
SONDERFORSCHUNGSBEREICH 504
Rationalitätskonzepte,
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1 Introduction

A hypergraph consists of a set of nodes and a collection of non-singleton
groups of nodes. In our formal model of interaction on a hypergraph or of
a game played on a hypergraph, the players constitute the nodes of the hy-
pergraph. A player participates in a collection of strategic games associated
with the groups he belongs to and chooses an action which affects his partial
payoff from each of these constituent games. A special case of a hypergraph
is an undirected graph, given by a set of nodes and a collection of unordered
pairs of nodes. Interaction on an undirected graph is better known as pair-
wise local interaction. The corresponding class of games are spatial or local
interaction games. We extend earlier results by Young (1998) and Baron
et al. (2002b) for local interaction games and show that if each constituent
game is a potential game, then a game played on a hypergraph is a potential
game. For supermodular games played on a hypergraph, we demonstrate
that the Nash equilibria form a non-empty lattice. For supermodular poten-
tial games, we find that the set of maximizers of the potential constitute a
sublattice of the joint strategy space. Moreover, for suitably parametrized
families of such games with common player and strategy sets, a comparative
statics result for the smallest and the largest maximizer of the potential is
derived.

Finite potential games and finite supermodular games have in common
that a Nash equilibrium in pure strategies exists. Ours is one of the few
papers that consider both properties. Dubey, Haimanko, and Zapechelnyuk
(2005) show that games of strategic substitutes or complements with ag-
gregation are “pseudo-potential” games, a generalization of best-response
potential games introduced by Voorneveld (2000). As a consequence, they
obtain existence of a Nash equilibrium and convergence to Nash equilibrium
of certain deterministic best-response processes. Brânzei, Mallozzi and Tijs
(2003) investigate the relationship between the class of potential games and
the class of supermodular games. They essentially focus on two-person zero-
sum games (and a special case of Cournot duopoly).

Dubey, Haimanko, and Zapechelnyuk (2005) do not consider stochastic
perturbations or “noise” and stochastic stability. In contrast, one of the orig-
inal contributions of the current paper is the investigation of logit perturbed
best response dynamics for supermodular games with potentials and the as-
sociated set of stochastically stable states. We follow Blume (1993, 1997),
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Young (1998), Baron et al. (2002b), and others who have shown that for
finite potential games, perturbed best response dynamics with logit trem-
bles yield the maximizers of the potential as the stochastically stable states.
As a consequence, we obtain that for finite supermodular potential games,
the stochastically stable states with respect to logit perturbations form a
sublattice and admit specific comparative statics.

To our knowledge only two earlier papers, Kandori and Rob (1995) and
Kaarboe and Tieman (1999), combine stochastic stability and supermodu-
larity in a general setting.1 Both papers focus on a class of global interaction
games based on two-player and symmetric strict supermodular games. Play-
ers gradually adjust their behavior taking into account a summary statistic.
The adjustment process is perturbed by Bernoulli or uniform trembles or
slight generalizations thereof. All authors obtain monotonicity results for
best responses and show that the set of stochastically stable states is con-
tained in the set of (strict) Nash equilibria of the recurrent game. Hence
supermodular games exposed to uniform trembles and potential games ex-
posed to logit trembles both induce perturbed dynamics under which the
stochastically stable states form a subset of the set of Nash equilibria of
the constituent game. Unlike the present paper, that earlier literature does
not examine the structure of the set of stochastically stable states and its
variation in response to parametric changes.

In section 7, we focus on networking games, a particular class of local
interaction games where each agent chooses an effort level or intensity of
networking. In the simplest case, the agent faces a binary choice: to network
or not to network. The agent does not choose a specific set of links, in con-
trast to previous models of strategic network formation (utilization) where
each agent selects which direct links to other agents to form (utilize). Our
hitherto unexplored model of “nonspecific networking” proves very promising
for three reasons. First, it covers a broad spectrum of applications as exem-
plified in subsection 7.2. Second, the model comprises a large class of games
which are both potential and supermodular games. Third, we obtain com-
parative statics results for Nash equilibria with respect to networking costs
in two opposite subcases, networking games with strategic complements and
networking games with strategic substitutes.

1Schipper (2003) and Alós-Ferrer and Ania (2005) exclusively deal with symmetric
aggregative games that are either submodular or supermodular.
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2 Preliminaries

Let N = {1, 2, . . . , n} be a finite set with n ≥ 2, F(N) = {E ∈ 2N |#E ≥ 2}
the family of subsets of N with at least two elements and F ′(N) = {E ∈
2N |#E = 2} the family of subsets of N with exactly two elements. A pair
(N, E) with E ⊆ F(N) is called a hypergraph on N . (N, E) is an undirected
graph in case E ⊆ F ′(N). An n-player game in normal form played on
a hypergraph is a list G = (N, E , (GE)E∈E , (X i)i∈N , (Ci)i∈N). N is the
finite set of players. (N, E) is a hypergraph on N describing the interaction
possibilities of the players. Each GE, E ∈ E , is a game in normal form
with player set E. X i is player i’s action set. Player i chooses an action
xi ∈ X i which determines i’s partial payoff in each of the games GE in which
i participates. Regardless of his interaction with other players, player i incurs
a cost (or benefit) C i(xi) which depends only on his own action xi.

The interpretation of the interaction hypergraph is that interaction is only
possible within groups of players E ∈ E . All players in E are called to play a
local game in normal form GE = (E, (X i)i∈E, (πiE)i∈E), where E is the set
of players, X i is the set of actions of player i ∈ E, and πiE :

∏
j∈E X

j → IR is
player i’s partial payoff function. For convenience, we define XE =

∏
j∈E X

j

with generic elements xE, X−iE =
∏
j∈E\{i}X

j with generic elements x−iE ,

X = XN with generic elements x, and X−i = X−iN with generic elements x−i.
Let Ei = {E ∈ E| i ∈ E} denote the family of groups player i belongs

to — which determines the local games GE, E ∈ Ei, in which i participates.
It is assumed that no player is isolated: Ei 6= ∅ for all i or, equivalently, E
is a covering of N . Hence each player i participates in at least one local
game. Whenever the hypergraph contains only one group of players, that is
E = {N}, the interaction is global. Otherwise the interaction is local. In the
special case E ⊆ F ′(N), the game G is a game played on a undirected graph
as in Young (1998, chap. 6) and Baron et al. (2002b).

Player i’s payoff function in G, ui : X → IR is defined by

ui(x) =
∑

E∈Ei
πiE(xE)− Ci(xi), (1)

with the interpretation that the payoff to player i depends on the joint strat-
egy x ∈ X and consists of i’s total payoff from interacting with various groups
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of players minus i’s cost. The equilibrium concept is Nash equilibrium. We
denote by N (G) ⊆ X the set of Nash equilibria of G.

Formally, the model restricts a player i to choose the same action xi across
all games GE, E ∈ Ei, in which the player participates. On the one hand,
this can reflect a severe restriction. For instance, suppose that X i = {1, 2}
for all i ∈ N and each game GE, E ∈ E , is a pure coordination game. That
is there exist numbers a1

E, a
2
E > 0 such that for every i ∈ E: πiE(xE) = akE

if k ∈ {1, 2} and xj = k for all j ∈ E, and πiE(xE) = 0 otherwise. Here a
player makes a single binary choice which affects his payoff in each of the
local games GE, E ∈ Ei. Given a best response xi ∈ X i against x−i ∈ X−i
in G, xi is not necessarily a best response against x−iE in GE for all E ∈ Ei,
even if Ci ≡ 0.

On the other hand, the model is flexible enough to incorporate de facto
different actions in different local games. Namely, consider a family of strate-
gically unrelated strategic games in normal form G∗E = (E, (SiE)i∈E, (νiE)i∈E),
E ∈ E , with SiE ∩ SiF = ∅ for E,F ∈ E , E 6= F, i ∈ E ∩ F . This situation
can be reduced to a game in normal form played on a hypergraph with lo-
cal games GE = (E, (X i)i∈E, (πiE)i∈E), E ∈ E , as follows. For each player i,
define X i =

∏
E∈Ei S

i
E. For i ∈ N , E ∈ Ei, and xE = (xj)j∈E ∈ XE where

xj = (sjF )F∈Ej for j ∈ E, put πiE(xE) = νiE((sjE)j∈E). Finally, set C i ≡ 0
for all i. Now a strategy xi ∈ X i is of the form xi = (siF )F∈Ei and encodes
i’s play in each of the games G∗E. Given a best response xi ∈ X i against
x−i ∈ X−i in G, xiE is a best response against x−iE in GE for all E ∈ Ei. In
fact, a joint strategy x ∈ X is a Nash equilibrium of G if and only if for
each E ∈ E , xE is a Nash equilibrium of GE. Moreover, a joint strategy
x = ((s1

F )
F∈E1 , . . . , (snF )

F∈En ) ∈ X is a Nash equilibrium of G if and only if

for each E ∈ E , sE = (siE)i∈E is a Nash equilibrium of G∗E.

3 Potential Games

We shall employ the concept of potential P for G pioneered by Monderer and
Shapley (1996), i.e. a function P : X → IR such that

ui(zi, x−i)− ui(xi, x−i) = P (zi, x−i)− P (xi, x−i)

for each i ∈ N , xi, zi ∈ X i, x−i ∈ X−i. It is clear from the definition of the
potential function that N (G) coincides with the equilibrium set of the game
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with common payoff function P . Consequently, arg maxx∈X P (x) ⊆ N (G).
Furthermore, if X is a countably compact topological space and P : X → IR
is upper semi-continuous, then P attains a maximum on X which in turn
implies N (G) 6= ∅.

Young (1998, chap. 6) shows that symmetric games played on graphs
admit a potential if each game G{i,j} between two neighbors i and j on the
graph has a potential. Baron et al. (2002b, Proposition 1 and Proposition
3, pp. 548-550) extend this result to the class of games played on quasi-
symmetric weighted graphs. The next proposition extends these results to
games played on hypergraphs.

Proposition 1 Let G = (N, E , (GE)E∈E , (Ci)i∈N) be a n-player game played
on a hypergraph. If for each group of players E ∈ E , GE admits a potential
φE : XE → IR then G is a game with potential

P (x) =
∑

E∈E
φE(xE)−∑

j∈N
Cj(xj). (2)

proof. Define the function P as in (2) and pick any i ∈ N , any xi, zi ∈ X i,
and any x−i ∈ X−i. We have

ui(zi, x−i)− ui(xi, x−i) =
∑

E∈Ei

(
πiE((zi, x−i)E)− πiE(xE)

)
− Ci(zi) + Ci(xi)

=
∑

E∈Ei

(
φE((zi, x−i)E)− φE(xE)

)
− Ci(zi) + Ci(xi)

=
∑

E∈Ei
φE((zi, x−i)E) +

∑

E 6∈Ei
φE(xE)− ∑

j∈N\{i}
Cj(xj)

−Ci(zi)−

∑

E∈Ei
φE(xE) +

∑

E 6∈Ei
φE(xE)−∑

j∈N
Cj(xj)




= P (zi, x−i)− P (xi, x−i).
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Example 1 (Network Formation)

Let N = {1, . . . , n} be a finite set of agents of size n > 1 and let (N, E)
be a hypergraph structure describing the collection of subsets of agents who
can form links. Denote by G(N, E) the set of graphs or networks that can
be formed under the hypergraph structure (N, E). To be more precise, links
can only be formed between pairs of players i and j both belonging to some
group E ∈ E . Thus, H = {{i, j} ∈ F ′(N) | ∃E ∈ E : {i, j} ⊆ E} is the
set of links which can be formed and G(N, E) = 2H. For g ∈ G(N, E), let
gE denote the network one obtains from g by eliminating all links involving
players outside of E.

A value function is a real-valued function v :G(N, E)→ IR which spec-
ifies for each network g ∈ G(N, E) the total value v(g) generated by g. Let
V be the set of all value functions v defined on G(N, E). An interesting sub-
class of value functions are those which preclude externalities across groups
of players. We will say that a value function v is group additive if there
exists a collection of functions vE : 2F

′(E) → IR, E ∈ E , such that for all
g ∈ G(N, E),

v(g) =
∑

E∈E
vE(gE).

An allocation rule is a mapping f : G(N, E)× V → IRn such that
∑

i∈N
fi(g, v) = v(g).

We say that the rule f is group-wise egalitarian if for each i ∈ N

fi(g, v) =
∑

E∈Ei

vE(gE)

#E
.

We now model network formation by means of a strategic game played
on the hypergraph (N, E) as follows. Hi = {j ∈ N : j 6= i and {i, j} ∈ H} is
the set of agents with whom i ∈ N can form links. Set X i = {0, 1}Hi with
generic elements xi = (xij)j∈Hi . The interpretation of xij = 1 for {i, j} ⊆ E is
that player i ∈ E seeks contact with player j ∈ E. A link is formed between
i and j in E if xij = xji = 1. Thus the network resulting from a joint strategy
x is given as

g(x) = {{i, j} ∈ H | xij = xji = 1}.
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Each player i ∈ N incurs a cost C i(xi) when choosing xi ∈ X i. The pay-
off function for player i ∈ N is then defined as the group-wise egalitarian
allocation rule minus i’s cost: For all i ∈ N , x ∈ X,

ui(x) = fi(g(x), v)− Ci(xi).

For each group of players E, a potential for the associated game GE is given
by

φE(xE) =
vE(gE(x))

#E
.

Notice that the formation of a link {i, j} can affect the payoffs of i and j
in several local games GE, because in general, E is not a partition of N and
{i, j} can be contained in several of the groups E ∈ E .

Example 2 (Collaboration in Multi-Oligopoly)

Consider a finite set of firms N and a hypergraph (N, E) on N . The set N
represents an entire industry whereas each E ∈ E constitutes a special branch
or product group within the industry. Here H = {{i, j} ∈ F ′(N) | ∃E ∈ E :
{i, j} ⊆ E} is the set of pairs of firms which belong to at least one common
branch and Hi = {j ∈ N : j 6= i and {i, j} ∈ H} is the set of firms with
whom firm i has a branch in common. Every firm i ∈ N is engaged in
activities with respect to the branches E ∈ Ei. Firm i produces a quantity
qiE ∈ IR+ of a homogeneous good for each group E ∈ Ei and has the option to
invest an amount of resources sij ∈ IR+ with each firm j ∈ Hi. An interfirm

collaboration is established between i and j only if sijs
j
i > 0. (Observe that

j ∈ Hi if and only if i ∈ Hj.) A strategy for firm i ∈ N is a pair xi = (qi, si)
where qi = (qiE)E∈Ei and si = (sij)j∈Hi . A collaboration between i and j in
E ∈ E yields lower fixed costs of production for the two firms. Precisely, the
cost of production for firm i ∈ E is given by

ciE(xE) = βiE · qiE −
∑

j∈E
γijE s

i
js
j
i

where βiE > 0 and γijE = γjiE > 0 for each pair of firms i, j in E. Departing
from the standard oligopoly model, without affecting equilibrium outcomes,
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we allow for negative prices pE and assume a linear inverse demand at all
output combinations for all E ∈ E as follows:

pE = αE −
∑

j∈E
qjE, with αE > 0,

so that for each i ∈ E the payoff in GE is

πiE(xE) =


αE −

∑

j∈E
qjE


 qiE − ciE(xE).

Firm i’s payoff in G becomes

ui(x) =
∑

E∈Ei
πiE(xE)− Ci(xi)

where Ci(xi) is a supplementary cost incurred by firm i when choosing
xi = (qi, si). This cost embodies the cost of investment si and the joint
diseconomies across markets induced by qi.

We are going to show that each oligopoly with interfirm collaboration, GE,
admits a potential φE. Consequently, by Proposition 1, the multi-oligopoly
game with interfirm collaboration is a potential game. To this end, let us
introduce the notion of interaction potential defined by Ui (2000). For E ∈ E ,
let SE be the collection of all nonempty subsets of E and S iE be the collection
of all subsets of E containing i. For each C ∈ SE denote by XC =

∏
i∈C X

i,
the set of joint strategies restricted to players in C. For xE = (xi)i∈E ∈ XE

and C ∈ SE, xC = (xi)i∈C ∈ XC denotes the restriction of xE to players in
C. A collection of functions {ρC : XC → IR |C ∈ SE} is an interaction
potential of the game GE if for every i ∈ E and every joint strategy x ∈ XE

it holds that
πiE(xE) =

∑

C∈SiE
ρC(xC).

Ui (2000, Theorem 3) shows that if GE has an interaction potential then it
is a potential game with potential

φE(xE) =
∑

C∈SE
ρC(xC).
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Next, for any E ∈ E and any C ∈ SE define ρCE : XC → IR as follows:

ρCE(xC) =





(αEq
i
E − βiE − qiE)qiE if C = {i}

−qiEqjE + γijsijs
j
i if C = {i, j}

0 otherwise

Clearly {ρCE : XC → IR |C ∈ SE} is an interaction potential due to the
symmetry of γijE . It follows that GE is potential game, and by Proposition 1
the multi-oligopoly game with interfirm collaboration is a potential game. A
potential is given by

P (x) =
∑

E∈E


 ∑

C∈SE
ρCE(xC)


−∑

i∈N
Ci(xi).

Example 3 (Nonspecific Networking)

This class of examples will be discussed in more detail in section 7.

4 Supermodular Games

Let X be a partially ordered set, with the reflexive, antisymmetric and tran-
sitive binary relation ≥. Given elements x and z in X, denote by x ∨ z the
least upper bound or join of x and z in X, provided it exists, and by x ∧ z
the greatest lower bound or meet of x and z in X, provided it exists. A
partially ordered set X that contains the join and the meet of each pair of
its elements is called a lattice. A lattice in which each non-empty subset
has a supremum and an infimum is complete. A finite lattice is complete.
If Y is a subset of a lattice X and Y contains the join and the meet with
respect to X of each pair of elements of Y , then Y is a sublattice of X. A
sublattice Y of a lattice X in which each non-empty subset has a supremum
and an infimum with respect to X that are contained in Y is a subcomplete
sublattice of X. Any finite sublattice of a lattice is subcomplete.
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We now define an order on the subsets of a lattice. We use the strong
set order ≥s used in Milgrom and Shannon (1994). Let X be a lattice and
let Y and Z be two subsets of X. We say that Y ≥s Z if for every y ∈ Y and
every z ∈ Z, y ∨ z ∈ Y and y ∧ z ∈ Z. Finally, we say that a correspondence
ρ : X →→ Y from a lattice X to a lattice Y is increasing in x on X if ρ(x)
is a sublattice of Y for every x ∈ X and if x ≥ z implies ρ(x) ≥s ρ(z) for all
x, z ∈ X.

In case X = X ′×X ′′ is the product of two partially ordered sets, we say
that a function f : X → IR has, exhibits or satisfies increasing differences
on X ′ × X ′′ if for all pairs (x′, x′′) ∈ X ′ × X ′′ and (z′, z′′) ∈ X ′ × X ′′, the
relations x′ ≥′ z′ and x′′ ≥′′ z′′ imply

f(x′, x′′)− f(z′, x′′) ≥ f(x′, z′′)− f(z′, z′′). (3)

f has decreasing differences on X ′×X ′′ if the inequality in (3) is reversed.

A game in normal form played on a hypergraph G = (N, E , (GE)E∈E , (Ci)i∈N)
is supermodular if the following four conditions are met:

1. For each i ∈ N , X i is the Cartesian product of mi ∈ IN compact
subsets X i

k of IR. The set X i is equipped with the usual partial order
relation ≥ where xi ≥ zi in IRmi if xik ≥ zik for k = 1, 2, . . . ,mi, which
makes X i a compact sublattice of IRmi .

2. For each E ∈ E and i ∈ E, πiE : XE → IR is upper semicontinuous and
supermodular in xi. The latter means that

πiE(xi ∨ zi, x−iE ) + πiE(xi ∧ zi, x−iE ) ≥ πiE(xi, x−iE ) + πiE(zi, x−iE )

for any xi, zi ∈ X i, x−iE ∈ X−iE .

3. For each E ∈ E and i ∈ E, πiE : XE → IR has increasing differences
on X i ×X−iE .

4. For each i ∈ N , Ci is submodular, that is for any xi, zi ∈ X i,

Ci(xi ∨ zi) + Ci(xi ∧ zi) ≤ Ci(xi) + Ci(zi),

and Ci is lower semicontinuous.
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For details, discussion and further references, see Topkis (1998) and Chapter
2 of Vives (1999). As a first result, we obtain:

Proposition 2 Let G = (N, E , (GE)E∈E , (Ci)i∈N) be a supermodular game
played on a hypergraph. Then the set N (G) is a non-empty complete lattice.

proof. As the Cartesian product of compact sublattices, X =
∏
i∈N X

i is
a compact sublattice of IRm, m =

∑
i∈N mi. For each i ∈ N , ui(xi, x−i) is

supermodular in xi on X i for each x−i. To see this, pick any xi, zi ∈ X i. We
obtain

ui(xi ∨ zi, x−i) + ui(xi ∧ zi, x−i) =
∑

E∈Ei

(
πiE(xi ∨ zi, x−iE ) + πiE(xi ∧ zi, x−iE )

)

−Ci(xi ∨ zi)− Ci(xi ∧ zi)
≥ ∑

E∈Ei

(
πiE(xi, x−iE ) + πiE(zi, x−iE )

)

−Ci(xi)− Ci(zi)

= ui(xi, x−i) + ui(zi, x−i)

where the inequality follows from supermodularity of the functions πiE on
X i and from submodularity of the cost function C i on X i. For each i ∈ N ,
ui(xi, x−i) has increasing differences in (xi, x−i) ∈ X i × X−i. To see this,
pick xi, zi ∈ X i with xi ≥ zi and x−i, z−i ∈ X−i with x−i ≥ z−i. Then

ui(xi, x−i)− ui(zi, x−i) =
∑

E∈Ei

(
πiE(xi, x−iE )− πiE(zi, x−iE )

)
− Ci(xi) + Ci(zi)

≥ ∑

E∈Ei

(
πiE(xi, z−iE )− πiE(zi, z−iE )

)
− Ci(xi) + Ci(zi)

= ui(xi, z−i)− ui(zi, z−i)
where the inequality follows from the fact that the functions πiE have in-
creasing differences on X i ×X−iE . Next, for each i ∈ N and x−i ∈ X−i, the
payoff function ui(xi, x−i) is upper semicontinuous in xi ∈ X i as the finite
sum of upper semicontinuous functions on X i. Hence (N, (X i)i∈N , (ui)i∈N)
is a supermodular game in the sense of Zhou (1994, section 3). The assertion
follows from Zhou’s Theorem (1994, p. 299).
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5 Supermodular Potential Games

Here we explore the relationships between the class of potential games and
the class of supermodular games.

Proposition 3 Let G = (N, E , (GE)E∈E , (Ci)i∈N) be a supermodular game
played on a hypergraph. Suppose G has a potential P : X −→ IR. Then
arg maxx∈X P (x) is a sublattice of X.

proof. Pick any i ∈ N . First note that ui(xi, x−i) has increasing differences
on X i for each x−i ∈ X−i by Theorem 2.6.1 in Topkis (1998) i.e. ui(xi, x−i)
has increasing differences in (xik, x

i
l) on X i

k × X i
l for each distinct k, l ∈

{1, . . . ,mi} and for each (xi−kl, x
−i) ∈

(∏
r 6=k,lX

i
r

)
× X−i. It follows that

P has increasing differences on X i for each x−i ∈ X−i by definition of a
potential P . Now, pick any j ∈ N, j 6= i. For all x ∈ X and zik ∈ X i

k, z
j
l ∈ Xj

l ,
k ∈ {1, . . . ,mi}, l ∈ {1, . . . ,mj} such that xik ≥ zik and xjl ≥ zjl , we have

P (xik, x
i
−k, x

j
l , x

j
−l, x

−ij)− P (zik, x
i
−k, x

j
l , x

j
−l, x

−ij)

= ui(xik, x
i
−k, x

j
l , x

j
−l, x

−ij)− ui(zik, xi−k, xjl , xj−l, x−ij)
≥ ui(xik, x

i
−k, z

j
l , , x

j
−l, x

−ij)− ui(zik, xi−k, zjl , xj−l, x−ij)
= P (xik, x

i
−k, z

j
l , x

j
−l, x

−ij)− P (zik, x
i
−k, z

j
l , x

j
−l, x

−ij)

The two equalities follow from the definition of a potential P . The inequal-
ity follows from the assumption that ui(xi, x−i) has increasing differences
in (xi, x−i) on X i × X−i. This means that P has increasing differences in
(xik, x

j
l ) in X i

k × Xj
l for each j 6= i, k ∈ {1, . . . ,mi}, l ∈ {1, . . . ,mj} and

for each (xi−k, x
j
−l, x

−ij). As this property holds for all i 6= j and since for
each i ∈ N , P has increasing differences on X i for each x−i ∈ X−i, it follows
that P has increasing differences on X. The potential P is supermodular on
X by Corollary 2.6.1 in Topkis (1998). By Theorem 2.7.1 of Topkis (1998)
the set of maximizers of P is a sublattice of X. This completes the proof.

Remark If each set Xk
i , i ∈ N , k ∈ {1, . . . ,mi} is a finite set or if P is

upper semicontinuous on X, then arg maxx∈X P (x) is a non-empty compact
sublattice of X. Since a potential is unique up to an additive constant,
arg maxx∈X P (x) is independent of the particular potential P .

Further notice that if each payoff function ui is supermodular on X, then
W =

∑
i ui is supermodular as the finite sum of supermodular functions,
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by Lemma 2.6.1 in Topkis (1998). In that case arg maxx∈XW (x), the set
of “efficient” strategy profiles is a sublattice of X as well. Moreover, then
the strategy profiles which maximize both P and W form also a (possibly
empty) sublattice of X, because the intersection of sublattices is a sublattice
by Lemma 2.2.2 in Topkis (1998).

In the sequel, let Θ denote a non-empty subset of some Euclidean space
IRp, p ∈ IN , with generic elements θ, ϑ.

Proposition 4 Let Gθ, θ ∈ Θ, be a collection of supermodular games played
on hypergraphs, with common player set N and common strategy sets X i, i ∈
N . Suppose each game Gθ has a potential P θ, θ ∈ Θ. Further suppose that
for each i ∈ N and each x−i ∈ X−i, the payoff function ui,θ(xi, x−i) has

increasing differences in (xi, θ) on X i × Θ. Then supX
(
arg maxx∈X P θ(x)

)
[
infX

(
arg maxx∈X P θ(x)

)]
, if it exists, is weakly increasing in θ on Θ.

proof. Pick any x, z ∈ X with x ≥ z and any θ, ϑ ∈ Θ with θ ≥ ϑ. Define
x(0), x(1), . . . , x(n) ∈ X as follows: x(0) = x, xi(j) = zi for i, j ∈ N , i ≤ j,
and xi(j) = xi for i, j ∈ N , i > j. By construction, x(j) ≥ x(j + 1) for
j = 0, 1, 2, . . . , n− 1. Because Gθ and Gϑ are potential games and the payoff
function of each player i has increasing differences on X i × Θ, it is the case
that x ≥ z and θ ≥ ϑ implies

P θ(x)− P θ(z) =
n∑

i=1

(
P θ(x(i− 1))− P θ(x(i))

)

=
n∑

i=1

(
ui,θ(x(i− 1))− ui,θ(x(i))

)

≥
n∑

i=1

(
ui,ϑ(x(i− 1))− ui,ϑ(x(i))

)

=
n∑

i=1

(
P ϑ(x(i− 1))− P ϑ(x(i))

)

= P ϑ(x)− P ϑ(z).

This means that P θ(x) has increasing differences in (x, θ) on X ×Θ. For
each θ ∈ Θ, P θ(x) is supermodular in x on X by Proposition 3. Then the
correspondence S : Θ →→ X, θ 7→ S(θ) = arg maxx∈X P θ(x) is increasing
with respect to the strong set order by Theorem 2.8.1 of Topkis (1998). The
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assertion follows by Lemma 2.4.2 of Topkis (1998).

6 Stochastic Stability

Let G be a finite game played on a hypergraph. Our concept of stochas-
tic stability is based upon best response dynamics with logit perturbations.
Throughout, we consider dynamics with asynchronous updating and per-
sistent noise, with discrete time t = 0, 1, . . . and states x ∈ X. Let q =
(q1, . . . , qn) � 0 be an n-dimensional probability vector. The recurrent
game G on a hypergraph is played once in each period. In each period t,
one player, say i, is drawn with probability qi > 0 from this population to
adjust his strategy and does so according to a perturbed adaptive rule. The
draws are i.i.d. across time. The non-selected players repeat the strategies
they have played in the previous period.

The perturbed adaptive rule is a logit rule. Suppose the current state is
x = (xj)j∈N . In principle, the updating player i wants to play a best reply
against x−i = (xj)j 6=i. But with some small probability, the player trembles
and plays a non-best reply. If the player follows a logit rule, then for all
yi ∈ X i, the probability that i chooses yi in state x is given by

pi(yi|x) =
exp[ui(yi, x−i)/ε]∑
zi exp[ui(zi, x−i)/ε]

, (4)

where ε > 0 is a noise parameter. For given ε, two choices that yield the
same payoff to i are equally likely. If one of them yields a higher payoff,
it will be chosen with a higher probability. In particular, any best reply
to x−i is more likely to be chosen than a non-best reply. As ε → 0, the
probability that a best reply is chosen goes to 1. For given ε > 0, one obtains
a stationary Markov process on X with transition matrix M(ε). M(ε) has
entries mx, x′(ε) with the following properties. If x and x′ differ in more
than one component, then mx, x′(ε) = 0. If x and x′ differ only in the ith
coordinate and x′ = (yi, x−i), then mx, x′(ε) = qi · pi(yi|x). If x = x′, then
mx, x(ε) =

∑
j∈N q

j · pj(xj|x). The process is irreducible and aperiodic, hence
it is ergodic and has a unique stationary distribution, represented by a row
probability vector µ(ε). Like in many prior studies of perturbed evolutionary
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games we want to determine the behavior of the system when ε→ 0, that is
when the noise becomes arbitrarily small. If the limit stationary distribution
µ∗ = limε→0 µ(ε) exists, we write X∗ for its support:

X∗ ≡ {x ∈ X : µ∗x > 0}
The joint strategies in X∗ will be referred to as stochastically stable
states. These are the states in which the system stays most of the time
when very little, but still some noise remains. Baron et al. (2002a) show
that X∗ can be partitioned into minimal sets closed under asynchronous
best replies. It turns out that the limit stationary distribution exists and
the stochastically stable states are the maximizers of the potential, if the
underlying game G has a potential.

Proposition 5 Suppose that G is a finite game and has potential P . Then
X∗ = arg maxx∈X P (x) and all stochastically stable states have equal proba-
bility.

proof. See Blume (1993, 1997), Young (1998), Baron et al. (2002a,b) for
the key argument.

As an immediate consequence of Propositions 2, 3, and 5, we obtain

Corollary 1 If G is a finite supermodular game played on a hypergraph and
has potential P , then X∗ is a non-empty sublattice of X and of N (G).

Moreover, the comparative statics of Proposition 4 apply to the smallest
(largest) stochastically stable state of the games Gθ, θ ∈ Θ. For example,
suppose that for some integer m > 1, Θ = {1, 2, . . . ,m}. Moreover, X i = Θ
for each i ∈ N and ui,θ(x) = min{θ, x1, . . . , xn} for all i ∈ N, θ ∈ Θ, x ∈
X. Then the game has the potential P θ(x) = min{θ, x1, . . . , xn}. For any
θ ∈ Θ, the smallest stochastically stable state is (θ, . . . , θ) and the largest
stochastically stable state is (m, . . . ,m).

Observe that if in addition, G is a symmetric game, then the corollary
further implies that G has at least one symmetric stochastically stable state.
The result that the set X∗ of stochastically stable states forms a non-empty
sublattice of X (rather than merely a lattice), is also of some practical in-
terest. Namely, then one can easily find a new stochastically stable state
knowing that two joint strategies (equilibria) are stochastically stable: If
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x = (x1, . . . , xn) and y = (y1, . . . , yn) are in X∗, then so are supX{x, y} =
(max{x1, y1}, . . . ,max{xN , yN}) and infX{x, y} = (min{x1, y1}, . . . ,min{xn, yn}).
One cannot necessarily proceed this way within the equilibrium set N (G).
For the conclusion of Proposition 2 that the set of Nash equilibria N (G) is
a non-empty lattice can be hardly replaced by the stronger assertion that
N (G) is a sublattice of the set of joint strategies X. The reason is that
Zhou’s Fixed-Point Theorem (1994, p. 297) cannot be generalized to show
the set of fixed points of an increasing correspondence from a nonempty com-
plete lattice X into itself to be a sublattice of X; see Zhou (1994, p. 298)
and Example 2.5.1 of Topkis (1998, p. 40). For the special case of a two-
player supermodular game where players’ strategy sets are totally ordered,
Echenique (2003) establishes that the set of Nash equilibria is a sublattice of
the set of joint strategies. But he observes that a supermodular game with
more than two players need not have an equilibrium set that is a sublattice
even if players’ strategy sets are totally ordered.

7 Application to Nonspecific Networking

In contrast to the literature on network formation and network utilization,
the focus of this application lies on nonspecific networking, meaning that
an agent cannot select a specific subset of feasible links which he wants to
establish, strengthen or utilize. Rather, each agent chooses an effort level or
intensity of networking. In the simplest case, the agent faces a binary choice:
to network or not to network. If an agent increases his networking effort, all
direct links to other agents are strengthened to various degrees. We assume
that benefits accrue only from direct links. Each agent has a finite strategy
set consisting of the networking levels to choose from. For any pair of agents,
their networking levels determine the individual benefits which they obtain
from interacting with each other. An agent derives an aggregate benefit from
the pairwise interactions with all others. This aggregate benefit is a function
of the chosen joint strategy of networking levels. In addition, the agent incurs
networking costs, which are a function of the agent’s own networking level.
The agent’s payoff is his aggregate benefit minus his cost.

We model nonspecific networking by means of networking games, a special
class of games played on a hypergraph. A game G will be called a network-
ing game, if it satisfies two restrictions, one on strategy sets and one on
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interactions:

1. Restriction on strategy sets: Every player i ∈ N has strategy
set X i = K = {k0, k1, . . . , kT} ⊆ IR+, with T ≥ 1 and 0 = k0 < k1 <
. . . < kT . The T + 1 individual strategies 0, k1, . . . , kT constitute the
networking levels a player can choose from and for simplicity are
assumed to be the same for all players. Depending on the context,
a higher networking level may mean more effort in socializing, more
investment in networking skills, more investment in communication
and information hardware or software, subscription to better network
services. Player i ∈ N incurs a cost ci(x

i) when choosing xi ∈ X i.
As a rule, the choice of a higher networking level is more costly: 0 =
ci(0) < ci(k1) < . . . < ci(kT ).

2. Restriction on interactions: Players receive benefits from pair-
wise interaction with others, that is E ⊆ F ′(N). It follows that
H = E . For i ∈ N , Hi is the set of i’s neighbors in the undirected
network E .

We use ij as short-hand for an ordered pair of players (i, j) ∈ N × N . We
define benefit functions bij : K ×K → IR as follows. For i ∈ N , {i, j} ∈ E ,
and x{i,j} = (xk)k∈{i,j} ∈ X{i,j}, we set bij(x

i, xj) = πi{i,j}(x{i,j}). Player

i receives the benefit bij(x
i, xj) ∈ IR from interacting with j, if i chooses

xi ∈ X i and j chooses xj ∈ Xj. {i, j} 6∈ E means that interaction between
i and j is infeasible because of geographic distance, language barriers, lack
of physical infrastructure, etc. At times, it is convenient to pretend that
interaction between i and j is feasible but ineffective, by setting bij(x

i, xj) = 0
for {i, j} 6∈ E , (xi, xj) ∈ X i×Xj. We shall proceed this way. Then the payoff
function (1) becomes

ui(x) =
∑

j 6=i
bij(x

i, xj)− ci(xi). (5)

All our previous results are directly applicable to instances of nonspecific
networking. First of all, Propositions 1 and 5 apply accordingly: If each
of the two-player games G{i,j} with player set {i, j}, strategy sets X i, Xj,
and payoff functions bij(x

i, xj) and bji(x
j, xi) has a potential φ{i,j}, then

G has a potential given by (2). If G has a potential and is finite, then the
assertion of Proposition 5 holds for the stochastically stable states of the best
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response dynamics with logit perturbations. In case bij satisfies increasing
differences in (xi, xj) ∈ X i ×Xj for all i 6= j, the game G is supermodular
and the assertion of Proposition 2 holds. In case G is supermodular and has
a potential, then the set of maximizers of the potential has the structural
properties of Proposition 3. Finally, Proposition 4 has implications for the
comparative statics with respect to networking costs, a fact on which we are
going to elaborate in more detail in the next subsection.

7.1 Comparative Statics in Networking Costs

Intuitively, one would expect that networking activities intensify if network-
ing costs decline. This conjecture proves at least partially true in the presence
of strategic complements in pairwise interactions on the one hand and in the
presence of strategic substitutes in pairwise interactions on the other hand.
To be precise, consider the following four assumptions:

(A) For all i 6= j, bij satisfies increasing differences in (xi, xj) ∈ X i ×Xj.

(B) For all i 6= j, bij satisfies decreasing differences in (xi, xj) ∈ X i ×Xj.

(C) There exist C1 ≥ 0, . . . , Cn ≥ 0 such that ci(x
i) = Ci ·xi for i ∈ N ,

xi ∈ X i.

(D) For i ∈ N , there exists a unique best response against each x−i ∈ X−i.
We commence with two comparative statics results for submodular network-
ing games.

Proposition 6 Let G be a networking game satisfying (B)-(D) and let G ′
be a second such networking game that differs from G only in the marginal
networking costs, which are C ′1 ≥ 0, . . . , C ′n ≥ 0 in G ′. Further, let x ∈ X be
an equilibrium of G and y ∈ X be an equilibrium of G ′. Suppose C ′i ≤ Ci
for all i and y 6= x. Then yi > xi for some i.

proof. Let G,G ′, C1, . . . , Cn, C
′
1, . . . , C

′
n, x, y be as hypothesized. Since x 6=

y, there is i ∈ N such that xi 6= yi. Consider this player i and suppose the
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conclusion is false, that is yj ≤ xj for all j ∈ N . We have:

0 <
∑

j

bij(x
i, xj)− Ci ·xi −


∑

j

bij(y
i, xj)− Ci ·yi




=
∑

j

(
bij(x

i, xj)− bij(yi, xj)
)
− Ci ·xi + Ci ·yi

≤ ∑

j

(
bij(x

i, yj)− bij(yi, yj)
)
− Ci ·xi + Ci ·yi

≤ ∑

j

(
bij(x

i, yj)− bij(yi, yj)
)
− C ′i ·xi + C ′i ·yi

=
∑

j

bij(x
i, yj)− C ′i ·xi −


∑

j

bij(y
i, yj)− C ′i ·yi


 < 0,

a contradiction. The first inequality follows from optimality of xi at x−i,
xi 6= yi, and (D). The second inequality follows from (B). The third inequal-
ity is a consequence of C ′i ≤ Ci and yi ≤ xi. The last inequality follows
from optimality of yi at y−i, xi 6= yi, and (D). Hence, to the contrary, the
conclusion has to be true.

The assumption (D) of unique best responses can be disposed of if one pos-
tulates strict cost reductions instead:

Proposition 7 Let G be a networking game that satisfies (B) and (C) and
let G ′ be a second such networking game that differs from G only in the
marginal networking costs, which are C ′1 ≥ 0, . . . , C ′n ≥ 0 in G ′. Further, let
x ∈ X be an equilibrium of G and y ∈ X be an equilibrium of G ′. Suppose
C ′i < Ci for all i and y 6= x. Then yi > xi for some i.

proof. Let G,G ′, C1, . . . , Cn, C
′
1, . . . , C

′
n, x, y be as hypothesized. Suppose

the conclusion is false, that is yi ≤ xi for all i ∈ N . Now take any i ∈ N . By
assumption, xi is a best response of i against x−i in G. Since yj ≤ xj for all
j 6= i and (B) and (C) hold, the largest best response x̂i of i against y−i in G
satisfies x̂i ≥ xi. Since C ′i < Ci, (B) and (C) hold, and G and G ′ differ only
in marginal networking costs, one obtains ỹi ≥ x̂i for any best response ỹi of
i against y−i in G ′ and any best response x̂i of i against y−i in G. It follows
that yi ≥ xi because yi is a best response of i against y−i in G ′. But yi ≥ xi

and yi ≤ xi imply yi = xi. Since i was arbitrary, y = x, which contradicts
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the hypothesis of the proposition. Hence, to the contrary, the conclusion has
to be true.

We now turn to comparative statics for supermodular networking games.
If a networking game G satisfies (A), then it is supermodular, and by Propo-
sition 2, it has a smallest and a largest Nash equilibrium. If in addition, the
game has a potential, then by Proposition 3, there exist a smallest and a
largest maximizer of the potential — which are also Nash equilibria and the
smallest and the largest stochastically stable state, respectively, under best
response dynamics with logit perturbations. We obtain weak monotonicity
results for the smallest and largest Nash equilibria of supermodular net-
working games by applying an earlier result of Milgrom and Roberts (1990):
These distinct equilibria will never decrease in response to a cost reduction.
By Proposition 4, the comparative statics à la Milgrom and Roberts for su-
permodular games extend to the smallest and largest stochastically stable
states of supermodular potential games.

Proposition 8 Let G be a networking game that satisfies (A) and (C) and
let G ′ be a second such networking game that differs from G only in the
marginal networking costs, which are C ′1 ≥ 0, . . . , C ′n ≥ 0 in G ′. Suppose
C ′i ≤ Ci for all i.

(i) If x ∈ X is the smallest (largest) equilibrium of G and y ∈ X is the
smallest (largest) equilibrium of G ′, then yi ≥ xi for all i.

(ii) If G and G ′ have respective potentials P and P ′, x ∈ X is the small-
est (largest) maximizer of P and y ∈ X is the smallest (largest)
maximizer of P ′, then yi ≥ xi for all i.

proof. Let G,G ′, C1, . . . , Cn, C
′
1, . . . , C

′
n be as hypothesized.

(i) Consider a family of networking games Gτ satisfying (A) and (C) which
only differ in the marginal cost parameters τ = (C1, . . . , Cn) ∈ IRn

+. Then
the smallest and the largest equilibrium of Gτ are non-increasing functions of
τ . Namely, endow the parameter space IRn

+ with the reverse of its canonical
partial order, that is for τ, τ ′ ∈ IRn

+, τ ≤ τ ′ if and only if τi ≥ τ ′i for all
i. Then the payoff functions given by (5) satisfy condition (A5) of Milgrom
and Roberts (1990). (A) and (C) imply that each game Gτ is supermodular.
Therefore, by Theorem 6 of Milgrom and Roberts, the smallest and the
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largest equilibrium of Gτ are non-decreasing in τ with respect to the reverse
canonical partial order of IRn

+. Hence the assertion.
(ii) Consider a family of networking games Gτ which are satisfying (A)

and (C), have respective potentials P τ , and differ only in the marginal cost
parameters τ = (C1, . . . , Cn) ∈ IRn

+. With θ = −τ , individual payoffs satisfy
increasing differences in (xi, θ). By Proposition 4, the smallest and the largest
maximizer of the potential are weakly increasing in θ = (−C1, . . . ,−Cn).
Hence the assertion.

Notice that the conclusion of Propositions 6 and 7 cannot be substantially
strengthened for two reasons. For one, G and G ′ may have the same equi-
libria, even if C ′i < Ci for all i. This follows from the discreteness of
the model. Secondly, let G be given by n = 6, the circular graph E =
{{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}}, the set of available networking lev-
els K = {h/2 : h = 0, 1, . . . , 10}, pairwise benefit functions bij(x

i, xj) =√
xi + xj for {i, j} ∈ E ; bij(x

i, xj) = 0 for {i, j} 6∈ E , and the marginal cost
parameters Ci = 1 for all i. Let G ′ be a game that differs from G only with
respect to marginal networking costs. Specifically, set C ′i = 1/2 for i odd
and C ′j = C ′ < 1 for j even. x∗ = (1/2, 1/2, 1/2, 1/2, 1/2, 1/2) is an equi-
librium of G. If C ′ is sufficiently close to 1, then x∗∗ = (4, 0, 4, 0, 4, 0) is an
equilibrium of G ′. Obviously x∗∗ 6= x∗. But despite the cost reduction, some
players have lowered their efforts in x∗∗ relative to x∗.

Without a strategic substitutes (submodularity) assumption, a cost de-
cline is consistent with a universal reduction of networking activities. Next
we provide a numerical example with this property, which exhibits strategic
complements (supermodularity) and also demonstrates that the conclusion
of Proposition 8 cannot be substantially strengthened.

Example. Let e = exp(1) be the Euler number. Set K = {0, e1/4−1, e−1},
n = 6, E = {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}}. Define pairwise benefit
functions as bij(x

i, xj) = 1
2

ln(1 + xi) · ln(1 + xj) for {i, j} ∈ E ; bij(x
i, xj) =

0 for {i, j} 6∈ E . With Ci = e−1 for all i, we obtain a game G which has two
symmetric equilibria, x0 = (0, . . . , 0) and x• = (e − 1, . . . , e − 1). Setting
C ′i = e−1/4/4 < Ci for all i defines a game G ′ which has three symmetric
equilibria, x0, x•, and x•• = (e1/4 − 1, . . . , e1/4 − 1). Thus, the example has
several interesting features. First, there exists the equilibrium x0, an instance
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of mutual obstruction where nobody has an incentive to network if nobody
else is networking. Next there exists the equilibrium x• where everybody
exerts maximum networking effort. Further, a cost reduction leads to the
emergence of a third equilibrium, x•• where everyone makes a positive but
less than maximal effort. Regarding our original point, the conclusion of
Propositions 6 and 7 obviously need not hold if the strategic substitutes as-
sumption of the form (B) is violated. Moreover the conclusion of Proposition
8 manifests itself in its weak form: After a cost reduction for all players, the
smallest equilibrium x0, the largest equilibrium x•, and the unique stochas-
tically stable state (maximand of the potential) x• remain unchanged.

Echenique and Sabarwal (2003, p. 309) give a condition on a pair of pa-
rameters θ, θ′ ∈ Θ, θ ≤ θ′, which implies supN (G) ≤ infN (G ′) for the games
G and G ′ identified by θ and θ′, respectively. The corresponding inequality
hold for the maximizers of the respective potentials if applicable.

7.2 Instances of Nonspecific Networking

To illustrate the scope of applications, let us specialize and assume a decom-
position

bij(x
i, xj) = pij(x

i, xj) · vij, (6)

where pij ≥ 0 is the probability, reliability or strength of the link from i to
j or the intensity of i interacting with j. vij is i’s benefit, appreciation or
valuation of an interaction with j. If 0 ≤ pij ≤ 1 and pij is interpreted as a
probability, then player i receives benefit vij with probability pij, zero benefit
with probability 1−pij, and expected benefit bij. It is possible that players are
linked without any effort or investment, that is pij(0, 0) > 0. It is also possible
that the strength or probability of certain links proves irresponsive to effort
or investment, that is pij is constant. Frequently, though not necessarily, the
link probabilities satisfy the following regularity conditions, any two of which
imply the third one:

(i) Identity: pij(x
i, xj) = pji(x

j, xi) for all (xi, xj) ∈ K ×K.

(ii) Symmetry: pij(x
i, xj) = pji(x

i, xj) for all (xi, xj) ∈ K ×K.
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(iii) Interchangeability: pij(x
i, xj) = pij(x

j, xi), pji(x
i, xj) = pji(x

j, xi)
for all (xi, xj) ∈ K ×K.

There exists also a symmetry condition for the valuations vij, with a host of
subcases,

(iv) Mutual Affinity: vij = vji,

or more generally, sign(vij) = sign(vji). Mutual affinity can result, e.g., from
similarity (kindred spirits) or from complementarity (attraction of opposites).
There can be mutual lack of interest, vij = vji = 0, mutual antipathy, dislike
or disadvantage, vij = vji < 0 and mutual advantage or sympathy, vij =
vji > 0. Instead of mutual affinity, there can be adversity or antagonism:
vij = −vji or, more generally, sign(vij) = − sign(vji).

Both in traditional and in electronic interactions, some agents are much
more active in networking than others and might be called “networkers”. A
networker is more eager than others to form and utilize networks because
of (actual or perceived) benefit or cost advantages. One possibility is that
there exist numbers vi > 0, i ∈ N , such that vij = vi for any distinct pair ij.
Then ceteris paribus, i has a greater incentive to network than j if vi > vj,
since i’s benefit from any interaction is higher than j’s. Another possibility
is that there exist numbers vi > 0, i ∈ N , such that vij = vivj for any
distinct pair ij. Then vi > vj and vk > 0 imply vik > vjk and vki > vkj.
Not only has i a higher benefit from any interaction and, therefore, a greater
incentive to network than j. It is also the case that any third player k would
have a higher benefit from interacting with i than from interacting with j.
In some cases this implies that being surrounded by networkers, i.e. players
with high vi, may induce a player to make a large networking effort. Hence,
under certain circumstances, the presence of networkers fosters networking
by networkers and others. A further possibility is that some individuals have
a cost advantage which may induce them to invest more in networks and in
turn may cause reduced networking efforts by others.

Finally, one might distinguish between good and bad neighbors when
valuations assume the form vij = vj. In that case, player j with vj > 0
would be considered a good neighbor and vk < 0 would make player k a bad
neighbor.
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8 Extensions

The formal analysis of interaction on hypergraphs encompasses but is not
limited to models of nonspecific networking. The latter provide a major ap-
plication and the main motivation for our research. The broader framework
yields some immediate generalizations of some of the results on nonspecific
networking, including comparative statics. For instance, one can consider
multi-dimensional effort choices, like choosing software-hardware combina-
tions.

A further alternative could make the set of available efforts a (one- or
multi-dimensional) interval or convex set and assume sufficient differentia-
bility of the cost and benefit functions. As Brueckner (2003) demonstrates in
the context of specific networking, one arrives at some conclusions very ele-
gantly, if such a continuous model is highly symmetry, but does not get very
far otherwise. Most of our subcases and examples can be easily embedded
into a larger continuous model. But again, while this might produce some
eloquence and quickness of derivations in some cases, it would only render
the analysis more complicated in others. An added complication stems from
the fact that the concept of stochastic stability developed in the literature
so far (based on logit or other perturbations) and employed in the present
paper relies on a finite state space.

The idea that the strength or probability of a link might depend on the
efforts of both agents involved, is also central to the model of Brueckner
(2003). Similarly, Haller and Sarangi (2005) consider the possibility that
the reliability of a link depends on the efforts of both agents. Since we
allow for negative affinity or attraction, some agents might not only abstain
from networking but might take counter-measures against the networking
attempts of others and be willing to incur costs in order to weaken or sever
links. This eventuality suggests a further extension of the formal model.
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