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Abstract 
 
 
 
Previous studies have shown that individuals exhibit a tendency to acquire an excessive 
amount of private information if information can only be communicated through a small and 
discrete action space. In this experiment we investigate demand for information when the 
action space is continuous. Participants sequentially assess their subjective probability which 
one out of two apriori equally likely states occurred at the beginning of a game. They observe 
the probability assessment of their predecessor and can acquire additional private information 
at a fixed price. Participants interact with either human or computer simulated players. We 
find that individuals in general acquire too many signals and that behavior does not depend on 
the rationality of their counterparts. A random utility model is able to explain most of the 
observed behavior. 
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Consider yourself acting in a market where the true value of a good depends only on the 

probability of a single event. Examples of such markets are widespread, think, e.g. of a stock, 

whose value depends on the success of a patent or the value of a bond, which strongly 

depends on the fact if the company issuing the bond will declare bankruptcy or not. Other 

examples include the labor market where you only have some idea about the success 

probability of a job applicant. 

These markets typically have in common that one can observe the behavior of other agents 

and that one has the opportunity to acquire additional private information. Behavior of other 

agents includes observing their buying and selling decisions, their bids and asks, etc. In the 

following, we will call this information public information. To come up with an optimal 

strategy in this market environment, one has to decide how much private information to 

acquire and subsequently how to combine private and public information. The goal of our 

research is to understand what a market participant should do and to contrast this with what 

she is actually doing. The potential difference between rational and actual behavior will help 

us to better understand markets. 

Investigating and understanding behavior of subjects in markets is a difficult and under 

some circumstances even impossible task. Being able to compare rational and actual behavior 

of subjects in an experimental study requires the possibility to derive an optimal strategy in 

every situation, subjects might be in. Generally, markets do not meet this requirement. In 

markets, the optimal strategy is influenced by strategic interaction of market participants and 

concepts of information efficiency as well as the underlying market form. All these factors 

aggravate and often impede the calculation of an optimal strategy. Furthermore participants’ 

wide variety of possible actions (buying or selling, timing, volume, etc.) complicates the 

identification of possible reasons for their behavior. 

It is therefore meaningful to define a simple market-like aggregation process where an 

optimal strategy can be calculated. Situations investigated in the information cascade 

literature (Bikhchandani, Hirshleifer and Welch 1992, Anderson and Holt 1997) share 

important features of aggregation processes also found in market situations, which we try to 

understand: Subjects have to sequentially assess the true value of a random variable based on 

the observation of their predecessor’s guesses and their own private information. But other 

than in market scenarios, the simple aggregation process enables a calculation of when 

subjects should buy private information and how private and public information should be 

aggregated. 
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Using laboratory experiments, Kraemer, Nöth and Weber (2001) found that subjects buy 

too much private information, a result which has been independently replicated by Kübler and 

Weizsäcker (2001). There is no easy explanation for this result. Kraemer, Nöth and Weber 

(2001) found that neither risk aversion nor taking into account predecessors‘ errors nor other 

rational factors were able to explain the observed buying behavior. 

In this paper we use a different aggregation process based on features of cascade 

experiments. The resulting design better resembles real world situations, in which continuous 

measures serve to aggregate information, and enables us to identify why subjects exhibit a 

tendency to buy too much information. In particular, we try to answer the following 

questions: 

• How do changes in cost and quality of information affect subjects’ demand for 

information? 

• How do people decide whether to acquire additional information and how do they 

aggregate different pieces of information? 

• Do subjects take into account irrationalities by other subjects and to what extent does that 

influence their behavior? 

Our data suggests that behavioral variables play an important role in the answers to these 

questions. Overconfidence (Svenson 1981) and conservatism (Edwards 1968) have long been 

known by psychologists to influence probability judgments resulting from Bayesian updating. 

Those Bayesian concepts have recently become quite prominent in the economic literature. 

E.g. overconfidence is a prominent behavioral variable in models explaining trading behavior 

(Daniel, Hirshleifer, Subrahmanyam 1998; Gervais and Odean 2001). Combining 

overconfidence, i.e. overweighing ones own signal, with a random utility approach, we are 

able to explain subject’s excessive information acquisition. Furthermore we show that 

subjects tend not to consider errors committed by other subjects. However, a (new) puzzle 

remains: subjects buying behavior given a certain piece of public information depends on 

their position within the experiment, i.e. apart from the implications, the weight of the given 

information seems to influence subjects’ behavior, too. 

We will proceed as follows. The next section will first motivate our experimental design 

and discuss the result of previous studies in more detail. Subsequently, the design is 

presented. The results are given in the second section. The paper ends with a short discussion 

of the results and an outlook for future research. 
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I. Experimental Design and Procedures 

Methodological issues 
As already stated above a complex market is not suitable to answer our research questions 

because neither an optimal strategy can be derived in any situation nor is it possible to 

identify why subjects behaved the way they did because subjects have too many ways to act. 

Therefore our design uses features of the aggregation processes found in cascade experiments 

(Anderson and Holt 1997, Nöth and Weber 2001). They simplify the aggregation process but 

still share important features of aggregation processes in market environments. Features taken 

from cascade experiments are the following: There are only two possible states of nature A 

and B, which are a priori equally likely. The two different states could represent e.g. the 

events “the stock market goes up” and “the stock market goes down”. Information is 

represented by signals which are determined based on the state of nature which actually 

occurs. The signals can either be of good or bad quality and the aggregation process is 

simplified by determining exogenously in which order subjects have to act. 

Other than in the cascade experiments, the aggregation of information is not obtained by 

letting subjects predict which state they think is more likely and making these predictions 

publicly available. Instead information is aggregated by asking subjects for their subjective 

probability that either one of the states occurred based on all available information and then 

passing this probability judgment to the next subject in the sequence. Why do we use 

probability judgments to aggregate the information? First, we try to closer match the notion of 

real markets in which prices summarize the private information held by subjects who have 

already taken actions. Second, a single probability is easier to interpret than actions taken by 

different individuals. And third, information cascades can no longer occur in this environment 

(Lee 1993), so that all available information is aggregated. 

The situation represented by our design can be viewed as a situation we often face in real 

life. One has to reach a judgment concerning the probability of a certain event (e.g. that the 

stock market goes up). To do this, one can first observe decisions or judgments made by 

others, which provides one with an initial assessment (e.g. by reading a research report). Then 

one has to decide whether to gather additional information or not and then to reach a final 

judgment by aggregating the different pieces of observations. The resulting judgment or 

actions can then be observed by other individuals and so on (e.g. by publishing 

recommendations). In the end, information about the event is aggregated in the actions taken 

by the subjects. 
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Previous studies have tried to answer similar questions by using a related but different 

approach (Kraemer, Nöth and Weber 2001; Kübler and Weizsäcker 2001). Instead of passing 

probability judgments from subject to subject they made the actions taken by the subjects 

publicly observable as a free source of information. The studies found that subjects tend to 

acquire an excessive amount of private information. Kraemer, Nöth and Weber (2001) 

identified biased information weighing as the most likely reason for the observed behavior, 

whereas Kübler and Weizsäcker (2001) identified errors committed by other subjects as an 

explanation. The design used in these experiments has two major drawbacks. First, in order to 

evaluate the free information participants had to aggregate all predictions of their 

predecessors and the information about the preceding signal acquisitions, which could be a 

difficult task. Second, since only the acquisition behavior and the prediction of the state of 

nature could be observed, subjects’ beliefs about the state of nature were only elicited as a 

dichotomous variable. Therefore it was impossible to precisely measure how much weight 

subjects assigned to the different sources of information, which is necessary to prove that a 

biased information weighing is responsible for the excessive signal acquisitions. 

Design 

The following section outlines the experimental design. In each session 6 players play several 

rounds of the following game. Explanations concerning specific design features follow the 

extensive form representation. 

• At the beginning of each game nature draws one out of two equally likely states, 

denoted by A and B (pA = pB = 0.5). 

• 6 Players have the task to sequentially assess their subjective probability that either 

state A or state B occurred. The ordering is given exogenously and is determined 

randomly for each round. One human subject plays with 5 perfectly rational 

computer simulated players. The rationality of the computer players is public 

knowledge since it is announced in the instructions (see Appendix A). 

• At position i (i = 1, …, 6) the ith player has the following information: 

• The design including all probabilities and payment procedures is public knowledge 

since it is explained as part of the instructions (see Appendix A). 

• The player at position i observes the probability assessment pi-1 of the player at 

position i – 1, for i > 1. 

• The option to acquire a private signal si at the fixed price of 35 currency units (cu) 

in the LC (“low cost”) treatment and 45 cu in the HC (“high cost”) treatment. The 
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private signal si can be one out of four possible signals si ∈  {aS, aW, bS, bW}, 

generated randomly and independently for each player in each round in a two step 

procedure depending on the realized state: 

1. The signal’s strength is either weak or strong with probability pW = pS = 0.5. 

Note that the signal’s strength does not depend on the realized state. 

2. If the signal is strong, the information is drawn from an urn containing 2 wrong 

and 8 correct signals, i.e. p(aS|A) = p(bS|B) = 0.8. A weak signal is drawn from 

the “weak” urn. In the LQ (“low quality”) treatment the “weak” urn contains 4 

wrong and 6 correct signals (p(aW|A) = p(bW|B) = 0.6) and in the HQ (“high 

quality”) treatment the “weak” urn contains 3 wrong and 7 correct signals 

(p(aW|A) = p(bW|B) = 0.7). 

• After having observed all available information the player at position i forms her own 

belief about the probability pi that state A occurred and communicates this probability 

judgment to the player at position i + 1. All other players cannot observe the 

probability judgment of the player at position i. The only information they get is the 

number of players who have already passed a probability assessment to their 

successor. E.g. a player who has not yet submitted a subjective probability only 

receives information that the first player, the second player, the third player and so on 

have already decided but cannot observe any further information unless it’s her turn. 

When it’s her turn she first receives her predecessor’s probability and then decides 

upon the signal acquisition. 

• The probability is submitted using a sliding bar mechanism, which enables the player 

to quote her probability in steps of 1% ranging from 0% (pi = 0.0) to 100% (pi = 1.0) 

for state A (see figure 3).1 

• The players get paid according to a quadratic scoring rule. If a subject submitted 

probability pi for state A, she receives )pp2(1000 2
ii −⋅  if state A was drawn at the 

beginning of the game. If state B was drawn at the beginning of the game she receives 

)p1(1000 2
i−⋅  cu. 

• After all six players submitted their probability assessments the true state is revealed 

and a new round begins. 

 

                                                           
1  Since probabilities can only be expressed in steps of 1% we basically have only a discrete action space. But 

since the action space is large compared to the number of possible states of nature, we consider the action 
space to be continuous. 
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Figure 1: Course of a round 

The decision sequence is illustrated in this figure. Each round begins with the determination of the state, the 
signals and the ordering of the six players. Except for the first acting subject each acting player privately 
receives the probability assessment of her predecessor prior to her own signal acquisition decision. Then she 
either receives a private signal followed by her own probability assessment or she has to submit a probability 
without additional information. There is no time limit for the actions. 

In this game the probability assessments, which are communicated to subsequent 

individuals serve as a means for the aggregation of the information which is acquired by the 

individuals. Subjects decide to acquire private information if the perceived benefit from 

acquiring an additional signal outweighs its cost. They communicate their new piece of 

information through their probability assessment to subsequent decision makers, who can in 

turn use this probability assessment to form their own beliefs about the occurred state. In 

order to ensure that subjects have an incentive to honestly communicate their subjective 

probabilities a proper scoring rule was used to determine the payments.2 Scoring rules reward 

or penalize the assessor based on her stated probability and on the event which actually 

occurs, so that she has an incentive to state a probability which corresponds with her 

judgments. Assuming risk neutrality the quadratic scoring rule used in this experiment is 

incentive compatible since a revelation of the true subjective probability is the ex ante 

expected payoff maximizing strategy.3 For a formal argument refer to Appendix C. Since 

subjects are paid only according to their probability assessments the payoffs from the scoring 

rule also determine the signal’s value in each situation.4 

                                                           
2  See Winkler (1967) and Winkler and Murphy (1968) for a general discussion on scoring rules. 
3  Risk aversion biases the revealed probabilities towards 0.5. But Sonnemans and Offerman (2000) have 

shown that risk aversion has almost no influence on behavior if a quadratic scoring rule is used, especially if 
payments are small as in this experiment. 

4  The computer based design helps subjects to understand the quadratic scoring rule and its implications for the 
signal value. See the Procedures chapter for further information on the scoring rule. 
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Using Bayes’ law and taking into account that all computer simulated predecessors act 

fully rationally the signal values for the different treatments depending on the predecessors 

probability assessment can be calculated. Figure 2 illustrates the result. 
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Figure 2: Bayesian signal values 

One can see that the signal value drops below its cost, whenever the predecessor’s 

probability pi-1 is outside of a symmetric range around 0.5. Note that because of the equal 

priors (p(A) = p(B) = 0.5), a probability for state A of p equals a probability for state B of (1-

p). This means that if a predecessor assesses a probability larger than a certain upper bound to 

either one of the two states, then a rational subject would resign to acquire additional private 

information and just follow the probability assessment of her predecessor. Hence, we should 

observe a signal acquisition in 100% cases if the predecessors probability assessment is within 

the “rational” range and in 0% cases if it is outside that range. 

Procedures 

The experiments were conducted computer based. Figure 3 exhibits a sample screen, which is 

displayed, when a subject at position 4 is asked to submit her probability assessment. 
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You receive the private signal:
strong

What is your subjective probability for
state A:state B based on all available information?

Position

Prob. A:B

Prediction

21 2 3

65:35

983.1

243.1

You receive the private signal:
strong

What is your subjective probability for
state A:state B based on all available information?

Position

Prob. A:B

Prediction

21 2 3

65:35

983.1

243.1

 
Figure 3: Sample program window 

In the first line of the lower part of the window participants can observe the number of predecessors who have 
already acted and in the second line they can see the probability assessment of their immediate predecessor. 
The third line does not contain any information and is only intended for future extensions of the design. Note 
that participants only observe the probability assessment of their immediate predecessor once it’s their turn to 
submit a probability judgment. 

In this example the player decided to purchase a private signal, which is revealed at the top 

of the window. In the upper part of the window one can see the sliding bar used to input the 

probability judgment. The payoffs for either state A or state B are displayed below the sliding 

bar and are updated according to the quadratic scoring rule with every alternation of the 

slider. The interactive design gives subjects the opportunity to observe the payments 

associated with different probability judgments. This helps them to understand that their 

probability judgment can be considered a gradual bet on the more likely state. Instead of 

betting on one of the states (like in the experiments by Kraemer, Nöth and Weber 2001), 

subjects can express their degree of confidence in both states. The greater their confidence in 

one of the two states, the more they earn if their guess is correct but the less they earn if they 

are wrong. The quadratic formula for the division of payments between the two states is one 

way to ensure that the payment method provides an incentive to honestly communicate the 

true beliefs. Since subjects can observe the change in payments with every change of the 

slider, they can furthermore get a feeling in which range the change in payments is most 

sensible. This helps them to understand in which cases they should acquire additional 

information and in which cases they should not. 
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88 subjects participated in the experiment at the University of Mannheim in January 2001. 

The participants, all of whom studied business administration at that time, were split between 

the different cost (LC and HC) treatments. In total 42 subjects participated in the LC 

treatment and 46 in the HC treatment. The quality (LQ and HQ) was varied within subjects. 

To avoid ordering effects, 20 of the 42 participants in the LC treatment played the LQ 

treatment in the first half of the rounds and the HQ treatment in the second half. The other 22 

subjects first played the HQ treatment and then the LQ treatment. In the HC treatment 22 

subjects started with the LQ treatment followed by the HQ treatment, whereas 24 subjects 

first played the HQ treatment followed by the LQ treatment.5 All experiments consisted of 50 

rounds and lasted about one hour. 

Signal cost (across subjects)   

35 cu (LC) 45 cu (HC) 

60%/80% (LQ) 
LCLQ 
(20 subjects in the first 25 rounds; 
22 subjects in the last 25 rounds) 

HCLQ 
(22 subjects in the first 25 rounds; 
24 subjects in the last 25 rounds) 

Si
gn

al
 q

ua
lit

y 
(w

ith
in

 su
bj

ec
ts

) 

70%/80% (HQ) 
LCHQ 
(22 subjects in the first 25 rounds; 
20 subjects in the last 25 rounds) 

HCHQ 
(24 subjects in the first 25 rounds; 
22 subjects in the last 25 rounds) 

Table 1: Treatments. 

The earned currency units were converted to Deutsche Mark (DM) at the end of each 

experiment such that subjects receive an expected payment of DM 16.00 per hour, which was 

about US$ 8.00 then. Participants knew in advance, that their expected earnings would be 16 

DM per hour and they knew the approximate time for the experiment, but they did not know 

the exact conversion formula from currency units to DM nor the number of rounds to be 

played. Nevertheless they knew that the conversion formula would convert the currency units 

to DM at a fixed rate, which meant that their payoff did not depend on the performance of the 

other subjects and that maximizing the amount of earned currency units was equal to 

maximizing their payoff at the end of the experiment. Subjects earned on average DM 15.6 

for one hour, ranging from DM 11 to DM 19. 

                                                           
5  We looked at possible ordering effects, but couldn’t find any. Therefore we pooled the data of those subjects 

who participated in a specific quality treatment in the first 25 rounds and those who participated in this 
treatment in the last 25 rounds whenever we looked at specific treatment variable combinations, for example 
LCLQ. 
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Prior to the start of the experiment participants had the opportunity to get to know the 

experiment in three unpaid test rounds. During the test rounds subjects could ask questions 

regarding the experimental design and procedures.  

II. Results 

In the following chapter we will first present some general results followed by an analysis of 

the effects of a variation in the signal’s cost, the signal’s quality and the decision position. 

Thereafter we will look at the updating behavior of subjects. This leads to a model, which 

explains the observed acquisition behavior by considering subjects’ information weighing and 

random errors. Subsequently, we look if subjects behave differently when they face human 

players rather than computer players. Finally, the effect of the observed behavior on welfare 

and on the aggregation of information is investigated. 

General results 

The 88 subjects submitted a total of 4400 (= 88 subjects * 50 rounds) signal acquisition 

decisions and probability assessments. In accordance with the findings in 

Kraemer/Nöth/Weber (2001) and Kübler/Weizsäcker(2001), we found that participants on 

average overestimate the signal value and acquire more signals than a rational Bayesian 

individual. Even though subjects know that their counterparts are fully rational, they acquired 

almost twice as many signals (2606 instead of 1388 rational signal acquisitions). Subjects 

purchased a signal in 1364 cases even though the signal’s value was lower than its cost and 

only refused to buy a signal in 146 cases, in which a signal purchase would have been 

rational. On average they acquired 0.592 signals per round. A rational individual would have 

acquired only 0.316 signals per round.6 

Looking at the average signal acquisition frequencies depending on the predecessor’s 

probability assessment pi-1, reveals subjects’ demand for signals given gratuitous information 

of different quality. The individual signal acquisition ratio for a given subject equals the 

subject’s relative frequency of a signal purchase when pi-1 was in the given interval. Figure 4 

illustrates the result for the LCLQ (“Low Cost, Low Quality”) treatment. We only present the 

graph for this specific treatment here, since the qualitive features of subjects’ acquisition 

behavior are equal across all treatments. This can be verified by looking at figures 5 and 6, 

which contain the signal acquisition frequencies in the other treatments. 

                                                           
6  These findings contradict the explanation for the non-rational signal acquisitions provided by Kübler and 

Weizsäcker (2001). 
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Figure 4: Distribution of signal acquisitions 

Figure 4 indicates, that demand for information decreases gradually when the probability 

pi-1 approaches 0% or 100%. Remember, a rational individual would have acquired a signal 

whenever the predecessor’s probability pi-1 was within the range [29%;71%], further labeled 

the “rational” range, and none outside of that range, which is depicted by the dotted line in the 

graph. Even though a signal acquisition is not rational when %]71%;29[p 1i ∉−  the demand for 

information is strictly greater than 0 in those cases. Inside the “rational” interval [29%;71%] 

the signal acquisition frequency also decreases when the probability approaches the edges of 

the interval, thereby contradicting the rational prediction. Looking at the first and last third of 

the rounds reveals, that the acquisition behavior is constant over. There seems to be no 

significant learning effect. 

These first results embody “good” and “bad” news. The “good” news is that behavior 

seems to be sensitive to different base rates, represented by the predecessor’s probability 

assessment. The “bad” news is that subjects do not stop to acquire private signals when the 

value of such information drops below its cost, as would have been rational. Instead the 

likelihood of an information acquisition decreases gradually as the private signal becomes less 

valuable. Since the predecessors are rationally simulated by the computer, the probabilistic 

demand for information can only be explained if errors at the individual level are considered. 

Errors of predecessors cannot explain the observed behavior. Risk aversion can also not 

explain the observed behavior since risk aversion reduces the signal value, and therefore 

would lead to less and not more signal acquisitions than in the case of rational and risk-neutral 

individuals.7 

                                                           
7  We ran sample calculations showing that both, constant absolute and constant relative risk aversion, reduce 

the signal value. 
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Influence of cost and quality 

Now we want to take a look at how individual’s behavior is influenced by a variation in the 

treatment variables cost and quality. First, we analyze whether an increase in the 

information‘s cost reduces demand for information. In order to do so, we compared the 

average signal acquisition ratios of the LCLQ and HCLQ treatments as well as the average 

signal acquisition ratios of the LCHQ and HCHQ treatments. Figure 5 illustrates the results. 

 

 

 

 

 

 

 

Figure 5: Influence of an increase in the cost of information 

In the LQ treatment average demand for information is lower in 9 of 11 intervals if the 

information is of high cost. Based on a binomial test demand for information is therefore 

significantly smaller if its cost is higher (p = 0.0325). On the other hand, an increase in the 

signal’s cost in the HQ treatment seems to have no significant influence on the demand for 

information as can be seen in the right graph of figure 5. This rather surprising result may be 

attributed to the fact, that even though the cost of the information was varied by more then 

30%, this variation may not have been enough to cause significant changes in behavior. 

Especially since the information was of high quality and therefore subjects may not have 

viewed the signal as overpriced due to its high quality. Another view is that the increased cost 

might not have influenced the acquisition behavior in general but only in certain cases. For 

example, acquisition might have been influenced in those intervals, in which the variation in 

the signal’s cost led to different rational predictions. In the LQ treatment this was the case, 

e.g. in the interval [29%;32%], and in the HQ treatment, e.g. in the interval [21%;24%]. In 

the HQ treatment we didn’t observe any signal acquisition decisions within these intervals, 

because all computer simulated predecessors acted fully rationally and no signal combination 

led to a preceding probability within this range. Hence, a potential change in behavior in these 

cases could not be observed. Nevertheless in the LQ treatment we have observations in the 
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intervals [29%;32%] and [68%;71%] but the differences observed there are not statistically 

significant according to a T-Test. 

The influences of a variation in the signal’s quality can be observed in figure 6. 
 

 

 

 

 

 

 

 
**:  Difference significant at a 5% level according to T-test 
***: Difference significant at a 1% level according to T-test 

Figure 6: Influence of a variaration in signal’s quality 

In the LC treatment the average signal acquisition frequency is higher in 5 of the 7 

intervals if the quality of the weak signal is better, which is not statistically significant 

according to a binomial test. The same argument as above might explain why we didn’t 

observe any significant differences. Either subjects viewed signals of low and of high quality 

as equally attractive due to the low cost or behavior was only influenced in situation in which 

the rational prediction differs but no observations could be made in these cases. 

Other than in LC treatments, the right graph in figure 6 illustrates that in the HC treatments 

the average demand for information is higher in all intervals if the information is of high 

quality. This means, demand for information is significantly higher if the information is better 

according to a binomial test on a 1% level (p = 0.008). In addition, demand for information is 

significantly higher in the intervals, in which the increased quality also leads to a shift in the 

rational prediction ([29%;32%] and [68%;71%]). Hence, demand for information seems to be 

sensitive to changes in the signal’s quality especially when the information is more expensive. 

In conclusion we can say that behavior seems to be influenced by a variation in the 

treatment variables, even though not always significantly. Significant changes in behavior can 

be observed if the signal is either expensive (HC) or of low quality (LQ). In the other cases 

the parameter, which is held constant might compensate for the variation in the other 

parameter. This means, reducing the quality from high to low in the “Low Cost”-treatment 

might not induce a shift in behavior because the signal is considered “cheap” in both cases. 
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Equivalently, making the signal more expensive in the “High Quality”-treatment might not 

influence behavior since the quality of the signal is high in both cases. 

The position puzzle 

Looking at the information acquisition behavior at different decision positions in the sequence 

reveals a puzzling finding. Figure 7 shows that demand for information decreases with the 

decision position in cases in which a signal acquisition is not rational. In cases in which the 

signal’s value was higher than its cost, the decision position seemed to have no influence on 

the acquisition behavior. From a rational point of view it makes no difference if a subject 

faces a fixed probability p at position 2 or position 6. If all information is aggregated using 

Bayes’ law, then the probability p is just as informative at position 2 as it is at position 6. 

Nevertheless, as the figure indicates, subjects seem to attribute different degrees of 

informativeness to probabilities within the non-rational range and hence different needs for 

additional information if they decide at different positions in the sequence. 
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Figure 7: Demand for information depending on the decision position 

A signal acquisition at positions 5 and 6 was never rational, because the preceding rational information 
aggregation process always led to a probability outside the “rational” acquisition range. Therefore we cannot 
compute signal acquisition percentages there. At position 1 a signal acquisition was always rational, so that 
we do not observe any acquisition decisions in the “non-rational” acquisition range. 

One might argue that the observed decrease in demand for information in the “non-

rational” range can be explained as follows. If the predecessor’s probability assessment is 

within the “non-rational” range, then it is more likely to be close to the extreme values 0 or 1 

if observed later in the sequence. This is due to the fact that the aggregation process leads to a 

convergence of the probability towards the drawn state of nature, making it more likely to 
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observe extreme values later in the sequence. Together with the continuously decreasing 

likelihood of a signal acquisition when the predecessor’s probability approaches 0 or 1, as 

shown in figure 4, this would lead to a decreasing average demand for signals within the 

“non-rational” range. But if we look at the average signal acquisition ratio across different 

positions when the predecessor’s probability was exactly 80% for one of the two states, one 

can see that this is not the explanation for the position puzzle.8 By looking at the acquisition 

behavior based on a specific predecessor’s probability assessment, identical situations in 

terms of rational signal value at different positions in the sequence are compared. Note that a 

signal acquisition is never rational in this case across all treatments. Figure 8 displays the 

results. We pooled the observations from the different cost and quality treatments, because 

acquisition frequencies at different positions were almost identical in this case. 
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Figure 8: Demand for information if predecessor’s probability is 20% or 80% for state A. 

The graph clearly indicates that demand for information decreases as the position 

increases, indicating that subjects indeed behave differently if they face the same probability 

assessment earlier rather than later in the sequence. 

An explanation might be that subjects interpret a probability differently if they are at 

different positions. Participants might view a probability observed at a later position as a 

“better” in terms of more informative probability due to the fact that more predecessor’s were 

involved in forming the probability statement. They assume that the latter in the sequence 

they are, the more signals were purchased by their predecessors. And from their point of view 

                                                           
8  We chose 80% for two reasons. First, a signal acquisition is not rational in this case, so that these 

observations are in the “non-rational” range. Second, whenever the computer simulated player at position 1 
gets a strong signal a predecessor’s probability of 80% for one of the two states is observed at all subsequent 
positions. Since the probability of getting a strong signal is 0.5 this situation occurred frequently in the 
experiment. 
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more signal means a more informative probability judgment. Hence, the weight and not only 

the implications of the information, as would have been rational, influences their behavior.9 

An alternative explanation for the puzzle if subject had faced other human players10 might 

be that subjects sacrifice individual utility in order to invest in a public good, so that 

successors can take advantage of the improved information level. This can be rational in the 

supergame, because subjects take into account that due to the random ordering, they will 

probably be acting late in the sequence in later rounds, too. In this case they would also 

benefit from predecessors who invested in the public good. Since subjects know that the later 

they are in the sequence the less players will follow, their willingness to overinvest in 

information diminishes if they act at positions more towards the end of the round. But this 

explanation is not applicable here, because the human player knows that the rational computer 

simulated predecessor will not overinvest in information. 

Subjects’ updating behavior 

We now take a look at subjects’ updating behavior to see whether their way to process 

information can explain some of the non-rational acquisition behavior we observed. If 

subjects updating is biased their calculation of the signal’s value might as well be biased if the 

calculation is based on the same non-rational information processing. In order to calculate the 

subjective information value subjects have to anticipate their way of dealing with a possibly 

purchased piece of information. If the anticipated updating behavior contains a bias then the 

subjective signal value is biased, too. 

Kraemer, Nöth and Weber (2001) argued that conservatism regarding the information 

received from predecessors can explain the excessive signal purchases observed in their 

experiment. Generalizing, one could say that their explanation for the non-rational signal 

acquisitions is an overweighing of the private information relative to the free information 

received from predecessors. In order to measure the weights that subjects put on different 

sources of information we regressed the weights using a model first proposed in Edwards 

(1968). We modified the model so that it accounts for different weights put on the different 

sources of information. Let si denote the private signal of the individual at position i and let 

pi-1 denote the probability of state A submitted by her immediate predecessor. Then the a 

posterior odds of state A in favor of state B after observing the predecessor’s probability 

assessment and the signal are given as: 

                                                           
9 See Keynes (1921) for this interpretation of ambiguity. 
10  And indeed, we found the same position effect when we ran the experiment with 6 human players. See 

chapter “Human vs. computer simulated counterparts”. 
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The odds depend on the different sources of information. c represents the weight that 

subjects put on the probability assessment of their predecessor, whereas d represents the 

weight that participants assign to their costly signal. Setting c = 1 and d = 1 leads to the 

rational Bayesian’ odds. c < 1 or d < 1 means that subjects underweight the specific source of 

information and c > 1 or d > 1 represents an overweighing of the information. Taking logs on 

both sides of (2-1) and generalizing leads to: 
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model by OLS regression for each subject. We assume that ui is normally distributed. 

As a result we get an average c of 0.77 and an average d of 1.17. The difference between c 

and d is statistically significant (T-Test; T = -6.204; p < 0.001) as well as both values are 

significantly different from 1 (c: T = -5.057; p < 0.001; d: T = 3.106; p = 0.003). Hence, the 

regression provides evidence, that subjects exhibit a tendency to overweight their private 

signal and underweight the free information, conforming to the explanation provided in 

Kraemer, Nöth and Weber (2001). 
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A random utility model 

Even though we found evidence that subjects overweigh their private signals relative to the 

gratuitous information, this finding cannot explain why subjects do not follow the rational 

deterministic behavior, which predicts a signal acquisition whenever the free information is 

within a specific range and no signal acquisition if it’s outside of that interval. Instead, as we 

have shown above, demand decreases gradually as the quality of the free information 

increases, i.e. demand for information is probabilistic. The idea of probabilistic demand can 

be captured if we model subjects behavior using logistic response functions to determine the 

choice probabilities. By doing so, we incorporate random errors into subjects’ behavior, 

assuming these errors are logistically distributed. The resulting model is an application of the 

quantal response models introduced by McKelvey and Palfrey (1995 and 1998) to the given 

individual decision problem. We will first estimate a model incorporating solely random 

errors as a reason for deviations from rational behavior. Later we will return to the idea that 

biased information weighing affects subjects’ behavior and try to unite both, random errors 

and private information overweighing, in one model. 

Our model is based on two assumptions. First, we assume that subjects consider all 

predecessor as being fully rational. This assumption is reasonable, because subjects know that 

the computer acts rationally. Second, we have to assume that people are perfectly Bayesian 

whenever they acquire a private signal and update the free information based on this signal. 

We will relax this assumption later. 

These assumptions lead to the following choice function, describing the probability of a 

signal purchase as a logit model with the two options Acquisition and No-Acquisition and the 

error parameter µ: 
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 (2-3) 

πAcq(pi-1,si) denotes the expected value of a decision based on a private signal si and the 

predecessor’s probability assessment pi-1. Analogously, πNo-Acq(pi-1) denotes the expected 

value of a decision based solely on the free information pi-1. The error parameter µ determines 

the amount of random errors committed by the subjects. The larger µ, the lesser subjects’ 

behavior is affected by random errors, i.e. behavior becomes more rational. As µ approaches 

infinity, the choice probabilities approach the perfect Bayesian choice probabilities. On the 
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other hand, when µ approaches 0 the probability of buying a signal approaches 0.5, i.e. 

behavior becomes random. 

Simple transformation of the choice function leads to: 

 ))p()s,p((1i 1iAcqNoi1iAcqe1

1)p|nAcquisitio(p
−−− −⋅−−

+
= ππµ  (2-4) 

A maximum likelihood estimation of µ led to the following results: 

Treatment µ % of observations 
explained by random 
utility model 

% of observations 
explained by 
rational model 

LCLQ 0.0670019 83.9% 70.19% 
HCLQ 0.0174185 83.74% 63.04% 
LCHQ 0.055786 89.52% 64.48% 
HCHQ 0.0301699 89.3% 65.3% 

Table 2: Logit-regression results. 

The total number of signal purchases given a predecessor’s probability assessment predicted by the two 
models is the total number of observations multiplied by the probability of a signal purchase provided by the 
model. Then, the number of observations not predicted by the model is calculated as the absolute difference 
between the number of observed and predicted signal acquisitions. The sum of all differences for all possible 
predecessor’s probabilities results in the total number of observations not explained by the model. 

Figure 9 illustrates the observed relative frequencies of a signal purchase depending on the 

probability assessment of the predecessor and the random utility probability of a signal 

acquisition based on the estimated µ in the LCLQ treatment.11 
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Figure 9: Observed signal acquisitions and random utility model probabilities (basic model, 
LCLQ treatment). 

                                                           
11  Analogous graphs for the other treatments are provided in Appendix D. 
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Figure 9 shows that opposed to the rational model the random utility model is indeed able 

to explain the gradual decrease in demand for information as the quality of the free 

information increases. What can also be seen from the figure is that the random utility model 

underestimates the relative acquisition frequencies. This is also true for the other treatments. 

A joined model of random utility and overconfidence 

The analysis of the subjects’ updating behavior revealed that participants have a tendency to 

underweight the predecessor’s probability and overweight their own private signal. It seems 

reasonable to assume that this also affected subjects’ demand for information since a relative 

overweighing of private information induces higher subjective information values. The model 

we will present now assumes that subjects commit random errors when deciding whether to 

acquire additional private information and are overconfident when updating the free 

information according to a possibly purchased signal. The following figure illustrates the two 

stage nature of the decision problem and the assumed biases in each step. 
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Figure 10: Two-stage decision problem 

We try to incorporate overconfidence into the above presented model of random utility by 

assuming that a subject’s judgment about the probability of the state indicated by their private 

signal is equal to the rational a posterior probability of the signal state plus a constant ∆: 

 pbiased = prational + ∆ (2-5) 

Note that prational always represents the probability of the state indicated by the private 

signal, so that adding a constant means that subjects consider the signal’s state to be more 

likely than rational. This would be the result of an overweighing of the private signal. 
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From our point of view the additive term formalizes the idea of overweighing of private 

information and improves the model’s accuracy by incorporating a systematic bias at the 

updating level rather than just assuming random errors there as well. We hypothesize that a 

systematic bias in the updating process captures the errors committed by people in these kinds 

of decision problems much better than just assuming people commit random errors.  

Using the biased a posterior probabilities, the biased subjective benefit from acquiring 

additional private information can be calculated. The added ∆ increases the value of a 

decision based on an additional private signal and therefore increases the difference in 

expected value between a decision with and without a costly signal. Let πAcq*(pi-1,si) be the 

subjective expected value of a decision based on a private signal si and the predecessor’s 

probability assessment pi-1, which incorporates an overweighing of the signal measured in 

terms of ∆ as defined above. Then some algebra leads to: 

 πAcq*(pi-1,si) - πNo-Acq(pi-1) = πAcq(pi-1,si) + ∆·(4+0.1·∆) - πNo-Acq(pi-1) (2-6) 

Substituting πAcq(pi-1,si) - πNo-Acq(pi-1) by πAcq*(pi-1,si) - πNo-Acq(pi-1) in the simple random 

utility model leads to: 

 ))p()1.04()s,p((1i
1iAcqNoi1iAcqe1

1)p|nAcquisitio(p
−−− −⋅+⋅+⋅−−

+
= π∆∆πµ  (2-7) 

A maximum likelihood estimation of the joined model of random utility and 

overconfidence yields the following results: 

Treatment µ ∆ % of observations 
explained by 
joined random 
utility model 

% of observations 
explained by 
simple random 
utility model 

likelihood 
ratio test 

LCLQ 0.0983815 2.371930755 95.33% 83.9% <0.001 
HCLQ 0.076047 4.233971259 96.35% 83.74% <0.001 
LCHQ 0.0624972 1.978375022 96.29% 89.52% <0.001 
HCHQ 0.0660138 3.889389777 95.48% 89.3% <0.001 

Table 3: Regression of joined model. 

Table 3 indicates that by incorporating overconfidence the joined model is able to explain 

the data much better than the simple model. The additional parameter significantly increases 

the fit of the model as indicated by the likelihood ratio test. Figure 11 illustrates the observed 
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relative frequencies of a signal acquisition and the probabilities of a signal purchase provided 

by the joined model in the LCLQ treatment.12 
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Figure 11: Observed signal acquisitions and random utility model probabilities (extended 

model, LCLQ treatment). 

In conclusion we can say that the joined model, which captures both the idea of 

overweighing of private information and random errors in the signal purchase decision 

explains most of the decisions we observed in the experiment. 

Human vs. computer simulated opponents 

At this point one might argue that subjects would have acted completely differently if they 

had faced 5 other human players instead of 5 computer simulated players. Other human 

players can commit errors which in turn might influence the behavior of subsequent 

individuals.13 To verify this assumption we ran a HO (“human opponents”) treatment, in 

which 6 human players played the game described above. In doing so, we tried to investigate 

the influences of possible non-rational behavior of counterparts on the acquisition and 

updating decisions. Since we were only interested in the implications of potential 

irrationalities by other players we did not vary the cost and quality of the signals in the HO 

treatment but only used the low cost and low quality combination (LCLQHO: “Low Cost, 

Low Quality, Human Opponents”), so that behavior can be directly compared to the 

                                                           
12  Analogous graphs for the other treatments are provided in Appendix E. 
13  This is an assumption made when estimating quantal response models in cascade experiments which 

incorporate quantal choice probabilities from predecessors to determine ones own choice probability. See 
Anderson and Holt (1997) and Kübler and Weizsäcker (2001) as an example. 



 23

LCLQCO (“Low Cost, Low Quality, Computer Opponents”) treatment described above.14 

We ran 10 sessions of the LCLQHO treatment, leading to a total of 60 participants. Each 

session of the LCLQHO consisted of at least 22 and not more than 35 paid rounds and lasted 

about two hours. Participants earned on average DM 31.3 for two hours, varying between DM 

21 and DM 40. 

Table 4 illustrates the acquisition behavior in the LCLQCO and LCLQHO treatments. 

  LCLQHO

n = 1656 

LCLQCO 

n = 1050 
# rational signal acquisitions 799 379 

R
at

io
na

l 

Rational signal acquisitions per 
round and subject 

0.483 0.361 

# non-rational signal acquistions 360 285 

# refused rational signal 
acquisitions 

73 28 

# signal acquisitions 1086 636 

O
bs

er
ve

d 

Signal acquisitions per round and 
subject 

0.656 0.606 

Table 4: Signal acquisition behavior in LCLQHO and LCLQCO treatments. 

The average number of signals acquired per round and subject are almost identical in both 

treatments. Nevertheless the percentage of non-rational signal acquisitions is higher (40%) in 

the CO treatment than in the HO treatment (26%), even though counterparts are known to be 

fully rational. The higher number of rational signal acquisitions per round and subject in the 

HO treatment can be attributed to the fact, that in the HO treatment non-rational behavior of 

predecessors, which drove the probability back within the “rational” range led to an increased 

number of rational signal acquisitions. 

Figure 12 illustrates the average individual signal acquisition ratio depending on the 

predecessor’s probability assessment for state A pi-1 in the LCLQHO and LCLQCO 

treatments and the rational signal acquisition frequencies. 

                                                           
14  The only difference between the CO and the HO treatment was a slightly different scoring rule used to 

determine the payments. Nevertheless both scoring rules lead to identical signal values, and therefore should 
not have influenced subjects behavior. All other parameters were identical. 
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Figure 12: Distribution of signal acquisitions 

In LCLQCO treatment we have no observation in the intervals [0%;8%], [9%;12%], [88%;91%] and 
[92%;100%] because rational behavior of the predecessors never led to a probability within these intervals. 

In total, the average signal acquisition ratio in the HO treatment is higher than that in the 

CO treatment in 8 of 11 intervals, which is not statistically significant according to a binomial 

test. Demand for information outside the “rational” interval [29%;71%] is higher if subjects 

face human counterparts, than if they interact with perfectly rational computer players (p = 

0.0155; Binomial test). Nevertheless the differences in signal purchase frequencies are small 

and mostly insignificant. 

In conclusion we can say, that influences from potential irrationalities of other players are 

rather small. The percentage of non-rational signal acquisitions is even greater when subjects 

face computer players (See table 4). Looking at the signal acquisitions given different 

predecessor’s probability assessments reveals that behavior is only affected in situation, in 

which a signal acquisition is not rational. Nevertheless these influences are also small. Even if 

subjects face perfectly rational counterparts, demand for information in the “non-rational” 

range is substantially greater than zero. The tendency of a decreasing demand for information 

as the quality of the free information increases is present in both, the CO and the HO 

treatments, as well. Redoing all the other analysis for the HO treatment reveals, that the 

numbers are almost equal. E.g., the average weights that subjects address to the different 

sources of information in the HO treatment are c = 0.77 and d = 1.2, which is almost the same 

as in the CO treatments (c = 0.77; d = 1.17). This means, subjects do not weigh probability 

assessments of predecessors differently when predecessors are human, and hence only 

boundly rational, than if they are perfectly rational. 
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This result might seem rather surprising in the first place. But we argue, that it is mainly 

driven by the features of the sequential aggregation process found in cascade experiments. In 

these types of aggregation processes subjects are presented with information, which is a result 

of the actions of their predecessors. At that point subjects can take into account non-rational 

behavior by others, but they don’t have to. This is different from most games. In games ones 

own payoff depends on the actions taken by others, so that it is necessary to think about what 

others think, about what others think one thinks, etc. In sequential aggregation processes 

found in cascade experiments, ones own payoff does NOT depend on the actions taken by 

others. Actions of others only affect the information provided free of charge, thereby only 

indirectly affecting ones own actions. Since actions are only affected indirectly, thinking 

about limited rationality of others is optional rather than mandatory. 

Welfare and Information aggregation 

Finally, we want to take a look at the implications of the observed behavior on welfare and 

the aggregation of information. 

Treatment # Currency 
units earned 

# CU earned if 
rational 

# Signal 
acquisitions 

# Signal 
acquisitions if 
rational 

HO 2,144,321 2,137,628 1086 799 
CO 3,646,874 3,712,887 2606 1388 

Table 5: Welfare results. 

Table 5 indicates that the total payment deviated only slightly from what would have been 

paid if all subjects had acted rationally. Nevertheless in both treatments participants purchased 

much more private information. This raises the question whether the excessive signal 

acquisitions led to an increase in the information level and to a better revelation of the 

occurred state, thereby compensating the increased information costs. In order to analyze the 

aggregation of information, we take a look at the convergence of the probability assessment 

towards the occurred state. Therefore we took the probability submitted at position 6 in each 

round and transformed this probability to a probability for the state that actually occurred. 

Then we calculated the difference of this probability and 100%. The observed differences are 

then compared to the differences if all participants had acted rationally (denoted by “Rational” 

in figure 13) and to those if all participants had acquired a private signal and acted rationally 

upon this information (denoted by “Signal” in figure 13). To be able to directly compare the 

aggregation of information if only 1 human player (CO treatments) was involved to that when 
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6 human players participated in the experiment, we only looked at the convergence in the 

LCLQCO and LCLQHO treatments.15 The hypothetical results from the “rational” and 

“signal” strategies were derived from observations in the LCLQCO treatment, because the 

outcomes derived from the LCLQHO treatment are alike.16 Figure 13 illustrates the result. 
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Figure 12: Convergence against the occurred state. 

The cumulative distribution illustrates that the convergence in the HO and in the CO 

treatment was better than if all participants had acted rationally. In most cases the probability 

converges to the true state of nature, but on some occasions we observe a convergence to the 

wrong state, which is represented by the left hand side of the distribution in figure 13. 

Furthermore, there seems to be a close relationship between the amount of signals bought per 

round and the convergence towards the true state of nature. In the LCLQCO treatment there 

was one out of 6 players who on average acquired more signals than a rational Bayesian 

individual. This already led to a better convergence compared to the rational benchmark, as 

can be seen in figure 13. In the LCLQHO treatment all six participants on average exhibited a 

tendency to acquire an excess amount of information which resulted in an even better 

convergence than in the LCLQCO treatment. Finally, the “signal” strategy, where all players 

acquire a private signal in all cases, would have resulted in the best possible convergence 

                                                           
15  The convergence observed in the other CO treatments was very similar to the one observed in the LCLQCO 

treatment. 
16  This is because the information structure and information cost is identical in the LCLQCO and LCLQHO 

treatments as well as the rational strategies are identical. Therefore the outcomes of both strategies are similar 
in both treatments. 
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given the information subjects would have received. The following table compares the 

average convergence for the different cases. 

Treatment Rational; 
average 
deviation 

Observed; 
average 
deviation 

Signal; 
average 
deviation

Difference 
Rat vs. Obs 

Difference 
Sig vs. Obs 

LCLQHO 30.09% 24.71% 14.87% T = 2.947 
(p=0.003) 

T = 6.405 
(p<0.001) 

LCLQCO 29.87% 27.93% 17.07% T = -3.623 
(p<0.001) 

T = -19.149 
(p<0.001) 

Difference LCLQHO 
vs. LCLQCO 

T = 1.705 
(p=0.089)

 

Table 6: Convergence to the occurred state. 

The numbers support what we have stated above. The average convergence was better in 

both treatments than if all participants had acted rationally but worse than if all had always 

purchased a private signal and updated their information using Bayes’ law. Besides, the 

convergence was better if all participants in the experiment were human than if just one was 

human. Hence, the more players are willing to overinvest in information the better the 

information level and in turn the better the convergence. 

III. Conclusions 

We investigated an aggregation process with a continuous action space and two possible 

states of nature. We found that participants acquire significantly more signals than predicted 

by theory. Furthermore they seem to believe that the information communicated by their 

predecessor is more informative when they decide later in the sequence. Subjects do not 

realize that a signal purchase is not rational anymore when the quality of the predecessors 

information exceeds a certain threshold. Instead the demand for information gradually 

decreases as the quality of the predecessor’s information increases, not reaching zero demand 

even if the computer simulated predecessor communicated almost perfect information.  

The investigation of subjects’ updating behavior provides evidence that subjects on 

average underweight the information submitted by their predecessor and overweight their own 

signal. Since deterministic theories fail to explain the probabilistic nature of demand observed 

in this experiment, we estimated a random utility model which describes the probability of a 

signal acquisition as a log response function. The results indicate that the random utility 

model fits the data much better than the rational Bayesian model and is able to explain the 

excess demand for information even when free information is of high quality. A model which 
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takes into account both, random utility and biased information weighing is able to explain 

more than 90% of the acquisition behavior observed in the experiment. 

Surprisingly, subjects’ behavior seems to be influenced only slightly by the degree of 

rationality of their counterparts. Behavior is almost identical when subjects interact with 

rational computer simulated players than if they interact with other human players. Neither 

the acquisition behavior nor the updating of information provides evidence that errors 

committed by others play an important role. 

In terms of information aggregation we can say that the excess signal acquisitions led to a 

better convergence to the occurred state than if all had been Bayesian individuals. Hence, the 

excessive demand for information on average had a positive influence on the information 

level. 
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Appendix A: Instructions in the CO treatments 

Sequential Information Processing Experiment 

Instructions 
 

Thank you for your participation in this experiment of economic decision making. The money 

for your payment has been provided by the Deutsche Forschungsgemeinschaft. This session 

will probably last about one hour. Please follow the instructions very carefully, in order to 

earn as much money as possible. You can always ask questions until the end of the test 

rounds. 

Information structure and course of a round 

In this experiment you will participate in several rounds of a game. 

The course of the experiment is as follows. At the beginning of each round a state of nature is 

determined. Two state, named A and B, can occur. Which one of the two states occurs is 

determined by a coin toss at the beginning of each round, i.e. both states are equally likely. 

You cannot observe which state actually occurred as well as all other players cannot do so. 

Your task is to assess your subjective probability that state A or state B, respectively, occurred 

at the beginning of the round. 

6 subjects participate in each round of the game and sequentially submit their probability 

assessments. You are the only human player. The other 5 players are simulated by the 

computer. All computer simulated players (this means all your counterparts) act perfectly 

rationally under the assumption of risk neutrality. This means, the computer simulated players 

do the same tasks as you do and act like a perfectly rational and risk neutral individual. 

The ordering, in which participants submit their probability assessments is determined 

randomly in each round. 

Information 

One source of information for your probability assessment is the probability assessment of 

your immediate predecessor. This means, that once it’s your turn to assess the probability of 

the two states of nature, the computer first displays the probability assessment which your 

immediate predecessor submitted. Has your predecessor, e.g. stated a probability of 80% for 
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state A, then she thinks that state A occurred with a probability of 80%. Note that this 

information is only displayed to you when it is your turn to submit your subjective 

probability. You receive this information free of charge. 

In addition to that costless information you have the opportunity to acquire a costly private 

signal, which only you can see. Apart from the probability assessment of your predecessor 

this private signal gives you a hint which state occurred. Therefore the computer asks you if 

you want to acquire such a signal, after you have observed the probability assessment of your 

predecessor. Once the computer asks you whether you want to acquire a signal or not, the 

computer also displays the two different qualities the signal might possess and the cost of the 

signal. The signal can have two different qualities, either weak or strong. Weak signals are 

determined by a draw from the “weak” urn whereas strong signals are drawn from the 

“strong” urn. Under “quality” the computer displays the composition of the “weak” and the 

“strong” urn. The “weak” urn contains either 60% or 70% correct signals. The “strong” urn 

always contains 80% strong signals. The private signal will be determined depending on the 

occurred state and independently for each subject as follows: 

• First, a fair coin toss (
2
1p = ) determines if the signal is weak or strong. 

• The signal is now being determined, dependant on its strength, by a draw from an urn with 

10 signals: 

• The “weak” urn contains either 6 signals (quality display: 60%/80%) or 7 signals 

(quality display: 70%/80%) indicating the occurred state and 4 resp. 3 signals 

indicating the opposite state. That means, the weak signal indicates the occurred state 

with a probability of p = 60% (resp. 70%) and the opposite state with a probability of 

p = 40% (resp. 30%). 

• The “strong” urn contains 8 signals indicating the occurred state and 2 signals 

indicating the opposite state. That means, the strong signal indicates the occurred state 

with a probability of p = 80% and the opposite state with a probability of p = 20%. 

E.g. the computer asks you if you would like to buy a signal with the possible qualities 

60%/80% for 35 currency units (cu). If you decide to do so then the at first a fair coin toss 

decides if you get a weak or a strong signal (you don’t know which type of signal you will get 

once you decide upon the signal acquisition). If it should be a strong signal then the computer 

draws from an urn containing 8 correct and 2 false signals. Should the signal be of weak 

quality then the computer draws from an urn containing 6 correct and 4 wrong signals. 
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Take into account that the signal is not free of charge! 

If you have decided to acquire a signal the computer displays the signal, as well as the 

accompanying strength of the signal. Afterwards you will be asked to submit your subjective 

probability for state A resp. state B based on all your information. 

If you have decided not to acquire a signal then you have to submit your subjective 

probability for state A resp. state B immediately based on all your information. 

Take into account that the computer simulated players also acquire private information if it is 

rational to do so and that they rationally incorporate these signals into their probability 

assessments. 

In order to submit your subjective probability you have to adjust the sliding bar according to 

your subjective probability and press the Ok-button. Underneath the sliding bar you can see 

the two possible payments corresponding to the probability adjusted on the sliding bar. You 

receive the payment in currency units (cu) indicated behind the upper branch if state A 

occurred at the beginning of the round and you receive the payment indicated behind the 

lower branch if state B occurred at the beginning of the round. If you acquired a signal then 

the signal cost will be subtracted from the amounts displayed. Example: 

 

 

 

In this example the subject assessed a subjective probability of state A of 0.7. If state A in fact 

occurred then she receives 1910 cu. If state B occurred then she receives only 510 cu. If she 

bought a signal prior to her decision, 35 cu are subtracted from the amount displayed. Then 

she only receives 875 cu (910 cu – 35 cu) if state A occurred and 475 cu (510 cu – 35 cu) if 

state B occurred. 

The displayed payments changes with every alternation of the sliding bar. The probabilities 

displayed at the branches equal the probability adjusted on the sliding bar. The payments for 

the two possible states of nature vary with the adjusted probability. The payments are 

determined such that you maximize your ex ante expected payoff if your subjective 

probability equals the adjusted probability. This means, that it makes no sense always 

submitting a probability of 0 or 1, depending on which state you think is more likely, but 
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instead a truthful disclosure of your true subjective probability is the expected payoff 

maximizing strategy. The exact formulas for the payoffs are as follows: 

 

 

 

A signal costs 35 cu. In the lower part of the program window you can observe how many 

Participants have already submitted their probability assessment. Your own decision position 

is indicated in red. As soon as all six participants have submitted their subjective probabilities, 

the occurred state will be announced and a further round (with new information) begins. 

Test rounds 

Before you can start earning money with your predictions, you will get to know the course of 

the experiment in three unpaid test rounds. During these test rounds you can always ask 

question about the information structure and the course of the experiment. 

Payment 

Your payment depends only on your own probability assessments and signal acquisitions. The 

behavior of the other subjects has no direct influence on your payment as well as your 

behavior has no direct influence on the payment of others. At the end of the experiment your 

total payoff will be converted in Deutsche Mark (DM) according to the expected hourly 

earnings of 16 DM. 

p 

1-p 

A

B )p1(*1000 2−

)pp2(*1000 2−
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Appendix B: Instructions in the HO treatment 

Sequential Information Processing Experiment 

Instructions 
 

Thank you for your participation in this experiment of economic decision making. The money 

for your payment has been provided by the Deutsche Forschungsgemeinschaft. This session 

will probably last about two hours. Please follow the instructions very carefully, in order to 

earn as much money as possible. You can always ask questions until the end of the test 

rounds. 

Information structure and course of a round 

In this experiment you shall assess your subjective probability for a state of nature in each 

round based on your given information. 

The course of the experiment is as follows. Two states, named A and B, can occur. Which one 

of the two states occurs is determined by a coin toss at the beginning of each round, i.e. both 

states are equally likely. 

The occurred state is not publicly observable. Your task is to assess your subjective 

probability that state A or state B, respectively, occurred at the beginning of the round. The 

ordering of the six participants is determined randomly in each round. 

One source of information for your probability assessment is the probability assessment of 

your immediate predecessor. Note that this information is only displayed to you when it is 

your turn to state your subjective probability. The information can be observed in the upper 

and lower part of the program window. You receive this information free of charge. 

In addition to that costless information you have the opportunity to acquire a private signal for 

35 cu, which only you can see. This private signal gives you an indication which state could 

have occurred. The private signal will be determined depending on the true state as follows: 
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• First, a fair coin toss (
2
1p = ) determines if the signal is either strong or weak. 

• The signal is now being determined, dependant on its strength, by a draw from an urn with 

10 signals: 

• The “strong” urn contains 8 signals indicating the occurred state and 2 signals 

indicating the opposite state. That means, the strong signal indicates the occurred state 

with a probability of p = 0.8 and the opposite state with a probability of p = 0.2. 

• The “weak” urn contains 6 signals indicating the occurred state and 4 signals 

indicating the opposite state. That means, the weak signal indicates the occurred state 

with a probability of p = 0.6 and the opposite state with a probability of p = 0.4. 

The following figure illustrates the determination of the signal. 
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If you have decided to acquire a signal the computer displays the signal, as well as the 

accompanying strength of the signal. Afterwards you will be asked to submit your subjective 

probability. In order to do so you have to adjust the sliding bar according to your subjective 

probability and press the Ok-button. 

If you refuse to buy a signal you have to submit your subjective probability immediately. 

Take into account that you have to spend 35 cu to buy a signal. 

Underneath the sliding bar a lottery is displayed, which you play as soon as you press the Ok-

button and which determines your payment. You receive the payment in currency units (cu) 

indicated behind the upper branch if state A occurred at the beginning of the round and you 

receive the payment indicated behind the lower branch if state B occurred at the beginning of 

the round. If you acquired a signal then 35 cu will be subtracted from the amounts displayed. 

Example: 

 

 

 

In this example the subject assessed a subjective probability of state A of 0.7. If state A in fact 

occurred then she receives 1910 cu. If state B occurred then she receives only 510 cu. If she 

bought a signal prior to her decision, 35 cu are subtracted from the amount displayed. 

The displayed lottery changes with every alternation of the sliding bar. The probabilities 

displayed at the branches of the lottery equal the probability adjusted on the sliding bar. The 

payments for the two possible states of nature vary with the adjusted probability. The 

payments are determined such that the displayed lottery is the optimal lottery for you if your 

subjective probability equals the adjusted probability. Therefore you maximize your expected 

payoff when you submit the probability which equals your subjective probability. The exact 

formulas for the payoffs are as follows: 
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The lotteries vary between the following extreme values: 

 

 

 

 

The rest of the participants can observe the number of probability assessments already 

submitted in the lower part of the program window. However, they cannot see neither the 

underlying signal nor the accompanying signal’s strength nor the submitted probability 

assessment. The identification of the participant is not possible either. Your position within a 

round is displayed as a red number. 

Attention: An additional information cannot be inferred from the reaction time of the acting 

participant since the computer enforces a random delay of at least 2 and not more 

than 5 seconds before asking for the subjective probability even if the participant 

decides not to buy a signal. 

As soon as all six participants have submitted their subjective probabilities, the occurred state 

will be announced and a further round (with new information) begins. 

Test rounds 

Before you can start earning money with your predictions, you will get to know the course of 

the experiment in three unpaid test rounds. During these test rounds you can always ask 

question about the information structure and the course of the experiment. 

Payment 

You will participate in at least 20 rounds, in which you will be paid according to the 

probabilities you submit. The behavior of the other subjects has no direct influence on your 

payment as well as your behavior has no direct influence on the payment of others. At the end 

of the experiment your total payoff will be converted in Deutsche Mark (DM) according to 

the expected hourly earnings of 16 DM. 
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Appendix C: Incentive compatibility of the quadratic scoring rule 

Let psubjetive denote the player’s true subjective probability after having observed all available 

information and let psubmit denote the submitted probability using the sliding bar mechanism. 

Then the expected payoff in the CO treatment can be calculated as follows: 

)p1()p1(1000p)pp2(1000)p,p(EV subjective
2

subjective
2

submitsubmitsubjective submittsubmitt
−⋅−⋅+⋅−⋅⋅=    

Deriving for psubmit leads to: 

submitsubjectivesubmitsubjective
submit

p2000p2000)p,p(EV
p

⋅−⋅=
∂

∂  

Setting this equal to 0 leads to: 

subjectivesubmit pp =  

Since 

02000)p,p(EV
)p( submitsubjective2

submit

2

<−=
∂

∂  

setting psubmit equal to psubjective is ex ante payoff maximizing. An analogous proof applies to 

the HO treatment where we used an asymmetric scoring rule. 
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Appendix D: Basic model probabilities and observed data 
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Figure D-1: Observed signal acquisitions and random utility model probabilities (basic 

model, HCLQ treatment). 
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Figure D-2: Observed signal acquisitions and random utility model probabilities (basic 
model, LCHQ treatment). 
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Figure D-3: Observed signal acquisitions and random utility model probabilities (basic 

model, HCHQ treatment). 
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Appendix E: Extended model probabilities and observed data 
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Figure E-1: Observed signal acquisitions and random utility model probabilities (extended 

model, HCLQ treatment). 
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Figure E-2: Observed signal acquisitions and random utility model probabilities (extended 

model, LCHQ treatment). 
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Figure E-3: Observed signal acquisitions and random utility model probabilities (extended 

model, HCHQ treatment). 

 


