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Chapter 1

Introduction

The demographic aging process has turned into a serious problem for numer-
ous societies over the past decades. As a result, retirement products, such as
individual saving plans, in which contributions are invested in the financial
markets, are becoming increasingly popular. By purchasing such products,
people hope to participate in the return chances of the financial markets.
However, the risk that the investment fails to cover the planned life standard
in the old age can also be considerable. One of the main goals of saving
for retirement is to make up for the loss of income in old age. Achieving
this goal can easily be threatened if the stock market crashes shortly before
retirement, thereby destroying a great amount of ones savings. In such a
scenario, a retiree’s future financial well-being is seriously jeopardized. In or-
der to protect the contribution payers against this risk, the modern pension
frames include embedded guarantees.

The design of investment guarantees varies according to country. Gener-
ally speaking, we can distinguish between deterministic and stochastic guar-
antees on the one hand, and between maturity guarantees and multi-period

guarantees on the other hand. A provider of a deterministic guarantee assures



his clients that the investment portfolio will yield at least an ex-ante defined
rate of return. Deterministic guarantees are embedded, for instance, in the
German state-subsidized retirement investment plans established in 2001 by
the Retirement Savings Act (Altersvermogensgesetz), called “Riester con-
tracts”. In these contracts, the provider guarantees that, at maturity, the
contributor will receive at least the sum of the premiums paid throughout
the duration of the contract. This corresponds to a guaranteed return of
0% p.a. The provider of a stochastic guarantee, in contrast, has to achieve
a return of an ex-ante defined stochastic index. Stochastic guarantees are
used, e.g., in Brazil where there exist products with a guaranteed return of
6% above inflation. A special case of a stochastic guarantee is when the in-
dex is market based. For instance, in the Polish second pillar pension saving
accounts, the index is related to the weighted average return of all funds
operating in the second pillar, computed on a three-year basis. At the end
of each quarter the savings account has to yield the lower of the two indexes:
half of the weighted average return or the weighted average return minus 4%.
An overview of current guarantee schemes can be found in Table 1.1.

In a maturity guarantee, the return of the personal account has to be
higher or equal to the guaranteed return only at the expiration date of the
contract. Otherwise, the guarantee provider is obliged to cover the difference
between the guaranteed and the realized return. However, if at any point in
time before the contract expires, the cumulated return would be lower than
the cumulated guarantee return, but exceeded the guaranteed return at the
time of contract expiration, the provider does not have to pay anything. An
example for such a guarantee is the aforementioned German Riester contract.
In the case of a multi-period guarantee, the guaranteed return has to be

realized at the end of each sub-period. One example for this is the Polish



Table 1.1: Overview of guarantee schemes

Country Guarantee

Argentina min[70% My Moy — 2%)

Belgium 3.25% on employers’ contributions
3.75% on employees’ conttribution

Brazil I+6%

Chile min[50% My Moy — 2%)

Colombia min[Myy; 7RP]

El Salvador min[50% My Maw — 2%)

Germany 0%

Italy DB

Japan 0%

New Zealand 4%

Malaysia 2.5%

Peru min[50% M y; Maw — 2%)

Poland min[50% M y; Map — 4%)

United Kingdom DB

2% (public pension plans)
min[50%M.; Mo, — 2%) (private pension plans)

Uruguay

Note:

This table shows investment guarantees embedded in individual pension accounts using
the example of certain chosen countries. M,, denotes the average rate of return of all
pension plans in this market segment, rgp — the rate of return of a reference portfolio, I
- the inflation rate, DB — the benefit of a defined benefit plan, respectively.

Sources: Fischer (1998, p. 3-4), Pennacchi (1999, p. 222, 224-225), Sin (2002, p. 13),
Turner and Rajnes (2003, p. 255-259), Lachance and Mitchell (2003, p. 160)

second pillar pension funds.

The aim of this thesis is to analyze deterministic maturity guarantees
embedded in individual pension products, regardless of the legal definition,
i.e., regardless of whether these products are obligatory or voluntary, whether
they are provided by the state or by private pension companies. In particular,
we focus on four issues: guarantee pricing, shortfall risk analysis, solvency re-
quirements, and expected return. Other risk sources, such as mortality, early
contract cancelation, or problems as hedging are left for further research.

Even though there is a comprehensive literature dealing with guarantees



embedded in both unit-linked and with-profit life insurance products, be-
ginning with the seminal work of Brennan and Schwartz (1976, 1979a) and
Boyle and Schwartz (1977), who applied the option pricing theory of Black
and Scholes (1973) and Merton (1973) to price equity-linked life insurance
with asset value guarantees. However, literature addressing guarantees em-
bedded in pension plans is still rare. Fischer (1999) proposed a lattice model
to price guarantees embedded in Colombian pension plans. In this guar-
antee the owner of the pension plan has the right to receive the lower of
two values: the average return of pension plans on the Colombian market
or the return of a benchmark portfolio. Pennacchi (1999) priced investment
guarantees in both public and private pension funds available in Uruguay.
In the first case, a return of 2% p.a. is guaranteed, in the second case, the
guarantee is the lower of the two values: half of the average return of all pen-
sions funds available in this market or the average return of pension plans
minus 2%. Bacinello (1997) priced an option to switch from the defined-
benefit retirement plan to the defined-contribution retirement plan embed-
ded in the Italian pension plans. Bacinello (2000) extended the model with
the option of switching from the defined-contribution to the defined-benefit
system. Lachance and Mitchell (2003) studied a similar problem. They price
an option to return from the defined-contribution to defined-benefit system
as, introduced in Florida, USA.

Griindl, Nietert, and Schmeiser (2004) priced guarantees embedded in
German Riester contracts. Kling, Russ, and Schmeiser (2006) extended this
model with the possibility of canceling the contract: the purchaser of the
Riester product can cancel the contract and retain the guarantee. In an
extreme case, he can pay the first contribution and then cancel the contract.

This procedure can be repeated in each period, in order to maximize the



value of the guarantee.

Maurer and Schlag (2003) and Griindl, Nietert, and Schmeiser (2004)
discussed the shortfall risk associated with the Riester contract. They ap-
ply lower partial moments and the mean excess loss to quantify this risk.
Furthermore, they analyze solvency rules and find them inadequate.

All of above mentioned papers (with the exception of Fischer (1999) who
uses a binomial distribution) assume that the log-returns of the risky port-

folio, which backs the guarantee, are normally distributed

1
Yy = (IU—50'2) + &4, €tNN(O,O'2). (11)

However, a simple long-run observation of the time series shows that such
an assumption is questionable. One simply has to recall e.g. the (drastic)
collapse of the stock prices during the oil crises of the 1970s, the black October
of 1987, the displosion of the New Economy bubble in 2000, or the current
subprime crisis. A brief look at the development of the German stock market
(see Figure 1.1) shows that in the period from 2000 to 2003 the drift was
negative, while in the period from 1995 to 1999, the drift was positive.

This shows that the parameters for the bear and the bull market could
be estimated separately. The model (1.1) would look then as follows

(:ubear - %O-ggar) + 6t,bearu 8t,bear ~ N(Oa O-gem«)a for t € BEAR

Yt
(tourr — 20200) + €oputts Evpunr ~ N(0,0%,), fort € BULL

(1.2)
with BEAR = {t: p(t) <0} and BULL = {t: p(t) > 0}.

N1 . . .
w= (=0 = 3% 2 =) e e NOOHZ =) G= 10 K

p]Z:PI'[Zt:j‘Zt_lzl], ngﬂgl, VZ,jzl,,K (]_4)
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Figure 1.1: Monthly DAX30 and its log-returns: 1975-2004
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The top panel depicts the DAX30 on a logarithmic scale.The bottom panel presents the
log-returns of DAX30. The dashed lines show the one standard deviation from the mean
bound.

where p(Z; = j) and 0?(Z; = j) denote the drift and the diffusion parameter,
respectively, depending on the j-th regime (j = 1,..., K), &; denotes the
innovation and pj; denotes the transition probability to the j-th regime at
time t if the process was in the i-th regime in the previous period.

In this thesis, the Markov switching model will be used to describe the
stochastic behavior of returns of risky asset portfolios which back the invest-
ment guarantee. We have chosen this model as it is capable to capture the

widely observed non-normality (excess kurtosis) of financial return series !

1See for example Haas et al. (2004).



in contrast to the commonly used arithmetic Brownian motion, and is intu-
itively easy to interpret. Furthermore, it is a very parsimonious model with
respect to the number of parameters used, and, at the same time, allows
for many different specifications. To the best of our knowledge, it repre-
sents the first attempt at using a regime switching model (which especially
implies stochastic volatility model) in the literature dealing with guarantees
embedded in pension products.?

Using the Markov switching model, we have to address the fact that this
model implies the incompleteness of the underlying financial market. This
affects option pricing, since, in this situation, in an arbitrage-free market, the
equivalent martingale measures is not unique. The general consensus is that
the market “chooses” the “right” martingale measure. However, since the
guarantees discussed in this thesis are not traded on the market, their prices
cannot be observed. Thus, the guarantee provider has to make a suitable
choice regarding the equivalent probability measure based, among others, on
the grade of his risk aversion. We decided to choose the Esscher measure,
which is well known in the actuarial science. Reasons for this choice are
fourfold: (1) The process under the Esscher martingale measure Q remains
in the same class of models as the process under the real-word probability
measure P. (2) The option price reduces to the well-known Black and Scholes
(1973) formula for the case of one switching regime (i.e. K = 1). (3) The
Esscher transform approach is conform with maximizing the expected utility
with the constant risk aversion utility function u(x) = % 0<vy<1). (4
The Esscher probability measure allows to price the uncertainty whether the

market is in a stable or a turbulent phase.

2We used this approach in our previous paper, see Piaskowski (2005). This thesis is an

extension of that work.



Apart from pricing, risk management and solvency requirements are very
important issues. In this case, we follow the approach proposed by Maurer
and Schlag (2003), who use shortfall risk measures to quantify the risk asso-
ciated with investment guarantees. Additionally, we propose using the mean
excess loss to quantify solvency requirements for pension plans embedding
investment guarantees.

This thesis is organized as follows: Chapter 2 introduces stochastic models
used in finance with particular focus on the geometric Brownian motion with
Markov switching, which will be used in this thesis to describe the behavior
of the market prices of risky assets. Additionally, this Chapter shows how
to estimate the parameters of this model. Chapter 3 analyzes whether Ger-
man time series can be described with Markov switching models. As Markov
switching models violate the assumptions of standard tests for nested models
such as the likelihood ratio test or the Wald test, these tests cannot be used.
Instead, we use tests developed by Hamilton (1996) and Garcia (1998). Even
though these tests have been known for over a decade, most authors have used
the standard tests, due to their computational simplicity. The main findings
of this Chapter is that German financial time series are better described by
Markov switching models than by commonly used geometric Brownian mo-
tion and mean-reverting models. Chapter 4 shows how to price an investment
guarantee when the portfolio value follows the geometric Brownian motion
with Markov switching. The option pricing model is based on the Esscher
transform martingale measure developed by Gerber and Shiu (1994b) and
Webb (2003). Chapter 5 analyzes the shortfall risk of the guarantee with
respect to the shortfall risk measures: the shortfall probability, the shortfall
expected value, the shortfall standard deviation, the mean expected loss, and

the conditional shortfall standard deviation. Additionally, we propose using



the mean excess loss to quantify solvency capital requirements for investment
guarantees. Chapter 6 sums up the main results and provides a brief outlook

for further research.
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Part 1

Stochastic Model
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Chapter 2

Stochastic models in finance

This Chapter introduces the basic Markov switching model which is fun-
damental for this dissertation. Before this some stylized facts regarding fi-
nancial time series will be presented in Section 2.1 and some mathematical
notation and definitions used in this thesis will be introduced in Section 2.2.
Section 2.3 defines Markov chains and discusses features of Markov chains
which will be used throughout this dissertation. Section 2.4 discusses some
common stochastic models used in finance. Section 2.6 introduces finite
mixtures of normal distributions. Section 2.7 defines the Markov switching
model and gives some examples. Section 2.8 shows how to estimate a switch-
ing regime model via the EM algorithm. Section 2.9 concludes the Chapter
by performing an empirical analysis on the basis of the Markov switching
models.

Sections 2.2-2.6 are rather technical such that the reader can skip them
and go directly to definition of the Markov switching model if he is not

interested in the technical details.
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Table 2.1: Most extreme log-returns of DAX30 in 1975-2004

Date Return Deviation Probability Frequency
(as =£) (x107°) (in years)

28/09/2001 -0.1859 -3.2328 612.81 136
31/08/1998 -0.1949 -3.3840 357.16 233
28/09/1990 -0.1994 -3.4606 269.46 309
30/10/1987 -0.2423 -4.1807 14.53 5,734
30/09/2002 -0.2933 -5.0381 0.24 354,503

Note:

The table depicts the five most extreme events. The third column shows by how many
standard deviations the returns are departed from the mean. The fourth column shows
the probability of such an event, if the normal density held. The fifth column shows how
often (in years) such an event would occurred, if the normal distribution held.

2.1 Stylized facts about financial time series

2.1.1 Asymmetry and leptokurtosis

The standard assumption used in finance is that the returns of financial time
series are independent, identical normals. However, there is some empirical
evidence contradicting this assumption. The first to address this issue was
Mandelbrot (1963), who studied daily and monthly prices of cotton traded
in New York from 1816 to 1940. He noticed that extreme events occur
much more frequently than is allowed by the normal distribution. In the
literature, this phenomenon is called fat tails or leptokurtosis.! Another
prevalent observed phenomenon is the skewness of the financial time series.

Figure 2.1 presents the histogram of the monthly log-returns of DAX30 -
the German blue chip index - from January 1975 to December 2004. In this
period, the mean monthly return was equal to 0.0066 and its variance was

equal to 0.0035. The solid line represents the density of normal distribution

!The distribution of a random variable is called leptocurtic if it has a positive excess

kurtosis.
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Figure 2.1: Normal distribution vs. monthly log-returns of DAX30 (1975-
2004)
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Note:

The figure shows the histogram of the monthly log-returns of DAX30. In the top right
corner the moments of the time series (11 - mean, o2 - variance, vy - skewness, and & - excess
kurtosis), the Jarque-Bera test statistic (JB) and its p value (pyp) are presented. The
solid line represents the normal density with parameters estimated form this time series
(p and o?). Tt is straightforward to see that the log-returns of DAX30 are left-skewed and
leptokurtic.

with these parameters. Evidently the log-returns of DAX30 are not normally
distributed. 52% of the probability mass is located to the right of the mean.
Moreover, the left tail is extraordinarily thick. Table 2.1 shows the five most
extreme events which occurred in these 30 years. If the log-returns were
normally distributed, the return of a figure equal or less than -18.59% in a
month would be lower then 0.6%0, which means that it occurred once every
136 years. However, this event has actually occured five times in a period
of 30 years. The most negative monthly return occurred in September 2002
and amounted to -29.33%. However, if the normal distribution held, the
loss of almost 30% in a month would occur once in 254,503 years (see Table

2.1). The observation that log-returns of DAX30 are not normally distributed
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can be confirmed by a glance at the skewness and kurtosis. The empirical
skewness of DAX30 returns amounts to -0.8175 and their excess kurtosis to
3.1546. According to the normal distribution, both values should equal zero.
Thus, the time series is left skewed and leptokurtic. As the Jarque-Bera
test statistic equals 189.37 and is significant at all commonly used confidence
levels, the assumption of normal distribution can thus be rejected (see Figure

2.1).

2.1.2 Conditional heteroskedasticity

Another observation made by Mandelbrot (1963) concerned the so-called
volatility clusters. This means that the volatility of time series is persistent
or in other words: large changes in the returns are followed by large changes,
low changes are followed by low changes. Clusters in the volatility are easily
discerned by studying the DAX30 returns plotted on the time line (see bot-
tom panel of Figure 1.1). Between 1976 and 2004, there were periods of small
amplitude i.e. from 1975 to 1985, when the German stock market stagnated,
from 1988 to 1989, and from 1991 to 1996, during a period a rapid growth
phase, in 2000 - at the begin of the New Economy crash, and in 2004, with
the market rebounding from the crash. This stands in contrast to the follow-
ing periods which were characterized by a high amplitude of stock returns:
in 1975, due to the increase the stock prices after the OPEC oil crisis; from
1986 to 1987, as a result of the market being in a turbulent phase which
ended with the black October of 1987; in 1990, when prices fell rapidly; from
1997 to 1999, when the dot-com bubble rose; from 2001 to 2002, during the
New Economy crash; and in 2003 - the first year of the subsequent growth
phase. As one can see the current volatility clearly depends on the past

volatility. This phenomenon is also called conditional heteroskedasticity. A
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lot of research has addressed this problem, see for instance the literature on

GARCH models beveloped by Engle (1982) and Bollerslev (1986).

2.1.3 Leverage effect

Black (1976) found that empirical data feature a negative correlation between
the returns and volatility, i.e. that in contrast to the positive returns, the
negative returns are followed by an increase in volatility. Black (1976) called
this phenomena a leverage effect. This stylized fact was addressed by sev-
eral econometric models. E.g., Nelson (1991) introduced the E-GARCH and
Zakoian (1994) and Glosten, Jagannathan, and Runkle (1993) the T-GARCH

model.

2.1.4 Non-continuous trading

In financial literature, it is very often assumed that the development of pricees
is continuous over time. It would imply, for instance, that the volatility on
non-trading days should be equal to the volatility on trading days. French
and Roll (1986) have found that the hourly volatility of American stocks
was 70 times higher during trading time, compared to when the market was

closed.

2.1.5 Mean reversion

Mean reversion implies that the drift of the stochastic process is positive
when the last realization of the stochastic process is lower than its long-time
mean p and negative, when the last realization of the stochastic process is
higher than its long-time mean g. This implies that as the time horizon goes

to infinity (¢ — oo) a mean-reverting stochastic process y; converges towards
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its long-time mean p (E[y] — p) (Brigo and Mercurio 2006, p. 59). This
phenomenon can be observed e.g. for interest rates and has the following
economic explanation. In a time of high interest rates, the demand for credit
declines, due to the high price of lending money. As a result, the rates decline
and the borrowers are more willing to obtain funds for new investments.
Consequently, the interest rates increase causing once again a slow-down of

the economy (Hull 2006, p. 651).

2.2 Mathematical preliminaries

Notation 2.1 Throughout the entire thesis, the following notation will be

used:

1. I — the identity matriz, i.e. a square matriz with ones on the diagonal

and zeros on all other entries,
2. 1; — the i-th column vector of the identity matrix,
3. E — a square matriz of ones,
4. 1 — a column vector of ones,
5. O — a square matriz of zeros,
6. 0 — a column vector of zeros,

7. Ia — an indicator function defined as

1 ifAeQ
I4=

0 otherwise,
8. N={0,1,...} — the set of normal numbers (including 0),

18



9. R — the set of real numbers,

10. PrplA] - a probability of the event A with respect to the probability
measure P, if the index P is suppressed, then the probability measure

P is considered to be the “real world” probability measure,

11. Ep[A] — an expected value of the event A with respect to the probability
measure P, if the index P is suppressed, then the probability measure

P is considered to be the “real world” probability measure.

In consideration of the fact that the term “stochastic process” will fre-
quently be referred to, a clarifying definition of this terminus would be ap-
propriate. Before we do so, we provide definitions of o-algebra, measurable

space, probability measure, and probability space.

Definition 2.2 (o-algebra) Let ) be a given set and F be a family of sub-
sets of € with the following properties

(i) 0 e F,

(ii) F € F = FC € F, where F¢ = Q\F (i.e. FC is the complement of F
in ),

(iii) Al,AQ,"‘ GF:>A = UZlA’L e F.
Then F is called a o-algebra F on Q2 (Oksendal 2003, p. 7).

Definition 2.3 (Filtration) Let Q be a given set and let T be a fized pos-
itive number. Assume that for each t € [0,T] there exists a o-algebra F;

and that if s < t, then every set in Fs is a o-algebra F; as well. Then the
collection of o-algebras F is called a filtration (Shreve 2004, p. 51).
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Definition 2.4 (Measurable space) Let Q) be a set and F be a o-algebra
then the pair (Q,F) is called a measurable space (Oksendal 2003, p. 7).

Definition 2.5 (Probability measure) Let (Q, F) be a measurable space
and let P be a function P : F — [0, 1] such that properties

(i) Pr[0] =0 and Pr[Q] =1,

(ii) If Ay, As,--- € F and {A;}32, is disjoint (i.e. A;NA; =0 ifi#j) then
PriUZ, Ai] = 2272, Pr[Aj]

hold. Then P is called probability measure on the measurable space (€2, F)
(Oksendal 2003, p. 8).

Definition 2.6 (Probability space) Let Q be a given set, let F be a o-
algebra and let P be a probability measure, then the triplet (2, F,P) is called
a probability space (Dksendal 2003, p. 8).

Now we can define a stochastic process.

Definition 2.7 (Stochastic process) Let X; be a (n dimensional) random

variable, then a parametrized collection of random variables

(Xt)tE'T

on a probability space (U, F,P) assuming values in R™ is called a stochastic
process (Oksendal 2003, p. 10). T is a set of time points and will be chosen
as T =R, U{0} in the following.

Definition 2.8 (Measurable function) Let (2, F,P) be a probability space
and let f: Q — R™. If for all open sets U € R™ preimage f~H(U) € F, then
function f is called F-measurable (Oksendal 2003, p. 10).
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Definition 2.9 (Adapted process) Let (F;)i>o be a filtration on Q and let
(X¢)e=0 be a stochastic process. If for each t > 0 stochastic variable Xy is Fi-

measurable, then the stochastic process (X¢)i>o is called Fy-adapted (Musiela

and Rutkowski 2007, p. 35)

2.3 Markov chains

2.3.1 Definition of the Markov chain

Markov chains are a powerful and very commonly used mathematical tool.
They can be applied to many fields of economics, such as insurance (birth-
death process), finance (random walk), logistics (queuing problem) or econo-
metrics (Markov chains Monte Carlo). In this Section, some properties of
discrete Markov chains will be discussed, which are relevant for the Markov
switching models defined in Section 2.7. Further discussion on discrete
Markov chains can be found in Cox and Miller (1965, Chapter 3), Kijima
(1997, Chapters 2-3), Norris (1997, Chapter 1), and Rolski et al. (1999,
Chapter 7). For a discussion of continuous time Markov chains, see Cox
and Miller (1965, Chapter 4-5), Kijima (1997, Chapter 4,), Norris (1997,
Chapter 2-3), and Rolski et al. (1999, Chapter 8). An applications-oriented
discussion is given in Anderson (1991).

Before providing a definition of the Markov chain, we will clarify the

definitions of the state space, the stochastic matrix and the stochastic vector.

Definition 2.10 (State space) Let K be a countable set, then it is called

a state space and all elements k € K are called states (Norris 1997, p. 1).

Definition 2.11 (Stochastic matrix) Let P be a matriz and let p;; be an

element of the matriz P. If all elements p;; > 0 and all rows of P sum to
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unity (i.e. P1 =1), then the matriz P is called a stochastic matriz (Cox and

Miller 1965, p. 85).

Since the row elements of the stochastic matrix P sum to unity, they can

be interpreted as (in this case: conditional) probabilities.

Definition 2.12 (Transition probability) Let (Z;)ien be a stochastic pro-
cess with the state space IC and let 1,5 € KC be two arbitrary states, then the
probability Pr[Z, = j|Z,—1 = i| = pj; is called (one step) transition probability

from state i to state j.

Definition 2.13 (Stochastic vector) Let p be a column vector and let p;
be an element of the vector p. If all elements p; > 0 and sum to unity (i.e.
p'l = 1), then the vector p is called a stochastic vector or discrete stochastic

measure, equivalently.

By analogy, the elements of the stochastic vector p can be interpreted as

(in this case: unconditional) probabilities.

Definition 2.14 (Probability distribution) Let (Z;)ieny be a stochastic
process with the state space K, let j € K be an arbitrary state, and let
Pr[Z, = j| be the probability of being in state j in time t, then the stochas-
tic vector p; = (Pr[Z; = j])jex is a probability distribution. Ift = 0, then
Pr[Zy = j] is called initial probability and py is called initial probability dis-

tribution.

Let us now define the Markov chain.

Definition 2.15 (Markov chain) Let K be a state space and (Z;)ien be a

stochastic process with the state space IC. If
PI‘[Zt = Zt|Zt_1 = 21y ey Z() = Zo] = PI'[Zt = Zt|Zt_1 = Zt—l] (21)
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for all (z, z-1,---,20) € K™ and for all t > 2, then the stochastic process
(Zi)ten is called a Markov chain (of the first order) and the property (2.1) is
called Markov property (of the first order) (Rolski et al. 1999, p. 310).

To determine a unique Markov chain, the initial probability distribution
po = (Pr[Zy = i])iex has to be known or defined. Then the probability
distribution of the Markov chain in the first period is given by

b1 = Plpo (2-2)

and so on. The probability of one particular “path” of the Markov chain

equals
PI'[Zt = Zt‘Zt—l = Zt—l] X X PI'[Zl = 21|Z() = Zo] X PI‘[ZO = Zo].

Note that in the Markov chain, the probability of the occurrence of the
event z; is only dependent on the value taken in the preceding period (i.e.,
z;-1). This implies that in order to forecast tomorrow’s value (i.e. value in
t) of the Markov chain, only today’s observation is required (i.e. observation
in t — 1). Therefore, it is often stated that the Markov chain has one period
memory. This does not mean that the information from previous periods (i.e.
t—1,...,0) is “forgotten”, but rather that the addition of this information
to the information contained in todays observation does not improve the
forecast quality.

Hereafter, only homogeneous Markov chains will be considered.

Definition 2.16 (Homogeneous Markov chain) Let (Z;);en be a Markov
chain. If the transition probabilities
pi =Pr(Zy=jlZ 1 =i], VijeK, Y pi=1 (2.3)
jeK
are time invariant, then (Z;)ien is a homogeneous Markov chain (Rolski et al.

1999, p. 310).
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Example 2.17 Consider the price process (Si)ien of a stock with the corre-
sponding rate of return process (Ry)ien. Furthermore the price of the stock
can rise by u% (state A) or fall by d% (state B). Additionally, it is known
that the probability of the price rising tomorrow if it has increased today is
pa = Pr[Riyy1 = A|R, = A] and the probability of the price falling tomorrow
if it has decreased today is pg = Pr[Ry1 = B|Ry = B|. Ewidently the stock’s
rate of return process is a Markov chain with the state space K = {A, B} and

the transition matriz

ba l—pB A
PKxK — . (2.4)

1 —pa PB B
A B

In analogy to the Markov chain with a one period memory a Markov

chain with a memory of n periods can be defined.

Definition 2.18 (Markov chain of the nth order) Let K be a state space
and (Z;)ien be a stochastic process which can only take values from the state
space IC and n > 1. If
Pr|Z, = 2| Zi 1= 2121, ..., Zo = 20) =
Pr[Z;, = z|Zi1 = 21y, Do = 2i-n)  (2.D)
then the stochastic process Z; is called a Markov chain of the n-th order or

Markov chain with n period memory.

Please note that each Markov chain of the higher order (i.e. n > 1) can

be reduced to the Markov chain of the first order.

Theorem 2.19 If the stochastic variable (Y;)ien is a Markov chain of the
ordern > 1 and the state space IC, then it is possible to define a new stochastic

process (Zy)ie{nn+1,..y such that
Zy = (Yegn—1, Yegn—2, .-, Y2), (2.6)
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and the new stochastic process is a Markov chain with the state space K.

Proof. As the stochastic process (Y;)ien is a Markov chain of the n-th order,

from the property (2.5) it follows

PrlYon =yelYe =y, Yo = wol =
PrlYipi = ye1lYs = v, - Yicns1 = Yeony). (2.7)
Note that the chain rule for conditional probabilities states that
Pr[}/t-i-n - yt+n7 ey )/t-f—l - yt-i—l‘}/t =Yty }/0 - yO]

= Pl"[Yt+1 = yt+1‘Y;t =Yp,..., Yy = yo]

X PI"[YtH = yt+2’Yt+1 = Yey1,.-., Y0 = yo] (2'8)

X ...
X Pr[)/t—i—n - yt—l—n‘}/t-l—n—l = Yt4+n—1y--+, )/0 - yO]

Applying the Markov property (2.7) on both sides of the equation (2.8) yields
Pr[)/t-f—n - yt+n7 ... 7}/t+1 - yt+1|)/t =Yty .- 7}/0 - yO] —
Pr[YHn = Ytiny - Yeg1 = Z/t+1‘Yt =Yty Yipy1 = Z/t—n+1]-
From (2.6) it results
Pr(Zi1 = Wetns - Yer )1 Ze = Wern—1, %)y -5 Z0 = (Yn—15- -+, Y0)] =
Pr[Ziv1 = Yern, - Yer )| Ze = Yern—1s - - Ye))-

which is the Markov property of the first order (the proof based on Kijima
1997, p. 3-4, 11-12). =

Example 2.20 Consider the stock price process from Example 2.17. This

time the probability of the price increasing or decreasing is conditional on
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the price behavior in two previous periods. It is known that if yesterday and
today the stock price increased, then the probability of it rising tomorrow is
paa = Pr[Ry1 = A|R, = A R,y = A]. If the price has risen yesterday
and falls today then the probability of it rising tomorrow is pap = Pr[Riyy1 =
ARy = B,R;,_1 = A|. If its price has fallen yesterday and rises today,
then with probability pga = Pr[Ry1 = A|R; = A, R_1 = B] it will increase
tomorrow. FEventually, if it decreased yesterday and today, then the probability
is pgg = Pr[Riy1 = A|Ry = B, Ry_1 = B] that it will rise tomorrow.

It is obvious that the stock’s rate of return is a Markov chain of the second
order with the state space I = {A, B}. One can easily construct a new rate of
return process (R} )ien with four states: o = (A, A) - the price has increased
yesterday and today by u%, = (A, B) - the price has increased yesterday by
u% and fallen today by d%, v = (B, A) - the price has decreased yesterday
by d% and increased today by u% and § = (B, B) - the price has decreased
yesterday and today by d%. Then the new return process Ry is a Markov chain
of the first order with the state space K* = {(A, A), (A, B), (B, A),(B,B)} =

{a, 8,7,0} and the following transition matriz

DAA 0 DPBA 0 o
1 —paa 0 1—pBa 0 B

Prok — 29
0 DAB 0 DPBB 5

[s2)

0 1 —paB 0 1 —pBB
«a B ¥ 1

2.3.2 Transition probabilities

Equation (2.3) defines the one period transition probabilities from the initial
state ¢ to the target state j. In order to determine the two period (or two
step) transition probability pﬁ) = Pr[Z, = j|Z,_o = i] it is sufficient to let

the stochastic process in time (¢ —1) “run” through all possible states k € K
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and add all probabilities together

Pr(Zy = j|Zia = i] = Y _Pr[Z, = j|Ziy = KXPr[Ziy = K| Zp = 1], Vi,j €K
kex
(2.10)

For the general case, the following Theorem holds true.

Theorem 2.21 (Chapman-Kolmogorov equation) Let pg-?) = Pr[Z, =

J|Zi—n = i] be the n step transition probability of a Markov chain (Z;)ien,
then for m,n € N\{0}

P =" (2.11)
ke

The equation (2.11) is called Chapman-Kolmogorov equation (Kijima 1997,
p- 14).

Proof. Theorem 2.21 can be proved through induction with the first step
(2.10). =

Remark 2.22 The Theorem 2.21 in the matrix notation yields
Pm+n — PmPn7
where P™ is an n period transition probability matriz and P° = 1.

Corollary 2.23 From equation (2.2) and Theorem 2.21 it follows that the

probability distribution in time t = n is given by
pn = (P")po. (2.12)

2.3.3 Stopping time

Assume that one is interested in a point in time at which an event will occur.

This time is called stopping time.

27



Definition 2.24 (Stopping time) Let (Z;)ien be stochastic process with a
state space K. A random wvariable T is called stopping time of (Z;) if, for
each n, the occurrence of the event {T < n} is determined by Zy, ..., Z,, i.e.

there exists a function f(-) such that

]I(Tgn) = f(ZOa S Zn)
(Kijima 1997, p. 19).

Example 2.25 Recall the stock price process from Example 2.17. Assume
that a risk-averse agent would like to invest in that stock. One possible coutios
mvestment strategy would be to buy the stock today and hold it as long as the
price increases. On the first day on which the price falls, the individual sells

the stock. The day on which the stock is sold is called stopping time.

Three types of stopping times are particularly interesting: the first pas-

sage time, the first return time and the sojourn time.

Definition 2.26 (First passage time) Let (Z;)en be a homogeneous Markov
chain on the state space K and let 1,5 € K be two arbitrary states. If the
Markov chain starts from state i # j (Zy = i), then

inf{n>1:2,=4} dn>1, Z,=3
T](p):

+00 VYn>1, Z,#j

is called a first passage time (Norris 1997, p. 19).

Definition 2.27 (First return time) Let (Z;);en be a homogeneous Markov
chain on the state space IC and let j € IC be an arbitrary state. If the Markov
chain starts from state j (Zo = j), then

") inf{n>1:2,=3} In>1, Z,=j
T~ =

+00 VYn>1, Z,#
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is called a first return time.

Definition 2.28 (Sojourn time) Let (Z;)ien be a homogeneous Markov
chain on the state space IC and let j € IC be an arbitrary state. If the Markov
chain starts from state j (Zo = j), then

(&) inf{fn>1:2,#35} In>1, Z,#j

T =

400 Vn>1 Z,=7

is called a sojourn time (Anderson 1991, p. 16).

Both the first passage and the first return time represent the first moment
n on which the stochastic process (Z;) enters the particular state j if in all
time points 1,...,n — 1 the stochastic process (Z;) was in any other state
1 # j. The difference being that in the case of the first return time the process
(Z;) starts in the state j (i.e. Zg = j) and in case of the first passage state
the process starts from a particular state i # j (i.e. Zy = i). The sojourn
time describes when the process leaves the initial state j (i.e. Zy = 7).

Stopping times can be used for instance to compute a transition proba-
bility from the initial state i to a particular state j (equal or unequal i) in n

steps.

Definition 2.29 (Transition probability from state i to j in n steps)
Let (Z;)ien be a homogeneous Markov chain on the state space IKC with transi-
tion matriz P = (pj;)ijex and let 7; be the first passage or first return time.
Then define

fj(zn) = Pr[1; = n|Zy = i

as the probability that the Markov chain (Z;)ien goes from the initial state i
to the state j in n steps. If i # j, then fj(?) 1s called transition probability of

29



the first passage time and if 1 = 7, then fj(zn) 15 called the transition probability

of the first return time.

Remark 2.30 Note that the expected stopping time can be simply computed

as
E[r;] = Zn x Pr[r; = nl.
n=1

In this thesis, the expected sojourn time will be of particular interest,
as it is used to price the option on a risky asset when the underlying asset

follows a Markov switching geometric Brownian motion (see Section 2.7.2.1).

Theorem 2.31 (Expected sojourn time) Let (Z;)en be a homogeneous
Markov chain on the state space KC with transition matriz P = (pji)i jex with
pj; < 1 and let j € K be an arbitrary state. Then the expected sojourn in
state 7 is given by
1
Dj=—, (2.13)
L= pjj

see (Kim and Nelson 1999, p. 71-72).

Proof. Note that
D; =E[r”] =) tPrlr” =1 E) — Dy = (L= pi) Dty
t=1 t=1

(1 = pjj)lpjs + 2035+ 3p3; +4pj; + ..

(1= pj))lpss + v + v + P+ -
2 3 4

SRR IR IR

+o]

Observe that as pj; < 1, we can use the sum of the geometric sequence

© Lk _
Dot D= 1 - . Thus
[o.¢]

t e’}
(1—pjj)zlp” Z § = .
JJj

t=0

which completes the proof. m
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2.3.4 Stationarity of Markov chains

This Section will show that if a Markov chain has an equilibrium distribution,
then it is unique and how to compute it. First, let us define a stationary

distribution.

Definition 2.32 (Stationarity) Let P = (pj;)ijex be a stochastic matriz
and let p be a probability distribution. If

p=P'p, (2.14)

then p 1s called stationary, equilibrium or equivalently invariant distribution

(Norris 1997, p. 33).

Definition 2.33 (Ergodicity) Let (Z;)ien be a homogeneous Markov chain

on the state space K with transition matriz P = (pj;)i jexc. If it holds

(a) for all states j € K there exists a limit

m; = lim p{ (2.15)

n—oo jZ ’
7 is strictly positive and independent of the state 1,
b) m; 1s strictl 11 d ind dent of the state i
(c) T = (7;)jex is a probability distribution, i.e. 'l =1,

then the Markov chain (Zy)en is called ergodic and  is called stochastic

distribution (Rolski et al. 1999, p. 281).

Remark 2.34 The equation (2.15) in the matriz notation yields

,n./

lim P"=| : | ==l (2.16)

n—~o0

,n./

where P denotes a transition matriz and ™ denotes an ergodic distribution.
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Theorem 2.35 Let (Z;)ien be a homogeneous Markov chain on the state
space K with transition matriv P = (pji)ijexc. If the Markov chain (Z;) is
ergodic, then the stochastic vector m = (7;)jex is the unique solution of the
system of linear equations

m = P'm. (2.17)

Equation (2.17) is called balance equation for the matriz P (Rolski et al.
1999, p. 283).

Proof. Note that (2.17) is equivalent to
;= Zwkpjk, Vjek. (2.18)
kek

Thus, it is sufficient to prove the equation (2.18). From (2.15) it follows that

(n)

m; = lim p;”.

Now use the Chapman-Kolmogorov equation (2.11)

. n . n—l
lim p’ = lim 3 pli b

n—o0
kel

We interchange the limit and the summation

: (n=1) _ : (n=1)
Jm > pi e =3 lim pii
ke ke

We re-use the definition of ergodicity (2.15)

N e I
> Tim pyipjk = > mpik.

kek kel

As it has be proven that the left-hand-side of equation (2.17) equals its
right-hand-side, it remains to be proved that this solution is unique. We
now suppose that another probability function (7*) = (77);ex exists, which
is unequal to w. By induction it is straightforward to prove that

=Y mpl, Viek, (2.19)
ke
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with the first step as above. We now take the limit from (2.19)
m = Jm > wipgy
kek
It remains to interchange the summation and limit, and to use the definition
of ergodicity (2.15)
mo= lim > ompl = > lim wipl) = .
kek kek
Accordingly, it has been proven that 75 = m; (V j € K), thus vector m is the
unique solution of equation (2.17) (Rolski et al. 1999, p. 283). =

Theorem 2.36 (Ergodic distribution) Let P be the transition matriz of
the ergodic Markov chain (Z;)ien, then the matriz (I — P' + E) is invertible

and the stochastic vector from the equation (2.17) is given by
=P +E)1 (2.20)
(Rolski et al. 1999, p. 288).

Proof. At first it is necessary to prove that the matrix (I — P’ + E) is
invertible. This is equivalent with the following statement: (I —P'+E)x =0
implies that x = 0. From equation (2.14) it follows (I — P")m = 0. Therefore
from (I —P'+E)x =0 it results that 0 = 7'(I —P'+ E)x = 0+7'Ex = 0. As
7 is a distribution, it follows 7'E = 1’. Therefore 1’z = 0 and consequently
Ez = 0. This implies that (I — P")z = 0. This is equivalent to P'z = z.
From this, it follows that for all n > 1 it is true that (P')"z = . As 7 is
ergodic, from the equation (2.15) it follows lim,,_,., P" = wl’. This means
that for n — oo it holds x = (P')"z — 1n'z, ie. z; = Y70 mw; (Vi =
1,...,m). As the right-hand side of this equation is independent from i, it
holds true that 3 ¢ € R, & = ¢1. Above it was shown that 0 = 1’z, therefore

1z =1'(c1) = em = 0. Thus, ¢ = 0 and, as a result, (I —P'+FE) is invertible.
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From equation (2.17) it follows that (I — P')r =0. Thus (I —P'+ E)m =
E.m =1. Left multiplying by (I — P’ + E) yields the equation (2.20) (Rolski
et al. 1999, p. 288). m

Corollary 2.37 For a two state Markov chain the ergodic distribution has

the form
1—pa2

21—
T = P11—p22 (221)
1-pu1
2—p11—p22

(Hamilton 1994, p. 683).

2.4 Continuous stochastic models in finance

2.4.1 Diffusion models

The basic stochastic process in the continuous time is called the Wiener

process.

Definition 2.38 (Wiener process) If for a stochastic process (Wy)i>o it
holds that

(i) Wo =0,

(ii) The process W has independent increments, i.e. if r < s <t < u then

W — Wy and Wy — W, are independent stochastic variables,

(iii) For s <t the stochastic variable Wy — W is normally distributed with

mean 0 and variance (t — s),
(iv) W has continuous trajectories,

then W is called a standard Wiener process (or Brownian motion) (Bjork

2004, p. 36).
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Based on the standard Wiener process, the It6 process (the stochastic

integral) can be defined.

Definition 2.39 (Ité process) Let (Wy)i>o be a standard Wiener process
and let (Xy)i>s be a stochastic process defined on the probability space (2, F,P)
of the form

t t
Xt:XS+/ u(u,Xu)du+/ o(u, Xy,)dW, (2.22)

to
with diffusion function o(t, X;) and drift function p(t, X;), which are both
Fi-adapted and

=1, Vt>s, (2.23)

t
Pr l/ o(s, X,,)?du < 0o

¢
Pr {/ |p(w, Xy)| du < oo] =1, Vt>s, (2.24)

where s < t. Then the stochastic process X, is called Ité process (or Ité

integral, or stochastic integral) (Shreve 2004, p. 143).

Remark 2.40 In the financial literature, the Ito integral is commonly writ-

ten in the differential form as
dX; = pu(t, Xy)dt + o(t, Xy)dW, with boundary condition Xs = xs. (2.25)
Theorem 2.41 (It6’s lemma) Let X; be an Ité process given by
t t
X; = XS+/ u(u,Xu)du+/ o(u, Xy,)dW, (2.26)

with p(t, X) and o(t, X;) Fi-adapted processes, Wy the standard Wiener pro-
cess and s < t. Furthermore, let g(t,x) € C*([0,00) X R) (i.e g(t,x) be twice

continuously differentiable on [0,00) x R). Then

)/t = g(ta Xt)
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18 again an Ito process with

¢ X, X,
K:Y;—i—/ {89(% u) +,U(U,Xu)ag(U7 u) + JQ(U,Xu)

1
ou ox 2

' 9g(u, X.)
X bl u
+/S o(u, Xy) 5 AW,

(Oksendal 2003, p. 44).
Proof. For the proof, see Arnold (1973, p. 108-112). =
Remark 2.42 Let W, be a Wiener process and let s <t. Then

dt - dt =0, dt - dW, = 0, AW, - dW, = dt,

s[[ow]=0 /:dwuf] - [

(Oksendal 2003, p. 44).

629(’&, Xu)

du

(2.27)

(2.28)

(2.29)

A standard example of the stochastic process used for describing the

behavior of the stock prices (or in general the value of the risky portfolio) is

the geometric Brownian motion.

Definition 2.43 (Geometric Brownian motion) Let (W;);>¢ be a stan-

dard Wiener process, let (X;)i>s be a stochastic process, and let Fy,t > 0 be

an associated filtration. Furthermore, let u; and o; be associated processes.

Then the Ito process

t t
X, :XS+/ quudu+/ ou X, dW,

(2.30)

is called the geometric Brownian motion (GBM) (Shreve 2004, p. 147-148).
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This process was first proposed by Bachelier (1900)? in his PhD thesis,
which was unfortunately, misunderstood by his contemporaries.> Almost six
decades later, Osborne (1959) rediscovered the geometric Brownian motion
for finance, oblivious to the fact that it has been used for the same purpose by
a French mathematician long before him. As a tribute to Bachelier’s genius,
it is worth mentioning that he used the geometric Brownian motion five years
prior to Einstein (1905). Not being familiar with Bachelier’s work, Einstein
introduced it to the field of physics. Bachelier also priced options decades
before Black and Scholes (1973) and Merton (1973) revolutionized the science
of finance with their option pricing model (Mandelbrot and Hudson 2004, p.
53-54).

Proposition 2.44 (Solution of the GBM) Let (X;);>s be a GBM, p; =
W, op = o >0, then equation (2.30) has the solution

X, = X,eli st duro [LdWa _ x o(n=30%)(t=8)+o(Wi=Ws) (2.31)
Proof. Set u(t, X(t)) = In X; and use the It6 rule, which results in
1 t
InX;, —InX, = (u— 502)(15 —s)+ J/ dW,. (2.32)

Then take exp(-) of both sides, which completes the proof. For details, see
Shreve (2004, p. 191-193). =

2The English translation of Bachelier’s article can by found in Cootner (1964, p. 17-78).
3The extent to which Bachelier had been misunderstood can be illustrated by the diffi-

culties he encountered to get a permanent professorship. E.g. his application for a vacancy
position in Dijon in 1926 was blackballed due to the criticism of the distinguished mathe-
matician Paul Lévy on his work, which allegedly contained profound mistakes. Eventually,
Bachelier was able to get a permanent position at Besangon one year later. It was not
until many years has passed that Lévy apologized to Bachelier, admitting to have been at

fault (Mandelbrot and Hudson 2004, p. 48-49).
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Remark 2.45 Note that process Yy = In(X;) defined in equation (2.32) is
referred to as the arithmetic Brownian motion with mean (p — 502)(t — s)

and variance o*(t — s).

Proposition 2.46 (Moments of the GBM) Suppose that (X;)>s is a GBM,

then it has the conditional expected value
E[X;|X,] = X et (2.33)
and the conditional variance
Var[X;| X,] = X2e2(t=9) <e"2<H> . 1) . (2.34)

Proof. To prove equation (2.33) take the conditional expected value of both
sides of equation (2.31)

E[X,|X,] =E [ X, el 50Nt +o(We-10.)

XS]
_ Xse(u—%az)(t—S)E [ea(Wz—Ws)} ‘

As Wy — Wy is normally distributed with mean 0 and variance (¢ — s) one

can use the moment generating function of the normal distribution
E[eWe=Wo)] = M(0,t — ) = €37 (=),
thus
E[Xt‘XS] = Xse(ﬂ—%cr?)(t—s)e%a?(t—s) — Xse,u(t—s)'

To prove equation (2.34), first take the conditional expected value of the

second power of both sides of equation (2.31)

ELX?IX,] = B [X26H0m 1o aehi-tvy

x|
— X230 [2(WemWo)]
_ X8262(u7 %0'2)(th) 6202 (t—s)

_ )(5262;415—5)—}—02 (t—s) ,
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then the variance equals
Var[Xy| X,] = E[X7?|X,] — E*[X;] X,]
_ X262u(tfs)+02(tfs) — X 2e21t—s)
_ X8262u(tfs) (602 (t—s) 1)

Remark 2.47 Because the increments of the Wiener process are normally
distributed (see Definition 2.38), thus equation (2.32) implies that for Xs =
xs process (In(Xy))i>o s also normally distributed. Equivalently, process

(X¢)es0 1s log-normally distributed.

The GBM is usually used to describe stochastic behaviour of stock prices.
However, it is unsuitable for interest rate models, as it does not take the
mean reversion into account (see Section 2.1.5), which is commonly observed
in the interest rates time series. Therefore, Vasicek (1977) proposed a model

that deals with this problem.

Definition 2.48 (Vasicek process) Suppose that Wy, t > 0 is a Wiener
process, Fi,t > 0 is an associated filtration, p; and oy are associated processes

and o > 0. Then the Ito process
t t
X, = X, + / i — XJdu + / oudWV, (2.35)
15 called the Vasicek process.

Proposition 2.49 (Solution of the Vasicek process) Suppose that (X;)i>s
is a Vasicek process with py = p and oy = o > 0, then equation (2.35) has

the solution

¢
X, = X,e o) (1 — eot=9)) 4 U/ e =g, (2.36)
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Proof. Set g(t, X;) = e**=*) X, and apply the It6 rule. m

Proposition 2.50 (Moments of the Vasic¢ek process) Suppose that (X;)i>s
15 a Vasicek process with p; = pu and op = o > 0, then it has the expected
value of

E[X,|X,] = Xee @07 4 (1 — e7o(=9)) (2.37)

and the variance of
g —2a(t—s
VarlX|X,] = o~ [1 — e72a(=9)] (2.38)

Proof. Using Shreve (2004, Theorem 4.4.9, p. 149) for the stochastic vari-
able Z; = fst e~ =W g1y has the expected value of

E[Zs:] =0 (2.39)
and the variance of

t
1
Var[Zs,] = / e~ 2ot gy, = o (1 — e 29y, (2.40)
s (6%

To prove the mean equation (2.37) it is sufficient to take the expected value
of both sides of the equation (2.36) and apply (2.39). To prove the variance
equation (2.38) it is sufficient take variance of both sides of the equation

(2.36)

t
Var[X| X,] =Var | X,e @) 4 (1 — e7o9)) 4 U/ =0t gpy.

Xs]
=Var [ X,e %) 4 (1 - e’a(t’S))} X,] + o*Var [Z, ]
+ 2Cov [Xse_a(t_s) +p(1— e_a(t_s)), O'Zs,t’ XS} )

As the first variance is zero and both processes are independent, the covari-
ance is zero as well. Thus it remains to apply (2.40), which completes the

proof (Shreve 2004, p. 151). =
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Remark 2.51 [t is worth noting that the parameter u is a long term mean
of the Vasicek process* with respect tot — oo and that « is the speed at which

the process returns to the long term mean pu.

As the X; is normally distributed, the model allows negative interest rates
with a positive probability. This is a common point of criticism of the Vasicek
model. Cox, Ingersoll, and Ross (1985) addressed this issue using the square

root process to exclude negative interest rates.

Definition 2.52 (CIR process) Let W;, t > 0 be a Wiener process, let
Fi,t >0 be an associated filtration, let u(t) and o(t) be associated processes,
and let s <t. Then the Ito process

t t
X, =X, + / alpy — Xo)du + | our/XudW, (2.41)

S

is called a CIR process.

The disadvantage of this model is that it does not have a closed-form
solution of the stochastic differential equation. However, it is possible to
compute its expected value and variance.

Note that it is a mean-reverting process if a > 0.

Proposition 2.53 (Expected value and variance of the CIR process)
Suppose that X; is a CIR process, then it has a conditional expected value of

E[X,|X,] = Xee @) 4 (1 — e7o0=9)) (2.42)

and a conditional variance of
2

2
VarlX,| X,] = x,Z (emot=9) _ ¢=2at=)) l;i (1- 6fa(tfs)>2 (2.43)
a a

Proof. For proof, see Gourieroux and Jasiak (2001, p. 252-253). =

4Which is easy to see by taking the limes from the right-hand side of equation (2.37).
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Definition 2.54 (Generalized one-factor process) Suppose that Wy, t >
0 us a Wiener process, F;,t > 0 is an associated filtration, and p; and o, are

associated processes. Then the Ito process
t t
X=X, + / alp, — Xu|du +/ o, X dW,, (2.44)
is called a generalized one-factor interest rate process.

Remark 2.55 Note that it is a mean-reverting process if a > 0 and a het-

eroskedastic process if v > 0.

This class includes many other processes, such as Vasicek (1977) (y = 0),
Cox, Ingersoll, and Ross (1985) (v = 3), Brennan and Schwartz (1980) (y =
1). For other one-factor models, compare Chan et al. (1992).

It is worth mentioning that the term-structure determined with the above
models at time ¢ = 0 can deviate significantly from the term-structure ob-
served on the market (Albrecht and Maurer 2008, p. 517). Some authors
have attempted to address this problem. See e.g. Hull and White (1990)
who solved this problem for the Vasicek and CIR model.

The one-factor models above discussed assume that the behavior of the
interest rate can be described by utilizing only one factor. As the one-factor
models are too simplistic, several authors developed models with more than
one factor. Brennan and Schwartz (1979b, 1982) use both the short inter-
est rate and the yield of a consol bond with continuous coupon payment
and infinite maturity as factors. Fong and Vasicek (1991) and Longstaff
and Schwartz (1992) use the short interest rate and its volatility as factors.
Schaefer and Schwartz (1984) on the other hand, employ the long interest
rate and the spread between the short and long interest rate. There are also
some three-factor models e.g. by Kraus and Smith (1993) who use the short

interest rate, the drift function and the diffusion of the short rate as factors.
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2.4.2 Discretization of diffusion models

By using the lemma of It6 (1951) to solve the equation (2.30), the process

for the development of the risky asset
Sy = Stoe(ui%02)(t7t0)+U(Wt7WtO), 0<1ty<t, Sto >0 (245)

can be determined (Albrecht and Maurer 2008, p. 175). Thus, the log rates

of return for one period y; (i.e. to =t — 1) are equal to

S 1
Y = In g t = (M — 50'2) + O'(Wt - VVt_l) (246)
t—1

From Definition 2.38 it follows that AW = W, — W, is normally distributed
with the mean 0 and the standard deviation v/t — ¢y (i.e. AW ~ N(0,t—tp)).
Thus, the equation (2.46) can be rewritten as

1
Yy = (,U - 50’2) + &4, Et N(O, 0'2) (247)

Please note that the mean of the GBM (u — %02) is a constant as well, thus

equation (2.47) can be rewritten as the Gaussian white noise with the mean

m = (p— 10?) and the variance o

Yp = M + &y, Ep N(O,JZ). (248)

From the It6 lemma (Theorem 2.41) the Vasicek process (2.35) has the
following solution
t
Ry =e IR, (1 —emoltto)) 4 U/t e =gy, (2.49)
0
(Brigo and Mercurio 2006, p. 58). Accordingly, the one period case (i.e.
to =t —1) Ry is given by

t
Ri=e¢ Ry +u(l—e )+ J/ e~ =W . (2.50)

to
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From Definition 2.38 it follows that AW = W, — W, is normally distributed
with the mean 0 and the standard deviation v/t — ¢y (i.e. AW ~ N(0,t—tg)).
Thus, the equation (2.50) can be rewritten as

2

Rt = €_aRt71 + ,U(l — e_a) + Et, Ep ~ N (0, ;T_Og(l — 6_2a)) s (251)

with ¢; as the innovation at time ¢.
The explicit solution of equation (2.51) can be written as a first order

autoregressive process (or equivalently AR(1)-process)

2
Ry =c+ ¢Ri1 + e, et~ N (07 (27_0[(1 - 6_2a)) ; (2.52)

with a constant ¢ = pu(1 — e~ ) and the autoregressive coefficient ¢ = e™.

The AR-version of the Vasicek model has the advantage that it enables the
GBM model to be written as a special case of the AR with ¢ =m and ¢ =0
(see equation (2.48)).

The disadvantage of the CIR model is that it does not have a closed-form
solution of the It6 lemma. However, this can be approximated via the Euler

method

Ri=Rii+alp—R1)+e=ap+(l—a)R1+e, & ~N(0,0°R1),
(2.53)
(Albrecht and Maurer 2008, p. 186).

2.5 Literature overview (MS models)

A number of years ago, the general observation was made, that economic
variables as GDP, inflation or stock prices can behave differently in several
states (or regimes) of the economy. For instance, the economy can be in an

expansion or a recession phase. The first attempt to implement this insight
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for econometric research was undertaken by Quandt (1958). He studied a
model in which the consumption equation C' varies in dependence of one of
two different states

C:Oél}/“‘ﬂl
C:OdQY‘i‘ﬂQ.

Here Y denotes the income and oy, (1, and as, (5 denote the regression
parameters in the first or second regime, respectively. The shift from the first
state of the economy to the second one occurs only once, and is dependent
on an exogenous variable (say Z). If the value of the variable exceeds some
critical value (say z*), the consumption shifts from the first state to the
second one. However, Quandt (1958) assumes that the exogenous variable Z
cannot be identified, and thus the shift time ¢* cannot be identified either.
An essential assumption of Quandt’s model is the a priori knowledge that
the shift occurs once.® The only unidentified variable is the switching time
t* which can be estimated via the maximum likelihood method.

An extension of this model was proposed by Goldfeld and Quandt (1972)
who admitted an unknown number of switches. In their model, the shift
time(s) depends on some observable exogenous variable Z;. Only the func-
tion determining when the shift occurs is unknown. In this approach, the
parameters of this function have to be estimated.® Goldfeld and Quandt
(1972) also studied another case in which the choice between the first and
the second regime occurs with some probabilities 7 and 1 — 7@ which are

unknown. In this model, the probability of a switch is independent of the

Despite that Quandt (1958, p. 873, footnote 1) studied a case in which the shift occurs
only once, he points out that the generalization of the model with two, three, etc. switches

is possible. This would, however, make the model more cumbersome.
6This is the so-called D-method, see Goldfeld and Quandt (1973, p. 4-6).
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previous state.” In a further paper, Goldfeld and Quandt (1973) assumed
that the probability of the shift can depend on the state which was in effect
at the previous time. E.g. the probability that the economy will be in the
first state at time t if it was in the second one in the previous period, will
be Pr[Z; = 1|Z;_1 = 2|. This group of models is referred to as the hidden
Markov models, since the unobservable state variable Z is a Markov chain.

The idea of a regression with a hidden Markov state was implemented
in the time series analysis in the fundamental paper A New Approach to the
Economic Analysis of Nonstationary Time Series and the Business Cycle of
Hamilton (1989) who studied the US real GNP as the AR(4) model with
regime switching. As the observation of the regime variable Z is impossible,
he suggested an approach which makes a probabilistic inference on the regime
at the time ¢. Since the publication of his paper, there has been a lot of studies
on the Markov switching behavior of macroeconomic values such as GDP
(Hamilton (1989)) or inflation (Kim (1993) among others). This method has
found a lot of applications for financial time series, as well.

The first model for stock returns within the Markov switching framework
was introduced by Turner, Startz, and Nelson (1989). In their model, the
mean and the volatility of the stock returns can be dependent on the regime.
Hardy (2001) analysed the model of Turner, Startz, and Nelson (1989) for
the monthly returns of the US American and Canadian stocks and discovered
that it outperforms several autoregressive and ARCH models, among them
the GARCH(1,1)-model. Sola and Timmermann (1994) used this model for
the UK daily stock returns and ascertained that it outperforms the GARCH
and the EGARCH model. Furthermore, they concluded that the Markov

switching model can better explain the skewness of the data than the models

"This is the so-called A-method, see Goldfeld and Quandt (1973, p. 6-7).
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from the ARCH family. However, the ARCH models were more advantageous
in explaining the kurtosis of the daily stock returns than the regime switching
model.

Hamilton and Susmel (1994) introduce an extension of Turner, Startz,
and Nelson’s model to the regime switching ARCH (SWARCH) models.®
In their study, the US American weekly stock returns are better forecasted
with the SWARCH model with Gaussian innovations than with Gaussian
GARCH(1,1). The prediction was even more accurate if they used the t-
distributed SWARCH models. Moreover, they show how to implement the
asymmetry of the returns in the SWARCH model. They model the leverage
effects as proposed by Glosten, Jagannathan, and Runkle (1993). Hamilton
and Lin (1996) used a bivariate model which combines Hamilton (1989) and
Hamilton and Susmel (1994) to study the relation between stock returns and
economic growth. They found proof for two regimes in the stock returns and
GDP. Furthermore, they found that increased volatility in stock returns is
associated with economic recessions.

In addition to stock returns, there is a comprehensive research literature
on the interest rates within the Markov regime framework. The first such
study was conducted by Hamilton (1988), who modeled the short- and the
long-time interest rate. He found that the dynamics of the American three-
month interest rate is better explained by the Markov switching approach
than by a linear model. The bivariate model of the three-month T-bills and
ten-year T-bonds with cross-equation restriction is best represented by the
Markov switching model as well. Gray (1996) considered the generalized
regime-switching (GRS) model which nests the linear (e.g. Cox, Ingersoll,

80ther GARCH models with Markov switching were introduced by Cai (1994), Gray
(1996) and Haas (2004).
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and Ross 1985), (G)ARCH of Engle (1982) and Bollerslev (1986), Markov
switching AR of Hamilton (1989), SWARCH of Hamilton and Susmel (1994)
and, additionally, a new model with Markov switching in GARCH. Gray
(1996) found that his GRS model outperforms the other models in- and out-
of-sample for short term interest rates. The study of Ahrens (1998) confirmed
these results for the German market.”

Dahlquist and Gray (2000) studied the impact of the European Monetary
System (EMS) on the short-term behavior of interest rates. They found that
the volatility of the interest rates can be assigned to two regimes: regimes of
stable and of high volatility. High volatility occurs when the exchange rate
almost exceeded the boundary of the target zone; which was interpreted by
the authors as a speculative attack on the currency.

One should note that the research conducted on the Markov switching
models on the financial markets focuses mainly on stock and interest rates
models, with only a few studies on other topics. Engel and Hamilton (1990)
implemented the regime shift approach in the USD/DEM, USD/FFR, and
USD/GBP exchange rate. They found that the Turner, Startz, and Nelson
(1989)-like model explains the dynamics of the exchange rates better than
the random walk, which is a good parameterization of the “peso problem”.

Alizadeh and Namikos (2004) studied the use of the Markov switching
models in the stock index futures. They found that the time-varying mini-
mum hedging ratio can be better established by using the Markov switching
model than by using the other models (including GARCH) in the case of
the UK market, both in- and out-of-sample. In the US American case, the

Markov model is superior only in-the-sample.

9To the best of knowledge Ahrens (1998) and Haas (2004) were the only ones who

conducted research on the German financial markets using the hidden Markov approach.

48



Crawford and Fratantoni (2003) conducted a very interesting study on
the real estate prices in several states of North America. After comparing
the ARIMA, GARCH and regime switching models, they concluded that the
hidden Markov models are particularly suitable for explaining the historical
dynamics of real estate prices. However, the out-of-sample forecasting was
better for the ARIMA models, linked perhaps to the small sample of data
the authors used. Additionally, the regime switching models were reliable
concerning the prediction of the turning points of the market, which have
practical relevance for real estate fund managers.

Recently, the Markov switching models have been implemented in insur-
ance. For instance Yin, Liu, and Yang (2006) developed a Markov switching
model which determines the limit of ultimate survival probabilities and ul-
timate ruin probabilities. Additionally, Yang and Yin (2004) formulated a

model of the insurance surplus process within the Markov switching scheme.

2.6 Finite mixture distributions

2.6.1 Definition of finite mixture distribution

A finite mixture distribution model was first used in astronomy by Pearson
(1894), who used a mixture of two univariate normal distributions with un-
equal mean and variance parameters. For mixtures of other distribution fam-
ilies, compare, for instance, Feller (1943) (for Poisson distribution), Barndorf-
Nielsen (1978) and Shaked (1980) (for exponential distribution) among oth-
ers. Since then, Pearson’s approach has found very wide applications in
modern science. It is inter alia applied in biology, physics, marketing (Rossi,
Allenby, and McCulloch 2005), public health (Spiegelhalter, Abrams, and

Myles 2003) and, in particular, in finance. For modern finance theory, mix-

49



ture distributions offer a way of dealing with some of stylized facts mentioned
in Section 2.1. The following discussion will focus on the finite mixture of
normal distributions.

It is common to assume that the log-returns of financial time series are
drawn from the normal distribution N(u,c?). However, as discussed in Sec-
tion 2.1, this assumption is not confirmed by observation on the financial
markets. Supposing now that the realization y of the random variable Y is
drawn not from a single, but from one of a finite number of distributions
), foly), ..., fr(y), where f;(y) (j=1,...,K) is a density function. Con-

sequently, the Y is drawn from a mizture of distributions f;(Y).

Definition 2.56 (Mixture of distributions) Let (2, F,P) be a probabil-
ity space, let'Y be a random variable and let IC be a state space. Additionally,
let vector m = (m;)icxc be a probability distribution and let f;(y) be a probability
density function (i € KC). If

fy) =mfily) +mafoly) + ..., (2.54)

then'Y follows a mizture distribution. The density functions fi(y) are called
component densities, 7; is called weight and the vector m is called a weight
distribution. If the state space is a finite set, the mixture distribution is called

a finite mizture distribution (Frihwirth-Schnatter 2006, p. 3-4).

Note that the vector m is a stochastic vector, thus the weights are all

positive and sum up to unity

dm=1 0<m<1(j=1,... K) (2.55)
jex
and they could be interpreted as probabilities that the observation y comes

from a particular density p;(y). For instance, if one would like to create
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a model for returns of a stock, one component density may represent the
bull market time and another one the bear market time. In most practically
relevant cases it cannot be said which component the particular observation
was drawn from. For instance, it cannot be observed which state (e.g. the
bull or the bear market) the market is in. For this reason, let us assume
that the market state is represented by an additional random variable, the

so-called state variable Z.

Definition 2.57 (State variable) Let (Q2,F,P) be a probability space, let
Z be a random variable, let KC be a state space and let vector m = (})jexc be a
probability distribution. If the random variable Z has the following probability
distribution

1 with probability m

2 with probability mo
=9 : (2.56)

\ K with probability my

then it is called a state variable.

2.6.2 Moments of mixed-normal process

Theorem 2.58 (Moments of the finite mixture of normals) Assume that
the random variable Y follows a finite mizture of normal distributions, then

its mean is equal to
K
Y] =) mu, (2.57)
j=1

its variance is equal to
VarlY Z mi(0F + i) — Z ™05+ Z iy — 1), (2.58)
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its skewness 1s equal to
K
> i Ty — )% + 3071 (1 — 1)
(3/2)”
K K
(SiSimio? + S (s — 1)?)

and its excess kurtosis is equal to

VY] =

(2.59)

WY = 2o il — ) +6(p; — p)’of + 12303‘] 3, (2.60)

<Z]K:1 7Tj‘732' + ZJK:1 (1 — H)2>
where pi; = [Y|Z = j| and 05 = VarlY|Z = j] for j =1,..., K (Haas 2004,
p. 13,17,19).

Proof. Let g(Y) be a function of Y with respect to the component density
fwlZ =7) (i =1,...,K). In the expected value E[g(Y)|Z = j] for all
components f(y|Z = j) (j = 1,...,K) the expected value of the mixture

distribution has the form
E[g(Y)] =E[E Z?Ta Y)|Z = j]
(Frihwirth-Schnatter 2006, p. 10). Furthermore
Blg(v)|Z =)= [ o)I6IZ =iy (=L ),
R
Particularly for g(Y') = y the mean equals
K
ElY] = EE[Y|Z]] Z?Ta VIZ=41=> mu

(Haas 2004, p. 17). For moments of the order k& > 2 the function ¢g(Y") takes

the form (Y — p)*. Now it is useful to use the property

my, = E[(Y —a)*] = /oo (v — a)*o(y, p,0%)dy = /oo Yeo(y, p— a,0)dy
- - (2.61)
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(Frithwirth-Schnatter 2006, p. 11). In the discrete case, the equation (2.61)

takes the form

E[(Y —E

e[S £

n n

(z) Ry :i( ) FrRIE[Y ™| Z])

k —-n n
(5)e S mEYIZ - ]
j=1

The variance, then, is equal to

I
3
ESIRT Mw
o

n=0

K
my = Var[Y] =Y m(u] +07) — pi*. (2.62)
j=1

To compute the skewness v[Y] and the excess kurtosis x[Y], the following

two expectations are needed

mg = Z ;( 2+ 303 (uy — 1) (2.63)

my = Z ;5 ( Y4+ 6(u; — p)o; + 30]]. (2.64)

The skewness is then computed using the expectation (2.63) and the property

v = —G%;. The excess kurtosis can be computed from the expectation (2.64)
mg

and the formula for the excess kurtosis k = 4 — 3, which completes the

2

proof. m

2.6.3 Examples of mixture distributions

This Section aims to demonstrate the potential of mixture distributions in
representing a number of different shapes of densities. Figure 2.2 compares
the normal density with a mean of 1 and a standard deviation of v/2 (dashed

line) to several mixtures of two normals (solid lines).
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Let us fix the means of both composite distributions to be equal. If
then their variances are unequal, the mixture will be leptokurtic (see the
solid line in Example 1, Figure 2.2), as it will have more probability mass
around the mean and in the tails than the normal density with the same
unconditional mean and unconditional variance as the mixture (dashed line).
The higher the probability weight ascribed to the high volatility distribution
(i.e. the higher m) the more probability mass is concentrated in the tails
of the mixture. Vice versa, the more weight ascribed to the low volatility
density, the more probability mass is concentrated around the mean of the
mixture. Keeping in mind that the component means were fixed to be equal,
the mixture converges to the normal density if the weight 7 tends to zero
or unity. It can also converge to the normal density independently from the
weight parameter if the variances of composite distribution converge to each
other. If the weight parameter is fixed (e.g. m = %), the tendency of the
mixture being leptokurtic increases with increasing difference between both
component variances.

We now consider the following example of a mixture with equal compo-
nent variances, unequal component means and the parameter 7 = % Exam-
ple 2 in Figure 2.2 showed such a density. As one can see, the mixture is
platykurtic because less probability mass is concentrated around the mean
and in the tails than in the normal density case. Note that the example is
constructed in such a way that the component means are equidistant from
the mean of the mixture density (i.e. g3 = p— 6 and ps = pu + 9), thus
the density is symmetric per construction. The lower the distance of the
component means to the mixture mean (i.e. if 6 — 0), the more the mixture
distribution converges to the normal. If the distance grows, the peak of the

mixture becomes flatter and the tails thinner, as is the case of Example 2,

95



in Figure 2.2. If the distance § exceeds a certain critical point, the mixture
becomes bimodal, as shown in Example 3 of Figure 2.2. In this case, the
mentioned critical delta lies between 1 and 1.1.

So far three symmetric examples of mixture distributions have been dis-
cussed. Let us now focus the attention on some skewed examples. If we
relaxed some of above restrictions, e.g. if in Example 2 the component den-
sities were not equally weighted (i.e. ™ # %), or if the component variances
were unequal, or if the component means were not equidistant from the
mixture mean, then one possible result could be that the mixture density be-
comes skewed. Note, that the inequality of the component means is condicio
sine qua non for asymmetry of a mixture of normals. It is not, however, a
sufficient condition, as can be seen in Examples 2 or 3. Examples 4 and 5
from Figure 2.2 depict instances for a right-skewed and left-skewed density,
respectively. The examples are constructed in such a way that the right-
skewed density is simultaneously platykurtic and the left-skewed density is
leptokurtic, although reverse cases are, of course, also possible. As there are
a number of cases in which the mixture of normals is skewed, a discussion
on the behavior of the mixture conditional on its parameter will be omitted.
Instead, one more example will be given, since — as was the case with the
leptokurtic and left-skewed distributions — this could be very interesting for
statistical description of financial time series.

Example 6 in Figure 2.2 presents a mixture density with an outlier. Note
that both curves, the normal and the mixture density, are almost equal. The
only one difference being that the probability of an extreme event x < —4
occurring is 0.23%o for the normal distribution and 1.01% for the mixture
of normals (the latter being about 43 times more probable), see Section

2.1.1 and Table 2.1. Thus, if real data were distributed as in Example 6, a
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“blind” usage of a normal distribution would ignore the possibility of extreme
events. Due to the fact that the “worst case” scenario in the financial risk
management is of particular interest, the next Section will introduce the

Markov switching regime model - the dynamic version of the mixture model.

2.7 Markov switching model

2.7.1 Definition of Markov switching model

Markov switching models were introduced by Hamilton (1989), who modeled

quarterly GDP growth rate as

Yo = My 1Yz, ) FP2(Ye—2— iz )+ D3 (Yr—3—fhzy_5) T Pa(Ye—a—hizy_) e

(2.65)
with &, ~ N(0,0?). The main idea of the model was that the mean can
“shift” between two states, which can be interpreted as the “normal growth
phase” with a mean p; and “recession” with mean a py (2 < p1). As
the state of the economy is not observable in the real world, it was modeled
with a latent random variable z;. Hamilton proposed modeling the transition

between states as a Markov chain
2
pji =Pr[Z = j|Zy =], with » p; =1, and i€ {1,2}.
j=1

In this thesis a wider definition will be used.

Definition 2.59 (Markov switching process) Let (2, F,P) be a proba-
bility space, let (Zy, ), >0 (where t, = nt, n € N and 7 is a fized positive
number) be a Markov chain with ergodic transition matric P = (pj;)i jex and

state space I = {1,2,..., K}. Furthermore let (Y;):>o0 be a stochastic process
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independent from process (Zy, )i, >0 and let
Y, = T, B +er,, withe, ~ N(0,07), (2.66)

where x; = (1,94, 1, Ys,_,) denotes the vector of lagged exogenous vari-
ables, B = (115, d1(j) - - -, Pr(5)) 8 the vector of auto-regression coefficients if
the state process Zy;, 1is in state j € IC, 0]2- s variance in state Z; = j, and
r € N s the order. The transition probability from past state i into current
state 7 is given by

pji = PrlZ, = j|Z,_, =1i], with i,j€K and Y pi=1  (2.67)

jEK

Consequently the stochastic process (Y;) is called Markov switching process,
or Hidden Markov process, or regime switching process, equivalently. The

matriz P is called the transition matriz.

Notation 2.60 (Markov switching model) Henceforth, the Markov switch-
ing model will be referred to as the MS(m-s)-AR(r) model, where m € {1, K}
denotes the number of B vectors, s € {1, K'} denotes the number of variances

and r € N the order of the auto-regression.

Example 2.61 For ezample MS(1-2)-AR(3) denotes the model

M+ ¢1ytnf1 + ¢2ytn72 + ¢3ytn73 + Etps Et,, ™ N(O7 U%)? Z'f Rty = 1
ytn - )

A+ DYy + G2y + O3Ytn_s + €1y 1, ~ N(0,03), if 2, =2

MS(3-1)-AR(2) denotes the model

p

fi1 + A1) Yty + P21)Ytn_s T Ets €ty ~ N(0,0%), if 2z, =1

Yt =\ H2 + P12)Yt,_, + P22) Yt o + €ty 1, ~ N(O, o?), if 2, =2

\/,Lg + ¢1(3)ytn71 + ¢2(3)ytn72 + 8tn’ é\tn ~ N(O7 02)7 Zf Ztn - 3
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MS(3-3)-AR(1) denotes the model

1+ Qr )Yty t €ty Etn N(O,U%), if 2, =1

Ytu = \ p2 + P12 Ytn_1 T Etny  Ety ™~ N(0,03), if 2, =2 -

\,US + 01 Ytns + Etns €1, ~ N(O, 03), if 2, =3

Remark 2.62 Note that an AR(r) process is a special case of a Markov
switching model MS(m-s)-AR(r) with one state (i.e. m =s =1, K = {1}
and P =1).

Theorem 2.63 Let (Y:)i>0 be a Markov switching process with transition
matriz P and state variable process (Zy, )i, >0. Then the distribution m of the

state variable is unique.

Proof. From Definition 2.57 it follows that the state variable is distributed
by the distribution ® = (Pr[Z;, = i]);ex. According to Definition 2.59, the
transition matrix P = (Pr[Z;, = j|Zi,—1 = i])ijex is ergodic. Thus, as a
result from Theorem 2.35, a unique vector T = P'm exists, which completes

the proof. m

Corollary 2.64 Note that from Theorem 2.36 and Theorem 2.63 it follows

that the stationary distribution of the state variable z is given by

n=(I-P +E)'1, (2.68)
with the special case of
1—pa2
T = 2—p11—p22 (269)
1-p11
2—p11—p22

iof the number of states equals K = 2.
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2.7.2 Special cases of Markov switching models
2.7.2.1 Brownian motion with Markov switching

Let us now consider some special cases of the Markov switching model.

Definition 2.65 (GBM with Markov switching) Let (2, F,P) be a prob-
ability space, let (Zy, ), >0 (where t, = nt, n € N and T is a fized positive
number) be a Markov chain with ergodic transition matriz P and state space
K = {1,2,...,K}. Let (Si)i>0 be a stochastic process and (Wy)i>o be a
Wiener process, with Fy = 0{Z;,S;, W; : t > 0} being an associated filtra-
tion, and p(Z;,) and o(Z;,) being associated processes. Then, for eachn € N
the Ito process
t t
Sy = S, + /to w(Z,,)Sudu + /to 0(Zy)SudWy, fort € [ty,thyr) (2.70)

15 called the geometric Brownian motion with Markov switching.

The geometric Brownian motion with Markov switching has the following

density function.

Theorem 2.66 (Joint density of GBM with Markov switching) Let
(St)e>0 be a geometric Brownian motion with Markov switching and let (Zy, )i, >0
(where t, = nt, n € N and 7 is a fixed positive number) be a Markov chain.
Then the joint conditional density function f(Sy,, Z:,|St, . = S, Zs, , = 1) :
R x K — R of the pair (S;,, Z;,) is given by

f(Stn = .CE, Ztn = j’Stn—l = 8’ Ztn—l = 7’)

2
= $ exp _1 ln% - (:uj - %UJZ-)’T
for x>0 (Webb 2003, p. 19).
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Proof. Let g be a measurable a Borel function. Note that

E[g(stn7 Ztn)‘stnfl - S’ Ztnfl - /L:I
= ZE[Q(Stn7 Ztn)‘Stn—l = S? Ztn—l = /L" Ztn = ]:I X Pr[Ztn = j’Ztn—l = /L:I

JjeK
e ZPJZE |:g <Se(“jféU?)T+U]’(th*th_1)7j>:| '
JjEK

(Wey=We,, )

One has to keep in mind that NG is standard normally distributed

and that the expectation equals

2

1 —z
i se (5 — 20])T+U](th Wy 1)7 > e 2 dz.
So [ o 1) 7

JEK

(=300 Win=Wi 1) | which yields

]
i (x i exp | —— .
L Jy IO g e P |2\ o

By choosing ¢(Sy,, Zi,) = lis,, <s1,2.,—; the proof is completed (Webb 2003,
p. 19-20). m

Now substitute z = se

The geometric Brownian motion with Markov switching has the following

density function.

Theorem 2.67 (Density of GBM with Markov switching) Let (S;)i>0
be a geometric Brownian motion with Markov switching and let (Zy, )i, >0
(where t,, = nt, n € N and 7 is a fized positive number) be a Markov chain,
then the conditional density function f(S,|Si, , = s, %, , =1) : RxK - R

of the pair (Sy,, Z;,) is given by

f(Stn = x‘Stn,1 =S, Ztn71 = Z)

2
Z exp 1 In $ — (p; — %‘732')7
prre \/27r03\/_x 2 oi\T

for x>0 (Webb 2003, p. 20).

Proof. The proof is similar to the proof of Theorem 2.66. m
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2.7.2.2 Vasicek model with Markov switching

The Vasicek process with Markov switching is defined in analogy to the GBM

with Markov switching and takes the following form.

Definition 2.68 (Vasicek with Markov switching) Let (Q,F,P) be a
probability space, let (Zy, )i, >0 (where t, =nt, n € N and 7 is a fized posi-
tive number) be a Markov chain with ergodic transition matriz P and state
space KK = {1,2,..., K}. Let (R¢)i>0 be a stochastic process and (Wy)i>o be
a Wiener process, with Fy = 0{Z, Ry, Wy : t > 0} being an associated filtra-
tion, and (Zy,) and o(Zy,) being associated processes. Then for eachn € N
the Ito process

t

Rt = Rto +/tQ[M(Zu) - Ru]du—i-/ O'(Zu)qu, fOT’ te [tnatn—i—l) (271)

to to

15 called the Vasicek process with Markov switching.

In Section 2.4.2 we have shown how to discretize the Vasicek model to an
AR(1) model. Analogously, the Vasi¢ek process with Markov switching can
be descretized to a an AR(1) model with Markov switching:

Ry, = c(Z, = j) + ¢(Z, = j)Re,_, + ¢,
o(Zy, =j)?

~ N[0, T T (1 — e 2Zw=0)) ) (2,72

" ( 20 = ) )
K

pji =Pr(Zy, =jlZi,_, =i, 0<pu;<1l, Y pi=1 Vij=1. K,
j=1

(2.73)
with constants ¢(Z,, = j) = u(Z;, = j)(1 — e~*%w=7)) and autoregressive

coefficients ¢(Z,, = j) = e~*?==7) (Hamilton 1990, p. 43).
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2.8 Estimation of the Markov switching model

2.8.1 Log-likelihood function

The Markov switching model can be estimated with the maximum likelihood
estimation (MLE) method.

The estimation of parameters of the model with MLE relies on the maxi-
mization of the log-likelihood function. The parameters are estimated if the
first derivative (gradient) of the log-likelihood function is equal to a vector
of 0s

040)

— =0. 2.74
50 (2.74)

Thus, one has to determine the log-likelihood function:

AY;0) =1In(f;0)
T K K
= Z In (Z Z f(ytn|Ztn =J Ztn71 =1, @tnfl) Pr[Ztn =7, Ztn—l =1, %n1]>

th=1 j=1 i=1

(2.75)

(Kim and Nelson 1999, p. 65). The first term on the right-hand side is given
by

f(ytn’Ztn = ja Ztn—l = i? @tn—l)

1

1 ’ / - /
~ Rrde(s,) 2 P {_E(ytn — . B,) (%) (ys, — wtnﬁtn)}

(2.76)

and the second term is the joint distribution of z;, and 2, ,.
Unfortunately, the state variable Z cannot be observed. Thus, the clas-
sical version of the MLE algorithm cannot be applied. Instead, Hamilton

(1989) proposed using the EM algorithm. In Section 2.8.3 we introduce it,
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but first we will discuss how to deal with the problem of estimating the latent

state variable Z.

2.8.2 Inference about the unobservable state variable

2.8.2.1 Filter of Hamilton (1989)

Hamilton (1989) proposed inferring joint probabilities Pr[z;,, 2, ,] from in-

formation contained in the observed history %, = {ys,, Yty - -, Ut }-

Algorithm 2.69 (Filter of Hamilton 1989)

F1. At the beginning of period t,,, compute for all i,7 =1,..., K the joint
probability given for the past information set %, : Pr(Z, =4, 7Z; , =
i|%;. || from filtered probabilities Pr[Z, , = i|%;, ]

Pr(Z, =4, %, . =i|%, .| =Pr[Z,, _, =i|%, | Pr[Z, = j|Z,_, = 1],

(2.77)
where Pr[Z,, = j|Z,,_, = i] denotes the transition probability from
equation (2.67) and filtered probabilities Pr|Z,, , = i|%;, ] are given

from the previous iteration t,_1 from step F4.

F2. Compute the marginal density

K
f(ytn‘gtnﬂ) = ZZ f(ytnv Zt, =3y 2ty = i%, )
j=1 i=1
K K
. : 2.78
= Z f(ytn‘Ztn = -]’ Ztn—l = /L’ %n—l) ( )
j=1 i=1

X Pr[Ztn = j? Ztn—l = /L‘@tn—l]

F3. Now the information included in the present observation y, can be

taken into account. Compute
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Pr[Ztn = j7 Ztnfl = Z‘%n] = Pr[Ztn = j? Ztnfl - Z|ytn7 @tnfl]

_ f(Ztn = j7 Ztnfl = i? ytn|@tn—l)
f(ytn’%n—l)
f(ytn|Ztn = j? Ztnfl - 7:7 @tnfl) Pr[Ztn = j7 Ztnfl = Z‘%nfl]

ZJI(::[ Z’fil f(ytn|Ztn - j? Ztnfl - 7:7 @tnfl) Pr[Ztn = j7 Ztnfl = Z‘%nfl]
(2.79)

foralli,7=1,..., K.

FJ. Lastly, for all j =1,..., K compute the filtered unconditional probabil-
ity, which will be the input for the next iteration t, 1 (step F1)

K
Pr(Z, = jl%,) =) PrlZ, =j.Z, , =il%,). (2.80)
i=1
F5. Repeat steps F1-FJ for all observations t,, = t1,ts,...,T.
As input for the first iteration (in ty), use the stationary probabilities
from equation (2.68) as the filtered probabilities Pr[Z;,|%;,] (Kim and
Nelson 1999, p. 66-68).

2.8.2.2 Smoother of Kim (1994)

The filtered joint probabilities Pr|z, , z:, ,|#,] are based on all information
available until time ¢, (i.e., ¥,..., ¥, ), but not on the information of the
full sample (i.e., yi,,,,--.,yr). The full information set %7 can be used by
smoothing the probabilities. The smoothing algorithm of Kim (1994)'° gives
the following inferences of the probabilities based on the whole information

set %,

10Which is an improvement of the smoother proposed by Hamilton (1989) and Lam
(1990).
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Algorithm 2.70 (Smoother of Kim 1994)

S1. At time t,, compute for all j,k = 1,..., K the joint probabilities that
the model is in the j-th state in current period (Z;, = j) and in the

k-th state in the next period (Z;, , = k) given the whole information
set %y

Pr[Ztn = j? Ztn+1 = k|%]
= Pr[Ztn+1 = k’%] X Pr[Ztn = j’Ztn+l = k? %]

=Pr(Z,,,, = k|%] x Pr(Z,, = j|Zy,., = k. %]
Pr[Z,,,, = K|%4] x Pr[Z,, = j. Zu,., = k%]
Pr(Z,.., =k|%,]
Pr(Z,, ., = k|%7] x Pr[Z,, = j|%,] x Pr(Z,,,, = k|Z;, = j]
Pr[Z:, ., = k|%,]

(2.81)

whereas Pr[Z, . = k|%7]| was determined in the previous iteration (step
S2) at time t,41, Pr[Z,, = j|%,,] and Pr[Z,, , = k|#,,] are the filtered
probabilities from equation (2.80) (step F4), and Pr(Z,, ., = k|Z;, = j]
is the transition probability from equation (2.67).

S2. Now compute the smoothed unconditional probability for allj =1,..., K
which will be the input for the next iteration t,1 (step S1)

=

Pr(Z,, = j|%7) = Pr(Z, =j. Z,., = k%] (2.82)
k=1

S3. Iterate steps S1-S2 backwards for t, =T —1,...,1 (Kim and Nelson
1999, p. 68-70).

The difference between filtered and smoothed probabilities is depicted
in Figure 2.3. It is straightforward to see that the filtered probability curve
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Figure 2.3: Filtered and smoothed probabilities: REXP(0%)-DAX30(100%)
- MS(1-2)

- - = flitered prob.
smoothed prob.

00 0.0 02 03 04 05 06 07 08 09 1

'y, "
1976 1980 1984 1988 1992 1996 zo000 2004

Note:

The dashed line depicts the filtered probabilities Pr[Z;, = 1|%; ] and the solid line the
smoothed probabilities Pr[Z;, = 1|%7] for the low volatility regime. These probabilities
are a product of the EM algorithm; produced by estimating the MS(1-2) model for the
DAX30 log-returns.

(dashed line) has a more irregular shape than the smoothed probability curve
(solid line). The reason is that to estimate smoothed probabilities one uses
more information, i.e. the whole information set %4, than to estimate filtered
probabilities, i.e., only information %, available up to the estimation time

point t,.

2.8.3 EM Algorithm

Having shown how to compute probabilities of the unobserved state variable,
we can now describe the EM algorithm introduced by Dempster, Laird, and
Rubin (1977) to estimate parameters of time series with unobserved variables
(or missing observations). The EM algorithm consists of two steps which are
repeated until the estimated parameter vector 0 converges to the maximum
likelihood estimator MLE

lim 0 = 0,15. (2.83)

l—o0

Expectation step Establishment of expected realizations of unobserved
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variable 27, = {Z, 1, Zt,1, - - -, 21y} conditional on the estimated pa-

rameter vector 91_1 from the last iteration [ — 1.

Maximization step Maximizing the log-likelihood function with respect
to parameters of the model (8;) gives the expected realizations of the

unobserved state variable Z (D@/fT\l) obtained from the expectation step.

Now the particular version of the EM algorithm developed by Hamilton
(1990) — for a general case of an r-dimensional MS model of the Kth order

z', B

gy =| - | ten, withe, ~ N(0,Q)), (2.84)
., Br;

pji = Pr|Z,, = j|Z;, , =i], with 4,j €K and iji =1, (2.8)

jek
where z}, = (1,91, 4,1, ,, ) denotes the vector of lagged exogenous
variables, (3} ; = (45 Pr1(j)s - - - » Phpi(s)) 1s the vector of auto-regression coef-

ficients if the state process Z;, is in state j € IC, €); is the variance matrix in
state Z;, = j, and py € N is the order of the k-th dimension (k=1,...,7) —

can be introduced:
Algorithm 2.71 (EM algorithm for the MS models)

EM1. Expectation step

EM1.1. Compute the filtered probabilities as in F1-F5 fort, =ti,ts,...,T.

EM1.2. Compute the smoothed probabilities as in S1-S3, for t, = T —
1,... 1.
For the first iteration | = 1 take the arbitrary initial guesses of the
parameter vector 0o. For all the following iterations | = 2,... use

the output of the maximization step EM2 as the parameter vector

0,_1.
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EM2. Maximaization step

EM2.1. Compute the transition probabilities'!

4 . . R
Zg;l:Q-‘—pmam Pr[Ztn:%Ztn,1:Z|%§9l—1]
Zzn:2+Pmaz Pr [Ztn—l :i‘%;olfl]

ifi=1,....,K —1,

Pji = i=1,....K
1= 20 fi=K i=1,.. . K.
(2.86)
EM2.2. for each dimension k (k=1,...,r) compute the betas
T -1
B = ( > meay,, PriZ, = |9 911])
tn=14+pmaz
T (2.87)
x ( > @Y, PrlZi, = 1% 01_1]>
tn=14+pmax
ifmp =K and pp > 1 or
1 l ZZ;ZI“Fpmaz yk,tny;ﬁtn Pr |:Ztn - j‘%) él—l:|
Brj = ;= - —— (2.88)
Ztn:1+pmam Pr |:Zt7l = ]|%7 01_1i|
ifmp =K andp, =1 or
K T ) ~1
=33 mt miz, = o)
Jj=1 tn:1+p7;am (289)
X ( Z wk,tny;{l,tn Pr[Z,, :j‘gﬂél—ﬂ)
tn:1+pmaz
ifmp=1and pp > 1 or
l ! = Zi=1+pmm Ytn Yot VT2, = J1%r; 9171]
Bi=m=>)_ (2.90)

j=1 T — Pmazx

HUsually, for K=2 probabilities p}; and pl, are computed instead of p{; and p!,. The

computation of p,; =1 —p}, and p', = 1 — pb, is thus enabled.

69



if mp =1 and pr, = 1. Where my, indicates whether the beta vector
is dependent on the regime (my = K ) or not (my = 1), py. denotes
the order of the AR(py)-process in the k-th dimension, and ppa.

the highest order among all dimensions.

EM2.3. Compute the variances

T _ _ . -
Ztn:1+pmaz (Y, — 55," 1)(ytn - Eén 1), Pr [Ztn = j|%r; 0171]

QL
ZZ:L:l“l‘pmam Pr |:Ztn = j‘%’ 0l_1:|
(2.91)
for s =K or
o Zi:l-{—pmam Zf:l(ytn - 55:1)(%” - 55,:1)/ Pr [Ztn = j|%r; 91—1

T — Pmaz
(2.92)

for s = 1. Where s indicates whether the variance matrix is de-
pendent on the regime (s = K) or not (s = 1) (Hamilton 1990,

section 4).

2.9 Empirical results of the MS

2.9.1 DAX-REXP portfolios

At the end of this Chapter, several Markov switching models will be esti-
mated. For this purpose, 13 portfolios were constructed. All portfolios con-
sist of German bonds and stocks. As the proxy for stocks the German Stock
Index (DAX30) — a German blue chip index — was used. The bond portfolio
was proxied with the German Bond Performance Index (REXP) — a synthetic
index for German state bonds. The portfolios were constructed as follows.

It was assumed that on 31/12/1974 DEM 195.58 (= €100) was invested in
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such a way that % of the sum was invested in the REXP index and (100-
x)% in the DAX30 index (with z=0,10,20,25,30,40,50,60,70,75,80,90,100).
The portfolios were held until 31/12/2004 and then sold. From the value of
the portfolios, monthly log-returns were computed and the MS models were

estimated.

2.9.2 Description of the estimation

For all thirteen portfolios six Markov switching models of the second order
were estimated: the heteroskedastic models with regime independent mean
equation (i.e. MS(1-2)-type models), homoskedastic models with regime
dependent mean equation (i.e. MS(2-1)-type models), and heteroskedas-
tic models with regime dependent mean equation (i.e. MS(2-2)-type mod-
els). For all cases, a variant with and without the auto-regression term was
estimated. Additionally, the geometric Brownian motion (GBM) and au-
toregressive model of the first order (AR(1)) were estimated for comparison.
The linear models were estimated with the maximum likelihood estimation
method. The Markov switching models were estimated using the EM al-
gorithm described in Section 2.8.3. As the EM algorithm does not ensure
that the estimated parameter vector lies on the global maximum, the esti-
mation was repeated 200 times for each estimated model and time series.
This approach was used inter alia by Rydén, Terisvirta, and Asbrink (1998).
The initial guess was randomly drawn from the distribution U(a,b), where
U(-,-) denotes a uniform distribution over the (a,b) interval. The mean pa-
rameters f; were drawn from U(—3]i, 3]i), the variance parameters o were
drawn from U(0,95?), the auto-regression parameters ¢;(;) were drawn from
U(—1,1) and the transition probabilities p;; were drawn from U(0.5, 1), where

7i and 02 denote the empirical mean and variance of the estimated sample,

71



respectively. In each estimation iteration, it was tested whether the proba-
bility parameters p;; € [0.0001,0.9999] and whether the variance parameters
07 > 107" to prevent a collapse of the algorithm. If one of these two bound-
ary restrictions was violated, the value of the parameter was set to be equal to
the boundary condition. Each EM algorithm was iterated until the increase
of the log-likelihood function fell short of 1078, After running the EM algo-
rithm 200 times the results were controlled for anomalies. The behavior of
smoothed probabilities was tested in particular. If, for the entire sample, the
estimated smoothed probabilities were equal to 1 for a particular state (i.e.
it Pr(Z,, = j|%r] =1, Vt=1,...,T, 3 j € K) the estimation parameter
was rejected, due to the over-parametrization.!? Then, from the remaining
estimation runs, the one with the highest log-likelihood function was chosen
as being the closest to the true parameter vector.

The procedure was repeated for the models with the restriction p;; =

1 — poo, as this was required for the tests, see Section 3.4.2.

2.9.3 Estimation results

Tables B.1-B.13 from Appendix B show results of the estimation for all thir-
teen portfolios.

The parameters were ordered in two states. In the case, of heteroskedas-
tic models, the first state was defined as the “low volatility” state and the
second state was defined as the “high volatility” state (i.e. 0? < ¢2). In the

homoskedastic case the first state was defined as the “high mean” state and

12This means that the state variable was with certainty in one state through the whale
sample. Thus, the algorithm yielded an arithmetic Brownian motion (or Vasi¢ek model)
without Markov switching and with redundant parameters from the second regime and a

redundant transition matrix.
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Table 2.2: Significance of the MS parameter (1.1975-12.2004)

MS(1-1) MS(1-2) MS(2-1) MS(2-2)
GBM AR(1) | AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
0%  100% | ++ T+ T+ i
0% 90% | ++ ++ + +
20%  80% | ++ ++ + +
2% 5% | ++ ++ ++ +
30%  70% | ++ ++ + +
0%  60% | ++ ++ +
50%  50% | ++ ++ +
60%  40% | ++ ++ +
0%  30% | ++ ++ +
5% 25% | ++ ++ ++
80%  20% | ++ ++ ++
90%  10% | ++ ++ ++ ++ +
100% 0% ++ ++ ++ ++ +

Note:

MS(m-s) stands for a Markov switching model with m mean equations and s regimes
for the variance. GBM denotes no auto-regression in the mean equation(s) and AR(1)
an auto-regression of first order in each mean equation. ++ signifies that all parameters
are significantly different from zero at minimum 5% significance level, + denotes that all
parameters are significantly different from zero at minimum 5% significance level, excluding
the po. These models are treated as fully significant models with parameter ps = 0.

the second state as the “low mean” state (i.e. p; > po). In the case of the
MS(2-2)-type models, the second state is almost always not only “high vari-
ance” state but also “low mean”. The only exceptions were portfolios with
a 75% and 80% bond proportion, where the second state is a “high mean”,
“high variance” state.

Table 2.2 shows in which models and in which portfolios all parameters are
different from zero at the 5% significance level (the two-side t-test was used).
This holds true for the GBM model and the MS(1-2) model for all portfolios.
For the AR(1) and MS(1-2)-AR(1), all parameters are significantely different
from zero in two cases: for the portfolio with a 90% bond proportion and for
the pure bond portfolio. For the MS(2-1) model, parameters are non zero for
all portfolios with a maximum of 30% stock engagement. For the MS(2-2)

model, the parameters are significantly different from zero for a 75% and an
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Table 2.3: Time intervals with a high volatility state for the MS(1-2) model

Portfolio composition Periods with a high volatility regime
REXP DAX30
0% 100% 01/1975-07/1975, 05/1985-03/1988, 10/1989-10/1990, 06/1997-11/2003
10% 90% 01/1975-07/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
20% 80% 01/1975-07/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
25% 75% 01/1975-06/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
30% 70% 01/1975-06/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
140% 60% 01/1975-05/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
50% 50% 01/1975-05/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-09/2003
60% 40% 01/1975-05/1975, 03/1980-04/1980, 02/1983-05/1983, 05/1985-03/1988, 10/1989-12/1990,
12/1993-01/1994, 05/1997-04/2000, 11,/2000-07/2003
70% 30% 01/1975-07/1975, 09/1979-07/1981, 11/1982-08/1983, 05/1985-04/1988, 09/1989-03,/1991,
06,/1993-09/1994, 05/1997-04/2000, 01/2001-07,/2003
75% 25% 01/1975-05/1977, 01/1979-12/2003
80% 20% 01/1975-05/1977, 01/1979-08/2003
90% 10% 01/1975-02/1975, 08/1979-03/1983, 11/1989-10/1990
100% 0% 10/1979-11/1982
Note:

The table shows periods in which the MS(1-2) model features a high volatility state (i.e.
periods with the smoothed probability Pr[Z;, = 2|%7] > 0.5).

80% bond portfolio. For the MS(2-1)-AR(1) and the MS(2-2)-AR(1) models,
there are no portfolios with all parameters significantly different from zero.

If one relaxes the assumption that all parameters have to be different
from zero and allows one of the states to have a zero intercept, then by
all portfolios pass this test for the MS(2-2) model and, obviously, for all
the other cases mentioned above. This is a plausible assumption. Merely
testing if one of the other parameters equals zero does not make sense. If
the auto-regression parameter is zero, than the auto-regression model should
be rejected. Likewise, if the variance or one of the transition probabilities
equals zero, then the estimations constraints (see Section 2.9.2) have been
violated and this model should also be rejected. Quite contrary to the case
with one intercept that equals zero, which makes economic sense: It can be
interpreted, that in one state the value of the portfolio grows (or falls) and
in the second state, it is expected to stay unchanged.

Figures C.1-C.13 from Appendix C show in which state the price process
was in the period from 1975-2004. A first glance at the figures shows, that
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Table 2.4: Time intervals with a high volatility state for the MS(1-2)-AR(1)

model
Portfolio composition Periods with a high volatility regime
REXP DAX30
0% 100% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
10% 90% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
20% 80% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
25% 75% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
30% 70% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
40% 60% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
50% 50% 05/1985-03/1988, 10/1989-12/1990, 06/1997-09/2003
60% 40% 03/1980-04/1980, 06/1985-03/1988, 10/1989-12/1990, 05/1997-04/2000, 11/2000-07/2003
70% 30% 02/1975, 10/1979-07/1981, 12/1982-07/1983, 05/1985-04/1988, 09/1989-03/1991,
07/1993-09/1994, 05/1997-04/2000, 01/2001-07/2003
75% 25% 02/1975-05/1977, 01/1979-12/2003
80% 20% 02/1975-05/1977, 01/1979-08/2003
90% 10% 09/1979-05/1983, 11/1989-11/1990
100% 0% 10/1979-10/1982
Note:

The table shows periods in which the MS(1-2)-AR(1) model features a high volatility state
(i.e. periods with the smoothed probability Pr[Z;, = 2|%7] > 0.5).

the MS(1-2), MS(1-2)-AR(1), MS(2-2), and MS(2-2)-AR(1) models behave
similarly for all portfolios. For portfolios with a bond proportion between
0% and 50%, the high volatility regime (i.e. periods with the smoothed
probability Pr[Z;, = 2|%7] > 0.5) occurs almost in the same periods. The
MS(1-2) and the MS(2-2) model feature the second state at the begining of
1975. The high volatility period lasts from the begining of the year until
February or March, in the case of the MS(2-2) model, or until May, June or
July in the case of the MS(1-2) model (see Tables 2.3 and 2.5 for details).
All heteroscedastic models feature the high voaltility state from mid-1985 to
March 1988, from October 1989 to the end of 1990, and from June 1997 to
mid/end 2003 (see Tables 2.3-2.6 for details). It is straightforward to see
that these periods cover the naked-eye-observation of the DAX30 time series
made in Section 2.1.2. This shows that portfolios mentioned are dominated
by the stock price effects.

For portfolios with a 60% and a 70% bond proportion, there are more

(mostly short) periods with a high volatility state. These are periods that
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Table 2.5: Time intervals with a high volatility state for the MS(2-2) model

Portfolio composition Periods with a high volatility regime
REXP DAX30
0% 100% 01/1975-02/1975, 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003
10% 90% 01/1975-02/1975, 06/1985-3/1988, 10/1989-10/1990, 06/1997-10/2003
20% 80% 01/1975-03/1975, 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003
25% 75% 01/1975-03/1975, 06/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
30% 70% 01/1975-03/1975, 06/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
140% 60% 01/1975-03/1975, 07/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
50% 50% 01/1975-03/1975, 07/1985-03/1988, 10/1989-11/1990, 06/1997-07/2003
60% 40% 01/1975-03/1975, 03/1980-04/1980, 08/1985-03/1987, 05/1987-03/1988, 10/1989-11,/1990,
06,/1997-04,/2000, 11,/2000-06/2003
70% 30% 01/1975-05/1975, 04/1979-07/1981, 02/1983-06/1983, 08/1985-04/1988, 09/1989-02/1991,
10/1993-09/1994, 06/1997-06/2003
75% 25% 01/1975-05/1977, 02/1979-01/2004
80% 20% 01/1975-05/1977, 02/1979-10/2003
90% 10% 01/1975, 05/1979-12/1981, 10/1989-10/1990
100% 0% 10/1979-10/1982
Note:

The table shows periods in which the MS(2-2) model features a high volatility state (i.e.
periods with the smoothed probability Pr[Z;, = 2|%7] > 0.5).

occurred from January to June 1975, from May 1979 to June 1981, from
November 1982 to June 1983, from May 1985 to April 1988, from Septem-
ber 1989 to February 1991, from June 1993 to September 1994, and from
May 1997 to September 2003' (see Tables 2.3-2.6 for details). This would
mean that the bond effect has begun to influence the behavior of the mixed
portfolios.

For the portfolio with a 75% and an 80% bond proportion, the picture
changes entirely. There are two very long intervals with a high volatility. The
first period lasts from the beginning of 1975 to May or June 1977. Afterwards
it occurs about one and a half year with low volatility and a very long period
with high volatility from the beginning of 1979 to the end of 2003 or the
beginning of 2004 (see Tables 2.3-2.6 for details). For the MS(2-2) and the
MS(2-2)-AR(1) models, the second state features not only high volatility but

also a high mean, which differs from all other portfolios (see Tables B.10 and

3The periods gives the minimum and the maximum of the intervals, for particular

portfolios and models they can be shorter, or even disappear.
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Table 2.6: Time intervals with a high volatility state for the MS(2-2)-AR(1)

model

Portfolio composition Periods with a high volatility regime
REXP DAX30
0% 100% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003
10% 90% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003
20% 80% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003
25% 75% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003
30% 70% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003
40% 60% 07/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003
50% 50% 07/1985-03/1988, 10/1989-11/1990, 06/1997-08/2003
60% 40% 03/1980-04/1980, 10/1985-03/1988, 10/1989-11/1990, 06/1997-06/2003
70% 30% 05/1979-07/1981, 05/1983, 02/1986-04/1988, 09/1989-02/1991, 11/1993-09/1994,
06/1997-05/2003
75% 25% 02/1975-06/1977, 04/1979-12/2003
80% 20% 02/1975-06/1977, 04/1979-09/2003
90% 10% 10/1979-04/1980, 12/1980-07/1981, 05/1983-06/1983, 05/1986-09/1986, 07/1987-09/1987,
12/1989-10/1990, 02/1994, 08/1997-10/1997, 02/1999-06/1999
100% 0% 01/1980-04/1980, 01/1981-07/1981, 08/1987, 01/1990-04/1990
Note:

The table shows periods in which the MS(2-2)-AR(1) model features a high volatility state
(i.e. periods with the smoothed probability Pr[Z;, = 2|%7] > 0.5).

B.11).

The portfolio with a 90% bond proportion, the MS(1-2), the MS(1-2)-
AR(1), and the MS(2-2) model feature similar effects. The high volatil-
ity periods occur in early 1975 (this does not apply to the MS(2-1)-AR(1)
model), from May 1979 to June 1983, and from November 1989 to November
1990. The MS(2-2)-AR(1) model yields slightly different results, as it fea-
tures a larger number of high volatility periods than the other heteroskedastic
models. These periods are: from October 1979 to April 1980, from Decem-
ber 1980 to July 1981, from May to June 1983, from May to September
1986, from July to September 1987, from December 1989 to October 1990,
in February 1994, from August to October 1997 and from February to June
1999 (see Tables 2.3-2.6 for details).

The pure bond portfolio features a similar effect. However, the number of

high volatility periods is in this case smaller than in the 90% bond portfolio
case. For the MS(1-2), the MS(1-2)-AR(1), and the MS(2-2) model, there is

77



only one period with a high volatility: from October 1979 to November 1982.
For the MS(2-2)-AR(1) model, there are four short high volatility periods:
from January to April 1980, from January to July 1981, in August 1987, and
from January to April 1994.

The MS(2-1) model features only several months with the second regime
which is defined as the low mean regime. These are months with extremely
negative log-returns. The MS(2-1)-AR(1) model behaves similarly for the
portfolios with a bond proportion ranging from 0% to 70%. For portfolios
with a bond proportion from 75% to 100% there are a number of months
with a low mean regime, which are separated by short- and mid-long periods
of the high mean periods.

Figures D.1-D.39 from Appendix D show four moments conditional on
the smoothed probability Pr[Z;,|#7] for all 13 estimated portfolios and for
the MS(1-2), the MS(2-1), and the MS(2-2) model.'* The conditional mean
is equal to the unconditional mean in the case of the MS(1-2) model, as the
mean parameter is independent from the regime. For the MS(2-2) model,
the conditional mean varies from p(Z;, = 1) to u(Z,, = 2) in the way that it
is close to the first state mean in the first state, and close to the second state
mean in the second state. There are some periods in which the conditional
mean differs significantly from its bounds (i.e. pu(Z;, = 1) and u(Z;, = 2))
which are mostly (but not necessarily) associated with the points of the
regime change. In the case of the MS(2-1) model, the conditional mean is
mostly positive and close to its upper bound equal to the u(Z;,, = 1) > 0.
There are a few observations of the conditional mean that are negatively laid

out, which are associated with the extremely negative log-returns.

4The conditional moments were computed according to formulas (2.57)-(2.60) with

Pr[Z:, = j|%r] replacing 7; (j € K).
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For the MS(1-2) and the MS(2-2) model, the conditional variance varies
between the 0?(Z;, = 1) (as the lower bound) and o%(Z;, = 2) (as the upper
bound). The conditional variance usually stays near its bound during the
sojourn in the particular regime. The deviation from the state variance is
usually (but not necessarily) associated with the regime change. For the
MS(2-1) model, the conditional variance usually stays near its lower bound
0%(Z;, = 1). One should also note that the conditional variance jumps to a
significantly higher level for the short periods of one or two months which is
always associated to the high deviation of the log-return from its mean. This
effect is stronger for negative outliers.

The conditional skewness is constant and positive for the MS(1-2) model.
In the case of the MS(2-2) model, the conditional skewness is always non-
negative and varies between two bounds. Concerning the MS(2-1) model,
the conditional skewness is generally near zero. For short periods, it jumps
to high (negative or positive) values but reverts back to zero quickly. How-
ever, the positive jumps are rather uncommon and occur almost only if the
log-return process is in the low mean regime. The frequency and sojourn of
negative jumps increase proportionally with the increase of the bond propor-
tion in the portfolio.

The conditional excess kurtosis behaves similarly for the MS(1-2) and
MS(2-2) model. For both models it is strongly negatively correlated with the
conditional skewness of the MS(2-2) model (the exception being a 75% and
an 80% bond portfolio, where they are strongly positively correlated). This
means that if the conditional skewness for the the MS(2-2) model falls, the
conditional excess kurtosis for the MS(1-2) and the MS(2-2) model rises and
vice versa (for a 75% and an 80% bond portfolio the conditional skewness of

the MS(2-2) model and the conditional excess kurtosis for the MS(1-2) and
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MS(2-2) model change in the same direction). The excess kurtosis is non-
negative and has an lower bound by zero and some upper bound (different
for each portfolio). The conditional excess kurtosis for the MS(2-1) model
is often near zero. For short periods it jumps to high (negative or positive)
values but reverts quickly to zero. However, the negative jumps are rather
uncommon and not necesserily associated with the occurrence of the low
mean regime. The frequency and sojourn of positive jumps increase with
the increase of the bond proportion in the portfolio. The effect of the strong
negative correlation between the conditional skewness and conditional excess

kurtosis is valid for the MS(2-1) model and for all portfolios, as well.
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Chapter 3

Testing Markov switching

models

3.1 Introduction

In Section 2.1 we discussed some stylized facts about the financial time se-
ries. We mentioned there that they are often asymmetric, leptokurtotic, and
heteroscedastic; which implies that they do not follow the normal distribu-
tion. Jarque and Bera (1980) constructed a test with the null hypothesis
that a time series is normally distributed. Table 3.1 shows that for all port-
folios defined in Section 2.9.1 with the exception of the 20%-80% stock-bond
portfolio, the hypothesis of a normal distribution has to be rejected on the
5% confidential level. Therefore, we should use other models to describe the
stochasticity of these time series.

The aim of this Chapter is to test whether the Markov switching model
better describes the rate of returns of German time series than the commonly
used normal distribution. We start with the Akaike and Schwatz Information

tests (Section 3.2) and come to the conclusion that MS models are almost
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Table 3.1: Jarque-Bera test

Stock prop. | 100% 90% 80% 75% 70% 60% 50%
Bond prop. 0% 10% 20% 25% 30% 40% 50%
JB test 189.3726 162.6361 136.8107 124.0592 111.3213 85.6547 59.6324
p value <1074 <1074 <1074 <1074 <107* <10™* <107*
Stock prop. 40% 30% 25% 20% 10% 0%
Bond prop. 60% 70% 75% 80% 90% 100%
JB test 34.2563 13.5356 7.1833 4.3205 13.7683  49.3480
p value <1074 0.0012 0.0276 0.1153 0.0010 < 107*

Note:

The table depicts the results of the Jarque-Bera test JB = % (72 + #) with null

hypothesis of normal distribution. 7' denotes the size, v the skewness, and x the kurtosis
of the sample.

always better than models from the GARCH family and the normal distri-
bution. Thus, in the remainder of the Chapter we omit GARCH models and
test only for the MS model. In Section 3.3 we show that Markov switching
models cannot be tested using standard statistical tests, such as Wald or a
likelihood ratio test. Therefore, we use several special tests for MS models
developed by Hamilton (1996) (Sections 3.4 and 3.5) and Garcia (1998) (Sec-
tion 3.6). In Section 3.7 we conclude that the MS model is superior to all

the other models studied in this Chapter.

3.2 Information criterion tests

As mentioned in the introduction, this work aims to use models with stochas-
tic volatility to price the long-term embedded guarantees. It is therefore de-
sirable to find a model which best fits the heteroscedasticity in the mixed
portfolios of REXP and DAX30.! For this purpose, we estimated several

IFor the construction of the portfolios see Section 2.9.1.
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MS,> ARCH, GARCH, E-ARCH, E-GARCH, T-ARCH, T-GARCH models
with and without auto-regression term. Furthermore, the linear basis mod-
els (i.e. GBM and AR(1), respectively) were estimated, in order to compare
these with more sophisticated models. The MS models were estimated using
the EM algorithm described in Section 2.8.3, the models from the GARCH
family were estimated using the BHHH method (see Bollerslev (1986) or
Berndt et al. (1974)), and the linear models with the MLE approach.

A very common method for comparison of non-nested models is the

Akaike Information Criterion (AIC) introduced by Akaike (1973)
AIC=A40) — F, (3.1)

where Z(6) denotes the log-likelihood function for the parameter vector @
and k the number of estimated parameters. Another useful statistic is the

Schwarz Bayesian Criterion (SBC) introduced by Schwarz (1978)
SBC=-A6) — 0.5k In(T), (3.2)

where T denotes the number of observations used to estimate the model.?
The AIC and SBC statistic for estimated models are listed in Tables F.1-F.13
in the Appendix F.

Table 3.2 shows the ranking of models on the basis of the AIC statistic.

For all portfolios with a minimum stock proportion of 40% the MS(1-2) model

2In the MS family the following models will be tested. The heteroscedastic model with a
regime independent mean equation, i.e. MS(1-2) and MS(1-2)-AR(1); the heteroscedastic
model with regime switching in the mean equation, i.e. MS(2-2) and MS(2-2)-AR(1);
and the homoscedastic model with a regime dependent mean equation, i.e. MS(2-1) and

MS(2-1)-AR(1).
3In the literature there are several specifications of the AIC and SBC test statistics,

which all are equivalent. In this work the definition used by Hardy (2003, p. 62) will be

used.
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is clearly favored over all models from the GARCH family? and models with-
out switching characteristics (e.i. GBM and AR(1)). The portfolio with 70%
bonds and 30% shares is best represented with the T-GARCH(1,1) and the
GARCH(1,1) model. First then the Markov switching models come, with
the MS(1-2) model, as the third best one. It should, however, be pointed
out that the AIC statistic of the MS(1-2) model is only 0.1503 lower than
the AIC statistic of the T-GARCH(1,1) model. This AIC statistic difference
is very low, amounting to less than 0.02%o. After the MS(1-2) model come
the E-GARCH(1,1) and the GBM model. The situation is similar for the
portfolio with the 75%-25% bond-stock proportion, the only difference being
that the E-GARCH(1,1) performs better than the MS(1-2) model.

From the portfolio with an 80% and a larger bond proportion, the mean-
reverting effects are observable. In the 80% bond portfolio, this effect is not
as univocal. In this case, the addition of the auto-regression term to the
model may increase the AIC statistic, as is the case in the MS model family.
However, there are models, such as the GARCH-typed model, in which the
auto-regression term decreases the magnitude of the statistic. Both the E-
GARCH and the T-GARCH model types do not have a clear trends. For in-
stance, the E-GARCH(1,1) model performs better than the E-GARCH(1,1)-
AR(1) but the E-ARCH(1) performs worse than the E-ARCH(1)-AR(1). For
the time series with the 80% bonds and 20% shares, the E-GARCH(1,1) is
the best model. This is followed by the GARCH(1,1), T-GARCH(1,1), and
MS(2-2)AR(1). The worst performer is the AR(1) process, when used as the
reference model. It should be stressed that the difference in the AIC statis-

4This section differentiates between the type of models (i.e. GARCH-typed models are
all ARCH(p) and GARCH(q,p) models) and the family of models (i.e. GARCH family
of models consists of all GARCH-, E-GARCH- and T-GARCH-typed models). Therefore

the family of models is a wider concept than the type of models.
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tic between the E-GARCH(1,1) and the MS(2-2)-AR(1) equals only 0.4125
which is 0.04%0 of the AIC statistic.

The portfolio with a 10% stock proportion is best fitted by the GARCH(1,1)-
AR(1) process. This is followed by both assymetric models - T-GARCH(1,1)-
AR(1) and E-GARCH(1,1)-AR(1) — then comes the MS(1-2)-AR(1) and the
reference model AR(1) in last place. The situation for the pure bond portolio
changes. The Markov switching models with the MS(1-2)-AR(1) model as
representative are, once again, the best performers. Then follow the GARCH
model family (with the auto-regressive term) and, lastly, the AR(1) model.

The SBC statistic gives similar results to those of the AIC statistic (see
Table 3.3). For portfolios with the stock proportion between 50% and 100%
the MS(1-2) model is the best choice. The portfolio with 40% shares is best
fitted with the GARCH(1,1) model. However, the second best model is the
MS(1-2) model, the SBC statistic being only 0.1393 lower (amounting to less
than 0.02%o of the SBC statistic). This is followed by the T-GARCH(1,1),
E-GARCH(1,1), and the reference GBM model. The portfolio with a 30%
share proportion is also best fitted with the GARCH(1,1) model. However,
it is followed by the GBM. Then, listed according to suitability, come the
T-GARCH(1,1), MS(1-2), and E-GARCH(1,1) model, with differences in the
SBC statistic lower than 0.5 points. The situation of the 75%-25% REXP-
DAX30 portfolio is similar. The Markov switching model family, with its
representative MS(1-2) model is the worst performer. In the case of the
portfolio with 20% stock investment, the ranking of model types is identical
to that of the previous portfolio. The difference lies in the fact that the
ARCH(1) is the best of the GARCH-typed models and the T-ARCH(1) pro-
cess the best of the T-GARCH-typed models. Only the best model of the
E-GARCH-typed models features the GARCH coefficient. It should be poin-
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ted out that the SBC statistic decreases with addition of the auto-regression
term for all tested models. There are two exceptions. According to the SBC
test, the mean reversion can be found only in portfolios with a maximum
of 10% of the stock engagement. The 90%-10% REXP-DAX30 portfolio
is best fitted with the GARCH(1,1)-AR(1) model. This is followed by the
T-GARCH(1,1)-AR(1), E-GARCH(1,1)-AR(1), the MS(1-2)-AR(1), and the
AR(1) process. The Markov switching model family performs better for the
pure bond investment portfolio, where its representative MS(1-2)-AR(1) is
the second best after the GARCH(1,1)-AR(1) process. They are followed by
the T-GARCH(1,1)-AR(1) and the E-GARCH(1,1)-AR(1) model. The worst
performer is the reference AR(1) model.

According to Tables 3.2 and 3.3, it can be seen that the portfolios with
very little stock proportion exhibit mean reversion effects. However, it would
be interesting to see what happens if the mean-reverting effects would be dis-
regarded. The AIC statistic for portfolios with a 20% and 10% stock engage-
ment prefers the E-GARCH(1,1) model. It is followed by the GARCH(1,1),
the T-GARCH(1,1), MS(1-2), and the GBM. The SBC statistic for the port-
folio with 10% REXP investment shows similar outcomes. The difference
is that the GARCH(1,1) model is the best one and the E-GARCH(1,1) fol-
lows in second place. Finally, the pure bond strategy is best fitted with the
MS(1-2) model, according to both the AIC and the SBC statistics.

In conclusion, according to the information statistics of Akaike and Schwarz,
the MS(1-2) model describes the stochastic of the mixed REXP-DAX30 port-
folios very well. For the portfolios whose majority is invested in stocks, it
outperforms all estimated models from the GARCH family and the reference
model GBM as well. If the proportion of bonds lies between 60% and 90% the

GARCH model family is a better performer. For the pure bond investment,
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the Markov switching model with its mean reverting variant MS(1-2)-AR(1)
is, once again, the best choice. However, for the cases in which the informa-
tion statistic was higher for the GARCH model family, the difference to the
best MS model was fairly small. As the AIC and the SBC criterion merely
indicate the rank of the model but do not state if the difference is significant,
it will be assumed that MS and GARCH models fit the portfolios with high
bond participation equally well. Therefore the MS models will be preferred
in order to render the pricing consistent.

It is worth mentioning that according to the SBC, the linear GBM model
is better than the MS family but worse than the best model from the GARCH
family for portfolios with a bond ratio between 70% and 80%. This effect did
not appear if the model choice was based on the AIC statistic. As mentioned
above, the SBC statistic gives the rank of the models; it would therefore be
interesting to make a direct comparison between the MS model family and
the linear models. Such tests are discussed in the following sections of this

Chapter.

3.3 Problems with testing of Markov switch-
ing models

As was shown in Section 3.2, the MS models perform better or at least as well
as the GARCH models when fitting the German mixed bond-stock portfolios.
The remaining part of the Chapter will focus explicitly on testing the regime
switching effects in the data. Please note that linear models, (i.e. GBM and
AR(1) are nested in the MS models, as they can be regarded as MS models
with only one regime, i.e. K = 1). When testing the MS model against the

linear model, without loss of generality, one should test one of the following
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null hypotheses
Héla): B1 = B, 0} = 02 with undefined p;; and pog,
or
H(()lb): p11 = 0 with undefined 81, B9, 0%, o3
or
Hélc): p11 = 1 with undefined 8y, B9, 0%, 02
which are equivalent. The H(()la) has the following interpretation. The param-
eters are equal in both states, hence regardless of the value of Z;, the result is

) says that it is irrelevant how high parameters 8,

the same. Hypothesis Hélb
and o? are, thus the time series will never reaches the first state. Hypothesis
H(()lc) claims the same for parameters from the second state, as the models
always remain in the first state.

In literature, a common procedure for testing nested models involves using
one of the large sample asymptotic tests, such as the likelihood ratio (LR),
the Wald or the Lagrange multiplier (LM) test. These tests are based on the
asymptotic distribution theory which says that, under regularity conditions,
in a sufficiently large sample, the estimated parameter vector 0 converges to
the true parameter vector 8y. Through the application of the Taylor’s expan-
sion one finds that the parameter estimator 0 is equal to the sum of the true

parameter y and the score evaluated at the true value (%TO(G)) divided by

the second derivative of the log-likelihood function evaluated at the median

< 92.%Lr(0)
96,0,

). This approach is based on the assumption that the likelihood
function is locally approximately quadratic. This means that the second
derivative is approximately constant. In the next step, the application of the
central limit theorem is allowed, as the scores have a zero mean (for scores
with positive variance). The central limit theorem allows to conclude that

the estimator is asymptotically multivariate normal (Hansen 1992, p. S61).

90



Unfortunately, the MS models violate two crucial assumptions of the
asymptotic distribution theory: the local quadrativeness of the likelihood
function and the assumption of the positive variance of the scores. The like-
lihood function is locally quadratic if it is highly probable that the likelihood
surface is asymptotically quadratic over the region in which both the null
hypothesis and the global optimum lie. In the MS framework, however, (at
least some) transition probabilities are not specified under the null hypothe-
sis. This means that in the optimum, the value of the likelihood function is
equal for all non-specified parameters, if the null hypothesis is true. Thus,
the flatness of the likelihood function is contradictory to the assumption
of its local quadrativness. In other cases, the likelihood function has more
than one maximum, thus the null hypothesis does not necessarily lie on the
same “hill” as the global maximum, which is another violation of the local
quadrativness assumption (Hansen 1992, p. S61-S62).

The assumption of the positive variance of the scores is also violated. As
mentioned above, the likelihood function is flat under the null. This means
that if one intended to test the H(()la), the scores with respect to 81, Bs, 0%
and o3 would all be equal to zero for all possible values of p;; € [0,1]. Addi-
tionally, the likelihood function of the MS models has several local minima,
maxima and flection points. Therefore, its scores equal to zero on these
points per definition (Hansen 1992, p. S62). These zero scores imply that
the information matrix is singular under the null hypothesis (Watson and
Engle 1985, p. 341-342).

Given that two regularity conditions of the asymptotic distribution the-
ory are violated, the theory cannot be used. As a consequence, the test
statistics are not y? distributed, which causes several theoretical problems

with regard to the test statistic (Lee and Chesher 1986, p. 122). Despite the
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issues discussed above, some authors, such as Hardy (2003, p. 60-62), use the

likelihood ratio test, which is very questionable.

3.4 Simple tests

3.4.1 Wald test

As mentioned in Section 3.3 the standard asymptotic tests are not y? dis-
tributed. Engel and Hamilton (1990) propose a method to deal with this
problem. According to their approach, one assumes that under a null hy-
pothesis, transition probabilities are defined in such a way that p;; = 1 — poo
or equivalently Pr[Z; = 1|Z,_, = 1| = Pr[Z; = 1|Z;_, = 2]. This means that
the probability that the observation y; comes from the first state (7, = 1) is
independent from the previous realization of the state variable (i.e. indepen-
dent if Z,_y =1 or Z;_y = 2). Thus the model under the null is reduced to

a mixed model

Héza) Loy = Pu exp {_ (Y —,32/1-%)2] 4 L —pn exp {_ (Y —,32'2-%)2]
\V2mo? 207 V2703 203
(3.3)
or equivalently
Hé%)i pi1 =1 —paa, B1 # B2 and/or 01 # 02
against the alternative
H§2b): pu # 1 —pa
instead of H". The Wald test then has the form
WT — []/9\11 - (1 —@2)]2 = X2(1)7 (3‘4)

var(pi1) + var(pa) + 2¢ov(pi1, Paz)
with var(pi1) and var(pag) — variance of the parameter estimate py; and pyy,
respectively, and cov(Di1,Paa) — covariance of the parameter estimates pi

and P22.
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Another approach suggested by Engel and Hamilton (1990) is to test if
the intercept parameter (1) is independent from the state variable. The null
hypothesis in this case is defined as

H(()3)3 [1 = fi2, O1 7 02, P11, P22 — ot specified
with its associated alternative
HY: ju # po.
The Wald test subsequently takes on the following form

A (L ot ) W St} (3.5)
var () + var(fz) — 2¢cov(fiy, fia)

with var(ji;) and var(fz) — variance of the parameter estimate p; and o,
respectively, and cov(ji1, fi) — covariance of the parameter estimates p; and
H2-

Engel and Hamilton (1990) only test the intercept parameter but it is
also straightforward to test for heteroskedasticity and auto-regression. In
this case, the homoskedastic null hypothesis would be

Hgla): p1 # o, 02 = 03, p11, Paz — Not specified
against the heteroskedastic alternative

H{*): 02 # o}
Subsequently, the Wald test will look as follows

[0t — 73]

WT = 5750 ~ X*(1), (3.6)

var(c?) + var(o3) — 2cov(o?,03
with var(c?) and var(c3) — variance of the parameter estimate o7 and o3,
respectively, and cov(G%,55) — covariance of the parameter estimates o7 and
o3.
The test for auto-regression will have the following hypothesis
HE)S) p1 F fho, 0% # 037 ¢z‘(1) = ¢i(2)a ¢j(1) a ¢j(2), (j Fi, 1,5 =1,... ,7“)7
P11, P22 — not specified

and the alternative
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5
Hg ) ¢¢(1) # ¢i(2),
with ¢;x) the i-lagged auto-regression term in the k-th state. The Wald test

statistic for the auto-regressive term will look as follows

A. f— A- 2 ass
Pzl ey (3.7)
var(giy) +var(dyz)) — 2¢0v(Piy, Pi2))

WT =

with W(ggi(l)) and W(Q/gi(g)) — variance of the parameter estimate ¢;1) and
$i(2), respectively, and c/o\v(g/gi(l), g/gi(g)) — covariance of the parameter estimates
¢i(1) and ¢i(2)-

The results of the Wald test are listed in Tables G.1-G.13 in Appendix
G. Table 3.4 gives an overview of the results. It shows which tests can be
rejected at the 5% confidence level.

Models MS(1-2) and MS(1-2)-AR(1) tested if the transition probability
(H(()%)) and the variance (Hgla)) are not dependent on the state. For all
samples, both null hypotheses can be rejected. Thus, both models can be
used to describe mixed portfolios of REXP and DAX30.

The homoskedastic models MS(2-1) and MS(2-1)-AR(1) were tested for
independence of the transitions probabilities (H(()%)) and the intercept (Hé?’))
from the state variable. For the auto-regressive model MS(2-1)-AR(1) the
auto-regression parameter (H(()E’)) was additionally tested. The null hypothe-
sis that the intercept does not depend on the state variable was rejected for
both models and all portfolios. The hypothesis of the regime-independent
auto-regression coefficient could be rejected for portfolios with a high bond
proportion of 75% and more. The null hypothesis for the transition prob-
abilities cannot be rejected for any sample with the exception of the pure
DAX30 portfolio (MS(2-1)-AR(1) model). This implies that the homoskedas-
tic model is not adequate for German mixed bond-stock portfolios, as the

transition probabilities are not dependent on the lagged state variable Z; ;.
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For the heteroskedastic model with regime dependent mean equation (i.e.
MS(2-2) and MS(2-2)-AR(1)) three tests for regime independent transition
probabilities (H(()Qb)), intercept (H(()?’)), and variance (H(()4a)) were conducted.
For the model MS(2-2)-AR(1) the independence of the auto-regression co-
efficient (Hg)b)) was tested additionally. The null hypothesis of independent
transition probabilities can be rejected for both models for all samples. The
test for homoscedasticity was rejected for both models and all samples, with
one exception. For the pure bond portfolio and the model MS(2-2)-AR(1)
the homoscedasticity hypothesis cannot be rejected at any common confi-
dence level. The null hypothesis of the regime-independent intercept could
not be rejected for either of the models, or the portfolios. The null hypothesis
of regime-independent auto-regression coefficient could be rejected only for
portfolios with a very low stock proportion of a maximum of 10%. These re-
sults show that the MS(2-2)-typed models have regime-dependent transition
probabilities, variance, and for models with a high bond proportion, the auto-
regression coefficient. On the other hand, the intercept is regime indepen-
dent, which suggests that the MS(2-2)-typed models are overparametrised.

In conclusion, the results of the Wald test reveal that one should reject
the MS(2-1)-typed models and chose the MS(2-2)-typed or MS(1-2)-typed
models. Note that the MS(1-2)-typed and MS(2-2)-typed models have a
regime-independent intercept. As the MS(1-2)-typed models by the model
construction have a regime-independent mean equation and the MS(2-2)-
typed models do not reject the Hé?’) null hypothesis. Since both model types
are equivalent, the MS(1-2)-type is the better choice, because it avoids over-

parametrization.
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3.4.2 Likelihood ratio test

Besides the Wald test, Engel and Hamilton (1990) proposed a modified form
of the likelihood ratio test. They suggest estimating two models with and
without restriction on parameters. Thus, it is possible to construct the like-

lihood ratio statistics

LR = 2[£(Hy) — AHo)] = x*(k(Hy) — k(Ho)). (3.8)
where Z{-) denotes the log-likelihood function under the null and under the
alternative hypothesis and k& the number of parameters of the model under
Hy and Hy, respectively.

Without estimating additional models, testing the MS(2-1)-typed model

is fairly straightforward
Hé4b)3 B1 # Bo, U% = U%a and p11 # 1 — pn
against the alternative of the MS(2-2)-typed model
H{": 0% # o2
and the MS(1-2)-typed model
Héﬁ)3 Bi = Bo, 07 # 03, and pi1 # 1 — px
against the alternative of the MS(2-2)-typed model
H: B1 # .
To test the null hypothesis of the regime-independence of the transition prob-
abilities (H(()%)) the model with the constraint p;; = 1—p9; has to be estimated
and compared with the unconstrained model (H(l%)).

Tables G.1-G.13 in Appendix G show the output of the likelihood ratio
test. A summary of the test results is given in Table 3.5 that shows which
tests can be rejected at the 5% confidence level. All six models were tested
on whether or not the transition probability is independent from the lagged

regime variable Z;_4 (Hé%)). The test could be rejected for the MS(1-2) and
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MS(2-2) models for all samples. For models MS(1-2)-AR(1), MS(2-1), and
MS(2-1)-AR(1), the null hypothesis can be rejected for all samples with a
stock proportion ranging from 0% to 30%. For the MS(2-2)-AR(1) model, the
null hypothesis of no regime in the transition probabilities can be rejected for
all samples excluding the portfolio with with a 90% bonds and a 10% stock
engagement.

In addition to the above test, the MS(2-2)-typed models were tested for
regime switching in the mean equation (i.e. if B-vector was independent from
the regime, see Hé6)) and variance (H(()4b)). The null hypothesis of no regime
dependence in the mean equation cannot be rejected for any sample in the
case of both models (i.e. with and without auto-regression). This means that
the MS(1-2)-typed models fit the tested portfolios better than the MS(2-2)-
typed models. The null hypothesis of homoscedasticity was rejected for all
samples and both MS(2-2)-typed models, with the exception of the MS(2-2)-
AR(1) model and the portfolio with a 90% bond and a 10% stock proportion.
In other words, the likelihood ratio test rejects the MS(2-1)-typed models in
favor of the MS(2-2)-typed models (with one exception). On this basis we
can conclude that the results of the likeklihood ratio test are consistent with
the results of the Wald test discussed in Section 3.4.

In conclusion, it can be said that both the Wald and the likelihood ratio
test favors the MS(1-2) model for all portfolios, except those with a very
high bond engagement. For portfolios with a very high bond proportion, the
MS(1-2)-AR(1) model would be more appropriate.
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3.5 Tests based on scores

3.5.1 Scores

This section introduces two tests for Markov switching specification which
are based on scores. These are the Newey-Tauchen-White score test and the
Lagrange multiplier test proposed by Hamilton (1996).

Before introducing the score based tests, it is necessary to define the
score. The score vector h, is the vector of the derivatives of the conditional

log-likelihood function I(y;|%;_1;6) with respect to the parameter vector 6.

_ 8l(yt’%71;0)

h:(6 .
(6) = =1 (39)
The score vector can be evaluated at the true parameter vector 6
ol(y:|%;-1:0)
hi(6y) = ——,—— (3.10)
00 -6,
or at the maximum likelihood estimate 8
-~ [ _1;0
00 0-d

(Hamilton 1996, p. 131). In order to compute the scores, the parameter vector

is subdivided into 8* = (B, ...,B%,0%,...,0%) and & = (p11 ..., P1Ks -+, PK1,s- - -

so that 8 = (0*,4")’. Hamilton (1996, p. 135) showed that the score vector

for the Markov switching models can be computed as

ht(H*) :al(yt‘aﬁlae)
K t—1 K
= " PrZ =12+ Y > i (Pr(Z, = j|%] - Pr]Z, = j| %))
j=1 =1 j=1
t=1,...,7T),

(3.12)
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Wit]l
ol(yi|zy, Z, = 5;0

and (Pr[Z; = j|%] — Pr[Z; = j|%,_1]) the byproduct of the maximum likeli-

hood estimation procedure. The derivatives from equation (2.76) are given

by

oyilze, Zy = 7;0)  (y — xB;)T; . K
'th,a aﬁj 0_32 (.] ’ ) )7 (3 )
and
- ol(yi|x, Z = j;0) o 1 (y: — x8;)) - e
'th,a - ao_j - 20_]2 + 20_;1 (.] - ]-7“‘7 ) (315)

The score with respect to the transition probabilities is given by

Ol(y:|% 1,60
ht(pji): (yt| t—1 )

apji
1 , , 1 .
=—Pr|Z, =321 =1|%] — Pr[Z, = K, Z;_ = i|%]
DPji PKi
1 (=
+ p_ {Z Pr[ZT =7, Zi1 = 7/’?%] - Pr[ZT =7, Zr1 = Z’%l]}
J T=2
. t—1
— > Pr[Z, = K, Ziy = i|%) - Pr[Z, = K, Z,y = i|%_1]
Pri | T
K
Olog Pr[Zy; %,
o3 DoePA i) o 7 ) — el 24}
Zi—1 Opji
(i=1,....K, j=1,..,K—1,t=2,....T)
(3.16)
and «
ol(y.|%1;0) 0log Pr(Z1; %]
—7 L = Pr(Z,|%; 3.17
D S s (317

where for the probability of initial state Z; we use the ergodic probabil-
ities from equation (2.68) (Hamilton 1996, p. 135-137). Please note that
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in the Markov model of the K-th order, the redundant parameters pg;
(¢t = 1,...,K) have been omitted. For the model with K = 2 it is com-
mon that probabilities of staying in the regime are estimated (p;; and pas)
and the probabilities of changing the regime (p,; and pjs) are treated as the
redundant parameters which are omitted. This approach was employed in

this work.

3.5.2 Score test of Newey-Tauchen-White

The first order condition for maximum likelihood estimation states that the
score has to be equal to zero. If one assumes that for instance, the score
hi(p11) were positive, it would imply that Pr[Z, = 1|Z, 1 = 1,%,_1] > p11.
This in turn, means that according to the information set %; the probability
that observations y; and y;_1 came from the first regime were higher that
the estimated probability pi;. It would suggest that the data contain some
additional information not captured in the estimated model. Analogically,
for a properly specified model, the expected score should be equal to zero.

If one assume that the scores hy(p11) and hy_1(p11) were positive serially
correlated, it would mean that based on the knowledge that Z; ; = 1 and
Z;_9 = 1 the probability Pr[Z, = 1|Z,_1 = 1,Z; 5 = 1] > p1;. This would be
the equivalent to claiming that the probability Pr[Z, = 1|2,y = 1, Z;_ 5 = 1]
was greater Pr[Z; = 1|Z;_; = 1] which is a violation of the Markov chain
assumption (Hamilton 1996, p. 140).

In other words, if the model is properly estimated it is impossible to
forecast the score h;(0y) knowing the score h;_1(6y). Basing on this idea
White (1987) constructed his test for the lack of serial correlation in scores.
It is based on the conditional moment test of Newey (1985) and Tauchen

(1985). Hamilton (1996) adapted this approach for the Markov switching
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models and called it Newey-Tauchen-White (NTW) score test.

To compute the NTW test statistic the vectors h;(@) have to be con-
structed (for ¢ = 1,...,T) first. This can be done by vertically stacking
scores from equations (3.12) and (3.14) for 8; (j = 1,..., K), from equations
(3.12) and (3.15) for 0% (j = 1,..., K) and (3.16)-(3.17) forp;; (j = 1,..., K,

J

i=1,...K—1)7°
In the second step, the (m x m)-matrix H, (5) = [hy (5)] [ht,l(b\)]/ has to be

~

constructed. In the next step the elements of the H,; (@) matrix which are to

be tested with the NTW test are chosen. These elements should be collected

in the (I x 1)-vector ¢;(@). If one intended to test whether the score h;(jz7) can
be forecasted on the basis of the previous score h;_1(/1), one should choose
the (1,1)-element of Ht(a) which represents hy(j17) - hy—1(f1).

~

On the basis of the vector ¢;(8) the NTW test statistic can be computed.
A LN 1 < -
NTW = |—= ) @) Apy |—= > c(0) (3.18)

where matrix ;1(2,2) is a (2,2)-sub-matrix of the matrix

-1

~ ~

A (L] SLmemer SLm@Eer [

Tl Shle®h@) L e @) @)
If the model is correctly specified, the test (3.18) statistic is asymptotically
x%(1) distributed (Hamilton 1996, p. 131).
Hamilton (1996, p. 139-140) proposed constructing the following Newey-
Tauchen-White tests:

1. The NTW dynamic specification test for autocorrelation across regimes.

In this case, the null hypothesis

5For K = 2 the scores with respect to p1; and pss are commonly used instead of scores

with respect to pi11 and pio, respectively.
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7 c(17 C i
H(() " E [ht(ﬂj) "%—1(%” =0
is tested against the alternative
7 c(1y c m
HY: E [h§(a,) [h_ ()] # 0.

~

The vector ¢;(0) consists of

~

al(yt|@t—1;b\) ) M (y—1|%-1;0)
O Opu;
and the NTW-statistic (3.18) is asymptotically x?(K?) distributed.

(i,j=1,...,K) (3.20)

2. The NTW dynamic specification test for ARCH effects across regimes.
In this case, the null hypothesis
8 Cc(= c =
s E[hi(@}) b1 (7)) =0
is tested against the alternative

8 c(3 c =
Hg )3 E [h’t(o-jz) ‘ht—l(o-zz)} # 0.
The vector ¢; (b\) consists of

~

Oyl %150) Oy 1% 1;0)
0o? Oo?

J K3

and the NTW-statistic (3.18) is asymptotically x?(K?) distributed.

(i,j=1,...,K) (3.21)

3. The NTW dynamic specification test for validity of Markov assump-
tions.
In this case, the null hypothesis
HE: E (R (Byy) B2 ()] =0
is tested against the alternative

HY: E [hi(5);) |hi_(Ba)] # 0.

The vector ¢;(8) consists off

~

U(y|%-1:8) Oy 11%1:0)
pj; pj;

al<yt|gf—1;a) al(yt—l‘@t—ﬂé\)
2] ' Opii

Pjj

(j=1,....K) (3.22)

5Tn this case, the scores (., = 1,...,K) could be
considered additionally. These are, however, relevant only in very large samples, they will

therefore be omitted here (Hamilton 1996, p. 140).
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and the NTW-statistic (3.18) is asymptotically x?(K) distributed.

The results of the Newey-Tauchen-White test are listed in Tables H.1-
H.13 in Appendix H. Table 3.6 summarizes these results, showing which
tests cannot be rejected at the 5% confidence level. Generally speaking, the
majority of the tests could not be rejected. This means that the Markov
switching specification correctly models the tested portfolios. For the het-
eroscedastic models without regime switching in the mean equation, only
portfolios with a 70% or an 80% bond proportion have additional serial cor-
relation in the intercept (this applies to the model with and without an
auto-regression term). No additional ARCH effects were detected for any of
the tested portfolios (with and without an auto-regression term in the mean
equation). The null hypothesis of the Markov chain assumption could be re-
jected only for a 90% bond portfolio for both tested models and, additionally,
for a 40% bond portfolio for the model with the auto-regression term.

The test for the homoskedastic models with a regime dependent mean
equation shows similar results. Hardly any test could be rejected at the
5% confidence level. The assumption of serial correlation in intercept scores
could be rejected only in two cases: for portfolios with a 75% and an 80%
bond proportion for the model without an auto-regression term. For the
MS(2-1)-AR(1) model, the null hypothesis of the lack of serial correlation in
the intercept could not be rejected for any tested portfolio. The hypothesis
of no additional ARCH effects was rejected only for the model with the auto-
regression term for portfolios with an 80% and a 90% bond proportion. The
MS(2-1) model did not show any additional ARCH effects. The hypothesis
of the Markov chain could not be rejected for any portfolio of either of the

MS(2-1)-typed models.
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The heteroskedastic models with regime dependent mean equation also
fit the German bond-stock portfolios very well. The assumption that there
are no additional serial correlations in the intercept could be rejected only
for a 90%-10% bond-stock portfolio for both models: with and without an
auto-regression in the mean equation. Exactly the same result holds true
for the assumption of no additional ARCH effects. It could not be rejected
for the portfolio with a 90% bond proportion for both the MS(2-2) and the
MS(2-2)-AR(1) models. The null hypothesis of the Markov chain could not
be rejected for any of the heteroskedastic models with a regime-dependent
mean and no auto-regression. For the model with an auto-regression only for
portfolios with a 25% and a 30% bond proportion, this null hypothesis could
be rejected.

It is noteworthy that the NWT test at the 5% significance level gives
condradictory results. The homoscedastic MS(2-1)-typed models do not show
any additional ARCH effects. However, if one added stochastic volatility (i.e.
if one wanted to test MS(1-2)-typed and MS(2-2)-typed models) the result
of the test would be the same. The same result applies to the dependence
of the intercept on the regime. The MS(1-2)-typed models do not show any
additional serial correlation in the intercept. However, models with a regime-
dependent mean equation (i.e. MS(2-1)-typed and MS(2-2)-typed models)
show the same test result. Thus, the test does not provide any unequivocal
answer for the model choice problem. It merely shows that there is evidence
for the regime effects in German mixed bond-stock portfolios. It could be
argued, however, that one should choose a parsimonious model. Due to this
decision criterion, one should refuse MS(2-2)-typed models in favor of the
MS(1-2)-typed or MS(2-1)-typed models. However, the question as to which

of the two is more suitable to describe tested portfolios remains.
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Another way to solve this issue would be to look at the 1% confidential
level. According to Hamilton (1996), this would be the right method for small
sample tests. However, one should be aware that samples used in this work
comprise 360 observations, which cannot be considered as a small sample.

Nevertheless, the NTW test at the 1% confidence level gives similar results.

3.5.3 Lagrange multiplier test of Hamilton (1996)

Another application of scores is the Lagrange multiplier test (see Hamilton
(1996)). Suppose that the (m x 1)-parameter vector 6 were estimated with
the constraint that the last mg parameter is equal to zero. According to the
first order condition of the MLE, the first (m — mg) elements of the average
score = ZtT:1 h; (5) of the restricted maximum likelihood estimate 8 are zero
but the reminding mg elements are unequal to zero. The size of the nonzero
elements indicates how far the likelihood function might rise if the constraints
were relaxed. At the same time, the magnitude of the last mg elements allows
us to verify the validity of the constraints.

According to Hamilton (1996, p. 132) the LM statistic equals

7 i[ht(ﬁ)][ht(ﬁ)]/ — ET: h(8)| (3.23)
T vT

t=1

T
1 .
LM =|—) h(0)
and is asymptotically x*(my) distributed. Hamilton (1996, p. 142) proposed

testing Markov switching model against the alternative that allows for auto-

correlation in regression residuals
vy =x,8z + plyr—1 —x,_1Bz7,_,) + 0z, withe ~ N(0,1), (3.24)

where p denotes the autocorrelation coefficient and transition probabilities
are given as (2.67). It is straightforward to see that for p = 0 the model
(3.24) is reduced to the Markov switching model.
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The null hypothesis of the autocorrelation test would thus be
Hélo): p = 0 (no autocorrelation)
against the alternative that
H(lo D (Wl 2, Zi, Zi-1; 0, p) ~ N({miB2, + p(ye—1 = 2118z, ,)}, 07,) (Hamil-
ton 1996, p. 143).
To implement the ML test, the score with respect to p = 0 has to be

calculated as

dlog p(y| 24,0, p)
dp

K
Z t]zp Zt_juzt 1 _Z‘%va)

HMN

p=0
t-1 K K
+Z Z Vegilp(Zr = J, Zry = il 0) e jip(Zr = J, Zroa = i1 0)]

r=1 i=1 j=1

(3.25)
where
810gp(yt‘$t,$t 1 Yt—1, Lt = J, Zi—1 :i§9>P)
¢t ]) ap
, , 0 (3.26)
(Y — xiB5) (ye—1 — x,_153)

2
g;

Then one constructs the ht(ﬂ p) as defined in equations (3.12), (3.14), (3.15),
(3.16)-(3.17) and stuck it on the score defined in (3.25) and (3.26). Based
on the score ht(/H\, p) = (ht(/H\)’ ,hi(p)) one can compute the LM statistically
(3.23) which is asymptotically x?(1) distributed.

In addition to the LM autocorrelation test, Hamilton (1996) proposed an
LM test for the ARCH effects. The non-restricted model would then be

-z 2
Yy = w;ﬂZt""/htgt; where h;, = O_%t 1+ €(yt 1 2t—LBZt—1) &~ N(O, 1)7

9%

(3.27)
with transition probabilities given as (2.67). It is fairly easy to see that for
¢ = 0 the volatility of the model equals 07, and the model (3.27) is reduced

to the Markov switching model.

109



The null hypothesis of the test for the ARCH effects is
HE)H): ¢ = 0 (no autocorrelation)

and the corresponding alternative is

E(yt—1—=;_1B t—1 ?
Hgn): (ytfc%ﬁ;Zt,thl;ef) ~ N(w;lBZt7ht)ht :U%t {1‘*‘ (s T Zi1) }

g
Zt—1

To compute the LM statistic (3.23) one has to construct vector ht(a, é\)

~

as defined above and vector hy(§) using equation (3.25) with

. Olog p(y|@s, yi1, Zy = J, Zy—1 = 1;0,§)

Urji =
t,J 8f £=0 (3 28)
_ | <yt—m;ﬂzt>2] [(yt_l—mzlﬁm?] |
=|—1+ 2 2 :
07z, 207, |

Then the vector ht(/H\, E)’ = (ht(ﬁ)',ht@)’ can be used to compute the LM
statistic (3.23) which is asymptotically x?(1) distributed.

In Appendix I, Tables I.1-1.13 the results of the Lagrange multiplier test
are listed. Table 3.7 summarizes the results at the 5% confidence level.
For the model MS(1-2) the null hypothesis of no additional correlation in
the mean equation can be rejected for most portfolios. The exceptions are
portfolios with a 70%, a 75%, and an 80% bond proportion. The opposite
holds true for the null hypothesis of no additional ARCH effects, which can
be rejected for most of the portfolios. Only for portfolios with low bond
proportion (from 0% to 25%) and the pure bond portfolio the null hypothesis
cannot be rejected. For the MS(1-2)-AR(1) model, both null hypotheses, of
no additional auto-correlation in the mean equation and no additional ARCH
effects could be rejected for most of the portfolios. The null hypothesis of
no autocorrelation could not be rejected for a 40%, a 90%, and a 100% of
bond proportion only. The null hypothesis of no additional ARCH effects
could not be rejected for portfolios with a 70%, a 90% and a 100% of bond

engagement only.

110



Table 3.7: Overview of the results of the Lagrange multiplier test (1.1975-

12.2004)
Portfolio MS(1-2) MS(2-1) MS(2-2)
composition AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)
REXP DAX30 | H(®  g(D | m(0 b | g g0y | gOo  pan | go)gan | a0y
0% 100% + + + + + + + + + +
10% 90% + + + + + + + + + +
20% 80% + + + + + + + + +
25% 5% + + + + + + + +
30% 70% + + + + + +
40% 60% + + + + +
50% 50% + + + + +
60% 40% + + + + + +
70% 30% + + + + + + +
75% 25% + + + + + +
80% 20% + + + + +
90% 10% + + + + + + + +
100% 0% + + + + + + + + + + + +
Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes for
the variance and p auto-regression lags in each mean equation. + - the null hypothesis
cannot be rejected at the minimum 5% confidence level.

H': p=0 H: (|25, 2620150, p) ~ N{&,Bz, + p(ys—1 —2,_ 1B 1)}, 02)
e 2
H': e =0 HY: (9] 20, 20, 20-150,6) ~ N (a:@ﬁz“aﬁt [1 4 S ;Hﬂz"l) ])
Zt—1

For the MS(2-1) model, the null hypothesis of no autocorrelation cannot

be rejected for most of the portfolios. Only for portfolios with a 25%, a 30%,
a 40%, and a 50% bond investment, the model is not correctly specified with
respect to autocorrelation in the mean equation. The null hypothesis of no
additional ARCH effects could not be rejected for 6 out of 13 portfolios. The
hypothesis of no additional ARCH effects could be rejected for portfolios
with a 0%, a 10%, a 70%, a 75%, an 80%, and a 100% bond engagement.
The situation is better for the MS(2-1)-AR(1) model. For this model, both
null hypotheses, of no additional autocorrelation and no additional ARCH
effects could not be rejected. Thus, it is the most suitable model according
to the LM test.

For model MS(2-2), the null hypothesis of no additional autocorrelation

could not be rejected for most portfolios. The rejection occurred only for
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portfolios with an 80% and a 90% bond investment. The null hypothesis of
no additional ARCH effects could be rejected for 7 out of 13 models. These
are portfolios with a 25%, a 30%, a 40%, a 70%, a 75%, an 80%, and a
90% bond engagement. In the case of the MS(2-2)-AR(1) model, both null
hypotheses could be rejected for 4 out of 13 models. The null hypothesis of
no additional autocorrelation could be rejected for portfolios with a 40%, a
50%, a 60%, and a 75% bond proportion. The hypothesis of no additional
heteroscedastic effects could be rejected for models with a 50%, a 60%, a
75%, and an 80% bond investment.

In conclusion, the ML test shows that the MS(2-1)-AR(1) model shows
no additional autocorrelation in the regression residuals for any of the tested
portfolios. The remaining models fit the tested samples quite well with re-
spect to the ML autocorrelation test. The exception is the MS(1-2)-AR(1)
model which shows additional autocorrelation for all but three samples. Ac-
cording to the additional ARCH effects, the MS(2-1)-AR(1) model is clearly
the best, as it passes the LM-ARCH test for all tested portfolios. In contrast,
the MS(1-2), MS(1-2)-AR(1), MS(2-1), and MS(2-2) models perform rather
poorly. This suggests that for portfolios which fail the ARCH effect test, an
additional regime in volatility or model with switching in GARCH could be
estimated.” The MS(2-2)-AR(1) model performs a little better, as it fails to

model the stochastic volatility for only 4 out of 13 tested portfolios.

"For Markov switching models with GARCH effects, see Hamilton and Susmel (1994),
Cai (1994), Gray (1996) or Haas (2004).
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3.6 Tests based on simulation of the test statis-
tic

Several authors used the Monte Carlo simulation for testing Markov switch-
ing models. Lam (1990, p. 427-428), Cai (1994, p. 313), and Rydén, Terasvirta,
and Asbrink (1998, p. 224-225) assume that the true model is a restricted lin-
ear model (e.g. AR(p)) with known parameter vector . They use 8 to draw
a random sample from a restricted model and estimate the non-restricted
Markov regime model from the simulated sample. In this manner, they were
able to compute the likelihood function for both models, and, eventually, the
LR statistic. The repetition of the experiment allowed them to approximate
the distribution of the test statistic and its critical values.

The author of this work is skeptical to the bootstrap method used in the
context of testing regime switching models. In Section 3.3 it was already
mentioned that the likelihood function of the regime models features several
local optima. Hence, for each simulated sample, the numerous iteration of
the EM algorithm would be needed. Suppose that one wanted to run the
bootstrap algorithm 1000 times, and the estimation algorithm 50 times for
each output. Then, for all 13 samples and 6 MS models which were estimated
in Section 2.9.2 one would have to repeat the EM algorithm 3,900,000 times;
which is 250 times more than the number of EM algorithm runs required
for estimation of these 6 models for all 13 portfolios, and would last several
months. Another possibility would be to run the estimation algorithm only
once for each bootstrapped sample as Lam (1990) and Cai (1994) did. This
simplification, however, bears the risk that one would not find the global
optimum, and that the distribution of the test statistic would be biased. For

this reason, the author prefers to use the asymptotic distribution theory to
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simulate the distribution of the test statistic.

As already mentioned in Section 3.3 the standard asymptotic theory does
not hold, as the transition probabilities are not defined under the null hy-
pothesis. Davies (1977,1987) was the first to study the problem of undefined
nuisance parameters. He proposed defining the test statistic as a function of
the undefined parameter. He then implemented the empirical process the-
ory for supremum likelihood ratio and Lagrange multiplier tests. Andrews
and Ploberger (1994) extended the theory with an average exponential like-
lihood ratio, Wald, and Lagrange multiplier tests. Hansen (1996b) proposed
a method for directly computing the critical values via a Monte Carlo sim-
ulation. For this simulation, he applied the covariance function of the test
statistic. However, these models do not address the problem of identical
zero scores. If the first derivative of the likelihood function is zero, Lee and
Chesher (1986) proposed looking at derivatives of a higher order. Using this
approach, they found that the Lagrange multiplier statistic is y? distributed
if higher order derivatives are unequal to zero. Similar results were found for
the likelihood ratio and the modified Wald test.

The above mentioned works cannot be applied to tests for Markov switch-
ing models, as Hamilton’s model includes both the nuisance parameters and
the zero scores problem. The following section will introduce the Hansen
(1992, 1996a) test constructed for Markov switching models and its exten-
sion proposed by Garcia (1998).

3.6.1 Likelihood ratio test of Hansen (1992, 1996)

Before Hansen’s (1992, 1996a) test is introduced, a small re-parametrization
of the model (2.66) is needed. Let us order the regimes in such a way that

o1 < 09 < ...0k then, without a loss of generality, the Markov switching
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model can be rewritten as

Ye = pn + psliz—g + -+ gz =k
+ (101) + P10y lizi=g + - + D1 Lizi=K)) Ui
+ ...
+ (Dp1) + Splizi=g + - + Iy lize=K)) Vi —r

+ (o1 +o3lig—0) + - - + 0xz=k])es
K r K

=1+ Z M;]I[thj} + Z <¢i(1) + Z ¢f(j)]1[zt=i]> Yt—i
j=2 i=1 j=2

K
+ (01 + ZO‘;H[th]> Et, and ¢, ~ N(0, 1),

Jj=2

(3.29)

with ,U;k = K; — M1, ¢;k(]) = ¢z(]) _¢z(l) and 0';-( =05 —01 fOI'j = 2,...,K, 1=

1,...,r and with transition probabilities given in (2.67). Then the parameter
vector @ becomes 6™ = (1, 13, . . . i, $101), gb*l‘@), s Dy
¢p(1)a ¢;(2)7 ey ¢;(K)a O—%a 0—>2k2a R O-;(Qaplb D1k, - 7pK71,Ka v 7pK71,K),-

Hansen (1992, p. S63) divided the parameter vector 8% = (y},75,0)
into three categories, so that vector 4; contains all parameters which are
needed to specify the restricted model, vectors 7, and & contain nuisance
parameters, where 7y, is fully identified under the null hypothesis and §
is not identified. For instance, if one wanted to test the AR(1) model
against the MS(2-1)-AR(1) then v} = (u, d11),01)", V2 = (K3, 9}(p))’, and
0 = (p11,pe2). Or if one wanted to test MS(2-1) against MS(3-3) then

/

’Yl = (,LLl,,LL;, 017p117p127p217p22)/7 ’7,2 = (,LL;;, 0-57 O-;‘;)la and 6, = (p137p23),‘

The re-parametrization introduced in equation (3.29) allows to write the
log-likelihood function as

T

ZLr(0) = Lr(v1,72.6) = Y _L(71,72.6)

t=1
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with the according null hypothesis

Héu): 72 = 0, with undefined parameter vector 6,
and its alternative hypothesis

H{"?: «, # 0 (Hansen 1992, p. S66).
Hansen (1992, p. S66-S67) proposed “eliminating” the problem of the nui-
sance parameters through the concentration of vectors 7, and 4 into one vec-
tor, i.e., he sets @ = (y},8’)". This results with Zp(a?,y,) and l;(a,v1),
respectively. If one fixed the values of @’ one could find the (pseudo true)
values for the vector 7,

1

Y= e i, oD

71 (c

Y

where I'y denotes the compact parameter space for 7;. Then, for a sufficiently

large sample size T' the centered likelihood function is given by
Zr(a") = Zr(vi(@"), a™).

Hansen (1992, p. S63-S64, S67-S68) defines the LR test statistic (3.8) as a

function
T

LRr(a") = Zr(vi,a") = Lr(71,0,8) = Y [li(y1,0™) —1,(71,0,6)], (3.30)
t=1

which yields a sequence of Neyman-Pearson likelihood ratio test statistics
for the null hypothesis against each simple alternative hypothesis. This is a
rarely used definition, but it has the advantage that the LR test statistic for
the null hypothesis against the alternative is the lowest upper bound of the

likelihood ratio surface

LRy = sup LRp(a™),

acAH
where A" denotes a compact parameter space over the vector a’’. Please

note that the LR statistic can be observed, but its mean
Rr(a™) = E[LRy(a™)] (3.31)
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cannot. Thus, let us define the deviation from the mean process as

Qr(a") = LRr(a") — Rr(e) =Y ("), (3.32)
where

a(e) = [li(v1,a™) = 1,(71,0,8)] — E[ly(y1. @) = 1;(71,0,6)].

Then the LR statistic from equation (3.30) can be decomposed as
LRr(a™) = Rr(a™) + Qr(a™). (3.33)

Since the deviation process is stochastic, some errors caused by determining
the likelihood ratio can occur. The stochasticity of Qr(a!?) causes that the
likelihood function can be maximized at some value (v}, a™’)" other than the
null hypothesis (v},0',a”").

Let us standardize the LR process in such a way that it has the same

variance for all af € AH

s LRr(a”
LR (o) = L) (3.34)
Vr(af)
and
LRy = sup LRp(a™), (3.35)
allcAH
where
T

Vr(¥,(a),a’) = Z (3, (a"),a’)?

t=1

denotes the sample variance with
~ ~ ~ 1 ~
a1 (@), a)) =17, (a"),a) - 1,(7,(a"),0,5) — TLRT(QH)-

The standardized stochastic deviation process will subsequently be equal to

* (oH) — Qr(a”)
Qi) =
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Hansen (1992) proved that the standardized likelihood ratio statistic
(3.35) is bounded by the standardized deviation process and that this stan-

dardized deviation process has a limit:
Theorem 3.1 Under Assumptions A.1, A.2, and A.3 from Appendiz A.1,

Pr[ITR*T > z] < Pr[ sup CA)*T(aH) > x] — Pr[Sup Q* > x]

alle At
(Hansen 1992, p. S69).
Proof. The proof is given in Hansen (1992, p. S66-S69). =
This theorem gives the bound of the standardized LR statistic as the
distribution of the random variable SupQ*.
To test the H(()w) against the ng) one has to determine the distribution
of the random variable Sup@*. Hansen (1992) proposed using the following

theorem

Theorem 3.2 (Theorem 1 from Hansen (1996b)®) Under Assumptions
A4, A5, and A.6 from the Appendix A.1 and the absence of the serial cor-

relation and heteroscedasticity in the noise function

LRy 5 SupC = sup C(8) (3.36)
LISAN

where 2 denotes weak convergence with respect to the uniform metric and
Q(8) is a chi-square process with a covariance matriz K(-,-), defined as fol-

lows:
F(él,ég) = LkV(Jl)*lK(Jl,52)V(52)*1L§€ (3.37)

where 1y, s a vector of dimension k (the dimension of the parameter vector
under an alternative hypothesis) with ones in the positions of the parameters
constrained to be zero under the null hypothesis, and zeros on the remaining
positions

K(81,8,) = lim TE (A (af, 61)R5(af . 82)'] (3.38)
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where

B (0) = - Zr(6) (339)

and

and the variance matriz

V(9) = lim T E [h5.(a§,8)hs (af ,8)]

V(8) = V(ag,0)

(Garcia 1998, p. 768).

Proof. For proof of the general version of Theorem 3.2 see Hansen (1996b,
p. 425-426). m
The covariance function (3.37) for the Hansen test is given by

[?T(al ) Oy )
\/VT al VT(az )

K7.(81,65) = (3.40)

with

a’1 702 E Q@ a’1 Q@ 012

T

23w |3 G Ealed) S Gal)i(a)
k=1 t=1

t=1+k
and g;(a”) = ¢ (a5, (a®)) and wyyr = 1 — ]\}L-i‘-l being the Bartlett kernel
and M a bandwidth number, which should slowly be increased as the sample
size grows (Hansen 1996a, p. 195-196).
Now, it is possible to accomplish the test. Suppose that one can draw
Gaussian processes with the covariance function [?;(51, d5) given in equation

(3.40). According to Theorem 3.2, the supremum of each of these processes

has (approximately) the distribution Sup@*.
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Hansen (1996a, p. 196) suggests the following algorithm for obtaining the
draws of Sup@*. One should draw T 4 M iid N(0,1) variables {u;} .

Using the sequence of u-s the simulated empirical distribution of

oY H _2{023:1%(0«’Ha'?1(a[{))ut+k
) = e A T DVata™)

can be determined, which is Gaussian with a zero mean and a covariance
function I?T((Sl,Jg). Simulating a lot of LR (@) will yield the distribution of
the test statistic. Note that the theory gives no information on how to choose
M, therefore the simulation should be accomplished with several values of
M in order to assess the sensitivity of the test with respect to M. The last
unsolved problem is to find J;(af’) which can be addressed by conducting
the grid search. However, this method is very time-consuming. Thus, there
is a trade-off between the precision of the simulation (i.e. the size of the

grid-step) and the length of the computation time (Hansen 1992, p. S70).

3.6.2 Likelihood ratio test of Garcia (1998)

The Hansen test has two significant drawbacks. It applies a grid technique,
which is very time consuming and is therefore only applicable to several
simple cases. Hansen (1992) studied some simple Markov switching models
and found that they are insensitive to the choice of the grid. However, this
does not necessarily hold true for more complicated models. The second
drawback is that the outcome of the Hansen test is the upper bound for the
likelihood ratio statistic and is not a critical value. This may imply that the
test is conservative (Garcia 1998, p. 766).

For this reason, Garcia (1998) proposed a modification of Hansen’s (1992,
1996a) test, which enables us to derive the covariance matrix K analyti-

cally. He suggested ordering the vectors in a different manner as Hansen
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did. Hansen splits the parameter vector € into the parameters of interests
H — (4/,68") and the nuisance parameter vector 7;.

Garcia redefines the parameter of interest as a® = (y},75)" and the re-
maining transition probabilities § as the nuisance parameter vector. In Gar-
cia’s (1998) approach the null hypothesis
H((JIZ) ~v2 = 0, with the undefined transition parameter 6,
and the alternative
ng) v2 # 0.
remain the same as proposed by Hansen (1992).

Garcia (1998) proceeds as Hansen (1992) does and uses the Theorem 3.2
from Section 3.6.1 to compute the covariance matrix (3.38). In the first
step, the scores defined as (3.39) should be computed, since in our thesis,
the Markov model (2.66)-(2.67) differs from Garcia’s (1998) definition and
cannot be taken over. The scores used in this model are given in the following

lemma.

Lemma 3.3 The elements of the score vector h$.(a%,8), evaluated at the
true value of the parameter of interest a§ and at the particular given value
of the nuisance parameter § are given by
SEOIDIE

t=1 Z,(8)=1

hc (O‘O )

'ﬂIH

3.41
(o1 + agl[[zt( 8)=2 })2pt (3.41)

T 2
1 Z Z ez,
hC (ao, d Z } ) pt (342)

t=1 7,(8)=1 01+02 [2:(9)=2]

(3.43)

<

T 2
1 Yt—iCt .
h%(a07 ¢51 * D, 2217"'7
OoT Zl Z% , (011 73Lz,6)=2)*

= Yi—i€ell[z,(8)]

* p?
(01 + 03T z,6-2)2

i=1,...,r (3.44)
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1 o 1 £2
c G o t
Maf b= 1> > o ( “1)n

(o1 + 0311z,6)-2)”
(3.45)
RS (0§, 6),.2 = 1 i i [iz.5)=2) ( & _ 1) o
ST 205 (01 + 3liz,6)=2)) \ (01 + 03](12,6)=2))*
(3.46)

with py = Pr[Z,(8) = 2(8)|%7; %, d).

Proof. For the proof see Appendix A.2. m
By using Lemma 3.3 one can compute the covariance of the stochastic

variable Sup@Q* as given in the following lemma.

Lemma 3.4 The covariance matriz K(61,02) of the score vectors, as defined

in section 2, is equal to

M Xg;?zr O2><2 K

1
K(éb‘S?):ﬁ Xg;f;Q Xg%qi% Oorxa | ¢ (3.47)
1
02><2 02><27‘ 2 o
#/ ¢/ a./
where
M- 1 7T2((52)

mo(81) min[my (1), mo(62)]
X’Q‘f% = X (M®1y,)

Xg;f;Q = x (M ®1,,)

X%"inT = (M ® (RTXT + 2”%))

1 1

S—M 0 20% 20105
1 1

20’10; 20’52

and O and 1 denote a matriz of zeros and ones respectively, r - order of the
auto-regression, R - an auto-covariance matriz of {y} of order r, @ - the

Kronecker product and ® - the element-by-element matriz-product.
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Proof. For the proof see Appendix A.2. =

It is noteworthy that the covariance matrix for the Markov switching
models (2.66) which are used in this work depend on the ergodic probabil-
ities m but not on the transition probabilities (2.67) or the auto-regression
coefficients ¢;(1), ¢,y (i =1,...,r, j =1,...,K). This is an advantage in
comparison to the model used by Garcia (1998). The explicit formula for

models used in this work are given in the following lemma.

Lemma 3.5 Let introduce the following notation. m = m3(d1), m = ma(d2)
and c11 - the auto-covariance of the vector %. Thus, the covariance matrix
for models MS(1-2) and MS(1-2)-AR(1) is given by

2 (min(my, m] — mm) 0032

K(61,05),2 = ; 3.48
( b 2)02 (71'1-1)71'1 (7'('2—]_)77'2 , ( )
the covariance matrixz for model MS(2-1) is given by
(min[my, mo) — mma) 0F
K(61,02),x = 4
( 1, 2)#2 (771 _ 1) m (71_2 . 1) o (3 9)
the covariance matriz for model MS(2-1)-AR(1) is given by
K(61,02),: 0
K(8,,8,) = (61,02),5 , (3.50)
0 K(51,62)¢T(2)

with
(2uF + 1) 0f
(m = 1) m (m2 — 1) w2 (13 + 1)

K((slv 62)#3 -

X {(W% — 3’/T2’/T1 -+ ’/Tg) ,U% — C11 T T + min[m, 7T2] (IU% + 011)}

(3.51)
and

(7 — 3mymy 4+ 73) pf — crimim + minfmy, mo) (43 + c11)) 07

K(01,02)p = T + 7
(81,65) 1(2) (m = 1) (m2 — 1) mo (11} 011)2
(3.52)
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the covariance matrixz for model MS(2-2) is given by

K(61,02),: 0
K(8,,8,) = (O1,02)s (3.53)
0 K(61,62) 452
with
K(8,.85), — (min[ry, mo] — 7o) 02 (3.54)
LT2u = (7T1—1)7T1(7T2—1)’/T2 '
and
; _ 2 %2
K(81.8,),.0 — 2 (min[my, mo| — mm) 070, ; (3.55)
2 (’/T1—1)7T1 (7T2_1)7T2
and the covariance matriz for model MS(2-2)-AR(1) is given by
K(61,02),. 0 0
K(61,62) - 0 K(51,62)¢1«(2) 0 s (356)
0 0 K(81,02),s2

with
(247 4 c11) 0}

K(61,62),: =
(41,02)3 (7?1—1)%1(7&—1)7T2(N%+011)2

X {(7?% — 3mem + W%) p2 — ¢y Ty ++ minfmy, ] (/ﬁ + 011)}

(3.57)

(7% — 3mamy + 73) p2 — ¢y + min|my, mo) (13 + c11)) oF

(m1 — 1)y (my — 1) m (12 + ¢11)

K(01,0)g; , =

Y

(3.58)

and
2 __x2

2 (min[my, mo| — M) 070
(’/T1 — 1) 1 (’/TQ - 1) 9

K(8,,82),52 = (3.59)

Proof. The proof results straightforward from the application of Theorem
3.2 and Lemma 3.4. m

As one knows the analytic solution for the covariance matrix K (4;,4,), it
is possible to simulate the distribution of the Garcia test statistic. The input

is vector a’ and, additionally, for models with an auto-regression, the sample
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% = (y1,...,yr). One should bear in mind that the nuisance vector 4 is
undefined under the null hypothesis and, thus, some grid search is needed.
Lemma 3.4 shows that if one wants to test the null of no regimes against
the alternative of two states, the test statistic does not depend directly on
the transition probabilities p;; and psp. Without a loss of generality, one
can assume that m; < my. Thus, according to Lemma 3.4, the covariance
of the test statistic depends only on the ergodic probability ms which is
given in the equation (2.21) as 27;171’11}722. Therefore, the nuisance parameter
vector & can be reduced to my. From this, it follows that the grid search
can only be conducted for the parameter 7. Thus, we construct a sequence
of vectors {8;}%_, so that all m(8;) € A = (0,1) and are equidistant. E.g.
let m(d;) = 0.001,0.002,...,0.999. The border cases 0 and 1 have to be
excluded from the parameter space A because at these points, the condition
of a non-singular information matrix will be violated. These cases, however,
are not of interest for the test, as my = 0 or my = 1 can occur only if the
Markov chain is reducible and one of the regimes will vanish (Garcia 1998,
p. 772-773).

In the second step, one computes the covariance matrices K (4;,4,) for all

i,7 (i,7=1,...,K) given by equation (3.47) and collects them to a matrix

Kme((slaal) ot Kmxm(élaék)
Kme((skaal) e Kmxm((sk;(sk)

where m denotes the dimension of the vector 5 which determines the di-
mension of the matrix K(d1,6,).

Then, one computes the matrix B which is the lower triangular matrix
from the Cholesky decomposition Q = BB’. Garcia (1998, p. 786-787, Ap-

pendix 4) proposes an algorithm to compute the matrix B analytically, how-
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ever, this work favors the numeric solution to make the programming code
more efficient.

The next step is to draw a (k- m x 1)-vector u of i.i.d. standard normal
variables and to construct a (k- m x 1)-vector G(§) = Bu of mean zero
normal variables with a covariance matrix 2. Now, the computation of the

x? distributed random variable Q(a) is fairly straightforward.

Remark 3.6 Following the remark of Garcia (1998, p. 768, footnote 6) that
a x*(n) process Z(8) can be represented as Z(0) = G(6;)'K(6;,0;)"'G(8,)
where G(0) is a Gaussian (n X 1)-vector with a zero mean and a covariance

function given by K (0,,0;) = E[G(6;) - 0(93)]

Thus, let us divide vector G(6) into k vertically stacked (m x 1)-vectors
g(d;) and compute the Q(8) = ¢(;)'V(8;,68,)g(6;) for all i = 1,..., K. Even-
tually, it should be possible to compute the supremum of ): Sup@Q =
max;—1,.. x Q(d;).

The replication of the algorithm N times allows us to determine the
distribution of the SupC' statistic and its critical values.

Tables J.1-J.13 from Appendix J show the distribution of Garcia’s SupQ
test statistic. This distribution was simulated within a Monte Carlo approach
with 10,000 iterations. The puq, po, 01, and oy parameters were chosen ac-
cording to the maximum likelihood estimates listed in Tables B.1-B.13. For a
my parameter, a grid search was accomplished. The lower bound of the grid
denoted 0.001, the upper bound 0.999 and increment 0.001, respectively.
The distribution of the test statistic is similar for all estimated portfolios.
The distribution of Garcia’s SupC statistic for MS(1-2), MS(1-2)-AR(1), and
MS(2-1)? models is almost the same (see Figure 3.1 for the example of the

9The distribution of the MS(1-2) and the MS(1-2)-AR(1) is not “similar” but actually

analytically identical, as they have the same covariance, see equation (3.48).
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Figure 3.1: Distribution of the Garcia’s SupC statistic for DAX30

MS(1-2)-typed modets

00 01 02 03 04 05 06 07 08 09 10
A
AY

00 01 02 03 04 05 06 07 08 0.9 1.0
AY

o 2 4 6 8 10 12 14 16

NS(2-2)-typed madels

00 0.1 02 03 04 05 06 07 08 08 1.0
\

o 4 8 12 [0 20

Note:

The top panel shows the distribution of the Garcia’s SupC statistic for MS(1-2)-typed
models, the middle panel for the MS(2-1)-typed models, and, the bottom panel for the
MS(2-2)-typed models. The dashed line represents the model without the auto-regression
term and the dotted line with the auto-regression term in the mean equation, respectively.

pure DAX30 portfolio). The test statistic distribution for models MS(2-1)-

AR(1) and MS(2-2) is similar and stochastically dominated by the distribu-

tion of the three above mentioned models. The statistic distribution for the

MS(2-2)-AR(1) model is different from all other models discussed here, but is

stochastically dominated by them. A closer look at these results shows that

the distribution is similar for models with the same number of parameters

contained in the 7y, vector. Moreover, the distribution of the test statistic

seems to be independent from the magnitude of the parameter as it varies

in different models and seems to be independent from the type of parameter
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Table 3.8: Garcia test (1.1975-12.2004)

Portfolio composition MS(1-2) MS(2-1) MS(2-2)
REXP  DAXS30 AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
0% 100% 67.62***  67.76"** | 50.99***  54.03"** | 68.96*** 70.37***
10% 90% 63.96***  64.18*** | 47.52***  50.59*** | 65.18***  66.59***
20% 80% 59.60***  59.89*** | 43.74***  46.81*** | 60.68"**  62.10***
25% 75% 57.04**  57.38%** | 41.70***  44.72*** | 58.09***  59.47***
30% 70% 54.18***  H4.53*** | 39.52***  42.47*** | 55.18"**  56.53***
40% 60% 4727 47.64% | 34.57F  37.31%F | 48.20%**  49.45%*
50% 50% 38.22%**  38.53** | 28.58***  30.92*** | 39.13***  40.17***
60% 40% 27.07*  26.87* | 21.17**F 22.85%** | 27.91**F  28.51%**
70% 30% 15.86*"*  15.17*** | 12.42** 13.25% 17.24***  18.05**
75% 25% 12.14** 12.10** 8.24 10.26 13.81** 15.03*
80% 20% 11.23**  11.36** 9.55 11.65 12.51* 15.59*
90% 10% 18.94***  20.30*** | 9.67* 18.92*** | 19.87***  22.60***
100% 0% 32.24*** 3571 | 17.87***  22.98*** | 32.32***  36.17***
Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, ** *** _ the null
hypothesis can be rejected at a 10%, a 5% and a 1% confidence level, respectively.

Hp: the time series follows an auto-regressive model of the p-th order, with no Markov
switching, Hy: the time series follows a MS(m-s)-AR(p) model.

contained in the 7y, vector (e.g. for the MS(1-2) model v, = 032 and the
MS(2-1) model 9o, = pb and the distribution is similar). Furthermore, it
seems that the results do not depend on sample %4, as the distribution of
the SupQ statistic is similar for all tested samples. If it were true that the
distribution of the test statistic is dependent on the number of elements in
the 45 vector, the impact of other determinants as a magnitude of the pa-
rameter could be disregarded. It would imply that the Garcia test statistic
could be tabulated, which would considerably simplify the testing of Markov
switching models. It would be a very interesting field of study to test this
supposition but it is out of the scope of this work.

Table 3.8 shows the results of the Garcia LR test. These results are based
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on the distribution of the SupC statistic listed in Tables J.1-J.13 in Appendix
J. The Garcia test shows that the null hypothesis of no regime switching can
be rejected for most of the tested cases at the 5% confidence level. For a
heteroscedastic Markov model with no regime in the mean equation, the null
hypothesis can be rejected for all portfolios, irrespective of whether the model
includes an auto-regression term or not. For a homoskedastic Markov model
and a regime-dependent mean equation, the null hypothesis of no regime
specification can be clearly rejected for all but three portfolios: with a 75%,
an 80%, and a 90% bond engagmet in the case of the MS(2-1) and with 70%,
75%, and 80% bond investment in the MS(2-1)-AR(1) case, respectively. For
the heteroscedastic model with a regime-dependent mean equation, most of
the portfolios are also better fitted with the regime model than with the linear
models. For the MS(2-2) model, the null hypothesis can only be rejected for
a portfolio with an 80% bond investment and for the MS(2-2)-AR(1) model,
for portfolios with a 75% and an 80% bond engagement.

The Garcia test reports Markov switching in almost all models and sam-
ples. However, it gives no answer to the question of which of the models

should be used (see discussion in Section 3.5.2).

3.7 Conclusion

This Chapter has presented several tests for Markov switching models. The
majority prefers the MS(1-2)-typed models or at least indicates that they
are as good as other Markov switching models. Additionally, the tests report
that auto-regression effects are only present in portfolios with a very high
bond exposition. This result is independent of the type of the model.

The Wald test rejects the MS(2-1)-typed models in favor of the MS(1-

129



2)-typed and the MS(2-2)-typed models. Given that the Wald test rejects
the hypothesis of no regime switching in the intercept, the MS(2-2)-typed
models seem to be overparametrized.

The LR test yields that the transition probabilities can be modeled with
a Markov chain of the first order for most of the models. This assump-
tion is rejected only for MS(1-2)-AR(1) and MS(2-1)-typed models with a
minimum bond engagement of 70% and, in 2 of 13 cases, for the MS(2-2)
model. Furthermore, the LR test rejected the MS(2-1)-typed models in favor
of MS(2-2)-typed models, but the MS(2-2)-models are rejected in favor of
the MS(1-2)-models. This leads to the conclusion that the MS(1-2) model is
the best choice (as portfolios with a high bond engagement failed the Markov
chain test).

The NTW test favors the MS specification for almost all models and all
samples. It states that the MS approach models well-mixed portfolios of
German stock and bonds. Unfortunately, it does not provide any hint as to
which of these is the best.

The LM test is passed positively only by the MS(2-1)-AR(1) model. The
MS(1-2)-AR(1) model fails all LM tests with the exception of portfolios with
a 90% and a 100% bond exposition. For the remaining models, only ap-
proximately half of the portfolios pass the test. This test is the only one
which rejects the null hypothesis of no additional ARCH effects for so many
models. This suggests that for these models an extra regime or a Markov
switching model with a (G)ARCH term should be tested additionally. As
there is no option pricing model for Markov switching with (G)ARCH effects
available, the second alternative will be neglected. The estimation of the
MS model with three regimes will be discarded, as the testing of the null

hypothesis of two regimes against the alternative of three regimes becomes
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very complicated.

The Garcia test is another test which shows that German stock-bond
mixed portfolios exhibit regime switching characteristics. The MS(1-2)-typed
models passed the test for all studied portfolios. For the remaining MS
models, there were few portfolios with a middle high bond engagement which
failed the test.

Both information criterion tests showed that the Markov switching models
better fit the studied portfolios than the models from the GARCH family and
the linear models. For samples with a middle high bond exposition, certain
models from the GARCH family had a slightly higher test statistic. However,
the difference is small. Moreover, the SBC statistic shows that for portfolios
with a bond exposition between 70% and 80% the linear GBM also ranked
better than MS models. This phenomenon is not observable for the AIC
statistic. As the tests with the linear null hypothesis reject linearity, this
one outcome will be neglected. Moreover, the AIC and SBC tests show that
models with a very high bond engagement show an additional auto-regression
term. This is true for all tested models, regardless of whether it was an MS,
a GARCH or a linear model family.

In conclusion, the majority of the tests used here show that the Markov
switching model is very useful in explaining the stochasticity of the tested
portfolios. The MS(1-2)-typed models are either the best or at least as good
as other MS models. MS(2-2)-typed models also fit the German portfolios.
However, they seem to be a little overparametrized. Therefore, in the next
part of this dissertation the MS(1-2) model will be used for pricing the guar-
antees embedded in personal pension products. Admittedly, the samples with
90% or more bond exposition should be modelled with the MS(1-2)-AR(1)

model. Unfortunately, there is no option pricing theory in which the under-
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lying instrument follows a Markov switching model with an auto-regression
term. Therefore, the auto-regression term will be omitted. As this assump-

tion applies for two samples only, this seems acceptable.
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Part 11

Investment Guarantees
Embedded in Individual

Pension Products
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Chapter 4

Pricing of investment

guarantees

This Chapter shows how to price guarantees embedded in personal pension
products. In Section 4.1 we define the model of the financial market consid-
ered. Section 4.2 discusses the Contingent Claim Pricing Theorem introduced
by Harrison and Pliska (1981). Section 4.3 addresses conditions for the exis-
tence of the option price and Section 4.4 its uniqueness. Section 4.5 defines
the Esscher risk-neutral probability measure and shows how it can be used to
price a European put option. In Section 4.6 we show how to price put options
when the price of the underlying follows the geometric Brownian motion or
the geometric Brownian motion with Markov switching. In the first case we
use the Black and Scholes (1973) price and in the second case, the Bollen
(1998)-Hardy (2001) and the Webb (2003) price. In Section 4.7 we price
the cost of investment guarantees embedded in personal pension plans and

discuss its sensitivity to several factors. Section 4.8 concludes the results.
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4.1 Financial market

4.1.1 Money market account and risky stock

First, let us define the financial market. To do this, one has to define assets

that can be traded on this market: the risk-free bond and the risky asset.

Definition 4.1 (Frictionless market) A frictionless market is a market
where there are no taxes, mo transaction costs, a perfect divisibility of fi-
nancial instruments, a perfect liquidity, no short-sales constraints, and no

borrowing constraints.

Definition 4.2 (Money market account) Let (B;);>o be a deterministic
process defined as follows

dBt = TBt dt,

where the constant r denotes the risk free rate. Furthermore, let the initial
value of B equal to unity (By, = 1) and let B, be arbitrarily divisible, then it

is called money market account (or risk-free bond).

Definition 4.3 (Risky asset) Let (2, F,P) be a probability space, let (St)i>o

be a positive stochastic process

where X, is a stochastic variable representing the return rate of S;. Further-
more, let Sy be arbitrarily divisible, then it is called a (non dividend paying)

risky asset (e.g., stock or portfolio of stocks).

Now one can define the financial market.
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Definition 4.4 (Financial market) Let (Q2,F,P) be a probability space,
let (Bi)i>o and (St)i>0 be a money market account and risky stock, respec-
tively. Then the tuple M = (By, St)i>o is called a financial market. Further-

more, it will be assumed that the the financial market is frictionless.

4.1.2 Contingent claim

Now we can define a contingent claim.

Definition 4.5 (Contingent claim) Let M be a financial market defined
on a filtered probability space (2, F,P), and for given t let H, be a non-
negative random variable measurable with respect to the filtration F;, and let

f:R —R be a function. Then

Hy = f(S)
15 called a contingent claim.

An example of the contingent claim which we are interested in is a Euro-

pean option.

Example 4.6 (European call (put) option) The European call H® (put
HY) option is a right, but not an obligation, to buy (sell) the risky stock S
at a defined price K, called exercise price, at expiration time (or maturity)

T. The payoff of the call is given by the function

HE = (S — K)* (4.1)
and the payoff of the put by

Hy = (K= Sr)* (4.2)
(Elliott and Kopp 2005, p. 6).
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Theorem 4.7 (Put-call parity) Let M be the financial market and let HE
and HE be the call and put option with the exercise price K and maturity time

T, respectively. Then the equation
HY — HI = S, — Ke "™
holds (Elliott and Kopp 2005, p. 9).

Proof. To prove the put-call parity, we first define two portfolios: (1) a
long call and a short put position, both with the same strike price K and
expiry date T', and (2) a long position in a stock Sy, and a short position

—r(T—t

in a discounted zero-bond with the value of Ke ), the face value K, and

expiry date 7. From the definition of the call (see equation (4.1)) and the
put option (see equation (4.2)) we know that at time 7 their values have to
be equal

HY — HE = (Sp —K)T — (K= S7)" =57 — K. (4.3)

Thus, the following has to hold true
HE —HF =8, — Ke"@1), (4.4)

Otherwise, arbitrage would be possible, i.e., everyone who buys the under-
priced portfolio and sells the overpriced portfolio could make a riskless profit

(Elliott and Kopp 2005, p. 9). =

4.1.3 Self-financing trading strategy
Now let us address the task of defining the trading strategy.

Definition 4.8 (Trading strategy) Let M be the financial market defined
on a filtered probability space (Q, F, P), and let ¢ = (¢)o<i<t = (2, 07 )to<t<r

€ R? be a measurable, stochastic vector process adapted to the filtration F;.
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Then ¢ is called a trading strategy. Stochastic variables o2 and @} can be in-
terpreted as the amount of riskless bond B; and the amount of the risky asset

Sy in the investor’s portfolio, respectively (Elliott and Kopp 2005, p. 29).

Furthermore, we can define the portfolio wealth and gain.

Definition 4.9 (Wealth (value) and gains process) Let M be a finan-
cial market defined on a filtered probability space (2, F,P), and let ¢ be a
trading strategy. Then, for all t € [ty, T| the process,

Vi(9) = o B + ¢} Sy
is called a portfolio wealth (portfolio value) and the process

t t
Gi(d) = / BB, + / 2S4S,

to to

is called a gains process, respectively (Bingham and Kiesel 2004, p. 230).

Remark 4.10 [t is clear that the change in the portfolio value is dependent
on the change in the value of the money market account and the change in

the stock price
AVy(¢) = pBdB, + ¢5dS,, Yt € [ty T). (4.5)

Definition 4.11 (Self-financing strategy) Let M be a financial market
defined on a filtered probability space (2, F,P), let ¢ be a trading strategy,

and let Vi(¢) be a value process, satisfying the condition

t

t
Vi(6) = Vi (6) + / oBdB, 1 / S5dS, = Vo (6) + Gil(@) VL€ [to,T].
i i (4.6)

Then ¢ is called a self-financing strategy (Musiela and Rutkowski 2007, p. 89).

Notation 4.12 Let ® denote the class of all self-financing trading strategies.
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Remark 4.13 The intuition behind the self-financing strateqy is the follow-
ing: The agent invests an initial capital Vi, (¢) in the portfolio of money
market account and risky stock. Then he rebalances his investment by (con-
tinuously) trading the risk-free bond and the risky stock in such a way that

he neither adds additional capital to the portfolio nor withdraws it, i.e.
Bidp? + Sidg; =0 (4.7)
(Elliott and Kopp 2005, p. 185-184).

As will be seen later, it is more convenient to work with discounted values

than with “real” values.
Notation 4.14 If we introduce an intrinsic discount process
ﬂt - Btoeir(titO)a

then the process

Sy = (S,

is called a discounted risky asset. By Analogy, the process

‘N/t(d)) = BVi(¢) = ‘Pf + Sotsgt

18 called a discounted wealth, and the process
o~ t o~
Glo) = | 33,
to
is called a discounted gains process. Obuviously, the discounted money market
account is equal to unity for all to < t < T (i.e. B, = 1) (Harrison and
Pliska 1981, p. 256).
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Proposition 4.15 Let M be a financial market defined on a filtered probabil-
ity space (2, F,P), and let ¢ be any trading strategy. Then ¢ is self-financing
iof and only of

Vi(9) = Vip(#) + Gi(0), VL€ [to,T] (48)

(Harrison and Pliska 1981, Theorem 3.24, p. 238).

Proof. Let t € [t,, T]. If ¢ is a self-financing strategy, then
dVi(¢) = @ dB: + ¢} dS;.

From this it follows that

dVy(¢) = d(B,Vi(9)) = —1Vi(¢)dt + B,dVi(¢)
= —Tﬁt(%?th + @fst)dt + @(SO?dBt + SOtSdSt)

= O3 (—rBiSudt + 3,dSy) = 7dS,,

which is equivalent to (4.8). The converse direction can be proven by using
the definition of the discounted portfolio value V;(¢) = XZ(¢), reversing the
steps above and using (4.8) (Elliott and Kopp 2005, p. 184). =

4.2 Option pricing

4.2.1 Equivalent martingale measure

To price contingent claims, we have to define the martingale and the mar-

tingale probability measure.

Definition 4.16 (Martingale) Let (X;)i,<i<r be a stochastic process on
the probability space (Q, F,P). Let

Ep[X,|F,) = X, (to < s <t <T).
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Then X is called a P-martingale (martingale under measure P) (Rolski et al.

1999, p. 379).

Definition 4.17 (Equivalent (risk-neutral) martingale measure) Let
P and Q be two probability measures, and let (S¢)i>t, be a stochastic process

with associated filtration F;. Then

e Q is an equivalent martingale measure (or risk-neutral martingale mea-
sure) with respect to the given probability measure P if Q is equivalent
to P (Q ~ P). This means that both probability measures have the
same null set (V A€ Q Prp[A] =0 < Prg[A]=0)

e and the discounted risky stock is a Q-martingale, i.c. Bo[S,|F,] =

Ss (to < s <t <T) (Harrison and Pliska 1981, p. 236).

Notation 4.18 Henceforth we will denote the set of all equivalent martin-

gale measures of the probability measure P as P.

To change one (not necessarily martingale) probability measure to an-

other, we have to use the Radon-Nikodym density.

Definition 4.19 (Radon-Nikodym density) The Radon-Nikodym density
of Q with respect to P is defined as the unique Fr-measurable random vari-

able Ar, such that for any event A € Fr we have

Q A

(Musiela and Rutkowski 2007, p. 606).

Remark 4.20 Definition 4.19 implies that for any Q-integrable random vari-
able X, we have Eg|X] = Ep[XAr]. Note also that X is Q-integrable if and
only if X Ar is P-integrable. Finally, it is easy to check that Prp[Ar > 0] =1
and Ep[Ar] = Prg[Q] =1 (Musiela and Rutkowski 2007, p. 606).
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Notation 4.21 (Radon-Nikodym derivative) To emphasize the role of
At as the link between the expectations with respect to Q and P, it is cus-

tomary to use the short-hand notation

dQ

A = —
tap

which is called the Radon-Nikodym derivative (Musiela and Rutkowski 2007,

p. 607).

Definition 4.22 (Radon-Nikodym density process) LetP and Q be equiv-
alent probability measures, and let (F;)iepo,r) be a filtration. Then, for all
t e [to,T],
Ay = Ep[Ar|F] = Ep l%’ft}
is called a Radon-Nikodym density process (Musiela and Rutkowski 2007,
p. 607).

Remark 4.23 It is obvious that the process (A¢)i,<t<7 i a P-martingale.

Proposition 4.24 A stochastic process (Xi)y,<i<r is an F-martingale un-
der Q if and only if the process (XiA\¢)w<i<r 1S an F-martingale under P
(Musiela and Rutkowski 2007, p. 607).

Proof. Assume that (X;A;)s<i<r is an F-martingale under P, so that equal-
ity Ep[X Ay|Fs] = X Ag holds for tg < s <t < T. Using the Bayes formula
_ Ep[XiAr|F]  Ep[XiEp[Ar|F ]| F

Bl = Al —  EpArIZl
_ E'P[XtAt|Fs] _ XSAS X
As As Ep

we conclude that the stochastic process (X;)y<i<r is an F-martingale under
P. The proof of the converse implication goes along the same lines (Musiela

and Rutkowski 2007, p. 607). =
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4.2.2 Option pricing formula

So far we considered all self-financing strategies. However, from an economic

point of view, only some of these are of importance.

Definition 4.25 (Admissible strategy) Let M be a financial market de-
fined on a filtered probability space (U, F,P), and let ¢ be a trading strategy.

If the discounted portfolio process is non-negative for all to <t < T
Vi(¢) > 0,
self-financing
Vi(@) = Vi, (¢) + Gu(9),
and a Q-martingale
Eo[Vi(9)|F] = Vi(9),

then ¢ is called admissible (Harrison and Pliska 1981, p. 240-241).
Notation 4.26 Let ®* denote the class of all admuissible trading strategies.

The non-negativity condition rules out some short-selling strategies. The
short selling of the risky asset is allowed in general, but only if the value of
the whole portfolio is non-negative. Let us now concentrate on a special class

of the admissible strategies: the hedging strategies.

Definition 4.27 (Attainable contingent claim) Let M be a financial mar-
ket defined on a filtered probability space (2, F,P), and let Hy be a contingent

claim. If there exists an admissible trading strateqy ¢ € ®* such that

‘7T(¢) = prHr

then claim Hr is called attainable (replicable, or hedgeable). We say that

¢ generates the contingent claim Hp, and the initial capital Py, = XN/tO () is
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called the price of this claim (Harrison and Pliska 1981, p. 240). Then we
say that the price Py, = XN/tO (¢) is price associated with the contingent claim

Hr.

The idea of the hedging portfolio is that, with a positive start capital V,
and continuous buying and selling bonds and stocks, the agent can track the
value of the contingent claim without investing additional capital after to. In
this manner the seller of the put can protect himself from potential loss. If
he sells a put for the price of V;, and invests this amount in the self-financing
trading strategy, he will avoid additional costs at the expiration time in the

case that the buyer would want to deliver the contract to the seller.

Theorem 4.28 (Contingent Claim Pricing Theorem) Let M be a fi-
nancial market defined on a filtered probability space (2, F,P), let Hr be an
attainable contingent claim, and let @ € P # 0 be an equivalent martingale

measure. Then, a unique price Py, associated with an attainable claim Hyp is
Pi, = Eo[frHr]
(Harrison and Pliska 1981, p. 240).

Proof. Since the contingent claim is attainable, it is true that

V() = BrHr. (4.9)

As each attainable claim is also admissible, the discounted value process is a
O-martingale

Eo[Vr(¢)|F] = V.. (4.10)

Thus, from equations (4.9) and (4.10) the Theorem 4.28 follows. m
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4.3 Existence of the solution (Arbitrage)

Until now, we have assumed that the set of all equivalent martingale measures
P is not empty. Let us now study the conditions that have to be fulfilled for
the existence of the option price.

The following will define the arbitrage opportunity.

Definition 4.29 (Arbitrage opportunity) Let M be a financial market
defined on a filtered probability space (2, F,P), and let (¢1)i,<i<r be a self-

financing strategy with zero initial investment

Vio(¢) = 0.

If the value process Vi(¢) determined by this trading strategy has a certain

non-negative value at the maturity T'
P(Vr(¢) 2 0) =1,

and there is some positive probability that the value of this portfolio will be

positive at the maturity T

then the self financing strategy ¢ is called an arbitrage opportunity (Bingham
and Kiesel 2004, p. 232).

From an economic point of view the arbitrage opportunity is practically
a money making machine, as it enables the investor to make a profit without
investing any start capital. Thus, an arbitrage-free market can be defined as

follows.

Definition 4.30 (Arbitrage-free market) The financial market M is ar-
bitrage free if there are no arbitrage opportunities in the class of self-financing

strategies (Bingham and Kiesel 2004, p. 106).
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Now we can define the condition of existence of the price for the contingent

claim.

Theorem 4.31 (First Fundamental Theorem of Asset Pricing) Assume
that the set of equivalent martingale measures is non-empty (i.e. P # (), then
the market model M contains no arbitrage opportunities in the set of trading

strategies (Bingham and Kiesel 2004, p. 234).

Proof. Let the set of equivalent martingale measures P be not empty, and
let Q be a martingale measure from this set, and let value process V;(¢) be an
arbitrage opportunity for the self-financing strategy. According to Definition
4.29 of the arbitrage Vi, (¢) = 0, Prp[Vr(¢) > 0] = 1 and Prp[Vr(¢) > 0] > 0.
As Q is equivalent to P, then Prg[Vr(¢) > 0] = 1, which is equivalent to

PQr[VT(gb) <0]=0. (4.11)
From the Definition 4.17
Eo[Vr(9)] = Viy(¢) = 0. (4.12)

Equations (4.11) and (4.12) imply that Prg[Vr(¢) > 0] = 0, which from the
equivalence of Q and P, gives Prp[Vr(¢) > 0] = 0. This contradicts the

definition of arbitrage. Therefore, the arbitrage opportunity does not exist

(Shreve 2004, p. 231). =

Remark 4.32 Thus, if we prove that no arbitrage opportunity does exist, we
can state that the price of the contingent claim H,, with the payout function

f(St) does exist, such that

inf Eo[fr_t,f(ST)] < Hyy < sup Eg[Br—, f(S7)].
QeP QeP
We know that bounds exist, because P is finite.
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4.4 Uniqueness of the solution (Completeness

of the market)

In the previous section we have shown that the price of the contingent claim
exists if the market is arbitrage-free. Now let us study the conditions when

the price is unique. First, we introduce the definition of a complete market.

Definition 4.33 (Complete market) A market M is complete if every
contingent claim is attainable, i.e., for every Fr-measurable random variable
Hr there exists a replicating self-financing strateqy ¢ € ®, such that Vy(¢) =
Hr (Bingham and Kiesel 2004, p. 116). If the market is not complete then

it 1s called incomplete.
Now we can formulate the Second Fundamental Theorem of Asset Pricing.

Theorem 4.34 (Second Fundamental Theorem of Asset Pricing) As-
suming the absence of the arbitrage, the market model is complete if and only
if the set of equivalent martingale measures P is a singleton (i.e., the equiv-

alent martingale measure Q is unique) (Bjork 2004, p. 151, 198).

Proof. Let the model be complete in order to prove that a unique equivalent
martingale measure exists. Furthermore, we assume that there exist two
martingale measures: Q; and Q,, which are equivalent to P. Let event A
be an element of the filtration F7. Now consider a contingent claim with
the payoff function Hy = (. 1]I[ 4)- As the market is complete, there exists a
replicating self-financing strategy ¢, such that Vy(¢) = Hy. The discounted
portfolio value YN/T(¢) is a martingale with respect to Q; and Q,, because
both these measures are risk-free. Thus,

Pr[A] = Eq, Vr(9)] = Eq,[Hr] = Hi, = Eo,[Hr] = E,[Vr(9)] = PrlA].
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Thus, the risk-free measure is unique (Q; = Qs). The proof in the opposite
direction takes much longer and can be found in Shreve (2004, p. 232-234).

4.5 Esscher risk-neutral probability measure

In incomplete markets there exist several risk-neutral probability measures.
In this dissertation the Esscher martingale measure will be of particular in-
terest.

The Esscher transformation is a well-approved tool among actuaries, and
was originally developed by Esscher (1932) to transform a random variable;
to give it a new distribution captured at a point of interest. The purpose
of this is to enable more accurate approximations to be made at this point.
Gerber and Shiu were the first to use the Esscher transform to price European
(Gerber and Shiu 1994b) and American options (Gerber and Shiu 1994a).
This Section introduces how to use the Esscher martingale measure to price
options.

First, we make the following assumption.

Assumption 4.35 Let M be a financial market defined on a filtered prob-
ability space (2, F,P), where the risky stock is a continuously compounded
return rate process (Xi)i>t, with stationary independent increments and the

initial value Xy, = 0, such that

Sy = Sy,et,  forallt >t (4.13)
(Gerber and Shiu 1994b, p. 102).
Notation 4.36 Let

F(z,t) = I;r(Xt <z) forallt>tyandx R
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denote the cumulative distribution function of the process X, with the asso-

ciated density function
d
f(x,t):d—F(a:,t), for allt >ty and x € R
x

and the moment generating function

Mz, t] = E [e*¥] = / e f(x,t)dx,  forallt >ty and z > 0,

o0

respectively (Gerber and Shiu 1994b, p. 102).

Proposition 4.37 Assume that M|z, t| is continuous, then
Mz, t] = M'[z, 1]

(Gerber and Shiu 1994b, p. 102).

Proof. For proof, see Breiman (1968, Section 14.4) or Feller (1971, Section
IX.5). m

In the following, we will introduce the Esscher density function.

Definition 4.38 (Esscher equivalent martingale measure) Let P be a
probability measure, let F; be a filtration, and let h € R for which the moment
generating function M[h,t] exists, then the Radon-Nikodygm derivative

dQ " f(xt) e f(zt)

AP s, [T e fly.t)dy — Mih,1]

defines the Esscher equivalent martingale measure Q with respect to param-

eter h (Gerber and Shiu 1994b, p. 102-103).

Notation 4.39 Hereafter, the following notation will be used

aQ| '
ﬁ . - f(l',th)
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Remark 4.40 The Esscher transformed moment generating function is

Mz, ¢, h| = /OO e f(x,t; h)dx = % (4.14)

— 00

(Gerber and Shiu 1994b, p. 103).

Proposition 4.41 Assume that M|z, t; h] is continuous, then
Mz, t; h] = M![z, 1; h]

(Gerber and Shiu 1994b, p. 103).

Proof. The proof results from Proposition 4.37. =

Proposition 4.42 (Existence and uniqueness of the Esscher parameter)

Let r be a constant risk-free rate, then it holds that
r=InM]JL, 1; hg] (4.15)

and has the unique solution h = hg (Gerber and Shiu 1994a, p. 664 and
Gerber and Shiu 1994b, p. 104).

Proof. First of all, we prove the existence of the solution. As the Esscher
probability measure is risk-neutral, the discounted stock has to be a Q-

martingale

Sy, = Egle ") G,].

From equation (4.13) it follows that
Sy, = e "t G, By [eX(f—%)} .
If we omit S;, and use Remark 4.40 and Proposition 4.41, we get
et = MI[1, (t — ty); ho] = M1, 1; ho] ™",
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which is equivalent to

r=InM[1, 1; hg],

which, in turn, proves the existence of the solution (Gerber and Shiu 1994b,
p. 103-104).

Now let us prove the uniqueness of the solution. Consider a function g(h)
g(h) =InM][1, 1; h)
for all h, such that M1, 1; h] exists. From Remark 4.40 we have
g(h) =IM[h +1,1] — InM[h, 1] = InE [e"*V¥1] —InE [¢"V] .
Note that
E [X,e®+D%]  E[X;ehX]

g(h) = E[e®tDX1] R [ehX1] = E[X1;h+1] - E[Xy; 4]

_ lstxoer]

where E[g(X;); h] = Box] Furthermore,

dE[Xy;h)  E[XPe"M]  (E[X;eM]
dh  ElehX] E [ehX1]

2
) = Var(Xy;h) > 0,

as X; is a non-degenerate random variable. Thus, the first derivative of
E[X{;h] is a strictly positive and the expected value E[X7;h| is a strictly
increasing function. From this it results that the function g(h) is strictly
increasing, and thus the equation g(h) = r has a unique solution: h = hg

(Gerber and Shiu 1994a, p. 664). m

Remark 4.43 The Esscher equivalent measure is unique. However, this

does not mean that other risk-neutral measures do not exist.

Remark 4.44 Note that fort > tg

tht tht (St)h

(M[A, 1))t E[ehX]  E[(S)"]’
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Thus, we can construct the following factorization rule, which is very

convenient, as it saves us some complicated calculations.

Proposition 4.45 (Factorization formula) Let g be a measurable func-

tion and let h,k,t be real numbers, with t > 0, then it holds that
E[SFg(S:); h] = E[Sy; hE[g(Sh); k + I
(Gerber and Shiu 1996, p. 188).

Proof.
X T E[SEg(Sy)]
(MR, 1)) E[S]]
_ E[SFT™E[Sf"g(Sh)]
~ E[SP] R[S
(Gerber and Shiu 1996, p. 188). =

E[Sg(St):h] =E | Sig(S:)

= E[S}'; hE[g(S,); k + h]

Now we can use this factorization rule to find the put price via the Esscher

risk-neutral measure.

Theorem 4.46 (Put price via Esscher risk-neutral measure) Let M
be a financial market defined on a filtered probability space (2, F,P) and let
Q be an Esscher equivalent martingale measure, let F(x,t; h) be an Esscher
transformed cumulative distribution function with respect to parameter h, and
let P be a European put option with the expiration date T and strike price K.
Then, the price of this contingent claim is given by

Siy

K ,T—to;hg) — S, F (—ln%

P, = e "TOKF (— In T —toho + 1)

Proof. According to the definition of the put option (4.2) and the Contingent
Claim Pricing Theorem 4.28, the price is equal to

Pto = EQ[G_T(T_tO)f(STHFtO]
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with f(S7) = (K — Sp)*. If we write,
Py = Eole " "/(K — S7)*|F,]
= ¢ "TTOKE[l5p<i)] — ¢ " Eg[Srlisy<k]
we can use the factorization formula from the Proposition 4.45 with
9(S7) = Lisp<k) = s, er <) = Lz<ink—1n 5,5
where x = Xp_;,. Then,

Pto _ e—T(T—to)

KEQ [H[a:<ln K—In Sto] ; h’Q]

_ e_r(T_tO)EQI:ST; hQ]EQ[H[$<1n K—lHStO]; hQ + 1]

As we have Eg[l4] = Prg(A) and Eg[StT; ho] = St)O((T_tO) we get
P,, = e "0KPr $<—1D%'hg — S, Pr|z < —ln%'hg%—l
’ Q K’ o) K’

S, S,
= G_T(T_tO)KF (— In %,T — t(), hg) - StoF <— In %,T — t(), hQ + ].) s

which completes the proof. =

4.6 Option pricing

4.6.1 Black-Scholes market

Now we can use the Esscher martingale measure to prove the well-known
Black and Scholes (1973) option pricing formula. This formula can be used

to price options in a complete market.

Definition 4.47 (Black-Scholes financial market) Let Mps = (B, S;)
be a financial market defined on a filtered probability space (2, F,P) where

the risky stock (St)i>t, follows a geometric Brownian motion

t t
Sy =S4, +/ ,uSudu—l—/ oS, dW,,.

to to
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where p € R denotes the drift, o > 0 the diffusion parameter, and W,
standard Wiener process, respectively. Then the tuple Mpgg is called Black-

Scholes financial market.

Theorem 4.48 (Black-Scholes option pricing formula) Let Mpgg be a
Black-Scholes financial market defined on a filtered probability space (2, F,P),
then the price of a Furopean put P with the expiration time T and the strike

price K is given by

P,, = Ke "T=0)®(—d,) — S, &(—d,)

with g
g = et (r+ 50°) (T~ to)
U\/T - to
and

dgzdl—U\/T—to,
where ®(-) denotes the standard normal distribution function.
Proof. As the stock process is a geometric Brownian motion, the stock

price process follows a log-normal distribution with the moment-generating

function

1 22)t

Mz, t] = eW=t2o =)t
From equation (4.14) it follows that
2 L 5
In Mz, ¢; h| = ((,u + ho®)z + 50°% ) t. (4.16)

Thus the return of the stock has a mean ut under the real probability measure
P and (u + ho?)t under the risk-neutral Esscher measure Q, respectively.
Note that the variance of the return is unchanged under both measures: o?t.

Therefore, returns X; are normally distributed
X, ~ N((p+ ho?)t, o%t). (4.17)
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Equations (4.15) and (4.16) yield the risk-free rate of return

1
r=(p+hgo?) + 502

and equivalently the unique Esscher parameter is

Thus, the mean rate of return under the Esscher measure Q is
1,
po=r1-= 50" (4.18)

Equations (4.17) and (4.18) imply that the cumulated distribution function

Floth) = @ (x— (r —10?) (t—to)>

is given by

Vit — 1o

From Theorem 4.46 the put price equals

Siy

S
P, =e"(T~0KF (—m%,T — o h) S (—m T = tosh 1)

St
-tk (JH Yl 4T - to>>

¢ 0 _1115—;;0 + (r+ 50%)(T — to)
o J\/T—to ’

which completes the proof'. m

!This proof is analogous to the proof for the price of the call option given by Gerber

and Shiu (1994b, p. 107-108)
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4.6.2 Markov Switching market

This Section will discuss option pricing in a special incomplete market: the

Markov switching market.

Definition 4.49 (Markov switching financial market) Let Mg = (B, St)
be a financial market defined on a filtered probability space (2, F,P), let
(Zi,)tn>0 (where t, = nt, n € N and 7 is a fized positive number) be a
Markov chain with the transition probabilities
pji = Pr(Zy, = j|Z,_, =], with Y p;=1, andi€ K,
jeK
and the state space KK = {1,2,..., K}. Let (Wy)i>0 be a Wiener process, with
Fi = o{Z,,S;, Wy - t > 0} being an associated filtration, and pu(Z;,) and
o(Z;,) being associated processes. Furthermore, let the risky stock Sy follow
a geometric Brownian motion with Markov switching
t t
Sy =Sy, + /to w(Zy)Sudu + /to 0(Z,)S.dW,, fort € [tn, thi1),

then, the tuple M s is called a Markov switching financial market.

Under the classic geometric Brownian motion, the financial market is
complete, so that there exists a unique martingale measure Q. However,
Chapter 3 shows that the Markov switching model is a better model to
describe the stochasticity of the risky portfolio underlying the guarantee. In
this model, the variance is stochastic and, thus, the market is not complete
anymore. The option pricing in such an economy is not straightforward
because there exists no unique equivalent probability measure and, therefore,
no unique price of the option. Thus, a reliable choice of the martingale
measure has to be made. This section discusses two possible choices: the

Bollen-Hardy and the Esscher measure.
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4.6.2.1 Bollen-Hardy option pricing formula

Bollen (1998) was the first who priced options in the Markov switching model.
His approach bases on the discrete time model. In this thesis, we discuss the
extension to the continuous time made by Hardy (2001). This method is
based on the model with stochastic volatility. However, the main drawback

to this model is that it does not price the switching risk.

Theorem 4.50 (Bollen-Hardy option pricing formula) Let Mg be a
Markov switching financial market defined on a filtered probability space (2, F,P)
and the state space K = {1,2}, and let the transition probability be unchanged

under the equivalent martingale measure Q, i.e.
F’;I'[Ztn = j’Ztn—l = /L] = %T[Ztn = j‘Ztn—l = /L] fO?“ all Z,j c IC, (419)

then the Bollen-Hardy price of a European put P with the expiration time T
and the strike price K is given by

Py = Y Pr(R=i)[Ke " P(~ds(R = i) — Sy®(—dy (R = i))]

with g
01 (R) = In =22 — (r+ Rio? + (N — R)io2) (T — to)
R VRZ+ (N - R)o2VT — Iy
and

do(R) = dy(R) — \/Ro? + (N — R)o3\/T — 1o,
where N € N denotes the number of “switching” periods (i.e. T — ty =
N(t, — tn_1)), R the number of periods when the stock price process is in
regime 1 (i.e. R = Zth iz, =1), and ®(-) the standard normal distribution
function (Hardy 2001, p. 49).
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Proof. According to the definition of the put option (4.2) and the Contingent
Claim Pricing Theorem 4.28, the price is equal:

Py = e T Eg[(K — S7)t] = e " Eg[Eo[(K — ST(R))+]|R]

N
= Pr(R=i)e " Eg[(K - Sp)T|R =] ZPr = )P, (R=1).

Using the assumption (4.19),

N
ZPr =1)P,(R=1 :ZP;r =1)P, (R =1).

Under the condition that R, the number of periods the state variable has been
in the first regime is known, the risky stock follows the geometric Brownian

motion with drift Ry + (N — R)ps and diffusion \/Ro? + (N — R)o3. Thus,

we can use the Black-Scholes formula for the price of the put option.

P,y (R =1i) = Ke "I~ d(—dy(R = 1)) — So®(—dy(R = 1))

with p
0 (R =) = In =22 — (r+ Rio? + (N — R)io2) (T — to)
=1
' VERZ + (N — R)o2vT — 1t
and

do(R = i) = dy(R) — \/Ro? + (N — R)o3v/T — o,

which completes the proof. m

4.6.2.2 Webb option pricing formula

The Bollen-Hardy option pricing model assumes that the risk-neutral mea-
sure does not change (see assumption (4.19)). Neither Bollen nor Hardy
proved that this holds true, which is a drawback to this approach. Webb
(2003) proposed several models which allow to price the switching risk. In

her thesis, she proposed three martingale measures. They are based on the
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mean-variance hedging, the Esscher transform, and the minimum entropy.
They all have closed analytical solutions and give similar numerical results.
However, only the Esscher transform solution can be simulated via the Monte
Carlo method. We decided, though, to use this method, as the guarantees we
price are path-dependent and can only be solved numerically. Furthermore,

the Esscher martingale measure Q has several additional advantages:

e The process under the new martingale measure remains in the same
class of models as the process under the real-word probability measure
P. In the considered case, it means that the prices under the Esscher
transform follow the geometric Brownian motion with Markov switch-

ing, see Gerber and Shiu (1994b, p. 163-165, comment of Michaud).

e The solution reduces to the well-known Black and Scholes (1973) for-
mula for the case of one switching regime (K = 1), see Corollary 5.4.4

in Webb (2003).
e The Esscher measure allows the pricing of the switching risk.

e Finally, the Esscher transform approach is conform with maximizing
the expected utility with the constant risk aversion utility function
u(z) = % (0 < v < 1), which is commonly used in financial models,
see Webb (2003, p. 88). This means, intuitively, that the agent prefers
to have more money than less. However, the wealth increase of €1, has
a smaller additional utility, the more the agent possesses. The agent

with this utility function is risk averse.

Theorem 4.51 (Webb option pricing formula) Let M s be a Markov
switching financial market defined on a filtered probability space (2, F,P)
and the state space KK = {1,2,..., K}, and let the transition probability be
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changed under the equivalent martingale measure Q, then the Webb price of

a European put P with the expiration time T and the strike price K is given

by

K K N
Pto,Jl Pto Zto - ]1 Z Z Hp]1+1]z

J2=1 IN+1=11=1
—_———

()

Ke*T(T*tO)cI)( d Sto exp {Z [ Hjrir — T + hﬂk Jk+17_] } é(_d;r)]

k=1

(. J/

(%)
(4.20)

with the Esscher transition probabilities

Dji €XP {h i — —0 ]7’ + 1027'/12}

ijlpji exp { hilp; — SO5]T + %O’?Th?}
(4.21)

pg-?) =Pr[Z, =j|Zi1 =i;h] =

and parameters

S, N+1 N-1
( t0> + Z 5 (IU’Jz :l: %UJZZ) T+ Zi:l (h’]z - h]N) 0-]2'1'4,_17_

(4.22)

where N denotes the amount of switches in the pricing horizon, 7 = (T —
to)/N the time period between two switches, and ®(-) the standard normal

distribution function (Webb 2003, p. 102-103).

Proof. For the proof for the call price, see Webb (2003, Chapter 5). Then
use the put-call parity, which completes the proof. m
To assure that the option price under the Esscher measure (4.20)-(4.22)

is unique we have to prove that the Esscher parameter vector is unique.
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Proposition 4.52 (Uniqueness of the Esscher parameter) The Esscher
parameter vector h is unique and can be computed numerically from the equa-

tions

K
1 1
iji exp {hi(uj — 5032-)7 + 50]27@2} (exp {uﬂ + JJQ-T}ZZ'} — e’"T) =0,
=1

(4.23)

knowing that h; is a unique point from the interval

min % , Max % (4.24)
J g; J o

(Webb 2003, p. 89-91).

Proof. The proof is analogous to the proof for Proposition 4.42 and can be
found in Webb (2003, p. 89-91) =

The term (%*) in the equation (4.20) determines the price of the put
for the given switching path (combination of regimes) ji, j2,. . .,jn+1, Which
is weighted with the probability (x) that the process will follow that path.
Finally, the price is computed for each possible switching path and added
together. Note that the term (%*) discloses some parallels to the well-known
Black and Scholes (1973) formula for the European put option: (a) The terms
d;r and d; correspond to d; and dy, respectively. (b) The exponential term
after Sy is consistent with the Black and Scholes formula as well because the
stock return by Black and Scholes is equal to the risk-free rate r. For the

discounted asset price St this yields
e TSy =e S et =5, (4.25)

Under the Esscher risk-neutral probability measure, the equity return is
equal to (uj, + hj, 07 )7, so this term does not reduce to Sy,.
Moreover, please note that the put price Py, ;, depends on the initial state

Jj1- To determine the price which is independent from the initial regime, the

162



interval 7 has to be decreased, due to the fact that the influence of the initial
state on the put price decreases as the length of the path grows (see Tables
7.1-7.3 in Webb (2003)). However, this is problematic, since the number of
combinations grows exponentially as the length of the path increases. This
is particularly problematic with regard to the long-term options, which are
studied in this dissertation. For instance, for two states (K = 2), 30 years
maturity, and one switch per year (N = 30), the number of combinations
(KN) equals 1,073,741,824. If the switch occurs every month (N = 360),
the number of combinations rises to 2.3-10%. Instead of increasing N, the
approximate price Py 4y, could be determined through weighting the initial
state-dependent prices in equation (4.20) by the unconditional Esscher prob-

abilities, so that the process stays in the i-th regime

K
Pto,app = Z Pto,i'/'rz'(h) (4.26)

=1

(

where the unconditional probabilities 7r2-h) could be computed with the equa-
tion (2.68) using the Esscher conditional probabilities pg»?) from equation
(4.21) instead of the real-world probabilities p;;. For other alternatives, see
the discussion in Section 4.7.2.1.

Due to the fact that contributions to retirement saving plans are paid
periodically, there exists no closed-form solution of the option pricing, thus
the formula (4.20) cannot be applied directly. However, it is possible to
simulate the option price with the Monte Carlo simulation with the return

mean

1 1
(uj - 5032-) T+ éhiafn' (4.27)

and the return standard deviation
o;T (4.28)
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and the Esscher transition probabilities given in the equation (4.21). For the
simulation algorithm under the Markov switching regime, see Hardy (2003,

p. 98).

4.7 Quantitative results

4.7.1 Outline of the study
4.7.1.1 Design of the guarantee

The German finance industry offers retirement saving plans, in which the
contributions are invested in risky portfolios (see Maurer and Schlag 2003,
and Griindl et al. 2004). These saving plans are co-financed by the state if the
provider includes a guarantee that at least the sum of the charged premiums
is paid out to the investor when the contract expires. This is equivalent
to a deterministic guarantee rate of 0% on the paid contributions. If the
provider’s investment strategy fails to generate this minimum return, he is
required to finance the difference between the market value of the portfolio
and the guaranteed amount. From an economic point of view, this guarantee

is a European put option with the following payoft:

PT = IIlaX{GT - ST, 0}, (429)
with the guarantee value
T-1
Gr =Y _ Cpe?T), (4.30)
tn=0

where P is the value of the option, and St is the market value of the risky
portfolio at the maturity 7', g is the guaranteed rate of return, and C  is the

contribution paid in at the time ¢,. The price of the put at the time t, =0
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equals the expected value of the payoff at the maturity under the risk-free

probability measure Q, discounted with the risk-free rate of return r
Po = ¢ "TEg[max{Gr — Sr;0}], (4.31)

where Eg|-| denotes the expected value under the probability measure Q.

4.7.1.2 Investment strategies

In this study we examine several investment strategies. They can be assigned
to three categories: buy-and-hold strategies, life-cycle strategies, and the
zero-bond strategy. In buy-and-hold investment strategies the client invests
% (with 0% < x < 100%) of his contributions in a well-diversified bond
fund and the remaining (100 — z)% in a well diversified equity fund. While
this proportion remains constant throughout the contract duration, the asset
allocation in both funds, however, can change over time. In this dissertation,
we analyze the following portfolio choices: x = 0%, 10%,...,100%, and,
additionally, z = 25% and z = 75%.

One of the main properties of the buy-and-hold strategies is the con-
stant stock proportion during the whole investment period. This investment
decision can, however, be suboptimal. A high proportion of stock implies a
higher risk level. This leads: on the one hand to a higher expected profit and,
on the other hand, to a higher guarantee cost, as the option price increases
along with the increasing risk. On the contrary, the choice of a low stock
proportion implies a lower risk level and causes a decrease of the guarantee
cost. Simultaneously, it leads to a decrease of the expected return from the
portfolio. Given that the goal of retirement savings is to provide a relatively
high income during retirement, this product would not be what the client

aims to buy. Instead, the investor could choose an investment strategy with
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Table 4.1: Life-cycle investment strategies

Years to | Client’s | Aggressive Moderate Conserv. Naive 100-x*
maturity age Portfolio proportion invested in bonds
30 — 26 35 -39 0% 0% 40% 25% 40%
25 - 21 40 — 44 0% 0% 50% 25% 40%
20 - 16 45 — 49 0% 30% 60% 50% 50%
15 -11 50 — 54 0% 60% 70% 50% 50%
10 -6 55 — 59 0% 90% 80% 75% 60%
5 60 50% 90% 90% 75% 60%
4 61 60% 90% 90% 75% 60%
3 62 70% 90% 90% 75% 60%
2 63 80% 90% 90% 75% 60%
1 64 90% 90% 90% 75% 60%

* Example of a 35-year-old investor who buys a 30-year contract.

a decreasing stock proportion as the contract draws to its expiration. Such
strategies are called life-cycle strategies.

In this thesis, we will analyze five life-cycle investment strategies: the
aggressive, the moderate, the conservative, the naive, and the so-called 100-
x investment rule (see Table 4.1). In the aggressive investment strategy, the
client invests the whole portfolio in stocks. In the fifth year before the end
of the contract, half of the portfolio’s assets will be shifted to bonds. Each
following year, the proportion of the portfolio invested in bonds will rise by 10
per cent points, so that in the last year before maturity, 90% of the portfolio
will be invested in bonds and the remaining 10% in stocks.

The moderate investment strategy is the one proposed by Maurer and
Schlag (2003). If the time to maturity is greater than 20, all assets are
invested in stocks. In the 20th year before maturity, 30% of the portfolio
is shifted to bonds. The last shift occurs 10 years before maturity, when a
further 30% of the assets is shifted to bonds. Thus, the bond proportion
finally equals 90%.

In the conservative investment strategy, the bond proportion is much

higher. Every five years the bond proportion rises by 10 per cent points,
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so that in the last five years of the contract, the stock engagement will have
shrunk to 10%. For instance, for a 30 year contract, one would start a port-
folio with 60% stocks and 40% bonds. After the first five years, the assets
are shifted to a fifty-fifty stock-bond proportion, and so on, so that in the
last five years, the proportion of bonds will have reached 90%.

In the nawe investment strategy, the bond proportion in the portfolio
rises every 10 years by 25 per cent points, with the final goal being 75%. For
instance, for a 30 year contract one would start with a 25% bond proportion.
After 10 years, the stock-bond proportion will be fifty-fifty, and in the last
10 years, the bond proportion will account for 75% of the portfolio assets.

Financial advisers often recommend the 100-z investment rule to their
clients. This means that an z-year old individual should invest (100 — )%
of his savings in low-risk assets (e.g. bonds) and the remaining x% in high-
risk assets (e.g. stocks). In this study, the rule will be simplified to reduce
the time needed for calibration, statistical tests and computation. The bond-
stock ratio will be fixed for the year of the investor’s round birthday (e.g. 40)
and kept constant for five years before and five years after this age. Hereafter,
we consider an example of a client who buys a product which expires on his
65th birthday (see Table 4.1).

Last, we describe the zero-bond investment strategy. The main idea is to
provide a costless guarantee. If the guarantee provider wants to guarantee
that the contribution C;, paid at time ¢, (¢, < T') will grow with the guar-
anteed rate of return ¢ at the maturity 7', he should invest C, el "t 7)(T'=tn)
in a zero-bond with the risk-free rate of return r,, 7 > 0 and time to matu-
rity T' — t,,. The remaining C, [1 — e(g_rtn!T)(T_t")] will be then invested in
stocks, in order to participate in the growth chance of the stock market. At

maturity, the value of the investment will equal the sum of the amount the
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provider has guaranteed C; e9™~*) and some non-negative amount

Cy. [1 = )T —t0)] Finr

Y

where 7, 7 € R is the realization of the stochastic stock return in the period
T —t,. For the contract with periodic contributions, the value of the portfolio

at the end of the contract will be equal to

T-—1 T—1
Z C’tneg(T—tn) 4 Z Otn [1 _ e(g_rtn,T)(T_tn)] eFtn,T
tn=0 tn=0

T-1
= Gp + Z C,. [1 _ e(g—rtn,T)(T—tn)] eltn.T > Gr,
tn=0

where Gy is the guaranteed value given by equation (4.30). Please note that
this strategy is only risk-free if the guarantee level g does not exceed the
market risk-free rate v, v (ry, 7 > g,V 0 < t, <T) and if the zero-bond is

default-free, as well. Both assumptions will be applied in this thesis.

4.7.1.3 Design of the study

Before we present the results of the study, we will give the explanation of
the simulation design. An individual retirement account with a single or a
periodic contribution payment is assumed. The periodic contribution C,
of €1200 is paid annually in advance. The single contribution is equal to
the net present value of the yearly contributions (i.e. ZZ; ;10 C,, e m(T=tn)),
At the inception of the contract, the client has to fix the contract duration
between one and 30 years? (T=1,2,...,30). At the contract inception, the
client can chose between the guarantee of g = —2%, 0%, 2% or 4% p.a. and

one of the investment portfolios defined in Section 4.7.1.2. The investment

2For the 100-x investment rule, we assume that the client ends the contract at his 65th

birthday.
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strategy cannot be changed afterwards. As the contract expires, the contract
provider guarantees to pay out the value of the investment portfolio St or the
guaranteed amount Gp defined in equation (4.30), whichever is higher. The
study excludes the surrender and biometrical risk, i.e. if the client cancels
the contract (or dies) before the maturity, he (or his inheritors) receives the
value of the portfolio. In a such case, no guarantee is given. The credit risk is
excluded as well, i.e. we assume that the guarantee provider cannot default.

The provider collects two fees in order to cover the costs and to make a
profit: the front-end-sales-charge and the administration charge. The front-
end-sales-charge equals 3% of the bond fund units and 5% of the equity fund
units. The administration charge is approximated by subtracting 0.5% p.a.
from the average return of the investment. These are assumptions made by
Maurer and Schlag (2003). In the case of the zero-bond strategy, both fees
are charged, however, only from that of the part of the contribution invested
in the stock fund. The investment in the zero-bond is charge-free as this
part of the investment does not have to be actively managed. Please note
that the guarantee is given on the gross contribution, so, e.g., in the one-year
maturity case, the guarantee of 2% on the pure stock portfolio is, in fact,
a guarantee of 7.13%3 from the guarantor’s point of view, because return
from the investment has to cover both the front-end-sales-fee of 5% and the
guarantee rate of 2%.

To estimate the distribution parameters of the returns, it is assumed that
the bond fund returns have the same distribution as the returns of the Ger-
man Bond Performance Index (REXP), and the equity fund returns have
the same distribution as the returns of the German Stock Index (DAX30).

In both cases there are performance indices involved, which means that the

3This is calculated from equation 0.95C;, e* = Cy, %02,
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whole income from the investment (dividends, coupon-payment etc.) is rein-
vested in the portfolio underlying the index. The study compares results for
the geometric Brownian motion and the geometric Brownian motion with
Markov switching. The parameters for the GBM were estimated with the
MLE method, and these of the GBM with regime switching with the EM
algorithm (see Algorithm 2.71). Statistical tests have shown that the best
representative of the GBM with Markov switching is the MS(1-2) model, i.e.
the model with regime-independent mean and regime-dependent variance
(see the discussion in Chapter 3).

To calibrate both models, 13 synthetic portfolios were built. It was as-
sumed that on 31/12/1974 the amount of DM 195.58 (equivalent of €100)
was invested in each buy-and-hold portfolio defined in Section 4.7.1.2 (i.e.
with a 100%-0%, 90%-10%, ..., 0%-100%, and 75%-25% and 25%-75% REXP
to DAX proportion, respectively) and that the portfolio was held until 31/12
/2004. Then the monthly log-returns were inferred from the development
of the value of these portfolios. The parameters for both models are listed
in Tables B.1-B.13 in Appendix B. As a discount rate, the risk-free rate
of 0.44% per month (or equivalently 5.42% p.a.) was chosen, which is the
average monthly money market rate (Monatsgeld) published by the Federal
Bank of Germany (Deutsche Bundesbank) for the period from January 1975
to December 2004. This interest rate is also assumed to be the return of the
zero-bond in the zero-bond investment strategy.

The option price for the GBM model was computed under the Black-
Scholes martingale measure (see Theorem 4.48) and for the Markov switching
model under the Bollen-Hardy (see Theorem 4.50) and Esscher (see Theorem
4.51) risk-neutral measure.

Please note that for the contract with the periodic payment scheme, there
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exists no analytic solution. For the contract with the single contribution, an
analytical solution does exist. However, in the case of the Markov switching
model, the use of the pricing formula is very time-consuming. For instance,
a 30-year contract with an annual regime switching would require 2% op-
erations which amounts to more than one billion operations (see equation
(4.20)). Thus, the option price was simulated via the Monte Carlo method
with 1,000,000 iterations. The returns of the portfolio backing the contract
were simulated on a monthly basis. Also, the regime change in the Markov
switching model can occur at the end of each month (i.e the parameter 7 in
equation (4.20) is set to be one month).

Please note that different contracts have different cash-flows and different
guarantee values. Therefore, the option prices were divided by the net present
value of the contributions paid during the contract, i.e.

e (Tt Eg [max{Gr — St;0}]

-1 —r(tn—t
tn=0 Ctne ( n 0)

Py = (4.32)

in order to enable a comparison between contracts with different durations
and different guarantee rates. The value from equation (4.32) will henceforth

be referred to as the normalized guarantee cost.

4.7.2 Guarantee cost

The following sections discuss the impact of different factors on the guar-
antee cost. The first two are rather technical and contribute to a better
understanding of the Webb pricing model. Section 4.7.2.1 discusses the im-
pact of the initial state on the guarantee cost. Section 4.7.2.2 compares the
guarantee cost under three valuations models: the Black-Scholes, the Bollen-
Hardy, and the Webb approach. Five further sections discuss the sensitivity

of the guarantee cost to the change of guarantee level (see Section 4.7.2.3),
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investment strategy (see Section 4.7.2.4), time (see Section 4.7.2.5), contract
term (see Section 4.7.2.6), and contribution payment scheme (see Section
4.7.2.7). They are interesting from the point of view of the guarantee seller,
who wants understand the guarantee cost and manage it properly. Lastly,
Section 4.7.2.8 discusses the interrelation of the guarantee cost and the ex-
pected profitability of the investment portfolio backing the guarantee. This

section is particularly interesting from the viewpoint of the potential investor.

4.7.2.1 Impact of the initial state on the guarantee cost

The option price under the Esscher measure depends on the probability
of the initial regime (see equation (4.20)). As the regime cannot be ob-
served, the probability of the initial regime is unknown. Figure 4.1 depicts
the normalized guarantee cost dependent on the initial state. The thin
dashed line represents the normalized cost for the agent who knows with
certainty that the market is in the low volatility state at the contract incep-
tion (Pr[Z;, = 1] = 1). The thick dashed line depicts the price for the agent
who knows for sure that the market is in the high volatility regime at the
start of the contract (Pr[Z;, = 2] = 1). The solid line represents the normal-
ized cost for the agent who does not know which state the process was in at
the beginning. Thus, he assumes that the process was in the low volatility
regime with its ergodic probability, i.e., he assumes: Pr[Z,, = 1] = m and
Pr[Z;, = 2] = my (see equation (2.69)).

The first two cases represent the lower and the upper bound of the Es-
scher option price. From Remark 2.34 we know that the limit transition
probabilities of the homogeneous Markov chain (here the state variable Z;)
are the ergodic probabilities, as time goes to infinity. Thus, the case of the

uninformed agent is, in fact, the limit of the guarantee cost.
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Figure 4.1: Impact of the initial state on the normalized guarantee cost
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This figure illustrates the impact of the initial state on the normalized guarantee cost by
means of the fifty-fifty stock-bond portfolio and the MS(1-2) model under the Esscher
probability measure. The thin dashed line represents the lower bound (Pr[Z;, = 1] = 1)
and the bold dashed line the upper bound (Pr[Z;, = 2] = 1) of the normalized cost,
respectively. The solid line represents its limit (Pr[Z;, = 1] = 7). The left column displays
the periodic (€1200 up-front annually) and the right column the single contribution (equal
to the net present value of periodic contributions) case. The top row shows the low level
guarantee (¢ = 0% p.a.) and the bottom row the high level guarantee (¢ = 4% p.a.),
respectively.

Figure 4.1 shows that, in most cases, the shapes of the lower and upper
bound and the limit of the price are the same. However, in a few cases, they
can differ. For instance, in the case of the fifty-fifty stock-bond portfolio and
high level guarantee (g = 4%), the upper bound decreases (first convex and
then concave) while the lower bound first increases to a maximum and then
decreases (the function is convex) (see the bottom left panel of Figure 4.1).

For low term contracts, the bounds are wide apart from each other. For

instance, the cost of a 0% guarantee in the case of a one year maturity
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contract and the fifty-fifty stock-bond investment has a spread of 1.57 per
cent points, according to the initial state. However, as the contract term
increases, both bounds converge to the limit and the price spread vanishes.
In the case of the periodical contributions, both buonds converge to each
other after about 5-10 years (see the left column of Figure 4.1). In the
case of the single contribution the convergence is much slower. For instance,
for the fifty-fifty stock-bond portfolio with the guarantee level ¢ = 4%, the
spread is still 0.24 per cent points after 30 years. This is consistent with the
economic intuition: an agent who invests his whole capital at once (single
premium) takes more risk than an agent who spreads the capital over time
(periodic contribution). Furthermore, the convergence of the price to its limit
occurs faster, ceteris paribus, (1) the lower the guarantee level g and/or (2)
the higher the bond proportion x in the investment strategy.

We can conclude that the choice of the initial state is crucial for the
normalized guarantee cost, especially for short time contracts. For con-
tracts with longer maturities, the impact of the initial state is weaker. This
should intuitively be expected. Thus, for agents buying a contract in a turbu-
lent market phase, the longer the investment horizon they choose, the more
chances they have to compensate initial losses (in comparison to buying the
contract in the stable market phase).

The fact that the probability of the initial state cannot be observed con-
stitutes a drawback to this method. There are, however, five ways to deal
with this disadvantage. First, the risk averse actuary can choose the upper
bound price. Second, the guarantee provider can use the ergodic probabili-
ties to approximate the initial probabilities. If he has a portfolio of different
cohorts, this average price would lead to a stable financial situation for the

guarantor. Third, the guarantor can only sell contracts with periodic contri-
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Table 4.2: Smoothed probabilities in December 2004 (under real-world and
Bollen-Hardy measure)

Stock prop. 100% 90%  80% 75% 70%  60% 50%
Bond prop. 0% 10% 20% 25% 30%  40% 50%
Pr[Zr = 1|%] 0.9712 0.9703 0.9689 0.9684 0.9676 0.9647 0.9587
Pr[Zr = 2|%] 0.0288 0.0297 0.0311 0.0316 0.0324 0.0353 0.0413
Stock prop. 40% 30% 25% 20% 10% 0%

Bond prop. 60% 70% 75% 80% 90% 100%

Pr[Zr = 1|%] 0.9313 0.8792 0.8217 0.8873 0.9833 0.9943

Pr[Zr = 2|%] 0.0687 0.1208 0.1783 0.1127 0.0167 0.0057

Table 4.3: Smoothed probabilities in December 2004 (under Esscher measure)

Stock prop. 100% 90%  80% 75% 0%  60% 50%
Bond prop. 0% 10% 20% 25% 30% 40% 50%
Pr[Zr = 1|%] 0.9710 09701 0.9686 0.9681 0.9672 0.9642 0.9580
Pr[Zr = 2|%] 0.0290 0.0299 0.0314 0.0319 0.0328 0.0358 0.0420

Stock prop. 40% 30% 25% 20% 10% 0%

Bond prop. 60%  T0% 5% 80% 90% 100%
Pr[Zr = 1|%] 0.9297 0.8755 0.8020 0.8715 0.9823 0.9939
Pr(Zr = 2|%] | 0.0703 0.1245 0.1980 0.1285 0.0177 0.0061

butions and maturities of not less than 10 years. As a result, the prices would
converge to the limit and the uncertainty about the initial state would be
smaller. Fourth, he can use the additional information from the estimation:
the EM algorithm delivers the smoothed probabilities as the by-product of
the estimation (see Section 2.8.2.2). Thus, the actuary can interpret them
as initial state probabilities. Using this approach, the actuary has to con-
trol if the regime does not change. This means that he has to estimate the
Markov switching model in constant time periods to receive the “actual”
market smoothed probabilities. Last, the actuary can decrease the inter-

val 7 (see Theorem 4.51) on which the value of the investment portfolio is
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to be simulated. In this contribution we use 7 = 1 month. The decrease
of 7 would, however, increase the computation time. For this reason we
reject this solution. Instead, we decide to use the additional information
from smoothed probabilities. Table 4.2 shows smoothed probabilities under
the Bollen-Hardy (and real-world) probability measure and Table 4.3 shows

smoothed probabilities under the Esscher probability measure.

4.7.2.2 Impact of the stochastic model on the guarantee cost

This section discusses the impact of the option pricing model on the guarantee
cost. Accordingly, three option price models are compared: the Black-Scholes
(see Theorem 4.48), the Bollen-Hardy (see Theorem 4.50), and the Webb
model (see Theorem 4.51).

Figure 4.2 shows the results. For all possible stock-bond proportions and
for all studied guarantee levels, the same is true: the guarantee cost is the
highest in the Black-Scholes approach (thin dashed line) and the lowest in
the Webb approach (thick solid line). The cost yield according to the Bollen-
Hardy model (thin solid line) lies between the other two. Additionally, it can
be seen that the cost yield from the Bollen-Hardy model converges to the
Black-Scholes cost from below. In all cases the following statements hold
true: taking heteroskedasticity into consideration leads to a price decrease.
For the low level guarantee of 0%, the price of the Bollen-Hardy model is
lower then the price of the Black-Scholes model. The difference decreases as
the contract maturity grows. This shows that the Black-Scholes price is the
most conservative one. The additional consideration of stochastic volatility
lowers the guarantee cost. As shown in Chapter 3, the Markov switching
model is more suitable for describing the stochasticity of financial assets

than the GBM. This shows that the choice of the less suitable stochastic
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Figure 4.2: Impact of the stochastic model on the normalized guarantee cost
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This figure depicts the impact of the stochastic
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model (i.e. GBM) leads to an overpricing of the guarantee.

However, the Markov switching market is incomplete. Thus, the option
price is not unique. Two models discussed here yield different prices, there-
fore, the choice of the suitable martingale measure is crucial for the results.
The Esscher measure is a better choice, as it prices the stochastic risk (i.e.
it takes into account the stochasticity of the state variable Z;, ) which is ne-
glected by the Bollen-Hardy measure. (For other advantages of the Esscher
measure, see Section 4.6.2.2).

Neverless, the Bollen-Hardy model can contribute to an understanding
of risk premia. Each of these three models introduces an additional pricing
risk. The Black-Scholes option pricing is an approach with the stochastic
stock return (arithmetic Brownian motion). This approach assumes that
the volatility process of the stock return has a constant parameter o. The
Bollen-Hardy approach introduces a stochastic volatility process (arithmetic
Brownian motion with Markov switching) for the stock return. This ap-
proach assumes that the volatility process of the stock return has a random
parameter o, or gy, depending on the latent random variable Z; (state of the
market). This approach, however, does not price the uncertainty linked to
the switching parameter Z;. Thus, the spread between the Black-Scholes and
the Bollen-Hardy price quantifies the stochastic volatility risk. The spread
between the Bollen-Hardy and the Webb price quantifies the switching risk
(i.e., uncertainty if the market is in the stable or in the turbulent phase).

Figure 4.2 clearly shows that neglecting to take into account the stochastic
volatility risk leads to an overpricing of the guarantee. This effect is lower,
ceteris paribus, (1) the lower the contract term and/or (2) the lower the stock
proportion in the investment strategy. The effect of neglecting the switching

risk leads to more crucial overpricing of the guarantee. Furthermore, this
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effect grows as (1) the contract term and/or (2) the stock proportion in the
strategy increase. This is important as the retirement products we discuss

have a long time nature.

4.7.2.3 Impact of the guarantee level on the guarantee cost

This Section analyzes the impact of the guarantee level on the guarantee
cost. First, we can state that the cost of guarantees with ¢ = —2%, 0%
and 2% behaves similarly. On the contrary, the cost of the 4% guarantee
displays a different behavior (see Figure 4.3). The normalized cost of a —2%,
0%, and 2% guarantee is a decreasing function for all stock-bond portfolios.
The only exception is the normalized cost of 2% backed by portfolios with
a stock proportion of 80% and more. In those cases the normalized cost
increases slightly in order to reach a maximum (for a contract with 3 or 4
years duration), and subsequently decreases. In contrast to the other three
guarantee levels, the normalized cost of the 4% guarantee has a different
shape. It initially increases towards a maximum and decreases afterwards.
In only two cases, that of a pure bond and that a the 10%-90% stock-bond
portfolio, the curve of the normalized cost of a 4% guarantee decrease for all
contract terms.

The guarantee cost increases along with an increase of the guarantee level,
which is self-evident. Figure 4.4 shows how the normalized cost reacts if the
guarantee level increases by 2 per cent points: from —2% to 0% p.a. (thin
dashed line), from 0% to 2% p.a. (thick dashed line), and from 2% to 4%
p.a. (solid line). The figure shows that the cost reacts overproportinally to
the change in the guarantee level. Particularly, the increase is the highest,
when the guarantee level is risen from 2% to 4% p.a. The sensitivity of the

cost to the guarantee level is much smaller in the two other cases.
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Figure 4.3: Impact of the guarantee level on the normalized guarantee cost

stocks(1007%)—bonds(0%), periodic contribution stocks(0%Z)—bonds(507), periodic contribution
o ©

--- g=-27 --- g=-27

- g=07% --- g=0%7
of g=27 = 9-2%

— g=47 — g=47

Norm. guarantee cost (%)
Norm. guarantee cost (%)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Contract term (years) Contract term (years)

stocks(0%Z)—bonds(100%), periodic contribution

--- g=-27
--- g=0%

) g=27%

— g=4%

Norm. guarantee cost (%)

Qo 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term (years)

Note:

This figure depicts the impact of the guarantee level on the normalized guarantee cost
using the example of the pure stock (top left panel), fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel) with periodic contributions (€1200 up-front
annually). The cost is computed for the MS(1-2) model under the Esscher probability
measure. The thin dashed line represents the guarantee of -2% p.a., the bold dashed line
— 0% p.a., the thin solid line — 2% p.a., and the bold solid line — 4% p.a., respectively.

In conclusion, the guarantee level of 4% behaves differently from the other
three guarantee levels discussed in this contribution, and has a far higher
cost as well. Thus, we henceforth refer to the 4% guarantee as the high level
guarantee and to remaining three guarantee levels as the low level guarantee.

The low level guarantee will hencefrom be discussed using the example of the

0% guarantee.
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Figure 4.4: Sensitivity of the normalized guarantee cost to changes in the

guarantee level
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This figure depicts the sensitivity of the normalized cost to the change of the guarantee
level in the example of the pure stock (top left panel), fifty-fifty stock-bond (top right
panel), and the pure bond portfolio (bottom panel) with periodic contributions (€1200
up-front annually). The sensitivity is measured in per cent points (pp). The cost is
computed for the MS(1-2) model under the Esscher probability measure. The thin dashed
line represents the guarantee increase from -2% to 0% p.a., the bold dashed line — from
0% to 2% p.a., and the solid line — from 2% to 4% p.a., respectively.

4.7.2.4 Impact of the investment strategy on the guarantee cost

This Section addresses the impact of the investment strategy on the guarantee
price. First, buy-and-hold strategies will be discussed, followed by life-cycle
strategies, and lastly, the zero-bond strategy.

From the option price theory it is known that the option price increases
with the increase of volatility. Figure 4.5 shows that the normalized cost of

the guarantee increases as the proportion of stocks in the investment portfolio
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Figure 4.5: Impact of the investment strategy on the normalized guarantee
cost
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This figure depicts the impact of the investment strategy on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The solid line with pluses represents the pure stock investment strategy, the solid line with
squares — the 75%-25% stock-bond, the solid line with triangles — the 50%-50% stock-bond,
the solid line with diamonds — the 25%-75% stock-bond, the solid line with inverse triangles
— the pure bond, the solid line with circles — the zero-bond, the dashed line with circles —
the aggressive, the dashed line with squares — the moderate, the dashed line with triangles
— the conservative, the dashed line with diamonds — the naive, and the dashed line with
inverse triangles — the 100-x investment strategy, respectively. In all cases contributions
of €1200 are paid up-front annually. The left column represents the low level guarantee
(9 = 0% p.a.) and the right row the high level guarantee (g = 4% p.a.), respectively.
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grows. This is true for all guarantee levels and all contract terms. Only in
some cases the increase of the stock proportion does not imply the increase
of the cost. This is true for portfolios with a long duration, a low guarantee
level, and a low stock proportion. For instance, all contracts with a guarantee
level of 0%, a term above 15 years, and a stock proportion of up to 25% have
a zero cost. In these cases, the rise of the stock proportion does not affect
the price, but increases the profit chance.

The impact of the stock proportion is greater, the higher the guaran-
tee level is. Assume that the guarantee provider believes that his potential
clients are willing to pay a maximum of 5% of discounted contributions for
the guarantee. Then, he could sell contracts backed with any buy-and-hold
strategy and the normalized price of the 0% guarantee would still not exceed
5% (excluding a one-year contract backed by the pure stock strategy). How-
ever, in the case of the 4% guarantee, only portfolios with maximum of 50%
stocks have a normalized cost that lies below 5%. The guarantor would thus
only offer his clients these particular investment portfolios.

Thus, to keep the price below 5%, the guarantor has to reduce the guar-
antee level (i.e. he offers less protection) or the equity proportion in the
portfolio (i.e. he lowers the expected portfolio return). Obviously, clients are
interested in both. One way to satisfy both needs and to keep the guarantee
price at a moderate level could be to apply one of the life-cycle strategies
(see Table 4.1). The lower part of Figure 4.5 shows that four of the five life-
cycle discussed strategies are more expensive than the fifty-fifty stock-bond
buy-and-hold strategy. These strategies are: the moderate, the conservative,
the naive one, and the 100-x investment rule. Only the aggressive strategy
can cost more than the fifty-fifty stock-bond strategy, for the middle and the

long term contracts. For some long term contracts, its cost even exceedes
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the cost of the 75%-25% investment portfolio.

Finally, let us turn our attention to the zero-bond strategy. For the risk-
averse guarantee provider, this is clearly the best strategy, as it is costless
for all possible configurations of guarantee levels and contract durations.
However, it is an open question if this strategy is attractive for clients. It
is possible that the price they pay for the protection is an unsatisfactory

expected profit. This issue will be discussed in Section 4.7.2.8.

4.7.2.5 Impact of time on the guarantee cost

This Section addresses the impact of time on the (normalized) guarantee
cost. First, we discuss buy-and-hold strategies, then life-cycle strategies,
and, finally, the zero-bond strategy. The left panel in Figure 4.6 shows the
impact of time on the normalized cost of a 0% guarantee. For all buy-and-
hold investment strategies, the cost function is decreasing (all curves except
the pure stock strategy are concave) and converges toward zero. The lower
the stock proportion in the backed portfolio, the faster the cost decreases
to zero. For portfolios with a stock proportion up to 50%, the cost reaches
zero between the 7th (pure bond) and the 27th year (fifty-fifty stock-bond).
Neither of the remaining strategies reach zero before the 30th year. An
additional simulation, however, has shown that they converge towards zero
afterwards.

The right panel in Figure 4.6 displays the impact of time on the normal-
ized cost of a 4% guarantee. The cost function is concave and decreasing for
strategies with a maximum stock proportion of 20%. However, it does not
reach zero, even in the 30th year. For portfolios with a bond proportion of
more than 20%, the cost function is increasing until a certain maximum, and

then slowly decreases afterwards. The decrease is slower the higher the stock
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Figure 4.6: Impact of time and the contract term on the normalized guarantee
cost (buy-and-hold strategies)
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This figure depicts the impact of time and the contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The solid line with pluses represents the pure stock investment strategy, the solid line with
squares — the 75%-25% stock-bond, the solid line with triangles — the 50%-50% stock-bond,
the solid line with diamonds — the 25%-75% stock-bond, the solid line with inverse triangles
— the pure bond investment strategy, respectively. In all cases contributions of €1200 are
paid up-front annually. The left column represents the low level guarantee (¢ = 0% p.a.)
and the right row the high level guarantee (g = 4% p.a.), respectively.

proportion is. For example, for a 20%-80% stock-bond portfolio, the maxi-
mum of 2.52% is reached after 3 years. Then the normalized cost decreases
to 0.95% after 30 years. For a pure stock portfolio, the maximum of 10.15%
is reached after 17 years. Then the normalized cost decreases to 9.72% after
30 years.

The convergence of the cost toward zero also holds true for a high level
guarantee of 4%, however, it is much slower than for low level guarantees.

Figure 4.7 shows the impact of time on the life-cycle strategies in three
examples: a 10-year contract (thick dashed line), a 20-year contract (thin
dashed line), and a 30-year contract (thin solid line). As stated in Section
4.7.2.4, the behavior of the aggressive strategy is different from the behavior
of the remaining life-cycle strategies. It will therefore be discussed separately.

The remaining life-cycle strategies will be discussed using the example of the
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Figure 4.7: Impact of time and the contract term on the guarantee cost

(life-cycle strategies)

Aggressive strategy

aggressive strategy, g=0%, periodic contribution

aggressive strategy, g=47%, periodic contribution

© —
o~
. —— N. cost over time (T=30) —— N. cost over time (T=30Q)
= --- N. cost over time (T=20) < @b N. cost over time (T=20)
- - N cost over time (T=10) — N cost over time (T=10)
2 e cost at maturity B ool e cost at maturit
S o~ stocksmoof) bomjs<07> S~ + stocksmooﬂ bonds(0%)
E g of ]
< wf =
o 5]
] s O
E E
o o >
. , of
€ £
5 -t 2o
o o
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term/Time (years) Contract term/Time (years)
Moderate strategy
moderate strategy, g=07%, periodic contribution moderate strategy, g=4%, periodic contribution
© —
o~
. —— N. cost over time (T=30) —— N. cost over time (T=30Q)
= ol --- N. cost over time (T=20) < o} N. cost over time (T=20)
- -=-=- N. cost over time (T=10) ~ N, cost over time (T=10)
2 —— N. cost at maturity B ool _— cost at maturity
S o~ + stocks(1007)—bonds(0%) S - + stocksmooﬂ bonds(0%)
@ N o stocks(70%)=-bonds(30%) o ol ©  stocks(70%)=bonds(30%)
~ =
2 N 3
§m— . 1 S bbb A L I R
S 5 of 1
o o ° 5 . | ES
. e, . ©of
. treall] €
= ~ E S mt
o o
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term/Time (years) Contract term/Time (years)
Conservative strategy
conservative strateqgy, g=07, periodic contribution conservative strateqy, g=47, periodic contribution
© —
&~
—— N. cost over time (T=30) —— N. cost over time (T=30)
~ ol --- N. cost over time (T=20) < of N. cost over time (T=20)
:’ --- N. cost over time (T=10) — N. cost over time (T=10)
2 N. cost at maturity % ol N. cost at maturity
S <t o stocks(60%) —bonds(40%) S - o stocks(60%) —bonds(40%)
© a stocks(40%)—bonds(60%) © o a stocks(40%)—bonds(60%)
2 > stocks(20%)—bonds(80%) o =F > stocks(20%)—bonds(80%)
= ol =
° o
S S or 1
] El
SENT N ] 2
. AN & . o} L e R R e B = = = = =l = =T P
€ N e £
s | ~ 5 | s - QLA M AAARTE
= DDDDDD Z " ~~=z---s0. S T~ ——e o __ 1
== ==
A oo
- AR f0o0oooo o
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term/Time (years) Contract term/Time (years)
Naive strategy
naive strategy, g=0%, periodic contribution naive strategy, g=4%, periodic contribution
© —
o~
. —— N. cost over time (T=30) —— N. cost over time (T=30Q)
= ol --- N. cost over time (T=20) < o} --- N. cost over time (T=20)
- -=-=- N. cost over time (T=10) ~ --= N. cost over time (T=10)
2 N. cost at maturity B ool N. cost at maturity
S o~ - stocks(75%)—bonds(25%) S - [ stocks(75%)—bonds(25%)
® 4 stocks(50%)—bonds(50%) ° o A stocks(50%)—bonds(50%)
2 o =F
< wf R c
o o
o ‘6 o B
ES | ER S EEEEEEEEE NN EEEEEE
. . ol ]
£ € | ----
e 1 2. |
o o

8 10 12 14 16 18 20 22 24 26 28 30
Contract term/Time (years)

continued on the next page

186

6 8 10 12 14 16 18 20 22 24 26 28 30

Contract term/Time (years)



continued from the previous page

100-x investment rule

100—x investment rule, g=07%, periodic contribution 100—x investment rule, g=47, periodic contribution
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Note:

This figure depicts the impact of time and the contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The bold dashed line shows how the normalized cost changes through time for a 10-year
contract, the thin dashed line for a 20-year contract, and the thin solid line for a 30-
year contract, respectively. The bold solid line shows the normalized contract at contract
expiration. The bold pluses depict the 100%-0%, the solid squares — the 75%-25%, the
empty circles — the 70%-30%, the empty squares — the 60%-40%, the solid triangles — the
50%-50%, the empty triangles — the 40%-60%, and the empty diamonds — the 20%-80%
stock-bond buy-and-hold portfolio, respectively. In all cases, contributions of €1200 are
paid up-front annually. The left column represents the low level guarantee (¢ = 0% p.a.),
and the right row the high level guarantee (g = 4% p.a.), respectively.

moderate strategy.

Let us discuss the 0% guarantee backed by the moderate strategy. The
guarantee cost decreases for all three of the discussed contracts. The speed
with which the cost decreases grows at each shifting date (e.g. after the
10th and 20th year for the 30-year contract). The cost for all three contracts
reaches zero before contract expiration, i.e. in the 9th, the 17th, the 28th
year for the 10-, 20-, and 30-year contract, respectively. This means that if
the shift from a more risky toward a less risky portfolio occurred one or two
years later, the client would still recive a contract with a costless guarantee,
however, with a higher expected profit. Thus, the contract provider could
slightly optimize the moderate strategy to better satisfy the needs of the

client, i.e. of safety and of a higher expected profit.
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Furthermore, it is possible to quantify the cost reduction of the moderate
strategy. As the 30-year contract invests in a pure stock portfolio, we can
compare the cost of this portfolio to the cost of the moderate strategy. The
difference in the normalized cost of both investment portfolios equals 0.91%.
For the 20-year contract, the difference between the initial portfolio (i.e. 70%-
30% stock-bond portfolio) and the moderate strategy equals 0.62%. As the
10-year contract invests in the 10%-90% stock-bond portfolio for the whole
investment period, no cost reduction can be found.

Let us discuss the 4% guarantee backed by the moderate strategy. The
normalized cost of the 10-year contract is always decreasing. The normal-
ized cost of the 20- and 30-year contract increases until the first shifting
date and then decreases. Thereby, at each further shifting date, the speed
of cost reduction increases. In contrast to the 0% guarantee, the cost at the
expiration date does not reach zero for either contract. However, the cost
reduction compared to the initial portfolio is much higher than in the case of
the 0% guarantee. For the 20-year contract, the normalized cost at expira-
tion sinks from 7.03% (70%-30% stock-bond portfolio) to 1.53% (moderate
strategy), and for the 30-year contract from 9.72% (pure bond portfolio) to
2.78% (moderate strategy). Since the 10-year contract only invests in the
10%-90% stock-bond portfolio, no cost reduction occurs.

The behavior of the aggressive strategy is slightly different. Although
the cost of the 0% guarantee decreases along with time and although the
normalized cost of the 4% guarantee increases until the first asset shifting
date, and then decreases, it fails to obtain zero for either of the discussed
contracts. Another difference is that the cost reduction is greater for short-
than for long-term contracts.

The cost of the zero-bond strategy is insensitive to changes in time, as it
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equals zero, due to the strategy construction.

4.7.2.6 Impact of the contract term on the guarantee cost

In the case of buy-and-hold investment strategies, the impact of the con-
tract term on the guarantee cost is exactly the same as the impact of time.
Therefore, this discussion will be omitted.

The impact of the contract term on the normalized guarantee cost of life-
cycle strategies is shown in Figure 4.7 (thick solid line). As the aggressive
strategy behaves differently from other life-cycle strategies, it is discussed
separately. Other life-cycle strategies will be discussed using the example of
the moderate strategy.

In the case of the aggressive strategy, the normalized cost of the 0%
guarantee is relatively stable around the 0.45% mark. There are two factors
which influence this behavior. First, the guarantee cost associated with the
initial portfolio (here the pure stock portfolio) sinks as the contract term
increases. Thus, this factor has a greater influence on the long-term contracts.
The second factor is the shifting of assets from more risky into less risky ones.
The influence of this factor increases the shorter the contract term is.

In the case of the aggressive strategy, the normalized cost of the 4%
guarantee increases as the contract term grows. The reason for this is that
the guarantee cost associated with the initial portfolio is relativ high. Since
the risk-reducing influence of asset shifts weakens as the contract term grows,
it is not able to predominate the influence of the first factor. To reduce the
cost of long-term contracts, it would be necessary to start the asset shifting
earlier than in the last five years or to start with a less risky initial portfolio
than the pure stock one (see, for example, the moderate strategy).

The normalized cost of the 0% guarantee associated with the moderate
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strategy is influenced by the same two factors: (1) the sinking cost of the
initial portfolio and (2) the asset shifting. The difference to the agressive
strategy, however, is that the normalized cost is a decreasing function that
converges to zero for a 9-year contract. This is due to the earlier asset shifting
compared to the aggressive portfolio.

The normalized cost of the 4% guarantee associated with the moderate
strategy is a concave function of the contract term, with the minimum being
the 14-year contract. This is due to the strategy construction: First, the
shorter the contract term is, the less risky the initial portfolio. Thus, it does
not predominate the shifting effect. Second, the asset shifting begins prior to
the last five contract years — thus, it has a stronger impact on the guarantee
costs than in the case of the aggressive strategy.

We stated above that the normalized cost function in the moderate in-
vestment strategy with the 4% guarantee has a minimum. It illustrates that
for a given contract term, the desired guarantee cost can be achieved. The
guarantee provider should hence optimize the investment strategy by choos-
ing the optimal initial portfolio and the optimal shifting design.

Finally, we will discuss the zero-bond strategy. Its cost is insensitive to
changes in the contract term, as it equals zero due to the strategy construc-

tion.

4.7.2.7 Impact of the contribution payment scheme on the guar-

antee cost

This section compares the normalized guarantee cost for two alternative con-
tribution payment schemes. The single premium and the periodic premium
(€1200 up-front annually). For the sake of comparability, the single premium

is chosen to be the net present value of the aggregated periodic payments.
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Figure 4.8: Impact of the contribution payment scheme on the normalized
guarantee cost (buy-and-hold strategies)

(a) Pure stock portfolio (b)
g=0%, stocks(100%)—bonds(0%) g=4%, stocks(100%)—bonds(0%)
[%e) ~
--- Single contribution L B S .
ol —— Periodic contribution o -7 T

Norm. guarantee cost (%)
3
Norm. guarantee cost (%)

—— Periodic contribution

--- Single contribution T

o o
Qo 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Qo 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term (years) Contract term (years)
(c) 50%-50% stock-bond portfolio (d)
g=07, stocks(507Z)—bonds(50%) g=47%, stocks(50%)—bonds(50%)
© ~
--- Single contribution --- Single contribution
w —— Periodic contribution ol —— Periodic contribution

Norm. guarantee cost (%)
3
Norm. guarantee cost (%)
6
\
\
|
'
'
|
|
|
|
|
|
|
|

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term (years) Contract term (years)
(e) Pure bond portfolio ()
g=07, stocks(0Z)—bonds(100%) g=47%, stocks(0%)—bonds(100%)
© o~
--- Single contribution --- Single contribution
ol —— Periodic contribution ol —— Periodic contribution

Norm. guarantee cost (%)
3

Norm. guarantee cost (%)
6

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term (years) Contract term (years)

Note:

This figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of buy-and-hold strategies, and the MS(1-2) model under the Esscher
probability measure. The solid line represents the periodic payment scheme (€1200 up-
front annually), and the dashed line the single premium case. The single premium equals
the net present value of periodic contributions. The left column shows contracts with a low

level guarantee (g = 0% p.a.), and the right column contracts with a high level guarantee
(9 =4% p.a.).
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For buy-and-hold strategies, both curves have the same shape (see Figure
4.8). The normalized cost for the periodic payment scheme is higher than
for the single payment scheme when the cost function is concave (see Figure
4.8, Panels (c), (e), and (f)). The opposite holds true if the cost function
is convex. In this case, contracts with a single premium have a higher price
than contracts with a periodic premium (see Figure 4.8, Panels (b) and (d)).
This rule also holds true for cost functions with changing convexity. In such
a case, both cost functions cross at their inflection points (see Figure 4.8,
Panel (a)). Furthermore, the discrepancy between both cost functions is
higher, the higher the stock proportion in the investment portfolio (compare
the top and the bottom row in Figure 4.8) and/or the higher the guarantee
level (compare the left and the right column of Figure 4.8). In other words,
the cost for the single contribution is higher than the cost for the periodic
contribution contract if the risk of achieving the guarantee is high (i.e. for
contracts with a high stock proportion and a high guarantee level). In all
other cases, the contracts with periodic contributions are more expensive.
Figure 4.9 compares the normalized cost of the single and periodic pay-
ment scheme for life-cycle investment strategies. In this case, cost functions
for the single and periodic payment do not necessarily have the same shape.
The cost function for periodic payment is smooth, and for single contribu-
tions it may have kinks. The kinks always occur when the investment design
changes. Consider, for example, the 4% guarantee backed by the naive strat-
egy. The kinks occur in contracts with terms of 10 and 20 years. The reason
for this that all contracts with a term of up to 10 years only invest in the
25%-75% stock-bond portfolio. All contracts with a term between 11 and
20 years invest in the fifty-fifty stock-bond portfolio at the beginning of the
contract, and then the portfolio manager shifts to the 25%-75% stock-bond
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Figure 4.9: Impact of the contribution payment scheme on the normalized

guarantee cost (life-cycle strategies)
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100-x investment rule
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Note:

This figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies, and the MS(1-2) model under the Esscher prob-
ability measure. The solid line represents the periodic payment scheme (€1200 up-font
annually) and the dashed line the single premium case. The single premium is equal to
the net present value of periodic contributions. The top row depicts the naive strategy,
and the bottom row — the 100-x investment rule, respectively. The left column represents
the low level guarantee (g = 0% p.a.) and the right row the high level guarantee (g = 4%
p.a.), respectively.

portfolio towards the end of the contract. All contracts with a term be-
tween 21 and 30 years invest in the 75%-25%, then in 50%-50%, and then in
the 25%-75% portfolio. These three classes of contracts therefore have three
different investment designs.

In a further discussion, we divide the investment strategies into two
groups, which disclose a similar behavior. The first group consists of the
aggressive strategy (with both the low and the high level guarantee), and all
remaining life-cycle strategies (with the high level guarantee). The second
group consists of the conservative and naive strategy and the 100-x invest-
ment rule (with the low level guarantee). The moderate strategy with a low
level guarantee has a unique behavior and will thus be discussed separately.
In the first group, the single payment scheme leads to higher cost than in
the periodic payment scheme. There are three exceptions to this rule: the

moderate strategy (for all contracts with terms of up to 10 years), the con-
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servative strategy (with terms of up to 5 years), and the aggressive strategy
(with terms of up to 2 years) the high level guarantee has the same cost for
both payment schemes. For all contracts from the first group, the single con-
tribution curve has kinks. This shows that contracts with a high guarantee
level and a single contribution are more sensitive to changes in the portfolio
design than contracts with periodic contributions. Finally, no contract from
the first group has a zero cost guarantee.

Contracts from the second group have a higher cost if the contribution
payment occurs periodically and the contract term is low. For the remaining
durations, the cost in both payment schemes equals zero.

Another very interesting case is that of the moderate investment strategy
with a low guarantee level. The cost for the single payment contract for short
term contracts is lower than the cost for a periodic contribution payment.
For middle term contracts, the cost of both payment schemes equals zero.
For long term contracts, the cost in the case of the periodic payment remains
zero, but in the case of a single premium, it rises slightly above zero.

The cost of the zero-bond strategy is insensitive to changes in the payment

scheme, as its cost equals zero due to the strategy construction.

4.7.2.8 Interrelation between guarantee cost and expected profit

Sections 4.7.2.3-4.7.2.7 addressed the impact of diverse factors (guarantee
level, investment strategy, time, contract term, and contribution payment
scheme) on the guarantee cost. All of these aspects are important from
the perspective of a financial company considering to sell a guarantee to
its customers or managing the guarantee risk. On the contrary, this section
considers the guarantee from the customer’s point of view. A future pensioner

is interested in three aspects when buying a guarantee: the maximization of
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the protection level (level of the guarantee), the reduction of the cost of the
protection, and the maximization of profit. As we discuss several investment
strategies, we would like to see which one of them is most suitable for a
client and most likely to satisfy his goals. To compare the profit potential of

different investment strategies, we use the normalized expected profit.

Definition 4.53 (Normalized expected profit) Let the stochastic process
(@)icfto,r) be an investment strategy with a portfolio value (St)iciry 11, and an
investment horizon T'. Let Cy, be a contribution paid at time t,, (to <t, <T)

and let v be a riskless interest rate, then

- 7T‘(T7to)E S
My = —o o] (4.33)
i e =to)

is a normalized expected profit of this strategy.

Table 4.4 ranks chosen investment guarantees from the least to the most
costly. If two strategies have the same cost, better ranking is given to the
one with the higher expected profit. The aim of Table 4.4 is to help the
client to decide which product to buy. We thereby assume that he knows
his investment horizon (10, 20 or 30 years) and how much risk protection he
needs (guarantee of 0% or 4%). Furthermore, we assume that he wants to
maximize his normalized profit by a given normalized guarantee cost of 0%
(costless guarantee), 1%, 2.5%, 5%, 7.5% or 10%.

In the following, we will consider the example of the 30-year investment
horizon, the remaining examples can be seen in Table 4.4. A client interested
in a 0% guarantee and accepting only costless investment strategies would
purchase a contract with the zero-bond investment strategy, which has the
normalized expected profit of 86.66%. This example shows how important

the investment strategy is from the client’s point of view: some strategies
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Table 4.4: Ranking of investment strategies (normalized guarantee cost vs.
normalized expected profit)

g=0%, T=10 g=4%, T=10
Strategy Norm. cost Norm. profit Strategy Norm. cost Norm. profit
Moderate™ 0.00% 8.27% Zero-bond 0.00% 2.08%
Zero-bond 0.00% 7.34% 100% bond 1.12% 6.84%
100% bond 0.00% 6.84% Moderate™ 1.36% 8.27%
Conservative 0.01% 8.54% Conservative 1.64% 8.54%
Naive** 0.04% 10.15% Naive™®™ 2.57% 10.15%
100-x rule®** 0.32% 12.74% 20%-80% stock-bond 2.08% 9.17%
Aggressive 0.45% 13.32% 100-x rule®** 4.09% 12.74%
50%-50% stock-bond 0.66% 13.63% Aggressive 4.71% 13.32%
80%-20% stock-bond 2.20% 18.22% 70%-30% stock-bond 7.10% 17.17%
100% stock 3.40% 22.20% 100% stock 9.86% 22.20%
g=0%, T=20 g=4%, T=20
Strategy Norm. cost Norm. profit Strategy Norm. cost Norm. profit
Zero-bond 0.00% 33.98% Zero-bond 0.00% 11.08%
25%-75% stock-bond 0.00% 27.18% 100% bond 0.58% 18.57%
Moderate 0.00% 26.38% 10%-90% stock-bond 0.75% 22.20%
Conservative 0.00% 25.60% Conservative 1.38% 25.60%
100% bond 0.00% 18.75% Moderate 1.53% 26.38%
Naive 0.01% 29.82% 30%-70% stock-bond 2.41% 29.94%
40%-60% stock-bond 0.04% 34.00% Naive 2.42% 29.82%
100-x rule 0.05% 34.71% 100-x rule 3.77% 34.71%
Aggressive 0.57% 48.58% 50%-50% stock-bond 4.76% 36.63%
80%-20% stock-bond 0.97% 50.00% 70%-30% stock-bond 7.03% 46.68%
100% stock 1.79% 62.14% Aggressive 7.13% 48.58%
100% stock 10.12% 62.14%
£=0%, T=30 g=4%, T=30
Strategy Norm. cost Norm. profit Strategy Norm. cost Norm. profit
Zero-bond 0.00% 86.66% Zero-bond 0.00% 32.20%
Moderate 0.00% 63.66% 100% bond 0.30% 33.44%
Naive 0.00% 63.17% 20%-80% stock-bond 0.95% 44.96%
30%-70% stock-bond 0.00% 55.07% Conservative 1.49% 52.64%
Conservative 0.00% 52.64% 30%-70% stock-bond 1.85% 55.07%
100% bond 0.00% 33.44% Naive 2.75% 63.17%
100-x rule 0.01% 67.71% Moderate 2.78% 63.66%
50%-50% stock-bond 0.04% 68.51% 100-x rule 3.52% 67.71%
60%-40% stock-bond 0.11% 80.03% 50%-50% stock-bond 4.20% 68.51%
Aggressive 0.38% 104.53% 75%-25% stock-bond 7.17% 95.91%
100% stock 0.91% 123.74% Aggressive 7.76% 104.53%
100% stock 9.72% 123.74%

Note:

This table depicts the ranking of investment strategies according to the normalized guaran-
tee cost (under the Esscher measure) and the normalized expected return for the MS(1-2)
model and periodic contributions (€1200 up-front annually). The top part represents the
a 10-year contract, the middle part the 20-year contract, and the bottom part the 30-year
contract. The left section depicts the results for the low level guarantee (g = 0% p.a.),
and the right section for the high level guarantee (¢ = 4% p.a.), respectively.

* — for contracts with a 10-year term, the moderate life-cycle strategy invests in the 10%-
90% stock-bond portfolio. ** — for contracts with a 10-year term, the naive life-cycle
strategy invests in the 25%-75% stock-bond portfolio. *** — for contracts with 10-year
term, the 100-x life-cycle strategy invests in the 40%-60% stock-bond portfolio.
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can lead to the same guarantee cost, but to very different expected portfolio
wealth. For instance, the pure bond strategy and the zero-bond strategy are
both costless but have a normalized expected profit of 33.44% and 86.66%,
respectively. Furthermore, the zero-bond strategy is better than the 60%-40%
stock-bond buy-and-hold portfolio, which has a higher normalized guarantee
cost (0.11%) but a lower normalized profit (80.03%).

Further, note that if the same client accepts a normalized guarantee cost
of 0.91%, he can purchase a pure stock portfolio with the normalized ex-
pected profit of 123.74%, which is significantly higher than the profit of the
zero-bond strategy. This example demonstrates one further regularity. The
guarantee cost of a given investment strategy is twofold: the explicit cost the
customer has to pay (put price) and the opportunity cost (lower expected
profit in comparison to the reference strategy, e.g the pure stock investment
strategy). Thus, instead of buying the zero-bond strategy it would be ad-
visable to the client to pay the normalized price of 0.91% and to buy the
product with a pure stock strategy. The advantage of this strategy would
lie in a much higher normalized expected profit, which would increase from
86.66% to 123.74%.

Assume now that the client maintains the accepted cost level but raises
the protection level from 0% to 4%. If his objective was to buy a costless
guarantee, he would still buy the zero-bond strategy. His normalized ex-
pected profit, however, would decrease from 86.66% (for a 0% guarantee) to
32.20% (for a 4% guarantee). The reason for this is that the portfolio man-
ager has to invest a higher asset proportion into zero-bonds in order to meet
the higher guarantee level. If the client was ready to accept the normalized
cost of up to 1%, he would invest in the 20%-80% stock-bond portfolio. If

we compare this option to a pure stock portfolio with a guarantee of 0%,
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we can state that the cost remains at the same level (0.95% in comparison
to 0.91% in the previous example). However, the normalized expected cost
is 44.96%, which is significantly lower than the 123.74% from the previous
example. This example shows, once again, that the choice of the guarantee
level is not only associated with the explicit guarantee cost, but also with
the opportunity cost of expected profit.

Finally, we focus our attention on the zero-bond strategy. For the 0%
guarantee, the attractiveness of the zero-bond strategy increases with an in-
creasing contract term. For a 10-year contract, the zero-bond strategy is only
more attractive than one other strategy (the pure bond portfolio). For the
20-year contract, it is more attractive than eight strategies (the conservative,
naive, and moderate strategy and all buy-and-hold strategies a the stock
proportion of up to 30%). For the 30-year contract, it is more attractive
than thirteen strategies (all buy-and-hold strategies with a stock portfolio of
up to 50%, and all life-cycle strategies with the excption of the aggressive
one). This is due to the fact that with an increasing contract term, less cap-
ital is needed to assure that the guarantee is fulfilled (i.e. investment in the
zero-bond) and more capital can be invested in risky assets (i.e. equities).

In the 4% guarantee case, the zero-bond strategy is the only costless one,
regardless of the investment horizon. However, it is also the one with the
lowest normalized expected profit. This makes it less attractive in the eyes
of the client. Instead, he should accept a higher explicit guarantee cost,
which would significantly lower the opportunity cost (i.e. it would lead to an

increase of the expected profit).
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4.8 Conclusion

This chapter analyzes seven factors which influence the cost of an investment
guarantee: the initial state (i.e., the market phase at the inception of the
contract), the model governing the stochastic behavior of the investment
portfolio, the guarantee level, the investment strategy, time, the contract
term, and the contribution payment scheme.

We compare the cost of the guarantee within three option pricing models:
the Black-Scholes, the Bollen-Hardy model, and the Webb model. The cost
is the highest in the Black-Scholes and the lowest in the Webb approach.
The Bollen-Hardy price lies in between the above two. This result may seem
surprising at first glance. However, one has to keep in mind that the GBM,
which is used in the Black-Scholes model, does not differentiate between the
low and the high volatility phase (i.e. low and high market risk phase).
A glance at the average regime duration (see Tables B.1-B.13 in Appendix
B) or smoothed probabilities (see Figures D.1-D.39 in Appendix D), how-
ever, shows that the stable market phases are longer than the high volatility
phases. As the GBM does not differentiate between the low and the high risk
market phase, it only provides an average volatility. Furthermore, it does not
account for the fact that the high risk market phases only occur rarely, thus
leading to an overestimation of their impact on the guarantee cost. Thus,
we can state that not taking into account the stochastic volatility risk leads
to an overpricing of the guarantee. This effect is lower, ceteris paribus, (1)
the lower the contract term and/or (2) the lower the stock proportion in the
investment strategy. The effect of neglecting the switching risk (i.e., uncer-
tainty if the market is in the stable or in the turbulent phase) leads to more
crucial overpricement of the guarantee. Furthermore, this effect grows as (1)

the contract term and/or (2) the stock proportion in the strategy increase.
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This is important in the view of the fact that the retirement products we
discuss have a long-term nature.

The guarantee cost under the Markov switching model is very sensitive
to the probability of the initial state for short-term contracts. This effect is
less significant for middle- and long-term contracts. The guarantee cost is
higher when the product is sold in the high volatility market phase. Unfor-
tunately, the market state cannot be observed. However, smoothed proba-
bilities are very good proxies for the initial state probabilities. Additionally,
there are two ways the risk-averse agent can manage the risk associated with
the uncertainty about the initial state. First, he can restrict himself to only
selling guarantees with contract terms above 10 years. This does not pose a
problem, as retirement saving products are generally middle- and long-term
products, which are predominantly sold on the market anyway. Second, the
upper bound of the guarantee cost is always associated with a high volatil-
ity regime at the contract inception. The guarantee provider can therefore
assume this to be the case and use the results as the conservative guarantee
price.

Another cost factor we studied was the contribution payment scheme. We
found that the impact of this factor varies strongly with respect to other cost
factors. Generally, if the cost is high, then the single contribution scheme
yields a higher guarantee cost than the periodic scheme. If the cost is low,
the opposite holds true.

Three further factors which influence the guarantee cost, namely the guar-
antee level, the stock proportion in the investment strategy, and time/contract
term are tightly connected with each other. Accordingly, manipulating one
of the above three factors can achieve the same amount of the cost reduc-

tion. Thus, they should always be considered together. The impact of the
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guarantee level and the stock proportion is always the same: the higher the
guarantee level and/or the higher the stock proportion, the higher the cost
of the guarantee. Furthermore, guarantee levels significantly lower than the
risk-free interest rate (e.g. g = —2%,0% and 2% p.a.) have a different im-
pact on the guarantee cost and result in a different shape of the cost curve
than guarantee levels closer to the risk-free interest rate (e.g. g = 4% p.a.).

In contrast, the impact of time/contract term on the guarantee cost dif-
fers from that of the guarantee level and the stock proportion in the invest-
ment portfolio. In the case of low level guarantees and in the case of high
level guarantees with a low stock proportion the guarantee cost decreases
as time/contract term increases. On the contrary, for high level guarantees
with a high stock proportion, the cost function of time/contract term has an
inverted U shape.

In conclusion, the cost of low level guarantees can be reduced to an ac-
ceptable level for middle and high contract terms, regardless of the stock
proportion in the investment portfolio. The cost of high level guarantees is
acceptable only if the stock proportion is low. Since the guarantee cost is
rather high for high stock proportions, clients may not purchase such con-
tracts. Instead of selling guarantees backed by investment strategies with a
high stock proportion, the guarantee provider would be advised to sell guar-
antees backed by a life-cycle strategy. The idea of a life-cycle strategy is to
invest in more risky assets at the contract inception and to reduce the stock
proportion as the contract nears its expiration date. This approach enables
the guarantee provider to construct a product which well meets the expec-
tations of his client. This means that, for a given contract term, guarantee
level, and guarantee cost, the guarantee provider can find a life-cycle strategy

which maximizes the expected profit of the individual pension account.
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Apart from the buy-and-hold and life-cycle strategies, the zero-bond strat-
egy also constitutes a very interesting option for the guarantee provider. The
main idea is to invest the portion of the contribution needed to fulfill the
guarantee in a risk-free zero-bond, and the remaining capital in stocks. This
leads to a costless product. This strategy is very interesting for the guarantee
provider, as it does not require any solvency capital (under the assumption
that the seller of the zero-bond cannot default). A very interesting result is
that, for low level guarantees, the expected profit of the zero-bond strategy
outperforms the expected profit of several buy-and-hold and life-cycle strate-
gies with a positive cost. This does not hold true for high level guarantees
when the zero-bond strategy is the only costless one. Thus, the guarantee
provider has the choice between selling low level guarantees backed with a
zero-bond and selling those backed with one of the life-cycle strategies with
a positive — but still acceptable — cost and an expected profit which is higher
than the expected profit of the zero-bond strategy.

If the guarantee provider would like to sell high level guarantees backed
with a zero-bond strategy, he should be aware of the fact that, while being a
costless product, it also yields a very low expected profit. Thus, it is doubtful
whether buying the individual pension product with high level guarantee
backed by the zero-bond strategy really is in the best interest of the client.
The guarantee provider would thus be advised to back high level guarantees

with a life-cycle strategy, instead.
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Chapter 5

Risk analysis and solvency

requirements

5.1 Risk definition

In a financial context, risk can be understood as an ex ante unknown quantity
of the invested portfolio value at the end of the investment horizon. Or,
in a broader sense, as the ex ante unknown distribution of this portfolio
value. Alternatively, one can speak of the ex ante unknown return from the
investment or of its distribution as these two concepts (value and return) are
very closely related with each other.

Fishburn (1984, p. 397) characterizes risk as being based in part on out-
come preferences and targets. (...) risk increases as bad outcomes become
more probable, and as probable bad outcomes get worse. While favorable
outcomes are not associated with risk by themselves, their presence in a dis-
tribution that has positive probability for bad outcomes might decrease the
risk of the distribution.

According to that, this thesis defines risk as Albrecht’s (2004, p. 1493)
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risk of the first type, i.e., as the magnitude of deviations from a target. To
quantify this risk we will use several risk measures, which are defined as

follows.

Definition 5.1 (Risk measure) Let (2, F,P) be a probability space and
let % be a family of random variables on this probability space, then functional

R : % — R is called a risk measure (Fischer 2003, p. 136).

This means that there is a rule (risk measure) which allows us to assign a
real number to each random variable (in our case a risky asset) from family #.
This real number describes the risk level (or “riskiness”) of a particular risky
asset which enables us to compare the risk level of different risk strategies.

This Chapter analyzes the risk and solvency requirements associated with
investment guarantees. It is constructed as follows. Section 5.2 discusses sev-
eral risk measures and their suitability to measure the risk of an investment
guarantee. It proposes using lower partial moments and conditional lower
partial moments for this purpose. Section 5.3 discusses the design of the
study which is similar to that from the previous Chapter. Section 5.4 an-
alyzes the risk of an investment guarantee from the point of view of the
guarantee provider. It discusses the impact of several risk factors on the risk
of an investment guarantee. Section 5.5 extends the discussion by adding
the point of view of the solvency supervising authority and Section 5.6 adds
that of the potential buyer of the guarantee. It proposes to use the mean
excess loss to quantify the required solvency capital. Section 5.7 concludes

the results of this Chapter.

206



5.2 Risk measure

5.2.1 Dispersion risk measures

Markowitz (1952) was the first to quantify financial risk. In his groundbreak-
ing Portfolio selection paper he measured the risk by means of standard de-
viation. Alternatively, one can also use variance to quantify financial risk as
Sharpe (1964) did in his Capital Asset Pricing Model. Standard deviation

and variance can be defined as follows:

Definition 5.2 (Standard deviation and variance) Let X be a random
variable with the probability function F' and the expected value u, then

7= [ @ ppar)

—00

is called variance of X. Additionally, o = Vo2 is called standard deviation
of X.

Ever since Markowitz (1952) and Sharpe (1964), both these dispersion
risk measures have commonly been used in financial literature. Their advan-
tage lies in their understandability and computational straightforwardness.
However, they have the disadvantage of equally weighting the chance (pos-
itive deviation from the mean) and the risk (negative deviation from the
mean). This is unproblematic in the case of symmetric distributions, e.g.,
the normal distribution. Yet, in Section 3.1 it was shown that the returns of
financial time series are not symmetrical. In order to deal with this drawback,

one can use semi-dispersion measures:

Definition 5.3 (Semi-standard deviation and semi-variance) Let X be

a random variable with the probability function F' and the expected value u,
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then

7= [ - ppar)

is called semi-variance of X. Additionally, o5 = /0?2 is called semi-standard

deviation of X.

Contrary to the standard deviation and variance, semi-dispersion risk
measures only account for a negative deviation from the mean. Thus, they
correspond better to our concept of risk than standard deviation and vari-
ance. They were, e.g., used by Hogan and Warren (1974) who proposed an

equilibrium pricing model with semi-variance as a risk measure.

5.2.2 Quantile risk measures

Another approach is to use risk measures based on quantiles.

Definition 5.4 (Quantile) Let X be a random variable with distribution

function F, and let 0 < a <1 be a constant, then Q. such that

F(Qa(X)) = a
is called o quantile of X.

A commonly used quantile risk measure is the value at risk (VaR), intro-
duced by JP Morgan (1996) in their RiskMetrics concept and recommended
by the Basel Committee on Banking Supervision (2001) to quantify risk in
the banking system.

Definition 5.5 (Value at risk (VaR)) Let X be a random variable and

let 0 < <1, then a (1 — a)-quantile of X, namely

F(VaRa(X)) = 1 - a = F(Qi_a(X)).
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is a value at risk of X at the confidence level . Thereby, ) denotes a

quantile and F' denotes the distribution function of X.
Remark 5.6 Note that Definition 5.5 is the equivalent of

Pr(X > VaR,(X)) = «
(Albrecht 2004, p. 1498).

Value at risk can be interpreted as the maximal loss with a given prob-
ability 100(1 — «)%. The confidence level a can be interpreted as the risk
aversion cofficient. The lower the probabilty a, the more risk averse is the
decision maker.

Value at risk is very controversial as a risk measure. Szegé (2002, p. 1261)
points out several drawbacks of VaR: it does not measure losses exceeding
VaR; it may yield contradictory results for different confidence levels; it is
not sub-additive, which means that diversification may increase the risk; it
is not convex, which implies that it is problematic to use it for optimization
problems; furthermore it has many local maxima, which may lead to unstable
risk rankings. Acerbi and Tasche (2002) and Szegé (2002), among others,

discuss several other quantile risk measures dealing with these drawbacks.

5.2.3 Shortfall risk measures

Both above mentioned risk measure families cannot be used to quantify the
risk of falling below a target portfolio wealth (or a target return). Shortfall
risk measures address precisely this problem. They are based on the idea
that any given financial random variable can be divided into a risk and a

chance component, according to the given target z (e.g. guaranteed portfolio
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value):

X = —max(z — X;0) +z + max(X — z;0), (5.1)
~ vV
risk chance

where —max(zZ — X;0) represents the risk and max(X — z;0) the chance
potential, respectively. Define now the loss function, such that L = max(z —

x;0), then the shortfall risk measure can be defined as follows.

Definition 5.7 (Shortfall risk measure) Let X be a random variable with
the distribution function F', let Z be a target, and let L : R — R, U {0} be a

continuous, monotonously decreasing function, then
SRM.(X) = / L(z — 2)dF(z)

is called the shortfall risk measure. The function L is called the loss function

(Albrecht 1994, p. 92).

Remark 5.8 Very often in literature, the loss function is defined as L(x) =
™ withn > 0. Accordingly, the shortfall risk measure SRM;(X) is quantified
by LPMZ(X), i.e. the lower partial moment of the n-th order and the target
z (Albrecht and Klett 2004, p. 3).

The most often used shortfall risk is the lower partial moment.

Definition 5.9 (Lower partial moment) Let X be a random variable with

distribution function F', let n > 0 and Z € R be constants, then

LPM?(X) = /_ T (5= ) dF ()

is called the lower partial moment' of X of the order n and the target z

(Albrecht and Klett 2004, p. 3).

1Some authors define the lower partial moment as LPM, (X) = ’(/I_ZDO(Z — z)"dF(x),
see Albrecht (2004, p. 1497).
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Example 5.10 The constant n can be interpreted as the risk aversion mea-
sure of the financial agent. It can take on any non-negative value, however,
n € N leads to standard cases. E.g., for n =0, it is a shortfall probability

LPMQ(X):/E dF(z) = F(2) = P(X), (5.2)

which can be interpreted as the probability of falling below the target. For

n =1, it is a shortfall expected value

z

LPM;(X):/ (2 — x)dF(z) = E3[X], (5.3)

z
—00

which can be interpreted as the expected severity of loss. Other examples of
lower partial moments are: the shortfall variance, for n = 2,

LPM2(X) = / ) (Z — 2)%dF(x) =: Vari[X] (5.4)

—0o0

and the shortfall standard deviation

TP (X) — \// (5 — 2)2dF(z) = 05[X]. (5.5)

In analogy to the shortfall risk measure, a worst case measure can be

constructed. It is based on conditional lower partial moments.

Definition 5.11 (Conditional lower partial moment) Let X be a ran-
dom variable with distribution function F', let n > 0 and Z € R be constants,

then
CLPMZ(X) =E[max(z — X;0)"|X < z| = E[(z — X)"|X < Z]

is called a conditional lower partial moment of X of the order n and the

target z (Albrecht and Klett 2004, p. 4).
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Remark 5.12 Note that the partial moment equals the product of the con-
ditional lower partial moment and the shortfall probability.

LPM?(X) = / (F—2)dP(z) = F(2) / (5= 2)dF ()

[e.o] —0o0

= PS(X)CLPM!(X)

(Albrecht and Klett 2004, p. 5).

Example 5.13 In analogy to the case of lower partial moments, n is a risk
aversion coefficient which can take on all non-negative values. The best
known example of a conditional lower partial moment is the mean excess

loss (MEL), forn =1,

CLPMXX)=E[z- X|X <z] = Fé) /z (z — 2)dF(x) =t MEL;[X],
(5.6)

—00

which can be interpreted as the expected loss when the loss occurs. Other

examples are the conditional shortfall variance, for n = 2,

CLPMZ(X)=E[z-X)}|X <z = Fé) / (2 — 2)%dF (z) =: VarZ®[X]
(5.7)

—00

and the conditional shortfall standard deviation

CLPMi(X) = VE[(Z- X)X < 7] = \/ng) /_ (z — 2)2dF(x) =: 0°[X].
(5.8)

In the context of investment guarantees embedded in personal pension
plans, the risk is defined as the possibility that the value of the investment
portfolio which backs the guarantee falls below the guaranteed amount (or,
equivalently, that the realized return from the backing portfolio is lower than

the guaranteed return). Thus, from all of the above discussed risk measures,
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the lower partial moments and the conditional partial moments are the best
to quantify this risk, as they address the investment target explicitly. It
is useful to analyze several of them rather than selecting only one. The
shortfall probability can be interpreted as the probability of bankruptcy of
the guarantee provider (under the assumption that he does not have any
reserves). The shortfall expected value quantifies the expected average loss of
the guarantee provider. The shortfall variance (standard deviation) measures
the variance (standard deviation) of the loss.

A very interesting probability risk measure is the mean excess loss, since it
exhibits a worst case measure: it discloses how much on average the guarantee
provider additionally has to pay to the guarantee buyer if the value of the
guaranteed portfolio falls below the guaranteed amount. Therefore, in our
opinion, this measure is very well suited to quantify the solvency requirements
(or, equivalently, the reserves the guarantee provider should hold in order to
avoid his bankruptcy). The last risk measure we discuss in this dissertation
is the conditional shortfall variance (standard deviation), which quantifies

the variance (standard deviation) of the loss when the shortfall occurs.

5.3 Design of the study

Before we present the results of the study on the risk associated with the
return guarantee, the simulation design should be explained. The simulation
is based on the one described in Section 4.7.1.3. However, there are three
major differences: First, the stochastic variables are simulated under the real
world probability measure P. Second, the risk measures are simulated with
20.000.000 iterations. The rise of the iteration number is necessary to achieve

the convergence of several risk measures. In the case of the shortfall prob-
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ability, the shortfall expected value, and the shortfall standard deviation,
this goal was attained. In the case of the mean excess loss and the condi-
tional shortfall standard deviation, this only proved successful for investment
strategies with a high and a middle stock proportion. For strategies with a
low stock engagement, the results are unstable. However, it is not clear how
high the number of iterations should be for the Monte Carlo method to de-
liver robust numerical results. As the numerical approach with 20 million
iterations was very time consuming, we decided not to increase the iteration
number. Thus, for the mean excess loss and the conditional shortfall stan-
dard deviation, the results will be discussed only with regard to investment
strategies with a high stock proportion. We believe, however, that results
for other cases are qualitatively similar, even though we do not receive any
numerical results.

Third, as different contracts have different cash-flows and different guar-
antee values, we need to standardize the risk measures to render results com-
parable. Let LPMj(Vr) and C'LPM,(Vr) be the lower partial moments and
the conditional lower partial moments of portfolio value V' at the time point
T and the target portfolio value Gy defined in equation (4.30) (guaranteed
value) with the associated guarantee level g. Accordingly, the normalized
shortfall expected value is defined as

e‘T(T‘tO)LPMl(VT)

Nl .
LPM}(Vy) = T o) (5.9)
t =0 “in
the normalized shortfall standard deviation as
—~— efr(Tfto)LPMQ V
LPMZ(Vy) = ( T), (5.10)
C tn tO)
t =0 “ln
the normalized mean excess loss as
— — e*’"(T*tO)CLPMl |%
MEL(Vy) = CLPML(Vy) = ( T), (5.11)

t o Ct r(tn—to)
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and the normalized conditional shortfall standard deviation as

e ") CLPM2(Vr)

T—1
—7(tn—t
tn=0 Ctne ( n 0)

CLPM2(Vy) = , (5.12)

with Cy, contribution payed in time ¢, € [0,T].

5.4 Risk analysis

5.4.1 Impact of the initial state on the guarantee risk

Figures 5.1-5.2 show the impact of the initial state on the risk measures.
The thin dashed line represents risk measures for the agent who knows with
certainty that the market is in the low volatility state at the beginning of
the contract (Pr[Z;, = 1] = 1]), and the thick dashed line depicts risk mea-
sures for the agent who knows with certainty that the market is in the high
volatility regime at the contract inception (Pr[Z;, = 2] = 1]). The solid line
represents risk measures for the agent who does not know which state the
process was in at the beginning of the contract. Therefore, he assumes that
the process was in the low volatility regime with its ergodic probability (see
equation (2.69)). Le., he assumes: Pr[Z;, = 1| = m and Pr[Z;, = 2] = m.

The first two cases represent the lower and the upper bound of the risk
measure in the Markov switching model. From Remark 2.34 we know that
the limit transition probabilities of the homogeneous Markov chain (the state
variable Z; ) is the ergodic probability, as time goes to infinity. Thus, the
case of the uninformed agent is, in fact, the limit of the risk measure.

The impact of the initial state on the risk measures is similar to the impact
on the guarantee cost. The exception is the shortfall probability, which will
be described later. For other risk measures, the spread between the lower

and upper bound is greater, ceteris paribus, the shorter the contract term,
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Figure 5.1: Impact of the initial state on risk measures (periodic contribution)
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continued from the previous page

Normalized conditional shortfall standard deviation
stocks(1007)—bonds(07Z), g=07, periodic contribution stocks(1007)—bonds(07Z), g=47, periodic contribution
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Note:

This figure depicts the impact of the initial state on the guarantee shortfall risk by means
of the pure stock portfolio with periodic contributions (€1200 up-front annually) and the
MS(1-2) model. The thin dashed line represents the lower bound (Pr[Z;, = 1] = 1) and
the bold dashed line the upper bound (Pr[Z;, = 2] = 1) of the risk measure, respectively.
The solid line represents the limit of the risk measure (Pr[Z;, = 1] = m1). The left
column displays the low level guarantee (¢ = 0% p.a.) and the right column the high level
guarantee (g = 4% p.a.), respectively.

the higher the guarantee level, and/or the higher the stock proportion in the
investment strategy. Furthermore, contracts with single contributions are
more sensitive to the initial state than contracts with a periodic payment
scheme. The detailed discussion can thus be omitted, as it is similar to
Section 4.7.2.1. In this section we will restrict our discussion to the behavior
of the shortfall probability which is different.

In the case of short term contracts, the impact of the initial state on the
shortfall probability is greater, ceteris paribus, the lower the stock proportion
in the investment strategy and/or the lower the guarantee level. At first
glance, this is contra-intuitive, as one would assume that the higher both
risk factors, the higher the risk, and the higher the sensitivity to the initial
state. In fact, both of these risk factors increase the probability of shortfall.
For instance, a one-year contract with a 0% guarantee backed with a pure
stock contract has a shortfall probability of 43.66% in the low volatility initial
state and 46.42% in the high volatility initial state. Therefore, the shortfall
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Figure 5.2: Impact of the initial state on risk measures (single contribution)
Shortfall probability
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continued from the previous page

Normalized conditional shortfall standard deviation
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Note:

This figure depicts the impact of the initial state on the guarantee shortfall risk by means
of the pure stock portfolio with a single contribution (equal to the net present value of
periodic contributions) and the MS(1-2) model. The thin dashed line represents the lower
bound (Pr[Z;, = 1] = 1) and the bold dashed line the upper bound (Pr[Z;, = 2] = 1)
of the risk measure, respectively. The solid line represents the limit of the risk measure
(Pr[Z;, = 1] = m1). The left column displays the low level guarantee (¢ = 0% p.a.) and
the right column the high level guarantee (g = 4% p.a.), respectively.

probability is very high independnetly on the initial state. For a pure bond
portfolio, the shortfall probability equals 13.06% for the low volatility initial
state and 25.47% for the high volatility initial state. In this case, the initial
state has a significant influence on the shortfall probability, which explains
why the sensitivity of the shortfall probability to the initial state is higher
when the risk is low.

The impact of the remaining risk factors is the same as in the case of
other risk measures, i.e. the spread between the upper and the lower bound
converges to zero (or equivalently, the shortfall probability converges to the
limit) faster, the lower the guarantee level and/or the lower the stock pro-
portion in the investment portfolio. It also converges faster for the periodic
than for the single contribution scheme.

We conclude that the choice of the initial state is crucial for risk measures,
especially for short time contracts. Unfortunately, the probability of the

initial state cannot be observed. In Section 4.7.2.1 we discuss five ways to
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deal with this issue. Hereafter, we will use the smoothed probabilities from

the EM algorithm (see Table 4.2) as a proxy for initial state probabilities.

5.4.2 Impact of the stochastic model on the guarantee
risk

Figure 5.3 shows the impact of the stochastic model on shortfall measures.
The dashed line represents the result for the geometric Brownian motion,
and the solid line the result for the geometric Brownian motion with Markov
switching (model MS(1-2)). The shortfall probability and the normalized
shortfall expected value is higher in the GBM model. As long as these risk
measures approach zero, the results of both models converge to each other.

The normalized shortfall standard deviation is higher in the GBM model
for contracts with a high and middle stock proportion in the investment
strategy. However, the difference between both models becomes smaller with
growing contract duration. For models with a low stock proportion in the
investment strategy, the shortfall standard deviation is lower in the case
of short-time contracts. The shortfall standard deviation converges to zero
faster in the GBM model. Thus, for the middle term contracts, this risk
measure is higher in the Markov switching model. This phenomenon is not
observed for contracts with a high and middle stock proportion. In these
cases, however, the shortfall standard deviation does not converge to zero —
even for the 30-year contract. However, it can be assumed that this phe-
nomenon occurs later, since the difference between both models diminishes
as the contract duration increases.

Both conditional risk measures, the normalized mean excess loss and the
normalized conditional shortfall standard deviation, behave similarly. For

short term contracts, they are higher in the GBM. In such a case, both
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Figure 5.3: Impact of the stochastic model on risk measures
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continued from the previous page
Normalized conditional shortfall standard deviation
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Note:

This figure depicts the impact of the stochastic model on the guarantee shortfall risk
using the example of the pure stock strategy with periodic contributions (€1200 up-front
annually). The dashed line represents the GBM, and the solid line the MS(1-2) model.
The left column depicts contracts with a low level guarantee (¢ = 0% p.a.), and the right
column contracts with a high level guarantee (¢ = 4% p.a.), respectively.

curves cross, and the conditional risk measures are higher in the Markov
switching model. An exception is the normalized MEL for contracts with a
high guarantee level and a high stock proportion. In these cases, conditional
risk measures are greater in the GBM for all contract terms between 1 and
30 years. However, the spread between both models decreases, and it can
thus be assumed that both curves will cross each other for contracts with

higher durations.

5.4.3 Impact of the guarantee level on the guarantee
risk
This section discusses the impact of the guarantee level on the guarantee risk.

The most self-evident finding is that the risk increases with the increase of

the guarantee level. This holds true for all risk measures (see Figure 5.4%). In

2Figure 5.4 shows results for the pure stock portfolio. Results for the fifty-fifty stock-
bond portfolio and the pure bond strategy can be found in Figures K.1-K.2 in Appendix
K.
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Figure 5.4: Impact of the guarantee level on risk measures
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Note:

This figure depicts the impact of the guarantee level on the guarantee shortfall risk us-
ing the example of the pure stock strategy with periodic contributions (€1200 up-front
annually). All risk measures are computed for the MS(1-2) model. The thin dashed line
represents the guarantee of -2% p.a., the bold dashed line — 0% p.a., the thin solid line —
2% p.a., and the bold solid line — 4% p.a., respectively.

most cases, the shape of the risk curve is the same for all studied guarantee
levels. Some exceptions occur for the normalized shortfall standard deviation
and the normalized mean excess loss.

For portfolios with a stock proportion between 80% and 100%, the nor-
malized shortfall expected value is a decreasing function of the contract term
for low guarantee levels (i.e. g = —2%,0%,2%). In the case of the high level
guarantee, it is an increasing function for the short-term contracts. Con-
sequently, it reaches a maximum and starts to fall. For other investment

portfolios, the normalized shortfall expected value is a decreasing function of
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Figure 5.5: Sensitivity of risk measures to changes in the guarantee level
(pure stock portfolio)
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Note:

This figure depicts the sensitivity of risk measures to changes of the guarantee level using
the example of the pure stock strategy with periodic contributions (€1200 up-front annu-
ally). The sensitivity is measured in per cent points (pp). All risk strategies are computed
for the MS(1-2) model. The thin dashed line represents the guarantee increase from -2%
to 0% p.a., the bold dashed line — from 0% to 2% p.a., and the solid line — from 2% to 4%
p-a., respectively.

the contract term, regardless of the guarantee level.

The the case of the normalized shortfall, standard deviation is slightly
different. The shape of this curve is similar for all guarantee levels if the stock
is either low or high. In the first case, the curve decreases, and in the second
case, it increases to a maximum and decreases afterwards. For investment
portfolios with a stock proportion between 20% and 90%, the normalized
shortfall standard deviation is a decreasing function if the guarantee level is

equal to —2% p.a.; and it has the inverted U shape if the guarantee level
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equals 4% p.a. The other two guarantees (i.e. g = 0% or 2% p.a.) behave as
any one of the above two cases.

Figure 5.5 shows how the risk reacts if the guarantee level increases by
2 per cent points: from -2% to 0% (thin dashed line), from 0% to 2% (thick
dashed line), and from 2% to 4% (solid line). The figure shows that the risk
reacts overproportinally to the change in the guarantee level. In particular,
the increase is the lowest if the guarantee level rises from —2% to 0%; and
the highest if the guarantee level rises from 2% to 4%. The sensitivity of the
risk to the guarantee level is much smaller in the two remaining cases (i.e.,

the increase from —2% to 0% and from 0% to 2%).

5.4.4 Impact of the investment strategy on the guar-

antee risk

This section discusses the impact of the investment strategy on the shortfall
risk. One would intuitively assume that the risk associated with buy-and-hold
strategies should decrease along with the decrease of the stock proportion
in the portfolio. This holds true regardless of which risk measure is used
to quantify the risk (see Figure 5.6). The risk of the short-term buy-and-
hold strategies is always greater than zero. However, for some strategies,
it can drop to zero when the contract term is higher. This is the case for
investment strategies with a low level guarantee (i.e. g = 0% p.a.), and
a stock proportion between 0% and 40% (the lower the stock proportion,
the earlier the guarantee becomes riskless). For the 4% guarantee, only the

normalized shortfall expected value allows to declare the 10%-90% stock-

3Figure 5.4 shows the results for the pure stock portfolio. Results for the fifty-fifty
stock-bond portfolio and the pure bond strategy can be found in Figures K.4-K.5 in
Appendix K.
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Figure 5.6: Impact of the investment
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continued from the previous page

Normalized mean excess loss
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Note:

This figure depicts the impact of the investment strategy on the guarantee shortfall risk.
All risk measures are computed for the MS(1-2) model. The solid line with pluses rep-
resents the pure stock investment strategy, the solid line with squares — the 75%-25%
stock-bond, the solid line with triangles — the 50%-50% stock-bond, the solid line with
diamonds — the 25%-75% stock-bond, the solid line with inverse triangles — the pure bond
strategy, respectively. In all cases, contributions of €1200 are paid up-front annually. The
left column represents the low level guarantee (¢ = 0% p.a.) and the right row the high
level guarantee (g = 4% p.a.), respectively.

bond and the pure bond strategies as riskless for certain long-term contracts.
The shortfall probability and shortfall standard deviation have a positive
value, even for the pure bond strategy with a 30-year investment horizon.
They are, however, close to zero. On the countrary, the normalized MEL
is significantly higher than zero for all investment strategies. The less risky
strategy, namely the pure bond one, has a normalized MEL between 2.62%
and 3.66%.

The normalized MEL of the 0% guarantee seems to be higher for the pure
bond strategy than for the 25%-75% stock-bond strategy, e.g., for the 16-year
contract. This is not due to the higher risk of the pure bond strategy, but
due to the fact that the Monte Carlo simulation with 20 millions iterations
does not provide any stable results. This conclusion can be derived from the

irregularity of the pure-bond-curve.
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Figure 5.7: Impact
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of the investment strategy
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Normalized mean excess loss
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Note:

This figure depicts the impact of the investment strategy on the guarantee shortfall risk.
All risk measures are computed for the MS(1-2) model. The solid line with pluses rep-
resents the pure stock investment strategy, the solid line with triangles — the 50%-50%
stock-bond, the solid line with inverse triangles — the pure bond, the solid line with circles
— the zero-bond, the dashed line with circles — the aggressive, the dashed line with squares
— the moderate, the dashed line with triangles — the conservative, the dashed line with
diamonds — the naive, and the dashed line with inverse triangles — the 100-x investment
strategy, respectively. In all cases, contributions of €1200 are paid up-front annually. The
left column represents the low level guarantee (¢ = 0% p.a.) and the right row the high
level guarantee (g = 4% p.a.), respectively.

Persuant to the above discussion, we can state that in order to reduce
the shortfall risk, the guarantee provider can reduce the stock proportion in
the buy-and-hold strategies. Another solution would be to use one of the
life-cycle strategies defined in Table 4.1. Figure 5.7 shows the impact of life-
cycle investment strategies on the guarantee risk. The results are the same
for all risk measures.

The least risky of the life-cycle strategies is the conservative one. This
is followed by the moderate, the naive, the 100-x, and the aggressive strat-
egy. There are some exceptions for the middle-term contracts which yield a
slightly higher risk for the conservative strategy than for the moderate one.

The risk of the conservative strategy is always lower than the risk of

the 25%-75% buy-and-hold strategy, independent of the guarantee level or
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contract term. The risk of the conservative and the moderate investment
strategy is almost always lower than the risk of the 25%-75% stock-boond
strategy. Only long-term contracts with a 4% guarantee have a lower risk
when backed by the 25%-75% stock-bond portfolio than when backed by
the conservative or moderate strategy. The naive strategy has the same
risk as the 25%-75% stock-bond portfolio for short-term contracts due to
the strategy construction. For the middle and long-term contracts, the risk
for this strategy lies between the risk of the 25%-75% and the fifty-fifty
stock-bond strategy, independent of the guarantee level. The risk of the
100-x investment rule always lies between the risk of the 25%-75% and the
50%-50% buy-and-hold stratgy. The aggressive strategy is the most risky
one among the life-cycle strategies. For the short-term contracts, its risk is
below that of the 25%-75% buy-and-hold strategy. However, for middle-term
contracts, its risk exceeds the risk of the fifty-fifty, and for very long-term
contracts, it even exceeds the risk of the 75%-25% buy-and-hold strategy.
Lastly, we turn our attention to the zero-bond strategy, which is riskless
due to its construction for all possible configurations of the guarantee level
and the contract duration. From the point of view of the guarantee provider,
it is clearly the best strategy, as it does not require any solvency capital.
However, it remains an open question if this strategy is attractive for his
clients, since the price for the risk reduction might be a significantly lower

expected profit. This issue will be discussed in Section 5.6.

5.4.5 Impact of time on the guarantee risk

This Section discusses the impact of time on the guarantee shortfall risk.
First, buy-and-hold strategies will be discussed. We will then proceed by

examining life-cycle strategies and lastly, we focus our attention on the zero-
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bond strategy.

We will begin by discussing the impact of time on the 0% guarantee
backed by buy-and-hold strategies (see left column of Figure 5.8). The
shortfall probability and the normalized shortfall expected value are con-
vex decreasing functions of time. The same holds true for the normalized
shortfall standard deviation if the stock proportion in the backing portfolio
is not higher than 50%. If the stock proportion is between 60% and 75%, the
normalized shortfall standard deviation is a decreasing function of time, how-
ever, it is not convex any more. For the remaining buy-and-hold portfolios,
this risk measure increases to a certain maximum and decreases thereafter.
This maximum occurs in the 2nd or 3rd year. The normalized mean excess
loss increases until it reaches a peak and decreases thereafter. The maximum
occurs between the 2nd and the 8th year. The Monte Carlo simulation with
20.000.000 iterations does not provide any stable results for the normalized
conditional shortfall standard deviation.

Generally speaking, contracts with a low and middle stock proportion
have a moderate risk, regardless of the risk measure we use. Furthermore, as
time increases, they become riskless. On the contrary, the risk of contracts
with a high stock proportion is significantly high in the short time. As time
passes, the risk of these contracts becomes moderate.

The impact of time on the risk of the 4% guarantee backed by the buy-
and-hold strategies is slightly different (see right column of Figure 5.8). Only
the shortfall probability is a convex decreasing function of time for all buy-
and-hold strategies. The normalized shortfall expected value and the normal-
ized shortfall standard deviation are decreasing functions of time if the stock
proportion does not exceed 75% and 10%, respectively. In case of remaining

portfolios, these risk functions increase to a certain maximum and decrease
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Figure 5.8: Impact of time and the contract term on the guarantee shortfall

risk (buy-and-hold strategies)
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continued from the previous page

Normalized mean excess loss
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This figure depicts the impact of time and the contract term on the guarantee shortfall
risk. All risk measures are computed for the MS(1-2) model. The solid line with pluses
represents the pure stock investment strategy, the solid line with squares — the 75%-25%
stock-bond, the solid line with triangles — the 50%-50% stock-bond, the solid line with
diamonds — the 25%-75% stock-bond, the solid line with inverse triangles — the pure bond
investment strategy, respectively. In all cases, contributions of €1200 are paid up-front
annually. The left column represents the low level guarantee (¢ = 0% p.a.) and the right
row the high level guarantee (¢ = 4% p.a.), respectively.

afterwards. The normalized shortfall expected value reaches its maximum
between the 4th (80%-20% stock bond portfolio) and the 6th (pure stock
portfolio) year, and the normalized shortfall standard deviation reaches its
maximum between the 2nd (20%-80% stock bond portfolio) and the 11th
(pure stock portfolio) year. The normalized mean excess loss is an increasing
function of time in the interval between 1 and 30 years. The Monte Carlo
simulation with 20.000.000 iterations only provides stable results for the nor-
malized conditional shortfall standard deviation for portfolios with a high
stock proportion. In these cases, this risk measure is an increasing function
of time.

Generally speaking, contracts with low stock portfolios have a moderate
risk when the risk is measured with the normalized shortfall expected value,

the normalized shortfall standard deviation, or the normalized MEL. On the
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Figure 5.9: Impact of time and the contract term on the guarantee shortfall

risk (moderate strategy)
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Normalized conditional shortfall standard deviation
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Note:

This figure depicts the impact of time and the contract term on the guarantee shortfall
risk using the example of the moderate strategy with periodic contributions (€1200 are
paid up-front annually). All risk measures are computed for the MS(1-2) model. The
bold dashed line shows how the risk measure changes over time for a 10-year contract,
the thin dashed line for a 20-year contract, and the thin solid line for a 30-year contract,
respectively. The bold solid line shows the normalized contract at contract expiration.
The bold pluses depict the 100%-0% and the empty circles — the 70%-30% stock-bond
buy-and-hold portfolio, respectively. The left column represents the low level guarantee
(9 = 0% p.a.), and the right row the high level guarantee (g = 4% p.a.), respectively.

contrary, risk measured by the shortfall probability for the short time is very
high. As time increases, the risk measured with the shortfall probability,
normalized shortfall expected value, and the normalized shortfall standard
deviation becomes lower or even vanishes completely. Only the normalized
MEL increases along time. This means that for short time, the shortfall
occurs relatively often. However, in these cases, the realized loss is moderate.
As time increases, the probability of shortfall decreases, but solvency capital
increases slightly. On the other hand, the risk of contracts with a high and
a middle stock proportion is high. As time increases, the risk remains on a
high level regardless of the risk measure used.

The impact of time on the life-cycle strategies will be discussed in the

example of the moderate strategy (see Figure 5.9). These results are rep-
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Figure 5.10: Impact of time and the contract term on the guarantee shortfall

risk (aggressive strategy)
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Normalized conditional shortfall standard deviation
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This figure depicts the impact of time and the contract term on the guarantee shortfall
risk using the example of the aggressive strategy with periodic contributions (€1200 are
paid up-front annually). All risk measures are computed for the MS(1-2) model. The
bold dashed line shows how the normalized cost changes over time for a 10-year contract,
the thin dashed line for a 20-year contract, and the thin solid line for a 30-year contract,
respectively. The bold solid line shows the normalized contract at contract expiration. The
bold pluses depict the pure stock buy-and-hold portfolio, respectively. The left column
represents the low level guarantee (¢ = 0% p.a.), and the right row the high level guarantee
(9 = 4% p.a.), respectively.

resentative for all but the aggressive strategy (see Figure 5.10), which will
be discussed separately. Results for all life-cycle strategies can bee seen in
Figures L.1-1..5 in Appendix L.

Figure 5.9 shows the impact of time on the moderate strategy for three
examples: a 10-year contract (thick dashed line), a 20-year contract (thin
dashed line), and a 30-year contract (thin solid line). At the beginning of
the contract, the moderate strategy has the same risk as its initial portfolio,
i.e. the 10%-90% stock-bond portfolio (not depicted on the figure), 70%-
30% stock bond portfolio (empty circles), and the pure stock portfolio (thick
pluses) for the 10-year, 20-year, and 30-year contract, respectively. Beginning
at the first shifting date, the risk starts to decrease, regardless of whether
the risk of the initial portfolio grows or falls. On each further shifting date,
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the speed of the risk reduction increases. The longer the contract term, the
higher the risk reduction in comparison to the risk of the initial portfolio.
These results remain the same, regardless of the risk measure used to quantify
the shortfall risk.

Figure 5.10 shows the results for the aggressive strategy. In this case,
the risk is also equal to the risk of the initial portfolio (i.e the pure stock
portfolio), and it decreases after the shifting date — independent of whether
the risk measure of the initial portfolio grows or declines. However, the risk
reduction is higher, the shorter the contract term. This is due to the strategy
construction: the shorter the contract term the proportionally longer the
contract invests in the less risky pure bond portfolio.

The shortfall risk of the zero-bond strategy is insensitive to the change of

time, as it is equal to zero due to the strategy construction.

5.4.6 Impact of the contract term on the guarantee
risk

In the case of buy-and-hold investment strategies, the impact of the contract
term on the guarantee risk is exactly the same as the impact of time. There-
fore, we omit this discussion, and only discuss the life-cycle strategies and
the zero-bond strategy.

The impact of the contract term on the life-cycle strategy will be dis-
cussed in the example of the moderate strategy, which is representative for
all but the aggressive strategy. The aggressive strategy will thus be discussed
separately. (Remaining investment strategies can be found in Figures L.1-L.5
in Appendix L). The normalized conditional shortfall standard deviation will
be discussed only for the 4% guarantee backed with the aggressive strategy,

as it is the only case in which the Monta Carlo simulation produced stable
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results.

The results for the moderate strategy are depicted in Figure 5.9 (thick
solid line). The risk of the 0% guarantee is low for short-term contracts.
The risk measured with the shortfall probability, the normalized shortfall ex-
pected value, and the noramlized shortfall standard deviation decreases very
rapidly towards zero and remains at this level. The risk measured with the
normalized MEL is stable at the level of ca. 2% for contract terms between 1
and 14. Thereafter the curve becoms irregular, because the shortfall occurs
too rarely. Thus, the Monte Carlo simulation with 20 milions runs is not
able to give a stable numerical solution.

The shortfall risk the 4% guarantee backed with the moderate strategy
is a convex U-shaped function of the contract term. Several risk measures
have a minimum for different contract terms. The shortfall probability has
its minimum for the 19-year contract at the level of 14.03%, the normalized
shortfall expected value for the 17-year contract at the level of 0.06%, the
normalized shortfall standard deviation for the 18-year contract at the level
of 0.64%, and the normalized MEL for the 2-year contract at the level of
0.02.88%, respectively. This shows that the shortfall risk can be optimized by
a suitable choice of a contract term and a suitable design of the investment
strategy (by choosing an optimal initial portfolio and an optimal shifting
design). These results are similar to those of the guarantee cost, see Section
4.7.2.6.

Figure 5.10 shows the impact of the contract term on the shortfall risk
of the aggressive strategy (thick solid line). We begin with a discussion of
the 0% guarantee. The shortfall probability equals 15.11% for the one year
contract, it then decreases rapidly and for contracts with a duration greater

than 5 years, it remains stable at a level of ca. 2%. The normalized shortfall
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expected value and the normalized shortfall standard deviation are stable
at a level of 0.1% and 1%, respectively, for all contract terms between 1
and 30 years. The normalized MEL has an inverted U-shape. It increases
from 1.86% (one year contract) to 6.99% (19 years contract), and then starts
decreasing to 6.29% (30-year contract).

Curves of the shortfall risk measures for a 4% guarantee backed by the
aggressive strategy have the same shape as for a 0% guarantee. However, the
risk is higher than in the case of the 0% guarantee. The shortfall probability
starts at a very high level of 52.05% (one year contract), then sinks to 21.34%
(5-year contract) and remains near the 20% mark with a slightly decreasing
tendency thereafter. The remainig risk measures behave similarly. They
are stable for contracts with maturities between 1 and 5 years and increase
thereafter. The normalized expected value increases from 1.52% to 2.92%, the
normalized shortfall standard deviation from 2.64% to 9.04%, the normalized
MEL from 2.93% to 18.97%, and the normalized shortfall standard deviation
from 5.08% to 58.83%, between the 1-year and 30-year contract, respectively.
It can be seen that the slope is higher (a) for higher partial moments and (b)
for conditional rather than for unconditional risk measures.

The shortfall risk of the zero-bond strategy is insensitive to the change of

contract term, as it equals zero due to the strategy construction.

5.4.7 Impact of the contribution payment scheme on

the guarantee risk

This Section compares the guarantee risk for two alternative contribution
payment schemes: the single premium and the periodic premium (€1200
up-front yearly). For the sake of comparability, the single premium is cho-

sen to take on the net present value of aggregated periodic payments. The
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Figure 5.11: Impact of the contribution payment scheme on risk measures

(pure stock portfolio)
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Normalized conditional shortfall standard deviation
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This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the pure stock strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (€1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (¢ = 0% p.a.), and the right
column contracts with a high level guarantee (¢ = 4% p.a.), respectively.

subsequent paragraph begins by discussing the buy-and-hold strategies. We
will proceed by examining the life-cycle strategies and lastly, the zero-bond
strategy.

Figures 5.11 and 5.12 show the impact of the contribution payment scheme
using the example of a pure stock and a pure bond portfolio, respectively.
The shortfall probability is higher for contracts with periodic contributions
independent of the stock engagement and guarantee level.

The normalized shortfall expected value, the normalized shortfall stan-
dard deviation, and the normalized MEL react in the same way with respect
to change in the contribution payment. In the case of the 0% guarantee,
the shortfall risk is higher for the periodic contribution payment when using
these three risk measures. The only exceptions are short-term contracts with
a very high stock proportion (see Figure 5.11). In the case of the 4% guar-
antee, the shortfall risk is higher for contracts with single premium backed

by buy-and-hold portfolios with a very high stock proportion (see Figure
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Figure 5.12: Impact of the contribution payment scheme on risk measures
(pure bond portfolio)
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continued from the previous page

Normalized mean excess loss
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Note:

This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the pure bond strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (€1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (¢ = 0% p.a.), and the right
column contracts with a high level guarantee (¢ = 4% p.a.), respectively.

5.11). If the bond proportion is high, contracts with periodic premiums have
a slightly higher shortfall risk (see Figure 5.12). For all other buy-and-hold
portfolios, the risk measure curves cross each other. For short-term con-
tracts, the shortfall risk is higher for the single premium payment scheme.
For long-term contracts, the shortfall risk is higher in the periodic contribu-
tion payment scheme. The lower the stock proportion in the portfolio, the
sooner both curves cross each other.

The normalized conditional shortfall standard deviation behaves differ-
ently from the three risk measures discussed above. In the case of the 0%
guarantee, the normalized conditional shortfall standard deviation is higher
for short-term contracts with a single premium. As the contract term grows,
the discrepancy between both payment schemes declines. For middle-term
contracts, both curves cross each other. For long-term contracts, the sin-

gle contribution scheme yields a lower shortfall risk. In the case of the 4%

guarantee, the risk is higher in the single premium scheme, independent of
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the respective stock engagement and the contract term (for cases which yield
stable numeric results).

The impact of the contribution payment scheme on the life-cycle strat-
egy will be discussed using the example of the moderate strategy (see Figure
5.13) which is representative for all but the aggressive strategy. The ag-
gressive strategy (see Figure 5.14) will be discussed separately. (Remaining
investment strategies can be found in Figures M.1-M.5 in Appendix M).

First, we turn our attention to the moderate strategy (see Figure 5.13).
In this case the shortfall probability, the normalized shortfall expected value,
and the normalized shortfall standard deviation behave similarly. Consider-
ing the 0% guarantee, the shortfall risk is higher for a periodic contribution
scheme when the contract term is short. For the middle contract term, the
shortfall risk sinks to zero independent of the payment scheme. As the con-
tract term grows, the risk in the periodic contribution scheme remains at
the zero level, but the risk in the single contribution scheme becomes slightly
positive. Only the shortfall expected value remains at the zero level — even in
the single contribution scheme. Now we consider the the 4% guarantee level.
For short-term contracts, the shortfall risk is higher in the periodic contribu-
tion scheme. Approximately at the 10-year mark of the contract term both
curves cross each other and then the single contribution scheme yields the
higher risk. The discrepancy is higher, the longer the contract term. It is
worth mentioning that the shortfall risk of the 4% guarantee has a minimum
in both payment schemes. However, the minimum of the single contribution
function occurs for lower contract terms than the minimum of the periodic
payment scheme.

The normalized MEL is higher for the single payment scheme, regardless

of the guarantee level. The normalized conditional shortfall standard devia-
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Figure 5.13: Impact of the contribution payment scheme on the guarantee

shortfall risk (moderate strategy)

Shortfall probability

moderate strateqgy, g=07

60

Single contribution
L —— Periodic contribution

50

30 40

Shortfall probability (%)
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Contract term (years)

28 30

Normalized

moderate strateqgy, g=07

Single contribution
—— Periodic contribution

2 3 4 5

1

Norm. shortfall expected value (7%)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Contract term (years)

Normalized shortfall

moderate strateqgy, g=07

--- Single contribution
—— Periodic contribution

6

Norm. shortfall std. variation (%)

0 2 4

o 2 4 6 8
Contract term (years)

continued on the next page

g=47, moderate strateqgy
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continued from the previous page

Normalized mean excess loss
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Note:

This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the moderate strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (€1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (¢ = 0% p.a.), and the right
column contracts with a high level guarantee (¢ = 4% p.a.), respectively.

tion does not yield any stable numeric results for the moderate strategy.

Figure 5.14 shows the results for the aggressive strategy. All of the dis-
cussed risk measures react similarly to the change of the payment scheme
regardless of the guarantee level. For short-term contracts, the shortfall risk
is lower in the single contribution scheme. Nevertheless, both curves cross
each other at the latest in the 5-year contract. After that, the shortfall risk
is higher in the single payment scheme. In contrast to the moderate strat-
egy, the gap between both payment schemes does not widen with a growing
contract term. The discrepancy is the highest for about the 10-year contract
and then begins to decline. In the case of the normalized MEL, the scissors
even close in the case of a 0% guarantee, and for a contract term higher or
equal to 28, the risk is higher for the periodic contribution scheme.

The shortfall risk of the zero-bond strategy is insensitive to a change
of the contribution payment scheme as it equals zero due to the strategy

construction.

247



Figure 5.14: Impact of the contribution payment scheme on the guarantee
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Normalized conditional shortfall standard deviation
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Note:

This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the aggressive strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (€1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (¢ = 0% p.a.), and the right
column contracts with a high level guarantee (¢ = 4% p.a.), respectively.

5.5 Solvency requirements

Section 5.4 addresses the impact of diverse factors (guarantee level, invest-
ment strategy, time, contract term, and contribution payment scheme) on
the guarantee risk. All of these aspects are important from the perspective
of the financial company managing the guarantee risk or considering to sell
a guarantee to its customers.

However, for the solvency supervising authority, a very important issue
concerns the question of how to quantify solvency requirements. As we have
mentioned already at the end of Section 5.2.3, the mean excess loss is a very
good measure of solvency requirements as it quantifies the average loss when
loss occurs. In other words, it quantifies how much capital on average the
guarantee provider should collect ex ante to compensate the loss resulting
from falling of the portfolio value below the guaranteed amount when this
scenario would realize. For this reason the MEL can be considered as a

worst-case measure and therefore it is interesting from the point of view of
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Table 5.1: Ranking of investment strategies (¢ = 0%)

g=0%, T=10

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL | norm. cost | norm. profit
Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 7.34%
Moderate™ 0.00% 0.00% 0.01% 1.86% 0.00% 8.27%
Conservative 0.01% 0.00% 0.03% 2.16% 0.01% 8.54%
100% bond 0.01% 0.00% 0.02% 2.36% 0.00% 6.84%
Naive*™* 0.09% 0.00% 0.10% 2.46% 0.04% 10.15%
100-x rule*** 1.23% 0.06% 0.68% 4.62% 0.32% 12.74%
Aggressive 2.41% 0.12% 1.04% 5.12% 0.45% 13.32%
50%-50% stock-bond 2.99% 0.18% 1.41% 6.18% 0.66% 13.63%
75%-25% stock-bond 8.76% 0.88% 3.82% 10.03% 1.92% 18.20%
100% stock 15.40% 2.08% 6.70% 13.54% 3.40% 22.20%
g=0%, T=20
Strategy shortf. prob. norm. SEV norm. SSD norm. MEL | norm. cost | norm. profit
Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 33.98%
100% bond 0.00% 0.00% 0.00% 0.00% 0.00% 18.57%
Moderate 0.00% 0.00% 0.00% 0.05% 0.00% 26.38%
25%-75% stock-bond 0.00% 0.00% 0.00% 1.28% 0.00% 27.18%
Naive 0.00% 0.00% 0.01% 2.22% 0.01% 29.82%
Conservative 0.00% 0.00% 0.00% 2.52% 0.00% 25.60%
100-x rule 0.07% 0.00% 0.13% 3.58% 0.05% 34.71%
50%-50% stock-bond 0.33% 0.02% 0.37% 4.91% 0.15% 36.63%
Aggressive 2.33% 0.16% 1.36% 6.98% 0.57% 48.58%
75%-25% stock-bond 2.59% 0.22% 1.72% 8.34% 0.80% 49.68%
100% stock 7.09% 0.81% 3.82% 11.46% 1.79% 62.14%
£=0%, T=30
Strategy | shortf. prob. norm. SEV norm. SSD norm. MEL | norm. cost | norm. profit
Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 86.66%
Conservative 0.00% 0.00% 0.00% 0.00% 0.00% 52.64%
25%-75% stock-bond 0.00% 0.00% 0.00% 0.00% 0.00% 49.75%
100% bond 0.00% 0.00% 0.00% 0.00% 0.00% 33.44%
Moderate 0.00% 0.00% 0.00% 1.37% 0.00% 63.66%
Naive 0.00% 0.00% 0.01% 2.04% 0.00% 63.17%
100-x rule 0.01% 0.00% 0.03% 2.70% 0.01% 67.71%
50%-50% stock-bond 0.04% 0.00% 0.10% 3.72% 0.04% 68.51%
Aggressive 1.41% 0.09% 0.95% 6.29% 0.38% 104.53%
75%-25% stock-bond 0.83% 0.05% 0.75% 6.40% 0.33% 95.91%
100% stock 3.51% 0.31% 2.08% 8.94% 0.91% 123.74%
Note:

This table ranks investment strategies according to the normalized solvency capital (fifth
column) and the normalized expected return (seventh column) for the low level guarantee
(g = 0% p.a.) with periodic contributions (€1200 up-front annually). All results are
computed for the MS(1-2) model. The top section represents the 10-year contract, the
middle section the 20-year contract, and the bottom section the 30-year contract. SEV
denotes the shortfall expected value, SSD the shortfall standard deviation, and MEL the
mean excess loss.

* — for contracts with a 10-year term, the moderate life-cycle strategy invests in the 10%-
90% stock-bond portfolio. ** — for contracts with a 10-year term, the naive life-cycle
strategy invests in the 25%-75% stock-bond portfolio. *** — for contracts with a 10-year
term, the 100-x life-cycle strategy invests in the 40%-60% stock-bond portfolio.
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the solvency supervising authority.

Tables 5.1 and 5.2 rank the chosen investment guarantees from the lowest
to the highest solvency capital (i.e. normalized MEL) in the case of the 0%
and the 4% guarantee respectively. Please note that in the case of the low
level guarantee with middle and high investment horizon, there are several
investment strategies which require no solvency capital (or reserves). For
example, for the 30-year contract, these are the zero-bond strategy, the con-
servative strategy and all buy-and-hold strategies with a stock proportion
of up to 25%. The shorter the investment horizon, the less the number of
investment guarantees which do not require any solvency capital. For exam-
ple, for the 10-year contract only the zero-bond strategy requires no solvency
capital. Similarly, in the case of the 4% guarantee, the zero-bond strategy is
the only one which does not require any solvency capital independent of the
contract term.

Tables 5.1 and 5.2 show additionally that the supervising authority should
rather require from the guarantee provider (1) to hold solvency capital ac-
cording to the risk exposure of investment guarantees, rather than (2) to
hold a constant solvency capital rate independent of the risk management
measure the guarantee provider employs. The second solution would punish
the guarantee providers who pursue a conservative risk management policy.
It would also give an incentive to retail products which are near this solvency
rate, in order to avoid of “wasting” of the solvency capital. This would lead
to an increase of the risk affinity of guarantee providers which may not be
intended by the supervising authority.

In our opinion, the best solution is one which joins both of the above
mentioned possibilities. The supervising authority should let the guarantee

provider hold the solvency capital according to the risk he is exposed to. How-
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Table 5.2: Ranking of investment strategies (¢ = 4%)

g=4%, T=10

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL | norm. cost | norm. profit
Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 2.08%
100% bond 3.74% 0.12% 0.87% 3.27% 1.12% 6.84%
Moderate™ 3.74% 0.12% 0.86% 3.29% 1.36% 8.27%
Conservative 5.23% 0.19% 1.14% 3.72% 1.64% 8.54%
Naive™®™ 9.51% 0.49% 2.08% 5.18% 2.57% 10.15%
100-x rule*** 15.81% 1.28% 4.15% 8.10% 4.09% 12.74%
Aggressive 20.73% 1.94% 5.39% 9.35% 4.71% 13.32%
50%-50% stock-bond 19.94% 2.03% 5.79% 10.16% 5.13% 13.63%
75%-25% stock-bond 26.90% 4.08% 9.85% 15.15% 7.62% 18.20%
100% stock 33.05% 6.58% 14.05% 19.90% 9.86% 22.20%
g=4%, T=20
Strategy shortf. prob. norm. SEV norm. SSD norm. MEL | norm. cost | norm. profit
Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 11.08%
100% bond 0.36% 0.01% 0.29% 3.57% 0.58% 18.57%
Conservative 1.13% 0.05% 0.63% 4.42% 1.38% 25.60%
Moderate 1.48% 0.07% 0.75% 4.68% 1.53% 26.38%
25%-75% stock-bond 2.00% 0.11% 1.00% 5.35% 1.91% 27.18%
Naive 3.38% 0.22% 1.54% 6.42% 2.42% 29.82%
100-x rule 6.64% 0.60% 3.01% 9.05% 3.77% 34.71%
50%-50% stock-bond 9.54% 1.06% 4.38% 11.10% 4.76% 36.63%
Aggressive 18.51% 2.99% 8.55% 16.13% 7.13% 48.58%
75%-25% stock-bond 17.08% 2.90% 8.72% 17.00% 7.63% 49.68%
100% stock 24.48% 5.53% 13.50% 22.58% 10.12% 62.14%
g=4%, T=30
Strategy | shortf. prob. norm. SEV norm. SSD norm. MEL | norm. cost | norm. profit
Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 32.20%
100% bond 0.04% 0.00% 0.10% 3.66% 0.30% 33.44%
25%-75% stock-bond 0.44% 0.02% 0.46% 5.27% 1.38% 49.75%
Conservative 0.62% 0.03% 0.57% 5.53% 1.49% 52.64%
Moderate 3.08% 0.25% 1.80% 7.97% 2.78% 63.66%
Naive 2.46% 0.20% 1.66% 8.16% 2.75% 63.17%
100-x rule 3.47% 0.34% 2.34% 9.76% 3.52% 67.71%
50%-50% stock-bond 4.85% 0.55% 3.17% 11.28% 4.20% 68.51%
75%-25% stock-bond 11.44% 2.00% 7.31% 17.49% 7.17% 95.91%
Aggressive 15.37% 2.92% 9.04% 18.97% 7.76% 104.53%
100% stock 19.02% 4.44% 12.20% 23.33% 9.72% 123.74%

Note:

This table ranks investment strategies according to the normalized solvency capital (fifth
column) and the normalized expected return (seventh column) for the high level guarantee
(9 = 4% p.a.) with periodic contributions (€1200 up-front annually). All results are
computed for the MS(1-2) model. The top section represents the 10-year contract, the
middle section the 20-year contract, and the bottom section the 30-year contract. SEV
denotes the shortfall expected value, SSD the shortfall standard deviation, and MEL the

mean excess loss.

* — for contracts with a 10-year term, the moderate life-cycle strategy invests in the 10%-

90% stock-bond portfolio.
strategy invests in the 25%-75% stock-bond portfolio.

*k

fokx

term, the 100-x life-cycle strategy invests in the 40%-60% stock-bond portfolio.
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ever, it should forbid selling guarantees which require the solvency capital
above some arbitrary upper boundary. This would not punish a conservative
risk policy and prevent taking too much risk into books.

Having arrive at the end of this Section, it is worth noting that the value
at risk is not a suitable solvency measure. Table 5.1 shows that in the case
of the 0% guarantee with a 30-year contract term, the 75%-25% stock-bond
strategy has the shortfall probability of 0.83% and the normalized shortfall
expected value of 0.05%. This corresponds to the value at risk of 0.05%
at the confidence level of 99.2%. However, if the shortfall would occur, the
guarantee provider suffers an average loss of 6.40% (see normalized MEL).
This example shows that the value at risk can lead to the underfunding of
the risk position of the guarantee provider and thus jeopardize his existence.
One could argue that the guarantor could then try to acquire the capital on
the market in order to cover the loss. Neverless, this scenario is more likely
to occur in times of financial market distress, when the guarantee provider

could have difficulties to aquiring the necessary capital.

5.6 Interrelation between solvency requirements
and expected profit

The previous Section has shown that several investment strategies do not
require any solvency capital. Thus, as one possible strategy, the guarantee
seller can choose contracts which do not require any solvency capital and of-
fer these to clients. However, a future pensioner is interested in three aspects
when buying a guarantee: the protection level (level of the guarantee), the
reduction of the cost of protection, and the maximization of profit. Thus,

it might happen that an investment strategy that does not require any sol-
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vency capital would be unsatisfactory from the client’s point of view. For
instance, its expected profit would be too low. As we discuss several invest-
ment strategies, we would like to see which one of these is most suitable for a
client and most likely to satisfy his goals and still be financeable in terms of
solvency capital, for the guarantee provider. To compare the profit potential
of different investment strategies, we use the normalized expected profit as
defined in Definition 4.53.

Tables 5.1 and 5.2 rank chosen investment guarantees from the lowest to
the highest solvency capital (i.e. normalized MEL). If two strategies have the
same solvency capital, the better ranking is given to the one with the higher
expected profit. We thereby assume that the client knows his investment
horizon (10, 20 or 30 years) and how much risk protection he needs (guaran-
tee of 0% or 4%). Besides the solvency capital, Tables 5.1 and 5.2 show the
remaining risk measures (i.e., shortfall probability, normalized shortfall ex-
pected value, and normalized shortfall standard deviation?) and normalized
cost computed in previous Chapter.’

In the following we will discuss the 0% guarantee at the 30-year invest-
ment horizon example. Results for the 20-year horizon are similar. Results
for the 10-year horizon are similar to results for the 4% guarantee, which will
be discussed later in this section. Six investment strategies (the zero-bond,
the conservative, and buy-and-hold strategies with up to 25% stock propor-
tion) do not require any solvency capital. From all of them the zero-bond

investment strategy has the highest normalized profit of 86.66%. In com-

4Normalized conditional shortfall standard deviation was postponed as it does not yield

results for all studied investment strategies within the 20 million Monte Carlo runs.
5All risk measures are based on the 20 million simulations, and the normalized cost

and the normalized expected profit are based on 1 million simulations in order to provide

a convergence of results.
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parison, the pure bond strategy has a normalized expected profit of 33.44%.
This shows that it is possible to choose an investment strategy that does
not require any solvency reserves. Moreover, it does matter which of these
strategies the guarantee provider chooses, as an unsuitable strategy can sig-
nificantly lower the profit the customer can expect.

Surprisingly, a higher normalized expected profit yields the most conser-
vative investment strategy: the zero-bond strategy.

Another interesting result is that several investment strategies (the mod-
erate, the naive, the 100-x rule, and the 50%-50% stock-bond strategy) re-
quire a positive solvency capital. However, these yield a lower expected
return than the zero-bond strategy. For example, the 50%-50% stock-bond
buy-and-hold strategy requires 3.72% of the net present value of contribu-
tions as solvency capital and has a normalized expected value of 68.51%.
First, far riskier strategies yield higher expected return than the zero-bond
strategy. For instance, the aggressive strategy requires a solvency capital of
6.29% and yields a normalized expected profit of 104.53%.

Last, we discuss the case of the 4% guarantee using the example of a 30-
year time horizon (see Table 5.2). Results for other investment horizons, e.g.
for 10 and 20 years are similar. The zero-bond strategy is the only one which
does not require any solvency capital. However, it yields a normalized profit
of only 32.20% which is rather unsatisfactory for the investment horizon of 30
years. This low expected profit is a result of the high guarantee level which
requires that a high portion of capital has to be invested in a riskless zero-
bond in order to fulfill the guarantee of 4%. This lead us to the conclusion
that a higher protection (4% p.a. instead of 0% p.a.) results in an oppor-
tunity cost of a lower expected profit. As one of the goals of pension saving

is the maximization of consumption in old age, this investment strategy is
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rather unfavorable for the customer. The increase of the expected profit is
equivalent to the increase of the solvency capital. For instance, the pure
bond buy-and-hold strategy yields the normalized expected profit of 33.44%
(which is only 1.24 per cent points higher in comparison to the zero-bond

strategy) but it requires a solvency capital of 3.66%.

5.7 Conclusion

This Chapter analyzes seven factors which influence the risk of an invest-
ment guarantee: the initial state (i.e., the market phase at the inception of
the contract), the model governing the stochastic behavior of the investment
portfolio, the guarantee level, the investment strategy, time, the contract
term, and the contribution payment scheme. We have discussed five risk
measures: the shortfall probability, the shortfall expected value, the shortfall
standard deviation, the mean excess loss, and the conditional shortfall stan-
dard deviation. The most interesting one is the MEL, as it is a worst case
risk measure. Thus, we propose using it as a quantification of the solvency
capital the guarantee provider should accumulate.

We maintain that the GBM model overestimates the risk associated with
the investment guarantee with the comparison to the GBM with Markov
switching. The GBM does not differentiate between the low and high volatil-
ity phase (i.e. low and high market risk phase). A glance at the average
regime duration (see Tables B.1-B.13 in Appendix B) or smoothed probabil-
ities (see Figures D.1-D.39 in Appendix D), however, shows that the stable
market phases are longer than the high volatility phases. As the GBM does
not differentiate between the low and the high risk market phase, it only

provides an average volatility. Furthermore, it does not account for the fact
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that the high risk market phases occur seldomly and thus lead to an overes-
timation of their impact on the shortfall risk.

The Markov switching model is very sensitive to the probability of the
initial state for short-term contracts. This effect is less significant for middle-
and long-term contracts. The risk is higher when the product is sold in the
high volatility market phase. Unfortunately, the market state cannot be ob-
served. However, smoothed probabilities are very good proxies for the initial
state probabilities. Additionally, there are two ways the risk-averse agent
can manage the risk associated with the uncertainty about the initial state.
First, he can restrict himself to selling only guarantees with contract terms
above 10 years. This does not pose a problem, as retirement saving products
are generally middle and long-term products, which are predominantly sold
on the market anyway. Second, the upper bounds of all risk measures dis-
cussed in this thesis are always associated with the high volatility regime at
the contract inception. The guarantee provider can therefore assume this to
be the case and use the results as the conservative risk measure.

Another risk factor we studied was the contribution payment scheme.
We found out that the impact of this factor varies strongly with respect to
other risk factors, e.g. the investment strategy underlying the guarantee, the
guarantee level, time/contract term, and the risk measure used.

Three further risk factors, namely the guarantee level, the stock propor-
tion in the investment strategy, and time/contract term are tightly connected
with each other. Accordingly, manipulating one of the above three factors
can achieve a risk reduction of the same amount. Thus, they should always
be considered together. The impact of the guarantee level and the stock pro-
portion is always the same: the higher the guarantee level and/or the higher

the stock proportion, the higher the risk of the guarantee, regardless of which
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risk measure is used. Furthermore, guarantee levels significantly lower than
the risk-free interest rate (e.g. g = —2%,0% and 2% p.a.) have a different
impact on the risk level and result in a different shape of the risk measure
curve than guarantee levels closer to the risk-free interest rate (e.g. g = 4%
p.a.).

On the contrary, the impact of time/contract term is different for different
risk measures. The shortfall probability decreases if time/contract term in-
creases regardless of the guarantee level and stock proportion. In most cases,
the normalized shortfall expected value decreases as time/contract term in-
creases. The exception are high level guarantees with a high stock proportion.
In these cases, the normalized shortfall expected value function has an in-
verted U shape. The normalized shortfall standard deviation is a decreasing
function of time/contract term when the stock proportion is low. For a high
stock proportion it increases to a maximum and then decreases. This holds
true for both the low and the high guarantee levels. In the case of low level
guarantees, the normalized MEL is a decreasing function of time/contract
term if the stock proportion is low, and an inverted U shape function if the
stock proportion is high. For the high level guarantees, the normalized MEL
is an increasing function of time/contract term. The normalized conditional
shortfall standard deviation can be only computed for investment strategies
with a high stock proportion. In this case, it is an increasing function of
time/contract term.

These results can be summed up in the following manner. Risk measures
we use here are more sensitive to changes in time/contract term, the higher
the order of the lower partial or conditional lower partial moment is. Further-
more, conditional lower partial moments are more sensitive with respect to

time/contract term than lower partial moments. In addition, it is vital that
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the risk manager takes into account that all risk measures used here can be
interpreted differently. The most informative ones seem to be the probability
of shortfall and the MEL, which can be interpreted as the required solvency
capital.

In conclusion, the risk of low level guarantees can be reduced to an ac-
ceptable level for middle and high contract terms, regardless of the stock
proportion in the investment portfolio. The risk of high level guarantees is
only acceptable for middle and high contract terms only if the stock propor-
tion is low. Since the risk is rather high for a high stock proportion, such
products should not be offered to clients as it could significantly jeopardize
the existence of the guarantee provider, which is evidently not in the inter-
est of guarantee buyers. Instead of selling guarantees backed by investment
strategies with a high stock proportion, the guarantee provider can sell guar-
antees backed by a life-cycle strategy. The idea of a life-cycle strategy is to
invest in more risky assets at the contract inception and to reduce the stock
proportion as the contract nears its expiration date. This approach enables
the guarantee provider to construct a product which fits the expectations
of his client. This means that, for a given contract term, guarantee level,
risk level, and/or solvency capital one can find a life-cycle strategy which
maximizes the expected profit of the individual pension account.

Apart from the buy-and-hold and life-cycle strategies, the zero-bond strat-
egy also constitutes a very interesting option for the risk manager. The main
idea is to invest the portion of the contribution needed to fulfill the guaran-
tee in a risk-free zero-bond and the remaining capital in stocks. This leads
to a risk-free product. This strategy is very interesting for the guarantee
provider, as it does not require any solvency capital (under the assumption

that the seller of the zero-bond cannot default). A very interesting result
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is that, for low level guarantees, the expected profit of the zero-bond strat-
egy outperforms the expected profit of several buy-and-hold and life-cycle
strategies which have a positive risk (and positive solvency capital require-
ment). This does not hold true for high level guarantees when the zero-bond
strategy is the only riskless (and solvency capital free) one. Thus, the guar-
antee provider has the choice between selling low level guarantees backed
with a zero-bond and those backed with one of the life-cycle strategies with
a positive — but still acceptable — risk (solvency capital) and an expected
profit which is higher than the expected profit of the zero-bond strategy. If
the guarantee provider would like to sell high level guarantees backed with
a zero-bond strategy, he should be aware of the fact that, while being a
risk-free product, it yields a very low expected profit. Thus, it is doubtful
that it would be in the interest of the client who buys an individual pension
product. The guarantee provider should instead back high level guarantees
with a life-cycle strategy. However, he should be aware that these are very
risky and thus require a high solvency capital.

Last but not least, we discussed the solvency capital requirements for
investment guarantees embedded in personal pension plans. We have shown
in an example that the value at risk which is used in the banking industry
to quantify solvency requirements, can lead to an underestimation of the
solvency capital and thus should not be used in this context. Instead, we
proposed applying the mean excess loss for this purpose. In our opinion, the
solvency supervising authority should allow the guarantee provider to hold
solvency capital according to his risk exposure and set a maximal allowed

risk position in order to prevent too risky behavior of guarantee providers.
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Chapter 6

Main results and further

research

6.1 Main results

This thesis discusses how to price, how to measure risk, and how to quantify
solvency capital for investment guarantees embedded in individual pension
products. The first main contribution of this thesis is to implement a model
with a stochastic volatility of the return rate of risky assets backing the
guarantee. This is all the more important since the saving process of a
pension product lasts for several decades. Furthermore, it is unreasonable to
assume that the risky asset backing the guarantee follows the GBM. We
decided to use the Markov regime model among several other stochastic
volatility models as it has a very appealing intuitive interpretation. This
model takes into account the stylized fact that the financial market reveals
two phases: the bull and the bear market phase.

Since the Markov switching model we use is not as well-known as the

GBM, we discussed how to estimate and test its parameters. Thus, the sec-
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ond main contribution of this thesis is a discussion on the suitability of the
MS model for the German financial market (stock and interest rate). Fur-
thermore, to the best of our knowledge, we are the first to implement suitable
statistical tests in order to test the null hypothesis of the MS model against
the arithmetic Brownian motion/Vasicek model in the context of financial
markets. Other authors only use the AIC and BSC or the likelihood ratio
test (see, e.g., Hardy (2001)). Particularly, the third one is unsuitable for
testing this null hypothesis, as Markov models violate certain crucial assump-
tions of the likelihood ratio test. Instead, we implemented tests proposed by
Hamilton (1996) and Garcia (1998).

We found that the GBM with Markov switching better describes the
stochasticity of Germany stocks than the GBM. Moreover, the Vasicek pro-
cess with Markov switching better describes the stochasticity of the German
interest rates.! Our results are very robust as we used several tests designed
especially for MS models, all of which provided similar results.

The price one has to pay for using MS models is an estimation and testing
procedure, as well as an option pricing theory which are more complex than
those of the GBM model. However, we should take into consideration that
pension saving products have contract durations of many years and that
the differences especially of the guarantee cost within both approaches are
significant. In our opinion, this additional effort is therefore worth making.

Third, the usage of the MS model implies the incompleteness of the finan-
cial market. This affects option pricing since several martingale risk measures

are possible in the arbitrage-free market. There is a common consensus that

"We use GBM with Markov switching for the bond portfolio, as there is no option
pricing theory for the Vasicek process with Markov switching. This simplification, however,

should not influence the results to a noteworthy degree.
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the market “chooses” the “right” martingale measure. However, guarantees
discussed in this thesis are not traded on the market, therefore, their prices
cannot be observed. Accordingly, the guarantee provider has to make a
suitable choice concerning the equivalent probability measure based, among
others, on his risk aversion. We decided to opt for the Esscher measure which
is well-known in actuarial science. Reasons for this choice are fourfold: (1)
The process under the Esscher martingale measure Q remains in the same
class of models as the process under the real-word probability measure P.
(2) The solution reduces to the well-known Black and Scholes (1973) formula
in the case of one switching regime (i.e. K = 1). (3) The Esscher transform
approach is conform with maximizing the expected utility with the constant
risk aversion utility function u(z) = % (0 <y <1). (4) The Esscher proba-
bility measure allows us to price the uncertainty of whether the market is in
a stable or in a turbulent phase.

We compared these results with those of the Black-Scholes and Bollen-
Hardy model. The comparison has shown that the difference between the
Back-Scholes and the Esscher model can be explained by two factors: the
stochastic volatility and the unobservable state variable. The latter factor
has a stronger impact.

Fourth, we proposed measuring the risk of the guarantee with several
lower partial and conditional lower partial moments. In our opinion, they are
better able to quantify the risk of the discussed guarantees than dispersion or
quantile risk measures (especially the value at risk widely used in the banking
industry). The reason for this is that they quantify the risk which is defined
as an unfavorable deviation from a target (e.g. guaranteed portfolio wealth).
By this means, they take into account the intuitive difference between “risk”

and “chance”.

263



Fifth, we discussed the solvency capital requirements for investment guar-
antees embedded in personal pension plans. We have shown in an example
that the value at risk, which is used in the banking industry to quantify sol-
vency requirements, can lead to an underestimation of the solvency capital
and thus should not be used in this context. Instead, we proposed applying
the mean excess loss for this purpose. In our opinion, the solvency supervis-
ing authority should allow the guarantee provider to hold solvency capital
according to his risk exposure and set a maximal allowed risk position in
order to prevent too risky behavior of guarantee providers.

Sixth, we found that the GBM overestimates the cost and risk of the
guarantee in comparison to the GBM with Markov switching. This result is
rather suprising, since we added an additional source of uncertainty to the
model: the market state variable, which describes whether the market is in
a stable or in a turbulent phase. However, a descriptive analysis of the MS
model shows that stable phases (i.e. phases with a low volatility ;) last
significantly longer on average than in turbulent phases (i.e. phases with
a high volatility o2). On the other hand, the GBM only has one market
phase with volatility oggy such that oy < oggy < 09. Thus, it inevitable
overestimates the influence of the turbulent market phase on the outcomes,
which also explains why the GBM provides biased results.

Seventh, we discussed several factors which influence the cost and the
risk of an investment guarantee. From the point of view of the risk manager,
three of these factors are of particular importance: the guarantee level, the
stock proportion, and time/contract term. Making a suitable choice among
these factors enables one to control the risk associated with the guarantee.

Eighth, we discussed several investment strategies the guarantee provider

can use. We showed that life-cycle strategies are more suitable than buy-and-
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hold strategies to control the cost and risk of the guarantee and/or increase
its expected profit. A suitable management of these variables can give the
guarantee provider a competitive advantage, since the purchaser of an indi-
vidual pension account is interested in both a high safety for his savings and
in a maximization of the expected profit. The life-cycle strategies we dis-
cussed reduce the volatility of the investment portfolio as the contract nears
its date of expiration, regardless of the market phase. An interesting topic
for further research would be studying investment strategies which take the
market phase into account. This would imply investing more risky during the
bull market phase and less risky during the bear market phase. We decided
against implementing such strategies, as such a program code would be too
time-consuming in GAUSS. We suppose, however, that it would be feasible
in other programing languages such as C++.

Ninth, we discussed the zero-bond strategy. The idea of this strategy is to
invest a portion of the contribution needed to fulfill the guarantee in a riskless
zero-bond, in order to provide a costless/riskless guarantee. The remaining
capital is to be invested in stocks in order to maximize the expected profit.
It turned out that this strategy performs very well for low level guarantees.
With respect to the expected profit, it even outperforms several buy-and-hold
and life-cycle strategies with positive cost, positive risk, or positive solvency
capital. For the high level guarantees there exists only one costless (riskless,
and solvency capital free) strategy and it could theoretically be implemented
by a risk averse guarantee provider. However, the expected profit of the
zero-bond strategy decreases along with an increase of the guarantee level.
For instance, a 4% guarantee backed with a zero-bond strategy is completely
uninteresting with respect to the expected profit. Therefore, it is doubtful

if such a product could be successful in the market. Instead, the guaran-
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tee provider should concentrate on low level guarantees or use a more risky
investment strategy. In our opinion, the first solution is more advisable as
high level guarantees with a satisfactory expected profit are expensive, risky,
and require a high solvency capital. Lastly, we should discuss some practical
constraints of the zero-bond strategy. It assumes that the portfolio manager
can purchase a riskless zero-bond with every desired maturity. However, such
zero-bonds migth not be available in the market, particularly for very long

maturities.

6.2 Further research

In our model we have made several assumptions. Relaxing them would pro-
vide an opportunity for further research. Below, we will discuss several of
them, some of which we are working on already. First, we have studied
deterministic guarantees. As we mentioned in Chapter 1, there are several
guaranteed pension products all over the world containing stochastic guar-
antees, e.g., a stochastic benchmark portfolio or inflation. Such guarantees
could be priced as the Margrabe (1978) option to exchange one risky asset
for another.

Second, we omitted the mortality risk, which could easily be implemented
using the maturity tables. We intentionally discarded this solution as it would
merely constitute a sum of option prices (risk measures or solvency require-
ments) weighted by the mortality probabilities, since the market and biomet-
ric risks are independent from each other. While being able to quantify the
mortality risk, however, this approach does not contribute to understand-
ing the stochasticity of this type of risk. In our opinion, it would be much

more interesting to use one of modern stochastic mortality models, e.g. Dahl
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(2004) or Cox and Lin (2005).

Third, we do not take the credit risk into account. Adding it to the
model would provide some interesting results. At this point, one could use
the approach proposed by Schénbucher (2000).

Fourth, the model could be extended by the stochastic risk-free interest
rate, e.g., the Vasicek (1977), the Cox, Ingersoll, and Ross (1985), or the
Heath, Jarrow, and Morton (1992) model could be implemented.

Fifth, the choice of the Esscher martingale measure does not allow for
hedging. As this is a very important issue for a manager of option risk,
a stochastic volatility model which allows to construct a hedging strategy
would be very interesting. At this point, e.g., the mean-variance approach,
which was introduced by Follmer and Sondermann (1986) and Féllmer and
Schweizer (1988) could be used.

Sixth, we assumed the guarantee to be an FKuropean-option-type. An
extension of the model with a surrender American-option-typed guarantee
would be interesting. For instance, one could use the Longstaff and Schwartz
(2001) least-squares model.

Finally, it would be interesting to study the performance of the guarantees
we discussed in this thesis within a stochastic volatility model. In this case,
performance measures such as the Sortino, the Omega, or the Psi ratio could
be implemented, see Keating and Shadwick (2002a, 2002b) and Sortino and
Satchell (2001).
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Appendix A

Proofs for Chapter 3

A.1 Assumptions for the Hansen test

Assumption A.1

aSIyePA\/THD(aH)H = Op(1), (A1)

~

where D(af) =74, (a®) — v (al?).

Assumption A.2

sup [[Mr(a”, 7| = Oy(T), (A.2)
afecA, yier
with
H 0 H
M = L )
(e’ m) e r(e” 1)
Assumption A.3 Assume now that Qi (a!!) satisfies an empirical process
law:
H
*aHHM:: *(a!h), A3
Qila") = i = Q') (A3)

where Q*(a'!) is a zero mean normal with the covariance function
*(AH H
K (o, o)

ViaV(adl)

K*(allqvaé{> =
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Assumption A.4 Let
1. A% and A are compact.

2. Q% 8) =limy . EQr(aY,d) is continuous in (a,8) uniformly over

A% x A.
3. Qr(a“,8) —, Q(a®,8) for all (a®,8) € AY x A.

4. Qr(a“,8) — Q(a,8) is stochastically equi-continuous in (a®,8) over

A% x A,
5. For all6 € A, Q(a%,d) is uniquely maximized over a® € A% at af.

Assumption A.5 Fora® € AS = {a% € A% : h(a®) =0}, Qr(a“,d) does

not depend upon 6.

Assumption A.6 Let

1. M(a®,8) = limp_ . E[M7(a%,8)] and V(a®,8) = limr_. E[S5(aC,8) S5(aC, 8)]
G

o 1S some

are continuous in (a%,8) uniformly over AY x A, where a

neighbourhood of af' .

2. [Mr(a®,8), Vi(a®,8)] —, [M(aC,8),V(aC,8)] for all (a®,8) € AC x
A.

3. Mrp(a®,8)— M(a®,8) and Vr(a®,8) —V(aY,8) are stochastically equi-

continuous in (@ 8) over AY x A.

4. M) = M(a§,8) and V(8) = V(a§,8) are positive definite uniformly
over § € A.

5. VTS5(a§,8) 5 S¢(8) oné € A, where S°(+) is a zero-mean Gaussian

process with the covariance function K (81,8:) = limp_, TE[S%(a§,81), S5(a§,82)],
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p .- .
where — denotes a weak convergence of probability measures with re-

spect to the uniform metric.

A.2 Proof of Lemma 2

Proof of Lemma 3.3 from Section 3.6.2.

Knowing the log-likelihood function for observation g,

2 2
1
Lyl 20307 = Y —5 Il ——ln <01+ZJ Tz, ]>

Z:(8)=1
(A.4)
2
€
— L 2 D,
<01+Z] =2 ] Zt ]])
with the increment
K r K
e =y — (i + Y w5liz=g + Y <¢z‘(1> + @(jﬂ[[zm]) Yii)
j=2 i=1 j=2
and the smoothed probability
pr = Pr[Zi(8) = 2(6)|%r; a® 6]
computing derivatives alt(y;'a@ becomes fairly straightforward
Ol (y| %7 ; 6
t(yt‘ T, ) — *gt 2pt (A5)
O (01 + 03T12,8)=21)
Ol (y| %7 ; 6 I =
e r; ) _ 20= (A.6)
aMQ (0’1 -+ O'QH[Zt(é):Q])
Ol (yy| % 0 —i
t(ye|21:0") yi £t P i=1...r (A7)
Iy (01 + 03117, 6)=2)
ol @ 0" —1 I t(0)= :
(v %1:67) — gt* Z0)=2) S, =17 (A.8)
0}y, (01 + 05112,6)=2)
Ol (| %36 1 :
t(yg I ) i ( i ;- 1) e (A9)
o2 201(01 + 031 (z,6)=2)) \ (01 + 03][7,5)=2))
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Ol (| %r,0%) liz,5)=2) ( £
(

= — 1) p:. (A.10
(90';2 20‘;(0’1 -+ O-SI[[Zt(J):Q}) 01 + U;H[Zt(g)zg})Q ) t ( )

Now, it remains to use the average log-likelihood of the full sample which

is given by
B | LK
Zr(0") = T Z Z Li(y:|%7;07) (A.11)
t=1 Z,(8)=1
and its score o «
G =T ;Z(Z;:l v (A.12)

Subsequently, the scores (3.41)-(3.46) follow. m
Proof of Lemma 3.4 from Section 3.6.2.

In this proof the elements of the K(d;,8,) matrix are computed.! At
the beginning, one should bear in mind that the matrix K(d1,482) is the
covariance process of the test statistic under the null hypothesis. Thus it is

useful to note that the variance of the Markov switching process equals
. 2
((71 + UQH[Zt(6)=2]> = (f% (A13)

regardless of the value of the nuisance parameter vector 4.
Then, according to equations (3.38), (3.41) and (A.13) the (ui, 1) ele-

ment of the covariance matrix can be computed as

K (81,82) 0 = Jim. EYY Y Z L “me (A1

t=1 s= 1Zt(61) 1Z5(62

where
pe = Pr[Z,(81) = 2(6,)| %5, 81]
ps = Pr[Z(82) = 2,(8:)| %7, 24(81): 5, 81].
Note that p, is dependent on z4(d;). This results from the fact that filters

based on d; and 4, are not independent because they are both derived from

the same series %;.

IThe proof is analogical to the proof of Garcia (1998, Appendix 2, p. 781-785).
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As the sums of the products of the probabilities p; and p;, respectively,

are equal to unity, one has

T T
1
K(61,82)u = Im ETY %" — “S. (A.15)
t=1

s=1

Since the increments ¢ are serially independent and under the null hypothesis

Ele?] = o2, it follows that

2
Bled oy L 2L (A.16)

T—o00 0’% o1

T
) 1
K(51>52)u1,u1 = Tlgrgo T Z T2
t=1

Now, compute the (i1, p3) element of the covariance matrix. From equa-

tions (3.38), (3.41) and (3.42) it follows that

2

K(01,62) 1,3 = IET;OTEZZ Z Z

t=1 s=1 Z4(81)=1 Zs(82)= (A.17)
1 £t €sﬂ[zs<62>=21 i
12 (01 + 03][2,50)=21)% (01 + 0512, (85)=2) ) o

From the fact that p; sum to unity and e are serially independent, it follows

that

K(5,,6 lim TE Z@0)=1
(61,09) 13 = L ;Z; T2 U1+02H[ (2):2])4}7 (A.18)

As e and z(8) are independent, therefore this equation can be rewritten as

T
1 g2
K(81,02),, 4z = lim TE — 8 E|I Yr.al .6
(O 82)us = 5, 2 T2 (01 + 031 17,(82)=2))* izwan=a| 710 8o
(A.19)
Then apply the law of iterated expectations
E [E[lz, (5)=2)| %1, 5, 82] | = Ellz,(5)=2)] (A.20)

and note that E[ljz,s,)=2] = m2(d2) and use the fact that under the null

hypothesis E[e,] = o7 and (A.13), which provides the following equation

R (81,82) = fim 7202 = 2] (A21)
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Analogically the (u3, p1) element of the covariance matrix equals

1)
K(51>52)u§,u1 = %%1)- (A.22)

To compute the (u3, u3) element of the covariance matrix one has to use

equations (3.38) and (3.42), from which follows that

T T 2 2
K(81,62)55 = TED S >0 >
o t=1 s=1 Z;(81)=1 Zs(82)=1 (A.23)
1 elliz, (51)=2] €51z, (82)=2)

PtPs

T2 (01 + 051 2,81)=2)) (01 + 0517, (82)=2))?

From independence between e and z(4), it follows that

T T
. 1
K(61,02)5,5 = lim TE — Bz, 51)=211z.62)=2)| %, aF , 61, 65)
2

EsEt
(01 + 031 1z.50)=2)) 2 (01 + 051[2,(52)=2))

2

(A.24)

Now, apply the law of iterated expectations (A.20) and note that E[l{z, s,)=211[2, 62)=2] =
min|me(81), m2(d2)]. Additionally, use the serial independence of ¢ and (A.13),

which results in

) | E[e?]
K((sl,ég)‘u;#; :Thm T ﬁmln[ﬂg(él),ﬂg(ég)]?
T 1 (A.25)

= lim min[my(d7), m2(82)]

T—oo

1
0'_% = ITliIl[?Tg((sl), Wg(&g)]a—%.

To find the (111, ¢;1)) elements of the covariance matrix, let us prove the

two following lemmas.

Lemma A.7

1
li E —Ypi = A .26
m Tyt 241 ( )
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Proof. The left-hand side of the equation (A.26) can be rewritten as

T T i
: 1 : 1 .1
fim, D i = fim )k fm 7D (g —yrasy) (A2
= = N ]7 -

ey 2)

Note that term (1) converges to the expected value of %4 which under the
null hypothesis equals ;1 and term (2) tends to zero as i < T. Thus, the
right-hand side of (A.27) is equal to u; and equation (A.26) is proven. m

Lemma A.8

T
: 1
lim > TYe=ili—j = CoVlYe—is Yoy + 2017 (A.28)

T—o0
t=1

Proof. The left-hand side of equation (A.28) can be rewritten as

T T
. 1 ) 1
lim > TYe-ie—y = lim > 7 Wi = ) (Y=g — 1)

T—oo

g

R

M) (A.29)

+ pq li ! +pq li ! 2 1
o J10 e TR IR Y TR G
(2) 3) (4)

Note that term (1) converges to the (i,7) element of the auto-covariance
matrix, as under the null hypothesis the expected value of %4 equals p;.
According to Lemma A.7, terms (2) and (3) converge to ;. Furthermore,
term (4) goes to zero. Therefore the right-hand side of the equation (A.29)
converges to cov[y;—;, y:—;] + 2u7 as postulated in equation (A.28). m

Now, use equations (3.38), (3.41) and (3.43)

T T 2 2
K(81.82) 00y = Jm TEY S0 >0 D7
t=1 s=1 Z,(8,)=1 Zs(82)=1 (A.30)
1 Et EsYs—i

9 * * DtDs-
T2 (01 + 031 2,60)=2)2 (01 + 03017, 80)=2)
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As the probabilities p; and p, sum to unity, respectively, the € are serially

independent, E[e?] = 07 and (A.13), thus it follows that

K(61>62)u1,¢>¢(1) _0_ Tlggo ( Zys 2)‘ (A.31)

From Lemma A.7 it follows that

K(51’62)N17¢i(1) = Iu_; (A32)

07

Analogically, the (¢;q), 1) element of the covariance matrix equals

2
07

K(61762)¢5¢(1)7M1 = & (A'33)

The (11, ¢;*(2)) element of the covariance matrix can be computed from

equations (3.38), (3.41) and (3.44)

T T 2 2
K(81.82) .07, = im TEY S~ 37 37
T =1 2,(61)=1 Z.(62)=1 (A.34)
1 £t Ys—i€sll[z,(6)=2)

T * * PiPs-
T2 (01 + 030 17,(51)=2))2 (01 + 03] (7, (6)=2))2

Since p; sum to unity and e are serially independent, thus

. s—1i €2H [
K (81,82),.67,, = lim TIEZ Z 4 2B (A35)

T e T ot oslize=2)

From the independence between ¢ and z(9) it follows that

T

1 987152
K 5 76 * == llm TE o .
(81, 82) 1 07, = lim. ; T2 (o1 + 031z, (82)=2))"

E [liz,(82)=2)|%r, 5 , 8]

(A.36)

Apply then, the law of iterated expectations (A.20) and note that E{l[, s,)=2]] =

m2(82). In addition, apply the fact that under the null hypothesis E[e?] = o

and (A.13)

dy) .. 1
K(61762)u17¢:(2) - 71-2(22) lim —ys;. (A.37)
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From Lemma A.7 one concludes that

1)
K (81,62)u1 61, LTQQ( 2), (A.38)

01

Analogically, the (gf)j@), 1) element of the covariance matrix equals

)
K(81,82)41, i = “17;272(1) (A.39)
1

the (13, ¢i1)) element of the covariance matrix equals

)
K(51>52)u;,¢i(1) = %2(1) (A.40)
1

and the (¢;(1), p13) element of the covariance equals

p1ma(82)
o?

K(61762)¢i(1)’ﬂ§ - (A41)

The (3, @) element of the covariance matrix can be computed from

equations (3.38), (3.42) and (3.44)

T T 2 2
K68, = TEYSST Y Y
t=1 s=1 Zy(61)=1 Zs(82)=1 (A.42)
i edliz.61)=2) Ys—i€sl[z,(82)=2]

* * ppS
T2 (01 + 032,622 (01 + 03017, 62)=2))2

Now, use the independence between € and z(d) which enables to rewrite this
equation as
T T
K(81,82)50:, = im TE |3 5 12E Li2,60)=2 11z, (62)=21 | %%, @5, 61, 82)]
t=1 s=1

ys—igsgt
(o1 4+ 0312,51)=2)) (01 + 031 2,(65)=2])*

(A.43)
Then apply the law of iterated expectations
E [Eliz,6)=21iz.(62)=2)| @1, @F , 82] | = Ellz,(60)=2)1[, (52)2] (A.44)
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and note that E[ljz, @, )=91[z,(62)=2) = min[m2(d1), m2(d2)]. Furthermore, ap-
ply the serial independence of ¢, the fact that under the null hypothesis
Ele?] = 67 and (A.13)

. d 1 . ys—iE[gg]

K(Jl,ég)u;@m :711—I>I<>10T ﬁmln[ﬂg(dl),’ffg(dg)]T
5= ' (A.45)

= min[m2(8,), m(8s)]— lim Y L =
01 T—»oo
Applying Lemma A.7 one has
K (81,62),5.6,, = min[ma(8), wg(ag)]g. (A.46)
1

Analogically, the (¢j), p5) element of the covariance matrix equals
K(81,82)4:, 3 = min[ms(8)), @(52)]%. (A.47)
1

Then, according to equations (3.38), (3.43) and (A.13) the (¢, ¢jq))

element of the covariance matrix can be computed

T T 2 2
K(61762)¢i(1)7¢j(1) :jll_{rolo TEZZ Z Z
t=1 s=1 Z,(81)=1 Zs(82)=1 (A.48)
1 yi—icr ys—jes
ptps-

T o2 o?
From the fact that the probabilities sum to unity, the increments ¢ are serially
independent and under the null hypothesis E[e?] = o7, and it follows that

1 T 1

K(51’62)¢i(1)7¢j(1) =3 lim Tyt,iys,j. (A49)

o1 T=ee i

From Lemma A.8 one can conclude that

1
K(61752)¢i(1),¢j(1) = U_% (COV[yt_Z-, Yi-j) + 2:“’%) : (A.50)
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The (¢i(1), @j()) element of the covariance matrix can be derived from

equations (3.38), (3.43) and (3.44)

T T 2 2
K(81,02)0,0, = im TEY > %
t=1 s=1 Z,(81)=1 Zs(82)=1 (A.51)
1 Ye—ice Ys—i€sl[z.(62)=2]
12 (01 + 0511 2,5)=2))? (01 + 0512, (55)=2] )

As the probabilities p; sum to unity and increments ¢ are serially independent

ez, (52)=2)
(01 + 031(7,62)=2)"
(A.52)

(61762)@(1) d)] @) = lim TEZ Z st iYs— ]

T—o00
s=1 Zs (52) 1

S-

Now, use the independence between ¢ and z(4) to write

1 ys—iys—j€2 G
— S Ry 50| P, aC, 8
T (0q +O§H[ZS(62):2})4 | 1#:(62) 2]‘ 00" 0]

[M] =

K (6, 52)@(1)@(2) fim &

T—oo
s=1

(A.53)

Then apply the law of iterated expectations (A.20) and note that E[l[z, 5,)=2] =

m3(85). Furthermore, apply the fact that under the null hypothesis E[¢?] = o

and (A.13)

T
1
K(81,02)0,).67, = = T ; Ys—iYs—j- (A.54)
From Lemma A.8 it follows that
(0
K(61,52)¢i(1),¢;(2) - 2(5 2)(COV[ys—i,ys—j] +2u3). (A.55)
1

Analogically, the (gf)z‘@), ®;q)) element of the covariance matrix equals

7T2(51)

K((slv 62)@(2)7%’(1) = T(Cov[yt—ia yt—j] + 2”%)' (A56)
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Now, according to equations (3.38) and (3.44) compute the (¢, ¢jx))

element of the covariance matrix

T T 2 2
K(81,82)0:, 00, = im TED S~ S 3

t=1 s=1 Zt(61)21 25(62):1 (A57)
1 yiiedz60)=2 Ys—j€sllz,(62)=2] o
2 * * ts-
1% (01 + 031 2,51)=21) (01 + 03][7,(5,)=2)*

Using the independence between ¢ and z(4) this can be rewritten as

Ys—ilYs—jEtEs
K(6,,85)y 4 = lim TE -
(81, 82)07,).05 = ;;T2 (01 + 031(z,51)=2))* (01 + 0317, (62)=2))?

ELiz,6)=2 112, (62)=2)| %, 0, 81, 65]] .
(A.58)

Now, apply the law of iterated expectations (A.44) and note that E{Ijz, 5,)=211[z,62)=2]] =

min|my(81), m2(d2)]. In addition, apply the serial independence of increments

g, the fact that under the null hypothesis E[¢?] = 07 and (A.13), then

~ min[my(d1),
K(81,02)41, 67 = = 715{)10? Zys iYs—j- (A.59)

From Lemma A.8 it follows that
min[7r2(51), Wg(&g)]

2
07

K(81,62), 00, = (covlyes. voi] +2653). (A60)

The (0,0%) element of the covariance matrix can be computed from

equations (3.38), (3.45) and (A.13)

T T 2 2
K(01,62),2 2 :TIEEOTEZZ Z Z
t=1 s=1 Z,(81)=1 Zs(82)=1 (A.61)

1 1 1 (& . g2 |
T2 20?207 \ 0} o? Pibs-

As probabilities p; and p, sum to unity, respectively, it follows that

£ €2
K(81,6),2, Q—TIEEOTEZZTQZM ( —1) (U—%— ) (A.62)

t=1 s=1
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Since the increments ¢ are serially independent, thus
T
1 1 (e &
1 — = ([t _oZt ) A.
K(Jl,ag)a%ya% ,Zlggo TE £ T2 40_11 (o’il 20_% +1 ( 63)
Now, note that under the null hypothesis E(e}) = 30} and E(e?) = 0%, from
which one can conclude that

1 1
K(61,62)p2,02 = lim — = —. (A.64)

T 207 207
According to equations (3.38), (3.45) and (3.46) compute the (0%, 03?)
element of the covariance matrix

T T 2 2
K@1.82)opop =Im TEY 3 > >

t=1 s=1 Z,(81)=1 Zs(62)=1
i 1 ]I[Zt(51):2]
17 201(01 + 03] 7,61)=9) 205(01 + 031[7,(55)=2])

(oo ) (G )
* 1 *S —1) ps.
(o1 + 051 2,61)=2)? (o1 + 051 2,(65)=2])?

(A.65)

Since the probabilities p; sum to unity and the increments ¢ are serially

independent, thus

T 2
K(81,82)3 052 = lim TEY >

s=1 Z4(62)=1
1 I12.(62)=2 £ ’
2 * * 2 * 9 1 Ps-
12 40105(01 + 051 12,62)=2))? \ (01 + 05]12,5,)=2)

(A.66)
After applying the independence between £ and z(4) the equation can be

rewritten as

T 1 1
K(61,05),2 2 = lim TE —
(61,0) 1,03 T—60 — {TQ do105 (0 +0§H[zs(52):2])2

(v rl)QE[Zs(éz)\%aoG?ag]].

o1 + 03117, 65)=2)

(A.67)
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Then apply the law of iterated expectations (A.20) and note that E[Z,(d2)] =
m(d2) and that under the null hypothesis (A.13)

T 9 2
K(61,69)0 52 = lim TES =1 (5_2 _ 1) 72(65)
1

T—00 « T2 4oios \ o
- (A.68)
i TES 2L (% 0% 1) 16
= lim —— = -2= :
T—00 T? 40305 \ ot~ o? 2%
=1

Since E(e}) = 30} and E(¢?) = 0% under the null hypothesis, the equation

simplifies to

K((Sl?&?)o-%’o.;d = ].lm 7T2(62) . 7T2(62)

3% 3 %"
T—oo 20705 20703

(A.69)

Analogically, the (032, 07) element of the covariance matrix equals

K (81,8),50, 3 =200 (A.70)

L 20303

The (03%,03?) element of the covariance matrix can be computed from
equations (3.38) and (3.46)

2 2

T T
K(81,85) 552 o2 :TIEEOTEZZ > Y

t=1 s=1 Z,(81)=1 Zs(82)=1
b liz,51)=2 Liz,62)=2)
12 205(01 + 051 17,61)=21) 205(01 + 051[7,(5,)=2))

* - * - ts-
(o1 + 051 [2,51)=2))* (01 + 0512, (65)=2))?

(A.T1)

Applying the independence of ¢ and z(4) the equation reduces to

(51,62) 2 *2 = lim TE

T—o00

XT:XT: 1 Elliz,6,)=211z.6.)=2 (82)| %7, af , 81, 89)]
— - T2 40*2 01 + JQ]I[Zt(61) })(01 + UQ]I[ZS(JQ): })

t=

(o) (Grramsmmr )
(01 + 03]12,(61)=2) ) (o1 + 03112,(85)=2])° '
(A.72)

1 s=
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Then apply the law of iterated expectations (A.44) and note that E[Z;(81)Zs(62)] =
min|me(81), m2(d2)]. In addition, use the serial independence of € and (A.13),

which provides that

T 2
. 1 1 €2 .
K((Sl,&g)aéd’o.;z :’1115)11 TE ﬁ40’20'*2 (? — 1) m1n[7r2((51),7rg(52)]
o —1 192 1
T
1 1 et g2
= lim TE — [ 2 -2 41 i ) 47)].
T TED ity (Jf . )mmm( ). 2(82)]

(A.73)

Finally, recall that under the null hypothesis E(e}) = 30 and E(¢?) = o7,

thus
K008 = i PO _ il )

The (p1,07) element of the covariance matrix results from equations

(3.38), (3.41), (3.45) and (A.13)

T 2
K(81,8)2 =lim TEY > > >
T =1 2,(61)=1 Zu(62)=1 (A.75)

1 1 (e K
T2 20} \ o afptps'

Given the fact that the products of the probabilities p; and p, equal unity,

respectively, and the increments ¢ are serially independent,

. T ]_ Et 8?
K(Jl,ég)uw% =lim T —E|— =% -

T—oo &= T2 " | 207 \ 0}
B (A.76)
lim T - gl _ &
= lim —E | ——.
T—00 — T2 20? 2(Ti1
Since ¢, is normally distributed, E(¢}) = 0 and E(g;) = 0, thus
K(61,62),,,02 = 0. (A.77)
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Analogically, all elements of the covariance matrix dependent on o, ¢;1)
or ¢;(2) on the one side, and dependent on o7 or 032 on the other side are equal
zero. Collecting all elements of the covariance matrix K (81,8) computed

above in the matrix (3.47) ends the proof. m
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Appendix B

MS estimation (1.1975-12.2004)

— parameters
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Appendix C

States of Markov switching
models (1.1975-12.2004)
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Figure C.1: States in the Markov switching models: DAX30
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Note:

The top panel shows log-returns of the pure DAX30 portfolio, the bottom panel shows
states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1), MS(2-2) and
MS(2-2)-AR(1), the grey area represents the high volatility regime and for MS(2-1) and

MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the smoothed probability
Pr[Z; = 2|%7] > 0.5).
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Figure C.2:
DAX30(90%)

States in the Markov switching models:
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Note:
The top panel shows log-returns of the REXP(10%)-DAX30(90%) portfo

panel shows states in the Markov switching models.

1980 1982 1984
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1988 1990 1992 1994 1996

1998

2000

2002 2004

lio, the bottom

For the MS(1-2), MS(1-2)-AR(1),

MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and

for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.3:
DAX30(80%)

States in the Markov switching models:
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2004

The top panel shows log-returns of the REXP(20%)-DAX30(80%) portfolio, the bottom

panel shows states in the Markov switching models.

For the MS(1-2), MS(1-2)-AR(1),

MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the

smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.4: States in the Markov switching models: REXP(25%)-
DAX30(75%)
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Note:

The top panel shows log-returns of the REXP(25%)-DAX30(75%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.5: States in the Markov switching models: REXP(30%)-
DAX30(70%)
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Note:

The top panel shows log-returns of the REXP(30%)-DAX30(70%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.6: States in the Markov switching models: REXP(40%)-
DAX30(60%)
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The top panel shows log-returns of the REXP(40%)-DAX30(60%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.7: States in the Markov switching models: REXP(50%)-
DAX30(50%)
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Note:

MS(2-2)~AR(1)
The top panel shows log-returns of the REXP(50%)-DAX30(50%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.8: States in the Markov switching models: REXP(60%)-
DAX30(40%)

0.02 0.04 0.06 0.08 0.10

-0.02
—

—

—
=

=

—

—
RN
—

=

—

—

—0.06

1976 1978 1980 1982 1984 1986 1988 1990 1992 1894 1996 1998 2000 2002 2004

ls(w —2)—AR(0)
MS(1—2)—AR(1)
MS(2—1)—AR(0)

MS(2—1)—AR(1)

M\AS(Z—Q)—AR(O)

MS(2—2)—AR(1)

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Note:

The top panel shows log-returns of the REXP(60%)-DAX30(40%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.9: States in the Markov switching models: REXP(70%)-
DAX30(30%)
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Note:

The top panel shows log-returns of the REXP(70%)-DAX30(30%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Note:

The top panel shows log-returns of the REXP(75%)-DAX30(25%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.11:
DAX30(20%)
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The top panel shows log-returns of the REXP(80%)-DAX30(20%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.12: States in the Markov switching models: REXP(90%)-
DAX30(10%)
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Note:

The top panel shows log-returns of the REXP(90%)-DAX30(10%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Z; = 2|%%] > 0.5).
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Figure C.13: States in the Markov switching models: REXP
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The top panel shows log-returns of the pure REXP portfolio, the bottom panel shows
states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1), MS(2-2) and
MS(2-2)-AR(1), the grey area represents the high volatility regime and for MS(2-1) and
MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the smoothed probability
Pr[Z; = 2|%7] > 0.5).
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Appendix D

Conditional moments

(1.1975-12.2004) — graphs
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Figure D.1: Conditional moments: DAX30 - MS(1—2)—AR(0)
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Note:

The top panel shows the log-returns of the pure DAX30 portfolio. The remaining pan-
els indicate the moments for the MS(1-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with 7, replaced by smoothed probabilities
Pr[Z;, = j|%7]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Z;, = 2|%%] > 0.5).
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Figure D.2: Conditional moments: DAX30 - MS(2-1)-AR(0)
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Note:

The top panel shows the log-returns of the pure DAX30 portfolio. The remaining pan-
els indicate the moments for the MS(2-1) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with 7, replaced by smoothed probabilities
Pr[Z;, = j|%7]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
mean regime (i.e the smoothed probability Pr[Z;, = 2|%%] > 0.5).
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Figure D.3: Conditional moments: DAX30 - MS(2—2)—AR(0)
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Note:
The top panel shows the log-returns of the pure DAX30 portfolio. The remaining pan-
els indicate the moments for the MS(2-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with 7, replaced by smoothed probabilities
Pr[Z;, = j|%7]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Z;, = 2|%%] > 0.5).
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Figure D.4: Conditional moments: REXP(10%)-DAX30(90%) - MS(1-2)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(10%)-DAX30(90%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.5: Conditional moments: REXP(10%)-DAX30(90%) - MS(2-1)-
AR(0)
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Note:
The top panel shows the log-returns of the REXP(10%)-DAX30(90%) portfolio. The re-

maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-

I (1002089 004 05 05007108 109 16
T
—

abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.6: Conditional moments:

AR(0)
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The top panel shows the log-returns of the REXP(10%)-DAX30(90%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.7: Conditional moments: REXP(20%)-DAX30(80%) - MS(1-2)-
AR(0)
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The top panel shows the log-returns of the REXP(20%)-DAX30(80%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.8: Conditional moments: REXP(20%)-DAX30(80%) - MS(2-1)-
AR(0)
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Note:
The top panel shows the log-returns of the REXP(20%)-DAX30(80%) portfolio. The re-

maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-

AU GA002083 004 05 0800.1.98 109 28

abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.9: Conditional moments: REXP(20%)-DAX30(80%) - MS(2-2)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(20%)-DAX30(80%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.10: Conditional moments: REXP(25%)-DAX30(75%) - MS(1-2)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(25%)-DAX30(75%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.11: Conditional moments: REXP(25%)-DAX30(75%) - MS(2-1)-
AR(0)
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Note:
:

The top panel shows the log-returns of the REXP(25%)-DAX30(75%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.12: Conditional moments: REXP(25%)-DAX30(75%) - MS(2-2)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(25%)-DAX30(75%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.13: Conditional moments: REXP(30%)-DAX3
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The top panel shows the log-returns of the REXP(30%)-DAX30(70%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed

probabilities, computed with equations (2.57)-(2.60) with 7; replac
abilities Pr[Z;, = j|%7]. The second panel depicts the conditional
panel shows the conditional variance, the fourth panel displays the

ed by smoothed prob-
expectation, the third
conditional skewness,

and the bottom panel shows the conditional excess kurtosis. The grey area represents the

high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7]
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Figure D.14: Conditional moments: REXP(30%)-DAX30(70%) - MS(2-1)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(30%)-DAX30(70%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.15: Conditional moments: REXP(30%)-DAX30(70%) -
AR(0)
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Note:

The top panel shows the log-returns of the REXP(30%)-DAX30(70%) portfoli

MS(2-2)-

o=

io. The re-

maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the

high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).

328



Figure D.16: Conditional moments: REXP(40%)-DAX30(60%) - MS(1-2)-

Log —returms of REXPC(AOXD> —DAXISO=D
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The top panel shows the log-returns of the REXP(40%)-DAX30(60%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.17: Conditional moments: REXP(40%)-DAX30(60%) - MS(2-1)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(40%)-DAX30(60%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-

000 06004 05 0107 08309 20

abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.18: Conditional moments: REXP(40%)-DAX30(60%) - MS(2-2)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(40%)-DAX30(60%) portfolio. The re-

maining panels indicate the moments for the MS(2-2) model conditional on the smoothed

probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-

abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third

panel shows the conditional variance, the fourth panel displays the conditional skewness,

and the bottom panel shows the conditional excess kurtosis. The grey area represents the

high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.19: Conditional moments: REXP(50%)-DAX30(50%) - MS(1-2)-
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Note:

The top panel shows the log-returns of the REXP(50%)-DAX30(50%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.20: Conditional moments: REXP(50%)-DAX30(50%) - MS(2-1)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(50%)-DAX30(50%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-

Z=coo oo =

abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.21: Conditional moments: REXP(50%)-DAX30(50%) - MS(2-2)-

AR(0)
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Note:

The top panel shows the log-returns of the REXP(50%)-DAX30(50%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.22: Conditional moments: REXP(60%)-DAX30(40%) -

AR(0)
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The top panel shows the log-returns of the REXP(60%)-DAX30(40%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.23: Conditional moments: REXP(60%)-DAX30(40%) - MS(2-1)-
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Note:
:

The top panel shows the log-returns of the REXP(60%)-DAX30(40%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-

abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.24: Conditional moments: REXP(60%)-DAX30(40%) -
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The top panel shows the log-returns of the REXP(60%)-DAX30(40%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).

337



Figure D.25
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The top panel shows the log-returns of the REXP(70%)-DAX30(30%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the

=

regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.26: Conditional moments: REXP(70%)-DAX30(30%) - MS(2-1)-
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Note:
:

The top panel shows the log-returns of the REXP(70%)-DAX30(30%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-

abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.27: Conditional moments: REXP(70%)-DAX30(30%) - MS(2-2)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(70%)-DAX30(30%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.28: Conditional moments: REXP(75%)-DAX30(25%) - MS(1-2)-
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Note:

The top panel shows the log-returns of the REXP(75%)-DAX30(25%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.29: Conditional moments: REXP(75%)-DAX30(25%) - MS(2-1)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(75%)-DAX30(25%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.30: Conditional moments: REXP(75%)-DAX30(25%) -
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The top panel shows the log-returns of the REXP(75%)-DAX30(25%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,

and the bottom panel shows the conditional excess kurtosis. The grey area r
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.31: Conditional moments: REXP(80%)-DAX30(20%) - MS(1-2)-
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maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
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The top panel shows the log-returns of the REXP(80%)-DAX30(20%) portfolio. The re-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.32: Conditional moments: REXP(80%)-DAX30(20%) - MS(2-1)-
AR(0)
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Note:
:

The top panel shows the log-returns of the REXP(80%)-DAX30(20%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.33: Conditional moments: REXP(80%)-DAX30(20%) - MS(2-2)-

Log —returms of REXP(8SBOXD> —DAXI2O=D
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The top panel shows the log-returns of the REXP(80%)-DAX30(20%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.34: Conditional moments: REXP(90%)-DAX30(10%) - MS(1-2)-
AR(0)
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Note:

The top panel shows the log-returns of the REXP(90%)-DAX30(10%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.35: Conditional moments: REXP(90%)-DAX30(10%) - MS(2-1)-
AR(0)
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Note:
:

The top panel shows the log-returns of the REXP(90%)-DAX30(10%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.36: Conditional moments: REXP(90%)-DAX30(10%) - MS(2-2)-
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Note:

The top panel shows the log-returns of the REXP(90%)-DAX30(10%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with 7; replaced by smoothed prob-
abilities Pr[Z;, = j|%r]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Z;, = 2|%7] > 0.5).
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Figure D.37: Conditional moments: REXP - MS(1-2)-AR(0)
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Note:

The top panel shows the log-returns of the pure REXP portfolio. The remaining pan-
els indicate the moments for the MS(1-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with m; replaced by smoothed probabilities
Pr[Z;, = j|%7]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Z;, = 2|%%] > 0.5).
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Figure D.38: Conditional moments: REXP - MS(2-1)-AR(0)
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Note:
:

The top panel shows the log-returns of the pure REXP portfolio. The remaining pan-
els indicate the moments for the MS(2-1) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with m; replaced by smoothed probabilities
Pr[Z:, = ]|%] The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
mean regime (i.e the smoothed probability Pr[Z;, = 2|%%] > 0.5).
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Figure D.39: Conditional moments: REXP - MS(2-2)-AR(0)
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Note:

The top panel shows the log-returns of the pure REXP portfolio. The remaining pan-
els indicate the moments for the MS(2-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with m; replaced by smoothed probabilities
Pr[Z;, = j|%7]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Z;, = 2|%%] > 0.5).
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Appendix E

Histogram of the log-returns

(1.1975-12.2004)
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Figure E.1: Histograms of the log-returns of the REXP-DAX30 portfolios
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Note:

The diagrams depict the histograms of the log-returns of the DAX30/REXP mixed port-

folios (grey bars). The values of the first four moments of these distributions (u for mean,

o? for variance, v for skewness, and k for the excess-kurtosis) and the Jarque-Bera test

statistic (JB) with the associated p value (psp) are located in the top right corner. The

solid line represents the density of the normal distribution with the same mean (u) and

variance (02) as the empirical distribution of the log-returns. Note that for estimated

portfolios the histograms are plotted for different intervals.
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Appendix F

Information Criterion Tests

(1.1975-12.2004)
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Table F.1: Information Criterion Tests: DAX30 (1.1975-12.2004)

Model Lo AIC SBC
GBM 505.3850  503.3850 499.4989
AR(1) 505.1181 502.1181 496.2889
MS(1-2)-AR(0) 539.1954 534.1954* 524.4802*
MS(1-2)-AR(1) 538.9984  532.9984 521.3401
MS(2-1)-AR(0) 530.8818  525.8818 516.1665
MS(2-1)-AR(1) 532.1312  525.1312 511.5298
MS(2-2)-AR(0) 539.8721  533.8721 522.2138
MS(2-2)-AR(1) 540.3052  532.3052 516.7608
ARCH(1)-AR(0) 511.4766  508.4766 502.6474
ARCH(1)-AR(1) 510.8315  506.8315 499.0593
ARCH(2)-AR(0) 522.0284  518.0284 510.2562
ARCH(2)-AR(1) 521.4442  516.4442 506.7289
ARCH(3)-AR(0) 526.0642  521.0642 511.3489
ARCH(3)-AR(1) 525.5402  519.5402 507.8819
GARCH(1,1)-AR(0) 529.8007  525.8907  518.1185*
GARCH(1,1)-AR(1) 529.4322  524.4322 514.7169

1
E-ARCH(1)-AR(0) 513.2663  509.2663 501.4941
E-ARCH(1)-AR(1) 512.9044  507.9044 498.1892
E-ARCH(2)-AR(0) 519.8657  513.8657 502.2074
E-ARCH(2)-AR(1) 519.9709  512.9709 499.3695
E-ARCH(3)-AR(0) 524.5419  516.5419 500.9975
E-ARCH(3)-AR(1) 524.3925  515.3925 497.9050
E-GARCH(1,1)-AR(0)  531.0400  526.0400* 516.3248
E-GARCH(1,1)-AR(1)  530.6973  524.6973 513.0390
T-ARCH(1)-AR(0) 513.0173  509.0173 501.2451

T-ARCH(1)-AR(1) 512.6031  507.6031 497.8878
T-ARCH(2)-AR(0) 523.8126  518.8126 509.0973
T-ARCH(2)-AR(1) 523.4650  517.4650 505.8067
T-ARCH(3)-AR(0) 526.8153  520.8153 509.1569
T-ARCH(3)-AR(1) 526.4255  519.4255 505.8241
T-GARCH(1,1)-AR(0)  530.4080  525.4080 515.6927
T-GARCH(1,1)-AR(1)  530.0564  524.0564 512.3981

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=Z0) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.2: Information Criterion Tests: REXP(10%)-DAX30(90%) (1.1975-
12.2004)

Model Lo AIC SBC
GBM 543.5887  541.5887 537.7026
AR(1) 543.2778 540.2778 534.4486
MS(1-2)-AR(0) 575.5732  570.5732* 560.8579*
MS(1-2)-AR(1) 575.3713  569.3713 557.7130
MS(2-1)-AR(0) 567.3510  562.3510 552.6357
MS(2-1)-AR(1) 568.5750  561.5750 547.9736
MS(2-2)-AR(0) 576.1791  570.1791 558.5208
MS(2-2)-AR(1) 576.5748  568.5748 553.0304
ARCH(1)-AR(0) 549.5258  546.5258 540.6967
ARCH(1)-AR(1) 548.8451  544.8451 537.0729
ARCH(2)-AR(0) 559.3363  555.3363 547.5641
ARCH(2)-AR(1) 558.6935  553.6935 543.9782
ARCH(3)-AR(0) 563.1767  558.1767 548.4615
ARCH(3)-AR(1) 562.5998  556.5998 544.9415
GARCH(1,1)-AR(0) 566.7938  562.7938*  555.0216*
GARCH(1,1)-AR(1) 566.2973  561.2973 551.5821
E-ARCH(1)-AR(0) 551.2057  547.2057 539.4335
E-ARCH(1)-AR(1) 550.8272  545.8272 536.1120
E-ARCH(2)-AR(0) 557.1632  551.1632 539.5049
E-ARCH(2)-AR(1) 557.1811  550.1811 536.5797
E-ARCH(3)-AR(0) 561.6330  553.6330 538.0885
E-ARCH(3)-AR(1) 561.4255  552.4255 534.9380

E-GARCH(1,1)-AR(0)  567.4892  562.4892 552.7739

E-GARCH(1,1)-AR(1)  567.1041  561.1041 549.4457
T-ARCH(1)-AR(0) 551.0046  547.0046 539.2324
T-ARCH(1)-AR(1) 550.5849  545.5849 535.8697
T-ARCH(2)-AR(0) 561.0884  556.0884 546.3731
T-ARCH(2)-AR(1) 560.7067  554.7067 543.0484
T-ARCH(3)-AR(0) 563.9340  557.9340 546.2757
T-ARCH(3)-AR(1) 563.5006  556.5006 542.8993
T-GARCH(1,1)-AR(0)  567.1168  562.1168 552.4016
T-GARCH(1,1)-AR(1) 566.7122  560.7122 549.0539

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.3: Information Criterion Tests: REXP(20%)-DAX30(80%) (1.1975-

12.2004)

Note:

Model Lo AIC SBC
GBM 585.7735  583.7735 579.8874
AR(1) 585.4329 582.4329 576.6037
MS(1-2)-AR(0) 615.5740 610.5740* 600.8588*
MS(1-2)-AR(1) 615.3795  609.3795 597.7212
MS(2-1)-AR(0) 607.6496  602.6496 592.9343
MS(2-1)-AR(1) 608.8376  601.8376 588.2362
MS(2-2)-AR(0) 616.1200  610.1200 598.4617
MS(2-2)-AR(1) 616.4807  608.4807 592.9363
ARCH(1)-AR(0) 591.5056  588.5056 582.6764
ARCH(1)-AR(1) 590.7971  586.7971 579.0249
ARCH(2)-AR(0) 600.4899  596.4899 588.7177
ARCH(2)-AR(1) 599.7873  594.7873 585.0720
ARCH(3)-AR(0) 604.0787  599.0787 589.3634
ARCH(3)-AR(1) 603.4471  597.4471 585.7888
GARCH(1,1)-AR(0) 607.4099  603.4099*  595.6377*
GARCH(1,1)-AR(1) 606.8781  601.8781 592.1628
E-ARCH(1)-AR(0) 593.0388  589.0388 581.2666
E-ARCH(1)-AR(1) 592.6514  587.6514 577.9361
E-ARCH(2)-AR(0) 598.2876  592.2876 580.6293
E-ARCH(2)-AR(1) 598.2330  591.2330 577.6316
E-ARCH(3)-AR(0) 602.4986  594.4986 578.9542
E-ARCH(3)-AR(1) 602.2370  593.2370 575.7496
E-GARCH(1,1)-AR(0)  607.5735  602.5735 592.8583
E-GARCH(1,1)-AR(1) 607.1185  601.1185 589.4602
T-ARCH(1)-AR(0) 592.9157  588.9157 581.1435
T-ARCH(1)-AR(1) 592.5029  587.5029 577.7877
T-ARCH(2)-AR(0) 602.2085  597.2085 587.4933
T-ARCH(2)-AR(1) 601.7954  595.7954 584.1371
T-ARCH(3)-AR(0) 604.8545  598.8545 587.1962
T-ARCH(3)-AR(1) 604.3792  597.3792 583.7779
T-GARCH(1,1)-AR(0)  607.5611  602.5611 592.8458
T-GARCH(1,1)-AR(1)  607.0997  601.0997 589.4414

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-

th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.4: Information Criterion Tests: REXP(25%)-DAX30(75%) (1.1975-
12.2004)

Model Lo AIC SBC
GBM 608.6370  606.6370 602.7509
AR(1) 608.2896 605.2896 599.4604
MS(1-2)-AR(0) 637.1615 632.1615* 622.4462*
MS(1-2)-AR(1) 636.9782  630.9782 619.3199
MS(2-1)-AR(0) 629.4895  624.4895 614.7742
MS(2-1)-AR(1) 630.6530  623.6530 610.0517
MS(2-2)-AR(0) 637.6832  631.6832 620.0249
MS(2-2)-AR(1) 638.0285  630.0285 614.4841
ARCH(1)-AR(0) 614.2417  611.2417 605.4125
ARCH(1)-AR(1) 613.5238  609.5238 601.7516
ARCH(2)-AR(0) 622.7696  618.7696 610.9974
ARCH(2)-AR(1) 622.0374  617.0374 607.3222
ARCH(3)-AR(0) 626.2048  621.2048 611.4895
ARCH(3)-AR(1) 625.5455  619.5455 607.8872
GARCH(1,1)-AR(0) 629.3608  625.360* 617.5886*
GARCH(1,1)-AR(1) 628.8128  623.8128 614.0976

1
E-ARCH(1)-AR(0) 615.6853  611.6853 603.9131
E-ARCH(1)-AR(1) 615.3024  610.3024 600.5872
E-ARCH(2)-AR(0) 620.5718  614.5718 602.9134
E-ARCH(2)-AR(1) 620.4793  613.4793 599.8780
E-ARCH(3)-AR(0) 624.5955  616.5955 601.0511
E-ARCH(3)-AR(1) 624.2556  615.2556 597.7681
E-GARCH(1,1)-AR(0)  629.2497  624.2497 614.5345
E-GARCH(1,1)-AR(1) 6287615  622.7615 611.1031
T-ARCH(1)-AR(0) 615.6133  611.6133 603.8411

T-ARCH(1)-AR(1) 615.2107  610.2107 600.4955
T-ARCH(2)-AR(0) 624.4692  619.4692 609.7540
T-ARCH(2)-AR(1) 624.0421  618.0421 606.3838
T-ARCH(3)-AR(0) 626.9950  620.9950 609.3367
T-ARCH(3)-AR(1) 626.5001  619.5001 605.8988
T-GARCH(1,1)-AR(0)  629.4428  624.4428 614.7275
T-GARCH(1,1)-AR(1) 628.9513  622.9513 611.2930

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.5: Information Criterion Tests: REXP(30%)-DAX30(70%) (1.1975-
12.2004)

Model Lo AIC SBC
GBM 632.8643  630.8643 626.9782
AR(1) 632.5173 629.5173 623.6882
MS(1-2)-AR(0) 659.9572  654.9572*  645.2420*
MS(1-2)-AR(1) 659.7898  653.7898 642.1315
MS(2-1)-AR(0) 652.6225  647.6225 637.9072
MS(2-1)-AR(1) 653.7556  646.7556 633.1542
MS(2-2)-AR(0) 660.4584  654.4584 642.8001
MS(2-2)-AR(1) 660.7890  652.7890 637.2446
ARCH(1)-AR(0) 638.3207  635.3207 629.4915
ARCH(1)-AR(1) 637.5980  633.5980 625.8258
ARCH(2)-AR(0) 646.3558  642.3558 634.5836
ARCH(2)-AR(1) 645.5949  640.5949 630.8796
ARCH(3)-AR(0) 649.6143  644.6143 634.8991
ARCH(3)-AR(1) 648.9278  642.9278 631.2695
GARCH(1,1)-AR(0) 652.5720  648.5720*  640.7998*
GARCH(1,1)-AR(1) 652.0094  647.0094 637.2941

1
E-ARCH(1)-AR(0) 639.6556  635.6556 627.8834
E-ARCH(1)-AR(1) 639.2873  634.2873 624.5720
E-ARCH(2)-AR(0) 644.1798  638.1798 626.5215
E-ARCH(2)-AR(1) 644.0385  637.0385 623.4371
E-ARCH(3)-AR(0) 647.9908  639.9908 624.4464
E-ARCH(3)-AR(1) 647.6933  638.6933 621.2058
E-GARCH(1,1)-AR(0)  652.2033  647.2033 637.4881
E-GARCH(1,1)-AR(1) 651.7719  645.7719 634.1136

T-ARCH(1)-AR(0) 639.6499  635.6499 627.8777
T-ARCH(1)-AR(1) 639.2634  634.2634 624.5481
T-ARCH(2)-AR(0) 648.0331  643.0331 633.3178
T-ARCH(2)-AR(1) 647.5932  641.5932 629.9349
T-ARCH(3)-AR(0) 650.4225  644.4225 632.7641
T-ARCH(3)-AR(1) 649.9095  642.9095 629.3081
T-GARCH(1,1)-AR(0)  652.6025  647.6025 637.8872
T-GARCH(1,1)-AR(1)  652.0794  646.0794 634.4211

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.6: Information Criterion Tests: REXP(40%)-DAX30(60%) (1.1975-

12.2004)

Note:

Model Lo AIC SBC
GBM 686.0921  684.0921 680.2060
AR(1) 685.7774  682.7774 676.9482
MS(1-2)-AR(0) 709.7270  704.7270*  695.0118*
MS(1-2)-AR(1) 709.6024  703.6024 691.9441
MS(2-1)-AR(0) 703.3806  698.3806 688.6653
MS(2-1)-AR(1) 704.4328  697.4328 683.8314
MS(2-2)-AR(0) 710.1928  704.1928 692.5345
MS(2-2)-AR(1) 710.5015  702.5015 686.9571
ARCH(1)-AR(0) 691.1746  688.1746 682.3455
ARCH(1)-AR(1) 690.4620  686.4620 678.6898
ARCH(2)-AR(0) 698.0841  694.0841 686.3119
ARCH(2)-AR(1) 697.2734 6922734 682.5581
ARCH(3)-AR(0) 700.9072  695.9072 686.1920
ARCH(3)-AR(1) 700.1700  694.1700 682.5117
GARCH(1,1)-AR(0) 703.3973  699.3973*  691.6251*
GARCH(1,1)-AR(1) 702.8121  697.8121 688.0969
E-ARCH(1)-AR(0) 692.3283  688.3283 680.5561
E-ARCH(1)-AR(1) 692.0058  687.0058 677.2906
E-ARCH(2)-AR(0) 696.3620  690.3620 678.7037
E-ARCH(2)-AR(1) 696.0833  689.0833 675.4820
E-ARCH(3)-AR(0) 699.5672  691.5672 676.0228
E-ARCH(3)-AR(1) 699.3367  690.3367 672.8492
E-GARCH(1,1)-AR(0)  702.8994  697.8994 688.1842
E-GARCH(1,1)-AR(1)  702.4073  696.4073 684.7490
T-ARCH(1)-AR(0) 692.3972  688.3972 680.6250
T-ARCH(1)-AR(1) 692.0649  687.0649 677.3496
T-ARCH(2)-AR(0) 699.6942  694.6942 684.9790
T-ARCH(2)-AR(1) 699.2363  693.2363 681.5780
T-ARCH(3)-AR(0) 701.7568  695.7568 684.0985
T-ARCH(3)-AR(1) 701.2157  694.2157 680.6143
T-GARCH(1,1)-AR(0)  703.4039  698.4039 688.6886
T-GARCH(1,1)-AR(1) 702.8124  696.8124 685.1541

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-

th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.7: Information Criterion Tests: REXP(50%)-DAX30(50%) (1.1975-
12.2004)

Model Lo AIC SBC
GBM 747.0932  745.0932 741.2071
AR(1) 746.8760 743.8760 738.0469
MS(1-2)-AR(0) 766.2067 761.2067* 751.4915*
MS(1-2)-AR(1) 766.1446  760.1446 748.4862
MS(2-1)-AR(0) 761.3885  756.3885 746.6733
MS(2-1)-AR(1) 762.3362  755.3362 741.7348
MS(2-2)-AR(0) 766.6560  760.6560 748.9977
MS(2-2)-AR(1) 766.9586  758.9586 743.4142
ARCH(1)-AR(0) 751.6724  748.6724 742.8432
ARCH(1)-AR(1) 751.0151  747.0151 739.2429
ARCH(2)-AR(0) 757.2090  753.2090 745.4368
ARCH(2)-AR(1) 756.3753  751.3753 741.6600
ARCH(3)-AR(0) 759.4674  754.4674 744.7521
ARCH(3)-AR(1) 758.6964  752.6964 741.0381
GARCH(1,1)-AR(0) 761.4098  757.4098*  749.6376*
GARCH(1,1)-AR(1) 760.8167  755.8167 746.1015
E-ARCH(1)-AR(0) 752.5376  T48.5376 740.7654
E-ARCH(1)-AR(1) 752.3341  747.3341 737.6189
E-ARCH(2)-AR(0) 755.9808  749.9808 738.3225
E-ARCH(2)-AR(1) 755.8381  748.8381 735.2367
E-ARCH(3)-AR(0) 758.5124  750.5124 734.9680
E-ARCH(3)-AR(1) 758.3807  749.3807 731.8933

E-GARCH(1,1)-AR(0)  761.0593  756.0593 746.3440
E-GARCH(1,1)-AR(1)  760.4096  754.4096 742.7513

T-ARCH(1)-AR(0) 752.7308  748.7308 740.9586
T-ARCH(1)-AR(1) 752.5002  747.5002 737.7849
T-ARCH(2)-AR(0) 758.6795  753.6795 743.9642
T-ARCH(2)-AR(1) 758.2226  752.2226 740.5643
T-ARCH(3)-AR(0) 760.3404  754.3404 742.6820
T-ARCH(3)-AR(1) 759.7906  752.7906 739.1892
T-GARCH(1,1)-AR(0)  761.5563  756.5563 746.8411
T-GARCH(1,1)-AR(1)  760.8911  754.8911 743.2328

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.8: Information Criterion Tests: REXP(60%)-DAX30(40%) (1.1975-
12.2004)

Model Lo AIC SBC
GBM 817.9412 815.9412 812.0551
AR(1) 817.9352 814.9352 809.1061
MS(1-2)-AR(0) 831.4834 826.4834*  816.7681*
MS(1-2)-AR(1) 831.3772  825.3772 813.7189
MS(2-1)-AR(0) 828.5282  823.5282 813.8129
MS(2-1)-AR(1) 829.3607  822.3607 808.7593
MS(2-2)-AR(0) 831.8985  825.8985 814.2402
MS(2-2)-AR(1) 832.1894  824.1894 808.6450
ARCH(1)-AR(0) 821.8803  818.8803 813.0511
ARCH(1)-AR(1) 821.3667  817.3667 809.5945
ARCH(2)-AR(0) 825.7276  821.7276 813.9554
ARCH(2)-AR(1) 824.9485  819.9485 810.2332
ARCH(3)-AR(0) 827.2926  822.2926 812.5774
ARCH(3)-AR(1) 826.5410  820.5410 808.8826
GARCH(1,1)-AR(0) 828.6796  824.6796*  816.9074*
GARCH(1,1)-AR(1) 828.1091  823.1091 813.3938

1
E-ARCH(1)-AR(0) 822.4937  818.4937 810.7215
E-ARCH(1)-AR(1) 8225206  817.5206 807.8053
E-ARCH(2)-AR(0) 825.2233  819.2233 807.5650
E-ARCH(2)-AR(1) 825.3152  818.3152 804.7138
E-ARCH(3)-AR(0) 826.9675  818.9675 803.4231
E-ARCH(3)-AR(1) 827.0512  818.0512 800.5637
E-GARCH(1,1)-AR(0)  828.9814  823.9814 814.2661

E-GARCH(1,1)-AR(1) 828.2141  822.2141 810.5558
T-ARCH(1)-AR(0) 822.6968  818.6968 810.9246
T-ARCH(1)-AR(1) 822.6525  817.6525 807.9373
T-ARCH(2)-AR(0) 826.9516  821.9516 812.2363
T-ARCH(2)-AR(1) 826.5499  820.5499 808.8916
T-ARCH(3)-AR(0) 828.1449  822.1449 810.4866
T-ARCH(3)-AR(1) 827.6377  820.6377 807.0363
T-GARCH(1,1)-AR(0)  829.1975  824.1975 814.4822
T-GARCH(1,1)-AR(1) 828.4623  822.4623 810.8040

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.9: Information Criterion Tests: REXP(70%)-DAX30(30%) (1.1975-
12.2004)

Model Lo AIC SBC

GBM 900.6899  898.6899  894.8038"
AR(1) 901.1033 898.1033 892.2741
MS(1-2)-AR(0) 908.6233  903.6233*  893.9080*
MS(1-2)-AR(1) 908.6912  902.6912  891.0329
MS(2-1)-AR(0) 906.9026  901.9026  892.1873
MS(2-1)-AR(1) 907.7328  900.7328  887.1314
MS(2-2)-AR(0) 909.3142  903.3142  891.6559
MS(2-2)-AR(1) 910.1357  902.1357  886.5913
ARCH(1)-AR(0) 903.9931  900.9931  895.1640
ARCH(1)-AR(1) 903.8112  899.8112  892.0390
ARCH(2)-AR(0) 905.9051  901.9051  894.1329
ARCH(2)-AR(1) 905.4121  900.4121  890.6968
ARCH(3)-AR(0) 906.7322  901.7322  892.0169
ARCH(3)-AR(1) 906.1795  900.1795  888.5212
GARCH(1,1)-AR(0) 907.7665  903.7665  895.9943
GARCH(1,1)-AR(1) 907.3124  902.3124  892.5972

1
E-ARCH(1)-AR(0) 904.2318  900.2318  892.4596
E-ARCH(1)-AR(1) 904.7370  899.7370  890.0218
E-ARCH(2)-AR(0) 905.8549  899.8549  888.1966
E-ARCH(2)-AR(1) 906.4341  899.4341  885.8327
E-ARCH(3)-AR(0) 906.8083  898.8083  883.2639
E-ARCH(3)-AR(1) 907.3730  898.3730  880.8856
E-GARCH(1,1)-AR(0)  908.6020  903.6020  893.8868
E-GARCH(1,1)-AR(1) 907.9011  901.9011  890.2428
T-ARCH(1)-AR(0) 904.4911  900.4911  892.7189

T-ARCH(1)-AR(1) 904.8161  899.8161  890.1009
T-ARCH(2)-AR(0) 906.7210  901.7210  892.0057
T-ARCH(2)-AR(1) 906.5925  900.5925  888.9342
T-ARCH(3)-AR(0) 907.4473  901.4473  889.7890
T-ARCH(3)-AR(1) 907.1656  900.1656  886.5643
T-GARCH(1,1)-AR(0)  908.7736 903.7736  894.0583
T-GARCH(1,1)-AR(1) 908.0695  902.0695  890.4112

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.

366



Table F.10: Information Criterion Tests: REXP(75%)-DAX30(25%) (1.1975-
12.2004)

Model Lo AIC SBC
GBM 946.5840  944.5840  940.6979*
AR(1) 947.3466 944.3466 938.5174
MS(1-2)-AR(0) 952.6548  947.6548*  937.9395*
MS(1-2)-AR(1) 953.3999  947.3999 935.7416
MS(2-1)-AR(0) 950.7026  945.7026 935.9873
MS(2-1)-AR(1) 952.4809  945.4809 931.8796
MS(2-2)-AR(0) 953.4877  9A7.4877 935.8294
MS(2-2)-AR(1) 954.8684  946.8684 931.3239
ARCH(1)-AR(0) 949.7645  946.7645  940.9354*
ARCH(1)-AR(1) 949.8958  945.8958 938.1236
ARCH(2)-AR(0) 950.7991  946.7991 939.0269
ARCH(2)-AR(1) 950.6632  945.6632 935.9479
ARCH(3)-AR(0) 951.3268  946.3268 936.6116
ARCH(3)-AR(1) 951.0719  945.0719 933.4136
GARCH(1,1)-AR(0) 952.3619  948.3619 940.5897
GARCH(1,1)-AR(1) 952.0943  947.0943 937.3790

1
E-ARCH(1)-AR(0) 949.7166  945.7166 937.9444
E-ARCH(1)-AR(1) 950.6749  945.6749 935.9596
E-ARCH(2)-AR(0) 950.7251  944.7251 933.0668
E-ARCH(2)-AR(1) 951.7432  944.7432 931.1418
E-ARCH(3)-AR(0) 951.3144  943.3144 927.7700
E-ARCH(3)-AR(1) 952.3218  943.3218 925.8344
E-GARCH(1,1)-AR(0) 953.3516  948.3516 938.6364
E-GARCH(1,1)-AR(1)  952.8574  946.8574 935.1991
T-ARCH(1)-AR(0) 950.1006  946.1006 938.3284

T-ARCH(1)-AR(1) 950.7590  945.7590 936.0437
T-ARCH(2)-AR(0) 951.3480  946.3480 936.6327
T-ARCH(2)-AR(1) 951.6025  945.6025 933.9442
T-ARCH(3)-AR(0) 951.8891  945.8891 934.2307
T-ARCH(3)-AR(1) 951.9398  944.9398 931.3384
T-GARCH(1,1)-AR(0)  953.4637 948.4637*  938.7484
T-GARCH(1,1)-AR(1)  952.9431  946.9431 935.2848

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.11: Information Criterion Tests: REXP(80%)-DAX30(20%) (1.1975-
12.2004)

Model Lo AIC SBC

GBM 994.4461 9924461  988.5600"

AR(1) 995.7300 992.7300 986.9008

MS(1-2)-AR(0) 1000.0601  995.0601  985.3448*
(1-2)-AR(1) 1001.4135  995.4135 983.7552
(2-1)-AR(0) 997.2255 992.2255 982.5103

MS(2-1)-AR(1) 1001.5554  994.5554 980.9541
(2-2)-AR(0) 1000.7053  994.7053 983.0470

)

MS(2-2)-AR(1
ARCH(1)-AR(0

1003.5288 995.5288* 979.9844
997.9415 994.9415 989.1124*

)
ARCH(1)-AR(1) 998.6077  994.6077 986.8355
ARCH(2)-AR(0) 998.3823  994.3823 986.6101
ARCH(2)-AR(1) 998.8935  993.8935 984.1783
ARCH(3)-AR(0) 998.7810  993.7810 984.0657
ARCH(3)-AR(1) 999.1178  993.1178 981.4595
GARCH(1,1)-AR(0) 999.9388  995.9388 988.1666
GARCH(1,1)-AR(1) 1000.1872  995.1872 985.4719
E-ARCH(1)-AR(0) 997.5094  993.5094 985.7372
E-ARCH(1)-AR(1) 999.1807  994.1807 984.4654
E-ARCH(2)-AR(0) 998.1307  992.1307 980.4724
E-ARCH(2)-AR(1) 999.8759  992.8759 979.2745
E-ARCH(3)-AR(0) 998.4948  990.4948 974.9504
E-ARCH(3)-AR(1) 1000.2132  991.2132 973.7257
E-GARCH(1,1)-AR(0)  1000.9413  995.9413*  986.2260
E-GARCH(1,1)-AR(1)  1000.9072  994.9072 983.2489
T-ARCH(1)-AR(0) 998.1512  994.1512 986.3790
T-ARCH(1)-AR(1) 999.3781  994.3781 984.6628
T-ARCH(2)-AR(0) 998.6895  993.6895 983.9743
T-ARCH(2)-AR(1) 999.6659  993.6659 982.0076
T-ARCH(3)-AR(0) 999.1640  993.1640 981.5056
T-ARCH(3)-AR(1) 999.8805  992.8805 979.2791
R

T-GARCH(1,1)-AR(0)  1000.9211  995.9211 986.2058
T-GARCH(1,1)-AR(1)  1000.9223  994.9223 983.2640

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.12: Information Criterion Tests: REXP(90%)-DAX30(10%) (1.1975-
12.2004)

Model Lo AIC SBC

GBM 1082.8462  1080.8462 1076.9601
AR(1) 1086.3876 1083.3876 1077.5584
MS(1-2)-AR(0) 1092.3177  1087.3177 1077.6025
MS(1-2)-AR(1) 1096.5412  1090.5412*  1078.8828"
MS(2-1)-AR(0) 1087.6867  1082.6867 1072.9715
MS(2-1)-AR(1) 1095.8523  1088.8523 1075.2509
MS(2-2)-AR(0) 1092.7810  1086.7810 1075.1227
MS(2-2)-AR(1) 1097.6935  1089.6935 1074.1491
ARCH(1)-AR(0) 1090.0045  1087.0045 1081.1754
ARCH(1)-AR(1) 1093.7291  1089.7291 1081.9569
ARCH(2)-AR(0) 1090.4338  1086.4338 1078.6616
ARCH(2)-AR(1) 1094.3255  1089.3255 1079.6102
ARCH(3)-AR(0) 1091.7058  1086.7058 1076.9905
ARCH(3)-AR(1) 1094.8356  1088.8356 1077.1772
GARCH(1,1)-AR(0) 1094.8277  1090.8277 1083.0555
GARCH(1,1)-AR(1) 1099.2014 1094.2014* 1084.4861*
E-ARCH(1)-AR(0) 1088.7425  1084.7425 1076.9703
E-ARCH(1)-AR(1) 1094.0499  1089.0499 1079.3346
E-ARCH(2)-AR(0) 1090.4625  1084.4625 1072.8041
E-ARCH(2)-AR(1) 1095.9958  1088.9958 1075.3944
E-ARCH(3)-AR(0) 1091.0672  1083.0672 1067.5228
E-ARCH(3)-AR(1) 1096.1260  1087.1260 1069.6385
E-GARCH(1,1)-AR(0)  1095.9996  1090.9996 1081.2844
E-GARCH(1,1)-AR(1)  1099.4253  1093.4253 1081.7669
T-ARCH(1)-AR(0) 1090.1117  1086.1117 1078.3395
T-ARCH(1)-AR(1) 1094.5388  1089.5388 1079.8236
T-ARCH(2)-AR(0) 1090.5360  1085.5360 1075.8208
T-ARCH(2)-AR(1) 1094.9809  1088.9809 1077.3226
T-ARCH(3)-AR(0) 1091.9059  1085.9059 1074.2476
T-ARCH(3)-AR(1) 1095.5048  1088.5048 1074.9034
T-GARCH(1,1)-AR(0)  1095.0432  1090.0432 1080.3279
T-GARCH(1,1)-AR(1)  1099.4961  1093.4961 1081.8378

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, -Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=-£16) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.13: Information Criterion Tests: REXP (1.1975-12.2004)

Model Lo AIC SBC
GBM 1113.4151 1111.4151 1107.5290
AR(1) 1121.0048 1118.0048 1112.1756
MS(1-2)-AR(0) 1129.5333  1124.5333 1114.8181
MS(1-2)-AR(1) 1138.8598 1132.8598* 1121.2015*
MS(2-1)-AR(0) 1122.3571  1117.3571 1107.6418
MS(2-1)-AR(1) 1132.4950  1125.4950 1111.8936
MS(2-2)-AR(0) 1129.5800 1123.5800 1111.9217
MS(2-2)-AR(1) 1139.0877  1131.0877 1115.5433
ARCH(1)-AR(0) 1120.9730  1117.9730 1112.1439
ARCH(1)-AR(1) 1130.4496  1126.4496 1118.6774
ARCH(2)-AR(0) 1121.3755  1117.3755 1109.6033
ARCH(2)-AR(1) 1131.2224 1126.2224 1116.5071
ARCH(3)-AR(0) 1122.3499  1117.3499 1107.6346
ARCH(3)-AR(1) 1131.3569  1125.3569 1113.6986
GARCH(1,1)-AR(0) 1125.9038  1121.9038 1114.1316
GARCH(1,1)-AR(1) 1136.9318 1131.9318* 1122.2166*
E-ARCH(1)-AR(0) 1120.7666  1116.7666 1108.9944
E-ARCH(1)-AR(1) 1130.2170  1125.2170 1115.5017
E-ARCH(2)-AR(0) 1121.4488  1115.4488 1103.7904
E-ARCH(2)-AR(1) 1131.3639  1124.3639 1110.7625
E-ARCH(3)-AR(0) 1123.1402  1115.1402 1099.5958
E-ARCH(3)-AR(1) 1131.7382  1122.7382 1105.2507
E-GARCH(1,1)-AR(0)  1126.8686  1121.8686 1112.1533
E-GARCH(1,1)-AR(1)  1137.4573  1131.4573 1119.7990
T-ARCH(1)-AR(0) 1121.3916 1117.3916 1109.6194
T-ARCH(1)-AR(1) 1132.3429  1127.3429 1117.6276
T-ARCH(2)-AR(0) 1121.9218 1116.9218 1107.2066
T-ARCH(2)-AR(1) 1133.0920  1127.0920 1115.4337
T-ARCH(3)-AR(0) 1122.8179  1116.8179 1105.1596
T-ARCH(3)-AR(1) 1133.1365 1126.1365 1112.5351
T-GARCH(1,1)-AR(0)  1126.5432  1121.5432 1111.8280
T-GARCH(1,1)-AR(1)  1137.7694  1131.7694 1120.1110

Note:

GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s
regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with ¢ GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, Z(0) - log-likelihood, AIC - Akaike
Information Criterion [AIC:X 0) — k}, SBC - Schwarz Bayesian Information Criterion
[SBC=Z0) — 0.5k In(T)], k - number of parameters, T - number of observations. Bold -
model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Appendix G

Wald and likelihood ratio test
(1.1975-12.2004)
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Table G.1: Wald and LR tests: DAX30

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT Hézb)) 923.15***  1143.56™** | 3.74* 4.03** | 937.36*** 1017.73***

WT Hff’)) - - 88.25***  49.84*** | (.84 1.10
WT Hg4a>) 32.63**  32.16** _ 3166  31.38%**

W (HY) _ — — 0.33 — 0.55
LR(H?Y 25.99"**  26.52*** | 8.76™*  10.80*** | 21.74***  18.64"**

LR (H{" — — — 17.98**  16.35"*
LR Hg@) — — — 1.35 2.61

Table G.2: Wald and LR tests: REXP(90%)-DAX30(90%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0)  AR(1)
WT H(()Qb)) 881.41***  1108.86*** 3.66* 3.83* 900.15***  1022.84***

wr (1) — — 83.02°**  45.85** | 0.78 1.08
WT(H() | 31967 31477 — 31.18"*  30.87°*

WT H((f’) o . — 0.26 — 0.49
LR(HS™) | 25447 2590 | 854" 1052 | 2157 1845

LR(H — — — 17.66**  16.00***
LR Hg”) — — — 1.21 2.41
Note:

MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, ** *** _ the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.

H(()Qb)i pi1 =1 —pao H§2b): P11 # 1 — pao
Hé?’) © 1 = fig, 0% # 03, p11, Paa - Not specified, Hgg) D F e
Hgm): W1 # p2, 02 = 03, p11, p22 - not specified, H§4a): o2 # 03
H(()4b)5 p1 # p2, P11y # P1(2), 01 = 05, p11 # 1 — paa, H§4b)1 o} # o3

HyY - ®1(1) = P1(2)> P11, P22 - not specified, H{): b1(1) # P1(2)

HE)6) D1 = p2, 1) = G1(2), 07 # 03, P11 # L — paa, Hﬁ‘” D1 F 2, 911y F PL2)
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Table G.3: Wald and LR tests: REXP(20%)-DAX30(80%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 804.42°** 1048.45*** | 3.60*  3.49* | 848.57°** 1000.91**
WT Hg3>) — — 77.30%  40.50°** | 0.72 1.05
WT Hg4“>) 30.967*  30.47%** — — 30.29*  30.03***
WT(HS — — — 0.18 — 0.43
LR(HY) | 2448+ 2480 | 823  10.09* | 21.00***  17.90"***
LR (H{" — — — — 16.94%**  15.29%*
LR H§f>) — — — - 1.09 2.20

Table G.4: Wald and LR tests: REXP(25%)-DAX30(75%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT Hg”’)) 767117 1002.53*** | 3.54* 344 | 817.24"  974.09**
WT H53>) — — 74147 40.68*** | 0.71 1.06
WT Hf{‘“)) 30.23**  29.81*** — — 29.61%**  29.40***
wT(HP — — — 0.17 — 0.31
LR(H” 23817 24.19%* | 8.03***  9.80%** | 20.54%*  17.44%**
LR (H{™ — — — — 16.39***  14.75"*
LR (") - - - - 1.04 2.10

Note:

MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, ** *** _ the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.

HY: pii=1—pa H™: pu # 1 poo
HE + i1 = pia, 03 # 0%, pu1, pas - not specified, HY i # oo
HS'™: i1 # pa, 03 = 03, pr1, paa - not specified, ") 0F # 03
HE™': 1 # pia, d101) # dr2), 03 = 02, pu # 1= paa,  H™: 02 £ 03

HE)5) : Q1(1) = P1(2), P11, P22 - Not specified, ng: $101) 7 $1(2)

Hg)G) D = pa, d11) = D1(2), 07 # 03, p11 # 1 — Doz, H§6) D1 F p2, 911y F P1(2)
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Table G.5: Wald and LR tests: REXP(30%)-DAX30(70%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 715.00%*  944.61%** | 3.43*  3.46* | 75847  934.88**
WT Hg?’)) — 70.85"*  36.96*** |  0.69 1.05
WT Hg4“>) 29347 29,00 — — 28.78"**  28.66***
WT(HS — — 0.12 — 0.43
LR(H 22.96™*  23.32%% | 7.79%**  9.44*** | 19.91%*  16.83***
LR (H{" — — — 15.67***  14.07***
LR H(()G)) — — - 1.00 2.00

Table G.6: Wald and LR tests: REXP(40%)-DAX30(60%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 555.66***  765.58"** | 3.16*  3.20° | 593.23*** 797.03***
WT H(()B)) — 63.20***  35.14*** | (.68 1.07
WT Hg4a>) 26.87***  26.69"** — — 26.23***  26.49***
WT(HY — — 0.0496 — 0.25
LR(H* 20.64***  20.96*** | 7.16** 847 | 18.03"**  15.06™*
LR (H{™ — — — 13.62%**  12.14%*
LR (") — — — 0.93 1.80

Note:

MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, ** *** _ the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.

HEY: p1y =1 — pao H): pu # 1 - pas

HE + i1 = pia, 03 # 0%, pu1, pas - not specified, HY i # oo

HS'™: i1 # pa, 03 = 03, pr1, paa - not specified, ") 0F # 03

HE™': 1 # pia, d101) # dr2), 03 = 02, pu # 1= paa,  H™: 02 £ 03

HE)5) : Q1(1) = P1(2), P11, P22 - Not specified, ng: $101) 7 $1(2)

HY 1 = piz, d1(1) = digzy, 07 # 03 o1 £ 1 —pao, HY 1 # pa, d11) # die)
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Table G.7: Wald and LR tests: REXP(50%)-DAX30(50%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT(HPY) | 289.67**  454.82°* | 2.80*  3.00* | 324.88"** 516.33"**
WT Hff’)) — 53.97** 3523 | 0.69 1.13
WT Hg4a>) 21.53** 22,75 — — 2130 22.78***
wT(H — — 0.0027 — 0.0775
LR(H 17197 17.48"* | 6.23"  7.03*** | 15.07**  12.32%**
LR (H{" — — — 10.53*** 9247
LR H(()G)) — — - 0.90 1.63

Table G.8: Wald and LR tests: REXP(60%)-DAX30(40%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 134.64**  147.64** |  2.25 2.38 | 68.33°* 12475
wr (=) 41147 29,60 | 0.55 1.19
WT(H(™) | 16.13**  15.94** . . 10.39%*  14.08"*
W (Hf” 00121 . 0.0022
LR(H? 12,88 12,847 | 4.87**  5.00"* | 11.17**  8.55**
LR (H{" — — 6.74**  5.66"*
LR Héﬁ)) — — 0.83 1.62

Note:

MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, ** *** _ the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.

HY: pii=1—pa H™: pu # 1 poo

H(()B) D 1 = pi, 07 # 05, pa, pao - not specified, Hgg) P e

HS'™: i1 # pa, 03 = 03, pr1, paa - not specified, ") 0F # 03

HE™': 1 # pia, d101) # dr2), 03 = 02, pu # 1= paa,  H™: 02 £ 03

HE)5) : Q1(1) = P1(2), P11, P22 - Not specified, ng: $101) 7 $1(2)

HY = po, b11) = b1(2), 01 # 03, P11 # 1 — pa, H® 1 # o, $10) # $1(2)
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Table G.9: Wald and LR tests: REXP(70%)-DAX30(30%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 110.347*  124.12° | 1.39 1.22 | 127.97"  108.02***
WT H(()?’)) — 23.34"*  19.02*** | 1.18 1.69
WT Hg4“>) 16.98*  15.15%* — — 16.88***  15.09***
WT(HS — — 0.11 — 0.10
LR(H 9.28*  9.00** | 3.03* 2.40 6.14** 6.12**
LR (H{" — — — 4.82% 4.81%
LR H(()G)) — — - 1.38 2.89

Table G.10: Wald and LR tests: REXP(75%)-DAX30(25%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT Hg%)) 122.98**  134.66** | 0.91 0.65 | 120.31%**  140.44%**
WT H(()B)) — 14.51%%  4.45% 1.37 2.88"
WT Hg4a>) 80.36**  81.78*** — — 9057 90.56***
wWT(H — —19.61%* — 1.55
LR(H* 8.64%**  9.31% 1.88 0.79 2.63 5.38"*
LR (H{™ — — — 557 477
LR (") — — — 1.67 2.94

Note:

MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, ** *** _ the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.

HEY: p1y =1 — pao H): pu # 1 - pas
HE + i1 = pia, 03 # 0%, pu1, pas - not specified, HY i # oo
HS'™: i1 # pa, 03 = 03, pr1, paa - not specified, ") 0F # 03
HE™': 1 # pia, d101) # dr2), 03 = 02, pu # 1= paa,  H™: 02 £ 03

HE)5) : Q1(1) = P1(2), P11, P22 - Not specified, ng: $101) 7 $1(2)

Hg)G) D = pa, d11) = D1(2), 07 # 03, p11 # 1 — Doz, H§6) D1 F p2, 911y F P1(2)
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Table G.11: Wald and LR tests: REXP(80%)-DAX30(20%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 199.66**  227.24"* | 0.51 2.14 | 154.36"**  153.59***
WT ng) — — 9.79*** 551 0.99 3.63*
WT Hg4“>) 76.62°%%  78.04*** — — 79.55°  82.40%**
wWT(HS — — —19.79%* — 4.07
LR(H? 67.10*  10.14** | 0.90 1.76 3.73* 5.03%%
LR (H{" — — — — 6.96***  3.95%**
LR (") — — — — 1.29 4.23

Table G.12: Wald and LR tests: REXP(90%)-DAX30(10%)

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 321.97°* 61570 | 090  2.77° | 207.86** 23.07°
wr (=) — — |21 12147 | 0.60 2.30
WT Hg4“>) 8.28%%  7.83%% - . 6545  6.24%
WT H(()5)) — — — 3770 — 5.69"*
LR(HPY) | 13.69"  16.68** | 1.23 250 | 7.200*  6.11%
LR ( Hg" — — — — 10.19**  3.68*
LR HSG)) — — — — 0.93 2.30

Note:

MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, ** *** _ the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.

HY: pii=1—pa H™: pu # 1 poo

H(()S) D 1 = pi, 07 # 05, pa, pao - not specified, Hgg) P e

HS'™: i1 # pa, 03 = 03, pr1, paa - not specified, ") 0F # 03

HE™': 1 # pia, d101) # dr2), 03 = 02, pu # 1= paa,  H™: 02 £ 03

HE)5) : Q1(1) = P1(2), P11, P22 - Not specified, ng: $101) 7 $1(2)

HY = po, b11) = b1(2), 01 # 03, P11 # 1 — pa, H® 1 # o, $10) # $1(2)
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Table G.13: Wald and LR tests: REXP

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
WT H(()Qb)) 436.51%  499.71*** |  1.09 2.51 | 364.78**F  22.38***
WT H53>) — - 13.36™*  11.46** |  0.08 2.98*
WT Hg““)) 8.65%*F  8.44%** - - 8.32%** 308"
WT H((f’)) — — — 33.80%** — 6.14*
LR(H?Y 19.63*  22.53% 2.20 1.75 10.80%**  8.66***
LR (H" — — — | 1445 13190
LR H§f>) — — — — 0.09 0.46

Note:

MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, ** *** _ the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.

H(()Qb) :

P11 =1—pa H?b):
© 1 = pig, 0% # 03, p11, P2z - Not specified, Hgg)
Vi 11 # pe, 02 = 03, p11, pea - not specified, Hg4a)
D F pa, Pr1) # P12), 01 = 03, P11 # 1 — paz, H{*

: Q1(1) = P1(2), P11, P22 - not specified,
D = pa, P11 = di2), 01 £ 03, P11 £ 1 — paa, H® .
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Appendix H

Newey-Tauchen-White test
(1.1975-12.2004)
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Table H.1: Newey-Tauchen-White test: DAX30

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{” | 0.0385*  0.1245*** | 2.6824**  0.7404*** | 0.5320"*  0.4048***
H® | 0.24947*  0.26917* | 1.2467°*  1.4783°™* | 0.0802*"*  0.0682***
H? | 159827  3.5223"* | 0.0001**  0.0004** | 2.6309***  3.9217***

Table H.2: Newey-Tauchen-White test: REXP 10% DAX30 90%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H” | 0.0506**  0.0908"** | 2.5655"* 0.8089*** | 0.3944*** (.3868""*
H® | 0.1238*  0.1472%** | 1.0878"*  1.3169*** | 0.0436™*  0.0485***
H? | 1.7578"*  3.9651"* | 0.0001** 0.0003** | 3.2040**  4.8181

Table H.3: Newey-Tauchen-White test: REXP 20% DAX30 80%

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H” [ 005897 0.0702%* | 2.0102"*  1.0355"** | 0.5587*** 0.7242"**
HE | 0.0673**  0.0694** | 1.3934"*  1.1404*** | 0.0799"**  0.1608"**
H? | 1.7616™*  4.1819"* | 0.0000**  0.0002*"* | 2.6404**  4.2862***

Table H.4: Newey-Tauchen-White test: REXP 25% DAX30 75%

MS(1-2)
AR(0)  AR(1)

MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1)

H{ | 0.1129%  0.0263*** | 3.1287"* 1.3197*** | 0.3398"**  (.5532***

HE | 01331 0.0552*** | 0.6830"*  0.9238*** | 0.3896***  0.5991*"*

H | 1.5622%  3.8840%** | 0.0001*"* 0.0002*** | 2.8789***  4.7363
Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes

for the variance and p auto-regression lags in each mean equation. *, ** *** _ the null

hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
Hy': E [h(7)) Ry ()] =0
Hy': E[h§(33) |hi 1 (37)] =0
s E [h§(555) [ (i) ] =0

7 E[RS@) hs_, ()] 0 (i=1,....K)
H%jz E [h§(52) |hf_1(G2)] #0  (iLj=1,... K)
H: E[h§(5);) |hf 1 (Bi)] #0  (1j=1.... K)
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Table H.5: Newey-Tauchen-White test: REXP 30% DAX30 70%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H | 0.1140%  0.0236*** | 3.7020"*  1.3446** | 1.3728"**  2.0674*"*
HE | 0.5985%*  0.8335"** | 0.6045"*  0.6354*** | 2.5051***  2.2552**
H? | 1.9194"*  4.3325"* | 0.0000** 0.0001*** | 3.1280*"*  4.7664

Table H.6: Newey-Tauchen-White test: REXP 40% DAX30 60%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{” | 0.2412*  0.0000*** | 3.8495** 2.9442*** | 1.1010"** 1.8956***
H® | 3.30057*  3.0042°* | 1.5099°*  1.2272°* | 2.7466*"  2.2147***
H | 2.4685**  4.7443 | 0.0000** 0.0000*** | 1.5288*** 2.8541*"*

Table H.7: Newey-Tauchen-White test: REXP 50% DAX30 50%

MS (1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H(” | 056717 0.0863"* | 2.1997** 1.7095** | 0.7707*** 1.4316***
H® | 35214 3.0547* | 1.7089°*  0.9912°* | 3.6182*" 2.9731***
H | 2.0993**  3.6666*** | 0.0000* 0.0000*** | 1.0599*** 1.9203***

Table H.8: Newey-Tauchen-White test: REXP 60% DAX30 40%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H” | 1.5262  0.5206™* | 0.4421°* 0.1869** | 1.8566*" 1.8112***
H® | 3.5318*  3.1192*** | 1.8435"* (.8816*** | 3.3500"* 2.6457***
H(” | 2.7483*>  3.5277*** | 0.0000°*  0.0000*** | 0.8615"*  0.6491***

Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes

for the variance and p auto-regression lags in each mean equation. *, ** *** _ the null

hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
HY: B [h() |he ()] =0 H: E[hi(@) [k ()] 0 (ij=1... K)
HE: E[hi@2) b, G2)] =0 HY: E[Ri@E?) b GH)] £0  (j=1,.. K)
HE: B [hi(5) [hi 1 (Bi)] =0 HY: E[hiG) b1 (Bi)] #0 (=1, K)
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Table H.9: Newey-Tauchen-White test: REXP 70% DAX30 30%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H7 | 5.2262*  3.1539 | 1.3988" 1.6960"** | 2.3853"** 1.6922"**
HE | 25963 2.2208** | 1.2558"  0.1098*** | 3.3305*** 26419
H? | 269257  3.0857"* | 0.0000**  0.0000*** | 0.8577**  0.2747***

Table H.10: Newey-Tauchen-White test: REXP 75% DAX30 25%

MS (1-2) MS(2-1) MS (2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
HYD [ 2.3163* 17864 | 6.9399*  1.8300"" | 0.7654***  0.3508"
Hés) 2.9348***  2.1521*** | 1.2195***  2.6644*** | 2.8147*** 2.3179***
HYY | 2.1856"*  2.2766** | 0.0000***  0.0000** | 0.5837*** 1.2836""

Table H.11: Newey-Tauchen-White test: REXP 80% DAX30 20%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{” | 3.9834* 32320 | 8.0251*  2.4802*** | 2.0132"* 0.7650***
HE | 25076 1.5242*** | 0.7389"*  3.5001 | 3.2705"**  2.0356*"*
H | 1.1283*  1.1823*** | 0.0000** 0.0000*** | 3.2306***  0.9423***

Table H.12: Newey-Tauchen-White test: REXP 90% DAX30 10%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H("” | 8.1041**  2.0137*** | 20.4211** 4.0373"** | 6.3384*  7.3723*
H® | 2.8795%*  3.7998"* | 1.1200**  3.5334 | 4.6619  7.7374*
H | 4.9265  5.0124 | 0.0000*** 0.0000*** | 1.6992*** 2.7630***

Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes

for the variance and p auto-regression lags in each mean equation. *, ** *** _ the null

hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
HY: B [h() |he ()] =0 H: E[hi(@) [k ()] 0 (ij=1... K)
HE: E[hi@2) b, G2)] =0 HY: E[Ri@E?) b GH)] £0  (j=1,.. K)
HE: B [hi(5) [hi 1 (Bi)] =0 HY: E[hiG) b1 (Bi)] #0 (=1, K)
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Table H.13: Newey-Tauchen-White test: REXP

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)
Héﬂ 20.1919**  1.7086*** | 25.3082** 10.0650** | 13.5856** 12.1780**
Hés) 3.1807***  1.9153*** | 0.6140***  7.4031** | 3.9949***  3.4779***
Hég) 2.6856***  2.6608*** | 0.0000***  0.0000*** | 2.7332***  1.9048***
Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes

for the variance and p auto-regression lags in each mean equation.

% Rk the pull

hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
HY: B[R (i) | (is)] =0
HE: E[h§(33) ki 1(52)] =0
HY: E[hi(5y) hioa ()] =0 HY: E[R§(5y) [hioa ()] 0 (1j=1....K)

H: E[h¢(7;) by, ()] #0
HY: E[R@?) |k, (6
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D] #0

(ij=1.....K)
(ij=L,....K)
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Appendix 1

Lagrange multiplier test

(1.1975-12.2004)
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Table I.1: Lagrange multiplier test: DAX30

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'” | 05134  3.1364 | 1.5889** 32.0739"* | 0.0469*** 7.3589**
H{'" | 1.3375"  3.3922 | 2.4954***  32.6655"* | 0.5255"**  7.4295%*

Table 1.2: Lagrange multiplier test: REXP 10% DAX30 90%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'” | 0.6146**  2.9073 | 1.4475** 31.6912** | 0.3752"* 7.4362**
H{'™ | 1.4965"*  3.1855 | 2.1163*** 32.0458"* | 0.8734*** 7.4735**

Table 1.3: Lagrange multiplier test: REXP 20% DAX30 80%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'® | 0.7113  2.9885 | 1.2838** 27.5140* | 0.3679*** 6.9847**
H{'™" | 1.56827 3.1392 | 3.2836  28.1928"* | 1.2182*** 7.0760**

Table 1.4: Lagrange multiplier test: REXP 25% DAX30 75%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H [ 05003 2.5266* | 2.9217  26.8444"* | 1.7288"**  8.0665*
H{' | 1.2676** 27711 | 4.2705* 27.6564** | 3.8086  8.8206"*

Table 1.5: Lagrange multiplier test: REXP 30% DAX30 70%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'” | 17347 42598 | 3.7162 25.5256* | 2.1742** 8.0737**
H{') | 45544  6.3333* | 4.3131* 26.2148** | 4.2882*  8.7864""

Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, ** *** _ the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H': p=0 HI: (] 23, 20,2150, 0) ~ N{ZiBz, + plyer — 241z ,)},02)
Yt—1— ;, Z4_ 2
B e=0 B (0] 25, 2 200, P80V (m;ﬂwoi [1 e D

Zt—1




Table 1.6: Lagrange multiplier test: REXP 40% DAX30 60%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'” | 1.7930°* 4.4297* | 4.1814* 22.8426** | 1.4301**  6.6310"
H"™ | 4.4790*  6.1316* | 4.6978* 23.3392** | 2.9664  7.0271**

Table 1.7: Lagrange multiplier test: REXP 50% DAX30 50%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'” | 14459  4.0189* | 3.4487 20.4251** | 0.9632** 6.0025"
H{' | 4.3124*  5.7061% | 4.1420* 20.7475" | 2.5985*"  6.5242*

Table 1.8: Lagrange multiplier test: REXP 60% DAX30 40%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H' | 1.3026**  3.3304 | 2.5108*** 14.4731** | 0.8554*"* 5.9498"
H{™ | 42470 5.0723* | 3.9228*  14.9722** | 2.0995*"*  6.1672*

Table 1.9: Lagrange multiplier test: REXP 70% DAX30 30%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H(' | 22077 3.3280 | 1.3547*** 6.8935" | 1.4149"** 8.9650**
H{'™ | 4.8067*  4.9808* | 2.6618*** 7.0226"* | 3.1584  8.3499**

Table 1.10: Lagrange multiplier test: REXP 75% DAX30 25%

MS(1-2) MS(2-1) MS(2-2)

AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'? | 2.20077*  4.6571% | 1.0178*** 32.6253** | 2.2687***  2.9427
H{'™ | 4.8184*  8.0783* | 2.3351*** 32.1797** | 5.0304*  5.9998*

Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes

for the variance and p auto-regression lags in each mean equation. *, ** *** _ the null

hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
Hy'Y: p=0 H{': (il 20202010, p) ~ N({@Be, + p(ye-1 — 2118z}, 0%,)

HY: =0 HY: (5] 202 210, EPS N (x;ﬁzt,az

2zt

E(th—l_z;flﬂztfl )2

=)



Table 1.11: Lagrange multiplier test: REXP 80% DAX30 20%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'” | 3.4497 3.9394* | 1.7673"* 34.1679** | 3.5869 2.4138"**
H{'" | 4.6954* 5.8412* | 1.9581***  33.5088"* | 4.4118*  3.7996

Table 1.12: Lagrange multiplier test: REXP 90% DAX30 10%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H{'” | 7.1439"  1.1552*** | 7.0739** 41.0724** | 6.1799* 11.0327**
H{'" | 3.0185 0.9793** | 3.4857  41.1626** | 3.1917 11.7223**
Table 1.13: Lagrange multiplier test: REXP
MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
H('” | 16.6099" 2.1669"** | 13.9641** 40.9100* | 64.0846** 23.8996**
H{™ | 1.9282%  2.6027*** | 2.6903***  49.0283** | 62.8667** 22.4693**
Note:

MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes

for the variance and p auto-regression lags in each mean equation. *, ** *** _ the null

hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
HE' Y p=0 H': (| 20 20 2130, p) ~ N({@}Bs, + plye—1 — 7} _1B=,_,)},02)

3
H(()H): £=0 Hgn): (yt|%,zt,2t—1;0,f) ~ N (:I:Qﬁmai [1 + o2
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Appendix J

Garcia test (1.1975-12.2004)
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Table J.1: Distribution of Garcia’s SupC statistics: DAX30 (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.95 1.87 1.85 3.49 3.48 4.93
) 2.54 2.49 2.47 4.39 4.34 5.97
10 2.95 2.91 291 4.99 4.91 6.67
15 3.29 3.25 3.27 5.37 5.35 7.23
20 3.58 3.54 3.58 5.74 5.73 7.64
25 3.86 3.82 3.88 6.08 6.06 8.02
30 4.13 4.09 4.13 6.41 6.39 8.38
35 4.39 4.36 4.40 6.73 6.71 8.73
40 4.66 4.63 4.65 7.04 7.01 9.08
45 4.96 4.91 4.92 7.38 7.34 9.44
50 5.24 5.20 5.19 7.70 7.69 9.83
55 5.55 5.01 5.51 8.07 8.05 10.23
60 5.85 5.83 5.85 8.41 8.40 10.67
65 6.23 6.22 6.20 8.83 8.80 11.12
70 6.63 6.62 6.59 9.30 9.26 11.54
(0] 7.09 7.05 7.07 9.84 9.74 12.10
80 7.66 7.59 7.64 10.45 10.28 12.76
85 8.35 8.36 8.33 11.27 10.94 13.60
90 9.31 9.25 9.22 12.35 12.03 14.69
95 10.98 10.67 10.79 14.01 13.64 16.41
99 14.39 13.97 14.66 17.65 17.18 20.48

Note:

Simulated distributions ware conducted for specifications from table B.1 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.2: Distribution of Garcia’s SupC statistics: REXP(10%)-
DAX30(90%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.88 1.90 1.91 3.55 3.45 4.85
) 2.55 2.53 2.57 4.41 4.36 6.00
10 2.96 2.95 2.97 4.98 4.94 6.67
15 3.29 3.26 3.31 5.39 5.38 7.19
20 3.56 3.55 3.61 5.77 5.74 7.62
25 3.84 3.83 3.88 6.12 6.13 8.03
30 4.08 4.11 4.17 6.40 6.44 8.40
35 4.33 4.37 4.43 6.72 6.77 8.76
40 4.60 4.63 4.69 7.04 7.10 9.12
45 4.89 4.91 4.97 7.35 7.41 9.47
50 5.19 5.19 5.25 7.67 7.76 9.83
95 5.51 5.52 5.55 8.02 8.12 10.21
60 5.82 5.86 5.87 8.36 8.49 10.64
65 6.20 6.20 6.23 8.80 8.91 11.12
70 6.59 6.58 6.64 9.21 9.33 11.57
75 7.05 7.01 7.11 9.72 9.88 12.15
80 7.57 7.57 7.66 10.36 10.47 12.82
85 8.29 8.28 8.36 11.11 11.26 13.60
90 9.22 9.16 9.27 12.07 12.25 14.64
95 10.74 10.64 10.76 13.65 14.05 16.47
99 14.55 14.12 14.39 17.58 17.81 20.59

Note:

Simulated distributions ware conducted for specifications from table B.2 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.3: Distribution of Garcia’s SupC statistics: REXP(20%)-
DAX30(80%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.91 1.86 1.94 3.50 3.48 4.91
) 2.56 2.53 2.55 4.36 4.35 6.01
10 3.00 2.98 2.96 4.97 4.95 6.66
15 3.33 3.30 3.29 5.39 5.40 7.16
20 3.61 3.60 3.60 5.76 5.75 7.59
25 3.86 3.87 3.87 6.07 6.10 7.95
30 4.13 4.12 4.11 6.39 6.41 8.34
35 4.41 4.37 4.37 6.71 6.73 8.69
40 4.67 4.64 4.65 7.03 7.06 9.04
45 4.95 4.90 4.92 7.38 7.39 9.44
50 5.24 5.17 5.21 7.71 7.75 9.78
55 5.53 5.48 5.49 8.07 8.09 10.19
60 5.84 5.80 5.82 8.45 8.46 10.59
65 6.19 6.16 6.14 8.83 8.88 11.02
70 6.64 6.57 6.55 9.26 9.31 11.50
75 7.08 7.02 6.99 9.80 9.82 12.02
80 7.60 7.57 7.56 10.46 10.41 12.69
85 8.32 8.21 8.25 11.17 11.20 13.45
90 9.26 9.18 9.12 12.23 12.20 14.56
95 10.84 10.76 10.60 13.91 13.82 16.28
99 14.09 14.08 14.00 17.65 17.43 19.99

Note:

Simulated distributions ware conducted for specifications from table B.3 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.4: Distribution of Garcia’s SupC statistics: REXP(25%)-
DAX30(75%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.87 1.90 1.91 3.54 3.43 4.97
) 2.52 2.51 2.51 4.40 4.39 5.98
10 2.95 2.96 2.95 4.94 4.96 6.65
15 3.29 3.30 3.28 5.37 5.37 7.18
20 3.56 3.60 3.58 5.74 5.76 7.61
25 3.86 3.88 3.87 6.10 6.09 8.03
30 4.11 4.14 4.14 6.42 6.43 8.39
35 4.35 4.41 4.41 6.74 6.76 8.78
40 4.62 4.66 4.66 7.06 7.09 9.13
45 4.87 4.92 4.94 7.40 7.45 9.47
50 5.16 5.23 5.22 7.71 7.80 9.85
55 5.47 5.54 5.51 8.08 8.13 10.25
60 5.81 5.85 5.87 8.45 8.52 10.65
65 6.17 6.19 6.22 8.89 8.89 11.08
70 6.56 6.56 6.63 9.35 9.34 11.59
75 7.02 7.02 7.08 9.86 9.88 12.10
80 7.57 7.57 7.62 10.46 10.51 12.73
85 8.23 8.25 8.31 11.24 11.26 13.53
90 9.16 9.15 9.29 12.26 12.29 14.59
95 10.76 10.70 10.77 14.03 13.93 16.19
99 14.31 14.48 14.31 17.70 17.51 19.87

Note:

Simulated distributions ware conducted for specifications from table B.4 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.

393



Table J.5: Distribution of Garcia’s SupC statistics: REXP(30%)-
DAX30(70%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.90 1.90 1.90 3.50 3.54 4.94
) 2.53 2.54 2.50 4.41 4.40 6.01
10 2.94 2.97 2.95 4.95 4.95 6.67
15 3.30 3.30 3.27 5.37 5.39 7.20
20 3.58 3.59 3.58 5.75 5.78 7.65
25 3.87 3.86 3.84 6.12 6.15 8.03
30 4.12 4.12 4.12 6.43 6.47 8.42
35 4.37 4.39 4.36 6.77 6.81 8.76
40 4.63 4.63 4.63 7.13 7.13 9.10
45 4.89 4.92 4.88 7.47 7.48 9.48
50 5.17 5.21 5.16 7.83 7.82 9.88
55 5.44 5.52 5.47 8.18 8.16 10.27
60 5.75 5.83 5.80 8.54 8.52 10.69
65 6.12 6.16 6.16 8.94 8.94 11.13
70 6.55 6.56 6.54 9.40 9.38 11.62
75 7.00 7.03 6.95 9.94 9.89 12.16
80 7.51 7.61 7.47 10.59 10.49 12.82
85 8.18 8.24 8.16 11.34 11.26 13.57
90 9.07 9.15 9.10 12.37 12.30 14.71
95 10.65 10.75 10.60 14.08 14.08 16.55
99 14.26 14.09 13.97 17.69 17.67 20.28

Note:

Simulated distributions ware conducted for specifications from table B.5 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.6: Distribution of Garcia’s SupC statistics: REXP(40%)-
DAX30(60%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.91 1.97 1.91 3.41 3.51 4.89
) 2.51 2.54 2.51 4.36 4.41 6.01
10 2.95 2.94 2.95 4.93 5.01 6.69
15 3.30 3.28 3.28 5.37 5.46 7.18
20 3.58 3.55 3.58 5.77 5.82 7.59
25 3.86 3.82 3.87 6.10 6.16 7.99
30 4.14 4.12 4.14 6.45 6.51 8.36
35 4.38 4.37 4.39 6.79 6.83 8.69
40 4.65 4.63 4.65 7.09 7.13 9.04
45 4.91 4.91 4.93 7.43 7.45 9.41
50 5.19 5.21 5.21 7.77 7.79 9.79
95 5.53 5.50 5.52 8.14 8.15 10.19
60 5.87 5.81 5.86 8.49 8.53 10.60
65 6.23 6.15 6.20 8.89 8.94 11.04
70 6.64 6.54 6.58 9.32 9.39 11.55
75 7.10 6.98 7.00 9.81 9.85 12.11
80 7.64 7.58 7.54 10.44 10.42 12.76
85 8.29 8.23 8.27 11.21 11.13 13.56
90 9.23 9.15 9.23 12.21 12.10 14.66
95 10.70 10.66 10.77 13.94 13.82 16.58
99 14.37 14.14 13.96 17.57 17.36 20.16

Note:

Simulated distributions ware conducted for specifications from table B.6 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.7: Distribution of Garcia’s SupC statistics: ~REXP(50%)-
DAX30(50%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.92 1.95 1.88 3.53 3.47 4.93
) 2.53 2.54 2.54 4.42 4.36 6.07
10 2.97 2.99 2.95 4.98 4.92 6.75
15 3.28 3.33 3.28 5.41 5.36 7.24
20 3.55 3.60 3.56 5.81 5.74 7.65
25 3.83 3.88 3.85 6.14 6.11 8.06
30 4.11 4.15 4.12 6.46 6.45 8.41
35 4.39 4.41 4.39 6.78 6.76 8.72
40 4.65 4.67 4.65 7.13 7.08 9.08
45 4.93 4.94 4.92 7.47 7.41 9.46
o0 0.22 5.22 0.22 7.80 7.74 9.82
55 5.52 5.54 5.53 8.15 8.08 10.18
60 5.84 5.86 5.87 8.93 8.44 10.60
65 6.20 6.19 6.24 8.90 8.83 11.04
70 6.60 6.56 6.63 9.34 9.29 11.56
75 7.09 6.99 7.06 9.87 9.80 12.12
80 7.63 7.57 7.59 10.47 10.35 12.77
85 8.30 8.23 8.23 11.21 11.11 13.53
90 9.23 9.15 9.13 12.22 12.20 14.67
95 10.68 10.69 10.67 13.74 13.81 16.59
99 14.29 14.28 14.28 17.61 17.18 20.56

Note:

Simulated distributions ware conducted for specifications from table B.7 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.8: Distribution of Garcia’s SupC statistics: REXP(60%)-
DAX30(40%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.89 1.92 1.94 3.43 3.60 5.00
) 2.50 2.52 2.55 4.39 4.38 6.03
10 2.94 2.93 2.99 4.95 4.96 6.72
15 3.27 3.28 3.32 5.37 5.38 7.21
20 3.58 3.58 3.63 5.76 5.74 7.62
25 3.87 3.89 3.91 6.09 6.08 8.01
30 4.15 4.15 4.18 6.44 6.40 8.39
35 4.43 4.40 4.42 6.77 6.73 8.76
40 4.68 4.67 4.67 7.11 7.04 9.11
45 4.95 4.95 4.93 7.47 7.36 9.47
50 5.25 5.24 5.21 7.79 7.70 9.84
55 5.53 5.54 5.51 8.13 8.08 10.23
60 5.85 5.86 5.84 8.54 8.43 10.62
65 6.20 6.22 6.18 8.94 8.87 11.07
70 6.61 6.63 6.57 9.37 9.33 11.53
75 7.10 7.09 7.05 9.85 9.85 12.07
80 7.61 7.64 7.62 10.47 10.45 12.71
85 8.27 8.31 8.28 11.22 11.18 13.55
90 9.20 9.13 9.15 12.20 12.22 14.65
95 10.79 10.74 10.77 13.86 13.71 16.29
99 14.17 14.18 14.35 17.48 17.35 20.31

Note:

Simulated distributions ware conducted for specifications from table B.8 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.9: Distribution of Garcia’s SupC statistics: REXP(70%)-
DAX30(30%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.90 1.88 1.91 3.53 3.54 4.90
) 2.52 2.53 2.55 4.39 4.37 5.99
10 2.94 2.97 2.98 5.00 4.96 6.68
15 3.29 3.30 3.31 5.42 5.36 7.19
20 3.58 3.59 3.61 5.78 5.76 7.65
25 3.85 3.84 3.89 6.11 6.12 8.05
30 4.13 4.11 4.15 6.44 6.43 8.42
35 4.39 4.37 4.42 6.77 6.75 8.79
40 4.68 4.63 4.70 7.11 7.08 9.15
45 4.95 4.92 4.99 7.45 7.40 9.51
50 5.25 5.19 5.27 7.79 7.77 9.87
55 5.52 5.47 5.58 8.16 8.10 10.27
60 5.85 5.79 5.87 8.93 8.50 10.69
65 6.22 6.12 6.22 8.95 8.91 11.13
70 6.62 6.52 6.61 9.37 9.31 11.61
75 7.09 6.99 7.05 9.89 9.82 12.17
80 7.64 7.49 7.56 10.50 10.42 12.80
85 8.30 8.18 8.24 11.23 11.20 13.59
90 9.25 9.13 9.21 12.23 12.17 14.70
95 10.75 10.68 10.71 13.98 13.76 16.44
99 14.58 14.38 13.90 17.73 17.12 20.41

Note:

Simulated distributions ware conducted for specifications from table B.9 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.10:  Distribution of Garcia’s SupC statistics: REXP(75%)-
DAX30(25%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.89 1.87 1.91 3.53 3.41 4.87
) 2.53 2.53 2.54 4.38 4.32 6.02
10 2.95 2.95 2.97 4.93 4.92 6.69
15 3.29 3.28 3.31 5.36 5.37 7.19
20 3.59 3.58 3.60 5.71 5.74 7.62
25 3.88 3.83 3.89 6.07 6.08 7.99
30 4.17 4.08 4.15 6.40 6.42 8.33
35 4.43 4.36 4.43 6.70 6.73 8.71
40 4.70 4.62 4.70 7.01 7.06 9.08
45 4.95 4.89 4.99 7.33 7.40 9.46
50 5.24 5.19 5.27 7.68 7.74 9.84
55 5.54 5.01 5.58 8.08 8.10 10.21
60 5.85 5.82 5.90 8.46 8.44 10.61
65 6.23 6.18 6.23 8.84 8.86 11.06
70 6.64 6.60 6.61 9.31 9.28 11.53
75 7.10 7.05 7.06 9.77 9.77 12.10
80 7.61 7.60 7.58 10.39 10.41 12.76
85 8.28 8.30 8.26 11.15 11.13 13.55
90 9.26 9.22 9.15 12.19 12.12 14.56
95 10.71 10.75 10.68 13.93 13.75 16.43
99 14.16 14.13 13.77 17.54 17.61 19.78

Note:

Simulated distributions ware conducted for specifications from table B.10 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.11: Distribution of Garcia’s SupC statistics: REXP(80%)-
DAX30(20%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.90 1.90 1.86 3.52 3.47 4.88
) 2.52 2.53 2.53 4.39 4.35 5.99
10 2.97 2.96 2.94 4.99 4.94 6.65
15 3.30 3.31 3.28 5.43 5.39 7.14
20 3.60 3.59 3.56 5.79 5.76 7.57
25 3.86 3.85 3.84 6.15 6.11 7.98
30 4.12 4.10 4.11 6.44 6.44 8.34
35 4.38 4.37 4.36 6.75 6.76 8.70
40 4.66 4.63 4.63 7.06 7.11 9.06
45 4.93 4.91 4.91 7.38 7.41 9.42
50 5.22 5.20 5.19 7.71 7.77 9.79
55 5.51 5.50 5.51 8.06 8.15 10.15
60 5.83 5.82 5.82 8.46 8.52 10.57
65 6.20 6.20 6.14 8.84 8.94 11.01
70 6.59 6.58 6.54 9.28 9.37 11.50
75 7.09 7.03 6.98 9.76 9.89 12.07
80 7.63 7.55 7.50 10.39 10.45 12.71
85 8.35 8.24 8.18 11.14 11.22 13.54
90 9.24 9.19 9.12 12.17 12.21 14.67
95 10.76 10.73 10.71 13.93 13.80 16.49
99 13.96 14.11 13.98 17.63 17.71 20.51

Note:

Simulated distributions ware conducted for specifications from table B.11 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.12: Distribution of Garcia’s SupC statistics: REXP(90%)-
DAX30(10%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.89 1.94 1.86 3.45 3.58 4.95
) 2.53 2.55 2.53 4.36 4.38 5.98
10 2.94 2.97 2.95 4.94 4.95 6.69
15 3.28 3.31 3.32 5.42 5.39 7.18
20 3.56 3.59 3.60 5.78 5.76 7.66
25 3.84 3.88 3.87 6.11 6.11 8.04
30 4.10 4.14 4.13 6.46 6.46 8.42
35 4.36 4.39 4.40 6.79 6.78 8.82
40 4.62 4.63 4.66 7.10 7.11 9.18
45 4.89 4.91 4.93 7.43 7.40 9.54
50 5.17 5.19 5.21 7.76 7.70 9.91
55 5.47 5.49 5.52 8.13 8.05 10.31
60 5.80 5.82 5.87 8.50 8.44 10.75
65 6.14 6.14 6.21 8.88 8.87 11.17
70 6.56 6.54 6.61 9.30 9.32 11.64
75 7.00 6.97 7.05 9.83 9.86 12.17
80 7.53 7.46 7.59 10.47 10.44 12.85
85 8.21 8.16 8.26 11.23 11.22 13.70
90 9.13 9.07 9.16 12.25 12.27 14.80
95 10.61 10.59 10.76 13.85 13.98 16.58
99 14.01 14.05 13.97 17.85 17.38 20.00

Note:

Simulated distributions ware conducted for specifications from table B.12 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.13: Distribution of Garcia’s SupC statistics: REXP (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) | AR(0) AR(1) | AR(0) AR(1)
1 1.85 1.91 1.88 3.48 3.45 4.90
) 2.47 2.56 2.54 4.42 4.37 6.04
10 2.93 2.97 2.96 4.99 4.96 6.68
15 3.25 3.32 3.27 0.41 5.41 7.18
20 3.54 3.59 3.58 5.77 5.78 7.60
25 3.82 3.87 3.84 6.15 6.12 7.99
30 4.09 4.15 4.10 6.50 6.46 8.38
35 4.38 4.41 4.39 6.80 6.77 8.74
40 4.64 4.68 4.65 7.11 7.09 9.08
45 4.93 4.95 4.91 7.42 7.45 9.46
50 5.22 5.24 5.19 7.79 7.77 9.80
95 5.53 5.54 5.47 8.17 8.14 10.22
60 5.85 5.85 5.79 8.93 8.49 10.65
65 6.22 6.17 6.18 8.95 8.92 11.14
70 6.58 6.56 6.57 9.41 9.36 11.62
(0] 7.05 7.03 7.02 9.96 9.89 12.19
80 7.58 7.56 7.55 10.58 10.48 12.88
85 8.28 8.28 8.18 11.30 11.27 13.66
90 9.28 9.17 9.13 12.30 12.26 14.73
95 10.80 10.59 10.63 13.99 13.80 16.38
99 14.20 14.29 14.17 18.09 17.51 19.93

Note:

Simulated distributions ware conducted for specifications from table B.13 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Appendix K

Impact of the guarantee level

on the guarantee risk
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Figure K.1: Impact of the guarantee level on risk measures (pure bond port-

folio)
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The figure depicts the impact of the guarantee level on the normalized guarantee cost using
the example of the pure stock (to left panel), the fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel). The cost is computed for the MS(1-2) model
under the Esscher probability measure. The thin dashed line represents the guarantee of
-2% p.a., the thick dashed line — 0% p.a., the thin solid line — 2% p.a., and the thick solid

line — 4% p.a., respectively.



Figure K.2: Impact of the guarantee level on risk measures (50%-50% stock-

bond portfolio)
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The figure depicts the impact of the guarantee level on the normalized guarantee cost using
the example of the pure stock (to left panel), the fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel). The cost is computed for the MS(1-2) model
under the Esscher probability measure. The thin dashed line represents the guarantee of
-2% p.a., the thick dashed line — 0% p.a., the thin solid line — 2% p.a., and the thick solid

line — 4% p.a., respectively.
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Figure K.3: Impact of the guarantee level on risk measures (pure stock port-
folio)
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Note:

The figure depicts the impact of the guarantee level on the normalized guarantee cost using
the example of the pure stock (to left panel), the fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel). The cost is computed for the MS(1-2) model
under the Esscher probability measure. The thin dashed line represents the guarantee of
-2% p.a., the thick dashed line — 0% p.a., the thin solid line — 2% p.a., and the thick solid
line — 4% p.a., respectively.
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Figure K.4: Sensitivity of risk measures to changes in the guarantee level

(pure bond portfolio)
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Note:

The figure depicts the sensitivity of the normalized cost to the change of the guarantee
level using the example of the pure stock (to left panel), the fifty-fifty stock-bond (top
right panel), and the pure bond portfolio (bottom panel). The cost is computed for the
MS(1-2) model under the Esscher probability measure. The thin dashed line represents
the guarantee increase from -2% to 0% p.a., the thick dashed line — from 0% to 2% p.a.,
and the solid line — from 2% to 4% p.a., respectively.
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Figure K.5: Sensitivity of risk measures to changes in the guarantee level

(50%-50% stock-bond portfolio)
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The figure depicts the sensitivity of the normalized cost to the change of the guarantee
level using the example of the pure stock (to left panel), the fifty-fifty stock-bond (top
right panel), and the pure bond portfolio (bottom panel). The cost is computed for the
MS(1-2) model under the Esscher probability measure. The thin dashed line represents
the guarantee increase from -2% to 0% p.a., the thick dashed line — from 0% to 2% p.a.,
and the solid line — from 2% to 4% p.a., respectively.
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Figure K.6: Sensitivity of risk measures to changes in the guarantee level
(pure stock portfolio)
Shortfall probability Normalized shortfall expected value
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Note:

The figure depicts the sensitivity of the normalized cost to the change of the guarantee
level using the example of the pure stock (to left panel), the fifty-fifty stock-bond (top
right panel), and the pure bond portfolio (bottom panel). The cost is computed for the
MS(1-2) model under the Esscher probability measure. The thin dashed line represents
the guarantee increase from -2% to 0% p.a., the thick dashed line — from 0% to 2% p.a.,
and the solid line — from 2% to 4% p.a., respectively.
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Appendix L

Impact of time and the contract
term on the guarantee shortfall

risk (life-cycle strategies)
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Figure L.1: Impact of time and the contract term on the shortfall probability

(life-cycle strategies)
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continued from the previous page
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The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line — for a 20-year contract, and the thin solid line — for
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a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Figure L.2: Impact of time and the contract term on the normalized shortfall

expectation (life-cycle strategies)
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continued from the previous page
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Note:

The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line — for a 20-year contract, and the thin solid line — for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.

415



Figure L.3: Impact of time and the contract term on the normalized shortfall

standard deviation (life-cycle strategies)
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continued from the previous page

Naive strategy

naive strategy, g=07%, periodic contribution naive strategy, g=4%, periodic contribution
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The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line — for a 20-year contract, and the thin solid line — for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Figure L.4: Impact of time and the contract term on the normalized mean
excess loss (life-cycle strategies)

Norm. shortfall expected value (7%) Norm. shortfall expected value (%)

Norm. shortfall expected value (7%)

Aggressive strategy

aggressive stroteqgy, g=07%, periodic contribution

<~
N
—— Norm. MEL over time (T=30)
ofl --- Norm. MEL over time (T=20) ]
N[l --- Norm. MEL over time (T=10)
—— Norm. MEL at maturity
ol + stocks(100%)—bonds(0%) 1
o~
wl
<
o
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term/Time (years)
Moderate
moderate strategy, g=07%, periodic contribution
0
B
—— Norm. MEL over time (T=30)
--- Norm. MEL over time (T=20)
Qi --- Norm. MEL over time (T=10) 1
—— Norm. MEL at maturity
+ stocks(100%)—bonds(0%)
ol o stocks(70%)—bonds(30%) ]
ol
ol
o
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

25

20

Contract term/Time (years)

Conservative

conservative strategy, g=07%, periodic contribution

—— Norm. MEL over time (T=30)

--- Norm. MEL over time (T=20)

--- Norm. MEL over time (T=10) 1
Norm. MEL at maturity

stocks(60%)—bonds(40%)
stocks(40%)—bonds(607)
stocks(20%)—bonds(80%)

8 10 12 14 16 18 20 22 24 26 28 30

Contract term/Time (years)

continued on the next page

Norm. shortfall expected value (%)

aggressive strategy, g=47, periodic contribution

Norm.
Norm. MEL
Norm. MEL

rm. MEI
stacks(10

MEL over time
over time

over time

(T=30)
(T=20)
(T=10)
at moturity

L
0%)—bonds(0%)

15 20 25 30 35 40

10

6 8 10 12 14 16 18 20 22 24 26 28 30

Contract term/Time (years)

strategy

Norm. shortfall expected value (7)

Norm. mean excess loss (%)

418

15 20 25 30 35 40

10

5

moderate strateqgy, g=47%, periodic contribution
o
<
Norm. MEL over time (T=30)
3 Norm. MEL over time (T=20) q
Norm. MEL over time (T=10)
o Norm. MEL at maturity |
M+ stocks(100%) —bonds(0%)
alle stocks(70%)—bonds(30%)
0 1
+ 4+
R
=18 P |
5
oL [S) 1
= 0c000®
_000°°°
ol A
wl
o

6 8 10 12 14 16 18 20 22 24 26 28 30

Contract term/Time (years)

strategy

conservative strateqy, g=47%, periodic contribution

Norm. MEL over time (T=30)
- -~ Norm. MEL over time (T=20) 1
- == Norm. MEL over time (T=10)

- MEL ot maturity

stocks(60%) —bonds(40%)
stocks(40% —bonds(so;)
stocks(207) - bonds(80%)

ooomooooooooog
gooood
goo

/_ZAAAAAAAAA N

—-==-®

4 6 8 10 12 14 16 18 20 22 24 26 28 30

Contract term/Time (years)



continued from the previous page

Naive strategy

naive strategy, g=07%, periodic contribution naive strategy, g=47%, periodic contribution
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Note:

The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line — for a 20-year contract, and the thin solid line — for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Figure L.5: Impact of time and the contract term on the normalized condi-
tional shortfall standard deviation (life-cycle strategies)
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Note:

The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line — for a 20-year contract, and the thin solid line — for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Appendix M

Impact of the contribution
payment scheme on the
guarantee shortfall risk

(life-cycle strategies)
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Figure M.1: Impact of the contribution payment scheme on the shortfall

probability (life-cycle strategies)
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continued from the previous page

Naive strategy
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The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (€1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis — the normalized

guarantee cost in per cent.
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Figure M.2: Impact of the contribution payment scheme on the normalized

shortfall expectation (life-cycle strategies)
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Note:

The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (€1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis — the normalized
guarantee cost in per cent.
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Figure M.3: Impact of the contribution payment scheme on the normalized

shortfall standard deviation (life-cycle

strategies)
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The figure depicts the impact of the payment scheme on the normalized guarantee cost

using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (€1200 up-font yearly) and the dashed line the single premium case. The single

premium is equal to the net present value of periodic contributions. The left column

shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.

The x-axis shows the time/contract maturity in years and the y-axis — the normalized

guarantee cost in per cent.
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Figure M.4: Impact of the contribution payment scheme on the normalized

mean excess loss (life-cycle strategies)
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Note:

The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (€1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis — the normalized
guarantee cost in per cent.
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Figure M.5: Impact of the contribution payment scheme on the normalized

conditional shortfall standard deviation (life-cycle strategies)
Aggressive strategy

aggressive strotegy, g=07 aggressive strotegy, g=47
o o
< o - —
--- Single contribution --- Single contribution
—— Periodic contribution g —— Periodic contribution ]
g g
—~ 3l ] —~ ol ]
=R = ®
o o
= =
c s 8l
< = < _
- 3 ] -2t
£ £
S S
= = ol
I3
o o
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term (years) Contract term (years)

Moderate strategy

moderate strategy, g=4%

120

--- Single contribution
—— Periodic contribution

100

80

Norm. V/(CLPM,). (%)
40 6‘

20

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term (years)

Conservative strategy

conservative strategy, g=4%

120

--- Single contribution
—— Periodic contribution _-

100

80

Norm. V/(CLPM,). (%)
40 6‘0

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Contract term (years)

continued on the next page

430



continued from the previous page
Naive strategy

naive strategy, g=4%
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Note:

The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (€1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis — the normalized
guarantee cost in per cent.
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