matching tuple
myo(7) start position of middle hash table
mp; () end position of middle hash table

wie(1) start position of window (w;,(7) < my,(7))
W (1) end position of window (mp;(2) < wp,(i))
hy average number of tuples per hash table

Table 5.3: Parameters for mishit probability

the application of Diag-Join. The costs for joining base relations can be approximated
by using (5.2) without modifications. If order-preserving intermediate operators occur,
the standard techniques of the optimizer to estimate the costs of complex queries have to
be applied (e.g. calculating the cardinalities of the intermediate relations and the size of
Diag-Join’s temporary files (tmpFile) with the help of selectivities).

5.1.5 Calculating the mishit probability

In this section we derive a formula for calculating the mishit probability, that is, the
probability that an arbitrary tuple from Ry turns out to be a mishit. Table 5.3 summarizes
the needed parameters.

With the help of this probability the size of the temporary file can be estimated:

[tmpFile| = Prg,,(Ry|[i]is a mishit) - |Ry| (5.10)

As already mentioned, we assume that the derivation of the relations from perfect clus-
tering can be described by a normal distribution. The normal distribution n(z, u, o) with
mean u and standard deviation o is defined as follows.

1 (z—p)?

e 202 (5.11)

e, 0) = oV2n

We also need to know the probability that x is in the range between a and b. This can
be calculated by the distribution N(a,b, u, o).

N(a,b,p,0) = /b n(z, p,o)dx (5.12)

a

Let us illustrate the concept of normally distributed tuples. For the tuple Ry|[i] at position
i (1 < i < |Ry|) in relation Ry, we expect to find the matching tuple at position
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jli) = [z ”g}lvﬂ in relation Ry, if the relations are perfectly clustered. There may be

some deviation, however, as indicated by the bell-shaped curve in Figure 5.7. The curve
indicates the probability that the matching tuple can be found at a certain position around
j(i) in R;. The middle hash table in the window starts at position m,(i) and ends at
position my;(i) (h; is the average number of tuples per hash table):

muo(i) = (F}(L—ﬂ - 1) chy+1 (5.13)

it  ([29]) -

wio(7) and wp,(i) are the smallest and largest positions of the elements found in the
window, respectively (we assume that [ is odd):

l

wioli) = muoli) - M I (515

[

wh(i) = mau(i) + EJ Ty (5.16)

Please note that for a better readability we have refrained from covering the special cases
at the start and end of R;.

The probability that Ry[i] turns out to be a mishit is the probability that the matching
tuple is not inside the window:

Pr(Ry[i] is a mishit) = 1 — N(wio(3), wns (i), (i), 0) (5.17)

When scanning through Ry this probability changes, because j(i) moves through the
middle hash table from my, (i) to my;(i). Whenever j(i) reaches my,;(i) the window slides
down by the specified step size.

We are interested in attaining a mishit probability below a threshold value pgecepe. This
is tantamount to limiting the size of the temporary file. How large do we have to choose
the window size m, (and the step size h;) to guarantee Prq,,(Ry|i] is a mishit) < paecept?
The mishit probabilities of the tuples in Ry repeat themselves for each window as j(7)
passes from my, (i) to my;(i). So the average mishit probability can be approximated by

1-— N(lamtaja U)

Prayqg(Rn|i] is a mishit) = Z (5.18)

This formula is very impractical as it can only be evaluated numerically and we still lack
a way to determine o precisely. Therefore, when estimating the needed window size, we
recommend using histograms. Histograms can be built in a single scan through R; and
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Figure 5.7: Normally distributed tuples

Ry with as large a buffer as possible. For each tuple in Ry the absolute value of the
difference between the expected position and the actual position of the matching tuple
in R, is inserted into the corresponding bucket of the histogram. Mishits are counted
separately. The resulting histogram (for an example see Figure 5.8) can be used to
approximate the smallest required window size for a given probability paccept-

5.2 Benchmarks

This section is composed of two parts. Within the first part we describe the benchmark
environment and how the benchmarks were run. In the second part we present the results
and analyze them.
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Figure 5.8: Histograms for measuring deviation from perfect clustering

5.2.1 Benchmark description

The benchmarks were executed on a lightly loaded Sun UltraSparc 1 (143 MHz) with
288 MByte main memory running under Solaris 2.5.1. The data we worked with were
generated for a TPC-D benchmark with a scaling factor of 1 [90]. We joined the relations
Order and Lineitem (see Figure 5.4 for the schemes). The relation Order was sorted on the
attribute orderdate, Lineitem was sorted on shipdate. Note that this does not result in an
ordering on the join attribute orderkey in the relations, but it models clustering by time
of creation nicely. Moreover, in the TPC-D benchmark the positions of matching tuples
are not distributed normally, but uniformly in an interval. Shipping dates are determined
by adding 1 to 121 days randomly (uniform distribution) to the corresponding order date.
As this is unrealistic, we expect Diag-Join to be even more efficient in practice.

The algorithm was implemented in C++ using the Sun C++ Compiler Version 4.1. It
was integrated into our experimental Data Warehouse Management System AODB [93].
We buffered one page of mishits in main memory. For the standard join algorithm in the
second phase of Diag-Join we used GRACE hash join [32, 85|. For the index nested-loop
join we indexed the attribute orderkey on the relation Order with a BT-tree using the
Berkeley Database package 2.

In a first step we optimized some parameters of Diag-Join, e.g., the optimal number of
hash tables. Then we compared the total costs, CPU-based costs and I/O-based costs of
Diag-Join with blockwise nested-loop join, GRACE hash join, and index nested-loop join
for different buffer sizes. We did not look at hybrid hash join, because for large relations

2Berkeley DB toolkit: http://www.sleepycat.com/
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Order Lineitem
orderkey orderkey
custkey partkey
orderstatus suppkey
totalprice linenumber
orderdate quantity
orderpriority extendedprice
clerk discount
shippriority tax
comment returnflag
linestatus
shipdate
commitdate
receiptdate
shipinstruct
shipmode
comment

Table 5.4: Relations Order and Lineitem from TPC-D

29

relative to the size of main memory, GRACE hash join performs as well as hybrid hash
join [42, 85]. Table 5.5 summarizes the parameters for the benchmarks. As can be seen the

chosen buffer size is at most

1
50

for Data Warehouses in which huge relations can be found.

of the size of the relations. This is a realistic assumption

Parameter

‘ Value

Page Size

4 KByte

Size of Order

44,475 pages

Cardinality of Order

1,500,000 tuples

Size of Lineitem

189,635 pages

Cardinality of Lineitem

6,001,215 tuples

Buffer size (window size)
for Diag-Join
Step size (Window size/5)

300 - 4000 pages
(1.17 MByte - 15.62 MByte)
60 - 800 pages

Bulffer size for Nested-loop join
(blockwise and index)

300 - 4000 pages
(1.17 MByte - 15.62 MByte)

Buffer size for GRACE join

300 - 4000 pages
(1.17 MByte - 15.62 MByte)

Table 5.5: Parameters used for benchmarks
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5.2.2 Benchmark results

Tuning the Diag-Join algorithm

Diag-Join of Order with Lineitem
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Figure 5.9: Granularity of hash tables

When joining relations with Diag-Join, we have to choose the right step size and buffer
size for the window. Two effects have to be considered. If we use a large number of
hash tables (small step size), we avoid cutting off matching tuples in the vicinity of the
expected positions. However, the more hash tables we use, the longer the zig-zag search
will take.

For small buffer sizes the step size is irrelevant, because the number of mishits caused by
a large step size is small compared to the total number of mishits. For large buffer sizes,
however, the number of mishits is relatively small and the step size has a noticeable effect.
Decreasing the step size (i.e. increasing the number of hash tables) leads to a smoother
scrolling of the window and thus fewer mishits caused by cutting off matching tuples (see
Figure 5.9). Reducing the step size further does not improve the mishit ratio significantly.
The run-time might even deteriorate as it is dominated by the search time for the zig-zag
search in this case.

For our benchmarks we divided the window into five hash tables. In general this turned
out to be a good compromise between optimizing the step size and the search time.

In Figure 5.10 the percentage of mishits in the relation Lineitem is depicted. The results
of these measurements are straightforward. The more buffer we allocate, the lower the
probability that a tuple from Lineitem will be a mishit, because the probability to find
the matching tuple in a hash table increases. For large buffer sizes the effect of a large
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Figure 5.10: Percentage of mishits

step size can be clearly seen, as the percentage of mishits rises for a low number of hash
tables. (The curves marked with (t) are theoretical values assuming that the deviation
of the relations from perfect clustering can be described by a normal distribution (see
Section 5.1.5).)

Comparison with other join algorithms

In this section we compare Diag-Join with blockwise nested-loop join, GRACE hash join,
and index nested-loop join. The results for total runtime of all algorithms for joining
the relations Order and Lineitem on the attribute orderkey are shown in Figure 5.11.
Blockwise Nested-loop join is used as a reference, not as a serious competitor.

Total costs Blockwise nested-loop join performs worst. This comes as no great surprise,
because the ratio between the buffer size and the relations’ sizes is very unfavorable.

For sufficiently large buffer sizes (>3000 pages or 6% of ||Order||) Diag-Join easily out-
performs GRACE hash join, because in this case all tuples are joined in the first phase
of Diag-Join and no additional phase for joining the mishits is needed. For medium-sized
buffers (between 1000 and 3000 pages) Diag-Join is still faster than GRACE hash join and
only for very small buffer sizes (<1000 pages or 2% of ||Order||) GRACE hash join per-
forms better. What are the reasons for this? The first phase of Diag-Join has a relatively
low overhead, but is still able to join a certain number of tuples (see Figure 5.12). This
takes at least some of the load off GRACE hash join in the second phase of Diag-Join.
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Total cost of different join algorithms
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Figure 5.12: Total number of mishits

So the overhead for the first phase of Diag-Join is not as large as one might expect and
even pays off for smaller buffer sizes.
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Diag-Join also performs much better than index nested-loop join. Although index nested-
loop join also profits from the clustering of Order, we have to access the tuples indirectly
through a B*-tree, which leads to a much higher overhead than hash table lookups. Since
we used a generic Bf-tree (Berkeley DB toolkit) for the index join we had no guarantee
on how much buffer was really allocated for the index lookups. Nevertheless the interface
allowed to give hints, which we did by setting the buffer size to 4000 pages. Therefore we
have only one measurement for the index join.

CPU cost of different join algorithms

Diag-Join ——

10000 ¢ GRACE-hash —+— 7
blockwise nested-loop —~—
index nested-loop (hint:4000 pages) —-—

1000 ¢ E

elapsed time in sec

100 | \

10 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
buffer size in 4K pages

Figure 5.13: CPU costs of join algorithms

CPU-based costs Let us now have a look at the CPU-based costs of the join algorithms
(see Figure 5.13).

The more memory we have available, the lower the costs of the blockwise nested-loop join
are. This is obvious as the number of necessary loops decreases with increasing buffer
size.

As long as it is sufficiently large, the size of the hash table directories is irrelevant for
the CPU-based costs of GRACE hash join. The CPU-based costs for GRACE hash join
are composed of the costs for hashing all tuples of Order, hashing all tuples of Lineitem,
hashing all tuples of Order again during the merge phase, and doing | Lineitem| lookups
on this hash table. This leads to nearly constant costs.

The CPU-based costs for index nested-loop join are very high on account of the generic
Bf-tree package we used. Some of these costs could be reduced by implementing a B*-
tree customized for AODB. However, this will not reduce the costs for searching the inner
nodes of the tree, which will always be higher than (maximal) 5 lookups in hash tables.
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Figure 5.14: CPU-based costs for the first phase of Diag-Join

The CPU-based costs for Diag-Join for the first phase are almost constant regardless of
buffer size, because Order and Lineitem are simply scanned (see Figure 5.14). The slight
increase is caused by the costs for joining the tuples. The more available buffer there is
in the first phase, the more tuples will find a join partner in this phase. (We did not
write mishits to disk while measuring the CPU-based costs for the first phase.) The total
decreasing CPU-based costs for Diag-Join are caused by falling costs of GRACE hash join
in the second phase, as the number of tuples in the temporary file steadily decreases.

I/O-based costs The I/O-based costs are displayed in Table 5.15. For the blockwise
nested-loop join we have the same behavior as for the CPU-based costs. The larger the
buffer size, the smaller the number of loops and the lower the costs.

For GRACE hash join the I/O-based costs decrease with increasing buffer size. Beyond
a certain buffer size, however, the seek and latency time becomes small and the costs for
transferring the data dominate. As Order and Lineitem are always read twice and written
once, a larger buffer does not change the transfer costs. Therefore the I/O-based costs
level out.

Index nested-loop join also buffers pages of Order in main memory. When loading these
pages into memory, however, they are not accessed sequentially. Therefore seek and
latency time is considerably higher for index nested-loop join than for the other join
algorithms.

When allocating large buffers for Diag-Join (> 3000 pages, which corresponds to about
6% of the size of Order), all we have to do is to read Order and Lineitem once and we
are finished. Hence we have low I/O-based costs in this case. For small buffers (< 3000
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Figure 5.15: 1/O-based costs of join algorithms

pages) all tuples of Order and Lineitem are read once in the first phase. Additionally,
part of Lineitem is written into a temporary file, which is then joined with Order. When
we decrease the buffer size, the temporary file will grow (because of a larger number of
mishits) leading to higher join costs for GRACE hash join in the second phase.

5.2.3 Summary of Benchmarks

If we have a clustering of relations by time of creation, Diag-Join performs very well
(up to two and a half times faster than GRACE hash join and considerably faster than
blockwise/index nested-loop join). Diag-Join needs sufficient memory (about 6% of || R, ||
in our benchmark) to achieve the best case, but even for small buffer sizes the performance
is still satisfactory.

Obviously, when joining relations that are not clustered by time of creation, i.e., relations
with randomly placed tuples, Diag-Join will not perform better than other algorithms. In

this case we expect a high rate of mishits as on average only %rlsize - Ry of the tuples
in Ry will find a matching tuple in the first phase. Diag-Join will not be a total failure
in this case, however, as its overhead is not large and tuples that find a match need not

be joined in the second phase, which decreases the costs of the join there.
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5.3 Conclusion and Outlook

We developed a join algorithm, called Diag-Join, for any environment in which joining
relations (or extents in object-oriented DBMS) clustered by time of creation takes place.
We take advantage of the fact that incoming data is appended to the end of relations (or
extents), resulting in a clustering of the tuples (or objects) by time of creation. When
this is the case, often a single merge phase suffices for joining these large relations. This
results in lower join costs than for any other join algorithm.

We implemented Diag-Join and integrated it into our experimental Data Warehouse Man-
agement System AODB. There we ran benchmarks based on the TPC-D relations Order
and Lineitem. A careful analysis of the behavior of Diag-Join and the comparison with
blockwise nested-loop join, GRACE hash join, and index nested-loop join revealed the
impressive performance of our join algorithm. It ran two and a half times faster than
GRACE hash join (the latter being on equal grounds with hybrid hash join in our case)
and considerably faster than blockwise/index nested-loop join. However, we recommend
that Diag-Join should only be used for at least loosely clustered relations, because for
non-clustered relations the results are less favorable.

Diag-Join can be improved further by integrating it tightly into the join algorithm exe-
cuted in the second phase. For example, the merging phase of Diag-Join can be coupled
with the partition phase of GRACE hash join, i.e. all tuples that do not match are
immediately partitioned. This would avoid the first scanning step of GRACE hash join.

An open question is the derivation of accurate (and not overly complex) methods for
estimating the costs of a Diag-Join operator in a query-plan beforehand. This includes
finding a measure for the degree of “clusteredness” of relations and the measurement of
the effect of various other relational operators on the “clusteredness”.



Chapter 6

Introduction to Index Structures

Like the aforementioned join algorithms index structures are transparent for the user,
but play a key role in database performance. When searching for relevant data, the
straightforward approach is to scan through all data and test every data item. This can
be inefficient and cumbersome, especially if huge volumes of data are involved. Index
structures allow fast access to data on secondary storage by content. The subject of
indexing is a research topic of great interest as hundreds of different index structures
have been proposed. Enumerating all these different index structures would go beyond
the scope of this work. There are, however, a few underlying principles to all index
structures, which we will describe in this chapter.

In the first section we give an overview of the general storage hierarchy in computing
systems. Section 6.2 covers an abstract definition of queries, which we use to illustrate
how index structures work. The basic principles of index structures are described in
Section 6.3.

6.1 Storage Hierarchy

In every computing system, also in every DBMS, we have several layers of storage (see
Figure 6.1). Generally the higher a memory type is positioned in this hierarchy, the faster,
the costlier, and the smaller it becomes. The differences between the levels are usually
several orders of magnitude. We divide this hierarchy into three sub-categories: primary,
secondary, and tertiary storage. Primary storage consists of CPU-registers, cache memory,
and main memory, the secondary storage comprises the disk level, and tertiary storage
includes the tape level. We restrict ourselves to the levels that are most important for
index structures in DBMSs: main memory and disks.

6.2 Data and Queries

As this is an introduction to index structures we discuss the subject in a simplified manner.
Let us assume that we store a large number of data items in our database. We are
particularly interested in a subset of data items that we want to index to allow for efficient

67
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CPU-Registers

Cache Memory

Main Memory

Disks

Tapes

Figure 6.1: Levels of storage hierarchy

retrieval. Further we assume that the data items we want to index are all structured in the
same way, i.e. they have attributes a, b, c, ... with corresponding domains D,, Dy, D,, .. .,
so a data item ois in ® = D, x Dy x D, x .... We refer to the value of an attribute a of a
data item o by o.a. We call the set of data items that are actually present in our database
an instance §2, i.e. Q C ®. Without loss of generality we assume that ) consists of n
data items: Q = {0y, 09,...,0,}. The data items in € are stored on pages in secondary
storage (see Figure 6.2). During query evaluation, data items have to be fetched into
main memory, which is considerably smaller than secondary storage.

A query is formulated in terms of a unary query predicate q. A unary predicate is defined
as in first-order predicate calculus, so it is a mapping from ® to {true,false}. When
evaluating a query, we want to obtain all data items that satisfy the query predicate g,
i.e. determine the answer set A, = {olo € Q A ¢(0) = true}. For example, let us assume
that we have created a relation Employee in our database (see Figure 6.3). In this case the
data items are the records representing the tuples of the relation. If we want to formulate
a query that fetches all persons who are older than 30 years, we would use the query
predicate gages30(0) := 0.Age > 30. The data items o1, 02, and o4 will be found in the
answer set, because they satisfy the predicate gages30(0).

How do we evaluate a query? The straightforward way is to fetch all data items and check
the query predicate individually for each data item. This is quite expensive, as all data
items have to be transferred from secondary storage to main memory and the predicate
q has to be checked n times. Taking a closer look at DBMSs we notice the following:

e often only a fraction of the data items satisfy a given query predicate

e queries often use similar predicates
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Figure 6.2: Transfer from pages into main memory

Name  Salary Age
oy Jones 45,000 32
0o  Smith 50,000 45
o3 Hayes 38,000 26
o4 Green 75,000 53
o5  Brooks 40,000 28

Figure 6.3: Employee relation

e secondary storage, like main memory, can be accessed randomly

Index structures exploit these properties of queries in order to reduce the accesses to
secondary storage. This is a wide field of research, which is shown by the fact that
hundreds of different index structures exist. Instead of discussing all these different index
structures, we now explain what principles they work on. This is similar to the framework
for trees presented by Hellerstein, Naughton, and Pfeffer in [44], though our approach is
more general and more rigorous.

6.3 A General Framework for Index Structures

We want to avoid unnecessary transfer of data items from secondary storage to main
memory, i.e. ideally we only want to fetch data items that satisfy the query predicate
q. Often query predicates refer to certain properties of data items, e.g. the predicate
gage>30 checks the value of the attribute Age. Our goal is to speed up query evaluation by
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concentrating on the parts of data items that are essential for the evaluation of a query
predicate q. We use predicates to describe properties of data items. Due to efficiency
reasons, these predicates are not implemented explicitly in actual index structures, but
help us in explaining the principles of index structures. In the following, we generalize
the notion of search keys in terms of predicates. Furthermore, we explain how queries are
evaluated on an abstract level using predicates. We then describe the general principles
found in index structures (e.g. filters, tree structures, hashing techniques).

6.3.1 Describing predicates

We call a predicate that describes the property of a data item a describing predicate. It
is defined as follows.

Definition 6.3.1 A predicate p describes a data item o € §, iff p(o) = true.

One possible describing predicate of data item oy in our employee relation (see Figure
6.3) is pa(0) := 0.Age = 45, because ps(09) = true. Describing predicates generalize the
concept of a search key, i.e. search keys in index structures can be seen as a way of
representing describing predicates.

6.3.2 Query Evaluation

We assign a describing predicate p; to a single data item or a set of data items®, so that
each data item is described by a predicate. During query evaluation, if we discover that
pi A\ q is unsatisfiable, we know that all data items described by p; cannot possibly satisfy
the query predicate ¢ and we do not need to fetch them.

Definition 6.3.2 Assume that p; is a describing predicate and q a query predicate.
pi A\ q is a contradiction (p; \ q is unsatisfiable) < ¥ o € ® p;(0) A q(o) = false

At first glance this definition looks too general, as it involves all data items in ®. Nev-
ertheless, this approach makes sense. No matter how many data items are described by
a predicate or how many new data items are inserted into our database (changing ), if
p; N\ q is unsatisfiable, we are guaranteed not to overlook any qualifying data items.

The general problem of determining whether or not p; A ¢ is a contradiction is intractable.
That is one of the reasons why it is not possible to construct a multi-purpose index struc-
ture that is capable of supporting the efficient evaluation of each and every conceivable
query. In practice, however, each index structure only supports a restricted set of query
types. For these special query types the problem of detecting contradictions can be trans-
formed into much simpler problems that can be solved very efficiently. In the following we
describe different approaches of transforming the problem of determining contradictions,
that is, we develop a general framework for index structures.

3This will become important in Section 6.3.5 on hierarchical index structures.
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6.3.3 Projection

Let us look at the records of our relation Employee again. Assume we want to support
queries with query predicates of the form gag(0) := 0.Age 6 ¢ where 6 € {=,<,>} and
¢ € Dpge. In order to support the evaluation of queries concerning the attribute Age,
we define the describing predicates as p;(0) := 0.Age = 0;.Age, where o0;.Age is the value
of the attribute Age of data item o;. We assign a describing predicate p; to each data
item o; € € (the describing predicate have the same subscript as the corresponding data
item). In this special case it is very simple to determine whether or not p; A gage is a
contradiction. All we have to do is to distinguish three different cases:

w__n,

o (is : i N\ Qage is a contradiction < 0;.Age # ¢
e 0is “<”: p; A gage is a contradiction < 0;.Age > ¢
e 0is “>7: p; A gage is a contradiction < o0;.Age < c
We have transformed the problem into a simple comparison between values of Djge. So it

suffices to hold a copy of the value of the attribute Age of each data item, which represents
the describing predicate, and a reference to the data item in the index (see Figure 6.4).

01| | O2 03 04

Figure 6.4: Example for storing predicates p; for relation Employee compactly

When evaluating a query the constant ¢ of the query predicate is compared to the value
of Age of each data item in the index. Only if there is no contradiction, we fetch the
data item. This speeds up query evaluation as the attribute values of Age can be stored
more compactly in the index than the data items themselves. Therefore the index can
be scanned much faster than the set of all data items and only qualifying data items are
fetched. An index that works in this way is called projection index [31].

6.3.4 Filter

In our previous example we were able to transform the problem of determining if p; A q is
a contradiction to simple comparisons of numbers. Merely projecting onto an attribute is
not always an efficient transformation though. Consider a geographical database storing
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Figure 6.5: Outlines of countries in a geographical database

two-dimensional data (maps of countries). Each data item has the attributes Name, Cap-
ital, and Qutline (see Figure 6.5). The attribute Outline contains lists of point coordinates
describing polygons.

We want to support containment queries, which are typical in this context. Given a point
(z,y) € R? we want to know if this point is contained in the outline of a country. We
have query predicates of the form

v in(0) = true if 0. Outline contains (z,y)
Goy-is-in ] false else

Using the projection technique from the last section we would define our describing pred-
icates as follows:

(0) = true if o. Outline = o0;. Outline
Pi\9) =1 false else

Determining whether p; A g, _y s in i a contradiction boils down to

Di A Qz_y_is_in i & contradiction < o;.Outline does not contain (z,y)

Checking if a point is contained in a polygon can be costly for large polygons. Copying
the values of the attribute Outline to a separate place on disk and scanning them is not
more efficient than just scanning the data items themselves. So just using a projection
index straightforwardly will not work in this case.

A technique used in geometrical applications to simplify the detection of contradictions
are bounding boxes. A bounding box is defined as the smallest rectangle, whose sides are
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parallel to the x- and y-axes, that completely covers the outline. Usually the coordinates
of the lower left (z™® y™) and upper right corner (z™2*, y™a) are given (see Figure 6.6).
The resulting index structure is depicted in Figure 6.7. For each data item we store the
coordinates of the lower left and upper right corner of the bounding box of its outline.

(X{nin, ylmi” ) (X?In ’yzmln ) (Xr3nin ’ysmin )

Figure 6.6: Bounding boxes
Instead of checking whether o;.Outline contains the point (x,y) we check whether the

bounding box of o; contains (z, y). Note that this is not equivalent to determining whether
Di N\ Qu_y_is_in 18 a contradiction, this is just an implication:

(lein, ylmin ) (ngin ’yzmin ) (ngin ’ygmin )
O™y ) 0™ v ) [0G™ ™ )

g

0y J o2
Name: Great Britain Name: France Name: Itay
Capital: London Capital: Paris Capital: Rome
Outline: Outline: Outline:

|

Figure 6.7: The complete geographical index

Di N\ @z _y_is_in 1S @ contradiction <= (z,y) is not in bounding box of o;, i.e.
T <P orx > P ory < Yy or y > gy
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If (x,y) is not in the bounding box or o;, then we are sure that p; A ¢u_y_is_in is & con-
tradiction. Let us prove this assertion. For a moment let us assume that the assertion is
false, that is a data item o; exists for which (z,y) is not in the bounding box of o; and
Di N\ Qu_y_is_in 15 DOt a contradiction. It follows that a data item o; € ® exists for which
pi(0j) = true and g, _y is_in(0j) = true. As p;(0;) = true we know that o; has the exactly
the same outline as o;. Therefore g, , ;s in(0;) = true also holds, i.e. the outline of o;
contains (z,vy), too. If (z,y) is contained in o;. Outline, then the bounding box of o; also
contains (z,y). This is contrary to our assumptions, therefore the assertion is true.

If we know that p; A gy isin is a contradiction, this does not necessarily imply that
(x,y) is not in the bounding box of o;, however. So data items may exist for which
Di A Qu_y_is_in 1S a contradiction, but (z,y) is contained in the bounding boxes of these
data items. These data items are called false drops or false positives, because they do
not satisfy the query predicate, but are fetched nonetheless. After fetching a data item
we check if it really satisfies the query predicate g, , s in using more costly algorithms.
By doing a quick pretest, however, we have avoided doing this for all data items. This
technique is called filtering [15]. The main task in building effective filters revolves around
finding transformations of the problem of detecting contradictions that can be evaluated
efficiently without causing too many false drops.

Up to now we have avoided the (expensive) transfer of all data items from secondary
storage to main memory. However, we still have to evaluate (at least) n predicates and
we have some overhead administrating describing predicates. In the next section we show
how we can improve the retrieval even further.

6.3.5 Hierarchical Organization

For fast query evaluation we want to avoid as much transfer of all kinds of data from
secondary storage to main memory as possible. In addition to eliminating data items
from the search process we want to access only describing predicates p; that do not
contradict the query predicate q. One way we can achieve this is by organizing the
describing predicates hierarchically.

Second Level | P1 | P2 | P3|

First Level Pi| P2 | Pa | Pa| Ps| P

Figure 6.8: Two level hierarchy



6.3. A GENERAL FRAMEWORK FOR INDEX STRUCTURES 75

General description

In the last sections we described techniques that help speed up query evaluation. One
drawback of these techniques was the need to scan all index pages. It would be helpful to
avoid all index pages that lead to data items whose describing predicates contradict the
query predicate. We could describe index pages with predicates and fetch only those index
pages whose predicate does not contradict the query predicate. Figure 6.8 illustrates the
concept. For the sake of simplicity let us look at the index as if we stored the predicates
in the index (in practice we would store representations of them). The predicates on the
first level are ordinary describing predicates of data items (p; for o1, ps for os, and so on).
The predicates on the second level (annotated by p?) describe sets of predicates on the
first level. In Figure 6.8 predicate p? describes pi,ps and ps and predicate p3 describes
P4, ps and pg. Usually all predicates found on one page are combined into a set.

How are the predicate on the second level chosen? We require that the following condition
is satisfied by second level predicates.

Definition 6.3.3 p? is a second level predicate of the first level predicates p;, , Diyy - - - » Pi,, »
iff pi, = py, holds for all j, 1 < j < m.

When evaluating a query, we go through all predicates p} on the second level and check
if they contradict the query predicate. Only if there is no contradiction we fetch the
corresponding predicates from the first level and check those. That way we are sure that
no data item will be overlooked. We assume without loss of generality that data item o;
satisfies the query predicate q. By definition p;(0;) is true and since p; = p; we know
that pi(o;) is also true. Therefore p? A g cannot be a contradiction, because p3(0;) A q(0;)
is true. As each p; only implies p? false drops may exist, i.e. there could be cases where
p2 A q is not a contradiction, but for each p;, p; A q is a contradiction. So sometimes first
level pages are fetched unnecessarily.

Let us return to the index for our relation Employee. We already defined in Section 6.3.3
the general form of query predicates and describing predicates. We construct second
level predicates in the following way. Assume p} describes the first level predicates P =

{pilvpiza te 7pim}'

p3(0) := minAgey, < o.Age < mazAgey,

with

minAge, = min({o;,.Age|p;, € P})
mazAgey, = max({o;,.Agelp;, € P})

Now to determine, if p contradicts a query predicate gage we do the following:
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w_ .,

e 0is “=": p? A qage is a contradiction < minAge, > ¢V mazAgey, < c
e 0is “<”: pi A qage is a contradiction < minAgey > ¢

o fis “>": p2 A Qage is a contradiction & mazAge, < ¢

All we need to know to check for contradictions of the query predicate with a second
level predicate p; are the lower and upper bounds of the interval defined by pi. Figure
6.9 shows a two level index for the records of the relation Employee. Note that we also
exploited the fact that a total order exists on the domain D 44.. In this way we can avoid
largely overlapping intervals.

Second Level 26324553 ... |
\

First Level | 261821 | 4 | 58

Figure 6.9: Example of a two level index

Inserting new data items

The advantages of this two-level organization come at a price. Updating these structures
is more costly than updating a single level index. When inserting a new data item o; we
try to insert it in such a way that no second level predicate needs to be changed. That
is we look for an ideal predicate p? for which p; = p;. If this is not possible we have to
introduce a modified second level predicate pj? such that p} = p? and p; = pj>. When
doing this we have to be careful to cause few additional false drops.

Let us illustrate the insertion of a new data item with our example. We want to insert a
new data item, o9, into the structure depicted in Figure 6.9. The value of the attribute
09.Age is equal to 35 and therefore py(0) := o0.Age = 35. In this example we have
two options to insert og, on the left index page with second level predicate p?(0) := 26 <
0.Age < 32 and on the right index page with second level predicate p3(o) := 45 < 0.Age <
53. Both options are not the ideal case. We can introduce a pseudo-metric for our index
that measures the expected difference in efficiency for both options. As a quick reminder
a pseudo-metric is defined as follows.

Definition 6.3.4 Let M be a set. A functiond: M x M — IR is called a pseudo-metric,
iff (assuming z,y € M)
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1. d(z,y) = d(y, z)
2. z=y=d(z,y) =0

3. d(z,y) +d(y,z) > d(z, 2)

In our example we would like to keep the increase of the intervals of the second level
predicates small in the hope that less false drops will occur. Assuming that domain
D p4¢ = IN, a possible pseudo-metric could be

d(p2,p?) := |(maxAge, — minAge, + 1) — (maxAge, — minAgey, + 1)|

Inserting oy on the left index page would result in the second level predicate pf(o0) :=
26 < 0.Age < 35, inserting it on the right index page in p§(0) := 35 < 0.Age < 53. As
d(p?,p}) = 3 is smaller than d(p3,p%) = 9 we insert oy on the left side.

Finding the right place for insertion is not the only problem. There may not be enough
space left on the first level page where we want to insert a data item o; with a describing
predicate p;. We then have to split this first level page. We do this by dividing the rep-
resentations of the predicates p;,, pi,, - - ., Pi,, present on this page and the representation
of p; into two approximately equal sized sets P, and P,. For these two sets we determine
two second level predicates p2 and p2 such that for all p € P, p = p2 holds and for all
peElP,p= pz holds. When splitting up the describing predicates into P, and P, we have
to be careful not to cause too many false drops.

Let us illustrate the splitting process with an example. Assume we have the access
structure shown in the upper half of Figure 6.10. We want to insert a new data item oy
with 019.Age = 27 and pyo(0) := 0.Age = 27. This time we can find a describing predicate
on the second level that fits perfectly, i.e. we do not need to modify any predicate on the
second level. However, there is not enough space left on the first level page, so we have
to split it. The upper half of Figure 6.10 shows the state before insertion, the lower half
the state after insertion. Again we have exploited the total order on D44 to attain small
intervals for the second level predicates.

Eventually the representations of the predicates on the second level also have to be ad-
justed or moved. If we shift them to the right to make room for a new items, the technique
is called ISAM (index-sequential access method) [34].

We could also describe predicates on the second level with predicates on a third level and
so on. If we do not limit the hierarchical organization to two levels we get tree struc-
tures. Then we would split overflowing pages regardless of their level and propagate the
changes to higher levels. Examples for index structures that work after these principles
are B-trees [3], Quad-trees [30], R-trees [39], and S-trees [20]. Each uses different rep-
resentations for the describing predicates and different strategies for handling insertions,
but the underlying principles are the same.
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Before insertion:

Second Level 2532 |

First Level | 25| 30| 32 |

After insertion:

Second Level 25273032 |

First Level 25 | 27 30 | 32

Figure 6.10: Splitting a predicate

6.3.6 Partitioning

The space required to store representations of describing predicates may still be quite
large even when using weakened predicates. When we organize describing predicates
hierarchically, we determine the predicates on the higher levels when needed, i.e. when
we split pages. This is a very dynamic process; indeed, depending on what kind of data
items we insert in which order, the describing predicates on higher levels can look very
different from case to case.

For certain applications we can devise efficient access structures and not store explicit
representations of describing predicates at all. If we have strict rules governing the form
of the query predicates and the representations of the describing predicates, we can arrange
the data items systematically. Given a query predicate it would be possible to calculate
the positions of all data items whose describing predicate does not contradict the query
predicate.

We can visualize this principle with our Employee relation. The describing predicates
have the form given in Section 6.3.3. For now we allow only query predicates of the form
@age(0) := 0.Age = c. Supporting the efficient evaluation of queries with query predicates
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Figure 6.11: Partitioned index

having other comparison operators is not straightforward or not even possible. We could
store all tuples for which 0.Age mod 10 = j in container 5. We only need to store the
references to the containers, the representations of the describing predicates are not stored
anywhere. The place where the references are stored is called directory, the containers are
called buckets (see Figure 6.11). Buckets are not necessarily restricted to one page. When
searching for all persons of a particular age, we can calculate the position in the directory
of the correct reference by ¢ mod 10. We then scan the corresponding bucket for qualifying
data items (using the above mapping data items with 0.Age = ¢+ 10 - j are also found in
the same bucket). The technique described above is called hashing. Usually the function
used for calculating the correct position, called hash function, is more sophisticated to
allow a better distribution of the data items in the buckets.

The method of partitioning is only feasible if the buckets do not grow too large. Otherwise
we have to do a costly sequential search in large buckets. However, we constantly insert
new data items into a database. This is a fact we have to consider when creating hash
indexes. When an overflow occurs, i.e. there is no space left in a bucket, there have to
be rules that dictate how the index has to be restructured. Partitioned index structures
that are dynamically restructured are called dynamic hashing index structures. Examples
for dynamic hashing are linear hashing [63] and extendible hashing [26].

6.3.7 Summary

Although at first glance index structures seem to vary widely, they are based on a few
underlying principles for reducing the transfer of data from secondary storage to main
memory. The main task in building high performance index structures is finding appro-
priate describing predicates and transforming the problem of detecting contradictions into
simpler problems that can be solved efficiently without loss of significance.



80

CHAPTER 6. INTRODUCTION TO INDEX STRUCTURES



Chapter 7

Index Structures for Set-valued
Attributes

One demand of modern day applications, especially in the object-oriented and object-
relational worlds, is the efficient evaluation of queries involving set-valued attributes. The
related research topic of indexing data items on set-valued attributes has attracted little
attention so far. We have modified and combined several existing techniques to speed
up set-retrieval. We compared our access methods theoretically and subjected them to a
series of experiments.

Examples of applications involving set-valued attributes include keyword searches and
queries in annotation databases containing information on images [9, 52|, genetic or
molecular data [2, 28]. Further, queries with universal quantifiers can be answered by
set comparisons [16]. Many sets found in set-valued attributes are small, containing fewer
than a dozen elements. Examples of applications where almost all sets are of low car-
dinality can be found in product and production models [37] and molecular databases
[1, 94]. We focus on applications where sets are small enough to be embedded into the
data items.

Indexing set-valued attributes is a difficult task for traditional index structures, because
the data cannot be ordered and the queries are neither point queries nor range queries.
Hellerstein, Koutsoupias, and Papadimitriou have shown in [43] that answering set inclu-
sion queries is more difficult than answering 2-dimensional queries. We have combined
many techniques from several different areas (partial-match retrieval, text retrieval, tradi-
tional database index structures, spatial index structures, join algorithms) to implement
five index structures for set-valued attributes: sequential signature files, signature trees,
extendible signature hashing, recursive linear signature hashing, and inverted files. Eval-
uating these index structures is very complex, since there is a huge number of parameters
involved. We have done a mathematical modeling and comparison, but the complexity of
the task and the weaknesses of theoretical tools for evaluating the performance of index
structures motivated us to conduct additionally extensive experiments. We reveal imple-
mentation details of our index structures so that the results of the experiments become
more transparent.

81
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Related work

Work on evaluation of queries with set-valued predicates is few and far between. Several
indexes dealing with special problems in the object-oriented [14] and the object-relational
data models [89] have been invented, e.g. nested indexes [5], path indexes [5], multi in-
dexes [68], access support relations [55], and join index hierarchies [95]. The predominant
problem attacked by these index structures is the efficient evaluation of path expressions.
With the exception of signature files [51] and Russian Doll Trees [45] the problem of
indexing data items with set-valued attributes has been neglected by the database com-
munity. Searching for sets that are supersets of a query set is the predominant query form
in text retrieval applications. Therefore the methods used in text retrieval, although at
first glance similar to our methods, are optimized only for this partial-match retrieval.
When indexing set-valued attributes, however, we have to look beyond that. In molecular
databases, for example, searching for characteristic parts of a large molecule is a common
query. So we need to support queries looking for subsets of a query set efficiently, too.
Retrieving sets equal to a query set, although a simpler case, should also not be forgotten.
Text retrieval techniques ignore the efficient evaluation of these two query types simply
because they are not needed in that context.

Outline

This chapter is organized as follows. The next section covers preliminaries, i.e. a formal
description of queries and a brief introduction to the storage manager we used to im-
plement the index structures. In Section 7.2 we describe the index structures. We then
devise a mathematical model and compare the index structures based on this model in
Sections 7.3 and 7.4. A detailed description of the environment in which the experiments
were conducted is the content of Section 7.5. We discuss the fine-tuning of the signature-
based index structures for the experimental environment in 7.6. We present and analyze
the results of the experiments in Section 7.7 for uniformly distributed data and in Section
7.8 for skewed data. Section 7.9 concludes the chapter.

7.1 Preliminaries

Before proceeding to the actual index structures, we need to explain some basics. Table
7.1 contains a summary of the symbols used throughout this chapter and their definitions.
The remainder of this section presents definitions of set-valued queries and takes a quick
look at the storage manager that was used.

7.1.1 Set-valued Queries

Our database consists of a finite set {2 of data items or objects o; (1 < i < n) having a
set-valued attribute A with a domain D from which the elements of A are chosen. Let
0;-A C D denote the finite value of the attribute A for some data item o;. A query
predicate q is defined in terms of a set-valued attribute A, a finite query set @Q C D, and a
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‘ Symbol ‘ Definition

Q finite set of data items (our database)
n total number of data items
0; i-th data item of €2
f(0;) | reference to o; (e.g. an OID)
A set-valued attribute
D domain from which elements of A are chosen
q query predicate
Q query set
0 set comparison operator, here =, C, and D
s, t arbitrary sets
sig(s) | signature of set s
sigq(s) | prefix (first d bits) of sig(s)
|sig(s)| | number of bits set in signature of set s
b length of signature
k number of bits set in signature for each mapped element

Table 7.1: Used symbols

set comparison operator 6 € {=,C, D}. A query of the form {0; € O|Q = 0;.A} is called
an equality query, a query of the form {o; € O|Q C 0;.A} is called a subset query, and a
query of the form {o; € O|Q D 0;.A} is called a superset query. Note that containment
queries of the form {o; € O|x € 0;.A} with x € D are equivalent to subset queries with

Q = {z}.

7.1.2 Storage manager

The index structures were implemented atop the storage manager EOS. EOS provides key
facilities for the fast development of high performance DBMSs [6, 7]. We exploited only a
small part of the offered features, namely standard EOS objects and plain database pages.
EOS objects are stored on slotted pages and are identified by an unique object identifier
(OID) with a size of 8 byte. We stored all data items with set-valued attributes in EOS
objects. Plain database pages (with a size of 4096 byte) belong to a particular storage
area (a raw disk partition in our case) and do not contain any control information. We
used these pages to implement our index structures.

7.2 The Competitors

Let us briefly introduce the five index structures that we adapted for set retrieval. We
distinguish two main strategies: signatures and inverted files. We start by discussing
access structures based on signatures, then move on to inverted files.

Principally all signature-based index structures are filters (see Section 6.3.4) because we
transform the comparison of sets (which is quite expensive as we have seen in Section
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4.1.2) to a comparison of signatures. Basically we have three options to organize the sig-
natures: sequentially %, hierarchically, and partitioned. We examine sequential signature
files (SSF) [51] for sequential organization, signature trees (ST) [20, 45] for hierarchical
organization, and extendible signature hashing (ESH) [46] and recursive linear signature
hashing (RLSH) [46] for partitioned organization.

7.2.1 Sequential Signature File (SSF)

| [sig(o1.A),ref(01)] | [sig(os.A),ref(02)] | ... | [sig(0,.4),ref(0n)] |

Figure 7.1: Sequential signature file index structure (SSF)

General description

A sequential signature file (SSF) [51] is a rather simple index structure, it is a filtering
projection index. It consists of a sequence of pairs of signatures and references to data
items. [sig(0;.A),ref(0;)] (see Figure 7.1). During retrieval the SSF is scanned and all
data items o; with matching signature sig(o;.A) are fetched and tested for false drops.
Inserting a new data item o, into a sequential signature file is also straightforward. We
have to generate a tuple containing the signature sig(o,41) and the identifier ref(o,41)
and append this tuple to the signature file.

‘ Name ‘ Description
noOfEntries the number of data items inserted into index
sizeOfSig b, the size of the signatures (in bits)
noOfSetBits k, the number of bits set in signature for each element
pageSize the size of the pages in the database (in bytes)
sigAreaNo the area number of signature list
sigPageNo the starting page number of signature list
lastSigPageNo | the ending page number of signature list
lastSigPos the first free position on last page of signature list
refAreaNo the area number of reference list
refPageNo the starting page number of reference list
lastRefPageNo | the ending page number of reference list
lastRefPos the first free position on last page of reference list

Table 7.2: Root object of an SSF index

4This corresponds to a projection index.



7.2. THE COMPETITORS 85

signature/reference pairs

next page | next area | prev. page| prev. area
number number number number

Figure 7.2: Signature and reference list node

Implementation details

An SSF index consists of a root object, which is copied into main memory when the index
is opened, and pages containing the signatures and references. The entries of the root
object are described in Table 7.2.

The pages containing the signatures and references are doubly linked. The first 8 bytes
contain the link (page number, area number) to the next page, the next 8 bytes the link
to the previous page (see Figure 7.2). For empty links the page and area numbers are set
to 0.

7.2.2 Signature Tree (ST)

‘ [sig(o1-A) sig(g .A) | sig(ogA), /] ‘ [sig(0,-A) | siglog.A) | siglog.A). /] | [Sig(a,.A) | sigog.A) | sig(ogA). /]

'|' denotes bitwise or

[sig(0 1), ref(0,)]|[sig(0,,A). ref(0,)] [0 3A). re(0]| [Isiglo; A). (0, )] [sg(05A). ref(0g] | [5(0gA). (0]

[151g(0,A). ref(0)] | [Sg(05A). ref(0)] | [Sa(05 A). ek (o)

Figure 7.3: A Signature tree (ST)

General description

A Signature Tree (ST) is a hierarchical version of a filter index for sets. The internal
structure of Signature Trees is very similar to that of R-trees [39]. The leaf nodes of ST
20, 45] contain pairs [sig(0;.A),ref(0;)]. In the leaf nodes of an ST we find the same
information as in an SSF. We can construct a single signature representing a leaf node by
superimposing all signatures found in the leaf node (with a bitwise or-operation, denoted
by “/”). This corresponds to uniting the sets in the leaf nodes. We call a union of sets
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from lower levels in the tree a bounding set. An inner node contains signatures of and
references to each child node (see Figure 7.3).

When we evaluate a query we begin by searching the root for matching signatures. We
recursively access all child nodes whose signatures match and work our way down to the
leaf nodes. There we fetch all eligible data items and check for false drops. Matching
signatures in leaf nodes are determined by the appropriate bitwise operation (see Section
2.1). Matching signatures in inner nodes are determined as follows. For equality and
subset queries we check if sig(Q) C sig(child node). For superset queries there has to be
a non-empty intersection, i.e. |sig(Q) N sig(child node)| > k.

When inserting a new data item o,,;, we start at the root. For each inner node the
signature sig(0,+1) of the new data item is compared to the signature sig(Bj;) of every
bounding set in node m; using the pseudo-metric

diff(sig(Bji), sig(on+1)) = [(sig(Bji) V sig(on41)) @ sig(Bji)| (7.1)

(V denotes the bitwise or operation, @ the bitwise xor operation.)

We descend the branch with the smallest value for diff(sig(Bj;), sig(0n4+1)). When we
reach a leaf node my, the tuple [sig(0n11), ref(0n+1)] is inserted and the signatures of the
bounding sets in the parent nodes of m; are modified.

When an overflow occurs during an insertion, i.e. there is no space left in leaf node m;, my,
needs to be split. For the split of a node, we use the following (linear-cost) split algorithm:

split() {
find signature S; with greatest weight;
assign S; to group 1;
S1 = signature of bounding set of group 1;

find signature S; with greatest diff(Sy, S;);
assign S; to group 2;
Ss = signature of bounding set of group 2;

for(remaining signatures S;) {
assign S; to group 2;

Sy =853V S;

¥

else {
assign S; to group 1;
S1=51VS;

¥

After splitting the node, the signatures in the parent nodes of m; need to be updated.
This may lead to further splits, possibly all the way to the root node.
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‘ Name ‘ Description

height the height of the tree

sizeOfSig the size of the signatures (in bits)

noOfSetBits | k, the number of bits set in signature for each element
pageSize the size of the pages in the database (in bytes)
rootAreaNo | the area number of the root of the tree

rootPageNo | the page number of the root of the tree

Table 7.3: Root object of an ST index

N
o] sg [ | [sg | ] ]

drtr| s id | s id ) drtr| s id | s id )
‘en r‘sg‘m ‘sg‘m/(‘ 7]] ‘en r‘sg‘m ‘sg‘m/(‘ 7D

Figure 7.4: Pages of a signature tree

Implementation details

A Signature Tree includes a root object, which contains general information on the tree
and is copied into main memory upon opening the index. Table 7.3 shows the contents
of the root object.

We distinguish two different kinds of nodes in a signature tree, inner nodes and leaf nodes.
The first 4 bytes of each page are identical. They are used to store the offset of the first
free byte on a page. The pages of inner nodes contain pairs of signatures and 8 byte
references (page numbers and area numbers) to child nodes. In leaf pages we store EOS
object identifiers of data items instead of page references (see Figure 7.4).

7.2.3 Extendible Signature Hashing (ESH)

General description

An extendible signature hashing index (ESH) [46] is a partitioned filter index based on
extendible hashing [26]. It is divided into two parts, a directory and buckets. In the
buckets we store the signature/reference pairs of all data items. We determine the bucket
into which a signature/reference pair is inserted by looking at a prefix sigy(0;.A) of d
bits of a signature. For each possible bit combination of the prefix we find an entry in
the directory pointing to the corresponding bucket. The directory has 2¢ entries, where
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d=2 | h(x=00

d=3 / [sig(o, A), ref(0,)], ...
000 //
001 - d=3 | h()=010
010 [sig(o,.A), ref(0,)], -
011 -
100 d=3| h=ou
101 - [sig(05 A), ref(0.)], ...
110 \\
111 \\ d=1] h=1

\ [5ig(0,.A), ref(0,)], ..

Figure 7.5: Extendible signature hashing (ESH)

d is called global depth. When a bucket overflows, this bucket is split and all its entries
are divided among the two resulting buckets. In order to determine the new home of a
signature the length of the inspected prefix has to be increased until at least two of the
signature prefixes are distinct. The size of the current prefix d’ of a bucket is called local
depth. If we notice after a split that the local depth d’ of a bucket is larger than the
global depth d, we have to increase the size of the directory. This is done by doubling
the directory. Pointers to buckets that have not been split are just copied. For the split
bucket the new pointers are put into the directory and the global depth is increased (see
Figure 7.5). We stop splitting the directory beyond a global depth of 20 and start using
chained overflow buckets at this point, as further splitting leads to a too large directory,
which in turn would slow down subset and superset queries considerably.

‘ Name ‘ Description ‘
depth the global depth of the hash table
sizeOfSig the size of the signatures (in bits)
noOfSetBits k, the number of bits set in signature for each element
pageSize the size of the pages in the database (in bytes)
rootAreaNo the area number of the root node of the directory
rootPageNo the page number of the root node of the directory
maxPossDepth | the maximal global depth of the hash table (before chaining)

Table 7.4: Root object of an ESH index

The evaluation of an equality query is straightforward. We look up the entry for sigy(Q)
in the directory, fetch the content of the corresponding bucket, check the full signatures,
and eliminate all false drops. In order to find all subsets (supersets) of a query set @, we
determine all buckets to be fetched. We do this by generating all subsets (supersets) of
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s1g4(Q) with the algorithm by Vance and Maier (see Section 2.2). Then we access the
corresponding buckets sequentially (by ascending page number), taking care not to access
a bucket more than once. Afterwards we check the full signatures and eliminate the false
drops.

ESH is similar to Quickfilter by Zezula, Rabitti, and Tiberio [100]. However, we use
extendible hashing instead of linear hashing as our underlying hashing scheme and we
also optimize the bucket accesses.

0000000000..  0000000001..  0000000010..

L] root page
..0000000000 ..0000000001 ..0000000010 ..0000000000 ..0000000001 ..0000000010 d”"&:‘tory
nextPageNo | endPtr local depth sig oid sig oid D bucket pages

Figure 7.6: Pages of an ESH index

Implementation details

Like in the other index structures the general information of an ESH index is kept in a
root object. The structure of an ESH index root object can be seen in Table 7.4.

We have limited the size of the directory to 22° entries. Obviously this directory does
not fit on a 4K page, therefore we implemented a hierarchical directory (see Figure 7.6).
On the root page, which is always kept in main memory, we evaluate the first 10 bits
of the query signature. Then we branch to the corresponding directory page to evaluate
the other 10 bits of the query signature and fetch the corresponding bucket reference.
A bucket page contains a reference to the next page of the bucket (in case of overflow
records), a pointer to the end of the data on this page, the local depth of the bucket, and
the signatures and references of all data items belonging to this bucket.

7.2.4 Recursive Linear Signature Hashing (RLSH)

General description

The fast growing directory of extendible hashing poses a considerable problem. Every
time the global depth increases, the size of the directory doubles. This gave researchers
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the impetus to find dynamic hashing techniques with directories that do not grow as
rapidly. Litwin devised linear hashing [65], which was refined to recursive linear hashing
by Ramamohanarao and Sacks-Davis [76]. First we give an introduction to linear hashing
and then we describe recursive linear hashing and our modifications.

In linear hashing we start with a directory having 2¢ entries. This is also called the d-th
expansion, in which we reference 2¢ buckets. Additionally we need a split pointer p that
marks the next bucket to be split. Initially p points to the first entry of the directory.
During an insertion if there is no space left in a bucket, an overflow bucket is created
and chained to the original bucket. Whenever we have inserted L data items, we create
a new bucket and extend the directory by adding an entry at the end of the directory at
position 2¢ + p that references this newly created bucket. Then the content of the p-th
bucket is divided among the p-th and 2¢ + p-th bucket by rehashing the items. After that
p is increased by 1. If p is equal to 2? + 1, i.e. the end of the current expansion has been
reached, then we enter the d + 1-st expansion and reset p to 1.

\ split pointer p

1st level directory d=3

split pointer p

2nd level directory d=2
[yl

D000 oo

\ split pointer p

3rd level directory d=1
[ 1]

ﬁ ﬁ buckets

Figure 7.7: recursive linear hashing

Recursive linear hashing is a variant of linear hashing that avoids the use of overflow
buckets by employing several hashtables on different levels (see Figure 7.7). Every time
an overflow occurs, the inserted data item that caused the overflow is inserted into the
hashtable on the next level. This rehashing continues recursively until a bucket with
sufficient free space is found or no further hashtable exists. In the latter case a new
hashtable is created (on the next-highest possible level) into which the data item is then
inserted. Usually there are only two or three levels of recursive hash tables. Each level
has its own value d; for the expansion and its own split pointer py.
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We modify recursive linear hashing by using signatures as hash keys, thus creating an-
other partitioned filter index that we call recursive linear signature hashing (RLSH). The
following recursive algorithm is used to search for a signature in an RLSH index:

search(level, sig(0;)) {

if(sigdlwel (0i) > Drevet) {
entr}’—no = Sligdlevel;

}
else {

entry_no = sigg,, ., +1;
¥

if(sig(0;) found in bucket referenced by dirjeye;(entry_no)) {
retrieve data item o;;

}
else {
if(level > maxlevel) {
data item not found;
}
else {
search(level + 1, sig(o;))
}
}

We start searching on the first level (calling search with parameter level = 1). If we do
not find a qualifying signature on the current level, we go on searching on the next level.
We continue until we have found the signature or no hashtables to search in are left. In
the latter case we know that no data item with a qualifying signature is present in the
database. When evaluation a subset or superset query, we have to generate all query
signatures with the algorithm from Section 2.2 and initiate the corresponding subqueries.

Implementation details

The root object of a recursive linear signature hashing index can be found in Table 7.5.
The physical layout of the index is illustrated in Figure 7.8.

We have separated the first level from others. There are two reasons for this. The first
reason is that it is going to be larger than the other levels. So instead of storing the
directory in a list (as we did with the directories of the recursive hashtables), we used a
hierarchical structure. The second reason is that the first level is always accessed, regard-
less of the operation (retrieval, update, insertion or deletion). Therefore the reference to
the top-level directory is not stored in the list accessible by recLevel, but directly in the
root object. The data on the other levels (references to directories, values for expansions,
split pointers, and number of inserted items) are stored in lists. As there are no overflow
buckets, no information on chaining is needed in the buckets.
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‘ Name ‘ Description ‘
sizeOfSig the size of the signatures (in bits)
noOfSetBits k, the number of bits set in signature for each element
pageSize the size of the pages in the database (in bytes)
rootAreaNo the area number of the root node of the directory
rootPageNo the page number of the root node of the directory
rootExpansion dy, expansion on the first level
rootSplitPtr p1, split pointer on the first level
rootNoOfEntries | number of data items inserted on first level
recLevel ref. to list of refs to recursive hashtables
recExpansion ref. to list of expansions of recursive hashtables
recSplitPtr ref. to list of split pointers of recursive hashtables
recNoOfEntries | ref. to list with number of data items inserted on recursive levels
splitFactor L, the number of insertions before expanding a directory

Table 7.5: Root object of an RLSH index

7.2.5 Inverted Files

General description

An inverted file (see Figure 7.9) consists of a directory containing all distinct values in
the domain D and a list for each value consisting of the references to data items whose
set-valued attribute contains this value. For an overview on traditional inverted files see
[59, 81]). As done frequently we hold the search values of the directory in a B-tree,
which makes it another hierarchical index. However, we modify the lists by storing the
cardinality of the set-valued attribute with each data item reference. This enables us to
answer queries efficiently by using the cardinalities as a quick pretest.

Using an inverted file for evaluating subset queries is straightforward. For each item in
the query set the appropriate list is fetched and all those lists are intersected. This query
type is comparable to partial match retrieval, the main application of inverted files in
text retrieval. When evaluating equality queries we proceed the same way as with subset
queries, but we also eliminate all references to data items whose set cardinality is not
equal to the query set cardinality. When evaluating a superset query we search all lists
associated with the values in the query set. We count the number of occurrences for each
reference appearing in a retrieved list. When the counter for a reference is not equal to
the cardinality of its set, we eliminate that reference. We can do this, because then this
reference also appears in lists associated with values that are not in the query set. So
the referenced set cannot be a subset of the query set. Data items with empty set-valued
attributes need special treatment as they cannot be assigned to values in the directory.
We store references to these data items in a separate list.

We use several well-known techniques to increase the performance of inverted lists. To
reduce the size of the lists we compress them. We keep the lists sorted and encode the
gaps using light-weight techniques [93]. It is also sensible to fetch the lists in increasing
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Figure 7.8: Pages of an RLSH index
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Figure 7.9: Inverted File

93

size and to use thresholding, i.e. instead of fetching lists beyond a certain threshold size
(the number of pages needed to fetch all data items qualifying at the moment), we access
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the data items immediately. For a more detailed explanation of these techniques see
(103, 104].

‘ Name ‘ Description ‘
noOfEntries the number of data items inserted into index
depth the height of the BT-tree
pageSize the size of the pages in the database (in bytes)
rootAreaNo the area number of the root of the tree
rootPageNo the page number of the root of the tree
maxNoOfEntries | maximal number of entries in a B*-tree node

Table 7.6: Root object of an inverted file index

foape] , [y | ~Jhey [ ] [ ]
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Figure 7.10: Pages of an inverted file index

Implementation details

The root object of an inverted file index and its description are depicted in Table 7.6.

The first 4 bytes of a node in the Bf-tree directory of an inverted file index are used
to store the offset of the first free byte on a page. In leaf nodes we have search-keys
along with the references to the corresponding list of data item references (which will be
described later). In inner nodes we store references to child nodes which are separated by
search keys. The size of search keys is 4 bytes, the size of references 8 bytes (see Figure

7.10).
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‘ Name ‘ Description
compressionFlag | for a compressed list contains char ’c’
noOfOids number of oids in the list
firstOid first oid in uncompressed form
gapBits number of bits used to code the gaps
setCardBits number of bits used to code set cardinalities
oids a list of compressed oids
set cardinalities | a list of compressed set cardinalitites

Table 7.7: Compressed list

‘ Name ‘ Description ‘

compressionFlag | for an uncompressed list contains char "u’
oids and a list of (uncompressed) pairs of oids and set
set cardinalities | cardinalities

Table 7.8: Uncompressed list

We distinguish two different types of lists, compressed and uncompressed. Lists containing
fewer than 8 OIDs are not compressed to avoid overhead. Table 7.7 shows the internal
structure of a compressed list.

An uncompressed list merely consists of a compression flag, which is set to "u’ in this case,
and a list of oids and set cardinalities (see Table 7.8). The number of oids in the list is
derived from the size of the list, which can be determined by an EOS function.

7.3 Mathematical Modeling

When comparing index structures, there are several principal avenues of approach: an-
alytical approach, mathematical modeling, simulations, and experiments [102]. For the
evaluation of the index structures we chose the following two approaches: a theoreti-
cal comparison by mathematical methods and a practical comparison by experiments. In
order to be able to compare the index structures theoretically, we need to develop a math-
ematical model. In this section we present cost models for the index structures described
in Section 7.2.

7.3.1 Preliminary Defininitions

Before discussing the cost models for the index structures we need to clarify some details.
Table 7.9 summarizes all symbols used in the remainder of this section and their meaning.

All signature-based index structures store pairs of signatures and references, i.e. records
of the form [sig(0;), ref(0;)] have to be handled. We denote the size of such a record by
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‘ Symbol ‘ Definition ‘
a utilization of space (ST)
avgsetsize | average cardinality of set-valued attributes (Inverted files)
g utilization of space in Bt-tree directory (Inverted files)
b number of bits in a signature
B total number of pages needed to store all data items
bf branching factor (ST)
card space needed to store cardinality of a set (Inverted files)
comp | compression factor (Inverted files)
cy number of right drops (see Section 2.1.3)
Cr number of false drops (see Section 2.1.3)
d global depth of hash table (ESH)
D domain from which elements for set-valued attribute A are chosen
d expansion of level [ (RLSH)
height | height of B*-tree directory (Inverted files)
id size of references in bits

key size of key in B*-tree in bits (Inverted files)
L load factor (RLSH)
m number of buckets (ESH)

mazlevel | number of levels (RLSH)

n number of data items in the database

n number of data items inserted into level | (RLSH)

P number of bytes per page

) split pointer on level I (RLSH)

T number of data items actually stored on level I (RLSH)
U number of buckets on level I (RLSH)

Table 7.9: Parameters used in cost models

Srecord- The number of bytes occupied by such a record can be calculated as follows:

(b+id)
8

Srecord = ’V -‘ bytes (72)

where b is the number of bits in a signature and ¢d is the number of bits in a reference.

The cost models of all index structures have to consider the costs Cfe.p, for fetching data
items during retrieval. We consider both right drops (¢,) and false drops (cf). (For a
quick reminder on how to calculate ¢, and ¢y see Section 2.1.3.) We define these costs
beforehand to make the formulas in the following sections easier to read. We measure
Cleter, in number of page accesses and approximate it by Yao’s formula [98]. B is the total
number of pages needed to store all n data items.
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i=1

i (1—-L)—i+1
Cfetch:B'<1_ 11 (n—i)-i-l

7.3.2 Sequential Signature File

For each data item a record containing a signature and a reference is stored in a sequential
signature file. The size of an SSF index, which we denote by Sgsr, can be computed easily
(P is the number of bytes per page):

n- Srecord

et pages (7.4)

Sssp = {

Evaluating equality, subset, and superset queries with the help of a sequential signature
file is straightforward. First we construct a signature sig(Q)) for the query set . Then
we traverse the signature file and compare sig(Q)) with the signatures of all data items in
the file. If a signature sig(o;) of a data item matches the query signature sig(Q), we have
to fetch the corresponding data item via the reference ref(o;) and check for false drops.

We measure the costs for evaluating a query with an SSF index in number of pages that
have to be accessed:

CF, = Sssp+ Cheten (7.5)

7.3.3 Signature Tree

We assume that nodes of a signature tree are mapped to disk pages and that each node is
utilized to a degree «, i.e. a- P bytes of each page are filled with data. It follows that the
average branching factor, or fanout, of an inner node can be estimated by bf= - {

We approximate the size of an ST index similar to that of an R-tree [39]:

S’r‘eco‘rd ’

[logb (n)—|
n
Ssr = ——| pages

N ICR )l

<

.
Il

= [# + n +...+1 pages
o [siall e [s22))
n
~ — LST;ZOMJ — pages (7.6)

Let us now look at the query evaluation costs. We need to know the probability for
each node m; of an ST index that it will be accessed during query evaluation. The root
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node is always accessed, the other nodes only if the signature of their bounding sets B;
match the query signature sig(Q)). We have to distinguish between two different cases:
equality /subset queries and superset queries. We will first look at the equality/subset
case. The probability that a node will be accessed during query evaluation is

Pr(sig(Q) retrieves m; in an equality/subset query) = Pr(sig(Q) C sig(B;)) (7.7)

Now the expected number of page accesses for a query with an equality or subset predicate
can be estimated by

Ssr
C2C < 14 Pr(sig(Q) C sig(B))) + Cleten (7-8)

=2

We always access the root node and the other nodes are accessed according to the assigned
probability. We overestimate the actual costs, because in formula (7.8) we assume a child
node can be accessed even if its parent node is not accessed.

The costs for superset queries are calculated similarly. We just have to exchange the
probability for accessing a node by

Pr(sig(Q) retrieves m; in a superset query) = Pr(sig(Q) N sig(B;) # 0) (7.9)

Hence the costs for evaluating a query with a superset predicate can be estimated by

SsT
C5t < 14 Y Pr(sig(Q) N sig(B;) # 0) + Creten (7.10)

Jj=2

7.3.4 Extendible Signature Hashing

The size of an extendible signature hashing index Sggy in pages depends on Sprg, the
size of the directory, and Spyck, the number of buckets actually created (some buckets
will be shared, see also Section 7.2.3). For the cost model we assume that a bucket has
exactly the size of a page.

Sesa = Sprir+ SBuck (7.11)
with

24 . id
8- P

Spir = [ l pages (7.12)
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where d is the global depth of the hash table and

Spucx = m pages < 2% pages (7.13)

Estimating the number of buckets, m, in an ESH index may not be easy in practice.
In [26] Fagin, Nievergelt, Pippenger, and Strong give an approximation for the average
size of an extendible hashing index for uniform distribution of the hashing keys, which
translates to ESH as follows.

n- Srecord

gESH ~ [ P

-‘ -log, e pages (7.14)

For the query evaluation costs we have to distinguish two cases: equality queries and
subset /superset queries. We need very few page accesses within an ESH index when
evaluating an equality query: just one access to the directory and one access to a bucket.

CESH =2+ Cfetch (715)

Next we discuss the query evaluation costs for subset/superset queries. Using optimized

values for the signature parameters k£ and b, the expected weight of a signature is g

Assuming that the bits set in a signature are uniformly distributed, the expected weight

of a prefix of d bits of a signature is %. So we expect to generate 2% subqueries for

subset/superset queries. As for each subquery we have to access the directory and a
bucket, the total number of page accesses during a query evaluation can be estimated by

d
2

Yz
2

2lz1.9 + Cfetch
2181 4 Croen (7.16)

7.3.5 Recursive Linear Signature Hashing

The total size of the recursive linear hashing index can be determined by adding the sizes
of the directories and buckets of all recursive hash tables.

mazxlevel

Srrsa = Y. (Sprr, + Ssuck,) (7.17)

=1

In order to calculate Sprg, and Spyck, we have to know several parameters for each level:
the number of buckets w;, the expansion d; (which corresponds to the global depth in
ESH), and the split pointer p;.
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w = {%w (7.18)
dy = |logy(u)] (7.19)
p = wmodd (7.20)

Only r; data items of the n; items inserted at level [ are actually stored in the hash table
on level [. The remaining n; — r; data items are stored in tables on successive levels. The
value of n; can be calculated recursively by

N1 =N — T (721)

We insert every data item into the first level hash table, so n; = n. For uniform distribu-
tion of the hash keys Ramamohanarao and Sacks-Davis present an approximation for r;
in [76]

r a2y left + (2% — py) - right, (7.22)

where left; is the estimated number of data items per bucket on the left side of the split
pointer, and right; is the estimated number of data items per bucket on the right side
of the split pointer. For details on how to calculate left; and right, see Appendix B.
Assuming that the size of a bucket is one page, we can now calculate Sp;g, and Spyck,-

(2dl +pl) . Zd
Sprr, = {S—P pages (7.23)
Spuck, = u; pages (7.24)

Regular recursive linear hashing with unique keys distinguishes between successful and
unsuccessful searches, because when a matching key is found the search can be stopped
immediately. On account of non-unique keys in RLSH, we cannot abort a search prema-
turely. We have to search all recursive hash tables.

While evaluating an equality query we have one access to the directory and one access to
a bucket at each level, therefore the total costs are

CRESH — 9 . mazlevel + Ceten (7.25)

We now take a look at subset /superset queries. Assuming optimized signature parameters
we expect the query signature sig(Q)) to have an average weight of g At each level % of

d,
these bits are relevant on average and cause 27 lookups in the hash table on level [. As
a lookup means one access to the directory and one access to a bucket we get
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RLSH mazlevel 4
Cg’g ~ < Z 2[7-] M 2) _|_ Ofetch
=1
mazlevel 4
= ( 3 2f71+1> + Cleten (7.26)
=1

7.3.6 Inverted Files

An inverted file consists of two parts, a directory, in our case a B*-tree, and a set of lists.
So we calculate the size of an inverted file by

Sinv = StreEe + Stist (7.27)
We derive Srrgg similarly to the size of a signature tree. In a signature tree we store
records consisting of signatures and references. In a B*-tree directory we have an entry
for each distinct value in the domain D that occurs in an indexed set. In the inner nodes
of the B-tree we store records of the form [keyvalue, reference] with keyvalue € D. The
size of such a record is

key + id

: (7.28)

Skey'record = ’V -‘ bytes

We denote the size of the keyvalues in bits by key. Now we can estimate the size of the
directory of an inverted file similarly to the size of a ST index. The utilization of the
inner nodes is given by [.

D]
S = > - 1
TREE i=1 (5 {ﬁp
n
% (7.29)
g - ﬁj -1 o

Let us now look at the size of the lists.

For each element in a set we insert a record

consisting of the cardinality of the set and a data item reference into a list. Therefore the

size of such a record is

SlistTecord = ’7

card + id

(7.30)

S w bytes

Due to compression we also have to consider a compression factor comp. We approximate

the total size of the lists by
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n - avgsetsize

SLIST = Slistrecord : pages (73]‘)

P - comp
We evaluate queries very similarly for all query types (equality, subset, and superset).
For each element in the query set we have to traverse the B*-tree directory and fetch the

corresponding list. The average length of a list can be approximated by dividing S7;st
by |D|

Stis :
C’i{\gg ~ Q|- < |Lé|T + hezght) + C}etch (7.32)

An estimation for the height of a B-tree is given in [3]

0 el o) |D|+1
o8] _1(1D1+1) < height < gy _, 1< ) (7.33)

Skeyrecord 2'Sk:ey'r‘ecord

We also have to modify the costs Cleen, for fetching data items, because in an inverted
file index we do not have any false drops, so

e (1—%)—i+1
o, =B-1— B .34

7.4 Mathematical Comparison

After introducing cost models for all index structures in the last section we are now ready
to compare the access methods theoretically. First of all we look at the size of the index
structures, then we compare the retrieval costs. We measure the size of an index structure
in pages, while we express the retrieval costs in number of page accesses, i.e. we assume
that the needed CPU-time can be neglected.

7.4.1 Comparison of Index Size

We express the costs of all index structures in terms of the cost of sequential signature
files to make the comparison easier.

Sequential Signature Files

Let us recall the storage costs of a sequential signature file index:

n- Srecord

Sssr = { D

w pages (7.35)
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Signature Trees

As we have already mentioned the organization of a signature tree is very similar to that
of an R-tree. The typical storage utilization of an R-tree with uniform distribution of the
keys and a linear split algorithm is about 64% [4]. So we can approximate Sgr by

n

P
o
\‘Sreccrrd
n

Oé-ip pages

1
0.64
1.56 - Sssr (7.36)

Sst

Q

J T pages

Q

Srecord

- Sssr

Q

Extendible Signature Hashing

Using the approximation (7.14) given in [26], we can estimate the size of an extendible
signature hashing index as follows

el : Srecor
Spsy = {L D d-‘ -log, e pages
~ 1.44- SSSF (737)

Recursive Linear Signature Hashing

Before evaluating the size of a recursive linear signature hashing index we have to deter-
mine an appropriate load factor L. We have to consider two effects when increasing the
load factor. On one hand the size of the index will decrease, as the space in the buckets
is utilized better. On the other hand a high load factor also means a larger number of
recursive hash tables, because buckets overflow more frequently. This in turn will lead to
higher query evaluation costs. Usually, for a recursive linear hashing index a load factor
that fills 80% to 90% of a bucket is chosen [76]. For a recursive linear signature hashing
index, however, this is not quite optimal.

As we cannot abort a search prematurely and may generate many subqueries for sub-
set/superset queries, it is even more important to keep the number of recursive levels at
a minimum. This is a point in favor of a low load factor. We have to be careful not to
overshoot the mark, however. A very low load factor results in more frequent splits of
buckets, which in turn leads to larger expansions of the hash table directories. A large
expansion size has a negative influence on the retrieval costs of subset/superset queries,
as the query evaluation costs grow exponentially with the expansions size. We obtained
the best results for a load factor that fills about 60% of a bucket (see Figure 7.11):

06-P

L =
Srecord

(7.38)
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rish, subset & superset queries

40 T T T T T
subset query ——

= superset query -
Q 35 | 1
(%)
[¢]
O
8
ot 30 1
(]
()]
o
o
S 25 il
@
£
=) 20 -+ 1

15 Il Il Il Il

20 30 40 50 60 70 80
space utilization in %

Figure 7.11: Query evaluation costs for different space utilizations

Having determined the load factor L we now continue to estimate the size of an RLSH
index.

maxlevel

Srese = Y. (Sprir + Ssuck,) pages
=1

maxlevel (ul cid

= X |37

=1

+ ul> pages

maxlevel

= > - id Lo ages
- L-8-p ' L) P

mazxlevel .
id ny
= 1 — 7.39
lzz:l ( + . P) 17 pages ( )

Ramamohanarao and Sacks-Davis show that there are at most two to three recursive hash
tables in a recursive linear hashing index, which are very small compared to the hash table
on the top level [76]. Almost all data items can be inserted into the intended hash table,
i.e., r; = n; and especially r =~ n; = n.

id n
SrLsa =~ 1+8-P + 7 bages
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d ) Srecor
= <1+ ! )n dpages

8P 0.6-P
(1 SiCIZD)
= — .S 7.40
0.6 S8E ( )

We use pages with a size of 4096 bytes and references with a size of 64 bits. Inserting
these values into (7.40) we get

Srrsu ~ 1.67 - Sssrp (7.41)

Inverted Files

Last but not least we estimate the size of an inverted file index in terms of an SSF index.

n n - avgsetsize
Sinv = B P 1 + P - comp * Slistrecord pages
) SkeyT’eCO’r‘d o
n n - avgsetsize
~ ﬁ P : Skeyrecord+ P comp * Olistrecord PageS
~ Srecord M 1 g avgsetsize g
— S ﬁ B * Pkeyrecord + comp * Olistrecord | PAZES
record
1 1 avgsetsize
- IS : B : Skeyrecord + Tm : Slistrecord : SSSF (742)
record

In [97] Yao gives an approximation of the asymptotic space utilization of a Bf-tree, it
is about In2 ~ 69%. Furthermore we achieve a compression factor of about 8 with our
simple compression technique. As we use keyvalues with a size of 32 bits, references with
sizes of 64 bits, and 16 bits to store the cardinality of a set (7.42) simplifies to

1 1 avgsetsize
SINV ~ S P : <m . Skeyrecord + T : Slistrecord) : SSSF
17.31 + 1.25 - avgsetsize
~ 5 - SssF (7.43)
record
Summary

Table 7.10 sums up our size comparison of the different index structures.

7.4.2 Comparison of Retrieval Costs

In this section we compare the retrieval costs of the different index structures. Again we
use the costs of sequential signature files as a reference.
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‘ index structure ‘ size ‘
SSF Sssr
ST 1.56 - SgsF
ESH 1.44 - SggFr
RLSH 1.67-Sssr
INV 17.31+1‘S.Yfijffsetszze . SSSF

Table 7.10: (Theoretical) size of index structures

Sequential Signature Files

As a reminder let us quote the retrieval costs for sequential signature files from Section
7.3.2. These costs are the same for all query types, we just have to traverse the signature
file and access all drops.

1 =)=

Signature Trees

Equality and subset queries are evaluated differently from superset queries in signature
trees, so we have to look at two different cases.

Evaluating a containment query in an R-tree is very similar to evaluating equality and
subset queries in a signature tree. Guttman mentions in [39] that on average 10% of all
pages in an R-tree are traversed during a containment query. So we can approximate the
retrieval costs of equality and subset queries in signature trees by (assuming « = 0.64)

1
C;ch ~ — - Ssr + Cheten
= 10
1 1
—.-.8 Crote
10 o OSSF + Ceten
~ 0.156 - Sssr + Cleten (7.45)

As long as the space utilization « is large enough, ST is going to be considerably faster
than a sequential signature file.

For superset queries, however, signature trees lack performance. The percentage of pages
we have to fetch during query evaluation is significantly higher than for equality and
subset queries. In our experimental tests we found that 95% to 100% of the pages in a
signature tree were accessed during query evaluation.

CST ~ SST+Cfetch
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~
~

1
o Sssk + Creteh
~ 1.56-Sssr + Cfetch (7.46)

So for superset queries signature trees are even slower than sequential signature files, as
« is always between 0 and 1.

Extendible Signature Hashing

We also have to distinguish between two cases for extendible signature hashing index
structures. Equality queries are evaluated differently from subset and superset queries.

For equality queries we need only two page accesses to find the bucket containing candidate
signatures. In a second step we have to access the corresponding data items and filter out
false drops.

CESH =2+ Cfetch (747)

To figure out the retrieval costs of ESH for subset and superset queries we have to deter-
mine the global depth of the hash table:

CESI ~ 2511 4 Oy (7.48)

We can approximate the global depth d by looking at the size of an ESH index structure.

24 . id
8. P

Sesa = Spir + Spuck = +m =~ logye- Sssr (7.49)

In Section 7.3.4 we only gave a rough estimation for m, the number of buckets. That is
to say we only determined an upper bound for m (m < 2¢). However, we can do better
than that: we can also give a lower bound for m. A sequential signature file represents
the smallest possible space in which we can store the signature/reference records of all
indexed data items. So we know that

Sssp <m < 2 (7.50)

Let us now look at the two extreme cases m = m; = Sggp and m = my = 2% in turn.

24m . id
8- P
2¢m1 . 4d
8- P

i
dm, ~ logy(logye — 1)+ logy(Sssr) + logy(P) — log, <§> (7.51)

+ Sssr ~ logye- Sssr

~ (logze—1)- Sssr
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We use pages with a size of P = 4096 bytes and references with a size of id = 64 bits.
Inserting these values into the above formula we get

dm, ~10gy(Sssr) + 8 (7.52)

Next we estimate d for m = mq = 2¢.

24ms . jd
S p +2¢ log, e - Sssr
9dmy  py logy e - Sssr
id
(5% +1)
9dmy logy e Sgsp - P
id
4 p
id
Ay, =~ logy(log, e) + logy(Sssr) + logy(P) — log, <§ + P) (7.53)
Inserting P and id:
A, = IOgQ(SSSF) + 0.5 (754)
Inserting d,,, and d,,, into (7.48) we get
cEgim R e,
= /Sssr 2’ + Cleten
= 32-4/Sgsr + Cfetch (755)
and
m (logg (SggF)+0.5)
g}éH/ =2 2 oy C'etch
= /Sssr 2" + Creten
~ 2.38-4/Sssr + Cfetch (7.56)

Having 27 buckets is favorable, because in this case the keys are spread (uniformly) across
all buckets and frequent overflows will be unlikely. Having Sgsr buckets is very unfa-
vorable, because all keys are crammed into the lowest possible number of buckets, which
means that the data is heavily skewed. This in turn leads to frequent overflows and a
rapid growth of the directory.
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Recursive Linear Signature Hashing

For the RLSH index the number of recursive levels ultimately determines the performance.
Similar to the ESH index we look at two extreme cases. We get the best performance
when we have no recursive tables at all and everything is stored on the top level. In the
worst case scenario all data items have the same hash key, which means that all of them
are mapped to the same bucket. So we have one completely filled bucket on each level
and all other buckets are empty. This results in a total number of @%ﬂﬂi = Sgsr levels.
Let us analyze the costs for maxlevel; = 1 and maxlevely, = Sgsp.

For equality queries the best case is as good as ESH, we merely need two page accesses.

CHRESH[mazleveh — — 9 . maxlevely + Ceten

= 24 Cleen (7.57)

The worst case behavior of RLSH, however, is even worse than SSF.

ORLSH/ma:rlevel2

= 2-mazlevely + Cleten
2 Sssr + Cheten (7.58)

Q

Let us now turn to the retrieval costs for subset/superset queries. For the best case the
performance of RLSH keeps up with that of ESH.

d
ot = 9% 24 Caen (7.59)

We have to determine the expansion d; of the top level, which depends on the number of
buckets u; on the first level. (The formulas for d; and u; are taken from Section 7.3.5.)

dl = 10g2(u1) (760)
n
w = 2 (7.61)

As all data items are inserted into the top level hash table n;y = n holds. Inserting 7.60
into 7.59 we get

logp ﬂ)
C]g’LQSH/ma:clevell _ 2% 9 + Ofetch
n
=\ 2+ Creten
Sssr
2+C etc
0.6 feteh
~ 2.584/SgsF + Cfetch (7.62)



110 CHAPTER 7. INDEX STRUCTURES FOR SET-VALUED ATTRIBUTES

In the worst case we have Sgsr hash tables, each with its own expansion d;. As already

mentioned, the expansion d; of the top level hash table is equal to log, (%), because all
P

data items are first inserted into the top level hash table. As each table stores g - less
data items than its predecessor, we have to insert fewer and fewer data items into the

lower tables. Generally

n—(1—-1) £
dllog2( ( L) Smwd) (7.63)

We can now estimate the retrieval costs:

RLSH/maxlevel Ssr 4y
) =)0 2% 24 Cheten
=1
Sssr\p— (I —1)- P
e 2 . 2 L Srecord _|_ Cfetch
=1
SssF (1-1) -2
n S
— 2 . - record O .
; \L L + fetch

Sssr [Sesp (1= 1)
9. SSF Crone
; 06 0.6 |t

SssF

2.58 . Z \/SSSF — (l - 1) + Cfetch
=1
SssF

= 258 Y VI+ Cheen
=1

Q

Q

Sssk S
> 258 Y. S2SF+Ofetch
I=3sgE

S s
— 9258 SQSF : (SSSF - S2SF + 1) + Ceten

S S
2.58 -4/ SQSF- SQSF+OfetCh

S 3
— 258 SQSF) + Creten

~ 091 (Sssp)? + Creten (7.64)

Q

In the worst case recursive linear signature hashing shows even worse behavior than a
sequential signature file. The actual behavior of an RLSH index depends greatly on the
kind of data that is inserted. This makes it very difficult to analyze the average case. As
we will see in Sections 7.7 and 7.8 on experimental evaluation, RLSH shows close to best
case behavior for uniformly distributed data, while performing very poorly for skewed
data.
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Inverted files

111

When comparing the retrieval costs of an inverted file index to a sequential signature file,

we have to consider that inverted files do not yield false drops.
fetching data items (denoted by C%.;, see (7.34)) will be lower.

Therefore the costs for

SrisT .
C’i{\gg ~ Q|- ( D + height | + C}eteh
Slistrecord * M - aQVgSetsize
= : + height | +
@ ( P-comp |D| g
B—B. H n-(l-p) i+l
- n—1t+1
Srecord Slistrecord “n- GvgsetSize .
- ) : + height | +
|Q| (Srecord P comp - |D| g
ertep m(l—3)—itl
L h — S —
ertep m(l—3)—itl
ile =2
cr+c n (1*—) 7+1 .
.Hi:crfmw .ﬁn-(l—%)—z—kl
[eter, w2 n—il

|Q| . (Slistrecord : avgsetsize
Srecord -comp - |D|

. SSSF + hezght) +

cy n (1——) cr—i+1 1
B'Hll n—cr—i+1 B +B- 1 .

HCf n- (1—%)—@—1‘—1—1 HCf n (1— )—er—it1

=1 n—cr—i+1 i=1 n—cr—i+1
crtcy . I T N

B. 1 I n-(1—2%)—i+1
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(7.65)

The smaller the values for |Q| (size of query set), for Sytrecora (size of a record in a list),
and for avgsetsize (the average size of the indexed sets), the better the performance of an
inverted file index when compared to a sequential signature file. Large values for Syecord
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(size of signature records), comp (compression factor), and |D| (domain size) also favor
inverted files.

Simplifying 7.65 for better comparability by inserting the values for Sj;srecora and comp
we get:

=)=

1.25 - avgsetsize .
OiJVCVD ~ |Q| . ( S (‘ig. |D| . SSSF + helght) + C}etch (766)

Summary

Table 7.11 gives an overview for the expected query evaluation costs for the different index
structures.

index retrieval costs
structure equality query | subset query | superset query
SSF Sssr + Cfeten
ST 0.156 - Sssr + Creteh | 1.56 - Sssr + Ceten
ESH 24+ Cfetch best: 2.38 - v/Sssr + Cfetch
worst: 32 -/ Sssr + Creten
RLSH best: 2 + Cyeten best: 2.58 - \/Sssr + Cteten
3
worst: 2 - Sggp + Cfetch worst: 0.91 - (SSSF)E + Cfetch
INV Q|- (AZemmsebize  Sogp + height) + Chen

Table 7.11: Expected query evaluation costs

7.5 Environment of the Experiments

In addition to mathematical modeling we decided to do extensive experiments, because
it is very difficult, if not impossible, to devise a formal model that yields reliable and
precise results for non-uniform data distribution and average case behavior. A known
problem of experimental evaluations is the sheer number of parameters and all their
different combinations. As it is impossible to investigate all different aspects of the index
structures (and for lack of a standardized benchmark for set-valued data) we present our
specification of the experiments in detail in the following sections.

7.5.1 System Parameters

The experiments were conducted on a lightly loaded UltraSparc2 with 256 MByte main
memory running under Solaris 2.6. The total disk space amounted to 10 GByte. All
index structures were set atop the EOS storage manager, release 2.2, using the C+-+
interface of the manager [7]. We implemented the data structures and algorithms of
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the index structures in C++ using the GNU C++ Compiler Version 2.8.1. The data
structures were stored on 4K plain pages. The algorithms were not parallelized in any
way. We allowed no buffering/caching of any sort, i.e. each benchmark was run under
cold start conditions. We kept the storage manager from buffering pages read from disk
by running the queries locally in the single-user mode of EOS (no client/server mode)
and terminating all EOS processes after the processing of a query was done. For the next
query EOS was restarted from scratch. We prevented the operating system from buffering
by using RawlO instead of the file system. We cleared the internal disk cache of relevant
pages by transferring 2 MBytes of data between the queries. Within a single run, the
buffer was large enough to prevent accessing pages more than once.

7.5.2 Generating Data

‘ parameter ‘ symbol ‘ min value ‘ mazx value ‘
database cardinality | |O| 50000 250000
set cardinality |0;. Al 5 15
domain cardinality |D| 200 100000

Table 7.12: Parameters for generation of databases

As we designed the experiments we modeled the generated data on typical applications
(like those mentioned in the introduction). We generated many different databases varying
the cardinality of the database (in number of data items), the cardinality of the set-valued
attributes (in number of elements contained), and the cardinality of the domain of the
set elements. For a summary see table 7.12.

The data items in the databases were generated randomly. We investigated the perfor-
mance of the index structures for uniformly distributed data and skewed data. For skewed
data we decided to use a Zipf distribution (with z = 1), since various naturally occur-
ring phenomena exhibit a certain regularity that can be described by it, e.g., word usage
or population distribution [75]. A discrete Zipf distribution is defined by P,(z), which
denotes the probability of event = occurring, with « € {1,2,...,n}.

1 1
P(z)=— — 7.67
@= 7 (7.67)
with
"1
H, = Z = (7.68)

Note that for z = 0 we obtain a discrete uniform distribution. Figure 7.12 shows the
graphs of Pj(z) and Py(z) for n=2000.
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Figure 7.12: Zipf distribution

7.5.3 Generating Queries

Usually, queries that are meaningful do not return an empty answer set. So in order
to guarantee hits during the query evaluation we generated the query sets in a special
way. For equality queries we took as query sets the values of set-valued attributes of data
items that were actually inserted into the database. For subset queries we used set-valued
attributes of inserted data items with the highest set cardinality (i.e. 15 elements) and
randomly removed elements from these query sets. For superset queries we selected set-
valued attributes of inserted data items with the lowest set cardinality (i.e. 5 elements)
and randomly added elements from the domain D to these query sets.

The query selectivity is not a parameter we control explicitly. It is determined implicitly
by the cardinality of the query set, the cardinality of the data sets, the cardinality of the
domain, and the distribution of the data. Figure 7.13 shows the selectivities of different
queries. Usually the selectivities are very low (around 107°). The exception to the rule
are queries with subset predicates: for low query set cardinalities the selectivities are
higher. This does not come as a great surprise. Assume uniformly distributed data for a
moment. If we generate 100000 sets with an average cardinality of 10 out of a domain of
2000 elements (as we have done in Figure 7.13), we expect each element of the domain to
appear in roughly 500 sets. So evaluating a containment query (query set cardinality = 1)
will yield about 500 matches. For larger query set cardinalities the probability of finding
the exact combination of elements as in the query set decreases rapidly. For skewed data
the selectivities are much larger because a few elements of the domain are used frequently
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in set-valued attributes of data items as well as in query sets.

domain:0..1999, dbsize:100000, dist:uniform domain:0..1999, dbsize:100000, dist:Zipf

1
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Figure 7.13: Selectivity of different queries

7.6 Tuning signature-based indexes

Signature-based indexes have to be tuned carefully to yield optimal performance. That
is, the parameters k (the number of bits set per item) and b (the width of a signature)
need to be chosen properly. Before comparing the indexes with each other, we determined
the optimal parameters in our experimental environment for each query type. For each
signature-based index structure we increased the width of the signature until no more
performance improvement was visible. The optimal value for k was determined using the
following formulas taken from [60]:

bln2
kopt= = —— 7.69
== (7.69)
bln2
Koptc = 7.7
ptC |OZA| ( 0)
bln2
kopio = —— 7.71
Pt |Q| ( )

Our observations are presented in the following sections.
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signature size (in bits) 32 64| 96 | 128 | 160 | 192 | 224 | 256
index size (in 4K pages) | 296 | 394 | 492 | 590 | 688 | 786 | 887 | 985

Table 7.13: Size of SSF index in 4K pages

7.6.1 Sequential signature files

Increasing the width of the signatures has two effects on an SSF index. On one hand it
reduces the number of false drops, thus improving the performance. On the other hand
it increases the size of the index leading to greater costs for scanning the file.

The size of an SSF index increases proportionally to the size of the used signatures. This
can be seen in Table 7.13.

subset queries, domain:0..1999, dbsize:100000, dist:uniform superset queries, domain:0..1999, dbsize:100000, dist:uniform
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Figure 7.14: Number of false drops for subset and superset queries

Let us now look at the query performance. For equality queries we had no false drops,
regardless of the used signature size (32,64,96,128,160,192,224, or 256 bits). For subset
and superset queries the number of false drops is depicted in Figure 7.14. As can be
clearly seen, increasing the signature width decreases the number of false drops. The
number of false drops also depends on the cardinality of the query set. Small query sets
lead to “light” query signatures. For subset queries this increases the number of false
drops (see Figure 7.14(a)). Large query sets show analogous behavior for superset queries
(see Figure 7.14(b)).

The consequences for equality queries are clear. An index with a signature width of 32
bits suffices. For subset and superset queries we have to find a break-even point. Figure
7.15 shows the number of page accesses for subset and superset queries with different
signature widths. Before drawing conclusions we should bring to mind that subset queries
with small query sets and superset queries with large query sets are probably going to be
predominant. Unfortunately, these are the cases where signatures show weak performance.
For superset queries (Figure 7.15(b)) we found that a signature width of 64 bits gave us
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SSF, subset queries, domain:0..1999, dbsize:100000, dist:uniform SSF, superset queries, domain:0..1999, dbsize:100000, dist:uniform
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Figure 7.15: Number of page accesses for subset and superset queries (SSF)

the best overall performance. When averaging the page accesses for all query set sizes,
the index with a signature of 64 bits comes out on top. When taking into consideration
that larger query sets are more important, a signature size of 64 bits is by far superior
to the other signature sizes. For subset queries (Figure 7.15(a)) the choice is harder to
make. Applying a signature size of 96 or 128 bits yields the best average performance.
However, this does not emphasize the important cases, i.e., small query sets, enough.
A query set cardinality of 1 is crucial, as it represents containment queries (see Section
7.1.1). Therefore we chose a signature size of 160 bits.

7.6.2 Signature trees

signature size (in bits) 32| 64| 96| 128 | 160 | 192 | 224 | 256
index size (in 4K pages) | 436 | 580 | 731 | 882 | 1010 | 1173 | 1296 | 1443

Table 7.14: Size of ST index in 4K pages

We observe similar effects for an ST index as for an SSF index. A larger signature width
means fewer false drops, but the nodes of an index tree hold fewer signatures. We omit
figures for the number of false drops as these are identical to those in Figure 7.14. We
cannot eliminate false drops with signature trees either, because they are inherent to
signatures.

Table 7.14 shows the size of an ST index depending on the signature size. Larger signatures
mean that fewer signatures will fit on a page of the tree, which leads to a larger index.

When evaluating the query performance we also have to consider equality queries this
time (unlike for SSF), because searching the inner nodes of signature trees involves subset
predicates (see Section 7.2.2). The optimal size for the signatures is 64, 160, and 64 bits
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Figure 7.16: Number of page accesses for equality, subset, and superset queries (ST)

for equality, subset, and superset queries, respectively. The results of the experiments can
be seen in Figure 7.16.

7.6.3 Extendible signature hashing

signature size (in bits) 32 64 96 | 128 | 160 | 192 | 224 | 256
index size (in 4K pages) | 872 | 1160 | 1457 | 1749 | 1992 | 2096 | 2156 | 2369

Table 7.15: Size of ESH index in 4K pages
As ESH also cannot filter out false drops, the number of false drops is not different from
that of SSF (see Figure 7.14).

In order to restrict an otherwise limitless growth of the directory, we do not allow the
directory to grow beyond 2% entries (see Section 7.2.3). We use overflow buckets in this
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Figure 7.17: Number of page accesses for equality, subset, and superset queries (ESH)

case instead of splitting the directory any further. Large signatures cause more frequent
splits of the buckets and therefore lead to a faster expansion of the directory. This means
that we reach the maximal size of the directory earlier and we start allocating overflow
buckets sooner. As a consequence the internal fragmentation in the buckets decreases,
which leads to a flattening of the growth of the index size (see Table 7.15).

Equality queries have a very low number of false drops and only one bucket needs to be
accessed during the evaluation of a query. Therefore a long chain of overflow buckets is
detrimental to the performance. The length of a chain depends on the size of the signature.
Different signature sizes yield very similar results for equality queries (see Figure 7.17(a)).
Therefore we choose a signature size of 32 bits, as it results in the smallest index structure
without giving up performance. The query performance of subset and superset queries is
in accordance with the performance of the other index structures, i.e., signature sizes of
160 and 64 bits, respectively, yield the best results.
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7.6.4 Recursive linear signature hashing

As can be seen in Table 7.16, an RLSH index is larger than an ESH index (Table 7.15),
because the buckets are split when a utilization of 60% is reached. So we have a higher
internal fragmentation for RLSH.

signature size (in bits) 32 64 96 | 128 | 160 | 192 | 224 | 256
index size (in 4K pages) | 1150 | 1525 | 1935 | 2325 | 2665 | 2995 | 3328 | 3708

Table 7.16: Size of RLSH index in 4K pages

Figure 7.18 illustrates the experimental results for tuning the query evaluation costs. For
equality queries, an index with 32-bit signatures shows the best performance. For larger
signatures we have more levels of recursive hash tables, which lead to a higher number
of page accesses. The performance for subset and superset queries is very similar to the
performance of ESH in these cases, i.e., we will also use 64-bit and 160-bit signatures,
respectively. The costs of RLSH, however, are slightly higher than the costs of ESH. This
is also due to the lower space utilization of the buckets, as splits occur more often than in
ESH, resulting in a slightly larger directory or more recursive hash tables, which makes
the evaluation of the queries more expensive.

7.7 Results for uniformly distributed data

We present the most important results of our extensive experiments emphasizing query
evaluation speed and index size. In this section we deal with uniformly distributed data,
in Section 7.8 with skewed data. As unit of measurement we use the number of page
accesses. As we are interested in the overhead of each index, we only count the page
accesses needed to traverse an index structure during query evaluation. That means, we
do not consider page accesses for accessing qualifying data items (as these are the same
for all index structures). For signature-based index structures we take into account the
accesses to false drops by subtracting the page accesses for qualifying items from the total
page accesses.

7.7.1 Retrieval Costs

One of the most important aspects of an index is the cost of finding and retrieving the
answer to a query. We investigated the influence of several parameters on these costs. In
detail, these were cardinality of query sets, database size, and domain size.

Influence of query set cardinality

Results of the experiments varying query set cardinality are found in Figure 7.19. The
influence of query set cardinality on the retrieval cost of equality queries (Figure 7.19(a))
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Figure 7.18: Number of page accesses for equality, subset, and superset queries (RLSH)

is marginal. The only major exception is ST, as a subset query has to be performed on
the inner nodes of the tree. Subset queries with a small query set cardinality are a difficult
case, as we will see. There is also a slight increase in retrieval costs for inverted files for
equality queries, as more lists have to be searched. In summary we can say that the hash
table indexes are unbeaten for equality queries, as it only takes 2 page accesses to reach
a data item.

The results for subset queries are depicted in Figure 7.19(b). Here the signature-based
index structures have a severe disadvantage. Usually subset queries are formulated with
query sets having a small cardinality. In these cases ST, ESH, and RLSH show their worst
behavior, as ST needs to traverse many branches and ESH and RLSH need to visit many
buckets. So for subset queries the inverted file index reigns supreme.

For superset queries the important cases are query sets with a large cardinality. As can
be seen in Figure 7.19(c) the cardinality of query sets does not have much influence on
SSF and the inverted file index. ST is not suited for superset queries at all (it is even
worse than SSF) and the hash-based indexes have some problems with large query set
cardinalities. Again the inverted file index is superior.
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Figure 7.19: Retrieval costs for uniformly distributed data, varying query set cardinality

Influence of database size

Another important parameter we investigated is the size of the database (in number of
data items). We wanted to know if the index structures scale gracefully. The results
of our experiments can be seen in Figure 7.20 ((a) equality queries, (b) subset queries,
and (c) superset queries). The retrieval costs for SSF are proportional to the database
size, since the whole index has to be scanned. Given the different signature sizes for the
signature-based indexes for each query type (see Section 7.6), the costs for equality (32-bit
signatures), subset (64-bit signatures), and superset queries (160-bit signatures) differ.

For equality and subset queries the retrieval costs of ST seem to grow sublinearly, while
for superset queries they grow linearly due to the fact that in the latter case almost all
nodes are traversed.

ESH and RLSH are unbeaten for equality queries as the retrieval cost is constant. For
subset and superset queries we noticed that the number of generated subqueries increases
steadily on account of the increasing size of the directories.

The retrieval costs for an inverted file index grow very slowly for all query types. Thanks
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Figure 7.20: Retrieval costs for uniformly distributed data, varying database size

to the optimization techniques described in Section 7.2.5 we can keep the retrieval cost
almost constant. Clearly the inverted file index shows the best overall scaling behavior of
the examined index structures.

Influence of domain size

In Figure 7.21 we present the influence of domain size on the retrieval costs. Parts (a), (b),
and (c) show the results for equality, subset, and superset queries, respectively. Except
for RLSH this parameter has only marginal influence on the retrieval costs. Even for an
inverted file index, which has to manage larger numbers of lists for increasing domain
size, we cannot detect a noticeable increase in retrieval costs.

The large number of recursive hash tables for small domain sizes is responsible for the
performance of RLSH. Figure 7.22 shows the number of recursive hash tables depending
on the size of the domain and on the size of the signatures. For large signatures the
number of recursive levels tends to go up (an effect we have also seen in Section 7.6.4
while tuning RLSH). For small domains this effect is amplified.
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Figure 7.21: Retrieval costs for uniformly distributed data, varying domain size

7.7.2 Index Size

Another important aspect to consider when investigating index structures is the size of
these structures. We will look in turn at the influence of database size and domain size
on the index size.

Influence of database size

Table 7.17 shows the experimental results pertaining to the scalability of the index struc-
tures. All index structures seem to grow linearly with the database size. As already seen
in Section 7.6 the signature size also has a direct influence on the index size. The com-
pression of inverted files makes them competitive in comparison to the signature-based
index structures. An earlier uncompressed version of inverted files we used was about 8
to 9 times larger, which would have been unacceptable.
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Figure 7.22: Number of recursive hash tables for RLSH

| database size | 50000 | 100000 | 150000 | 200000 | 250000 |

SSF (32 bit) 149 296 | 443 | 590| 737
SSF (64 bit) 108 | 394| 590 | 786 | 982
SSF (160 bit) 345 | 688 | 1031| 1374| 1717
ST (64 bit) 292 | 580 | 864 | 1147 1440
ST (160 bit) 502 | 1010 | 1503 | 2024 | 2554
ESH (32 bit) 435 872 1271 1747 2166
ESH (64 bit) 573 | 1160 | 1639 | 1956 | 2390
ESH (160 bit) | 1045 | 1992 | 2663 | 3247 | 3962
RLSH (32 bit) 580 | 1150 | 1716] 2292 2862
RLSH (64 bit) 769 | 1525 | 2307 | 3053 | 3773
RLSH (160 bit) | 1354 | 2665 | 3975| 5299 | 6574

[Toverted file | 268] 530 788 ] 1046] 1303]

Table 7.17: Index size in 4K pages for uniformly distributed data, varying database size

Influence of Domain Size

Table 7.18 shows the influence of domain size on the index size. As expected for the
signature-based index structures, this influence is marginal. For inverted files we can say
that the smaller the domain, the better the space requirement. The obvious reason for
this is that for each value appearing in a set, a list has to be allocated. The total number
of lists could be reduced by merging lists of values that appear infrequently into one list.
This would lead to a better compression of the small lists. However, the retrieval costs
would also rise as false drops would be introduced. We would then have to eliminate these
false drops.



126 CHAPTER 7. INDEX STRUCTURES FOR SET-VALUED ATTRIBUTES

‘ domain size ‘ 200 ‘ 2000 ‘ 100000 ‘
SSF (32 bit) 296 | 296 296
SSF (64 bit) 394 | 394 394
SSF (160 bit) 688 | 688 688
ST (64 bit) 575 | 580 587

ST (160 bit) | 1012 | 1010 | 1018
ESH (32 bit) 874 872] 886
ESH (64 bit) | 1093 | 1160 | 1199
ESH (160 bit) | 1639 | 1992 | 1992
RLSH (32 bit) | 1171 | 1150 | 1154
RLSH (64 bit) | 1536 | 1525 | 1532
RLSH (160 bit) | 2770 | 2665 | 2662

| Inverted file | 369 | 530 [ 1559 |

Table 7.18: Index size in 4K pages for uniformly distributed data, varying domain size

7.8 Results for skewed data

In this section we present the results for skewed data. The first part of this section deals
with retrieval costs, the second part with index size.

7.8.1 Retrieval Costs

Analogously to uniformly distributed data we evaluated the influence of query set cardi-
nality, database size, and domain size on retrieval costs.

Influence of query set cardinality

Varying the cardinality of the query sets yields the result depicted in Figure 7.23. For
equality queries we obtained results very similar to those for uniformly distributed data.
SSF and ESH are not influenced at all, while ST and RLSH show a slight increase in
costs. We also noticed a small increase in costs for the inverted file index. This stems
from the fact that the lists for the most common values are longer than the lists in the
case for uniformly distributed data. Since these values also appear more often in queries,
they are searched for more often during query evaluation. As for uniformly distributed
data, ESH is still the fastest index for equality queries.

For subset queries (Figure 7.23 (b)) the performance of all index structures except SSF
deteriorates. In the ST index more branches have to be traversed during query evaluation,
while in the ESH index more buckets are accessed. The performance of RLSH is totally
unacceptable. As we have already seen RLSH has difficulties with small domains (see
Figure 7.21). Skewed data is comparable to small domains insofar as a small number of
different elements appear in the sets. The decrease in performance for inverted files has
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Figure 7.23: Retrieval costs for skewed data, varying query set cardinality

the same reasons already mentioned for equality queries. In spite of the deterioration the
inverted file index is still the best index for subset queries.

The insights for SSF, ESH, and inverted files for subset queries also apply to superset
queries. ST shows no further deterioration for superset queries for skewed data, because
it already displays worst case behavior for superset queries for uniformly distributed data.
The performance of RLSH is not as disastrous as for subset queries, but RLSH has trouble
even keeping up with SSF. So for superset queries the inverted files are once more the
index of choice.

Influence of database size

The influence of database size on the index structures is shown in Figure 7.24. We
observed a linear growth of retrieval costs for SSF for all query types, i.e. skewed data
has no influence whatsoever on the internal structure of SSF. In both cases (uniformly
distributed and skewed data) SSF consists of sequential files with the same length, which
are scanned sequentially during query evaluation. The performance of the other index
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equality queries, domain:0..1999, query size:10, dist:Zipf
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Figure 7.24: Retrieval costs for skewed data, varying database size

structures for skewed data worsens compared to uniformly distributed data. Notable
exceptions to this rule are ESH for equality queries (best case for hash-based indexes)
and ST for superset queries (worst case for ST). ESH can still keep up the performance as
the index structure for equality queries is relatively small because of the signature sizes
(32-bit signatures). In this case, overflow buckets are rarely needed. The performance
of ST does not deteriorate any further because it cannot get worse. Regardless of the
data distribution ST needs to scan almost every single node in the tree. As expected,
the performance of RLSH does not improve for larger databases. It does not seem to be
suited for skewed data at all. Inverted files, although losing some performance compared
to uniformly distributed data, still show the best overall behavior.

Influence of domain size

We summarized the results for the influence of the domain size in Figure 7.25. The domain
size has no influence on SSF. For the other signature-based index structures and inverted
files the performance deteriorates because small domains amplify the skewing of data. The
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Figure 7.25: Retrieval costs for skewed data, varying domain size

reason for this is that the variety of occurring values is lowered and the distribution of
these values is more unbalanced (the probability of the most common value for |D| = 200
is 0.17, for |D| = 2000 it is 0.12, and for |D| = 100000 0.08). RLSH, which already
had difficulties coping with small domains for uniformly distributed data, suffers severe
performance losses for skewed data. We can trace back these performance losses to the
structure of RLSH, namely the number of recursive hash tables. The left hand side of
Figure 7.26 shows the number of recursive hash tables for different domain sizes for skewed
data. The right hand side of Figure 7.26 reiterates the numbers for uniformly distributed
data from Figure 7.22 on a different scale for better comparison. The most important
conclusion of this section, however, is that the performance of inverted files does not
worsen significantly for large domains.

7.8.2 Index Size

In the following two sections we illustrate the effects of skewed data on the index size.
We vary the size of the database and the size of the domain.
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Figure 7.26: Number of recursive hash tables for RLSH

[ database size | 50000 | 100000 | 150000 | 200000 | 250000 |

SSF (32 bit) 149 296| 443 | 590 | 737
SSF (64 bit) 198 394| 590| 786] 982
SSF (160 bit) 345 | 688 | 1031| 1374| 1717
ST (64 bit) 274 576 | 858 | 1137 ] 1432
ST (160 bit) 492 993 | 1473 | 1964 | 2457
ESH (32 bit) 489 790 | 1086| 1377] 1654
ESH (64 bit) 473 859 | 1263 1642| 2041
ESH (160 bit) 809 | 1490 | 2195| 2884 | 3564
RLSH (32 bit) 577 1162 | 1767 | 2291 | 2832
RLSH (64 bit) 785 | 1589 | 2346| 3187 3931
RLSH (160 bit) | 1455 | 2895 | 4363 | 5778 | 7285

| Inverted file | 178 340 505| 668 [ 830 ]

Table 7.19: Index size in 4K pages for skewed data, varying database size

Influence of database size

In Table 7.19 we depict the influence of skewed data on the size of the index structures
when varying the database size. The values for SSF for skewed data correspond to those for
uniformly distributed data (Figure 7.17). When comparing the other index structures,
we notice that in some cases the index size is smaller for skewed data. In case of ST,
skewed data leads to a higher fill degree of the nodes, which makes the index smaller. For
ESH skewed data causes an unbalanced directory and many splits. Since the size of the
directory is limited, we have to introduce overflow pages. Alongside many disadvantages,
however, overflow pages have one advantage: the pages are better utilized. This is also
the case for the inverted files, which do not need to fear comparison with the other index
structures. The compression rate of the lists is better than for uniformly distributed data,
because we have fewer, larger lists. An exception to this rule is RLSH, which increases
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in size. The reason for this is a dramatic increase in the number of recursive hash tables
along with the storage overhead for managing these tables (similar to the effect observed
for small domains).

| domain size | 200 | 2000 | 100000 |
SSF (32 bit) 296 | 296 296
SSF (64 bit) 394 | 394 394
SSF (160 bit) 688 | 688 688
ST (64 bit) 576 | 576 567
ST (160 bit) 982 993 988

ESH (32 bit) 762 790 | 807
ESH (64 bit) 848 | 859 | 891
ESH (160 bit) | 1468 | 1490 | 1539

RLSH (32 bit) | 1140 | 1162 | 1150
RLSH (64 bit) | 1720 | 1589 | 1598
RLSH (160 bit) | 3295 | 2895 | 2828

| Inverted file | 266 | 340 | 961 |

Table 7.20: Index size in 4K pages for skewed data, varying domain size

Influence of domain size

Table 7.20 shows the influence of domain size on the index size. As usual, SSF is immune
to changes in domain size. For most of the other index structures we can see that skewed
data is stored more compactly than uniformly distributed data. An exception to the rule
is, again, RLSH. Skewed data leads to a dramatic increase in the number of recursive hash
tables. For the inverted file index we have found that the larger the domain, the larger
the inverted file will be, but the inverted file index is still competitive when compared to
the other index structures.

As we can see a smaller index size does not mean that the index structures are better
suited for efficient retrieval. An inferior internal organization of the data is responsible
for the deterioration of the retrieval costs, not a larger index size.

7.9 Conclusions

We studied the performance of several different index structures for set-valued attributes
of low cardinality following two approaches to evaluate our work. The first approach
was developing cost models for all index structures to compare them mathematically.
Although we were able to determine the best/worst case behavior, the average case is very
difficult to analyze. This persuaded us to evaluate the index structures experimentally in
our second approach. For that reason we implemented sequential signature files, signature
trees, extendible signature hashing and B*-tree-based inverted files. We refitted the index
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structures to support the evaluation of queries containing set-valued predicates (namely
equality, subset, and superset predicates).

During the evaluation we observed the following. The inverted file index dominated the
field clearly, though for equality queries the hash-based index structures (except for RLSH
in the case of skewed data) were faster. Generally the signature-based index structures
have difficulties with skewed data and some important query cases (small query sets for
subset queries, large query sets for superset queries). The inverted file index showed
robustness for skewed data and we were able to keep the space demands reasonable.
Zobel, Moffat, and Ramamohanarao made a similar observation for the special case of
text retrieval while comparing inverted files to signature files [101].

In summary, we can say that for applications with set-valued attributes of low cardinality,
inverted lists showed the best overall performance of all index structures studied. they
were least affected by the variation of the benchmark parameters and displayed the most
predictable behavior, which makes them a good choice for practical use.

If there are significant breakthroughs in the area of high dimensional spatial index struc-
tures, set-valued queries will also be able to profit from them. Each set can be seen
as a point in a |D|-dimensional space, where |D| is the cardinality of the set domain.
For example, assume we have the domain D = {1,2,3,...,10} and a set s = {3,4, 8}.
Then s can be mapped to (0,0,1,1,0,0,0,1,0,0) in a 10-dimensional space. Set equality
queries are simple point queries in this space, while we can transform subset and superset
queries to range queries. We abandoned this straightforward approach because of the bad
performance of high dimensional spatial access methods.

A common approach to handling high dimensional data is to transform the data to lower
dimensions. So instead of using the sets themselves we could work with their signatures.
Although at first glance it looks like this will make our job easier, as we now handle
b-dimensional data (assuming a signature size of b) instead of | D|-dimensional data, this
still overtaxes spatial index structures.

Transforming subset queries to n-dimensional space
1 T T T T

false drop rate —+—

0.8

0.6

false drop rate

0.4

0.2

1 2 3 4 5
dimension (number of blocks)

Figure 7.27: False drop rates for different block sizes

A way to scale down the dimensions arbitrarily is the following. We divide a bitvector
representing a set into x blocks of size g and count the number of bits set in each block. For
example, assume a bitvector of size b = 16 and z = 4: 1001 1101 0001 0000. This bitvector
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is mapped on the point (2, 3,1, 0) in 4-dimensional space. Again we can transform equality
queries to point queries and subset/superset queries to range queries, but at the price of
additional false drops. These false drops are due to the fact that the number of bits set in
a block does not tell us which bits are set. That means we have introduced another filter,
for which we can control the false drop rate by choosing the block size. Unfortunately,
for large block sizes (low dimensional space), which can still be handled satisfactorily by
spatial index structures, the false drop rate is too high to achieve favorable results (see
Figure 7.27 for typical values in subset queries).
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Chapter 8

Conclusion and Outlook

Developing new algorithms and access structures for the physical level of DBMS is always
going to be an interesting subject, as we have to support the ever growing functionality
of database applications. In our work we focused on supporting set-valued attributes
and Data Warehouse applications. From a technical viewpoint join algorithms and index
structures are two important research areas on the physical level. Join algorithms rank
among the most expensive operations in DBMS, so they show a lot of potential for opti-
mization. Accessing data efficiently via index structures can also contribute significantly
to the performance of a database system.

Let us first turn to the join algorithms. On one hand we developed join algorithms for a
new environment, namely joining relations on set-valued attributes. For these set-valued
join algorithms we demonstrated that efficient alternatives to a naive nested-loop approach
exist. We achieved the best results for a hash-based variant relying on superimposed
coding for fast set comparison. On the other hand we devised an algorithm that works
in a more traditional relational system, but uses knowledge about the data cleverly. We
observed that often, related data is inserted at roughly the same time in a Data Warehouse.
As we rarely delete or update tuples in a Data Warehouse, the original structure of older
parts of a relation is not changed when inserting new data. Therefore there is a correlation
between the location of related data in different relations. We developed an algorithm
that exploits this fact while joining two relations containing related data. We have shown
that this algorithm, called Diag-Join, is up to two and a half times faster than regular
join algorithms used in this environment.

In the second part of our work we looked into the performance and robustness of index
structures for set-valued attributes of small cardinalities. Indexing sets is a difficult prob-
lem, as we cannot impose a total order on the indexed data items. Furthermore, subset
and superset queries cannot be transformed to point queries. We chose and modified
five different index structures for set-valued retrieval: sequential signature files, signature
trees, extendible signature hashing, recursive linear signature hashing and inverted files.
The comparison of the access methods was done in two different ways. On one hand we
developed (or supplemented existing) cost models and analyzed the behavior of the index
structures based on these cost models. As it is very difficult to evaluate the performance
for the average case and a non-uniform data distribution, we also decided to implement
the index structures and subject them to extensive experiments. Our theoretical analy-
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sis and experimental evaluation indicated a clear winner regarding robustness as well as
performance: the inverted file index.

This thesis can be seen as a foundation for further work on processing set-valued at-
tributes. As a matter of fact there is already work on secondary storage join algorithms
based on our work. Ramasamy, Patel, Naughton, and Kaushik propose a partitioned
set join algorithm in [77] while Jost investigates the applicability of Signature Trees and
R-trees for the processing of set-valued joins [53]. There is still room left for additional
optimization of set-valued join algorithms, so further publications in this area are likely.
It is also not clear, how the existing index structures will behave for sets with large cardi-
nalities. Despite all optimization, we expect the performance of inverted files to worsen,
as the lists will grow. Signature-based index structures are not necessarily an answer, be-
cause for large sets we will have to increase the size of the signatures to keep the false drop
probability low, which leads to performance loss. Comparing inverted files to signatures-
based index structures for large sets calls for further experiments, the outcome of which
will probably depend heavily on the type of indexed data. It is likely that in very large
sets many dependencies between elements can be found. We could use this information
to build highly specialized index structures, but devising an efficient, all-round access
method will be a difficult task.

Moreover, it is not yet quite clear what problems arise when integrating our algorithms
and index structures into real database systems. A query optimizer in a DBMS has to
be able to choose correctly between different access methods and join algorithms to get
the best query performance. In view of query optimization it is also important that
parameterizing the algorithms is not too difficult a task. This may not be given for the
signature-based techniques as superimposed coding is very sensitive to the processed data
and needs to be finely tuned to perform optimally. A lack of tools for analyzing external
memory algorithms (similar to O-notation for internal memory) does not help in this
regard either, since accurate cost models help an optimizer tremendously.



Appendix A

Minimal Costs for Partial Signatures

In Section 4.3.4 we wanted to know for which value of d the costs C(d) for retrieving all
matching tuples from a hash table are minimal. As a reminder

R
C(d) = 2% + U (A.1)
22
The derivative C’(d) (%) is equal to
In2 4 In2 |R|
"(d) = ——.922 — —_— .2
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Inserting d = log, |R| we get
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c"toes ) = (%) (m +ﬂ) (A5)

B

which for |R| > 0 is obviously larger than 0. Thus C'(d) becomes minimal for d = log, |R|.



Appendix B

Approximations for the Cost Model
of RLSH

In Section 7.3.5 we needed to estimate the the number of data items per bucket on the
left side and on the right side of the split pointer. We approximate the probability that
a bucket left of the split pointer is the home bucket of an arbitrary data item inserted at
level [ by

b

The probability that the home bucket is located on the right hand side of the split pointer
can be approximated by

b
p=1-= od (B.2)

The true probabilities for an individual bucket are dependent on the position of the
split pointer at previous levels. Nevertheless, the values \; and p; serve as adequate
approximations.

The maximum number of records that can be stored in a bucket is 5., 80 the estimated

number of records per bucket on the left hand side of the split pointer is

n

left, = S () (’j”) N (1 — A)m—d (B.3)

j=0

where
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We obtain the estimated number of records on the right hand side of the split pointer
similarly.

right, — iv(j) <n.l> il (1 — py)™ (B.5)

=0 J
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