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Chapter 1

Introduction

The demographic aging process has turned into a serious problem for numer-

ous societies over the past decades. As a result, retirement products, such as

individual saving plans, in which contributions are invested in the financial

markets, are becoming increasingly popular. By purchasing such products,

people hope to participate in the return chances of the financial markets.

However, the risk that the investment fails to cover the planned life standard

in the old age can also be considerable. One of the main goals of saving

for retirement is to make up for the loss of income in old age. Achieving

this goal can easily be threatened if the stock market crashes shortly before

retirement, thereby destroying a great amount of ones savings. In such a

scenario, a retiree’s future financial well-being is seriously jeopardized. In or-

der to protect the contribution payers against this risk, the modern pension

frames include embedded guarantees.

The design of investment guarantees varies according to country. Gener-

ally speaking, we can distinguish between deterministic and stochastic guar-

antees on the one hand, and between maturity guarantees and multi-period

guarantees on the other hand. A provider of a deterministic guarantee assures
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his clients that the investment portfolio will yield at least an ex-ante defined

rate of return. Deterministic guarantees are embedded, for instance, in the

German state-subsidized retirement investment plans established in 2001 by

the Retirement Savings Act (Altersvermögensgesetz), called “Riester con-

tracts”. In these contracts, the provider guarantees that, at maturity, the

contributor will receive at least the sum of the premiums paid throughout

the duration of the contract. This corresponds to a guaranteed return of

0% p.a. The provider of a stochastic guarantee, in contrast, has to achieve

a return of an ex-ante defined stochastic index. Stochastic guarantees are

used, e.g., in Brazil where there exist products with a guaranteed return of

6% above inflation. A special case of a stochastic guarantee is when the in-

dex is market based. For instance, in the Polish second pillar pension saving

accounts, the index is related to the weighted average return of all funds

operating in the second pillar, computed on a three-year basis. At the end

of each quarter the savings account has to yield the lower of the two indexes:

half of the weighted average return or the weighted average return minus 4%.

An overview of current guarantee schemes can be found in Table 1.1.

In a maturity guarantee, the return of the personal account has to be

higher or equal to the guaranteed return only at the expiration date of the

contract. Otherwise, the guarantee provider is obliged to cover the difference

between the guaranteed and the realized return. However, if at any point in

time before the contract expires, the cumulated return would be lower than

the cumulated guarantee return, but exceeded the guaranteed return at the

time of contract expiration, the provider does not have to pay anything. An

example for such a guarantee is the aforementioned German Riester contract.

In the case of a multi-period guarantee, the guaranteed return has to be

realized at the end of each sub-period. One example for this is the Polish

2



Table 1.1: Overview of guarantee schemes

Country Guarantee
Argentina min[70%Mav; Mav − 2%]
Belgium 3.25% on employers’ contributions

3.75% on employees’ conttribution
Brazil I + 6%
Chile min[50%Mav; Mav − 2%]
Colombia min[Mav; rRP ]
El Salvador min[50%Mav; Mav − 2%]
Germany 0%
Italy DB

Japan 0%
New Zealand 4%
Malaysia 2.5%
Peru min[50%Mav; Mav − 2%]
Poland min[50%Mav; Mav − 4%]
United Kingdom DB

Uruguay 2% (public pension plans)
min[50%Mav; Mav − 2%] (private pension plans)

Note:
This table shows investment guarantees embedded in individual pension accounts using
the example of certain chosen countries. Mav denotes the average rate of return of all
pension plans in this market segment, rRP – the rate of return of a reference portfolio, I

- the inflation rate, DB – the benefit of a defined benefit plan, respectively.
Sources: Fischer (1998, p. 3-4), Pennacchi (1999, p. 222, 224-225), Sin (2002, p. 13),
Turner and Rajnes (2003, p. 255-259), Lachance and Mitchell (2003, p. 160)

second pillar pension funds.

The aim of this thesis is to analyze deterministic maturity guarantees

embedded in individual pension products, regardless of the legal definition,

i.e., regardless of whether these products are obligatory or voluntary, whether

they are provided by the state or by private pension companies. In particular,

we focus on four issues: guarantee pricing, shortfall risk analysis, solvency re-

quirements, and expected return. Other risk sources, such as mortality, early

contract cancelation, or problems as hedging are left for further research.

Even though there is a comprehensive literature dealing with guarantees
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embedded in both unit-linked and with-profit life insurance products, be-

ginning with the seminal work of Brennan and Schwartz (1976, 1979a) and

Boyle and Schwartz (1977), who applied the option pricing theory of Black

and Scholes (1973) and Merton (1973) to price equity-linked life insurance

with asset value guarantees. However, literature addressing guarantees em-

bedded in pension plans is still rare. Fischer (1999) proposed a lattice model

to price guarantees embedded in Colombian pension plans. In this guar-

antee the owner of the pension plan has the right to receive the lower of

two values: the average return of pension plans on the Colombian market

or the return of a benchmark portfolio. Pennacchi (1999) priced investment

guarantees in both public and private pension funds available in Uruguay.

In the first case, a return of 2% p.a. is guaranteed, in the second case, the

guarantee is the lower of the two values: half of the average return of all pen-

sions funds available in this market or the average return of pension plans

minus 2%. Bacinello (1997) priced an option to switch from the defined-

benefit retirement plan to the defined-contribution retirement plan embed-

ded in the Italian pension plans. Bacinello (2000) extended the model with

the option of switching from the defined-contribution to the defined-benefit

system. Lachance and Mitchell (2003) studied a similar problem. They price

an option to return from the defined-contribution to defined-benefit system

as, introduced in Florida, USA.

Gründl, Nietert, and Schmeiser (2004) priced guarantees embedded in

German Riester contracts. Kling, Russ, and Schmeiser (2006) extended this

model with the possibility of canceling the contract: the purchaser of the

Riester product can cancel the contract and retain the guarantee. In an

extreme case, he can pay the first contribution and then cancel the contract.

This procedure can be repeated in each period, in order to maximize the
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value of the guarantee.

Maurer and Schlag (2003) and Gründl, Nietert, and Schmeiser (2004)

discussed the shortfall risk associated with the Riester contract. They ap-

ply lower partial moments and the mean excess loss to quantify this risk.

Furthermore, they analyze solvency rules and find them inadequate.

All of above mentioned papers (with the exception of Fischer (1999) who

uses a binomial distribution) assume that the log-returns of the risky port-

folio, which backs the guarantee, are normally distributed

yt =

(
μ− 1

2
σ2

)
+ εt, εt ∼ N(0, σ2). (1.1)

However, a simple long-run observation of the time series shows that such

an assumption is questionable. One simply has to recall e.g. the (drastic)

collapse of the stock prices during the oil crises of the 1970s, the black October

of 1987, the displosion of the New Economy bubble in 2000, or the current

subprime crisis. A brief look at the development of the German stock market

(see Figure 1.1) shows that in the period from 2000 to 2003 the drift was

negative, while in the period from 1995 to 1999, the drift was positive.

This shows that the parameters for the bear and the bull market could

be estimated separately. The model (1.1) would look then as follows

yt =

⎧⎪⎨⎪⎩
(
μbear − 1

2
σ2

bear

)
+ εt,bear, εt,bear ∼ N(0, σ2

bear), for t ∈ BEAR(
μbull − 1

2
σ2

bull

)
+ εt,bull, εt,bull ∼ N(0, σ2

bull), for t ∈ BULL

(1.2)

with BEAR = {t : μ(t) < 0} and BULL = {t : μ(t) > 0}.

yt =

(
μ(Zt = j) − 1

2
σ2(Zt = j)

)
+εt, εt ∼ N(0, σ2(Zt = j)), j = 1, . . . , K

(1.3)

pji = Pr[Zt = j|Zt−1 = i], 0 ≤ pji ≤ 1, ∀i, j = 1, . . . , K (1.4)
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Figure 1.1: Monthly DAX30 and its log-returns: 1975-2004

Note:
The top panel depicts the DAX30 on a logarithmic scale.The bottom panel presents the
log-returns of DAX30. The dashed lines show the one standard deviation from the mean
bound.

where μ(Zt = j) and σ2(Zt = j) denote the drift and the diffusion parameter,

respectively, depending on the j-th regime (j = 1, . . . , K), εt denotes the

innovation and pji denotes the transition probability to the j-th regime at

time t if the process was in the i-th regime in the previous period.

In this thesis, the Markov switching model will be used to describe the

stochastic behavior of returns of risky asset portfolios which back the invest-

ment guarantee. We have chosen this model as it is capable to capture the

widely observed non-normality (excess kurtosis) of financial return series 1

1See for example Haas et al. (2004).
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in contrast to the commonly used arithmetic Brownian motion, and is intu-

itively easy to interpret. Furthermore, it is a very parsimonious model with

respect to the number of parameters used, and, at the same time, allows

for many different specifications. To the best of our knowledge, it repre-

sents the first attempt at using a regime switching model (which especially

implies stochastic volatility model) in the literature dealing with guarantees

embedded in pension products.2

Using the Markov switching model, we have to address the fact that this

model implies the incompleteness of the underlying financial market. This

affects option pricing, since, in this situation, in an arbitrage-free market, the

equivalent martingale measures is not unique. The general consensus is that

the market “chooses” the “right” martingale measure. However, since the

guarantees discussed in this thesis are not traded on the market, their prices

cannot be observed. Thus, the guarantee provider has to make a suitable

choice regarding the equivalent probability measure based, among others, on

the grade of his risk aversion. We decided to choose the Esscher measure,

which is well known in the actuarial science. Reasons for this choice are

fourfold: (1) The process under the Esscher martingale measure Q remains

in the same class of models as the process under the real-word probability

measure P. (2) The option price reduces to the well-known Black and Scholes

(1973) formula for the case of one switching regime (i.e. K = 1). (3) The

Esscher transform approach is conform with maximizing the expected utility

with the constant risk aversion utility function u(x) = xγ

γ
(0 < γ < 1). (4)

The Esscher probability measure allows to price the uncertainty whether the

market is in a stable or a turbulent phase.

2We used this approach in our previous paper, see Piaskowski (2005). This thesis is an

extension of that work.
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Apart from pricing, risk management and solvency requirements are very

important issues. In this case, we follow the approach proposed by Maurer

and Schlag (2003), who use shortfall risk measures to quantify the risk asso-

ciated with investment guarantees. Additionally, we propose using the mean

excess loss to quantify solvency requirements for pension plans embedding

investment guarantees.

This thesis is organized as follows: Chapter 2 introduces stochastic models

used in finance with particular focus on the geometric Brownian motion with

Markov switching, which will be used in this thesis to describe the behavior

of the market prices of risky assets. Additionally, this Chapter shows how

to estimate the parameters of this model. Chapter 3 analyzes whether Ger-

man time series can be described with Markov switching models. As Markov

switching models violate the assumptions of standard tests for nested models

such as the likelihood ratio test or the Wald test, these tests cannot be used.

Instead, we use tests developed by Hamilton (1996) and Garcia (1998). Even

though these tests have been known for over a decade, most authors have used

the standard tests, due to their computational simplicity. The main findings

of this Chapter is that German financial time series are better described by

Markov switching models than by commonly used geometric Brownian mo-

tion and mean-reverting models. Chapter 4 shows how to price an investment

guarantee when the portfolio value follows the geometric Brownian motion

with Markov switching. The option pricing model is based on the Esscher

transform martingale measure developed by Gerber and Shiu (1994b) and

Webb (2003). Chapter 5 analyzes the shortfall risk of the guarantee with

respect to the shortfall risk measures: the shortfall probability, the shortfall

expected value, the shortfall standard deviation, the mean expected loss, and

the conditional shortfall standard deviation. Additionally, we propose using

8



the mean excess loss to quantify solvency capital requirements for investment

guarantees. Chapter 6 sums up the main results and provides a brief outlook

for further research.
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Part I

Stochastic Model
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Chapter 2

Stochastic models in finance

This Chapter introduces the basic Markov switching model which is fun-

damental for this dissertation. Before this some stylized facts regarding fi-

nancial time series will be presented in Section 2.1 and some mathematical

notation and definitions used in this thesis will be introduced in Section 2.2.

Section 2.3 defines Markov chains and discusses features of Markov chains

which will be used throughout this dissertation. Section 2.4 discusses some

common stochastic models used in finance. Section 2.6 introduces finite

mixtures of normal distributions. Section 2.7 defines the Markov switching

model and gives some examples. Section 2.8 shows how to estimate a switch-

ing regime model via the EM algorithm. Section 2.9 concludes the Chapter

by performing an empirical analysis on the basis of the Markov switching

models.

Sections 2.2-2.6 are rather technical such that the reader can skip them

and go directly to definition of the Markov switching model if he is not

interested in the technical details.
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Table 2.1: Most extreme log-returns of DAX30 in 1975-2004

Date Return Deviation Probability Frequency
(as r−μ

σ ) (×10−6) (in years)
28/09/2001 -0.1859 -3.2328 612.81 136
31/08/1998 -0.1949 -3.3840 357.16 233
28/09/1990 -0.1994 -3.4606 269.46 309
30/10/1987 -0.2423 -4.1807 14.53 5,734
30/09/2002 -0.2933 -5.0381 0.24 354,503

Note:
The table depicts the five most extreme events. The third column shows by how many
standard deviations the returns are departed from the mean. The fourth column shows
the probability of such an event, if the normal density held. The fifth column shows how
often (in years) such an event would occurred, if the normal distribution held.

2.1 Stylized facts about financial time series

2.1.1 Asymmetry and leptokurtosis

The standard assumption used in finance is that the returns of financial time

series are independent, identical normals. However, there is some empirical

evidence contradicting this assumption. The first to address this issue was

Mandelbrot (1963), who studied daily and monthly prices of cotton traded

in New York from 1816 to 1940. He noticed that extreme events occur

much more frequently than is allowed by the normal distribution. In the

literature, this phenomenon is called fat tails or leptokurtosis.1 Another

prevalent observed phenomenon is the skewness of the financial time series.

Figure 2.1 presents the histogram of the monthly log-returns of DAX30 -

the German blue chip index - from January 1975 to December 2004. In this

period, the mean monthly return was equal to 0.0066 and its variance was

equal to 0.0035. The solid line represents the density of normal distribution

1The distribution of a random variable is called leptocurtic if it has a positive excess

kurtosis.
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Figure 2.1: Normal distribution vs. monthly log-returns of DAX30 (1975-

2004)

Note:
The figure shows the histogram of the monthly log-returns of DAX30. In the top right
corner the moments of the time series (μ - mean, σ2 - variance, γ - skewness, and κ - excess
kurtosis), the Jarque-Bera test statistic (JB) and its p value (pJB) are presented. The
solid line represents the normal density with parameters estimated form this time series
(μ and σ2). It is straightforward to see that the log-returns of DAX30 are left-skewed and
leptokurtic.

with these parameters. Evidently the log-returns of DAX30 are not normally

distributed. 52% of the probability mass is located to the right of the mean.

Moreover, the left tail is extraordinarily thick. Table 2.1 shows the five most

extreme events which occurred in these 30 years. If the log-returns were

normally distributed, the return of a figure equal or less than -18.59% in a

month would be lower then 0.6‰, which means that it occurred once every

136 years. However, this event has actually occured five times in a period

of 30 years. The most negative monthly return occurred in September 2002

and amounted to -29.33%. However, if the normal distribution held, the

loss of almost 30% in a month would occur once in 254,503 years (see Table

2.1). The observation that log-returns of DAX30 are not normally distributed
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can be confirmed by a glance at the skewness and kurtosis. The empirical

skewness of DAX30 returns amounts to -0.8175 and their excess kurtosis to

3.1546. According to the normal distribution, both values should equal zero.

Thus, the time series is left skewed and leptokurtic. As the Jarque-Bera

test statistic equals 189.37 and is significant at all commonly used confidence

levels, the assumption of normal distribution can thus be rejected (see Figure

2.1).

2.1.2 Conditional heteroskedasticity

Another observation made by Mandelbrot (1963) concerned the so-called

volatility clusters. This means that the volatility of time series is persistent

or in other words: large changes in the returns are followed by large changes,

low changes are followed by low changes. Clusters in the volatility are easily

discerned by studying the DAX30 returns plotted on the time line (see bot-

tom panel of Figure 1.1). Between 1976 and 2004, there were periods of small

amplitude i.e. from 1975 to 1985, when the German stock market stagnated,

from 1988 to 1989, and from 1991 to 1996, during a period a rapid growth

phase, in 2000 - at the begin of the New Economy crash, and in 2004, with

the market rebounding from the crash. This stands in contrast to the follow-

ing periods which were characterized by a high amplitude of stock returns:

in 1975, due to the increase the stock prices after the OPEC oil crisis; from

1986 to 1987, as a result of the market being in a turbulent phase which

ended with the black October of 1987; in 1990, when prices fell rapidly; from

1997 to 1999, when the dot-com bubble rose; from 2001 to 2002, during the

New Economy crash; and in 2003 - the first year of the subsequent growth

phase. As one can see the current volatility clearly depends on the past

volatility. This phenomenon is also called conditional heteroskedasticity. A
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lot of research has addressed this problem, see for instance the literature on

GARCH models beveloped by Engle (1982) and Bollerslev (1986).

2.1.3 Leverage effect

Black (1976) found that empirical data feature a negative correlation between

the returns and volatility, i.e. that in contrast to the positive returns, the

negative returns are followed by an increase in volatility. Black (1976) called

this phenomena a leverage effect. This stylized fact was addressed by sev-

eral econometric models. E.g., Nelson (1991) introduced the E-GARCH and

Zaköıan (1994) and Glosten, Jagannathan, and Runkle (1993) the T-GARCH

model.

2.1.4 Non-continuous trading

In financial literature, it is very often assumed that the development of pricees

is continuous over time. It would imply, for instance, that the volatility on

non-trading days should be equal to the volatility on trading days. French

and Roll (1986) have found that the hourly volatility of American stocks

was 70 times higher during trading time, compared to when the market was

closed.

2.1.5 Mean reversion

Mean reversion implies that the drift of the stochastic process is positive

when the last realization of the stochastic process is lower than its long-time

mean μ and negative, when the last realization of the stochastic process is

higher than its long-time mean μ. This implies that as the time horizon goes

to infinity (t→ ∞) a mean-reverting stochastic process yt converges towards
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its long-time mean μ (E[yt] → μ) (Brigo and Mercurio 2006, p. 59). This

phenomenon can be observed e.g. for interest rates and has the following

economic explanation. In a time of high interest rates, the demand for credit

declines, due to the high price of lending money. As a result, the rates decline

and the borrowers are more willing to obtain funds for new investments.

Consequently, the interest rates increase causing once again a slow-down of

the economy (Hull 2006, p. 651).

2.2 Mathematical preliminaries

Notation 2.1 Throughout the entire thesis, the following notation will be

used:

1. III – the identity matrix, i.e. a square matrix with ones on the diagonal

and zeros on all other entries,

2. ιιιi – the i-th column vector of the identity matrix,

3. EEE – a square matrix of ones,

4. 111 – a column vector of ones,

5. OOO – a square matrix of zeros,

6. 000 – a column vector of zeros,

7. IA – an indicator function defined as

IA =

⎧⎪⎨⎪⎩1 if A ∈ Ω

0 otherwise,

8. N = {0, 1, . . .} – the set of normal numbers (including 0),
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9. R – the set of real numbers,

10. PrP [A] – a probability of the event A with respect to the probability

measure P, if the index P is suppressed, then the probability measure

P is considered to be the “real world” probability measure,

11. EP [A] – an expected value of the event A with respect to the probability

measure P, if the index P is suppressed, then the probability measure

P is considered to be the “real world” probability measure.

In consideration of the fact that the term “stochastic process” will fre-

quently be referred to, a clarifying definition of this terminus would be ap-

propriate. Before we do so, we provide definitions of σ-algebra, measurable

space, probability measure, and probability space.

Definition 2.2 (σ-algebra) Let Ω be a given set and F be a family of sub-

sets of Ω with the following properties

(i) ∅ ∈ F ,

(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω\F (i.e. FC is the complement of F

in Ω),

(iii) A1, A2, · · · ∈ F ⇒ A :=
⋃∞

i=1Ai ∈ F .

Then F is called a σ-algebra F on Ω (Øksendal 2003, p. 7).

Definition 2.3 (Filtration) Let Ω be a given set and let T be a fixed pos-

itive number. Assume that for each t ∈ [0, T ] there exists a σ-algebra Ft

and that if s ≤ t, then every set in Fs is a σ-algebra Ft as well. Then the

collection of σ-algebras F is called a filtration (Shreve 2004, p. 51).
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Definition 2.4 (Measurable space) Let Ω be a set and F be a σ-algebra

then the pair (Ω,F) is called a measurable space (Øksendal 2003, p. 7).

Definition 2.5 (Probability measure) Let (Ω,F) be a measurable space

and let P be a function P : F → [0, 1] such that properties

(i) Pr[∅] = 0 and Pr[Ω] = 1,

(ii) If A1, A2, · · · ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai∩Aj = ∅ if i �= j) then

Pr [
⋃∞

i=1Ai] =
∑∞

i=1 Pr[Ai]

hold. Then P is called probability measure on the measurable space (Ω,F)

(Øksendal 2003, p. 8).

Definition 2.6 (Probability space) Let Ω be a given set, let F be a σ-

algebra and let P be a probability measure, then the triplet (Ω,F ,P) is called

a probability space (Øksendal 2003, p. 8).

Now we can define a stochastic process.

Definition 2.7 (Stochastic process) Let Xt be a (n dimensional) random

variable, then a parametrized collection of random variables

(Xt)t∈T

on a probability space (Ω,F ,P) assuming values in Rn is called a stochastic

process (Øksendal 2003, p. 10). T is a set of time points and will be chosen

as T = R+ ∪ {0} in the following.

Definition 2.8 (Measurable function) Let (Ω,F ,P) be a probability space

and let f : Ω → Rn. If for all open sets U ∈ Rn preimage f−1(U) ∈ F , then

function f is called F-measurable (Øksendal 2003, p. 10).
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Definition 2.9 (Adapted process) Let (Ft)t≥0 be a filtration on Ω and let

(Xt)t≥0 be a stochastic process. If for each t ≥ 0 stochastic variable Xt is Ft-

measurable, then the stochastic process (Xt)t≥0 is called Ft-adapted (Musiela

and Rutkowski 2007, p. 35)

2.3 Markov chains

2.3.1 Definition of the Markov chain

Markov chains are a powerful and very commonly used mathematical tool.

They can be applied to many fields of economics, such as insurance (birth-

death process), finance (random walk), logistics (queuing problem) or econo-

metrics (Markov chains Monte Carlo). In this Section, some properties of

discrete Markov chains will be discussed, which are relevant for the Markov

switching models defined in Section 2.7. Further discussion on discrete

Markov chains can be found in Cox and Miller (1965, Chapter 3), Kijima

(1997, Chapters 2-3), Norris (1997, Chapter 1), and Rolski et al. (1999,

Chapter 7). For a discussion of continuous time Markov chains, see Cox

and Miller (1965, Chapter 4-5), Kijima (1997, Chapter 4,), Norris (1997,

Chapter 2-3), and Rolski et al. (1999, Chapter 8). An applications-oriented

discussion is given in Anderson (1991).

Before providing a definition of the Markov chain, we will clarify the

definitions of the state space, the stochastic matrix and the stochastic vector.

Definition 2.10 (State space) Let K be a countable set, then it is called

a state space and all elements k ∈ K are called states (Norris 1997, p. 1).

Definition 2.11 (Stochastic matrix) Let PPP be a matrix and let pji be an

element of the matrix PPP . If all elements pji ≥ 0 and all rows of PPP sum to
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unity (i.e. P1P1P1 = 111), then the matrix PPP is called a stochastic matrix (Cox and

Miller 1965, p. 85).

Since the row elements of the stochastic matrix PPP sum to unity, they can

be interpreted as (in this case: conditional) probabilities.

Definition 2.12 (Transition probability) Let (Zt)t∈N be a stochastic pro-

cess with the state space K and let i, j ∈ K be two arbitrary states, then the

probability Pr[Zt = j|Zt−1 = i] = pji is called (one step) transition probability

from state i to state j.

Definition 2.13 (Stochastic vector) Let ppp be a column vector and let pi

be an element of the vector ppp. If all elements pi ≥ 0 and sum to unity (i.e.

ppp′111 = 1), then the vector ppp is called a stochastic vector or discrete stochastic

measure, equivalently.

By analogy, the elements of the stochastic vector ppp can be interpreted as

(in this case: unconditional) probabilities.

Definition 2.14 (Probability distribution) Let (Zt)t∈N be a stochastic

process with the state space K, let j ∈ K be an arbitrary state, and let

Pr[Zt = j] be the probability of being in state j in time t, then the stochas-

tic vector pppt = (Pr[Zt = j])j∈K is a probability distribution. If t = 0, then

Pr[Z0 = j] is called initial probability and ppp0 is called initial probability dis-

tribution.

Let us now define the Markov chain.

Definition 2.15 (Markov chain) Let K be a state space and (Zt)t∈N be a

stochastic process with the state space K. If

Pr[Zt = zt|Zt−1 = zt−1, . . . , Z0 = z0] = Pr[Zt = zt|Zt−1 = zt−1] (2.1)
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for all (zt, zt−1, . . . , z0) ∈ Kt+1 and for all t ≥ 2, then the stochastic process

(Zt)t∈N is called a Markov chain (of the first order) and the property (2.1) is

called Markov property (of the first order) (Rolski et al. 1999, p. 310).

To determine a unique Markov chain, the initial probability distribution

ppp0 = (Pr[Z0 = i])i∈K has to be known or defined. Then the probability

distribution of the Markov chain in the first period is given by

ppp1 = PPP ′ppp0 (2.2)

and so on. The probability of one particular “path” of the Markov chain

equals

Pr[Zt = zt|Zt−1 = zt−1] × · · · × Pr[Z1 = z1|Z0 = z0] × Pr[Z0 = z0].

Note that in the Markov chain, the probability of the occurrence of the

event zt is only dependent on the value taken in the preceding period (i.e.,

zt−1). This implies that in order to forecast tomorrow’s value (i.e. value in

t) of the Markov chain, only today’s observation is required (i.e. observation

in t− 1). Therefore, it is often stated that the Markov chain has one period

memory. This does not mean that the information from previous periods (i.e.

t − 1, . . . , 0) is “forgotten”, but rather that the addition of this information

to the information contained in todays observation does not improve the

forecast quality.

Hereafter, only homogeneous Markov chains will be considered.

Definition 2.16 (Homogeneous Markov chain) Let (Zt)t∈N be a Markov

chain. If the transition probabilities

pji = Pr[Zt = j|Zt−1 = i], ∀ i, j ∈ K,
∑
j∈K

pji = 1 (2.3)

are time invariant, then (Zt)t∈N is a homogeneous Markov chain (Rolski et al.

1999, p. 310).
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Example 2.17 Consider the price process (St)t∈N of a stock with the corre-

sponding rate of return process (Rt)t∈N. Furthermore the price of the stock

can rise by u% (state A) or fall by d% (state B). Additionally, it is known

that the probability of the price rising tomorrow if it has increased today is

pA = Pr[Rt+1 = A|Rt = A] and the probability of the price falling tomorrow

if it has decreased today is pB = Pr[Rt+1 = B|Rt = B]. Evidently the stock’s

rate of return process is a Markov chain with the state space K = {A,B} and

the transition matrix

PPPK×K =

⎛⎝ pA 1 − pB

1 − pA pB

⎞⎠
A B

A

B

. (2.4)

In analogy to the Markov chain with a one period memory a Markov

chain with a memory of n periods can be defined.

Definition 2.18 (Markov chain of the nth order) Let K be a state space

and (Zt)t∈N be a stochastic process which can only take values from the state

space K and n ≥ 1. If

Pr[Zt = zt|Zt−1 = zt−1, . . . , Z0 = z0] =

Pr[Zt = zt|Zt−1 = zt−1, . . . , Zt−n = zt−n] (2.5)

then the stochastic process Zt is called a Markov chain of the n-th order or

Markov chain with n period memory.

Please note that each Markov chain of the higher order (i.e. n > 1) can

be reduced to the Markov chain of the first order.

Theorem 2.19 If the stochastic variable (Yt)t∈N is a Markov chain of the

order n > 1 and the state space K, then it is possible to define a new stochastic

process (Zt)t∈{n,n+1,...} such that

Zt = (Yt+n−1, Yt+n−2, . . . , Yt), (2.6)
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and the new stochastic process is a Markov chain with the state space Kn.

Proof. As the stochastic process (Yt)t∈N is a Markov chain of the n-th order,

from the property (2.5) it follows

Pr[Yt+1 = yt+1|Yt = yt, . . . , Y0 = y0] =

Pr[Yt+1 = yt+1|Yt = yt, . . . , Yt−n+1 = yt−n+1]. (2.7)

Note that the chain rule for conditional probabilities states that

Pr[Yt+n = yt+n, . . . , Yt+1 = yt+1|Yt = yt, . . . , Y0 = y0]

= Pr[Yt+1 = yt+1|Yt = yt, . . . , Y0 = y0]

× Pr[Yt+2 = yt+2|Yt+1 = yt+1, . . . , Y0 = y0]

× . . .

× Pr[Yt+n = yt+n|Yt+n−1 = yt+n−1, . . . , Y0 = y0].

(2.8)

Applying the Markov property (2.7) on both sides of the equation (2.8) yields

Pr[Yt+n = yt+n, . . . , Yt+1 = yt+1|Yt = yt, . . . , Y0 = y0] =

Pr[Yt+n = yt+n, . . . , Yt+1 = yt+1|Yt = yt, . . . , Yt−n+1 = yt−n+1].

From (2.6) it results

Pr[Zt+1 = (yt+n, . . . , yt+1)|Zt = (yt+n−1, . . . , yt), . . . , Z0 = (yn−1, . . . , y0)] =

Pr[Zt+1 = (yt+n, . . . , yt+1)|Zt = (yt+n−1, . . . , yt)].

which is the Markov property of the first order (the proof based on Kijima

1997, p. 3-4, 11-12).

Example 2.20 Consider the stock price process from Example 2.17. This

time the probability of the price increasing or decreasing is conditional on
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the price behavior in two previous periods. It is known that if yesterday and

today the stock price increased, then the probability of it rising tomorrow is

pAA = Pr[Rt+1 = A|Rt = A,Rt−1 = A]. If the price has risen yesterday

and falls today then the probability of it rising tomorrow is pAB = Pr[Rt+1 =

A|Rt = B,Rt−1 = A]. If its price has fallen yesterday and rises today,

then with probability pBA = Pr[Rt+1 = A|Rt = A,Rt−1 = B] it will increase

tomorrow. Eventually, if it decreased yesterday and today, then the probability

is pBB = Pr[Rt+1 = A|Rt = B,Rt−1 = B] that it will rise tomorrow.

It is obvious that the stock’s rate of return is a Markov chain of the second

order with the state space K = {A,B}. One can easily construct a new rate of

return process (R�
t )t∈N with four states: α = (A,A) - the price has increased

yesterday and today by u%, β = (A,B) - the price has increased yesterday by

u% and fallen today by d%, γ = (B,A) - the price has decreased yesterday

by d% and increased today by u% and δ = (B,B) - the price has decreased

yesterday and today by d%. Then the new return process R�
t is a Markov chain

of the first order with the state space K� = {(A,A), (A,B), (B,A), (B,B)} =

{α, β, γ, δ} and the following transition matrix

PPPK×K =

⎛⎜⎜⎜⎜⎜⎜⎝
pAA 0 pBA 0

1 − pAA 0 1 − pBA 0

0 pAB 0 pBB

0 1 − pAB 0 1 − pBB

⎞⎟⎟⎟⎟⎟⎟⎠
α β γ δ

α

β

γ

δ

. (2.9)

2.3.2 Transition probabilities

Equation (2.3) defines the one period transition probabilities from the initial

state i to the target state j. In order to determine the two period (or two

step) transition probability p
(2)
ji = Pr[Zt = j|Zt−2 = i] it is sufficient to let

the stochastic process in time (t− 1) “run” through all possible states k ∈ K
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and add all probabilities together

Pr[Zt = j|Zt−2 = i] =
∑
k∈K

Pr[Zt = j|Zt−1 = k]×Pr[Zt−1 = k|Zt−2 = i], ∀ i, j ∈ K.

(2.10)

For the general case, the following Theorem holds true.

Theorem 2.21 (Chapman-Kolmogorov equation) Let p
(n)
ji = Pr[Zt =

j|Zt−n = i] be the n step transition probability of a Markov chain (Zt)t∈N,

then for m,n ∈ N\{0}

p
(n+m)
ji =

∑
k∈K

p
(n)
jk p

(m)
ki . (2.11)

The equation (2.11) is called Chapman-Kolmogorov equation (Kijima 1997,

p. 14).

Proof. Theorem 2.21 can be proved through induction with the first step

(2.10).

Remark 2.22 The Theorem 2.21 in the matrix notation yields

PPPm+n = PPPmPPP n,

where PPP n is an n period transition probability matrix and PPP 0 = III.

Corollary 2.23 From equation (2.2) and Theorem 2.21 it follows that the

probability distribution in time t = n is given by

pppn = (PPP n)′ppp0. (2.12)

2.3.3 Stopping time

Assume that one is interested in a point in time at which an event will occur.

This time is called stopping time.
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Definition 2.24 (Stopping time) Let (Zt)t∈N be stochastic process with a

state space K. A random variable τ is called stopping time of (Zt) if, for

each n, the occurrence of the event {τ ≤ n} is determined by Z0, . . . , Zn, i.e.

there exists a function f(·) such that

I(τ≤n) = f(Z0, . . . , Zn)

(Kijima 1997, p. 19).

Example 2.25 Recall the stock price process from Example 2.17. Assume

that a risk-averse agent would like to invest in that stock. One possible coutios

investment strategy would be to buy the stock today and hold it as long as the

price increases. On the first day on which the price falls, the individual sells

the stock. The day on which the stock is sold is called stopping time.

Three types of stopping times are particularly interesting: the first pas-

sage time, the first return time and the sojourn time.

Definition 2.26 (First passage time) Let (Zt)t∈N be a homogeneous Markov

chain on the state space K and let i, j ∈ K be two arbitrary states. If the

Markov chain starts from state i �= j (Z0 = i), then

τ
(p)
j =

⎧⎪⎨⎪⎩inf{n ≥ 1 : Zn = j} ∃ n ≥ 1, Zn = j

+∞ ∀ n ≥ 1, Zn �= j

is called a first passage time (Norris 1997, p. 19).

Definition 2.27 (First return time) Let (Zt)t∈N be a homogeneous Markov

chain on the state space K and let j ∈ K be an arbitrary state. If the Markov

chain starts from state j (Z0 = j), then

τ
(r)
j =

⎧⎪⎨⎪⎩inf{n ≥ 1 : Zn = j} ∃ n ≥ 1, Zn = j

+∞ ∀ n ≥ 1, Zn �= j
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is called a first return time.

Definition 2.28 (Sojourn time) Let (Zt)t∈N be a homogeneous Markov

chain on the state space K and let j ∈ K be an arbitrary state. If the Markov

chain starts from state j (Z0 = j), then

τ
(s)
j =

⎧⎪⎨⎪⎩inf{n ≥ 1 : Zn �= j} ∃ n ≥ 1, Zn �= j

+∞ ∀ n ≥ 1, Zn = j

is called a sojourn time (Anderson 1991, p. 16).

Both the first passage and the first return time represent the first moment

n on which the stochastic process (Zt) enters the particular state j if in all

time points 1, . . . , n − 1 the stochastic process (Zt) was in any other state

i �= j. The difference being that in the case of the first return time the process

(Zt) starts in the state j (i.e. Z0 = j) and in case of the first passage state

the process starts from a particular state i �= j (i.e. Z0 = i). The sojourn

time describes when the process leaves the initial state j (i.e. Z0 = j).

Stopping times can be used for instance to compute a transition proba-

bility from the initial state i to a particular state j (equal or unequal i) in n

steps.

Definition 2.29 (Transition probability from state i to j in n steps)

Let (Zt)t∈N be a homogeneous Markov chain on the state space K with transi-

tion matrix PPP = (pji)i,j∈K and let τj be the first passage or first return time.

Then define

f
(n)
ji = Pr[τj = n|Z0 = i]

as the probability that the Markov chain (Zt)t∈N goes from the initial state i

to the state j in n steps. If i �= j, then f
(n)
ji is called transition probability of
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the first passage time and if i = j, then f
(n)
ji is called the transition probability

of the first return time.

Remark 2.30 Note that the expected stopping time can be simply computed

as

E[τj ] =

∞∑
n=1

n× Pr[τj = n].

In this thesis, the expected sojourn time will be of particular interest,

as it is used to price the option on a risky asset when the underlying asset

follows a Markov switching geometric Brownian motion (see Section 2.7.2.1).

Theorem 2.31 (Expected sojourn time) Let (Zt)t∈N be a homogeneous

Markov chain on the state space K with transition matrix PPP = (pji)i,j∈K with

pjj < 1 and let j ∈ K be an arbitrary state. Then the expected sojourn in

state j is given by

Dj =
1

1 − pjj

, (2.13)

see (Kim and Nelson 1999, p. 71-72).

Proof. Note that

Dj = E[τ
(s)
j ] =

∞∑
t=1

tPr[τ
(s)
j = t] =

∞∑
t=1

t (1 − pjj)p
t−1
jj = (1 − pjj)

∞∑
t=1

t pt−1
jj

= (1 − pjj)[pjj + 2p2
jj + 3p3

jj + 4p4
jj + . . . ]

= (1 − pjj)[pjj + p2
jj + p3

jj + p4
jj + . . .

+ p2
jj + p3

jj + p4
jj + . . .

+ . . . ]

Observe that as pjj < 1, we can use the sum of the geometric sequence∑∞
k=t p

k
jj =

pt
jj

1−pjj
. Thus

Dj = (1 − pjj)
∞∑
t=0

pt
jj

1 − pjj
=

∞∑
t=0

pt
jj =

1

1 − pjj
,

which completes the proof.
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2.3.4 Stationarity of Markov chains

This Section will show that if a Markov chain has an equilibrium distribution,

then it is unique and how to compute it. First, let us define a stationary

distribution.

Definition 2.32 (Stationarity) Let PPP = (pji)i,j∈K be a stochastic matrix

and let ppp be a probability distribution. If

ppp = PPP ′ppp, (2.14)

then ppp is called stationary, equilibrium or equivalently invariant distribution

(Norris 1997, p. 33).

Definition 2.33 (Ergodicity) Let (Zt)t∈N be a homogeneous Markov chain

on the state space K with transition matrix PPP = (pji)i,j∈K. If it holds

(a) for all states j ∈ K there exists a limit

πj = lim
n→∞

p
(n)
ji , (2.15)

(b) πj is strictly positive and independent of the state i,

(c) πππ = (πj)j∈K is a probability distribution, i.e. πππ′111 = 1,

then the Markov chain (Zt)t∈N is called ergodic and πππ is called stochastic

distribution (Rolski et al. 1999, p. 281).

Remark 2.34 The equation (2.15) in the matrix notation yields

lim
n→∞

PPP n =

⎛⎜⎜⎜⎝
πππ′

...

πππ′

⎞⎟⎟⎟⎠ = πππ111′, (2.16)

where PPP denotes a transition matrix and πππ denotes an ergodic distribution.
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Theorem 2.35 Let (Zt)t∈N be a homogeneous Markov chain on the state

space K with transition matrix PPP = (pji)i,j∈K. If the Markov chain (Zt) is

ergodic, then the stochastic vector πππ = (πj)j∈K is the unique solution of the

system of linear equations

πππ = PPP ′πππ. (2.17)

Equation (2.17) is called balance equation for the matrix PPP (Rolski et al.

1999, p. 283).

Proof. Note that (2.17) is equivalent to

πj =
∑
k∈K

πkpjk, ∀ j ∈ K. (2.18)

Thus, it is sufficient to prove the equation (2.18). From (2.15) it follows that

πj = lim
n→∞

p
(n)
ji .

Now use the Chapman-Kolmogorov equation (2.11)

lim
n→∞

p
(n)
ji = lim

n→∞

∑
k∈K

p
(n−1)
ki pjk.

We interchange the limit and the summation

lim
n→∞

∑
k∈K

p
(n−1)
ki pjk =

∑
k∈K

lim
n→∞

p
(n−1)
ki pjk.

We re-use the definition of ergodicity (2.15)∑
k∈K

lim
n→∞

p
(n−1)
ki pjk =

∑
k∈K

πkpjk.

As it has be proven that the left-hand-side of equation (2.17) equals its

right-hand-side, it remains to be proved that this solution is unique. We

now suppose that another probability function (πππ∗) = (π∗
j )j∈K exists, which

is unequal to πππ. By induction it is straightforward to prove that

π∗
j =
∑
k∈K

π∗
kp

(n)
jk , ∀ j ∈ K, (2.19)
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with the first step as above. We now take the limit from (2.19)

π∗
j = lim

n→∞

∑
k∈K

π∗
kp

(n)
jk .

It remains to interchange the summation and limit, and to use the definition

of ergodicity (2.15)

π∗
j = lim

n→∞

∑
k∈K

π∗
kp

(n)
jk =

∑
k∈K

lim
n→∞

π∗
kp

(n)
jk = πj .

Accordingly, it has been proven that π∗
j = πj (∀ j ∈ K), thus vector πππ is the

unique solution of equation (2.17) (Rolski et al. 1999, p. 283).

Theorem 2.36 (Ergodic distribution) Let PPP be the transition matrix of

the ergodic Markov chain (Zt)t∈N, then the matrix (III −PPP ′ +EEE) is invertible

and the stochastic vector from the equation (2.17) is given by

πππ = (III −PPP ′ +EEE)−1111 (2.20)

(Rolski et al. 1999, p. 288).

Proof. At first it is necessary to prove that the matrix (III − PPP ′ + EEE) is

invertible. This is equivalent with the following statement: (III−PPP ′+EEE)xxx = 000

implies that xxx = 000. From equation (2.14) it follows (III −PPP ′)πππ = 000. Therefore

from (III−PPP ′+EEE)xxx = 000 it results that 0 = πππ′(III−PPP ′+EEE)xxx = 0+πππ′EEExxx = 0. As

πππ is a distribution, it follows πππ′EEE = 111′. Therefore 111′xxx = 0 and consequently

EEExxx = 000. This implies that (III − PPP ′)xxx = 000. This is equivalent to PPP ′xxx = xxx.

From this, it follows that for all n ≥ 1 it is true that (PPP ′)nxxx = xxx. As πππ is

ergodic, from the equation (2.15) it follows limn→∞PPP
n = πππ111′. This means

that for n → ∞ it holds xxx = (PPP ′)nxxx → 111πππ′xxx, i.e. xi =
∑m

j=1 πjxj (∀ i =

1, . . . , m). As the right-hand side of this equation is independent from i, it

holds true that ∃ c ∈ R, xxx = c111. Above it was shown that 0 = 111′xxx, therefore

111′xxx = 111′(c111) = cm = 0. Thus, c = 0 and, as a result, (III−PPP ′+EEE) is invertible.
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From equation (2.17) it follows that (III−PPP ′)πππ = 000. Thus (III−PPP ′ +EEE)πππ =

EEE ·πππ = 111. Left multiplying by (III−PPP ′ +EEE) yields the equation (2.20) (Rolski

et al. 1999, p. 288).

Corollary 2.37 For a two state Markov chain the ergodic distribution has

the form

πππ =

⎛⎝ 1−p22

2−p11−p22

1−p11

2−p11−p22

⎞⎠ (2.21)

(Hamilton 1994, p. 683).

2.4 Continuous stochastic models in finance

2.4.1 Diffusion models

The basic stochastic process in the continuous time is called the Wiener

process.

Definition 2.38 (Wiener process) If for a stochastic process (Wt)t≥0 it

holds that

(i) W0 = 0,

(ii) The process W has independent increments, i.e. if r < s ≤ t < u then

Wu −Wt and Ws −Wr are independent stochastic variables,

(iii) For s < t the stochastic variable Wt −Ws is normally distributed with

mean 0 and variance (t− s),

(iv) W has continuous trajectories,

then W is called a standard Wiener process (or Brownian motion) (Björk

2004, p. 36).
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Based on the standard Wiener process, the Itô process (the stochastic

integral) can be defined.

Definition 2.39 (Itô process) Let (Wt)t≥0 be a standard Wiener process

and let (Xt)t≥s be a stochastic process defined on the probability space (Ω,F ,P)

of the form

Xt = Xs +

∫ t

s

μ(u,Xu)du+

∫ t

t0

σ(u,Xu)dWu (2.22)

with diffusion function σ(t, Xt) and drift function μ(t, Xt), which are both

Ft-adapted and

Pr

[∫ t

s

σ(s,Xu)2du <∞
]

= 1, ∀t ≥ s, (2.23)

Pr

[∫ t

s

|μ(u,Xu)| du <∞
]

= 1, ∀t ≥ s, (2.24)

where s ≤ t. Then the stochastic process Xt is called Itô process (or Itô

integral, or stochastic integral) (Shreve 2004, p. 143).

Remark 2.40 In the financial literature, the Itô integral is commonly writ-

ten in the differential form as

dXt = μ(t, Xt)dt+ σ(t, Xt)dWt with boundary condition Xs = xs. (2.25)

Theorem 2.41 (Itô’s lemma) Let Xt be an Itô process given by

Xt = Xs +

∫ t

s

μ(u,Xu)du+

∫ t

s

σ(u,Xu)dWu (2.26)

with μ(t, X) and σ(t, Xt) Ft-adapted processes, Wt the standard Wiener pro-

cess and s ≤ t. Furthermore, let g(t, x) ∈ C2([0,∞)×R) (i.e g(t, x) be twice

continuously differentiable on [0,∞) × R). Then

Yt = g(t, Xt)
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is again an Itô process with

Yt =Ys +

∫ t

s

[
∂g(u,Xu)

∂u
+ μ(u,Xu)

∂g(u,Xu)

∂x
+

1

2
σ2(u,Xu)

∂2g(u,Xu)

∂x2

]
du

+

∫ t

s

σ(u,Xu)
∂g(u,Xu)

∂x
dWu

(2.27)

(Øksendal 2003, p. 44).

Proof. For the proof, see Arnold (1973, p. 108-112).

Remark 2.42 Let Wt be a Wiener process and let s ≤ t. Then

dt · dt = 0, dt · dWt = 0, dWt · dWt = dt, (2.28)

E

[∫ t

s

dWu

]
= 0, E

[(∫ t

s

dWu

)2
]

=

∫ t

s

du (2.29)

(Øksendal 2003, p. 44).

A standard example of the stochastic process used for describing the

behavior of the stock prices (or in general the value of the risky portfolio) is

the geometric Brownian motion.

Definition 2.43 (Geometric Brownian motion) Let (Wt)t≥0 be a stan-

dard Wiener process, let (Xt)t≥s be a stochastic process, and let Ft, t ≥ 0 be

an associated filtration. Furthermore, let μt and σt be associated processes.

Then the Itô process

Xt = Xs +

∫ t

s

μuXudu+

∫ t

s

σuXudWu (2.30)

is called the geometric Brownian motion (GBM) (Shreve 2004, p. 147-148).
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This process was first proposed by Bachelier (1900)2 in his PhD thesis,

which was unfortunately, misunderstood by his contemporaries.3 Almost six

decades later, Osborne (1959) rediscovered the geometric Brownian motion

for finance, oblivious to the fact that it has been used for the same purpose by

a French mathematician long before him. As a tribute to Bachelier’s genius,

it is worth mentioning that he used the geometric Brownian motion five years

prior to Einstein (1905). Not being familiar with Bachelier’s work, Einstein

introduced it to the field of physics. Bachelier also priced options decades

before Black and Scholes (1973) and Merton (1973) revolutionized the science

of finance with their option pricing model (Mandelbrot and Hudson 2004, p.

53-54).

Proposition 2.44 (Solution of the GBM) Let (Xt)t≥s be a GBM, μt =

μ, σt = σ > 0, then equation (2.30) has the solution

Xt = Xse
R t
s
(μ− 1

2
σ2)du+σ

R t
s

dWu = Xse
(μ− 1

2
σ2)(t−s)+σ(Wt−Ws), (2.31)

Proof. Set u(t, X(t)) = lnXt and use the Itô rule, which results in

lnXt − lnXs = (μ− 1

2
σ2)(t− s) + σ

∫ t

s

dWu. (2.32)

Then take exp(·) of both sides, which completes the proof. For details, see

Shreve (2004, p. 191-193).

2The English translation of Bachelier’s article can by found in Cootner (1964, p. 17-78).
3The extent to which Bachelier had been misunderstood can be illustrated by the diffi-

culties he encountered to get a permanent professorship. E.g. his application for a vacancy

position in Dijon in 1926 was blackballed due to the criticism of the distinguished mathe-

matician Paul Lévy on his work, which allegedly contained profound mistakes. Eventually,

Bachelier was able to get a permanent position at Besançon one year later. It was not

until many years has passed that Lévy apologized to Bachelier, admitting to have been at

fault (Mandelbrot and Hudson 2004, p. 48-49).
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Remark 2.45 Note that process Yt = ln(Xt) defined in equation (2.32) is

referred to as the arithmetic Brownian motion with mean (μ − 1
2
σ2)(t − s)

and variance σ2(t− s).

Proposition 2.46 (Moments of the GBM) Suppose that (Xt)t≥s is a GBM,

then it has the conditional expected value

E[Xt|Xs] = Xse
μ(t−s) (2.33)

and the conditional variance

Var[Xt|Xs] = X2
s e

2μ(t−s)
(
eσ2(t−s) − 1

)
. (2.34)

Proof. To prove equation (2.33) take the conditional expected value of both

sides of equation (2.31)

E[Xt|Xs] = E
[
Xse

(μ− 1
2
σ2)(t−s)+σ(Wt−Ws)|Xs

]
= Xse

(μ− 1
2
σ2)(t−s)E

[
eσ(Wt−Ws)

]
.

As Wt −Ws is normally distributed with mean 0 and variance (t − s) one

can use the moment generating function of the normal distribution

E[eσ(Wt−Ws)] = M(σ, t− s) = e
1
2
σ2(t−s),

thus

E[Xt|Xs] = Xse
(μ− 1

2
σ2)(t−s)e

1
2
σ2(t−s) = Xse

μ(t−s).

To prove equation (2.34), first take the conditional expected value of the

second power of both sides of equation (2.31)

E[X2
t |Xs] = E

[
X2

s e
2(μ− 1

2
σ2)(t−s)+2σ(Wt−Ws)|Xs

]
= X2

s e
2(μ− 1

2
σ2)(t−s)E

[
e2σ(Wt−Ws)

]
= X2

s e
2(μ− 1

2
σ2)(t−s)e2σ2(t−s)

= X2
s e

2μ(t−s)+σ2(t−s),
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then the variance equals

Var[Xt|Xs] = E[X2
t |Xs] − E2[Xt|Xs]

= X2
s e

2μ(t−s)+σ2(t−s) −X2
s e

2μ(t−s)

= X2
s e

2μ(t−s)(eσ2(t−s) − 1).

Remark 2.47 Because the increments of the Wiener process are normally

distributed (see Definition 2.38), thus equation (2.32) implies that for Xs =

xs process (ln(Xt))t≥0 is also normally distributed. Equivalently, process

(Xt)t≥0 is log-normally distributed.

The GBM is usually used to describe stochastic behaviour of stock prices.

However, it is unsuitable for interest rate models, as it does not take the

mean reversion into account (see Section 2.1.5), which is commonly observed

in the interest rates time series. Therefore, Vasiček (1977) proposed a model

that deals with this problem.

Definition 2.48 (Vasiček process) Suppose that Wt, t ≥ 0 is a Wiener

process, Ft, t ≥ 0 is an associated filtration, μt and σt are associated processes

and α > 0. Then the Itô process

Xt = Xs +

∫ t

s

α[μu −Xu]du+

∫ t

s

σudWu (2.35)

is called the Vasiček process.

Proposition 2.49 (Solution of the Vasiček process) Suppose that (Xt)t≥s

is a Vasiček process with μt = μ and σt = σ > 0, then equation (2.35) has

the solution

Xt = Xse
−α(t−s) + μ(1 − e−α(t−s)) + σ

∫ t

s

e−α(t−u)dWu. (2.36)
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Proof. Set g(t, Xt) = eα(t−s)Xt and apply the Itô rule.

Proposition 2.50 (Moments of the Vasiček process) Suppose that (Xt)t≥s

is a Vasiček process with μt = μ and σt = σ > 0, then it has the expected

value of

E[Xt|Xs] = Xse
−α(t−s) + μ(1 − e−α(t−s)) (2.37)

and the variance of

Var[Xt|Xs] =
σ

2α

[
1 − e−2α(t−s)

]
(2.38)

Proof. Using Shreve (2004, Theorem 4.4.9, p. 149) for the stochastic vari-

able Zs,t =
∫ t

s
e−α(t−u)dWu has the expected value of

E[Zs,t] = 0 (2.39)

and the variance of

Var[Zs,t] =

∫ t

s

e−2α(t−u)dWu =
1

2α

(
1 − e−2α(t−s)

)
. (2.40)

To prove the mean equation (2.37) it is sufficient to take the expected value

of both sides of the equation (2.36) and apply (2.39). To prove the variance

equation (2.38) it is sufficient take variance of both sides of the equation

(2.36)

Var[Xt|Xs] =Var

[
Xse

−α(t−s) + μ(1 − e−α(t−s)) + σ

∫ t

s

e−α(t−u)dWu

∣∣∣∣Xs

]
=Var

[
Xse

−α(t−s) + μ(1 − e−α(t−s))
∣∣Xs

]
+ σ2Var [Zs,t]

+ 2Cov
[
Xse

−α(t−s) + μ(1 − e−α(t−s)), σZs,t

∣∣Xs

]
.

As the first variance is zero and both processes are independent, the covari-

ance is zero as well. Thus it remains to apply (2.40), which completes the

proof (Shreve 2004, p. 151).
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Remark 2.51 It is worth noting that the parameter μ is a long term mean

of the Vasiček process4 with respect to t→ ∞ and that α is the speed at which

the process returns to the long term mean μ.

As the Xt is normally distributed, the model allows negative interest rates

with a positive probability. This is a common point of criticism of the Vasiček

model. Cox, Ingersoll, and Ross (1985) addressed this issue using the square

root process to exclude negative interest rates.

Definition 2.52 (CIR process) Let Wt, t ≥ 0 be a Wiener process, let

Ft, t ≥ 0 be an associated filtration, let μ(t) and σ(t) be associated processes,

and let s ≤ t. Then the Itô process

Xt = Xs +

∫ t

s

α[μu −Xu]du+

∫ t

s

σu

√
XudWu (2.41)

is called a CIR process.

The disadvantage of this model is that it does not have a closed-form

solution of the stochastic differential equation. However, it is possible to

compute its expected value and variance.

Note that it is a mean-reverting process if α > 0.

Proposition 2.53 (Expected value and variance of the CIR process)

Suppose that Xt is a CIR process, then it has a conditional expected value of

E[Xt|Xs] = Xse
−α(t−s) + μ(1 − e−α(t−s)) (2.42)

and a conditional variance of

Var[Xt|Xs] = Xs
σ2

α

(
e−α(t−s) − e−2α(t−s)

)
+
μσ2

2α

(
1 − e−α(t−s)

)2
(2.43)

Proof. For proof, see Gourieroux and Jasiak (2001, p. 252-253).

4Which is easy to see by taking the limes from the right-hand side of equation (2.37).
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Definition 2.54 (Generalized one-factor process) Suppose thatWt, t ≥

0 is a Wiener process, Ft, t ≥ 0 is an associated filtration, and μt and σt are

associated processes. Then the Itô process

Xt = Xs +

∫ t

s

α[μu −Xu]du+

∫ t

s

σuX
γ
udWu (2.44)

is called a generalized one-factor interest rate process.

Remark 2.55 Note that it is a mean-reverting process if α > 0 and a het-

eroskedastic process if γ > 0.

This class includes many other processes, such as Vasiček (1977) (γ = 0),

Cox, Ingersoll, and Ross (1985) (γ = 1
2
), Brennan and Schwartz (1980) (γ =

1). For other one-factor models, compare Chan et al. (1992).

It is worth mentioning that the term-structure determined with the above

models at time t = 0 can deviate significantly from the term-structure ob-

served on the market (Albrecht and Maurer 2008, p. 517). Some authors

have attempted to address this problem. See e.g. Hull and White (1990)

who solved this problem for the Vasiček and CIR model.

The one-factor models above discussed assume that the behavior of the

interest rate can be described by utilizing only one factor. As the one-factor

models are too simplistic, several authors developed models with more than

one factor. Brennan and Schwartz (1979b, 1982) use both the short inter-

est rate and the yield of a consol bond with continuous coupon payment

and infinite maturity as factors. Fong and Vasiček (1991) and Longstaff

and Schwartz (1992) use the short interest rate and its volatility as factors.

Schaefer and Schwartz (1984) on the other hand, employ the long interest

rate and the spread between the short and long interest rate. There are also

some three-factor models e.g. by Kraus and Smith (1993) who use the short

interest rate, the drift function and the diffusion of the short rate as factors.
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2.4.2 Discretization of diffusion models

By using the lemma of Itô (1951) to solve the equation (2.30), the process

for the development of the risky asset

St = St0e
(μ− 1

2
σ2)(t−t0)+σ(Wt−Wt0), 0 ≤ t0 < t, St0 > 0 (2.45)

can be determined (Albrecht and Maurer 2008, p. 175). Thus, the log rates

of return for one period yt (i.e. t0 = t− 1) are equal to

yt = ln
St

St−1

=

(
μ− 1

2
σ2

)
+ σ(Wt −Wt−1) (2.46)

From Definition 2.38 it follows that ΔW = Wt −Wt0 is normally distributed

with the mean 0 and the standard deviation
√
t− t0 (i.e. ΔW ∼ N(0, t−t0)).

Thus, the equation (2.46) can be rewritten as

yt =

(
μ− 1

2
σ2

)
+ εt, εt ∼ N(0, σ2) (2.47)

Please note that the mean of the GBM
(
μ− 1

2
σ2
)

is a constant as well, thus

equation (2.47) can be rewritten as the Gaussian white noise with the mean

m =
(
μ− 1

2
σ2
)

and the variance σ2

yt = m+ εt, εt ∼ N(0, σ2). (2.48)

From the Itô lemma (Theorem 2.41) the Vasiček process (2.35) has the

following solution

Rt = e−α(t−t0)Rt0 + μ(1 − e−α(t−t0)) + σ

∫ t

t0

e−α(t−u)dWu (2.49)

(Brigo and Mercurio 2006, p. 58). Accordingly, the one period case (i.e.

t0 = t− 1) Rt is given by

Rt = e−αRt−1 + μ(1 − e−α) + σ

∫ t

t0

e−α(t−u)dWu. (2.50)
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From Definition 2.38 it follows that ΔW = Wt −Wt0 is normally distributed

with the mean 0 and the standard deviation
√
t− t0 (i.e. ΔW ∼ N(0, t−t0)).

Thus, the equation (2.50) can be rewritten as

Rt = e−αRt−1 + μ(1 − e−α) + εt, εt ∼ N
(

0,
σ2

2α
(1 − e−2α)

)
, (2.51)

with εt as the innovation at time t.

The explicit solution of equation (2.51) can be written as a first order

autoregressive process (or equivalently AR(1)-process)

Rt = c+ φRt−1 + εt, εt ∼ N
(

0,
σ2

2α
(1 − e−2α)

)
, (2.52)

with a constant c = μ(1 − e−α) and the autoregressive coefficient φ = e−α.

The AR-version of the Vasiček model has the advantage that it enables the

GBM model to be written as a special case of the AR with c = m and φ = 0

(see equation (2.48)).

The disadvantage of the CIR model is that it does not have a closed-form

solution of the Itô lemma. However, this can be approximated via the Euler

method

Rt = Rt−1 +α(μ−Rt−1) + εt = αμ+ (1−α)Rt−1 + εt, εt ∼ N(0, σ2Rt−1),

(2.53)

(Albrecht and Maurer 2008, p. 186).

2.5 Literature overview (MS models)

A number of years ago, the general observation was made, that economic

variables as GDP, inflation or stock prices can behave differently in several

states (or regimes) of the economy. For instance, the economy can be in an

expansion or a recession phase. The first attempt to implement this insight
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for econometric research was undertaken by Quandt (1958). He studied a

model in which the consumption equation C varies in dependence of one of

two different states

C = α1Y + β1

C = α2Y + β2.

Here Y denotes the income and α1, β1, and α2, β2 denote the regression

parameters in the first or second regime, respectively. The shift from the first

state of the economy to the second one occurs only once, and is dependent

on an exogenous variable (say Z). If the value of the variable exceeds some

critical value (say z∗), the consumption shifts from the first state to the

second one. However, Quandt (1958) assumes that the exogenous variable Z

cannot be identified, and thus the shift time t∗ cannot be identified either.

An essential assumption of Quandt’s model is the a priori knowledge that

the shift occurs once.5 The only unidentified variable is the switching time

t∗ which can be estimated via the maximum likelihood method.

An extension of this model was proposed by Goldfeld and Quandt (1972)

who admitted an unknown number of switches. In their model, the shift

time(s) depends on some observable exogenous variable Zt. Only the func-

tion determining when the shift occurs is unknown. In this approach, the

parameters of this function have to be estimated.6 Goldfeld and Quandt

(1972) also studied another case in which the choice between the first and

the second regime occurs with some probabilities π and 1 − π which are

unknown. In this model, the probability of a switch is independent of the

5Despite that Quandt (1958, p. 873, footnote 1) studied a case in which the shift occurs

only once, he points out that the generalization of the model with two, three, etc. switches

is possible. This would, however, make the model more cumbersome.
6This is the so-called D-method, see Goldfeld and Quandt (1973, p. 4-6).
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previous state.7 In a further paper, Goldfeld and Quandt (1973) assumed

that the probability of the shift can depend on the state which was in effect

at the previous time. E.g. the probability that the economy will be in the

first state at time t if it was in the second one in the previous period, will

be Pr[Zt = 1|Zt−1 = 2]. This group of models is referred to as the hidden

Markov models, since the unobservable state variable Z is a Markov chain.

The idea of a regression with a hidden Markov state was implemented

in the time series analysis in the fundamental paper A New Approach to the

Economic Analysis of Nonstationary Time Series and the Business Cycle of

Hamilton (1989) who studied the US real GNP as the AR(4) model with

regime switching. As the observation of the regime variable Z is impossible,

he suggested an approach which makes a probabilistic inference on the regime

at the time t. Since the publication of his paper, there has been a lot of studies

on the Markov switching behavior of macroeconomic values such as GDP

(Hamilton (1989)) or inflation (Kim (1993) among others). This method has

found a lot of applications for financial time series, as well.

The first model for stock returns within the Markov switching framework

was introduced by Turner, Startz, and Nelson (1989). In their model, the

mean and the volatility of the stock returns can be dependent on the regime.

Hardy (2001) analysed the model of Turner, Startz, and Nelson (1989) for

the monthly returns of the US American and Canadian stocks and discovered

that it outperforms several autoregressive and ARCH models, among them

the GARCH(1,1)-model. Sola and Timmermann (1994) used this model for

the UK daily stock returns and ascertained that it outperforms the GARCH

and the EGARCH model. Furthermore, they concluded that the Markov

switching model can better explain the skewness of the data than the models

7This is the so-called λ-method, see Goldfeld and Quandt (1973, p. 6-7).
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from the ARCH family. However, the ARCH models were more advantageous

in explaining the kurtosis of the daily stock returns than the regime switching

model.

Hamilton and Susmel (1994) introduce an extension of Turner, Startz,

and Nelson’s model to the regime switching ARCH (SWARCH) models.8

In their study, the US American weekly stock returns are better forecasted

with the SWARCH model with Gaussian innovations than with Gaussian

GARCH(1,1). The prediction was even more accurate if they used the t-

distributed SWARCH models. Moreover, they show how to implement the

asymmetry of the returns in the SWARCH model. They model the leverage

effects as proposed by Glosten, Jagannathan, and Runkle (1993). Hamilton

and Lin (1996) used a bivariate model which combines Hamilton (1989) and

Hamilton and Susmel (1994) to study the relation between stock returns and

economic growth. They found proof for two regimes in the stock returns and

GDP. Furthermore, they found that increased volatility in stock returns is

associated with economic recessions.

In addition to stock returns, there is a comprehensive research literature

on the interest rates within the Markov regime framework. The first such

study was conducted by Hamilton (1988), who modeled the short- and the

long-time interest rate. He found that the dynamics of the American three-

month interest rate is better explained by the Markov switching approach

than by a linear model. The bivariate model of the three-month T-bills and

ten-year T-bonds with cross-equation restriction is best represented by the

Markov switching model as well. Gray (1996) considered the generalized

regime-switching (GRS) model which nests the linear (e.g. Cox, Ingersoll,

8Other GARCH models with Markov switching were introduced by Cai (1994), Gray

(1996) and Haas (2004).

47



and Ross 1985), (G)ARCH of Engle (1982) and Bollerslev (1986), Markov

switching AR of Hamilton (1989), SWARCH of Hamilton and Susmel (1994)

and, additionally, a new model with Markov switching in GARCH. Gray

(1996) found that his GRS model outperforms the other models in- and out-

of-sample for short term interest rates. The study of Ahrens (1998) confirmed

these results for the German market.9

Dahlquist and Gray (2000) studied the impact of the European Monetary

System (EMS) on the short-term behavior of interest rates. They found that

the volatility of the interest rates can be assigned to two regimes: regimes of

stable and of high volatility. High volatility occurs when the exchange rate

almost exceeded the boundary of the target zone; which was interpreted by

the authors as a speculative attack on the currency.

One should note that the research conducted on the Markov switching

models on the financial markets focuses mainly on stock and interest rates

models, with only a few studies on other topics. Engel and Hamilton (1990)

implemented the regime shift approach in the USD/DEM, USD/FFR, and

USD/GBP exchange rate. They found that the Turner, Startz, and Nelson

(1989)-like model explains the dynamics of the exchange rates better than

the random walk, which is a good parameterization of the “peso problem”.

Alizadeh and Namikos (2004) studied the use of the Markov switching

models in the stock index futures. They found that the time-varying mini-

mum hedging ratio can be better established by using the Markov switching

model than by using the other models (including GARCH) in the case of

the UK market, both in- and out-of-sample. In the US American case, the

Markov model is superior only in-the-sample.

9To the best of knowledge Ahrens (1998) and Haas (2004) were the only ones who

conducted research on the German financial markets using the hidden Markov approach.
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Crawford and Fratantoni (2003) conducted a very interesting study on

the real estate prices in several states of North America. After comparing

the ARIMA, GARCH and regime switching models, they concluded that the

hidden Markov models are particularly suitable for explaining the historical

dynamics of real estate prices. However, the out-of-sample forecasting was

better for the ARIMA models, linked perhaps to the small sample of data

the authors used. Additionally, the regime switching models were reliable

concerning the prediction of the turning points of the market, which have

practical relevance for real estate fund managers.

Recently, the Markov switching models have been implemented in insur-

ance. For instance Yin, Liu, and Yang (2006) developed a Markov switching

model which determines the limit of ultimate survival probabilities and ul-

timate ruin probabilities. Additionally, Yang and Yin (2004) formulated a

model of the insurance surplus process within the Markov switching scheme.

2.6 Finite mixture distributions

2.6.1 Definition of finite mixture distribution

A finite mixture distribution model was first used in astronomy by Pearson

(1894), who used a mixture of two univariate normal distributions with un-

equal mean and variance parameters. For mixtures of other distribution fam-

ilies, compare, for instance, Feller (1943) (for Poisson distribution), Barndorf-

Nielsen (1978) and Shaked (1980) (for exponential distribution) among oth-

ers. Since then, Pearson’s approach has found very wide applications in

modern science. It is inter alia applied in biology, physics, marketing (Rossi,

Allenby, and McCulloch 2005), public health (Spiegelhalter, Abrams, and

Myles 2003) and, in particular, in finance. For modern finance theory, mix-
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ture distributions offer a way of dealing with some of stylized facts mentioned

in Section 2.1. The following discussion will focus on the finite mixture of

normal distributions.

It is common to assume that the log-returns of financial time series are

drawn from the normal distribution N(μ, σ2). However, as discussed in Sec-

tion 2.1, this assumption is not confirmed by observation on the financial

markets. Supposing now that the realization y of the random variable Y is

drawn not from a single, but from one of a finite number of distributions

f1(y), f2(y), . . . , fK(y), where fj(y) (j=1,. . . ,K) is a density function. Con-

sequently, the Y is drawn from a mixture of distributions fj(Y ).

Definition 2.56 (Mixture of distributions) Let (Ω,F ,P) be a probabil-

ity space, let Y be a random variable and let K be a state space. Additionally,

let vector πππ = (πi)i∈K be a probability distribution and let fi(y) be a probability

density function (i ∈ K). If

f(y) = π1f1(y) + π2f2(y) + . . . , (2.54)

then Y follows a mixture distribution. The density functions fi(y) are called

component densities, πj is called weight and the vector πππ is called a weight

distribution. If the state space is a finite set, the mixture distribution is called

a finite mixture distribution (Frühwirth-Schnatter 2006, p. 3-4).

Note that the vector πππ is a stochastic vector, thus the weights are all

positive and sum up to unity∑
j∈K

πj = 1, 0 ≤ πj ≤ 1 (j = 1, . . . , K) (2.55)

and they could be interpreted as probabilities that the observation y comes

from a particular density pj(y). For instance, if one would like to create
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a model for returns of a stock, one component density may represent the

bull market time and another one the bear market time. In most practically

relevant cases it cannot be said which component the particular observation

was drawn from. For instance, it cannot be observed which state (e.g. the

bull or the bear market) the market is in. For this reason, let us assume

that the market state is represented by an additional random variable, the

so-called state variable Z.

Definition 2.57 (State variable) Let (Ω,F ,P) be a probability space, let

Z be a random variable, let K be a state space and let vector πππ = (πj)j∈K be a

probability distribution. If the random variable Z has the following probability

distribution

f(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 with probability π1

2 with probability π2

...

K with probability πK

, (2.56)

then it is called a state variable.

2.6.2 Moments of mixed-normal process

Theorem 2.58 (Moments of the finite mixture of normals) Assume that

the random variable Y follows a finite mixture of normal distributions, then

its mean is equal to

μ = E[Y ] =

K∑
j=1

πjμj , (2.57)

its variance is equal to

Var[Y ] =
K∑

j=1

πj(σ
2
j + μ2

j) − μ2 =
K∑

j=1

πjσ
2
j +

K∑
j=1

πj(μj − μ)2, (2.58)
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its skewness is equal to

γ[Y ] =

∑K
j=1 πj [(μj − μ)2 + 3σ2

j ](μj − μ)(∑K
j=1 πjσ2

j +
∑K

j=1 πj(μj − μ)2
)(3/2)

, (2.59)

and its excess kurtosis is equal to

κ[Y ] =

∑K
j=1 πj[(μj − μ)4 + 6(μj − μ)2σ2

j + 3σ4
j ](∑K

j=1 πjσ2
j +
∑K

j=1 πj(μj − μ)2
)2 − 3, (2.60)

where μj = [Y |Z = j] and σ2
j = Var[Y |Z = j] for j = 1, . . . , K (Haas 2004,

p. 13,17,19).

Proof. Let g(Y ) be a function of Y with respect to the component density

f(y|Z = j) (i = 1, . . . , K). In the expected value E[g(Y )|Z = j] for all

components f(y|Z = j) (j = 1, . . . , K) the expected value of the mixture

distribution has the form

E[g(Y )] = E[E[g(Y )|Z]] =

K∑
j=1

πjE[g(Y )|Z = j]

(Frühwirth-Schnatter 2006, p. 10). Furthermore

E[g(Y )|Z = j] =

∫
R

g(Y )f(y|Z = j)dy, (j = 1, . . . , K).

Particularly for g(Y ) = y the mean equals

E[Y ] = E[E[Y |Z]] =

K∑
j=1

πjE[Y |Z = j] =

K∑
j=1

πjμj

(Haas 2004, p. 17). For moments of the order k ≥ 2 the function g(Y ) takes

the form (Y − μ)k. Now it is useful to use the property

mk = E[(Y − a)k] =

∫ ∞

−∞
(y − a)kφ(y, μ, σ2)dy =

∫ ∞

−∞
ykφ(y, μ− a, σ2)dy

(2.61)
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(Frühwirth-Schnatter 2006, p. 11). In the discrete case, the equation (2.61)

takes the form

E[(Y − μ)k] = E

[
k∑

n=0

(
k

n

)
Y nμk−n

]
=

k∑
n=0

(
k

n

)
μk−nE[Y n]

=
k∑

n=0

(
k

n

)
μk−nE[Y n] =

k∑
n=0

(
k

n

)
μk−nE[E[Y n|Z]]

=

k∑
n=0

(
k

n

)
μk−n

K∑
j=1

πjE[Y n|Z = j]

The variance, then, is equal to

m2 = Var[Y ] =

K∑
j=1

πj(μ
2
j + σ2

j ) − μ2. (2.62)

To compute the skewness γ[Y ] and the excess kurtosis κ[Y ], the following

two expectations are needed

m3 = E[(Y − μ)3] =

K∑
j=1

πj[(μj − μ)2 + 3σ2
j ](μj − μ) (2.63)

m4 = E[(Y − μ)4] =
K∑

j=1

πj [(μj − μ)4 + 6(μj − μ)2σ2
j + 3σ4

j ]. (2.64)

The skewness is then computed using the expectation (2.63) and the property

γ = m3

m
(3/2)
2

. The excess kurtosis can be computed from the expectation (2.64)

and the formula for the excess kurtosis κ = m4

m2
2
− 3, which completes the

proof.

2.6.3 Examples of mixture distributions

This Section aims to demonstrate the potential of mixture distributions in

representing a number of different shapes of densities. Figure 2.2 compares

the normal density with a mean of 1 and a standard deviation of
√

2 (dashed

line) to several mixtures of two normals (solid lines).
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Let us fix the means of both composite distributions to be equal. If

then their variances are unequal, the mixture will be leptokurtic (see the

solid line in Example 1, Figure 2.2), as it will have more probability mass

around the mean and in the tails than the normal density with the same

unconditional mean and unconditional variance as the mixture (dashed line).

The higher the probability weight ascribed to the high volatility distribution

(i.e. the higher π) the more probability mass is concentrated in the tails

of the mixture. Vice versa, the more weight ascribed to the low volatility

density, the more probability mass is concentrated around the mean of the

mixture. Keeping in mind that the component means were fixed to be equal,

the mixture converges to the normal density if the weight π tends to zero

or unity. It can also converge to the normal density independently from the

weight parameter if the variances of composite distribution converge to each

other. If the weight parameter is fixed (e.g. π = 1
3
), the tendency of the

mixture being leptokurtic increases with increasing difference between both

component variances.

We now consider the following example of a mixture with equal compo-

nent variances, unequal component means and the parameter π = 1
2
. Exam-

ple 2 in Figure 2.2 showed such a density. As one can see, the mixture is

platykurtic because less probability mass is concentrated around the mean

and in the tails than in the normal density case. Note that the example is

constructed in such a way that the component means are equidistant from

the mean of the mixture density (i.e. μ1 = μ − δ and μ2 = μ + δ), thus

the density is symmetric per construction. The lower the distance of the

component means to the mixture mean (i.e. if δ → 0), the more the mixture

distribution converges to the normal. If the distance grows, the peak of the

mixture becomes flatter and the tails thinner, as is the case of Example 2,
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in Figure 2.2. If the distance δ exceeds a certain critical point, the mixture

becomes bimodal, as shown in Example 3 of Figure 2.2. In this case, the

mentioned critical delta lies between 1 and 1.1.

So far three symmetric examples of mixture distributions have been dis-

cussed. Let us now focus the attention on some skewed examples. If we

relaxed some of above restrictions, e.g. if in Example 2 the component den-

sities were not equally weighted (i.e. π �= 1
2
), or if the component variances

were unequal, or if the component means were not equidistant from the

mixture mean, then one possible result could be that the mixture density be-

comes skewed. Note, that the inequality of the component means is condicio

sine qua non for asymmetry of a mixture of normals. It is not, however, a

sufficient condition, as can be seen in Examples 2 or 3. Examples 4 and 5

from Figure 2.2 depict instances for a right-skewed and left-skewed density,

respectively. The examples are constructed in such a way that the right-

skewed density is simultaneously platykurtic and the left-skewed density is

leptokurtic, although reverse cases are, of course, also possible. As there are

a number of cases in which the mixture of normals is skewed, a discussion

on the behavior of the mixture conditional on its parameter will be omitted.

Instead, one more example will be given, since – as was the case with the

leptokurtic and left-skewed distributions – this could be very interesting for

statistical description of financial time series.

Example 6 in Figure 2.2 presents a mixture density with an outlier. Note

that both curves, the normal and the mixture density, are almost equal. The

only one difference being that the probability of an extreme event x ≤ −4

occurring is 0.23‰ for the normal distribution and 1.01% for the mixture

of normals (the latter being about 43 times more probable), see Section

2.1.1 and Table 2.1. Thus, if real data were distributed as in Example 6, a
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“blind” usage of a normal distribution would ignore the possibility of extreme

events. Due to the fact that the “worst case” scenario in the financial risk

management is of particular interest, the next Section will introduce the

Markov switching regime model - the dynamic version of the mixture model.

2.7 Markov switching model

2.7.1 Definition of Markov switching model

Markov switching models were introduced by Hamilton (1989), who modeled

quarterly GDP growth rate as

yt = μzt+φ1(yt−1−μzt−1)+φ2(yt−2−μzt−2)+φ3(yt−3−μzt−3)+φ4(yt−4−μzt−4)+εt

(2.65)

with εt ∼ N(0, σ2). The main idea of the model was that the mean can

“shift” between two states, which can be interpreted as the “normal growth

phase” with a mean μ1 and “recession” with mean a μ2 (μ2 < μ1). As

the state of the economy is not observable in the real world, it was modeled

with a latent random variable zt. Hamilton proposed modeling the transition

between states as a Markov chain

pji = Pr[Zt = j|Zt−1 = i], with

2∑
j=1

pji = 1, and i ∈ {1, 2}.

In this thesis a wider definition will be used.

Definition 2.59 (Markov switching process) Let (Ω,F ,P) be a proba-

bility space, let (Ztn)tn≥0 (where tn = nτ , n ∈ N and τ is a fixed positive

number) be a Markov chain with ergodic transition matrix PPP = (pji)i,j∈K and

state space K = {1, 2, . . . , K}. Furthermore let (Yt)t≥0 be a stochastic process
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independent from process (Ztn)tn≥0 and let

ytn = xxx′tnβββj + εtn , with εtn ∼ N(0, σ2
j ), (2.66)

where xxx′tn = (1, ytn−1, . . . , ytn−r) denotes the vector of lagged exogenous vari-

ables, βββ ′
j = (μj, φ1(j), . . . , φr(j)) is the vector of auto-regression coefficients if

the state process Ztn is in state j ∈ K, σ2
j is variance in state Ztn = j, and

r ∈ N is the order. The transition probability from past state i into current

state j is given by

pji = Pr[Ztn = j|Ztn−1 = i], with i, j ∈ K and
∑
j∈K

pji = 1. (2.67)

Consequently the stochastic process (Yt) is called Markov switching process,

or Hidden Markov process, or regime switching process, equivalently. The

matrix PPP is called the transition matrix.

Notation 2.60 (Markov switching model) Henceforth, the Markov switch-

ing model will be referred to as the MS(m-s)-AR(r) model, where m ∈ {1, K}

denotes the number of βββ vectors, s ∈ {1, K} denotes the number of variances

and r ∈ N the order of the auto-regression.

Example 2.61 For example MS(1-2)-AR(3) denotes the model

ytn =

⎧⎪⎨⎪⎩μ+ φ1ytn−1 + φ2ytn−2 + φ3ytn−3 + εtn , εtn ∼ N(0, σ2
1), if ztn = 1

μ+ φ1ytn−1 + φ2ytn−2 + φ3ytn−3 + εtn , εtn ∼ N(0, σ2
2), if ztn = 2

,

MS(3-1)-AR(2) denotes the model

ytn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ1 + φ1(1)ytn−1 + φ2(1)ytn−2 + εtn , εtn ∼ N(0, σ2), if ztn = 1

μ2 + φ1(2)ytn−1 + φ2(2)ytn−2 + εtn , εtn ∼ N(0, σ2), if ztn = 2

μ3 + φ1(3)ytn−1 + φ2(3)ytn−2 + εtn , εtn ∼ N(0, σ2), if ztn = 3

,
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MS(3-3)-AR(1) denotes the model

ytn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ1 + φ1(1)ytn−1 + εtn , εtn ∼ N(0, σ2

1), if ztn = 1

μ2 + φ1(2)ytn−1 + εtn , εtn ∼ N(0, σ2
2), if ztn = 2

μ3 + φ1(3)ytn−1 + εtn , εtn ∼ N(0, σ2
3), if ztn = 3

.

Remark 2.62 Note that an AR(r) process is a special case of a Markov

switching model MS(m-s)-AR(r) with one state (i.e. m = s = 1, K = {1}

and PPP = 1).

Theorem 2.63 Let (Yt)t≥0 be a Markov switching process with transition

matrix PPP and state variable process (Ztn)tn≥0. Then the distribution πππ of the

state variable is unique.

Proof. From Definition 2.57 it follows that the state variable is distributed

by the distribution πππ = (Pr[Ztn = i])i∈K. According to Definition 2.59, the

transition matrix PPP = (Pr[Ztn = j|Ztn−1 = i])i,j∈K is ergodic. Thus, as a

result from Theorem 2.35, a unique vector πππ = PPP ′πππ exists, which completes

the proof.

Corollary 2.64 Note that from Theorem 2.36 and Theorem 2.63 it follows

that the stationary distribution of the state variable z is given by

πππ = (III −PPP ′ +EEE)−1111, (2.68)

with the special case of

πππ =

⎛⎝ 1−p22

2−p11−p22

1−p11

2−p11−p22

⎞⎠ (2.69)

if the number of states equals K = 2.
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2.7.2 Special cases of Markov switching models

2.7.2.1 Brownian motion with Markov switching

Let us now consider some special cases of the Markov switching model.

Definition 2.65 (GBM with Markov switching) Let (Ω,F ,P) be a prob-

ability space, let (Ztn)tn≥0 (where tn = nτ , n ∈ N and τ is a fixed positive

number) be a Markov chain with ergodic transition matrix PPP and state space

K = {1, 2, . . . , K}. Let (St)t≥0 be a stochastic process and (Wt)t≥0 be a

Wiener process, with Ft = σ{Zt, St,Wt : t ≥ 0} being an associated filtra-

tion, and μ(Ztn) and σ(Ztn) being associated processes. Then, for each n ∈ N

the Itô process

St = St0 +

∫ t

t0

μ(Zu)Sudu+

∫ t

t0

σ(Zu)SudWu, for t ∈ [tn, tn+1) (2.70)

is called the geometric Brownian motion with Markov switching.

The geometric Brownian motion with Markov switching has the following

density function.

Theorem 2.66 (Joint density of GBM with Markov switching) Let

(St)t≥0 be a geometric Brownian motion with Markov switching and let (Ztn)tn≥0

(where tn = nτ , n ∈ N and τ is a fixed positive number) be a Markov chain.

Then the joint conditional density function f(Stn, Ztn |Stn−1 = s, Ztn−1 = i) :

R ×K → R of the pair (Stn , Ztn) is given by

f(Stn = x, Ztn = j|Stn−1 = s, Ztn−1 = i)

=
pji√

2πσj

√
τx

exp

⎡⎣−1

2

(
ln x

s
− (μj − 1

2
σ2

j )τ

σj

√
τ

)2
⎤⎦

for x > 0 (Webb 2003, p. 19).
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Proof. Let g be a measurable a Borel function. Note that

E[g(Stn , Ztn)|Stn−1 = s, Ztn−1 = i]

=
∑
j∈K

E[g(Stn , Ztn)|Stn−1 = s, Ztn−1 = i, Ztn = j] × Pr[Ztn = j|Ztn−1 = i]

=
∑
j∈K

pjiE
[
g
(
se(μj− 1

2
σ2

j )τ+σj(Wtn−Wtn−1 ), j
)]
.

One has to keep in mind that
(Wtn−Wtn−1)

√
τ

is standard normally distributed

and that the expectation equals∑
j∈K

pji

∫ ∞

−∞
g
(
se(μj− 1

2
σ2

j )τ+σj(Wtn−Wtn−1 ), j
) 1√

2π
e

−z2

2 dz.

Now substitute x = se(μj− 1
2
σ2

j )τ+σj(Wtn−Wtn−1), which yields∑
j∈K

pji

∫ ∞

0

g(x, j)pji
1√

2πσj

√
τx

exp

[
−1

2

(
ln x

s
− (μj − σ2

j )τ

σj

√
τ

)2
]
.

By choosing g(Stn, Ztn) = I[Stn≤s′],Ztn=j′ the proof is completed (Webb 2003,

p. 19-20).

The geometric Brownian motion with Markov switching has the following

density function.

Theorem 2.67 (Density of GBM with Markov switching) Let (St)t≥0

be a geometric Brownian motion with Markov switching and let (Ztn)tn≥0

(where tn = nτ , n ∈ N and τ is a fixed positive number) be a Markov chain,

then the conditional density function f(Stn |Stn−1 = s, Ztn−1 = i) : R×K → R

of the pair (Stn , Ztn) is given by

f(Stn = x|Stn−1 = s, Ztn−1 = i)

=
∑
j∈K

pji√
2πσj

√
τx

exp

⎡⎣−1

2

(
ln x

s
− (μj − 1

2
σ2

j )τ

σj

√
τ

)2
⎤⎦

for x > 0 (Webb 2003, p. 20).

Proof. The proof is similar to the proof of Theorem 2.66.
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2.7.2.2 Vasiček model with Markov switching

The Vasiček process with Markov switching is defined in analogy to the GBM

with Markov switching and takes the following form.

Definition 2.68 (Vasiček with Markov switching) Let (Ω,F ,P) be a

probability space, let (Ztn)tn≥0 (where tn = nτ , n ∈ N and τ is a fixed posi-

tive number) be a Markov chain with ergodic transition matrix PPP and state

space K = {1, 2, . . . , K}. Let (Rt)t≥0 be a stochastic process and (Wt)t≥0 be

a Wiener process, with Ft = σ{Zt, Rt,Wt : t ≥ 0} being an associated filtra-

tion, and μ(Ztn) and σ(Ztn) being associated processes. Then for each n ∈ N

the Itô process

Rt = Rt0 +

∫ t

t0

α[μ(Zu)−Ru]du+

∫ t

t0

σ(Zu)dWu, for t ∈ [tn, tn+1) (2.71)

is called the Vasiček process with Markov switching.

In Section 2.4.2 we have shown how to discretize the Vasiček model to an

AR(1) model. Analogously, the Vasiček process with Markov switching can

be descretized to a an AR(1) model with Markov switching:

Rtn = c(Ztn = j) + φ(Ztn = j)Rtn−1 + εtn,

εtn ∼ N
(

0,
σ(Ztn = j)2

2α(Ztn = j)

(
1 − e−2α(Ztn=j)

))
, (2.72)

pji = Pr[Ztn = j|Ztn−1 = i], 0 ≤ pji ≤ 1,

K∑
j=1

pji = 1, ∀i, j = 1, . . . , K,

(2.73)

with constants c(Ztn = j) = μ(Ztn = j)(1 − e−α(Ztn=j)) and autoregressive

coefficients φ(Ztn = j) = e−α(Ztn=j) (Hamilton 1990, p. 43).
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2.8 Estimation of the Markov switching model

2.8.1 Log-likelihood function

The Markov switching model can be estimated with the maximum likelihood

estimation (MLE) method.

The estimation of parameters of the model with MLE relies on the maxi-

mization of the log-likelihood function. The parameters are estimated if the

first derivative (gradient) of the log-likelihood function is equal to a vector

of 0s
∂L(θ)

∂θ
= 0. (2.74)

Thus, one has to determine the log-likelihood function:

L(Y ;θθθ) = ln(f ;θθθ)

=
T∑

tn=1

ln

(
K∑

j=1

K∑
i=1

f(ytn |Ztn = j, Ztn−1 = i,Ytn−1) Pr[Ztn = j, Ztn−1 = i,Ytn−1 ]

)
(2.75)

(Kim and Nelson 1999, p. 65). The first term on the right-hand side is given

by

f(ytn |Ztn = j, Ztn−1 = i,Ytn−1)

=
1

(2π)n/2 det(Σj)1/2
exp

{
−1

2
(ytn − x′

tnβtn)′(Σj)
−1(ytn − x′

tnβtn)

}
(2.76)

and the second term is the joint distribution of ztn and ztn−1 .

Unfortunately, the state variable Z cannot be observed. Thus, the clas-

sical version of the MLE algorithm cannot be applied. Instead, Hamilton

(1989) proposed using the EM algorithm. In Section 2.8.3 we introduce it,
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but first we will discuss how to deal with the problem of estimating the latent

state variable Z.

2.8.2 Inference about the unobservable state variable

2.8.2.1 Filter of Hamilton (1989)

Hamilton (1989) proposed inferring joint probabilities Pr[ztn , ztn−1 ] from in-

formation contained in the observed history Ytn = {yt1 , yt2 . . . , ytn}.

Algorithm 2.69 (Filter of Hamilton 1989)

F1. At the beginning of period tn, compute for all i, j = 1, . . . , K the joint

probability given for the past information set Ytn−1 : Pr[Ztn = j, Ztn−1 =

i|Ytn−1 ] from filtered probabilities Pr[Ztn−1 = i|Ytn−1 ]

Pr[Ztn = j, Ztn−1 = i|Ytn−1 ] = Pr[Ztn−1 = i|Ytn−1 ] Pr[Ztn = j|Ztn−1 = i],

(2.77)

where Pr[Ztn = j|Ztn−1 = i] denotes the transition probability from

equation (2.67) and filtered probabilities Pr[Ztn−1 = i|Ytn−1 ] are given

from the previous iteration tn−1 from step F4.

F2. Compute the marginal density

f(ytn |Ytn−1) =
K∑

j=1

K∑
i=1

f(ytn , Ztn = j, Ztn−1 = i|Ytn−1)

=
K∑

j=1

K∑
i=1

f(ytn |Ztn = j, Ztn−1 = i,Ytn−1)

× Pr[Ztn = j, Ztn−1 = i|Ytn−1 ].

(2.78)

F3. Now the information included in the present observation ytn can be

taken into account. Compute
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Pr[Ztn = j, Ztn−1 = i|Ytn ] = Pr[Ztn = j, Ztn−1 = i|ytn ,Ytn−1 ]

=
f(Ztn = j, Ztn−1 = i,ytn |Ytn−1)

f(ytn |Ytn−1)

=
f(ytn |Ztn = j, Ztn−1 = i,Ytn−1) Pr[Ztn = j, Ztn−1 = i|Ytn−1 ]∑K

j=1

∑K
i=1 f(ytn |Ztn = j, Ztn−1 = i,Ytn−1) Pr[Ztn = j, Ztn−1 = i|Ytn−1 ]

(2.79)

for all i, j = 1, . . . , K.

F4. Lastly, for all j = 1, . . . , K compute the filtered unconditional probabil-

ity, which will be the input for the next iteration tn+1 (step F1)

Pr[Ztn = j|Ytn ] =

K∑
i=1

Pr[Ztn = j, Ztn−1 = i|Ytn ]. (2.80)

F5. Repeat steps F1-F4 for all observations tn = t1, t2, . . . , T .

As input for the first iteration (in t1), use the stationary probabilities

from equation (2.68) as the filtered probabilities Pr[Zt1 |Yt1 ] (Kim and

Nelson 1999, p. 66-68).

2.8.2.2 Smoother of Kim (1994)

The filtered joint probabilities Pr[ztn , ztn−1 |Ytn ] are based on all information

available until time tn (i.e., yt1 , . . . , ytn), but not on the information of the

full sample (i.e., ytn+1 , . . . , yT ). The full information set YT can be used by

smoothing the probabilities. The smoothing algorithm of Kim (1994)10 gives

the following inferences of the probabilities based on the whole information

set YT .

10Which is an improvement of the smoother proposed by Hamilton (1989) and Lam

(1990).
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Algorithm 2.70 (Smoother of Kim 1994)

S1. At time tn, compute for all j, k = 1, . . . , K the joint probabilities that

the model is in the j-th state in current period (Ztn = j) and in the

k-th state in the next period (Ztn+1 = k) given the whole information

set YT

Pr[Ztn = j, Ztn+1 = k|YT ]

= Pr[Ztn+1 = k|YT ] × Pr[Ztn = j|Ztn+1 = k,YT ]

= Pr[Ztn+1 = k|YT ] × Pr[Ztn = j|Ztn+1 = k,Ytn ]

=
Pr[Ztn+1 = k|YT ] × Pr[Ztn = j, Ztn+1 = k|Ytn ]

Pr[Ztn+1 = k|Ytn ]

=
Pr[Ztn+1 = k|YT ] × Pr[Ztn = j|Ytn ] × Pr[Ztn+1 = k|Ztn = j]

Pr[Ztn+1 = k|Ytn ]

(2.81)

whereas Pr[Ztn+1 = k|YT ] was determined in the previous iteration (step

S2) at time tn+1, Pr[Ztn = j|Ytn ] and Pr[Ztn+1 = k|Ytn ] are the filtered

probabilities from equation (2.80) (step F4), and Pr[Ztn+1 = k|Ztn = j]

is the transition probability from equation (2.67).

S2. Now compute the smoothed unconditional probability for all j = 1, . . . , K

which will be the input for the next iteration tn+1 (step S1)

Pr[Ztn = j|YT ] =

K∑
k=1

Pr[Ztn = j, Ztn+1 = k|YT ] (2.82)

S3. Iterate steps S1-S2 backwards for tn = T − 1, . . . , 1 (Kim and Nelson

1999, p. 68-70).

The difference between filtered and smoothed probabilities is depicted

in Figure 2.3. It is straightforward to see that the filtered probability curve
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Figure 2.3: Filtered and smoothed probabilities: REXP(0%)-DAX30(100%)

- MS(1-2)

Note:
The dashed line depicts the filtered probabilities Pr[Ztn = 1|Ytn ] and the solid line the
smoothed probabilities Pr[Ztn = 1|YT ] for the low volatility regime. These probabilities
are a product of the EM algorithm; produced by estimating the MS(1-2) model for the
DAX30 log-returns.

(dashed line) has a more irregular shape than the smoothed probability curve

(solid line). The reason is that to estimate smoothed probabilities one uses

more information, i.e. the whole information set YT , than to estimate filtered

probabilities, i.e., only information Ytn available up to the estimation time

point tn.

2.8.3 EM Algorithm

Having shown how to compute probabilities of the unobserved state variable,

we can now describe the EM algorithm introduced by Dempster, Laird, and

Rubin (1977) to estimate parameters of time series with unobserved variables

(or missing observations). The EM algorithm consists of two steps which are

repeated until the estimated parameter vector θ̂ converges to the maximum

likelihood estimator θ̂MLE

lim
l→∞

θ̂ = θ̂MLE . (2.83)

Expectation step Establishment of expected realizations of unobserved
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variable ẐT,l = {ẑt1,l, ẑt2,l, . . . , ẑT,l} conditional on the estimated pa-

rameter vector θ̂l−1 from the last iteration l − 1.

Maximization step Maximizing the log-likelihood function with respect

to parameters of the model (θ̂l) gives the expected realizations of the

unobserved state variable Z (ẐT,l) obtained from the expectation step.

Now the particular version of the EM algorithm developed by Hamilton

(1990) – for a general case of an r-dimensional MS model of the Kth order

yyytn =

⎛⎜⎜⎜⎝
xxx′1,tnβββ1,j

· · ·

xxx′r,tnβββr,j

⎞⎟⎟⎟⎠+ εεεtn , with εεεtn ∼ N(0,ΩΩΩj), (2.84)

pji = Pr[Ztn = j|Ztn−1 = i], with i, j ∈ K and
∑
j∈K

pji = 1, (2.85)

where xxx′k,tn
= (1, ytn−1, . . . , ytn−pk

) denotes the vector of lagged exogenous

variables, βββ ′
k,j = (μj, φk,1(j), . . . , φk,pk(j)) is the vector of auto-regression coef-

ficients if the state process Ztn is in state j ∈ K, Ωj is the variance matrix in

state Ztn = j, and pk ∈ N is the order of the k-th dimension (k = 1, . . . , r) –

can be introduced:

Algorithm 2.71 (EM algorithm for the MS models)

EM1. Expectation step

EM1.1. Compute the filtered probabilities as in F1-F5 for tn = t1, t2, . . . , T .

EM1.2. Compute the smoothed probabilities as in S1-S3, for tn = T −

1, . . . , t1.

For the first iteration l = 1 take the arbitrary initial guesses of the

parameter vector θ̂0. For all the following iterations l = 2, . . . use

the output of the maximization step EM2 as the parameter vector

θ̂l−1.
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EM2. Maximization step

EM2.1. Compute the transition probabilities11

pl
ji =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

PT
tn=2+pmax

Pr[Ztn=j,Ztn−1=i|YT ;θ̂l−1]PT
tn=2+pmax

Pr[Ztn−1=i|YT ;θ̂l−1]
if j = 1, . . . , K − 1,

i = 1, . . . , K

1 −
∑K−1

j=1 pl
ji if j = K, i = 1, . . . , K.

(2.86)

EM2.2. for each dimension k (k = 1, . . . , r) compute the betas

βl
k,j =

(
T∑

tn=1+pmax

xk,tnx′
k,tn Pr[Ztn = j|YT ; θ̂l−1]

)−1

×
(

T∑
tn=1+pmax

xk,tny′
k,tn Pr[Ztn = j|YT ; θ̂l−1]

) (2.87)

if mk = K and pk > 1 or

βl
k,j = μl

k,j =

∑T
tn=1+pmax

yk,tny′
k,tn

Pr
[
Ztn = j|YT ; θ̂l−1

]
∑T

tn=1+pmax
Pr
[
Ztn = j|YT ; θ̂l−1

] (2.88)

if mk = K and pk = 1 or

βl
j =

K∑
j=1

(
T∑

tn=1+pmax

xk,tnx′
k,tn Pr[Ztn = j|YT ; θ̂l−1]

)−1

×
(

T∑
tn=1+pmax

xk,tny′
k,tn Pr[Ztn = j|YT ; θ̂l−1]

) (2.89)

if mk = 1 and pk > 1 or

βl
j = μl

j =

K∑
j=1

∑T
tn=1+pmax

yk,tny′
k,tn

Pr[Ztn = j|YT ; θ̂l−1]

T − pmax
(2.90)

11Usually, for K=2 probabilities pl
11 and pl

22 are computed instead of pl
11 and pl

12. The

computation of pl
21 = 1 − pl

11 and pl
12 = 1 − pl

22 is thus enabled.
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if mk = 1 and pk = 1. Where mk indicates whether the beta vector

is dependent on the regime (mk = K) or not (mk = 1), pk denotes

the order of the AR(pk)-process in the k-th dimension, and pmax

the highest order among all dimensions.

EM2.3. Compute the variances

Ωl
j =

∑T
tn=1+pmax

(ytn − εεεl−1
tn )(ytn − εεεl−1

tn )′ Pr
[
Ztn = j|YT ; θ̂l−1

]
∑T

tn=1+pmax
Pr
[
Ztn = j|YT ; θ̂l−1

]
(2.91)

for s = K or

Ωl =

∑T
tn=1+pmax

∑K
j=1(ytn − εεεl−1

tn )(ytn − εεεl−1
tn )′ Pr

[
Ztn = j|YT ; θ̂l−1

]
T − pmax

(2.92)

for s = 1. Where s indicates whether the variance matrix is de-

pendent on the regime (s = K) or not (s = 1) (Hamilton 1990,

section 4).

2.9 Empirical results of the MS

2.9.1 DAX-REXP portfolios

At the end of this Chapter, several Markov switching models will be esti-

mated. For this purpose, 13 portfolios were constructed. All portfolios con-

sist of German bonds and stocks. As the proxy for stocks the German Stock

Index (DAX30) – a German blue chip index – was used. The bond portfolio

was proxied with the German Bond Performance Index (REXP) – a synthetic

index for German state bonds. The portfolios were constructed as follows.

It was assumed that on 31/12/1974 DEM 195.58 (= ¤100) was invested in
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such a way that x% of the sum was invested in the REXP index and (100-

x)% in the DAX30 index (with x=0,10,20,25,30,40,50,60,70,75,80,90,100).

The portfolios were held until 31/12/2004 and then sold. From the value of

the portfolios, monthly log-returns were computed and the MS models were

estimated.

2.9.2 Description of the estimation

For all thirteen portfolios six Markov switching models of the second order

were estimated: the heteroskedastic models with regime independent mean

equation (i.e. MS(1-2)-type models), homoskedastic models with regime

dependent mean equation (i.e. MS(2-1)-type models), and heteroskedas-

tic models with regime dependent mean equation (i.e. MS(2-2)-type mod-

els). For all cases, a variant with and without the auto-regression term was

estimated. Additionally, the geometric Brownian motion (GBM) and au-

toregressive model of the first order (AR(1)) were estimated for comparison.

The linear models were estimated with the maximum likelihood estimation

method. The Markov switching models were estimated using the EM al-

gorithm described in Section 2.8.3. As the EM algorithm does not ensure

that the estimated parameter vector lies on the global maximum, the esti-

mation was repeated 200 times for each estimated model and time series.

This approach was used inter alia by Rydén, Teräsvirta, and Åsbrink (1998).

The initial guess was randomly drawn from the distribution U(a, b), where

U(·, ·) denotes a uniform distribution over the (a, b) interval. The mean pa-

rameters μj were drawn from U(−3μ̂, 3μ̂), the variance parameters σ2
j were

drawn from U(0, 9σ̂2), the auto-regression parameters φ1(j) were drawn from

U(−1, 1) and the transition probabilities pii were drawn from U(0.5, 1), where

μ̂ and σ̂2 denote the empirical mean and variance of the estimated sample,
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respectively. In each estimation iteration, it was tested whether the proba-

bility parameters pji ∈ [0.0001, 0.9999] and whether the variance parameters

σ2
j ≥ 10−10 to prevent a collapse of the algorithm. If one of these two bound-

ary restrictions was violated, the value of the parameter was set to be equal to

the boundary condition. Each EM algorithm was iterated until the increase

of the log-likelihood function fell short of 10−8. After running the EM algo-

rithm 200 times the results were controlled for anomalies. The behavior of

smoothed probabilities was tested in particular. If, for the entire sample, the

estimated smoothed probabilities were equal to 1 for a particular state (i.e.

if Pr[Ztn = j|YT ] = 1, ∀ t = 1, . . . , T, ∃ j ∈ K) the estimation parameter

was rejected, due to the over-parametrization.12 Then, from the remaining

estimation runs, the one with the highest log-likelihood function was chosen

as being the closest to the true parameter vector.

The procedure was repeated for the models with the restriction p11 =

1 − p22, as this was required for the tests, see Section 3.4.2.

2.9.3 Estimation results

Tables B.1-B.13 from Appendix B show results of the estimation for all thir-

teen portfolios.

The parameters were ordered in two states. In the case, of heteroskedas-

tic models, the first state was defined as the “low volatility” state and the

second state was defined as the “high volatility” state (i.e. σ2
1 < σ2

2). In the

homoskedastic case the first state was defined as the “high mean” state and

12This means that the state variable was with certainty in one state through the whale

sample. Thus, the algorithm yielded an arithmetic Brownian motion (or Vasiček model)

without Markov switching and with redundant parameters from the second regime and a

redundant transition matrix.
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Table 2.2: Significance of the MS parameter (1.1975-12.2004)

MS(1-1) MS(1-2) MS(2-1) MS(2-2)

GBM AR(1) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

0% 100% ++ ++ ++ +

10% 90% ++ ++ ++ +

20% 80% ++ ++ ++ +

25% 75% ++ ++ ++ +

30% 70% ++ ++ ++ +

40% 60% ++ ++ +

50% 50% ++ ++ +

60% 40% ++ ++ +

70% 30% ++ ++ +

75% 25% ++ ++ ++

80% 20% ++ ++ ++

90% 10% ++ ++ ++ ++ +

100% 0% ++ ++ ++ ++ +

Note:
MS(m-s) stands for a Markov switching model with m mean equations and s regimes
for the variance. GBM denotes no auto-regression in the mean equation(s) and AR(1)
an auto-regression of first order in each mean equation. ++ signifies that all parameters
are significantly different from zero at minimum 5% significance level, + denotes that all
parameters are significantly different from zero at minimum 5% significance level, excluding
the μ2. These models are treated as fully significant models with parameter μ2 = 0.

the second state as the “low mean” state (i.e. μ1 > μ2). In the case of the

MS(2-2)-type models, the second state is almost always not only “high vari-

ance” state but also “low mean”. The only exceptions were portfolios with

a 75% and 80% bond proportion, where the second state is a “high mean”,

“high variance” state.

Table 2.2 shows in which models and in which portfolios all parameters are

different from zero at the 5% significance level (the two-side t-test was used).

This holds true for the GBM model and the MS(1-2) model for all portfolios.

For the AR(1) and MS(1-2)-AR(1), all parameters are significantely different

from zero in two cases: for the portfolio with a 90% bond proportion and for

the pure bond portfolio. For the MS(2-1) model, parameters are non zero for

all portfolios with a maximum of 30% stock engagement. For the MS(2-2)

model, the parameters are significantly different from zero for a 75% and an
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Table 2.3: Time intervals with a high volatility state for the MS(1-2) model

Portfolio composition Periods with a high volatility regime

REXP DAX30

0% 100% 01/1975-07/1975, 05/1985-03/1988, 10/1989-10/1990, 06/1997-11/2003

10% 90% 01/1975-07/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

20% 80% 01/1975-07/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

25% 75% 01/1975-06/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

30% 70% 01/1975-06/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

40% 60% 01/1975-05/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

50% 50% 01/1975-05/1975, 05/1985-03/1988, 10/1989-11/1990, 06/1997-09/2003

60% 40% 01/1975-05/1975, 03/1980-04/1980, 02/1983-05/1983, 05/1985-03/1988, 10/1989-12/1990,

12/1993-01/1994, 05/1997-04/2000, 11/2000-07/2003

70% 30% 01/1975-07/1975, 09/1979-07/1981, 11/1982-08/1983, 05/1985-04/1988, 09/1989-03/1991,

06/1993-09/1994, 05/1997-04/2000, 01/2001-07/2003

75% 25% 01/1975-05/1977, 01/1979-12/2003

80% 20% 01/1975-05/1977, 01/1979-08/2003

90% 10% 01/1975-02/1975, 08/1979-03/1983, 11/1989-10/1990

100% 0% 10/1979-11/1982

Note:
The table shows periods in which the MS(1-2) model features a high volatility state (i.e.
periods with the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

80% bond portfolio. For the MS(2-1)-AR(1) and the MS(2-2)-AR(1) models,

there are no portfolios with all parameters significantly different from zero.

If one relaxes the assumption that all parameters have to be different

from zero and allows one of the states to have a zero intercept, then by

all portfolios pass this test for the MS(2-2) model and, obviously, for all

the other cases mentioned above. This is a plausible assumption. Merely

testing if one of the other parameters equals zero does not make sense. If

the auto-regression parameter is zero, than the auto-regression model should

be rejected. Likewise, if the variance or one of the transition probabilities

equals zero, then the estimations constraints (see Section 2.9.2) have been

violated and this model should also be rejected. Quite contrary to the case

with one intercept that equals zero, which makes economic sense: It can be

interpreted, that in one state the value of the portfolio grows (or falls) and

in the second state, it is expected to stay unchanged.

Figures C.1-C.13 from Appendix C show in which state the price process

was in the period from 1975-2004. A first glance at the figures shows, that
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Table 2.4: Time intervals with a high volatility state for the MS(1-2)-AR(1)

model

Portfolio composition Periods with a high volatility regime

REXP DAX30

0% 100% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

10% 90% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

20% 80% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

25% 75% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

30% 70% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

40% 60% 05/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

50% 50% 05/1985-03/1988, 10/1989-12/1990, 06/1997-09/2003

60% 40% 03/1980-04/1980, 06/1985-03/1988, 10/1989-12/1990, 05/1997-04/2000, 11/2000-07/2003

70% 30% 02/1975, 10/1979-07/1981, 12/1982-07/1983, 05/1985-04/1988, 09/1989-03/1991,

07/1993-09/1994, 05/1997-04/2000, 01/2001-07/2003

75% 25% 02/1975-05/1977, 01/1979-12/2003

80% 20% 02/1975-05/1977, 01/1979-08/2003

90% 10% 09/1979-05/1983, 11/1989-11/1990

100% 0% 10/1979-10/1982

Note:
The table shows periods in which the MS(1-2)-AR(1) model features a high volatility state
(i.e. periods with the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

the MS(1-2), MS(1-2)-AR(1), MS(2-2), and MS(2-2)-AR(1) models behave

similarly for all portfolios. For portfolios with a bond proportion between

0% and 50%, the high volatility regime (i.e. periods with the smoothed

probability Pr[Ztn = 2|YT ] > 0.5) occurs almost in the same periods. The

MS(1-2) and the MS(2-2) model feature the second state at the begining of

1975. The high volatility period lasts from the begining of the year until

February or March, in the case of the MS(2-2) model, or until May, June or

July in the case of the MS(1-2) model (see Tables 2.3 and 2.5 for details).

All heteroscedastic models feature the high voaltility state from mid-1985 to

March 1988, from October 1989 to the end of 1990, and from June 1997 to

mid/end 2003 (see Tables 2.3-2.6 for details). It is straightforward to see

that these periods cover the naked-eye-observation of the DAX30 time series

made in Section 2.1.2. This shows that portfolios mentioned are dominated

by the stock price effects.

For portfolios with a 60% and a 70% bond proportion, there are more

(mostly short) periods with a high volatility state. These are periods that
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Table 2.5: Time intervals with a high volatility state for the MS(2-2) model

Portfolio composition Periods with a high volatility regime

REXP DAX30

0% 100% 01/1975-02/1975, 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003

10% 90% 01/1975-02/1975, 06/1985-3/1988, 10/1989-10/1990, 06/1997-10/2003

20% 80% 01/1975-03/1975, 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003

25% 75% 01/1975-03/1975, 06/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

30% 70% 01/1975-03/1975, 06/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

40% 60% 01/1975-03/1975, 07/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

50% 50% 01/1975-03/1975, 07/1985-03/1988, 10/1989-11/1990, 06/1997-07/2003

60% 40% 01/1975-03/1975, 03/1980-04/1980, 08/1985-03/1987, 05/1987-03/1988, 10/1989-11/1990,

06/1997-04/2000, 11/2000-06/2003

70% 30% 01/1975-05/1975, 04/1979-07/1981, 02/1983-06/1983, 08/1985-04/1988, 09/1989-02/1991,

10/1993-09/1994, 06/1997-06/2003

75% 25% 01/1975-05/1977, 02/1979-01/2004

80% 20% 01/1975-05/1977, 02/1979-10/2003

90% 10% 01/1975, 05/1979-12/1981, 10/1989-10/1990

100% 0% 10/1979-10/1982

Note:
The table shows periods in which the MS(2-2) model features a high volatility state (i.e.
periods with the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

occurred from January to June 1975, from May 1979 to June 1981, from

November 1982 to June 1983, from May 1985 to April 1988, from Septem-

ber 1989 to February 1991, from June 1993 to September 1994, and from

May 1997 to September 200313 (see Tables 2.3-2.6 for details). This would

mean that the bond effect has begun to influence the behavior of the mixed

portfolios.

For the portfolio with a 75% and an 80% bond proportion, the picture

changes entirely. There are two very long intervals with a high volatility. The

first period lasts from the beginning of 1975 to May or June 1977. Afterwards

it occurs about one and a half year with low volatility and a very long period

with high volatility from the beginning of 1979 to the end of 2003 or the

beginning of 2004 (see Tables 2.3-2.6 for details). For the MS(2-2) and the

MS(2-2)-AR(1) models, the second state features not only high volatility but

also a high mean, which differs from all other portfolios (see Tables B.10 and

13The periods gives the minimum and the maximum of the intervals, for particular

portfolios and models they can be shorter, or even disappear.
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Table 2.6: Time intervals with a high volatility state for the MS(2-2)-AR(1)

model

Portfolio composition Periods with a high volatility regime

REXP DAX30

0% 100% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003

10% 90% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003

20% 80% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003

25% 75% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003

30% 70% 06/1985-03/1988, 10/1989-10/1990, 06/1997-10/2003

40% 60% 07/1985-03/1988, 10/1989-11/1990, 06/1997-10/2003

50% 50% 07/1985-03/1988, 10/1989-11/1990, 06/1997-08/2003

60% 40% 03/1980-04/1980, 10/1985-03/1988, 10/1989-11/1990, 06/1997-06/2003

70% 30% 05/1979-07/1981, 05/1983, 02/1986-04/1988, 09/1989-02/1991, 11/1993-09/1994,

06/1997-05/2003

75% 25% 02/1975-06/1977, 04/1979-12/2003

80% 20% 02/1975-06/1977, 04/1979-09/2003

90% 10% 10/1979-04/1980, 12/1980-07/1981, 05/1983-06/1983, 05/1986-09/1986, 07/1987-09/1987,

12/1989-10/1990, 02/1994, 08/1997-10/1997, 02/1999-06/1999

100% 0% 01/1980-04/1980, 01/1981-07/1981, 08/1987, 01/1990-04/1990

Note:
The table shows periods in which the MS(2-2)-AR(1) model features a high volatility state
(i.e. periods with the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

B.11).

The portfolio with a 90% bond proportion, the MS(1-2), the MS(1-2)-

AR(1), and the MS(2-2) model feature similar effects. The high volatil-

ity periods occur in early 1975 (this does not apply to the MS(2-1)-AR(1)

model), from May 1979 to June 1983, and from November 1989 to November

1990. The MS(2-2)-AR(1) model yields slightly different results, as it fea-

tures a larger number of high volatility periods than the other heteroskedastic

models. These periods are: from October 1979 to April 1980, from Decem-

ber 1980 to July 1981, from May to June 1983, from May to September

1986, from July to September 1987, from December 1989 to October 1990,

in February 1994, from August to October 1997 and from February to June

1999 (see Tables 2.3-2.6 for details).

The pure bond portfolio features a similar effect. However, the number of

high volatility periods is in this case smaller than in the 90% bond portfolio

case. For the MS(1-2), the MS(1-2)-AR(1), and the MS(2-2) model, there is
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only one period with a high volatility: from October 1979 to November 1982.

For the MS(2-2)-AR(1) model, there are four short high volatility periods:

from January to April 1980, from January to July 1981, in August 1987, and

from January to April 1994.

The MS(2-1) model features only several months with the second regime

which is defined as the low mean regime. These are months with extremely

negative log-returns. The MS(2-1)-AR(1) model behaves similarly for the

portfolios with a bond proportion ranging from 0% to 70%. For portfolios

with a bond proportion from 75% to 100% there are a number of months

with a low mean regime, which are separated by short- and mid-long periods

of the high mean periods.

Figures D.1-D.39 from Appendix D show four moments conditional on

the smoothed probability Pr[Ztn |YT ] for all 13 estimated portfolios and for

the MS(1-2), the MS(2-1), and the MS(2-2) model.14 The conditional mean

is equal to the unconditional mean in the case of the MS(1-2) model, as the

mean parameter is independent from the regime. For the MS(2-2) model,

the conditional mean varies from μ(Ztn = 1) to μ(Ztn = 2) in the way that it

is close to the first state mean in the first state, and close to the second state

mean in the second state. There are some periods in which the conditional

mean differs significantly from its bounds (i.e. μ(Ztn = 1) and μ(Ztn = 2))

which are mostly (but not necessarily) associated with the points of the

regime change. In the case of the MS(2-1) model, the conditional mean is

mostly positive and close to its upper bound equal to the μ(Ztn = 1) > 0.

There are a few observations of the conditional mean that are negatively laid

out, which are associated with the extremely negative log-returns.

14The conditional moments were computed according to formulas (2.57)-(2.60) with

Pr[Ztn = j|YT ] replacing πj (j ∈ K).
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For the MS(1-2) and the MS(2-2) model, the conditional variance varies

between the σ2(Ztn = 1) (as the lower bound) and σ2(Ztn = 2) (as the upper

bound). The conditional variance usually stays near its bound during the

sojourn in the particular regime. The deviation from the state variance is

usually (but not necessarily) associated with the regime change. For the

MS(2-1) model, the conditional variance usually stays near its lower bound

σ2(Ztn = 1). One should also note that the conditional variance jumps to a

significantly higher level for the short periods of one or two months which is

always associated to the high deviation of the log-return from its mean. This

effect is stronger for negative outliers.

The conditional skewness is constant and positive for the MS(1-2) model.

In the case of the MS(2-2) model, the conditional skewness is always non-

negative and varies between two bounds. Concerning the MS(2-1) model,

the conditional skewness is generally near zero. For short periods, it jumps

to high (negative or positive) values but reverts back to zero quickly. How-

ever, the positive jumps are rather uncommon and occur almost only if the

log-return process is in the low mean regime. The frequency and sojourn of

negative jumps increase proportionally with the increase of the bond propor-

tion in the portfolio.

The conditional excess kurtosis behaves similarly for the MS(1-2) and

MS(2-2) model. For both models it is strongly negatively correlated with the

conditional skewness of the MS(2-2) model (the exception being a 75% and

an 80% bond portfolio, where they are strongly positively correlated). This

means that if the conditional skewness for the the MS(2-2) model falls, the

conditional excess kurtosis for the MS(1-2) and the MS(2-2) model rises and

vice versa (for a 75% and an 80% bond portfolio the conditional skewness of

the MS(2-2) model and the conditional excess kurtosis for the MS(1-2) and
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MS(2-2) model change in the same direction). The excess kurtosis is non-

negative and has an lower bound by zero and some upper bound (different

for each portfolio). The conditional excess kurtosis for the MS(2-1) model

is often near zero. For short periods it jumps to high (negative or positive)

values but reverts quickly to zero. However, the negative jumps are rather

uncommon and not necesserily associated with the occurrence of the low

mean regime. The frequency and sojourn of positive jumps increase with

the increase of the bond proportion in the portfolio. The effect of the strong

negative correlation between the conditional skewness and conditional excess

kurtosis is valid for the MS(2-1) model and for all portfolios, as well.
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Chapter 3

Testing Markov switching

models

3.1 Introduction

In Section 2.1 we discussed some stylized facts about the financial time se-

ries. We mentioned there that they are often asymmetric, leptokurtotic, and

heteroscedastic; which implies that they do not follow the normal distribu-

tion. Jarque and Bera (1980) constructed a test with the null hypothesis

that a time series is normally distributed. Table 3.1 shows that for all port-

folios defined in Section 2.9.1 with the exception of the 20%-80% stock-bond

portfolio, the hypothesis of a normal distribution has to be rejected on the

5% confidential level. Therefore, we should use other models to describe the

stochasticity of these time series.

The aim of this Chapter is to test whether the Markov switching model

better describes the rate of returns of German time series than the commonly

used normal distribution. We start with the Akaike and Schwatz Information

tests (Section 3.2) and come to the conclusion that MS models are almost
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Table 3.1: Jarque-Bera test

Stock prop. 100% 90% 80% 75% 70% 60% 50%
Bond prop. 0% 10% 20% 25% 30% 40% 50%
JB test 189.3726 162.6361 136.8107 124.0592 111.3213 85.6547 59.6324
p value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

Stock prop. 40% 30% 25% 20% 10% 0%
Bond prop. 60% 70% 75% 80% 90% 100%
JB test 34.2563 13.5356 7.1833 4.3205 13.7683 49.3480
p value < 10−4 0.0012 0.0276 0.1153 0.0010 < 10−4

Note:
The table depicts the results of the Jarque-Bera test JB = T

6

(
γ2 + (κ−3)2

4

)
with null

hypothesis of normal distribution. T denotes the size, γ the skewness, and κ the kurtosis
of the sample.

always better than models from the GARCH family and the normal distri-

bution. Thus, in the remainder of the Chapter we omit GARCH models and

test only for the MS model. In Section 3.3 we show that Markov switching

models cannot be tested using standard statistical tests, such as Wald or a

likelihood ratio test. Therefore, we use several special tests for MS models

developed by Hamilton (1996) (Sections 3.4 and 3.5) and Garcia (1998) (Sec-

tion 3.6). In Section 3.7 we conclude that the MS model is superior to all

the other models studied in this Chapter.

3.2 Information criterion tests

As mentioned in the introduction, this work aims to use models with stochas-

tic volatility to price the long-term embedded guarantees. It is therefore de-

sirable to find a model which best fits the heteroscedasticity in the mixed

portfolios of REXP and DAX30.1 For this purpose, we estimated several

1For the construction of the portfolios see Section 2.9.1.
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MS,2 ARCH, GARCH, E-ARCH, E-GARCH, T-ARCH, T-GARCH models

with and without auto-regression term. Furthermore, the linear basis mod-

els (i.e. GBM and AR(1), respectively) were estimated, in order to compare

these with more sophisticated models. The MS models were estimated using

the EM algorithm described in Section 2.8.3, the models from the GARCH

family were estimated using the BHHH method (see Bollerslev (1986) or

Berndt et al. (1974)), and the linear models with the MLE approach.

A very common method for comparison of non-nested models is the

Akaike Information Criterion (AIC) introduced by Akaike (1973)

AIC=L(θ) − k, (3.1)

where L(θ) denotes the log-likelihood function for the parameter vector θ

and k the number of estimated parameters. Another useful statistic is the

Schwarz Bayesian Criterion (SBC) introduced by Schwarz (1978)

SBC=L(θ) − 0.5k ln(T ), (3.2)

where T denotes the number of observations used to estimate the model.3

The AIC and SBC statistic for estimated models are listed in Tables F.1-F.13

in the Appendix F.

Table 3.2 shows the ranking of models on the basis of the AIC statistic.

For all portfolios with a minimum stock proportion of 40% the MS(1-2) model

2In the MS family the following models will be tested. The heteroscedastic model with a

regime independent mean equation, i.e. MS(1-2) and MS(1-2)-AR(1); the heteroscedastic

model with regime switching in the mean equation, i.e. MS(2-2) and MS(2-2)-AR(1);

and the homoscedastic model with a regime dependent mean equation, i.e. MS(2-1) and

MS(2-1)-AR(1).
3In the literature there are several specifications of the AIC and SBC test statistics,

which all are equivalent. In this work the definition used by Hardy (2003, p. 62) will be

used.
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is clearly favored over all models from the GARCH family4 and models with-

out switching characteristics (e.i. GBM and AR(1)). The portfolio with 70%

bonds and 30% shares is best represented with the T-GARCH(1,1) and the

GARCH(1,1) model. First then the Markov switching models come, with

the MS(1-2) model, as the third best one. It should, however, be pointed

out that the AIC statistic of the MS(1-2) model is only 0.1503 lower than

the AIC statistic of the T-GARCH(1,1) model. This AIC statistic difference

is very low, amounting to less than 0.02‰. After the MS(1-2) model come

the E-GARCH(1,1) and the GBM model. The situation is similar for the

portfolio with the 75%-25% bond-stock proportion, the only difference being

that the E-GARCH(1,1) performs better than the MS(1-2) model.

From the portfolio with an 80% and a larger bond proportion, the mean-

reverting effects are observable. In the 80% bond portfolio, this effect is not

as univocal. In this case, the addition of the auto-regression term to the

model may increase the AIC statistic, as is the case in the MS model family.

However, there are models, such as the GARCH-typed model, in which the

auto-regression term decreases the magnitude of the statistic. Both the E-

GARCH and the T-GARCH model types do not have a clear trends. For in-

stance, the E-GARCH(1,1) model performs better than the E-GARCH(1,1)-

AR(1) but the E-ARCH(1) performs worse than the E-ARCH(1)-AR(1). For

the time series with the 80% bonds and 20% shares, the E-GARCH(1,1) is

the best model. This is followed by the GARCH(1,1), T-GARCH(1,1), and

MS(2-2)AR(1). The worst performer is the AR(1) process, when used as the

reference model. It should be stressed that the difference in the AIC statis-

4This section differentiates between the type of models (i.e. GARCH-typed models are

all ARCH(p) and GARCH(q,p) models) and the family of models (i.e. GARCH family

of models consists of all GARCH-, E-GARCH- and T-GARCH-typed models). Therefore

the family of models is a wider concept than the type of models.
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tic between the E-GARCH(1,1) and the MS(2-2)-AR(1) equals only 0.4125

which is 0.04‰ of the AIC statistic.

The portfolio with a 10% stock proportion is best fitted by the GARCH(1,1)-

AR(1) process. This is followed by both assymetric models – T-GARCH(1,1)-

AR(1) and E-GARCH(1,1)-AR(1) – then comes the MS(1-2)-AR(1) and the

reference model AR(1) in last place. The situation for the pure bond portolio

changes. The Markov switching models with the MS(1-2)-AR(1) model as

representative are, once again, the best performers. Then follow the GARCH

model family (with the auto-regressive term) and, lastly, the AR(1) model.

The SBC statistic gives similar results to those of the AIC statistic (see

Table 3.3). For portfolios with the stock proportion between 50% and 100%

the MS(1-2) model is the best choice. The portfolio with 40% shares is best

fitted with the GARCH(1,1) model. However, the second best model is the

MS(1-2) model, the SBC statistic being only 0.1393 lower (amounting to less

than 0.02‰ of the SBC statistic). This is followed by the T-GARCH(1,1),

E-GARCH(1,1), and the reference GBM model. The portfolio with a 30%

share proportion is also best fitted with the GARCH(1,1) model. However,

it is followed by the GBM. Then, listed according to suitability, come the

T-GARCH(1,1), MS(1-2), and E-GARCH(1,1) model, with differences in the

SBC statistic lower than 0.5 points. The situation of the 75%-25% REXP-

DAX30 portfolio is similar. The Markov switching model family, with its

representative MS(1-2) model is the worst performer. In the case of the

portfolio with 20% stock investment, the ranking of model types is identical

to that of the previous portfolio. The difference lies in the fact that the

ARCH(1) is the best of the GARCH-typed models and the T-ARCH(1) pro-

cess the best of the T-GARCH-typed models. Only the best model of the

E-GARCH-typed models features the GARCH coefficient. It should be poin-
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ted out that the SBC statistic decreases with addition of the auto-regression

term for all tested models. There are two exceptions. According to the SBC

test, the mean reversion can be found only in portfolios with a maximum

of 10% of the stock engagement. The 90%-10% REXP-DAX30 portfolio

is best fitted with the GARCH(1,1)-AR(1) model. This is followed by the

T-GARCH(1,1)-AR(1), E-GARCH(1,1)-AR(1), the MS(1-2)-AR(1), and the

AR(1) process. The Markov switching model family performs better for the

pure bond investment portfolio, where its representative MS(1-2)-AR(1) is

the second best after the GARCH(1,1)-AR(1) process. They are followed by

the T-GARCH(1,1)-AR(1) and the E-GARCH(1,1)-AR(1) model. The worst

performer is the reference AR(1) model.

According to Tables 3.2 and 3.3, it can be seen that the portfolios with

very little stock proportion exhibit mean reversion effects. However, it would

be interesting to see what happens if the mean-reverting effects would be dis-

regarded. The AIC statistic for portfolios with a 20% and 10% stock engage-

ment prefers the E-GARCH(1,1) model. It is followed by the GARCH(1,1),

the T-GARCH(1,1), MS(1-2), and the GBM. The SBC statistic for the port-

folio with 10% REXP investment shows similar outcomes. The difference

is that the GARCH(1,1) model is the best one and the E-GARCH(1,1) fol-

lows in second place. Finally, the pure bond strategy is best fitted with the

MS(1-2) model, according to both the AIC and the SBC statistics.

In conclusion, according to the information statistics of Akaike and Schwarz,

the MS(1-2) model describes the stochastic of the mixed REXP-DAX30 port-

folios very well. For the portfolios whose majority is invested in stocks, it

outperforms all estimated models from the GARCH family and the reference

model GBM as well. If the proportion of bonds lies between 60% and 90% the

GARCH model family is a better performer. For the pure bond investment,
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the Markov switching model with its mean reverting variant MS(1-2)-AR(1)

is, once again, the best choice. However, for the cases in which the informa-

tion statistic was higher for the GARCH model family, the difference to the

best MS model was fairly small. As the AIC and the SBC criterion merely

indicate the rank of the model but do not state if the difference is significant,

it will be assumed that MS and GARCH models fit the portfolios with high

bond participation equally well. Therefore the MS models will be preferred

in order to render the pricing consistent.

It is worth mentioning that according to the SBC, the linear GBM model

is better than the MS family but worse than the best model from the GARCH

family for portfolios with a bond ratio between 70% and 80%. This effect did

not appear if the model choice was based on the AIC statistic. As mentioned

above, the SBC statistic gives the rank of the models; it would therefore be

interesting to make a direct comparison between the MS model family and

the linear models. Such tests are discussed in the following sections of this

Chapter.

3.3 Problems with testing of Markov switch-

ing models

As was shown in Section 3.2, the MS models perform better or at least as well

as the GARCH models when fitting the German mixed bond-stock portfolios.

The remaining part of the Chapter will focus explicitly on testing the regime

switching effects in the data. Please note that linear models, (i.e. GBM and

AR(1) are nested in the MS models, as they can be regarded as MS models

with only one regime, i.e. K = 1). When testing the MS model against the

linear model, without loss of generality, one should test one of the following
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null hypotheses

H
(1a)
0 : βββ1 = βββ2, σ2

1 = σ2
2 with undefined p11 and p22,

or

H
(1b)
0 : p11 = 0 with undefined βββ1, βββ2, σ2

1 , σ2
2

or

H
(1c)
0 : p11 = 1 with undefined βββ1, βββ2, σ

2
1, σ2

2

which are equivalent. The H
(1a)
0 has the following interpretation. The param-

eters are equal in both states, hence regardless of the value of Zt, the result is

the same. Hypothesis H
(1b)
0 says that it is irrelevant how high parameters βββ1

and σ2
1 are, thus the time series will never reaches the first state. Hypothesis

H
(1c)
0 claims the same for parameters from the second state, as the models

always remain in the first state.

In literature, a common procedure for testing nested models involves using

one of the large sample asymptotic tests, such as the likelihood ratio (LR),

the Wald or the Lagrange multiplier (LM) test. These tests are based on the

asymptotic distribution theory which says that, under regularity conditions,

in a sufficiently large sample, the estimated parameter vector θ̂θθ converges to

the true parameter vector θθθ0. Through the application of the Taylor’s expan-

sion one finds that the parameter estimator θ̂θθ is equal to the sum of the true

parameter θθθ0 and the score evaluated at the true value
(

∂LT (θθθ)
∂θθθ0

)
divided by

the second derivative of the log-likelihood function evaluated at the median(
∂2LT (θθθ)
∂θθθmθθθ′m

)
. This approach is based on the assumption that the likelihood

function is locally approximately quadratic. This means that the second

derivative is approximately constant. In the next step, the application of the

central limit theorem is allowed, as the scores have a zero mean (for scores

with positive variance). The central limit theorem allows to conclude that

the estimator is asymptotically multivariate normal (Hansen 1992, p. S61).
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Unfortunately, the MS models violate two crucial assumptions of the

asymptotic distribution theory: the local quadrativeness of the likelihood

function and the assumption of the positive variance of the scores. The like-

lihood function is locally quadratic if it is highly probable that the likelihood

surface is asymptotically quadratic over the region in which both the null

hypothesis and the global optimum lie. In the MS framework, however, (at

least some) transition probabilities are not specified under the null hypothe-

sis. This means that in the optimum, the value of the likelihood function is

equal for all non-specified parameters, if the null hypothesis is true. Thus,

the flatness of the likelihood function is contradictory to the assumption

of its local quadrativness. In other cases, the likelihood function has more

than one maximum, thus the null hypothesis does not necessarily lie on the

same “hill” as the global maximum, which is another violation of the local

quadrativness assumption (Hansen 1992, p. S61-S62).

The assumption of the positive variance of the scores is also violated. As

mentioned above, the likelihood function is flat under the null. This means

that if one intended to test the H
(1a)
0 , the scores with respect to βββ1, βββ2, σ

2
1

and σ2
2 would all be equal to zero for all possible values of pji ∈ [0, 1]. Addi-

tionally, the likelihood function of the MS models has several local minima,

maxima and flection points. Therefore, its scores equal to zero on these

points per definition (Hansen 1992, p. S62). These zero scores imply that

the information matrix is singular under the null hypothesis (Watson and

Engle 1985, p. 341-342).

Given that two regularity conditions of the asymptotic distribution the-

ory are violated, the theory cannot be used. As a consequence, the test

statistics are not χ2 distributed, which causes several theoretical problems

with regard to the test statistic (Lee and Chesher 1986, p. 122). Despite the
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issues discussed above, some authors, such as Hardy (2003, p. 60-62), use the

likelihood ratio test, which is very questionable.

3.4 Simple tests

3.4.1 Wald test

As mentioned in Section 3.3 the standard asymptotic tests are not χ2 dis-

tributed. Engel and Hamilton (1990) propose a method to deal with this

problem. According to their approach, one assumes that under a null hy-

pothesis, transition probabilities are defined in such a way that p11 = 1− p22

or equivalently Pr[Zt = 1|Zt−1 = 1] = Pr[Zt = 1|Zt−1 = 2]. This means that

the probability that the observation yt comes from the first state (Zt = 1) is

independent from the previous realization of the state variable (i.e. indepen-

dent if Zt−1 = 1 or Zt−1 = 2). Thus the model under the null is reduced to

a mixed model

H
(2a)
0 : yt =

p11√
2πσ2

1

exp

[
−(yt − βββ′

1xtxtxt)
2

2σ2
1

]
+

1 − p11√
2πσ2

2

exp

[
−(yt − βββ′

2xtxtxt)
2

2σ2
2

]
(3.3)

or equivalently

H
(2b)
0 : p11 = 1 − p22, βββ1 �= βββ2 and/or σ1 �= σ2

against the alternative

H
(2b)
1 : p11 �= 1 − p22

instead of H
(1a,b,c)
0 . The Wald test then has the form

WT =
[p̂11 − (1 − p̂22)]2

v̂ar(p̂11) + v̂ar(p̂22) + 2ĉov(p̂11, p̂22)

ass≈ χ2(1), (3.4)

with v̂ar(p̂11) and v̂ar(p̂22) – variance of the parameter estimate p11 and p11,

respectively, and ĉov(p̂11, p̂22) – covariance of the parameter estimates p11

and p22.
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Another approach suggested by Engel and Hamilton (1990) is to test if

the intercept parameter (μ) is independent from the state variable. The null

hypothesis in this case is defined as

H
(3)
0 : μ1 = μ2, σ1 �= σ2, p11, p22 – not specified

with its associated alternative

H
(3)
1 : μ1 �= μ2.

The Wald test subsequently takes on the following form

WT =
[μ̂1 − μ̂2]

2

v̂ar(μ̂1) + v̂ar(μ̂2) − 2ĉov(μ̂1, μ̂2)

ass≈ χ2(1), (3.5)

with v̂ar(μ̂1) and v̂ar(μ̂2) – variance of the parameter estimate μ1 and μ2,

respectively, and ĉov(μ̂1, μ̂2) – covariance of the parameter estimates μ1 and

μ2.

Engel and Hamilton (1990) only test the intercept parameter but it is

also straightforward to test for heteroskedasticity and auto-regression. In

this case, the homoskedastic null hypothesis would be

H
(4a)
0 : μ1 �= μ2, σ

2
1 = σ2

2 , p11, p22 – not specified

against the heteroskedastic alternative

H
(4a)
1 : σ2

1 �= σ2
2

Subsequently, the Wald test will look as follows

WT =
[σ̂2

1 − σ̂2
2 ]2

v̂ar(σ̂2
1) + v̂ar(σ̂2

2) − 2ĉov(σ̂2
1, σ̂

2
2)

ass≈ χ2(1), (3.6)

with v̂ar(σ̂2
1) and v̂ar(σ̂2

2) – variance of the parameter estimate σ2
1 and σ2

2,

respectively, and ĉov(σ̂2
1, σ̂

2
2) – covariance of the parameter estimates σ2

1 and

σ2
2 .

The test for auto-regression will have the following hypothesis

H
(5)
0 μ1 �= μ2, σ

2
1 �= σ2

2, φi(1) = φi(2), φj(1) �= φj(2), (j �= i, i, j = 1, . . . , r),

p11, p22 – not specified

and the alternative
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H
(5)
1 : φi(1) �= φi(2),

with φi(k) the i-lagged auto-regression term in the k-th state. The Wald test

statistic for the auto-regressive term will look as follows

WT =
[φ̂i(1) − φ̂i(2)]

2

v̂ar(φ̂i(1)) + v̂ar(φ̂i(2)) − 2ĉov(φ̂i(1), φ̂i(2))

ass≈ χ2(1), (3.7)

with v̂ar(φ̂i(1)) and v̂ar(φ̂i(2)) – variance of the parameter estimate φi(1) and

φi(2), respectively, and ĉov(φ̂i(1), φ̂i(2)) – covariance of the parameter estimates

φi(1) and φi(2).

The results of the Wald test are listed in Tables G.1-G.13 in Appendix

G. Table 3.4 gives an overview of the results. It shows which tests can be

rejected at the 5% confidence level.

Models MS(1-2) and MS(1-2)-AR(1) tested if the transition probability

(H
(2b)
0 ) and the variance (H

(4a)
0 ) are not dependent on the state. For all

samples, both null hypotheses can be rejected. Thus, both models can be

used to describe mixed portfolios of REXP and DAX30.

The homoskedastic models MS(2-1) and MS(2-1)-AR(1) were tested for

independence of the transitions probabilities (H
(2b)
0 ) and the intercept (H

(3)
0 )

from the state variable. For the auto-regressive model MS(2-1)-AR(1) the

auto-regression parameter (H
(5)
0 ) was additionally tested. The null hypothe-

sis that the intercept does not depend on the state variable was rejected for

both models and all portfolios. The hypothesis of the regime-independent

auto-regression coefficient could be rejected for portfolios with a high bond

proportion of 75% and more. The null hypothesis for the transition prob-

abilities cannot be rejected for any sample with the exception of the pure

DAX30 portfolio (MS(2-1)-AR(1) model). This implies that the homoskedas-

tic model is not adequate for German mixed bond-stock portfolios, as the

transition probabilities are not dependent on the lagged state variable Zt−1.
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For the heteroskedastic model with regime dependent mean equation (i.e.

MS(2-2) and MS(2-2)-AR(1)) three tests for regime independent transition

probabilities (H
(2b)
0 ), intercept (H

(3)
0 ), and variance (H

(4a)
0 ) were conducted.

For the model MS(2-2)-AR(1) the independence of the auto-regression co-

efficient (H
(5b)
0 ) was tested additionally. The null hypothesis of independent

transition probabilities can be rejected for both models for all samples. The

test for homoscedasticity was rejected for both models and all samples, with

one exception. For the pure bond portfolio and the model MS(2-2)-AR(1)

the homoscedasticity hypothesis cannot be rejected at any common confi-

dence level. The null hypothesis of the regime-independent intercept could

not be rejected for either of the models, or the portfolios. The null hypothesis

of regime-independent auto-regression coefficient could be rejected only for

portfolios with a very low stock proportion of a maximum of 10%. These re-

sults show that the MS(2-2)-typed models have regime-dependent transition

probabilities, variance, and for models with a high bond proportion, the auto-

regression coefficient. On the other hand, the intercept is regime indepen-

dent, which suggests that the MS(2-2)-typed models are overparametrised.

In conclusion, the results of the Wald test reveal that one should reject

the MS(2-1)-typed models and chose the MS(2-2)-typed or MS(1-2)-typed

models. Note that the MS(1-2)-typed and MS(2-2)-typed models have a

regime-independent intercept. As the MS(1-2)-typed models by the model

construction have a regime-independent mean equation and the MS(2-2)-

typed models do not reject the H
(3)
0 null hypothesis. Since both model types

are equivalent, the MS(1-2)-type is the better choice, because it avoids over-

parametrization.
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3.4.2 Likelihood ratio test

Besides the Wald test, Engel and Hamilton (1990) proposed a modified form

of the likelihood ratio test. They suggest estimating two models with and

without restriction on parameters. Thus, it is possible to construct the like-

lihood ratio statistics

LR = 2[L(H1) − L(H0)]
ass≈ χ2(k(H1) − k(H0)). (3.8)

where L(·) denotes the log-likelihood function under the null and under the

alternative hypothesis and k the number of parameters of the model under

H0 and H1, respectively.

Without estimating additional models, testing the MS(2-1)-typed model

is fairly straightforward

H
(4b)
0 : βββ1 �= βββ2, σ

2
1 = σ2

2, and p11 �= 1 − p21

against the alternative of the MS(2-2)-typed model

H
(4b)
1 : σ2

1 �= σ2
2

and the MS(1-2)-typed model

H
(6)
0 : βββ1 = βββ2, σ

2
1 �= σ2

2, and p11 �= 1 − p21

against the alternative of the MS(2-2)-typed model

H
(6)
1 : βββ1 �= βββ2.

To test the null hypothesis of the regime-independence of the transition prob-

abilities (H
(2b)
0 ) the model with the constraint p11 = 1−p21 has to be estimated

and compared with the unconstrained model (H
(2b)
1 ).

Tables G.1-G.13 in Appendix G show the output of the likelihood ratio

test. A summary of the test results is given in Table 3.5 that shows which

tests can be rejected at the 5% confidence level. All six models were tested

on whether or not the transition probability is independent from the lagged

regime variable Zt−1 (H
(2b)
0 ). The test could be rejected for the MS(1-2) and
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MS(2-2) models for all samples. For models MS(1-2)-AR(1), MS(2-1), and

MS(2-1)-AR(1), the null hypothesis can be rejected for all samples with a

stock proportion ranging from 0% to 30%. For the MS(2-2)-AR(1) model, the

null hypothesis of no regime in the transition probabilities can be rejected for

all samples excluding the portfolio with with a 90% bonds and a 10% stock

engagement.

In addition to the above test, the MS(2-2)-typed models were tested for

regime switching in the mean equation (i.e. if βββ-vector was independent from

the regime, see H
(6)
0 ) and variance (H

(4b)
0 ). The null hypothesis of no regime

dependence in the mean equation cannot be rejected for any sample in the

case of both models (i.e. with and without auto-regression). This means that

the MS(1-2)-typed models fit the tested portfolios better than the MS(2-2)-

typed models. The null hypothesis of homoscedasticity was rejected for all

samples and both MS(2-2)-typed models, with the exception of the MS(2-2)-

AR(1) model and the portfolio with a 90% bond and a 10% stock proportion.

In other words, the likelihood ratio test rejects the MS(2-1)-typed models in

favor of the MS(2-2)-typed models (with one exception). On this basis we

can conclude that the results of the likeklihood ratio test are consistent with

the results of the Wald test discussed in Section 3.4.

In conclusion, it can be said that both the Wald and the likelihood ratio

test favors the MS(1-2) model for all portfolios, except those with a very

high bond engagement. For portfolios with a very high bond proportion, the

MS(1-2)-AR(1) model would be more appropriate.
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3.5 Tests based on scores

3.5.1 Scores

This section introduces two tests for Markov switching specification which

are based on scores. These are the Newey-Tauchen-White score test and the

Lagrange multiplier test proposed by Hamilton (1996).

Before introducing the score based tests, it is necessary to define the

score. The score vector hhht is the vector of the derivatives of the conditional

log-likelihood function l(yt|Yt−1;θθθ) with respect to the parameter vector θθθ.

hhht(θθθ) =
∂l(yt|Yt−1;θθθ)

∂θθθ
(3.9)

The score vector can be evaluated at the true parameter vector θθθ0

hhht(θθθ0) =
∂l(yt|Yt−1;θθθ)

∂θθθ

∣∣∣∣
θθθ=θθθ0

(3.10)

or at the maximum likelihood estimate θ̂θθ

hhht(θ̂θθ) =
∂l(yt|Yt−1;θθθ)

∂θθθ

∣∣∣∣
θθθ=bθθθ

(3.11)

(Hamilton 1996, p. 131). In order to compute the scores, the parameter vector

is subdivided into θθθ∗′ = (βββ ′
1, . . . ,βββ

′
K , σ

2
1, . . . , σ

2
K)′ and δδδ′ = (p11 . . . , p1K , . . . , pK1,. . . , pKK)′

so that θθθ′ = (θθθ∗′, δδδ′)′. Hamilton (1996, p. 135) showed that the score vector

for the Markov switching models can be computed as

hhht(θθθ
∗) =

∂l(yt|Yt−1;θθθ)

∂θθθ∗

=
K∑

j=1

ψψψt,j Pr[Zt = j|Yt] +
t−1∑
τ=1

K∑
j=1

ψψψt,j (Pr[Zt = j|Yt] − Pr[Zt = j|Yt−1])

(t = 1, . . . , T ),

(3.12)
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with

ψψψt,j =
∂l(yt|xxxt, Zt = j;θθθ)

∂θθθ∗
(3.13)

and (Pr[Zt = j|Yt] − Pr[Zt = j|Yt−1]) the byproduct of the maximum likeli-

hood estimation procedure. The derivatives from equation (2.76) are given

by

ψψψt,j =
∂l(yt|xxxt, Zt = j;θθθ)

∂βββj
=

(yt − xxx′tβββj)xxxt

σ2
j

(j = 1, . . . , K), (3.14)

and

ψψψt,j =
∂l(yt|xxxt, Zt = j;θθθ)

∂σj
= − 1

2σ2
j

+
(yt − xxx′tβββj)

2σ4
j

(j = 1, . . . , K). (3.15)

The score with respect to the transition probabilities is given by

hhht(pji) =
∂l(yt|Yt−1;θθθ)

∂pji

=
1

pji
Pr[Zt = j, Zt−1 = i|Yt] −

1

pKi
Pr[Zt = K,Zt−1 = i|Yt]

+
1

pji

{
t−1∑
τ=2

Pr[Zτ = j, Zt−1 = i|Yt] − Pr[Zτ = j, Zτ−1 = i|Yt−1]

}

− 1

pKi

{
t−1∑
τ=2

Pr[Zτ = K,Zt−1 = i|Yt] − Pr[Zτ = K,Zτ−1 = i|Yt−1]

}

+
K∑

Z1=1

∂ log Pr[Z1; Y1]

∂pji
{Pr[Z1|Yt] − Pr[Z1|Yt1 ]}

(i = 1, . . . , K, j = 1, . . . , K − 1, t = 2, . . . , T )

(3.16)

and
∂l(y1|Y1;θθθ)

∂pji

=
K∑

Z1=1

∂ log Pr[Z1; Y1]

∂pji

Pr[Z1|Y1] (3.17)

where for the probability of initial state Z1 we use the ergodic probabil-

ities from equation (2.68) (Hamilton 1996, p. 135-137). Please note that
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in the Markov model of the K-th order, the redundant parameters pKi

(i = 1, . . . , K) have been omitted. For the model with K = 2 it is com-

mon that probabilities of staying in the regime are estimated (p11 and p22)

and the probabilities of changing the regime (p21 and p12) are treated as the

redundant parameters which are omitted. This approach was employed in

this work.

3.5.2 Score test of Newey-Tauchen-White

The first order condition for maximum likelihood estimation states that the

score has to be equal to zero. If one assumes that for instance, the score

hhht(p11) were positive, it would imply that Pr[Zt = 1|Zt−1 = 1,Yt−1] > p11.

This in turn, means that according to the information set Yt the probability

that observations yt and yt−1 came from the first regime were higher that

the estimated probability p̂11. It would suggest that the data contain some

additional information not captured in the estimated model. Analogically,

for a properly specified model, the expected score should be equal to zero.

If one assume that the scores hhht(p11) and hhht−1(p11) were positive serially

correlated, it would mean that based on the knowledge that Zt−1 = 1 and

Zt−2 = 1 the probability Pr[Zt = 1|Zt−1 = 1, Zt−2 = 1] > p11. This would be

the equivalent to claiming that the probability Pr[Zt = 1|Zt−1 = 1, Zt−2 = 1]

was greater Pr[Zt = 1|Zt−1 = 1] which is a violation of the Markov chain

assumption (Hamilton 1996, p. 140).

In other words, if the model is properly estimated it is impossible to

forecast the score hhht(θθθ0) knowing the score hhht−1(θθθ0). Basing on this idea

White (1987) constructed his test for the lack of serial correlation in scores.

It is based on the conditional moment test of Newey (1985) and Tauchen

(1985). Hamilton (1996) adapted this approach for the Markov switching
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models and called it Newey-Tauchen-White (NTW) score test.

To compute the NTW test statistic the vectors hhht(θ̂θθ) have to be con-

structed (for t = 1, . . . , T ) first. This can be done by vertically stacking

scores from equations (3.12) and (3.14) for βjβjβj (j = 1, . . . , K), from equations

(3.12) and (3.15) for σ2
j (j = 1, . . . , K) and (3.16)-(3.17) for pji (j = 1, . . . , K,

i = 1, . . . , K − 1).5

In the second step, the (m×m)-matrix HHH t(θ̂θθ) = [hhht(θ̂θθ)][hhht−1(θ̂θθ)]′ has to be

constructed. In the next step the elements of the HHHt(θ̂θθ) matrix which are to

be tested with the NTW test are chosen. These elements should be collected

in the (l×1)-vector ccct(θ̂θθ). If one intended to test whether the score hhht(μ̂1) can

be forecasted on the basis of the previous score hhht−1(μ̂1), one should choose

the (1,1)-element of HHHt(θ̂θθ) which represents hhht(μ̂1) · hhht−1(μ̂1).

On the basis of the vector ccct(θ̂θθ) the NTW test statistic can be computed.

NTW =

[
1√
T

T∑
t=1

ccct(θ̂θθ)

]′
ÂAA(2,2)

[
1√
T

T∑
t=1

ccct(θ̂θθ)

]
(3.18)

where matrix ÂAA(2,2) is a (2,2)-sub-matrix of the matrix

ÂAA =

⎛⎝ 1

T

⎡⎣ ∑T
t=1[hhht(θ̂θθ)][hhht(θ̂θθ)]

′ ∑T
t=1[hhht(θ̂θθ)][ccct(θ̂θθ)]

′∑T
t=1[ccct(θ̂θθ)][hhht(θ̂θθ)]

′ ∑T
t=1[ccct(θ̂θθ)][ccct(θ̂θθ)]

′

⎤⎦⎞⎠−1

. (3.19)

If the model is correctly specified, the test (3.18) statistic is asymptotically

χ2(l) distributed (Hamilton 1996, p. 131).

Hamilton (1996, p. 139-140) proposed constructing the following Newey-

Tauchen-White tests:

1. The NTW dynamic specification test for autocorrelation across regimes.

In this case, the null hypothesis

5For K = 2 the scores with respect to p11 and p22 are commonly used instead of scores

with respect to p11 and p12, respectively.
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H
(7)
0 : E

[
hhhc

t(μ̂j)
∣∣hhhc

t−1(μ̂i)
]

= 0

is tested against the alternative

H
(7)
1 : E

[
hhhc

t(μ̂j)
∣∣hhhc

t−1(μ̂i)
]
�= 0.

The vector ccct(θ̂̂θ̂θ) consists of

∂l(yt|Yt−1; θ̂̂θ̂θ)

∂μj
· ∂l(yt−1|Yt−1; θ̂̂θ̂θ)

∂μi
(i, j = 1, . . . , K) (3.20)

and the NTW-statistic (3.18) is asymptotically χ2(K2) distributed.

2. The NTW dynamic specification test for ARCH effects across regimes.

In this case, the null hypothesis

H
(8)
0 : E

[
hhhc

t(σ̂
2
j )
∣∣hhhc

t−1(σ̂
2
i )
]

= 0

is tested against the alternative

H
(8)
1 : E

[
hhhc

t(σ̂
2
j )
∣∣hhhc

t−1(σ̂
2
i )
]
�= 0.

The vector ccct(θ̂̂θ̂θ) consists of

∂l(yt|Yt−1; θ̂̂θ̂θ)

∂σ2
j

· ∂l(yt−1|Yt−1; θ̂̂θ̂θ)

∂σ2
i

(i, j = 1, . . . , K) (3.21)

and the NTW-statistic (3.18) is asymptotically χ2(K2) distributed.

3. The NTW dynamic specification test for validity of Markov assump-

tions.

In this case, the null hypothesis

H
(9)
0 : E

[
hhhc

t(p̂jj)
∣∣hhhc

t−1(p̂ii)
]

= 0

is tested against the alternative

H
(9)
1 : E

[
hhhc

t(p̂jj)
∣∣hhhc

t−1(p̂ii)
]
�= 0.

The vector ccct(θ̂̂θ̂θ) consists of6

∂l(yt|Yt−1; θ̂̂θ̂θ)

∂pjj
· ∂l(yt−1|Yt−1; θ̂̂θ̂θ)

∂pjj
(j = 1, . . . , K) (3.22)

6In this case, the scores
∂l

“
yt

˛̨̨
Yt−1;bθbθbθ ”

∂pjj
·

∂l
“

yt−1

˛̨̨
Yt−1;bθbθbθ ”

∂pii
(i, j = 1, . . . , K) could be

considered additionally. These are, however, relevant only in very large samples, they will

therefore be omitted here (Hamilton 1996, p. 140).
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and the NTW-statistic (3.18) is asymptotically χ2(K) distributed.

The results of the Newey-Tauchen-White test are listed in Tables H.1-

H.13 in Appendix H. Table 3.6 summarizes these results, showing which

tests cannot be rejected at the 5% confidence level. Generally speaking, the

majority of the tests could not be rejected. This means that the Markov

switching specification correctly models the tested portfolios. For the het-

eroscedastic models without regime switching in the mean equation, only

portfolios with a 70% or an 80% bond proportion have additional serial cor-

relation in the intercept (this applies to the model with and without an

auto-regression term). No additional ARCH effects were detected for any of

the tested portfolios (with and without an auto-regression term in the mean

equation). The null hypothesis of the Markov chain assumption could be re-

jected only for a 90% bond portfolio for both tested models and, additionally,

for a 40% bond portfolio for the model with the auto-regression term.

The test for the homoskedastic models with a regime dependent mean

equation shows similar results. Hardly any test could be rejected at the

5% confidence level. The assumption of serial correlation in intercept scores

could be rejected only in two cases: for portfolios with a 75% and an 80%

bond proportion for the model without an auto-regression term. For the

MS(2-1)-AR(1) model, the null hypothesis of the lack of serial correlation in

the intercept could not be rejected for any tested portfolio. The hypothesis

of no additional ARCH effects was rejected only for the model with the auto-

regression term for portfolios with an 80% and a 90% bond proportion. The

MS(2-1) model did not show any additional ARCH effects. The hypothesis

of the Markov chain could not be rejected for any portfolio of either of the

MS(2-1)-typed models.
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The heteroskedastic models with regime dependent mean equation also

fit the German bond-stock portfolios very well. The assumption that there

are no additional serial correlations in the intercept could be rejected only

for a 90%-10% bond-stock portfolio for both models: with and without an

auto-regression in the mean equation. Exactly the same result holds true

for the assumption of no additional ARCH effects. It could not be rejected

for the portfolio with a 90% bond proportion for both the MS(2-2) and the

MS(2-2)-AR(1) models. The null hypothesis of the Markov chain could not

be rejected for any of the heteroskedastic models with a regime-dependent

mean and no auto-regression. For the model with an auto-regression only for

portfolios with a 25% and a 30% bond proportion, this null hypothesis could

be rejected.

It is noteworthy that the NWT test at the 5% significance level gives

condradictory results. The homoscedastic MS(2-1)-typed models do not show

any additional ARCH effects. However, if one added stochastic volatility (i.e.

if one wanted to test MS(1-2)-typed and MS(2-2)-typed models) the result

of the test would be the same. The same result applies to the dependence

of the intercept on the regime. The MS(1-2)-typed models do not show any

additional serial correlation in the intercept. However, models with a regime-

dependent mean equation (i.e. MS(2-1)-typed and MS(2-2)-typed models)

show the same test result. Thus, the test does not provide any unequivocal

answer for the model choice problem. It merely shows that there is evidence

for the regime effects in German mixed bond-stock portfolios. It could be

argued, however, that one should choose a parsimonious model. Due to this

decision criterion, one should refuse MS(2-2)-typed models in favor of the

MS(1-2)-typed or MS(2-1)-typed models. However, the question as to which

of the two is more suitable to describe tested portfolios remains.
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Another way to solve this issue would be to look at the 1% confidential

level. According to Hamilton (1996), this would be the right method for small

sample tests. However, one should be aware that samples used in this work

comprise 360 observations, which cannot be considered as a small sample.

Nevertheless, the NTW test at the 1% confidence level gives similar results.

3.5.3 Lagrange multiplier test of Hamilton (1996)

Another application of scores is the Lagrange multiplier test (see Hamilton

(1996)). Suppose that the (m × 1)-parameter vector θθθ were estimated with

the constraint that the last m0 parameter is equal to zero. According to the

first order condition of the MLE, the first (m−m0) elements of the average

score 1
T

∑T
t=1hhht(θ̂θθ) of the restricted maximum likelihood estimate θ̂θθ are zero

but the reminding m0 elements are unequal to zero. The size of the nonzero

elements indicates how far the likelihood function might rise if the constraints

were relaxed. At the same time, the magnitude of the last m0 elements allows

us to verify the validity of the constraints.

According to Hamilton (1996, p. 132) the LM statistic equals

LM =

[
1√
T

T∑
t=1

hhht(θ̂θθ)

]′ [
1

T

T∑
t=1

[hhht(θ̂θθ)][hhht(θ̂θθ)]
′

]−1 [
1√
T

T∑
t=1

hhht(θ̂θθ)

]
(3.23)

and is asymptotically χ2(m0) distributed. Hamilton (1996, p. 142) proposed

testing Markov switching model against the alternative that allows for auto-

correlation in regression residuals

yt = xxx′tβββZt + ρ(yt−1 − xxx′t−1βββZt−1) + σZtεt, with εt ∼ N(0, 1), (3.24)

where ρ denotes the autocorrelation coefficient and transition probabilities

are given as (2.67). It is straightforward to see that for ρ = 0 the model

(3.24) is reduced to the Markov switching model.

108



The null hypothesis of the autocorrelation test would thus be

H
(10)
0 : ρ = 0 (no autocorrelation)

against the alternative that

H
(10)
1 : (yt|Xt, Zt, Zt−1;θθθ, ρ) ∼ N({xxx′tβββZt +ρ(yt−1−xxx′t−1βββZt−1)}, σ2

Zt
) (Hamil-

ton 1996, p. 143).

To implement the ML test, the score with respect to ρ = 0 has to be

calculated as

∂ log p(yt|Xt; θ, ρ)

∂ρ

∣∣∣∣
ρ=0

=

K∑
i=1

K∑
j=1

ψt,j,ip(Zt = j, Zt−1 = i|Yt;θθθ)

+
t−1∑
τ=1

K∑
i=1

K∑
j=1

ψt,j,i[p(Zτ = j, Zτ−1 = i|Yt;θθθ)−ψt,j,ip(Zτ = j, Zτ−1 = i|Yt−1;θθθ)]

(3.25)

where

ψt,j,i =
∂ log p(yt|xxxt,xxxt−1, yt−1, Zt = j, Zt−1 = i;θθθ, ρ)

∂ρ

∣∣∣∣
ρ=0

=
(yt − xxx′tβββj)(yt−1 − xxx′t−1βββi)

σ2
j

(3.26)

Then one constructs the hhht(θ̂θθ, ρ̂) as defined in equations (3.12), (3.14), (3.15),

(3.16)-(3.17) and stuck it on the score defined in (3.25) and (3.26). Based

on the score hhht(θ̂θθ, ρ̂)′ = (hhht(θ̂θθ)
′,hhht(ρ̂))′ one can compute the LM statistically

(3.23) which is asymptotically χ2(1) distributed.

In addition to the LM autocorrelation test, Hamilton (1996) proposed an

LM test for the ARCH effects. The non-restricted model would then be

yt = xxx′tβββZt+
√
htεt, where ht = σ2

Zt

[
1 +

ξ(yt−1 − xxx′t−1βββZt−1)
2

σ2
Zt−1

]
, εt ∼ N(0, 1),

(3.27)

with transition probabilities given as (2.67). It is fairly easy to see that for

ξ = 0 the volatility of the model equals σ2
Zt

and the model (3.27) is reduced

to the Markov switching model.
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The null hypothesis of the test for the ARCH effects is

H
(11)
0 : ξ = 0 (no autocorrelation)

and the corresponding alternative is

H
(11)
1 : (yt|Xt, Zt, Zt−1;θθθ, ξ) ∼ N(xxx′tβββZt , ht)ht = σ2

Zt

[
1 +

ξ(yt−1−xxx′
t−1βββZt−1

)2

σ2
Zt−1

]
To compute the LM statistic (3.23) one has to construct vector hhht(θ̂θθ, ξ̂)

as defined above and vector hhht(ξ̂) using equation (3.25) with

ψt,j,i =
∂ log p(yt|xxxt, yt−1, Zt = j, Zt−1 = i;θθθ, ξ)

∂ξ

∣∣∣∣
ξ=0

=

[
−1 +

(yt − xxx′tβββZt)
2

σ2
Zt

][
(yt−1 − xxx′t−1βββZt−1)2

2σ2
Zt−1

]
.

(3.28)

Then the vector hhht(θ̂θθ, ξ̂)
′ = (hhht(θ̂θθ)

′,hhht(ξ̃))
′ can be used to compute the LM

statistic (3.23) which is asymptotically χ2(1) distributed.

In Appendix I, Tables I.1-I.13 the results of the Lagrange multiplier test

are listed. Table 3.7 summarizes the results at the 5% confidence level.

For the model MS(1-2) the null hypothesis of no additional correlation in

the mean equation can be rejected for most portfolios. The exceptions are

portfolios with a 70%, a 75%, and an 80% bond proportion. The opposite

holds true for the null hypothesis of no additional ARCH effects, which can

be rejected for most of the portfolios. Only for portfolios with low bond

proportion (from 0% to 25%) and the pure bond portfolio the null hypothesis

cannot be rejected. For the MS(1-2)-AR(1) model, both null hypotheses, of

no additional auto-correlation in the mean equation and no additional ARCH

effects could be rejected for most of the portfolios. The null hypothesis of

no autocorrelation could not be rejected for a 40%, a 90%, and a 100% of

bond proportion only. The null hypothesis of no additional ARCH effects

could not be rejected for portfolios with a 70%, a 90% and a 100% of bond

engagement only.
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Table 3.7: Overview of the results of the Lagrange multiplier test (1.1975-

12.2004)

Portfolio MS(1-2) MS(2-1) MS(2-2)

composition AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

REXP DAX30 H
(10)
0 H

(11)
0 H

(10)
0 H

(11)
0 H

(10)
0 H

(11)
0 H

(10)
0 H

(11)
0 H

(10)
0 H

(11)
0 H

(10)
0 H

(11)
0

0% 100% + + + + + + + + + +

10% 90% + + + + + + + + + +

20% 80% + + + + + + + + +

25% 75% + + + + + + + +

30% 70% + + + + + +

40% 60% + + + + +

50% 50% + + + + +

60% 40% + + + + + +

70% 30% + + + + + + +

75% 25% + + + + + +

80% 20% + + + + +

90% 10% + + + + + + + +

100% 0% + + + + + + + + + + + +

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes for
the variance and p auto-regression lags in each mean equation. + - the null hypothesis
cannot be rejected at the minimum 5% confidence level.
H(10)

0 : ρ = 0 H(10)
1 : (yt|Xt, zt, zt−1;θθθ, ρ) ∼ N({xxx′

tβββzt + ρ(yt−1 − xxx′
t−1βββzt−1)}, σ2

zt
)

H(11)
0 : ξ = 0 H(11)

1 : (yt|Xt, zt, zt−1;θθθ, ξ) ∼ N

(
xxx′

tβββzt , σ
2
zt

[
1 +

ξ(yt−1−xxx′
t−1βββzt−1 )2

σ2
zt−1

])

For the MS(2-1) model, the null hypothesis of no autocorrelation cannot

be rejected for most of the portfolios. Only for portfolios with a 25%, a 30%,

a 40%, and a 50% bond investment, the model is not correctly specified with

respect to autocorrelation in the mean equation. The null hypothesis of no

additional ARCH effects could not be rejected for 6 out of 13 portfolios. The

hypothesis of no additional ARCH effects could be rejected for portfolios

with a 0%, a 10%, a 70%, a 75%, an 80%, and a 100% bond engagement.

The situation is better for the MS(2-1)-AR(1) model. For this model, both

null hypotheses, of no additional autocorrelation and no additional ARCH

effects could not be rejected. Thus, it is the most suitable model according

to the LM test.

For model MS(2-2), the null hypothesis of no additional autocorrelation

could not be rejected for most portfolios. The rejection occurred only for
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portfolios with an 80% and a 90% bond investment. The null hypothesis of

no additional ARCH effects could be rejected for 7 out of 13 models. These

are portfolios with a 25%, a 30%, a 40%, a 70%, a 75%, an 80%, and a

90% bond engagement. In the case of the MS(2-2)-AR(1) model, both null

hypotheses could be rejected for 4 out of 13 models. The null hypothesis of

no additional autocorrelation could be rejected for portfolios with a 40%, a

50%, a 60%, and a 75% bond proportion. The hypothesis of no additional

heteroscedastic effects could be rejected for models with a 50%, a 60%, a

75%, and an 80% bond investment.

In conclusion, the ML test shows that the MS(2-1)-AR(1) model shows

no additional autocorrelation in the regression residuals for any of the tested

portfolios. The remaining models fit the tested samples quite well with re-

spect to the ML autocorrelation test. The exception is the MS(1-2)-AR(1)

model which shows additional autocorrelation for all but three samples. Ac-

cording to the additional ARCH effects, the MS(2-1)-AR(1) model is clearly

the best, as it passes the LM-ARCH test for all tested portfolios. In contrast,

the MS(1-2), MS(1-2)-AR(1), MS(2-1), and MS(2-2) models perform rather

poorly. This suggests that for portfolios which fail the ARCH effect test, an

additional regime in volatility or model with switching in GARCH could be

estimated.7 The MS(2-2)-AR(1) model performs a little better, as it fails to

model the stochastic volatility for only 4 out of 13 tested portfolios.

7For Markov switching models with GARCH effects, see Hamilton and Susmel (1994),

Cai (1994), Gray (1996) or Haas (2004).
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3.6 Tests based on simulation of the test statis-

tic

Several authors used the Monte Carlo simulation for testing Markov switch-

ing models. Lam (1990, p. 427-428), Cai (1994, p. 313), and Rydén, Teräsvirta,

and Åsbrink (1998, p. 224-225) assume that the true model is a restricted lin-

ear model (e.g. AR(p)) with known parameter vector θθθ. They use θθθ to draw

a random sample from a restricted model and estimate the non-restricted

Markov regime model from the simulated sample. In this manner, they were

able to compute the likelihood function for both models, and, eventually, the

LR statistic. The repetition of the experiment allowed them to approximate

the distribution of the test statistic and its critical values.

The author of this work is skeptical to the bootstrap method used in the

context of testing regime switching models. In Section 3.3 it was already

mentioned that the likelihood function of the regime models features several

local optima. Hence, for each simulated sample, the numerous iteration of

the EM algorithm would be needed. Suppose that one wanted to run the

bootstrap algorithm 1000 times, and the estimation algorithm 50 times for

each output. Then, for all 13 samples and 6 MS models which were estimated

in Section 2.9.2 one would have to repeat the EM algorithm 3,900,000 times;

which is 250 times more than the number of EM algorithm runs required

for estimation of these 6 models for all 13 portfolios, and would last several

months. Another possibility would be to run the estimation algorithm only

once for each bootstrapped sample as Lam (1990) and Cai (1994) did. This

simplification, however, bears the risk that one would not find the global

optimum, and that the distribution of the test statistic would be biased. For

this reason, the author prefers to use the asymptotic distribution theory to
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simulate the distribution of the test statistic.

As already mentioned in Section 3.3 the standard asymptotic theory does

not hold, as the transition probabilities are not defined under the null hy-

pothesis. Davies (1977,1987) was the first to study the problem of undefined

nuisance parameters. He proposed defining the test statistic as a function of

the undefined parameter. He then implemented the empirical process the-

ory for supremum likelihood ratio and Lagrange multiplier tests. Andrews

and Ploberger (1994) extended the theory with an average exponential like-

lihood ratio, Wald, and Lagrange multiplier tests. Hansen (1996b) proposed

a method for directly computing the critical values via a Monte Carlo sim-

ulation. For this simulation, he applied the covariance function of the test

statistic. However, these models do not address the problem of identical

zero scores. If the first derivative of the likelihood function is zero, Lee and

Chesher (1986) proposed looking at derivatives of a higher order. Using this

approach, they found that the Lagrange multiplier statistic is χ2 distributed

if higher order derivatives are unequal to zero. Similar results were found for

the likelihood ratio and the modified Wald test.

The above mentioned works cannot be applied to tests for Markov switch-

ing models, as Hamilton’s model includes both the nuisance parameters and

the zero scores problem. The following section will introduce the Hansen

(1992, 1996a) test constructed for Markov switching models and its exten-

sion proposed by Garcia (1998).

3.6.1 Likelihood ratio test of Hansen (1992, 1996)

Before Hansen’s (1992, 1996a) test is introduced, a small re-parametrization

of the model (2.66) is needed. Let us order the regimes in such a way that

σ1 ≤ σ2 ≤ . . . σK then, without a loss of generality, the Markov switching
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model can be rewritten as

yt = μ1 + μ∗
2I[Zt=2] + · · · + μ∗

KI[Zt=K]

+ (φ1(1) + φ∗
1(2)I[Zt=2] + · · · + φ∗

1(K)I[Zt=K])yt−1

+ . . .

+ (φp(1) + φ∗
p(2)I[Zt=2] + · · · + φ∗

p(K)I[Zt=K])yt−r

+ (σ1 + σ∗
2I[Zt=2] + · · · + σ∗

KI[Zt=K])εt

= μ1 +

K∑
j=2

μ∗
jI[Zt=j] +

r∑
i=1

(
φi(1) +

K∑
j=2

φ∗
i(j)I[Zt=i]

)
yt−i

+

(
σ1 +

K∑
j=2

σ∗
j I[Zt=j]

)
εt, and εt ∼ N(0, 1),

(3.29)

with μ∗
j = μj −μ1, φ

∗
i(j) = φi(j) − φi(1) and σ∗

j = σj −σ1 for j = 2, . . . , K, i =

1, . . . , r and with transition probabilities given in (2.67). Then the parameter

vector θθθ becomes θθθ∗′ = (μ1, μ
∗
2, . . . μ

∗
K , φ1(1), φ

∗
1(2), . . . , φ

∗
1(K), . . . ,

φp(1), φ
∗
p(2), . . . , φ

∗
p(K), σ

2
1, σ

∗2
2 , . . . , σ

∗2
K , p11, . . . , p1K , . . . , pK−1,K, . . . , pK−1,K)′.

Hansen (1992, p. S63) divided the parameter vector θθθ∗′ = (γγγ′1, γγγ
′
2, δδδ)

′

into three categories, so that vector γγγ1 contains all parameters which are

needed to specify the restricted model, vectors γγγ2 and δδδ contain nuisance

parameters, where γγγ2 is fully identified under the null hypothesis and δδδ

is not identified. For instance, if one wanted to test the AR(1) model

against the MS(2-1)-AR(1) then γγγ′1 = (μ, φ1(1), σ1)′, γγγ′2 = (μ∗
2, φ

∗
1(2))

′, and

δδδ′ = (p11, p22)′. Or if one wanted to test MS(2-1) against MS(3-3) then

γγγ′1 = (μ1, μ
∗
2, σ1, p11, p12, p21, p22)

′, γγγ′2 = (μ∗
3, σ

∗
2, σ

∗
3)′, and δδδ′ = (p13, p23)

′.

The re-parametrization introduced in equation (3.29) allows to write the

log-likelihood function as

LT (θθθ) = LT (γγγ1, γγγ2, δδδ) =

T∑
t=1

lt(γγγ1, γγγ2, δδδ)
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with the according null hypothesis

H
(12)
0 : γγγ2 = 000, with undefined parameter vector δδδ,

and its alternative hypothesis

H
(12)
1 : γγγ2 �= 000 (Hansen 1992, p. S66).

Hansen (1992, p. S66-S67) proposed “eliminating” the problem of the nui-

sance parameters through the concentration of vectors γγγ2 and δδδ into one vec-

tor, i.e., he sets αααH = (γγγ′2, δδδ
′)′. This results with LT (αααH , γγγ1) and lt(ααα

H , γγγ1),

respectively. If one fixed the values of αααH one could find the (pseudo true)

values for the vector γγγ1

γγγ1(ααα
H) = arg max

γγγ1∈Γ1

lim
T→∞

1

T
ELT (γγγ1,ααα

H),

where Γ1 denotes the compact parameter space for γγγ1. Then, for a sufficiently

large sample size T the centered likelihood function is given by

LT (αααH) = LT (γγγ1(ααα
H),αααH).

Hansen (1992, p. S63-S64, S67-S68) defines the LR test statistic (3.8) as a

function

LRT (αααH) = LT (γγγ1,ααα
H)−LT (γγγ1,000, δδδ) =

T∑
t=1

[lt(γγγ1,ααα
H)− lt(γγγ1,000, δδδ)], (3.30)

which yields a sequence of Neyman-Pearson likelihood ratio test statistics

for the null hypothesis against each simple alternative hypothesis. This is a

rarely used definition, but it has the advantage that the LR test statistic for

the null hypothesis against the alternative is the lowest upper bound of the

likelihood ratio surface

LRT = sup
αααH∈AH

LRT (αααH),

where AH denotes a compact parameter space over the vector αααH . Please

note that the LR statistic can be observed, but its mean

RT (αααH) = E[LRT (αααH)] (3.31)
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cannot. Thus, let us define the deviation from the mean process as

Q̂T (αααH) = LRT (αααH) −RT (αααH) =
T∑

t=1

q̂t(ααα
H), (3.32)

where

qt(ααα
H) = [lt(γγγ1,ααα

H) − lt(γγγ1,000, δδδ)] − E[lt(γγγ1,ααα
H) − lt(γγγ1,000, δδδ)].

Then the LR statistic from equation (3.30) can be decomposed as

LRT (αααH) = RT (αααH) +QT (αααH). (3.33)

Since the deviation process is stochastic, some errors caused by determining

the likelihood ratio can occur. The stochasticity of QT (αααH) causes that the

likelihood function can be maximized at some value (γγγ′1,ααα
H′)′ other than the

null hypothesis (γγγ′1,000
′,αααH′)′.

Let us standardize the LR process in such a way that it has the same

variance for all αααH ∈ AH

L̂R
∗
T (αααH) =

L̂RT (αααH)√
VT (αααH)

(3.34)

and

L̂R
∗
T = sup

αααH∈AH

L̂RT (αααH), (3.35)

where

VT (γ̂γγ1(αααH),αααH) =
T∑

t=1

qt(γ̂γγ1(ααα
H),αααH)2

denotes the sample variance with

qt(γ̂γγ1(ααα
H),αααH , ) = lt(γ̂γγ1(αααH),αααH) − lt(γ̂γγ1(αααH),000, δδδ) − 1

T
L̂RT (αααH).

The standardized stochastic deviation process will subsequently be equal to

Q∗
T (αααH) =

QT (αααH)√
VT (αααH)

.
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Hansen (1992) proved that the standardized likelihood ratio statistic

(3.35) is bounded by the standardized deviation process and that this stan-

dardized deviation process has a limit:

Theorem 3.1 Under Assumptions A.1, A.2, and A.3 from Appendix A.1,

Pr[L̂R
∗
T ≥ x] ≤ Pr[ sup

αααH∈AH

Q̂∗
T (αααH) ≥ x] → Pr[Sup Q∗ ≥ x]

(Hansen 1992, p. S69).

Proof. The proof is given in Hansen (1992, p. S66-S69).

This theorem gives the bound of the standardized LR statistic as the

distribution of the random variable SupQ∗.

To test the H
(12)
0 against the H

(12)
1 one has to determine the distribution

of the random variable SupQ∗. Hansen (1992) proposed using the following

theorem

Theorem 3.2 (Theorem 1 from Hansen (1996b)8) Under Assumptions

A.4, A.5, and A.6 from the Appendix A.1 and the absence of the serial cor-

relation and heteroscedasticity in the noise function

LRT
p→ SupC ≡ sup

δδδ∈Δ

C(δδδ) (3.36)

where
p→ denotes weak convergence with respect to the uniform metric and

Q(δδδ) is a chi-square process with a covariance matrix K(·, ·), defined as fol-

lows:

K(δδδ1, δδδ2) = ιkV (δδδ1)−1K(δδδ1, δδδ2)V (δδδ2)
−1ι′k (3.37)

where ιk is a vector of dimension k (the dimension of the parameter vector

under an alternative hypothesis) with ones in the positions of the parameters

constrained to be zero under the null hypothesis, and zeros on the remaining

positions

K(δδδ1, δδδ2) = lim
T→∞

T E
[
hhhc

T (αααG
0 , δδδ1)hhh

c
T (αααG

0 , δδδ2)
′] , (3.38)
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where

hhhc
T (θθθ) =

∂

∂θi
LT (θθθ) (3.39)

and

LT (θθθ) =
1

T

T∑
t

ln lt(θθθ)

and the variance matrix

V (θθθ) = lim
T→∞

T E
[
hhhc

T (αααG
0 , δδδ)hhh

c
T (αααG

0 , δδδ)
′]

V (δδδ) = V (αααG
0 , δδδ)

(Garcia 1998, p. 768).

Proof. For proof of the general version of Theorem 3.2 see Hansen (1996b,

p. 425-426).

The covariance function (3.37) for the Hansen test is given by

K̂∗
T (δδδ1, δδδ2) =

K̂T (αααH
1 ,ααα

H
2 )√

VT (αααH
1 )VT (αααH

2 )
, (3.40)

with

K̂T (αααH
1 ,ααα

H
2 ) =

T∑
i=1

q̂t(ααα
H
1 )q̂t(ααα

H
2 )

+
M∑

k=1

wkM

[
T−k∑
t=1

q̂t(ααα
H
1 )q̂t+k(αααH

2 )
T∑

t=1+k

q̂t(ααα
H
1 )q̂t−k(αααH

2 )

]

and q̂t(ααα
H) = qt(ααα

H , γ̂γγ1(αααH)) and wkM = 1 − |k|
M+1

being the Bartlett kernel

and M a bandwidth number, which should slowly be increased as the sample

size grows (Hansen 1996a, p. 195-196).

Now, it is possible to accomplish the test. Suppose that one can draw

Gaussian processes with the covariance function K̂∗
T (δδδ1, δδδ2) given in equation

(3.40). According to Theorem 3.2, the supremum of each of these processes

has (approximately) the distribution SupQ∗.
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Hansen (1996a, p. 196) suggests the following algorithm for obtaining the

draws of SupQ∗. One should draw T + M iid N(0, 1) variables {ui}T+M
1 .

Using the sequence of u-s the simulated empirical distribution of

L̂R
∗
(αααH) =

∑M
k=0

∑T
t=1 qt(ααα

H , γ̂γγ1(ααα
H))ut+k√

(M + 1)Vn(αααH)

can be determined, which is Gaussian with a zero mean and a covariance

function K̂T (δδδ1, δδδ2). Simulating a lot of L̂R
∗
(αααH) will yield the distribution of

the test statistic. Note that the theory gives no information on how to choose

M , therefore the simulation should be accomplished with several values of

M in order to assess the sensitivity of the test with respect to M . The last

unsolved problem is to find γ̂1(ααα
H) which can be addressed by conducting

the grid search. However, this method is very time-consuming. Thus, there

is a trade-off between the precision of the simulation (i.e. the size of the

grid-step) and the length of the computation time (Hansen 1992, p. S70).

3.6.2 Likelihood ratio test of Garcia (1998)

The Hansen test has two significant drawbacks. It applies a grid technique,

which is very time consuming and is therefore only applicable to several

simple cases. Hansen (1992) studied some simple Markov switching models

and found that they are insensitive to the choice of the grid. However, this

does not necessarily hold true for more complicated models. The second

drawback is that the outcome of the Hansen test is the upper bound for the

likelihood ratio statistic and is not a critical value. This may imply that the

test is conservative (Garcia 1998, p. 766).

For this reason, Garcia (1998) proposed a modification of Hansen’s (1992,

1996a) test, which enables us to derive the covariance matrix K analyti-

cally. He suggested ordering the vectors in a different manner as Hansen
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did. Hansen splits the parameter vector θθθ into the parameters of interests

αααH = (γγγ′2, δδδ
′)′ and the nuisance parameter vector γγγ1.

Garcia redefines the parameter of interest as αααG = (γγγ′1, γγγ
′
2)′ and the re-

maining transition probabilities δδδ as the nuisance parameter vector. In Gar-

cia’s (1998) approach the null hypothesis

H
(12)
0 γγγ2 = 000, with the undefined transition parameter δδδ,

and the alternative

H
(12)
1 γγγ2 �= 000.

remain the same as proposed by Hansen (1992).

Garcia (1998) proceeds as Hansen (1992) does and uses the Theorem 3.2

from Section 3.6.1 to compute the covariance matrix (3.38). In the first

step, the scores defined as (3.39) should be computed, since in our thesis,

the Markov model (2.66)-(2.67) differs from Garcia’s (1998) definition and

cannot be taken over. The scores used in this model are given in the following

lemma.

Lemma 3.3 The elements of the score vector hhhc
T (αααG, δδδ), evaluated at the

true value of the parameter of interest αααG
0 and at the particular given value

of the nuisance parameter δδδ are given by

hhhc
T (αααG

0 , δδδ)μ1 =
1

T

T∑
t=1

2∑
Zt(δδδ)=1

εt

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt (3.41)

hhhc
T (αααG

0 , δδδ)μ∗
2

=
1

T

T∑
t=1

2∑
Zt(δδδ)=1

εtI[Zt(δδδ)=2]

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt (3.42)

hhhc
T (αααG

0 , δδδ)φi(1)
=

1

T

T∑
t=1

2∑
Zt(δδδ)=1

yt−iεt

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt, i = 1, . . . , r (3.43)

hhhc
T (αααG

0 , δδδ)φ∗
i(2)

=
1

T

T∑
t=1

2∑
Zt(δδδ)=1

yt−iεtI[Zt(δδδ)]

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt, i = 1, . . . , r (3.44)
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hhhc
T (αααG

0 , δδδ)σ2
1

=
1

T

T∑
t=1

2∑
Zt(δδδ)=1

1

2σ1(σ1 + σ∗
2I[Zt(δδδ)=2])

(
ε2

t

(σ1 + σ∗
2I[Zt(δδδ)=2])2

− 1

)
pt

(3.45)

hhhc
T (αααG

0 , δδδ)σ∗2
2

=
1

T

T∑
t=1

2∑
Zt(δδδ)=1

I[Zt(δδδ)=2]

2σ∗
2(σ1 + σ∗

2I[Zt(δδδ)=2])

(
ε2

t

(σ1 + σ∗
2I([Zt(δδδ)=2])2

− 1

)
pt

(3.46)

with pt = Pr[Zt(δδδ) = zt(δδδ)|YT ;αααG, δδδ].

Proof. For the proof see Appendix A.2.

By using Lemma 3.3 one can compute the covariance of the stochastic

variable SupQ∗ as given in the following lemma.

Lemma 3.4 The covariance matrix K(δδδ1, δδδ2) of the score vectors, as defined

in section 2, is equal to

K(δδδ1, δδδ2) =
1

σ2
1

⎛⎜⎜⎜⎝
MMM XXXμμμ,φφφ

2×2r OOO2×2

XXXφφφ,μμμ
2r×2 XXXφφφ,φφφ

2r×2r OOO2r×2

OOO2×2 OOO2×2r ΣΣΣ

⎞⎟⎟⎟⎠
μμμ′ φφφ′ σσσ′

μμμ

φφφ

σσσ

(3.47)

where

MMM =

⎛⎝ 1 π2(δδδ2)

π2(δδδ1) min[π2(δδδ1), π2(δδδ2)]

⎞⎠
XXXμμμ,φφφ

2×2r = μ1 × (MMM ⊗ 1111×r)

XXXφφφ,μμμ
2r×2 = μ1 × (MMM ⊗ 111r×1)

XXXφφφ,φφφ
2r×2r = (MMM ⊗ (RRRr×r + 2μ2

1))

ΣΣΣ = MMM �

⎛⎝ 1
2σ2

1

1
2σ1σ∗

2

1
2σ1σ∗

2

1
2σ∗2

2

⎞⎠
and OOO and 111 denote a matrix of zeros and ones respectively, r - order of the

auto-regression, RRR - an auto-covariance matrix of {y} of order r, ⊗ - the

Kronecker product and � - the element-by-element matrix-product.
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Proof. For the proof see Appendix A.2.

It is noteworthy that the covariance matrix for the Markov switching

models (2.66) which are used in this work depend on the ergodic probabil-

ities πππ but not on the transition probabilities (2.67) or the auto-regression

coefficients φi(1), φ
∗
i(j) (i = 1, . . . , r, j = 1, . . . , K). This is an advantage in

comparison to the model used by Garcia (1998). The explicit formula for

models used in this work are given in the following lemma.

Lemma 3.5 Let introduce the following notation. π1 = π2(δδδ1), π2 = π2(δδδ2)

and c11 - the auto-covariance of the vector YT . Thus, the covariance matrix

for models MS(1-2) and MS(1-2)-AR(1) is given by

K(δδδ1, δδδ2)σ∗2
2

=
2 (min[π1, π2] − π1π2) σ2

1σ
∗2
2

(π1 − 1)π1 (π2 − 1)π2

; (3.48)

the covariance matrix for model MS(2-1) is given by

K(δδδ1, δδδ2)μ∗
2

=
(min[π1, π2] − π1π2)σ2

1

(π1 − 1)π1 (π2 − 1) π2
(3.49)

the covariance matrix for model MS(2-1)-AR(1) is given by

K(δδδ1, δδδ2) =

⎛⎝ K(δδδ1, δδδ2)μ∗
2

0

0 K(δδδ1, δδδ2)φ∗
1(2)

⎞⎠ , (3.50)

with

K(δδδ1, δδδ2)μ∗
2

=
(2μ2

1 + c11)σ2
1

(π1 − 1) π1 (π2 − 1)π2 (μ2
1 + c11)

2

×
{(
π2

1 − 3π2π1 + π2
2

)
μ2

1 − c11π1π2 + min[π1, π2]
(
μ2

1 + c11
)}

(3.51)

and

K(δδδ1, δδδ2)φ∗
1(2)

=
((π2

1 − 3π2π1 + π2
2)μ2

1 − c11π1π2 + min[π1, π2] (μ2
1 + c11)) σ

2
1

(π1 − 1) π1 (π2 − 1) π2 (μ2
1 + c11)

2 ;

(3.52)
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the covariance matrix for model MS(2-2) is given by

K(δδδ1, δδδ2) =

⎛⎝ K(δδδ1, δδδ2)μ∗
2

0

0 K(δδδ1, δδδ2)σ∗2
2

⎞⎠ , (3.53)

with

K(δδδ1, δδδ2)μ∗
2

=
(min[π1, π2] − π1π2)σ2

1

(π1 − 1)π1 (π2 − 1) π2

(3.54)

and

K(δδδ1, δδδ2)σ∗2
2

=
2 (min[π1, π2] − π1π2) σ2

1σ
∗2
2

(π1 − 1)π1 (π2 − 1)π2

; (3.55)

and the covariance matrix for model MS(2-2)-AR(1) is given by

K(δδδ1, δδδ2) =

⎛⎜⎜⎜⎝
K(δδδ1, δδδ2)μ∗

2
0 0

0 K(δδδ1, δδδ2)φ∗
1(2)

0

0 0 K(δδδ1, δδδ2)σ∗2
2

⎞⎟⎟⎟⎠ , (3.56)

with

K(δδδ1, δδδ2)μ∗
2

=
(2μ2

1 + c11)σ2
1

(π1 − 1) π1 (π2 − 1)π2 (μ2
1 + c11)

2

×
{(
π2

1 − 3π2π1 + π2
2

)
μ2

1 − c11π1π2 + min[π1, π2]
(
μ2

1 + c11
)}

(3.57)

K(δδδ1, δδδ2)φ∗
1(2)

=
((π2

1 − 3π2π1 + π2
2)μ2

1 − c11π1π2 + min[π1, π2] (μ2
1 + c11)) σ

2
1

(π1 − 1) π1 (π2 − 1) π2 (μ2
1 + c11)

2 ,

(3.58)

and

K(δδδ1, δδδ2)σ∗2
2

=
2 (min[π1, π2] − π1π2) σ2

1σ
∗2
2

(π1 − 1)π1 (π2 − 1)π2
. (3.59)

Proof. The proof results straightforward from the application of Theorem

3.2 and Lemma 3.4.

As one knows the analytic solution for the covariance matrix K(δδδi, δδδj), it

is possible to simulate the distribution of the Garcia test statistic. The input

is vector αααH and, additionally, for models with an auto-regression, the sample

124



Y′
T = (y1, . . . , yT )′. One should bear in mind that the nuisance vector δδδ is

undefined under the null hypothesis and, thus, some grid search is needed.

Lemma 3.4 shows that if one wants to test the null of no regimes against

the alternative of two states, the test statistic does not depend directly on

the transition probabilities p11 and p22. Without a loss of generality, one

can assume that π1 ≤ π2. Thus, according to Lemma 3.4, the covariance

of the test statistic depends only on the ergodic probability π2 which is

given in the equation (2.21) as 1−p11

2−p11−p22
. Therefore, the nuisance parameter

vector δδδ can be reduced to π2. From this, it follows that the grid search

can only be conducted for the parameter π2. Thus, we construct a sequence

of vectors {δδδi}k
i=1 so that all π2(δδδi) ∈ Δ = (0, 1) and are equidistant. E.g.

let π2(δδδi) = 0.001, 0.002, . . . , 0.999. The border cases 0 and 1 have to be

excluded from the parameter space Δ because at these points, the condition

of a non-singular information matrix will be violated. These cases, however,

are not of interest for the test, as π2 = 0 or π2 = 1 can occur only if the

Markov chain is reducible and one of the regimes will vanish (Garcia 1998,

p. 772-773).

In the second step, one computes the covariance matrices K(δδδi, δδδj) for all

i, j (i, j = 1, . . . , K) given by equation (3.47) and collects them to a matrix

ΩΩΩ(k·m)×(k·m) =

⎡⎢⎢⎢⎣
Km×m(δδδ1, δδδ1) · · · Km×m(δδδ1, δδδk)

...
. . .

...

Km×m(δδδk, δδδ1) · · · Km×m(δδδk, δδδk)

⎤⎥⎥⎥⎦ , (3.60)

where m denotes the dimension of the vector γγγ2 which determines the di-

mension of the matrix K(δδδ1, δδδ1).

Then, one computes the matrix BBB which is the lower triangular matrix

from the Cholesky decomposition ΩΩΩ = BBBBBB′. Garcia (1998, p. 786-787, Ap-

pendix 4) proposes an algorithm to compute the matrix BBB analytically, how-
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ever, this work favors the numeric solution to make the programming code

more efficient.

The next step is to draw a (k ·m× 1)-vector uuu of i.i.d. standard normal

variables and to construct a (k · m × 1)-vector G(δδδ) = BBBuuu of mean zero

normal variables with a covariance matrix ΩΩΩ. Now, the computation of the

χ2 distributed random variable Q(αααH) is fairly straightforward.

Remark 3.6 Following the remark of Garcia (1998, p. 768, footnote 6) that

a χ2(n) process Z(θθθ) can be represented as Z(θθθ) = G(θθθi)
′K(θθθi, θθθj)

−1G(θθθj)

where G(θθθ) is a Gaussian (n× 1)-vector with a zero mean and a covariance

function given by K(θθθi, θθθj) = E[G(θθθi) ·G(θθθ′j)].

Thus, let us divide vector G(δδδ) into k vertically stacked (m × 1)-vectors

g(δδδi) and compute the Q(δδδ) = g(δδδi)
′V (δδδi, δδδi)g(δδδi) for all i = 1, . . . , K. Even-

tually, it should be possible to compute the supremum of Q: SupQ =

maxi=1,...,K Q(δδδi).

The replication of the algorithm N times allows us to determine the

distribution of the SupC statistic and its critical values.

Tables J.1-J.13 from Appendix J show the distribution of Garcia’s SupQ

test statistic. This distribution was simulated within a Monte Carlo approach

with 10,000 iterations. The μ1, μ2, σ1, and σ2 parameters were chosen ac-

cording to the maximum likelihood estimates listed in Tables B.1-B.13. For a

π2 parameter, a grid search was accomplished. The lower bound of the grid

denoted 0.001, the upper bound 0.999 and increment 0.001, respectively.

The distribution of the test statistic is similar for all estimated portfolios.

The distribution of Garcia’s SupC statistic for MS(1-2), MS(1-2)-AR(1), and

MS(2-1)9 models is almost the same (see Figure 3.1 for the example of the

9The distribution of the MS(1-2) and the MS(1-2)-AR(1) is not “similar” but actually

analytically identical, as they have the same covariance, see equation (3.48).
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Figure 3.1: Distribution of the Garcia’s SupC statistic for DAX30

Note:
The top panel shows the distribution of the Garcia’s SupC statistic for MS(1-2)-typed
models, the middle panel for the MS(2-1)-typed models, and, the bottom panel for the
MS(2-2)-typed models. The dashed line represents the model without the auto-regression
term and the dotted line with the auto-regression term in the mean equation, respectively.

pure DAX30 portfolio). The test statistic distribution for models MS(2-1)-

AR(1) and MS(2-2) is similar and stochastically dominated by the distribu-

tion of the three above mentioned models. The statistic distribution for the

MS(2-2)-AR(1) model is different from all other models discussed here, but is

stochastically dominated by them. A closer look at these results shows that

the distribution is similar for models with the same number of parameters

contained in the γγγ2 vector. Moreover, the distribution of the test statistic

seems to be independent from the magnitude of the parameter as it varies

in different models and seems to be independent from the type of parameter
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Table 3.8: Garcia test (1.1975-12.2004)

Portfolio composition MS(1-2) MS(2-1) MS(2-2)
REXP DAX30 AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

0% 100% 67.62∗∗∗ 67.76∗∗∗ 50.99∗∗∗ 54.03∗∗∗ 68.96∗∗∗ 70.37∗∗∗

10% 90% 63.96∗∗∗ 64.18∗∗∗ 47.52∗∗∗ 50.59∗∗∗ 65.18∗∗∗ 66.59∗∗∗

20% 80% 59.60∗∗∗ 59.89∗∗∗ 43.74∗∗∗ 46.81∗∗∗ 60.68∗∗∗ 62.10∗∗∗

25% 75% 57.04∗∗∗ 57.38∗∗∗ 41.70∗∗∗ 44.72∗∗∗ 58.09∗∗∗ 59.47∗∗∗

30% 70% 54.18∗∗∗ 54.53∗∗∗ 39.52∗∗∗ 42.47∗∗∗ 55.18∗∗∗ 56.53∗∗∗

40% 60% 47.27∗∗∗ 47.64∗∗∗ 34.57∗∗∗ 37.31∗∗∗ 48.20∗∗∗ 49.45∗∗∗

50% 50% 38.22∗∗∗ 38.53∗∗∗ 28.58∗∗∗ 30.92∗∗∗ 39.13∗∗∗ 40.17∗∗∗

60% 40% 27.07∗∗∗ 26.87∗∗∗ 21.17∗∗∗ 22.85∗∗∗ 27.91∗∗∗ 28.51∗∗∗

70% 30% 15.86∗∗∗ 15.17∗∗∗ 12.42∗∗ 13.25∗ 17.24∗∗∗ 18.05∗∗

75% 25% 12.14∗∗ 12.10∗∗ 8.24 10.26 13.81∗∗ 15.03∗

80% 20% 11.23∗∗ 11.36∗∗ 5.55 11.65 12.51∗ 15.59∗

90% 10% 18.94∗∗∗ 20.30∗∗∗ 9.67∗ 18.92∗∗∗ 19.87∗∗∗ 22.60∗∗∗

100% 0% 32.24∗∗∗ 35.71∗∗∗ 17.87∗∗∗ 22.98∗∗∗ 32.32∗∗∗ 36.17∗∗∗

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at a 10%, a 5% and a 1% confidence level, respectively.
H0: the time series follows an auto-regressive model of the p-th order, with no Markov
switching, H1: the time series follows a MS(m-s)-AR(p) model.

contained in the γγγ2 vector (e.g. for the MS(1-2) model γγγ2 = σ∗2
2 and the

MS(2-1) model γγγ2 = μ∗
2 and the distribution is similar). Furthermore, it

seems that the results do not depend on sample YT , as the distribution of

the SupQ statistic is similar for all tested samples. If it were true that the

distribution of the test statistic is dependent on the number of elements in

the γγγ2 vector, the impact of other determinants as a magnitude of the pa-

rameter could be disregarded. It would imply that the Garcia test statistic

could be tabulated, which would considerably simplify the testing of Markov

switching models. It would be a very interesting field of study to test this

supposition but it is out of the scope of this work.

Table 3.8 shows the results of the Garcia LR test. These results are based
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on the distribution of the SupC statistic listed in Tables J.1-J.13 in Appendix

J. The Garcia test shows that the null hypothesis of no regime switching can

be rejected for most of the tested cases at the 5% confidence level. For a

heteroscedastic Markov model with no regime in the mean equation, the null

hypothesis can be rejected for all portfolios, irrespective of whether the model

includes an auto-regression term or not. For a homoskedastic Markov model

and a regime-dependent mean equation, the null hypothesis of no regime

specification can be clearly rejected for all but three portfolios: with a 75%,

an 80%, and a 90% bond engagmet in the case of the MS(2-1) and with 70%,

75%, and 80% bond investment in the MS(2-1)-AR(1) case, respectively. For

the heteroscedastic model with a regime-dependent mean equation, most of

the portfolios are also better fitted with the regime model than with the linear

models. For the MS(2-2) model, the null hypothesis can only be rejected for

a portfolio with an 80% bond investment and for the MS(2-2)-AR(1) model,

for portfolios with a 75% and an 80% bond engagement.

The Garcia test reports Markov switching in almost all models and sam-

ples. However, it gives no answer to the question of which of the models

should be used (see discussion in Section 3.5.2).

3.7 Conclusion

This Chapter has presented several tests for Markov switching models. The

majority prefers the MS(1-2)-typed models or at least indicates that they

are as good as other Markov switching models. Additionally, the tests report

that auto-regression effects are only present in portfolios with a very high

bond exposition. This result is independent of the type of the model.

The Wald test rejects the MS(2-1)-typed models in favor of the MS(1-
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2)-typed and the MS(2-2)-typed models. Given that the Wald test rejects

the hypothesis of no regime switching in the intercept, the MS(2-2)-typed

models seem to be overparametrized.

The LR test yields that the transition probabilities can be modeled with

a Markov chain of the first order for most of the models. This assump-

tion is rejected only for MS(1-2)-AR(1) and MS(2-1)-typed models with a

minimum bond engagement of 70% and, in 2 of 13 cases, for the MS(2-2)

model. Furthermore, the LR test rejected the MS(2-1)-typed models in favor

of MS(2-2)-typed models, but the MS(2-2)-models are rejected in favor of

the MS(1-2)-models. This leads to the conclusion that the MS(1-2) model is

the best choice (as portfolios with a high bond engagement failed the Markov

chain test).

The NTW test favors the MS specification for almost all models and all

samples. It states that the MS approach models well-mixed portfolios of

German stock and bonds. Unfortunately, it does not provide any hint as to

which of these is the best.

The LM test is passed positively only by the MS(2-1)-AR(1) model. The

MS(1-2)-AR(1) model fails all LM tests with the exception of portfolios with

a 90% and a 100% bond exposition. For the remaining models, only ap-

proximately half of the portfolios pass the test. This test is the only one

which rejects the null hypothesis of no additional ARCH effects for so many

models. This suggests that for these models an extra regime or a Markov

switching model with a (G)ARCH term should be tested additionally. As

there is no option pricing model for Markov switching with (G)ARCH effects

available, the second alternative will be neglected. The estimation of the

MS model with three regimes will be discarded, as the testing of the null

hypothesis of two regimes against the alternative of three regimes becomes
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very complicated.

The Garcia test is another test which shows that German stock-bond

mixed portfolios exhibit regime switching characteristics. The MS(1-2)-typed

models passed the test for all studied portfolios. For the remaining MS

models, there were few portfolios with a middle high bond engagement which

failed the test.

Both information criterion tests showed that the Markov switching models

better fit the studied portfolios than the models from the GARCH family and

the linear models. For samples with a middle high bond exposition, certain

models from the GARCH family had a slightly higher test statistic. However,

the difference is small. Moreover, the SBC statistic shows that for portfolios

with a bond exposition between 70% and 80% the linear GBM also ranked

better than MS models. This phenomenon is not observable for the AIC

statistic. As the tests with the linear null hypothesis reject linearity, this

one outcome will be neglected. Moreover, the AIC and SBC tests show that

models with a very high bond engagement show an additional auto-regression

term. This is true for all tested models, regardless of whether it was an MS,

a GARCH or a linear model family.

In conclusion, the majority of the tests used here show that the Markov

switching model is very useful in explaining the stochasticity of the tested

portfolios. The MS(1-2)-typed models are either the best or at least as good

as other MS models. MS(2-2)-typed models also fit the German portfolios.

However, they seem to be a little overparametrized. Therefore, in the next

part of this dissertation the MS(1-2) model will be used for pricing the guar-

antees embedded in personal pension products. Admittedly, the samples with

90% or more bond exposition should be modelled with the MS(1-2)-AR(1)

model. Unfortunately, there is no option pricing theory in which the under-
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lying instrument follows a Markov switching model with an auto-regression

term. Therefore, the auto-regression term will be omitted. As this assump-

tion applies for two samples only, this seems acceptable.
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Part II

Investment Guarantees

Embedded in Individual

Pension Products
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Chapter 4

Pricing of investment

guarantees

This Chapter shows how to price guarantees embedded in personal pension

products. In Section 4.1 we define the model of the financial market consid-

ered. Section 4.2 discusses the Contingent Claim Pricing Theorem introduced

by Harrison and Pliska (1981). Section 4.3 addresses conditions for the exis-

tence of the option price and Section 4.4 its uniqueness. Section 4.5 defines

the Esscher risk-neutral probability measure and shows how it can be used to

price a European put option. In Section 4.6 we show how to price put options

when the price of the underlying follows the geometric Brownian motion or

the geometric Brownian motion with Markov switching. In the first case we

use the Black and Scholes (1973) price and in the second case, the Bollen

(1998)-Hardy (2001) and the Webb (2003) price. In Section 4.7 we price

the cost of investment guarantees embedded in personal pension plans and

discuss its sensitivity to several factors. Section 4.8 concludes the results.
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4.1 Financial market

4.1.1 Money market account and risky stock

First, let us define the financial market. To do this, one has to define assets

that can be traded on this market: the risk-free bond and the risky asset.

Definition 4.1 (Frictionless market) A frictionless market is a market

where there are no taxes, no transaction costs, a perfect divisibility of fi-

nancial instruments, a perfect liquidity, no short-sales constraints, and no

borrowing constraints.

Definition 4.2 (Money market account) Let (Bt)t≥0 be a deterministic

process defined as follows

dBt = rBtdt,

where the constant r denotes the risk free rate. Furthermore, let the initial

value of B equal to unity (Bt0 = 1) and let Bt be arbitrarily divisible, then it

is called money market account (or risk-free bond).

Definition 4.3 (Risky asset) Let (Ω,F ,P) be a probability space, let (St)t≥0

be a positive stochastic process

dSt

St

= dXt,

where Xt is a stochastic variable representing the return rate of St. Further-

more, let St be arbitrarily divisible, then it is called a (non dividend paying)

risky asset (e.g., stock or portfolio of stocks).

Now one can define the financial market.
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Definition 4.4 (Financial market) Let (Ω,F ,P) be a probability space,

let (Bt)t≥0 and (St)t≥0 be a money market account and risky stock, respec-

tively. Then the tuple M = (Bt, St)t≥0 is called a financial market. Further-

more, it will be assumed that the the financial market is frictionless.

4.1.2 Contingent claim

Now we can define a contingent claim.

Definition 4.5 (Contingent claim) Let M be a financial market defined

on a filtered probability space (Ω,F ,P), and for given t let Ht be a non-

negative random variable measurable with respect to the filtration Ft, and let

f : R → R be a function. Then

Ht = f(St)

is called a contingent claim.

An example of the contingent claim which we are interested in is a Euro-

pean option.

Example 4.6 (European call (put) option) The European call HC (put

HP ) option is a right, but not an obligation, to buy (sell) the risky stock S

at a defined price K, called exercise price, at expiration time (or maturity)

T . The payoff of the call is given by the function

HC
T = (ST − K)+ (4.1)

and the payoff of the put by

HP
T = (K − ST )+ (4.2)

(Elliott and Kopp 2005, p. 6).
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Theorem 4.7 (Put-call parity) Let M be the financial market and let HC
t

and HP
t be the call and put option with the exercise price K and maturity time

T , respectively. Then the equation

HC
t −HP

t = St − Ke−r(T−t)

holds (Elliott and Kopp 2005, p. 9).

Proof. To prove the put-call parity, we first define two portfolios: (1) a

long call and a short put position, both with the same strike price K and

expiry date T , and (2) a long position in a stock St, and a short position

in a discounted zero-bond with the value of Ke−r(T−t), the face value K, and

expiry date T . From the definition of the call (see equation (4.1)) and the

put option (see equation (4.2)) we know that at time T their values have to

be equal

HC
T −HP

T = (ST − K)+ − (K − ST )+ = ST − K. (4.3)

Thus, the following has to hold true

HC
t −HP

t = St − Ke−r(T−t). (4.4)

Otherwise, arbitrage would be possible, i.e., everyone who buys the under-

priced portfolio and sells the overpriced portfolio could make a riskless profit

(Elliott and Kopp 2005, p. 9).

4.1.3 Self-financing trading strategy

Now let us address the task of defining the trading strategy.

Definition 4.8 (Trading strategy) Let M be the financial market defined

on a filtered probability space (Ω,F ,P), and let φ = (φt)t0≤t≤T = (ϕB
t , ϕ

S
t )t0≤t≤T

∈ R2 be a measurable, stochastic vector process adapted to the filtration Ft.
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Then φ is called a trading strategy. Stochastic variables ϕB
t and ϕS

t can be in-

terpreted as the amount of riskless bond Bt and the amount of the risky asset

St in the investor’s portfolio, respectively (Elliott and Kopp 2005, p. 29).

Furthermore, we can define the portfolio wealth and gain.

Definition 4.9 (Wealth (value) and gains process) Let M be a finan-

cial market defined on a filtered probability space (Ω,F ,P), and let φ be a

trading strategy. Then, for all t ∈ [t0, T ] the process,

Vt(φ) = ϕB
t Bt + ϕS

t St

is called a portfolio wealth (portfolio value) and the process

Gt(φ) =

∫ t

t0

ϕB
u dBu +

∫ t

t0

ϕS
udSu

is called a gains process, respectively (Bingham and Kiesel 2004, p. 230).

Remark 4.10 It is clear that the change in the portfolio value is dependent

on the change in the value of the money market account and the change in

the stock price

dVt(φ) = ϕB
t dBt + ϕS

t dSt, ∀ t ∈ [t0, T ]. (4.5)

Definition 4.11 (Self-financing strategy) Let M be a financial market

defined on a filtered probability space (Ω,F ,P), let φ be a trading strategy,

and let Vt(φ) be a value process, satisfying the condition

Vt(φ) = Vt0(φ) +

∫ t

t0

ϕB
u dBu +

∫ t

t0

ϕS
udSu = Vt0(φ) +Gt(φ) ∀ t ∈ [t0, T ].

(4.6)

Then φ is called a self-financing strategy (Musiela and Rutkowski 2007, p. 89).

Notation 4.12 Let ΦΦΦ denote the class of all self-financing trading strategies.
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Remark 4.13 The intuition behind the self-financing strategy is the follow-

ing: The agent invests an initial capital Vt0(φ) in the portfolio of money

market account and risky stock. Then he rebalances his investment by (con-

tinuously) trading the risk-free bond and the risky stock in such a way that

he neither adds additional capital to the portfolio nor withdraws it, i.e.

Btdϕ
B
t + Stdϕ

S
t = 0 (4.7)

(Elliott and Kopp 2005, p. 183-184).

As will be seen later, it is more convenient to work with discounted values

than with “real” values.

Notation 4.14 If we introduce an intrinsic discount process

βt = Bt0e
−r(t−t0),

then the process

S̃t = βtSt

is called a discounted risky asset. By Analogy, the process

Ṽt(φ) = βtVt(φ) = ϕB
t + ϕS

t S̃t

is called a discounted wealth, and the process

G̃t(φ) =

∫ t

t0

ϕS
udS̃u

is called a discounted gains process. Obviously, the discounted money market

account is equal to unity for all t0 ≤ t ≤ T (i.e. B̃t = 1) (Harrison and

Pliska 1981, p. 236).
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Proposition 4.15 Let M be a financial market defined on a filtered probabil-

ity space (Ω,F ,P), and let φ be any trading strategy. Then φ is self-financing

if and only if

Ṽt(φ) = Ṽt0(φ) + G̃t(φ), ∀ t ∈ [t0, T ] (4.8)

(Harrison and Pliska 1981, Theorem 3.24, p. 238).

Proof. Let t ∈ [to, T ]. If φ is a self-financing strategy, then

dVt(φ) = ϕB
t dBt + ϕS

t dSt.

From this it follows that

dṼt(φ) = d(βtVt(φ)) = −rṼt(φ)dt+ βtdVt(φ)

= −rβt(ϕ
B
t Bt + ϕS

t St)dt+ βt(ϕ
B
t dBt + ϕS

t dSt)

= ϕS
t (−rβtStdt+ βtdSt) = ϕS

t dS̃t,

which is equivalent to (4.8). The converse direction can be proven by using

the definition of the discounted portfolio value Vt(φ) = Ṽt(φ), reversing the

steps above and using (4.8) (Elliott and Kopp 2005, p. 184).

4.2 Option pricing

4.2.1 Equivalent martingale measure

To price contingent claims, we have to define the martingale and the mar-

tingale probability measure.

Definition 4.16 (Martingale) Let (Xt)t0≤t≤T be a stochastic process on

the probability space (Ω,F ,P). Let

EP [Xt|Fs] = Xs (t0 ≤ s ≤ t ≤ T ).
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Then X is called a P-martingale (martingale under measure P) (Rolski et al.

1999, p. 379).

Definition 4.17 (Equivalent (risk-neutral) martingale measure) Let

P and Q be two probability measures, and let (St)t≥t0 be a stochastic process

with associated filtration Ft. Then

• Q is an equivalent martingale measure (or risk-neutral martingale mea-

sure) with respect to the given probability measure P if Q is equivalent

to P (Q ∼ P). This means that both probability measures have the

same null set (∀ A ∈ Ω PrP [A] = 0 ⇔ PrQ[A] = 0)

• and the discounted risky stock is a Q-martingale, i.e. EQ[S̃t|Fs] =

S̃s (t0 ≤ s ≤ t ≤ T ) (Harrison and Pliska 1981, p. 236).

Notation 4.18 Henceforth we will denote the set of all equivalent martin-

gale measures of the probability measure P as P.

To change one (not necessarily martingale) probability measure to an-

other, we have to use the Radon-Nikodým density.

Definition 4.19 (Radon-Nikodým density) The Radon-Nikodým density

of Q with respect to P is defined as the unique FT -measurable random vari-

able ΛT , such that for any event A ∈ FT we have

Pr
Q

[A] =

∫
A

ΛT dP

(Musiela and Rutkowski 2007, p. 606).

Remark 4.20 Definition 4.19 implies that for any Q-integrable random vari-

able X, we have EQ[X] = EP [XΛT ]. Note also that X is Q-integrable if and

only if XΛT is P-integrable. Finally, it is easy to check that PrP [ΛT > 0] = 1

and EP [ΛT ] = PrQ[Ω] = 1 (Musiela and Rutkowski 2007, p. 606).
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Notation 4.21 (Radon-Nikodým derivative) To emphasize the role of

ΛT as the link between the expectations with respect to Q and P, it is cus-

tomary to use the short-hand notation

ΛT =
dQ
dP ,

which is called the Radon-Nikodým derivative (Musiela and Rutkowski 2007,

p. 607).

Definition 4.22 (Radon-Nikodým density process) Let P and Q be equiv-

alent probability measures, and let (Ft)t∈[t0,T ] be a filtration. Then, for all

t ∈ [t0, T ],

Λt = EP [ΛT |Ft] = EP

[
dQ
dP |Ft

]
is called a Radon-Nikodým density process (Musiela and Rutkowski 2007,

p. 607).

Remark 4.23 It is obvious that the process (Λt)t0≤t≤T is a P-martingale.

Proposition 4.24 A stochastic process (Xt)t0≤t≤T is an F-martingale un-

der Q if and only if the process (XtΛt)t0≤t≤T is an F-martingale under P

(Musiela and Rutkowski 2007, p. 607).

Proof. Assume that (XtΛt)t0≤t≤T is an F -martingale under P, so that equal-

ity EP [XtΛt|Fs] = XsΛs holds for t0 ≤ s ≤ t ≤ T . Using the Bayes formula

EQ[Xt|Fs] =
EP [XtΛT |Fs]

EP [ΛT |Fs]
=

EP [XtEP [ΛT |Ft]|Fs]

EP [ΛT |Fs]

=
EP [XtΛt|Fs]

Λs
=
XsΛs

Λs
= Xs,

we conclude that the stochastic process (Xt)t0≤t≤T is an F -martingale under

P. The proof of the converse implication goes along the same lines (Musiela

and Rutkowski 2007, p. 607).
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4.2.2 Option pricing formula

So far we considered all self-financing strategies. However, from an economic

point of view, only some of these are of importance.

Definition 4.25 (Admissible strategy) Let M be a financial market de-

fined on a filtered probability space (Ω,F ,P), and let φ be a trading strategy.

If the discounted portfolio process is non-negative for all t0 ≤ t ≤ T

Ṽt(φ) ≥ 0,

self-financing

Ṽt(φ) = Ṽt0(φ) + G̃t(φ),

and a Q-martingale

EQ[Ṽt(φ)|Fs] = Ṽs(φ),

then φ is called admissible (Harrison and Pliska 1981, p. 240-241).

Notation 4.26 Let Φ� denote the class of all admissible trading strategies.

The non-negativity condition rules out some short-selling strategies. The

short selling of the risky asset is allowed in general, but only if the value of

the whole portfolio is non-negative. Let us now concentrate on a special class

of the admissible strategies: the hedging strategies.

Definition 4.27 (Attainable contingent claim) Let M be a financial mar-

ket defined on a filtered probability space (Ω,F ,P), and let HT be a contingent

claim. If there exists an admissible trading strategy φ ∈ Φ� such that

ṼT (φ) = βTHT

then claim HT is called attainable (replicable, or hedgeable). We say that

φ generates the contingent claim HT , and the initial capital Pt0 = Ṽt0(φ) is
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called the price of this claim (Harrison and Pliska 1981, p. 240). Then we

say that the price Pt0 = Ṽt0(φ) is price associated with the contingent claim

HT .

The idea of the hedging portfolio is that, with a positive start capital Vt0

and continuous buying and selling bonds and stocks, the agent can track the

value of the contingent claim without investing additional capital after t0. In

this manner the seller of the put can protect himself from potential loss. If

he sells a put for the price of Vt0 and invests this amount in the self-financing

trading strategy, he will avoid additional costs at the expiration time in the

case that the buyer would want to deliver the contract to the seller.

Theorem 4.28 (Contingent Claim Pricing Theorem) Let M be a fi-

nancial market defined on a filtered probability space (Ω,F ,P), let HT be an

attainable contingent claim, and let Q ∈ P �= ∅ be an equivalent martingale

measure. Then, a unique price Pt0 associated with an attainable claim HT is

Pt0 = EQ[βTHT ]

(Harrison and Pliska 1981, p. 240).

Proof. Since the contingent claim is attainable, it is true that

ṼT (φ) = βTHT . (4.9)

As each attainable claim is also admissible, the discounted value process is a

Q-martingale

EQ[ṼT (φ)|Fs] = Ṽs. (4.10)

Thus, from equations (4.9) and (4.10) the Theorem 4.28 follows.
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4.3 Existence of the solution (Arbitrage)

Until now, we have assumed that the set of all equivalent martingale measures

P is not empty. Let us now study the conditions that have to be fulfilled for

the existence of the option price.

The following will define the arbitrage opportunity.

Definition 4.29 (Arbitrage opportunity) Let M be a financial market

defined on a filtered probability space (Ω,F ,P), and let (φt)t0≤t≤T be a self-

financing strategy with zero initial investment

Vt0(φ) = 0.

If the value process Vt(φ) determined by this trading strategy has a certain

non-negative value at the maturity T

P(VT (φ) ≥ 0) = 1,

and there is some positive probability that the value of this portfolio will be

positive at the maturity T

P(VT (φ) > 0) > 0,

then the self financing strategy φ is called an arbitrage opportunity (Bingham

and Kiesel 2004, p. 232).

From an economic point of view the arbitrage opportunity is practically

a money making machine, as it enables the investor to make a profit without

investing any start capital. Thus, an arbitrage-free market can be defined as

follows.

Definition 4.30 (Arbitrage-free market) The financial market M is ar-

bitrage free if there are no arbitrage opportunities in the class of self-financing

strategies (Bingham and Kiesel 2004, p. 106).
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Now we can define the condition of existence of the price for the contingent

claim.

Theorem 4.31 (First Fundamental Theorem of Asset Pricing) Assume

that the set of equivalent martingale measures is non-empty (i.e. P �= ∅), then

the market model M contains no arbitrage opportunities in the set of trading

strategies (Bingham and Kiesel 2004, p. 234).

Proof. Let the set of equivalent martingale measures P be not empty, and

let Q be a martingale measure from this set, and let value process Vt(φ) be an

arbitrage opportunity for the self-financing strategy. According to Definition

4.29 of the arbitrage Vt0(φ) = 0, PrP [VT (φ) ≥ 0] = 1 and PrP [VT (φ) > 0] > 0.

As Q is equivalent to P, then PrQ[VT (φ) ≥ 0] = 1, which is equivalent to

Pr
Q

[VT (φ) < 0] = 0. (4.11)

From the Definition 4.17

EQ[ṼT (φ)] = Ṽt0(φ) = 0. (4.12)

Equations (4.11) and (4.12) imply that PrQ[VT (φ) > 0] = 0, which from the

equivalence of Q and P, gives PrP [VT (φ) > 0] = 0. This contradicts the

definition of arbitrage. Therefore, the arbitrage opportunity does not exist

(Shreve 2004, p. 231).

Remark 4.32 Thus, if we prove that no arbitrage opportunity does exist, we

can state that the price of the contingent claim Ht0 with the payout function

f(ST ) does exist, such that

inf
Q∈P

EQ[βT−t0f(ST )] ≤ Ht0 ≤ sup
Q∈P

EQ[βT−t0f(ST )].

We know that bounds exist, because P is finite.
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4.4 Uniqueness of the solution (Completeness

of the market)

In the previous section we have shown that the price of the contingent claim

exists if the market is arbitrage-free. Now let us study the conditions when

the price is unique. First, we introduce the definition of a complete market.

Definition 4.33 (Complete market) A market M is complete if every

contingent claim is attainable, i.e., for every FT -measurable random variable

HT there exists a replicating self-financing strategy φ ∈ Φ, such that VT (φ) =

HT (Bingham and Kiesel 2004, p. 116). If the market is not complete then

it is called incomplete.

Now we can formulate the Second Fundamental Theorem of Asset Pricing.

Theorem 4.34 (Second Fundamental Theorem of Asset Pricing) As-

suming the absence of the arbitrage, the market model is complete if and only

if the set of equivalent martingale measures P is a singleton (i.e., the equiv-

alent martingale measure Q is unique) (Björk 2004, p. 151, 198).

Proof. Let the model be complete in order to prove that a unique equivalent

martingale measure exists. Furthermore, we assume that there exist two

martingale measures: Q1 and Q2, which are equivalent to P. Let event A

be an element of the filtration FT . Now consider a contingent claim with

the payoff function HT = β−1
T I[A]. As the market is complete, there exists a

replicating self-financing strategy φ, such that VT (φ) = HT . The discounted

portfolio value ṼT (φ) is a martingale with respect to Q1 and Q2, because

both these measures are risk-free. Thus,

Pr
Q1

[A] = EQ1 [ṼT (φ)] = EQ1 [H̃T ] = Ht0 = EQ2 [H̃T ] = EQ2[ṼT (φ)] = Pr
Q2

[A].
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Thus, the risk-free measure is unique (Q1 = Q2). The proof in the opposite

direction takes much longer and can be found in Shreve (2004, p. 232-234).

4.5 Esscher risk-neutral probability measure

In incomplete markets there exist several risk-neutral probability measures.

In this dissertation the Esscher martingale measure will be of particular in-

terest.

The Esscher transformation is a well-approved tool among actuaries, and

was originally developed by Esscher (1932) to transform a random variable;

to give it a new distribution captured at a point of interest. The purpose

of this is to enable more accurate approximations to be made at this point.

Gerber and Shiu were the first to use the Esscher transform to price European

(Gerber and Shiu 1994b) and American options (Gerber and Shiu 1994a).

This Section introduces how to use the Esscher martingale measure to price

options.

First, we make the following assumption.

Assumption 4.35 Let M be a financial market defined on a filtered prob-

ability space (Ω,F ,P), where the risky stock is a continuously compounded

return rate process (Xt)t≥t0 with stationary independent increments and the

initial value Xt0 = 0, such that

St = St0e
Xt , for all t ≥ t0 (4.13)

(Gerber and Shiu 1994b, p. 102).

Notation 4.36 Let

F (x, t) = Pr
P

(Xt ≤ x) for all t ≥ t0 and x ∈ R
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denote the cumulative distribution function of the process Xt, with the asso-

ciated density function

f(x, t) =
d

dx
F (x, t), for all t ≥ t0 and x ∈ R

and the moment generating function

M[z, t] = E
[
ezXt
]

=

∫ ∞

−∞
ezxf(x, t)dx, for all t ≥ t0 and z ≥ 0,

respectively (Gerber and Shiu 1994b, p. 102).

Proposition 4.37 Assume that M[z, t] is continuous, then

M[z, t] = Mt[z, 1]

(Gerber and Shiu 1994b, p. 102).

Proof. For proof, see Breiman (1968, Section 14.4) or Feller (1971, Section

IX.5).

In the following, we will introduce the Esscher density function.

Definition 4.38 (Esscher equivalent martingale measure) Let P be a

probability measure, let Ft be a filtration, and let h ∈ R for which the moment

generating function M[h, t] exists, then the Radon-Nikodým derivative

dQ
dP

∣∣∣∣
Ft

=
ehxf(x, t)∫∞

−∞ ehyf(y, t)dy
=
ehxf(x, t)

M[h, t]

defines the Esscher equivalent martingale measure Q with respect to param-

eter h (Gerber and Shiu 1994b, p. 102-103).

Notation 4.39 Hereafter, the following notation will be used

dQ
dP

∣∣∣∣
Ft

= f(x, t; h)
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Remark 4.40 The Esscher transformed moment generating function is

M[z, t; h] =

∫ ∞

−∞
ezxf(x, t; h)dx =

M[z + h, t]

M[h, t]
(4.14)

(Gerber and Shiu 1994b, p. 103).

Proposition 4.41 Assume that M[z, t; h] is continuous, then

M[z, t; h] = Mt[z, 1;h]

(Gerber and Shiu 1994b, p. 103).

Proof. The proof results from Proposition 4.37.

Proposition 4.42 (Existence and uniqueness of the Esscher parameter)

Let r be a constant risk-free rate, then it holds that

r = ln M[1, 1;hQ] (4.15)

and has the unique solution h = hQ (Gerber and Shiu 1994a, p. 664 and

Gerber and Shiu 1994b, p. 104).

Proof. First of all, we prove the existence of the solution. As the Esscher

probability measure is risk-neutral, the discounted stock has to be a Q-

martingale

St0 = EQ[e−r(t−t0)St].

From equation (4.13) it follows that

St0 = e−r(t−t0)St0EQ
[
eX(t−t0)

]
.

If we omit St0 and use Remark 4.40 and Proposition 4.41, we get

er(t−t0) = M[1, (t− t0); hQ] = M[1, 1;hQ](t−t0),
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which is equivalent to

r = ln M[1, 1;hQ],

which, in turn, proves the existence of the solution (Gerber and Shiu 1994b,

p. 103-104).

Now let us prove the uniqueness of the solution. Consider a function g(h)

g(h) = ln M[1, 1;h]

for all h, such that M[1, 1;h] exists. From Remark 4.40 we have

g(h) = ln M[h + 1, 1] − ln M[h, 1] = ln E
[
e(h+1)X1

]
− ln E

[
ehX1
]
.

Note that

g′(h) =
E
[
X1e

(h+1)X1
]

E [e(h+1)X1 ]
−

E
[
X1e

hX1
]

E [ehX1 ]
= E[X1; h+ 1] − E[X1; h]

where E[g(Xt); h] =
E[g(Xt)ehXt ]

E[ehXt ]
. Furthermore,

dE[X1; h]

dh
=

E
[
X2

1e
hX1
]

E [ehX1 ]
−
(

E
[
X1e

hX1
]

E [ehX1 ]

)2

= Var(X1; h) > 0,

as Xt is a non-degenerate random variable. Thus, the first derivative of

E[X1; h] is a strictly positive and the expected value E[X1; h] is a strictly

increasing function. From this it results that the function g(h) is strictly

increasing, and thus the equation g(h) = r has a unique solution: h = hQ

(Gerber and Shiu 1994a, p. 664).

Remark 4.43 The Esscher equivalent measure is unique. However, this

does not mean that other risk-neutral measures do not exist.

Remark 4.44 Note that for t ≥ t0

ehXt

(M[h, 1])t
=

ehXt

E[ehXt ]
=

(St)
h

E[(St)h]
.
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.

Thus, we can construct the following factorization rule, which is very

convenient, as it saves us some complicated calculations.

Proposition 4.45 (Factorization formula) Let g be a measurable func-

tion and let h, k, t be real numbers, with t ≥ 0, then it holds that

E[Sk
t g(St); h] = E[Sk

t ; h]E[g(St); k + h]

(Gerber and Shiu 1996, p. 188).

Proof.

E[Sk
t g(St); h] = E

[
Sk

t g(St)
ehXt

(M[h, 1])t

]
=

E[Sk+h
t g(St)]

E[Sh
t ]

=
E[Sk+h

t ]

E[Sh
t ]

E[Sk+h
t g(St)]

E[Sk+h
t ]

= E[Sk
t ; h]E[g(St); k + h]

(Gerber and Shiu 1996, p. 188).

Now we can use this factorization rule to find the put price via the Esscher

risk-neutral measure.

Theorem 4.46 (Put price via Esscher risk-neutral measure) Let M

be a financial market defined on a filtered probability space (Ω,F ,P) and let

Q be an Esscher equivalent martingale measure, let F (x, t; h) be an Esscher

transformed cumulative distribution function with respect to parameter h, and

let P be a European put option with the expiration date T and strike price K.

Then, the price of this contingent claim is given by

Pt0 = e−r(T−t0)KF

(
− ln

St0

K
, T − t0; hQ

)
− St0F

(
− ln

St0

K
, T − t0; hQ + 1

)
Proof. According to the definition of the put option (4.2) and the Contingent

Claim Pricing Theorem 4.28, the price is equal to

Pt0 = EQ[e−r(T−t0)f(ST )|Ft0]
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with f(ST ) = (K − ST )+. If we write,

Pt0 = EQ[e−r(T−t0)(K − ST )+|Ft0 ]

= e−r(T−t0)KEQ[I[ST <K]] − e−r(T−t0)EQ[ST I[ST <K]]

we can use the factorization formula from the Proposition 4.45 with

g(ST ) = I[ST <K] = I[St0ex<K] = I[x<lnK−ln St0 ],

where x = XT−t0 . Then,

Pt0 = e−r(T−t0)KEQ[I[x<lnK−lnSt0 ]; hQ]

− e−r(T−t0)EQ[ST ; hQ]EQ[I[x<lnK−ln St0 ]; hQ + 1].

As we have EQ[IA] = PrQ(A) and EQ[ST ; hQ] = S
X(T−t0)

t0 we get

Pt0 = e−r(T−t0)K Pr
Q

(
x < − ln

St0

K
; hQ

)
− St0 Pr

Q

(
x < − ln

St0

K
; hQ + 1

)
= e−r(T−t0)KF

(
− ln

St0

K
, T − t0; hQ

)
− St0F

(
− ln

St0

K
, T − t0; hQ + 1

)
,

which completes the proof.

4.6 Option pricing

4.6.1 Black-Scholes market

Now we can use the Esscher martingale measure to prove the well-known

Black and Scholes (1973) option pricing formula. This formula can be used

to price options in a complete market.

Definition 4.47 (Black-Scholes financial market) Let MBS = (Bt, St)

be a financial market defined on a filtered probability space (Ω,F ,P) where

the risky stock (St)t≥t0 follows a geometric Brownian motion

St = St0 +

∫ t

t0

μSudu+

∫ t

t0

σSudWu.
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where μ ∈ R denotes the drift, σ > 0 the diffusion parameter, and Wt

standard Wiener process, respectively. Then the tuple MBS is called Black-

Scholes financial market.

Theorem 4.48 (Black-Scholes option pricing formula) Let MBS be a

Black-Scholes financial market defined on a filtered probability space (Ω,F ,P),

then the price of a European put P with the expiration time T and the strike

price K is given by

Pt0 = Ke−r(T−t0)Φ(−d2) − St0Φ(−d1)

with

d1 =
ln

St0

K
+
(
r + 1

2
σ2
)

(T − t0)

σ
√
T − t0

and

d2 = d1 − σ
√
T − t0,

where Φ(·) denotes the standard normal distribution function.

Proof. As the stock process is a geometric Brownian motion, the stock

price process follows a log-normal distribution with the moment-generating

function

M[z, t] = e(μz+ 1
2
σ2z2)t.

From equation (4.14) it follows that

ln M[z, t; h] =

(
(μ+ hσ2)z +

1

2
σ2z2

)
t. (4.16)

Thus the return of the stock has a mean μt under the real probability measure

P and (μ + hσ2)t under the risk-neutral Esscher measure Q, respectively.

Note that the variance of the return is unchanged under both measures: σ2t.

Therefore, returns Xt are normally distributed

Xt ∼ N ((μ+ hσ2)t, σ2t). (4.17)
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Equations (4.15) and (4.16) yield the risk-free rate of return

r = (μ+ hQσ
2) +

1

2
σ2

and equivalently the unique Esscher parameter is

hQ =
r − μ

σ2
− 1

2
.

Thus, the mean rate of return under the Esscher measure Q is

μQ = r − 1

2
σ2. (4.18)

Equations (4.17) and (4.18) imply that the cumulated distribution function

is given by

F (x, t; h) = Φ

(
x−
(
r − 1

2
σ2
)

(t− t0)

σ
√
t− t0

)
From Theorem 4.46 the put price equals

Pt0 =e−r(T−t0)KF

(
− ln

St0

K
, T − t0; h

)
− St0F

(
− ln

St0

K
, T − t0; h+ 1

)
=e−r(T−t0)KΦ

(
− ln

St0

K
− (r − 1

2
σ2)(T − t0)

σ
√
T − t0

)

− St0Φ

(
− ln

St0

K
− (r + 1

2
σ2)(T − t0)

σ
√
T − t0

)

=e−r(T−t0)KΦ

(
−

ln
St0

K
+ (r − 1

2
σ2)(T − t0)

σ
√
T − t0

)

− St0Φ

(
−

ln
St0

K
+ (r + 1

2
σ2)(T − t0)

σ
√
T − t0

)
,

which completes the proof1.

1This proof is analogous to the proof for the price of the call option given by Gerber

and Shiu (1994b, p. 107-108)
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4.6.2 Markov Switching market

This Section will discuss option pricing in a special incomplete market: the

Markov switching market.

Definition 4.49 (Markov switching financial market) Let MMS = (Bt, St)

be a financial market defined on a filtered probability space (Ω,F ,P), let

(Ztn)tn≥0 (where tn = nτ , n ∈ N and τ is a fixed positive number) be a

Markov chain with the transition probabilities

pji = Pr[Ztn = j|Ztn−1 = i], with
∑
j∈K

pji = 1, and i ∈ K,

and the state space K = {1, 2, . . . , K}. Let (Wt)t≥0 be a Wiener process, with

Ft = σ{Ztn, St,Wt : t ≥ 0} being an associated filtration, and μ(Ztn) and

σ(Ztn) being associated processes. Furthermore, let the risky stock St follow

a geometric Brownian motion with Markov switching

St = St0 +

∫ t

t0

μ(Zu)Sudu+

∫ t

t0

σ(Zu)SudWu, for t ∈ [tn, tn+1),

then, the tuple MMS is called a Markov switching financial market.

Under the classic geometric Brownian motion, the financial market is

complete, so that there exists a unique martingale measure Q. However,

Chapter 3 shows that the Markov switching model is a better model to

describe the stochasticity of the risky portfolio underlying the guarantee. In

this model, the variance is stochastic and, thus, the market is not complete

anymore. The option pricing in such an economy is not straightforward

because there exists no unique equivalent probability measure and, therefore,

no unique price of the option. Thus, a reliable choice of the martingale

measure has to be made. This section discusses two possible choices: the

Bollen-Hardy and the Esscher measure.
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4.6.2.1 Bollen-Hardy option pricing formula

Bollen (1998) was the first who priced options in the Markov switching model.

His approach bases on the discrete time model. In this thesis, we discuss the

extension to the continuous time made by Hardy (2001). This method is

based on the model with stochastic volatility. However, the main drawback

to this model is that it does not price the switching risk.

Theorem 4.50 (Bollen-Hardy option pricing formula) Let MMS be a

Markov switching financial market defined on a filtered probability space (Ω,F ,P)

and the state space K = {1, 2}, and let the transition probability be unchanged

under the equivalent martingale measure Q, i.e.

Pr
P

[Ztn = j|Ztn−1 = i] = Pr
Q

[Ztn = j|Ztn−1 = i] for all i, j ∈ K, (4.19)

then the Bollen-Hardy price of a European put P with the expiration time T

and the strike price K is given by

Pt0 =

N∑
i=0

Pr(R = i)[Ke−r(T−t0)Φ(−d2(R = i)) − S0Φ(−d1(R = i))]

with

d1(R) =
ln

St0

K
−
(
r +R 1

2
σ2

1 + (N − R)1
2
σ2

2

)
(T − t0)√

Rσ2
1 + (N −R)σ2

2

√
T − t0

and

d2(R) = d1(R) −
√
Rσ2

1 + (N − R)σ2
2

√
T − t0,

where N ∈ N denotes the number of “switching” periods (i.e. T − t0 =

N(tn − tn−1)), R the number of periods when the stock price process is in

regime 1 (i.e. R =
∑N

tn
I[Ztn=1]), and Φ(·) the standard normal distribution

function (Hardy 2001, p. 49).
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Proof. According to the definition of the put option (4.2) and the Contingent

Claim Pricing Theorem 4.28, the price is equal:

Pt0 = e−(T−t0)rEQ[(K − ST )+] = e−(T−t0)rEQ[EQ[(K − ST (R))+]|R]

=
N∑

i=0

Pr
Q

(R = i)e−(T−t0)rEQ[(K − ST )+|R = i] =
N∑

i=0

Pr
Q

(R = i)Pt0(R = i).

Using the assumption (4.19),

Pt0 =

N∑
i=0

Pr
Q

(R = i)Pt0(R = i) =

N∑
i=0

Pr
P

(R = i)Pt0(R = i).

Under the condition that R, the number of periods the state variable has been

in the first regime is known, the risky stock follows the geometric Brownian

motion with drift Rμ1 +(N−R)μ2 and diffusion
√
Rσ2

1 + (N −R)σ2
2 . Thus,

we can use the Black-Scholes formula for the price of the put option.

Pt0(R = i) = Ke−r(T−t0)Φ(−d2(R = i)) − S0Φ(−d1(R = i))

with

d1(R = i) =
ln

St0

K
−
(
r +R 1

2
σ2

1 + (N − R)1
2
σ2

2

)
(T − t0)√

Rσ2
1 + (N − R)σ2

2

√
T − t0

and

d2(R = i) = d1(R) −
√
Rσ2

1 + (N −R)σ2
2

√
T − t0,

which completes the proof.

4.6.2.2 Webb option pricing formula

The Bollen-Hardy option pricing model assumes that the risk-neutral mea-

sure does not change (see assumption (4.19)). Neither Bollen nor Hardy

proved that this holds true, which is a drawback to this approach. Webb

(2003) proposed several models which allow to price the switching risk. In

her thesis, she proposed three martingale measures. They are based on the
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mean-variance hedging, the Esscher transform, and the minimum entropy.

They all have closed analytical solutions and give similar numerical results.

However, only the Esscher transform solution can be simulated via the Monte

Carlo method. We decided, though, to use this method, as the guarantees we

price are path-dependent and can only be solved numerically. Furthermore,

the Esscher martingale measure Q has several additional advantages:

• The process under the new martingale measure remains in the same

class of models as the process under the real-word probability measure

P. In the considered case, it means that the prices under the Esscher

transform follow the geometric Brownian motion with Markov switch-

ing, see Gerber and Shiu (1994b, p. 163-165, comment of Michaud).

• The solution reduces to the well-known Black and Scholes (1973) for-

mula for the case of one switching regime (K = 1), see Corollary 5.4.4

in Webb (2003).

• The Esscher measure allows the pricing of the switching risk.

• Finally, the Esscher transform approach is conform with maximizing

the expected utility with the constant risk aversion utility function

u(x) = xγ

γ
(0 < γ < 1), which is commonly used in financial models,

see Webb (2003, p. 88). This means, intuitively, that the agent prefers

to have more money than less. However, the wealth increase of ¤1, has

a smaller additional utility, the more the agent possesses. The agent

with this utility function is risk averse.

Theorem 4.51 (Webb option pricing formula) Let MMS be a Markov

switching financial market defined on a filtered probability space (Ω,F ,P)

and the state space K = {1, 2, . . . , K}, and let the transition probability be
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changed under the equivalent martingale measure Q, then the Webb price of

a European put P with the expiration time T and the strike price K is given

by

Pt0,j1 = Pt0(Zt0 = j1) =

K∑
j2=1

· · ·
K∑

jN+1=1

N∏
i=1

p
(h)
ji+1ji︸ ︷︷ ︸

(�)

×
[
Ke−r(T−t0)Φ(−d−j ) − St0 exp

{
N∑

k=1

[
(μjk+1

− r)τ + hjk
σ2

jk+1
τ
]}

Φ(−d+
j )

]
︸ ︷︷ ︸

(��)

(4.20)

with the Esscher transition probabilities

p
(h)
ji = Pr[Zt = j|Zt−1 = i; h] =

pji exp
{
hi[μj − 1

2
σ2

j ]τ + 1
2
σ2

j τh
2
i

}∑M
j=1 pji exp

{
hi[μj − 1

2
σ2

j ]τ + 1
2
σ2

j τh
2
i

}
(4.21)

and parameters

d±j =
ln
(

St0

K

)
+
∑N+1

i=2

(
μji

± 1
2
σ2

ji

)
τ +
∑N−1

i=1 (hji
− hjN

)σ2
ji+1

τ√(∑N+1
i=2 σ2

ji

)
τ

+ hjN

√√√√(N+1∑
i=2

σ2
ji

)
τ ,

(4.22)

where N denotes the amount of switches in the pricing horizon, τ = (T −

t0)/N the time period between two switches, and Φ(·) the standard normal

distribution function (Webb 2003, p. 102-103).

Proof. For the proof for the call price, see Webb (2003, Chapter 5). Then

use the put-call parity, which completes the proof.

To assure that the option price under the Esscher measure (4.20)-(4.22)

is unique we have to prove that the Esscher parameter vector is unique.

161



Proposition 4.52 (Uniqueness of the Esscher parameter) The Esscher

parameter vector hhh is unique and can be computed numerically from the equa-

tions

K∑
j=1

pji exp

{
hi(μj −

1

2
σ2

j )τ +
1

2
σ2

j τh
2
i

}(
exp
{
μjτ + σ2

j τhi

}
− erτ

)
= 0,

(4.23)

knowing that hi is a unique point from the interval(
min

j

(
r − μj

σ2
j

)
,max

j

(
r − μj

σ2
j

))
(4.24)

(Webb 2003, p. 89-91).

Proof. The proof is analogous to the proof for Proposition 4.42 and can be

found in Webb (2003, p. 89-91)

The term (��) in the equation (4.20) determines the price of the put

for the given switching path (combination of regimes) j1, j2,. . . ,jN+1, which

is weighted with the probability (�) that the process will follow that path.

Finally, the price is computed for each possible switching path and added

together. Note that the term (��) discloses some parallels to the well-known

Black and Scholes (1973) formula for the European put option: (a) The terms

d+
j and d−j correspond to d1 and d2, respectively. (b) The exponential term

after S0 is consistent with the Black and Scholes formula as well because the

stock return by Black and Scholes is equal to the risk-free rate r. For the

discounted asset price ST this yields

e−rTST = e−rTSt0e
rT = St0 (4.25)

Under the Esscher risk-neutral probability measure, the equity return is

equal to (μjn + hjn−1σ
2
jn

)τ , so this term does not reduce to St0 .

Moreover, please note that the put price Pt0,j1 depends on the initial state

j1. To determine the price which is independent from the initial regime, the
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interval τ has to be decreased, due to the fact that the influence of the initial

state on the put price decreases as the length of the path grows (see Tables

7.1-7.3 in Webb (2003)). However, this is problematic, since the number of

combinations grows exponentially as the length of the path increases. This

is particularly problematic with regard to the long-term options, which are

studied in this dissertation. For instance, for two states (K = 2), 30 years

maturity, and one switch per year (N = 30), the number of combinations

(KN ) equals 1,073,741,824. If the switch occurs every month (N = 360),

the number of combinations rises to 2.3·10108. Instead of increasing N , the

approximate price Pt0,app could be determined through weighting the initial

state-dependent prices in equation (4.20) by the unconditional Esscher prob-

abilities, so that the process stays in the i-th regime

Pt0,app =

K∑
i=1

Pt0,iπ
(h)
i (4.26)

where the unconditional probabilities π
(h)
i could be computed with the equa-

tion (2.68) using the Esscher conditional probabilities p
(h)
ji from equation

(4.21) instead of the real-world probabilities pji. For other alternatives, see

the discussion in Section 4.7.2.1.

Due to the fact that contributions to retirement saving plans are paid

periodically, there exists no closed-form solution of the option pricing, thus

the formula (4.20) cannot be applied directly. However, it is possible to

simulate the option price with the Monte Carlo simulation with the return

mean (
μj −

1

2
σ2

j

)
τ +

1

2
hiσ

2
j τ (4.27)

and the return standard deviation

σjτ (4.28)
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and the Esscher transition probabilities given in the equation (4.21). For the

simulation algorithm under the Markov switching regime, see Hardy (2003,

p. 98).

4.7 Quantitative results

4.7.1 Outline of the study

4.7.1.1 Design of the guarantee

The German finance industry offers retirement saving plans, in which the

contributions are invested in risky portfolios (see Maurer and Schlag 2003,

and Gründl et al. 2004). These saving plans are co-financed by the state if the

provider includes a guarantee that at least the sum of the charged premiums

is paid out to the investor when the contract expires. This is equivalent

to a deterministic guarantee rate of 0% on the paid contributions. If the

provider’s investment strategy fails to generate this minimum return, he is

required to finance the difference between the market value of the portfolio

and the guaranteed amount. From an economic point of view, this guarantee

is a European put option with the following payoff:

PT = max{GT − ST ; 0}, (4.29)

with the guarantee value

GT =

T−1∑
tn=0

Ctne
g(T−tn), (4.30)

where PT is the value of the option, and ST is the market value of the risky

portfolio at the maturity T , g is the guaranteed rate of return, and Ctn is the

contribution paid in at the time tn. The price of the put at the time tn = 0
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equals the expected value of the payoff at the maturity under the risk-free

probability measure Q, discounted with the risk-free rate of return r

P0 = e−rT EQ[max{GT − ST ; 0}], (4.31)

where EQ[·] denotes the expected value under the probability measure Q.

4.7.1.2 Investment strategies

In this study we examine several investment strategies. They can be assigned

to three categories: buy-and-hold strategies, life-cycle strategies, and the

zero-bond strategy. In buy-and-hold investment strategies the client invests

x% (with 0% < x < 100%) of his contributions in a well-diversified bond

fund and the remaining (100 − x)% in a well diversified equity fund. While

this proportion remains constant throughout the contract duration, the asset

allocation in both funds, however, can change over time. In this dissertation,

we analyze the following portfolio choices: x = 0%, 10%, . . . , 100%, and,

additionally, x = 25% and x = 75%.

One of the main properties of the buy-and-hold strategies is the con-

stant stock proportion during the whole investment period. This investment

decision can, however, be suboptimal. A high proportion of stock implies a

higher risk level. This leads: on the one hand to a higher expected profit and,

on the other hand, to a higher guarantee cost, as the option price increases

along with the increasing risk. On the contrary, the choice of a low stock

proportion implies a lower risk level and causes a decrease of the guarantee

cost. Simultaneously, it leads to a decrease of the expected return from the

portfolio. Given that the goal of retirement savings is to provide a relatively

high income during retirement, this product would not be what the client

aims to buy. Instead, the investor could choose an investment strategy with
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Table 4.1: Life-cycle investment strategies

Years to Client’s Aggressive Moderate Conserv. Naive 100-x∗

maturity age Portfolio proportion invested in bonds

30 – 26 35 – 39 0% 0% 40% 25% 40%

25 – 21 40 – 44 0% 0% 50% 25% 40%

20 – 16 45 – 49 0% 30% 60% 50% 50%

15 – 11 50 – 54 0% 60% 70% 50% 50%

10 – 6 55 – 59 0% 90% 80% 75% 60%

5 60 50% 90% 90% 75% 60%

4 61 60% 90% 90% 75% 60%

3 62 70% 90% 90% 75% 60%

2 63 80% 90% 90% 75% 60%

1 64 90% 90% 90% 75% 60%

* Example of a 35-year-old investor who buys a 30-year contract.

a decreasing stock proportion as the contract draws to its expiration. Such

strategies are called life-cycle strategies.

In this thesis, we will analyze five life-cycle investment strategies : the

aggressive, the moderate, the conservative, the naive, and the so-called 100-

x investment rule (see Table 4.1). In the aggressive investment strategy, the

client invests the whole portfolio in stocks. In the fifth year before the end

of the contract, half of the portfolio’s assets will be shifted to bonds. Each

following year, the proportion of the portfolio invested in bonds will rise by 10

per cent points, so that in the last year before maturity, 90% of the portfolio

will be invested in bonds and the remaining 10% in stocks.

The moderate investment strategy is the one proposed by Maurer and

Schlag (2003). If the time to maturity is greater than 20, all assets are

invested in stocks. In the 20th year before maturity, 30% of the portfolio

is shifted to bonds. The last shift occurs 10 years before maturity, when a

further 30% of the assets is shifted to bonds. Thus, the bond proportion

finally equals 90%.

In the conservative investment strategy, the bond proportion is much

higher. Every five years the bond proportion rises by 10 per cent points,
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so that in the last five years of the contract, the stock engagement will have

shrunk to 10%. For instance, for a 30 year contract, one would start a port-

folio with 60% stocks and 40% bonds. After the first five years, the assets

are shifted to a fifty-fifty stock-bond proportion, and so on, so that in the

last five years, the proportion of bonds will have reached 90%.

In the naive investment strategy, the bond proportion in the portfolio

rises every 10 years by 25 per cent points, with the final goal being 75%. For

instance, for a 30 year contract one would start with a 25% bond proportion.

After 10 years, the stock-bond proportion will be fifty-fifty, and in the last

10 years, the bond proportion will account for 75% of the portfolio assets.

Financial advisers often recommend the 100-x investment rule to their

clients. This means that an x-year old individual should invest (100 − x)%

of his savings in low-risk assets (e.g. bonds) and the remaining x% in high-

risk assets (e.g. stocks). In this study, the rule will be simplified to reduce

the time needed for calibration, statistical tests and computation. The bond-

stock ratio will be fixed for the year of the investor’s round birthday (e.g. 40)

and kept constant for five years before and five years after this age. Hereafter,

we consider an example of a client who buys a product which expires on his

65th birthday (see Table 4.1).

Last, we describe the zero-bond investment strategy. The main idea is to

provide a costless guarantee. If the guarantee provider wants to guarantee

that the contribution Ctn paid at time tn (tn < T ) will grow with the guar-

anteed rate of return g at the maturity T , he should invest Ctne
(g−rtn,T )(T−tn)

in a zero-bond with the risk-free rate of return rtn,T > 0 and time to matu-

rity T − tn. The remaining Ctn

[
1 − e(g−rtn,T )(T−tn)

]
will be then invested in

stocks, in order to participate in the growth chance of the stock market. At

maturity, the value of the investment will equal the sum of the amount the
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provider has guaranteed Ctne
g(T−tn) and some non-negative amount

Ctn

[
1 − e(g−rtn,T )(T−tn)

]
eertn,T ,

where r̃tn,T ∈ R is the realization of the stochastic stock return in the period

T−tn. For the contract with periodic contributions, the value of the portfolio

at the end of the contract will be equal to

T−1∑
tn=0

Ctne
g(T−tn) +

T−1∑
tn=0

Ctn

[
1 − e(g−rtn,T )(T−tn)

]
eertn,T

= GT +

T−1∑
tn=0

Ctn

[
1 − e(g−rtn,T )(T−tn)

]
eertn,T ≥ GT ,

where GT is the guaranteed value given by equation (4.30). Please note that

this strategy is only risk-free if the guarantee level g does not exceed the

market risk-free rate rtn,T (rtn,T ≥ g, ∀ 0 ≤ tn < T ) and if the zero-bond is

default-free, as well. Both assumptions will be applied in this thesis.

4.7.1.3 Design of the study

Before we present the results of the study, we will give the explanation of

the simulation design. An individual retirement account with a single or a

periodic contribution payment is assumed. The periodic contribution Ctn

of ¤1200 is paid annually in advance. The single contribution is equal to

the net present value of the yearly contributions (i.e.
∑T−1

tn=0Ctne
−r(T−tn)).

At the inception of the contract, the client has to fix the contract duration

between one and 30 years2 (T=1,2,. . . ,30). At the contract inception, the

client can chose between the guarantee of g = −2%, 0%, 2% or 4% p.a. and

one of the investment portfolios defined in Section 4.7.1.2. The investment

2For the 100-x investment rule, we assume that the client ends the contract at his 65th

birthday.
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strategy cannot be changed afterwards. As the contract expires, the contract

provider guarantees to pay out the value of the investment portfolio ST or the

guaranteed amount GT defined in equation (4.30), whichever is higher. The

study excludes the surrender and biometrical risk, i.e. if the client cancels

the contract (or dies) before the maturity, he (or his inheritors) receives the

value of the portfolio. In a such case, no guarantee is given. The credit risk is

excluded as well, i.e. we assume that the guarantee provider cannot default.

The provider collects two fees in order to cover the costs and to make a

profit: the front-end-sales-charge and the administration charge. The front-

end-sales-charge equals 3% of the bond fund units and 5% of the equity fund

units. The administration charge is approximated by subtracting 0.5% p.a.

from the average return of the investment. These are assumptions made by

Maurer and Schlag (2003). In the case of the zero-bond strategy, both fees

are charged, however, only from that of the part of the contribution invested

in the stock fund. The investment in the zero-bond is charge-free as this

part of the investment does not have to be actively managed. Please note

that the guarantee is given on the gross contribution, so, e.g., in the one-year

maturity case, the guarantee of 2% on the pure stock portfolio is, in fact,

a guarantee of 7.13%3 from the guarantor’s point of view, because return

from the investment has to cover both the front-end-sales-fee of 5% and the

guarantee rate of 2%.

To estimate the distribution parameters of the returns, it is assumed that

the bond fund returns have the same distribution as the returns of the Ger-

man Bond Performance Index (REXP), and the equity fund returns have

the same distribution as the returns of the German Stock Index (DAX30).

In both cases there are performance indices involved, which means that the

3This is calculated from equation 0.95Ctnex = Ctne0.02.
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whole income from the investment (dividends, coupon-payment etc.) is rein-

vested in the portfolio underlying the index. The study compares results for

the geometric Brownian motion and the geometric Brownian motion with

Markov switching. The parameters for the GBM were estimated with the

MLE method, and these of the GBM with regime switching with the EM

algorithm (see Algorithm 2.71). Statistical tests have shown that the best

representative of the GBM with Markov switching is the MS(1-2) model, i.e.

the model with regime-independent mean and regime-dependent variance

(see the discussion in Chapter 3).

To calibrate both models, 13 synthetic portfolios were built. It was as-

sumed that on 31/12/1974 the amount of DM 195.58 (equivalent of ¤100)

was invested in each buy-and-hold portfolio defined in Section 4.7.1.2 (i.e.

with a 100%-0%, 90%-10%, ..., 0%-100%, and 75%-25% and 25%-75% REXP

to DAX proportion, respectively) and that the portfolio was held until 31/12

/2004. Then the monthly log-returns were inferred from the development

of the value of these portfolios. The parameters for both models are listed

in Tables B.1-B.13 in Appendix B. As a discount rate, the risk-free rate

of 0.44% per month (or equivalently 5.42% p.a.) was chosen, which is the

average monthly money market rate (Monatsgeld) published by the Federal

Bank of Germany (Deutsche Bundesbank) for the period from January 1975

to December 2004. This interest rate is also assumed to be the return of the

zero-bond in the zero-bond investment strategy.

The option price for the GBM model was computed under the Black-

Scholes martingale measure (see Theorem 4.48) and for the Markov switching

model under the Bollen-Hardy (see Theorem 4.50) and Esscher (see Theorem

4.51) risk-neutral measure.

Please note that for the contract with the periodic payment scheme, there
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exists no analytic solution. For the contract with the single contribution, an

analytical solution does exist. However, in the case of the Markov switching

model, the use of the pricing formula is very time-consuming. For instance,

a 30-year contract with an annual regime switching would require 230 op-

erations which amounts to more than one billion operations (see equation

(4.20)). Thus, the option price was simulated via the Monte Carlo method

with 1,000,000 iterations. The returns of the portfolio backing the contract

were simulated on a monthly basis. Also, the regime change in the Markov

switching model can occur at the end of each month (i.e the parameter τ in

equation (4.20) is set to be one month).

Please note that different contracts have different cash-flows and different

guarantee values. Therefore, the option prices were divided by the net present

value of the contributions paid during the contract, i.e.

P̃t0 =
e−r(T−t0)EQ [max{GT − ST ; 0}]∑T−1

tn=0Ctne
−r(tn−t0)

(4.32)

in order to enable a comparison between contracts with different durations

and different guarantee rates. The value from equation (4.32) will henceforth

be referred to as the normalized guarantee cost.

4.7.2 Guarantee cost

The following sections discuss the impact of different factors on the guar-

antee cost. The first two are rather technical and contribute to a better

understanding of the Webb pricing model. Section 4.7.2.1 discusses the im-

pact of the initial state on the guarantee cost. Section 4.7.2.2 compares the

guarantee cost under three valuations models: the Black-Scholes, the Bollen-

Hardy, and the Webb approach. Five further sections discuss the sensitivity

of the guarantee cost to the change of guarantee level (see Section 4.7.2.3),
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investment strategy (see Section 4.7.2.4), time (see Section 4.7.2.5), contract

term (see Section 4.7.2.6), and contribution payment scheme (see Section

4.7.2.7). They are interesting from the point of view of the guarantee seller,

who wants understand the guarantee cost and manage it properly. Lastly,

Section 4.7.2.8 discusses the interrelation of the guarantee cost and the ex-

pected profitability of the investment portfolio backing the guarantee. This

section is particularly interesting from the viewpoint of the potential investor.

4.7.2.1 Impact of the initial state on the guarantee cost

The option price under the Esscher measure depends on the probability

of the initial regime (see equation (4.20)). As the regime cannot be ob-

served, the probability of the initial regime is unknown. Figure 4.1 depicts

the normalized guarantee cost dependent on the initial state. The thin

dashed line represents the normalized cost for the agent who knows with

certainty that the market is in the low volatility state at the contract incep-

tion (Pr[Zt0 = 1] = 1). The thick dashed line depicts the price for the agent

who knows for sure that the market is in the high volatility regime at the

start of the contract (Pr[Zt0 = 2] = 1). The solid line represents the normal-

ized cost for the agent who does not know which state the process was in at

the beginning. Thus, he assumes that the process was in the low volatility

regime with its ergodic probability, i.e., he assumes: Pr[Zt0 = 1] = π1 and

Pr[Zt0 = 2] = π2 (see equation (2.69)).

The first two cases represent the lower and the upper bound of the Es-

scher option price. From Remark 2.34 we know that the limit transition

probabilities of the homogeneous Markov chain (here the state variable Ztn)

are the ergodic probabilities, as time goes to infinity. Thus, the case of the

uninformed agent is, in fact, the limit of the guarantee cost.
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Figure 4.1: Impact of the initial state on the normalized guarantee cost

Note:
This figure illustrates the impact of the initial state on the normalized guarantee cost by
means of the fifty-fifty stock-bond portfolio and the MS(1-2) model under the Esscher
probability measure. The thin dashed line represents the lower bound (Pr[Zt0 = 1] = 1)
and the bold dashed line the upper bound (Pr[Zt0 = 2] = 1) of the normalized cost,
respectively. The solid line represents its limit (Pr[Zt0 = 1] = π1). The left column displays
the periodic (¤1200 up-front annually) and the right column the single contribution (equal
to the net present value of periodic contributions) case. The top row shows the low level
guarantee (g = 0% p.a.) and the bottom row the high level guarantee (g = 4% p.a.),
respectively.

Figure 4.1 shows that, in most cases, the shapes of the lower and upper

bound and the limit of the price are the same. However, in a few cases, they

can differ. For instance, in the case of the fifty-fifty stock-bond portfolio and

high level guarantee (g = 4%), the upper bound decreases (first convex and

then concave) while the lower bound first increases to a maximum and then

decreases (the function is convex) (see the bottom left panel of Figure 4.1).

For low term contracts, the bounds are wide apart from each other. For

instance, the cost of a 0% guarantee in the case of a one year maturity
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contract and the fifty-fifty stock-bond investment has a spread of 1.57 per

cent points, according to the initial state. However, as the contract term

increases, both bounds converge to the limit and the price spread vanishes.

In the case of the periodical contributions, both buonds converge to each

other after about 5-10 years (see the left column of Figure 4.1). In the

case of the single contribution the convergence is much slower. For instance,

for the fifty-fifty stock-bond portfolio with the guarantee level g = 4%, the

spread is still 0.24 per cent points after 30 years. This is consistent with the

economic intuition: an agent who invests his whole capital at once (single

premium) takes more risk than an agent who spreads the capital over time

(periodic contribution). Furthermore, the convergence of the price to its limit

occurs faster, ceteris paribus, (1) the lower the guarantee level g and/or (2)

the higher the bond proportion x in the investment strategy.

We can conclude that the choice of the initial state is crucial for the

normalized guarantee cost, especially for short time contracts. For con-

tracts with longer maturities, the impact of the initial state is weaker. This

should intuitively be expected. Thus, for agents buying a contract in a turbu-

lent market phase, the longer the investment horizon they choose, the more

chances they have to compensate initial losses (in comparison to buying the

contract in the stable market phase).

The fact that the probability of the initial state cannot be observed con-

stitutes a drawback to this method. There are, however, five ways to deal

with this disadvantage. First, the risk averse actuary can choose the upper

bound price. Second, the guarantee provider can use the ergodic probabili-

ties to approximate the initial probabilities. If he has a portfolio of different

cohorts, this average price would lead to a stable financial situation for the

guarantor. Third, the guarantor can only sell contracts with periodic contri-
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Table 4.2: Smoothed probabilities in December 2004 (under real-world and

Bollen-Hardy measure)

Stock prop. 100% 90% 80% 75% 70% 60% 50%
Bond prop. 0% 10% 20% 25% 30% 40% 50%
Pr[ZT = 1|YT ] 0.9712 0.9703 0.9689 0.9684 0.9676 0.9647 0.9587
Pr[ZT = 2|YT ] 0.0288 0.0297 0.0311 0.0316 0.0324 0.0353 0.0413

Stock prop. 40% 30% 25% 20% 10% 0%
Bond prop. 60% 70% 75% 80% 90% 100%
Pr[ZT = 1|YT ] 0.9313 0.8792 0.8217 0.8873 0.9833 0.9943
Pr[ZT = 2|YT ] 0.0687 0.1208 0.1783 0.1127 0.0167 0.0057

Table 4.3: Smoothed probabilities in December 2004 (under Esscher measure)

Stock prop. 100% 90% 80% 75% 70% 60% 50%
Bond prop. 0% 10% 20% 25% 30% 40% 50%
Pr[ZT = 1|YT ] 0.9710 0.9701 0.9686 0.9681 0.9672 0.9642 0.9580
Pr[ZT = 2|YT ] 0.0290 0.0299 0.0314 0.0319 0.0328 0.0358 0.0420

Stock prop. 40% 30% 25% 20% 10% 0%
Bond prop. 60% 70% 75% 80% 90% 100%
Pr[ZT = 1|YT ] 0.9297 0.8755 0.8020 0.8715 0.9823 0.9939
Pr[ZT = 2|YT ] 0.0703 0.1245 0.1980 0.1285 0.0177 0.0061

butions and maturities of not less than 10 years. As a result, the prices would

converge to the limit and the uncertainty about the initial state would be

smaller. Fourth, he can use the additional information from the estimation:

the EM algorithm delivers the smoothed probabilities as the by-product of

the estimation (see Section 2.8.2.2). Thus, the actuary can interpret them

as initial state probabilities. Using this approach, the actuary has to con-

trol if the regime does not change. This means that he has to estimate the

Markov switching model in constant time periods to receive the “actual”

market smoothed probabilities. Last, the actuary can decrease the inter-

val τ (see Theorem 4.51) on which the value of the investment portfolio is
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to be simulated. In this contribution we use τ = 1 month. The decrease

of τ would, however, increase the computation time. For this reason we

reject this solution. Instead, we decide to use the additional information

from smoothed probabilities. Table 4.2 shows smoothed probabilities under

the Bollen-Hardy (and real-world) probability measure and Table 4.3 shows

smoothed probabilities under the Esscher probability measure.

4.7.2.2 Impact of the stochastic model on the guarantee cost

This section discusses the impact of the option pricing model on the guarantee

cost. Accordingly, three option price models are compared: the Black-Scholes

(see Theorem 4.48), the Bollen-Hardy (see Theorem 4.50), and the Webb

model (see Theorem 4.51).

Figure 4.2 shows the results. For all possible stock-bond proportions and

for all studied guarantee levels, the same is true: the guarantee cost is the

highest in the Black-Scholes approach (thin dashed line) and the lowest in

the Webb approach (thick solid line). The cost yield according to the Bollen-

Hardy model (thin solid line) lies between the other two. Additionally, it can

be seen that the cost yield from the Bollen-Hardy model converges to the

Black-Scholes cost from below. In all cases the following statements hold

true: taking heteroskedasticity into consideration leads to a price decrease.

For the low level guarantee of 0%, the price of the Bollen-Hardy model is

lower then the price of the Black-Scholes model. The difference decreases as

the contract maturity grows. This shows that the Black-Scholes price is the

most conservative one. The additional consideration of stochastic volatility

lowers the guarantee cost. As shown in Chapter 3, the Markov switching

model is more suitable for describing the stochasticity of financial assets

than the GBM. This shows that the choice of the less suitable stochastic
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Figure 4.2: Impact of the stochastic model on the normalized guarantee cost

(buy-and-hold strategies)
Pure stock portfolio

50%-50% stock-bond portfolio

Pure bond portfolio

Note:
This figure depicts the impact of the stochastic model on the normalized guarantee cost
in the example of buy-and-hold strategies with periodic contributions (¤1200 up-front
annually) and the MS(1-2) model. The dashed line represents the Black-Scholes, the thin
solid line – the Bollen-Hardy, and the bold solid line – the Webb model. The top row
depicts the pure stock portfolio, the middle row – the fifty-fifty stock-bond portfolio, and
the bottom row – the pure bond portfolio with periodic contributions, respectively. The
left column depicts contracts with a low level guarantee (g = 0% p.a.), and the right
column contracts with a high level guarantee (g = 4% p.a.).
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model (i.e. GBM) leads to an overpricing of the guarantee.

However, the Markov switching market is incomplete. Thus, the option

price is not unique. Two models discussed here yield different prices, there-

fore, the choice of the suitable martingale measure is crucial for the results.

The Esscher measure is a better choice, as it prices the stochastic risk (i.e.

it takes into account the stochasticity of the state variable Ztn) which is ne-

glected by the Bollen-Hardy measure. (For other advantages of the Esscher

measure, see Section 4.6.2.2).

Neverless, the Bollen-Hardy model can contribute to an understanding

of risk premia. Each of these three models introduces an additional pricing

risk. The Black-Scholes option pricing is an approach with the stochastic

stock return (arithmetic Brownian motion). This approach assumes that

the volatility process of the stock return has a constant parameter σ. The

Bollen-Hardy approach introduces a stochastic volatility process (arithmetic

Brownian motion with Markov switching) for the stock return. This ap-

proach assumes that the volatility process of the stock return has a random

parameter σ1 or σ2, depending on the latent random variable Zt (state of the

market). This approach, however, does not price the uncertainty linked to

the switching parameter Zt. Thus, the spread between the Black-Scholes and

the Bollen-Hardy price quantifies the stochastic volatility risk. The spread

between the Bollen-Hardy and the Webb price quantifies the switching risk

(i.e., uncertainty if the market is in the stable or in the turbulent phase).

Figure 4.2 clearly shows that neglecting to take into account the stochastic

volatility risk leads to an overpricing of the guarantee. This effect is lower,

ceteris paribus, (1) the lower the contract term and/or (2) the lower the stock

proportion in the investment strategy. The effect of neglecting the switching

risk leads to more crucial overpricing of the guarantee. Furthermore, this
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effect grows as (1) the contract term and/or (2) the stock proportion in the

strategy increase. This is important as the retirement products we discuss

have a long time nature.

4.7.2.3 Impact of the guarantee level on the guarantee cost

This Section analyzes the impact of the guarantee level on the guarantee

cost. First, we can state that the cost of guarantees with g = −2%, 0%

and 2% behaves similarly. On the contrary, the cost of the 4% guarantee

displays a different behavior (see Figure 4.3). The normalized cost of a −2%,

0%, and 2% guarantee is a decreasing function for all stock-bond portfolios.

The only exception is the normalized cost of 2% backed by portfolios with

a stock proportion of 80% and more. In those cases the normalized cost

increases slightly in order to reach a maximum (for a contract with 3 or 4

years duration), and subsequently decreases. In contrast to the other three

guarantee levels, the normalized cost of the 4% guarantee has a different

shape. It initially increases towards a maximum and decreases afterwards.

In only two cases, that of a pure bond and that a the 10%-90% stock-bond

portfolio, the curve of the normalized cost of a 4% guarantee decrease for all

contract terms.

The guarantee cost increases along with an increase of the guarantee level,

which is self-evident. Figure 4.4 shows how the normalized cost reacts if the

guarantee level increases by 2 per cent points: from −2% to 0% p.a. (thin

dashed line), from 0% to 2% p.a. (thick dashed line), and from 2% to 4%

p.a. (solid line). The figure shows that the cost reacts overproportinally to

the change in the guarantee level. Particularly, the increase is the highest,

when the guarantee level is risen from 2% to 4% p.a. The sensitivity of the

cost to the guarantee level is much smaller in the two other cases.
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Figure 4.3: Impact of the guarantee level on the normalized guarantee cost

Note:
This figure depicts the impact of the guarantee level on the normalized guarantee cost
using the example of the pure stock (top left panel), fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel) with periodic contributions (¤1200 up-front
annually). The cost is computed for the MS(1-2) model under the Esscher probability
measure. The thin dashed line represents the guarantee of -2% p.a., the bold dashed line
– 0% p.a., the thin solid line – 2% p.a., and the bold solid line – 4% p.a., respectively.

In conclusion, the guarantee level of 4% behaves differently from the other

three guarantee levels discussed in this contribution, and has a far higher

cost as well. Thus, we henceforth refer to the 4% guarantee as the high level

guarantee and to remaining three guarantee levels as the low level guarantee.

The low level guarantee will hencefrom be discussed using the example of the

0% guarantee.
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Figure 4.4: Sensitivity of the normalized guarantee cost to changes in the

guarantee level

Note:
This figure depicts the sensitivity of the normalized cost to the change of the guarantee
level in the example of the pure stock (top left panel), fifty-fifty stock-bond (top right
panel), and the pure bond portfolio (bottom panel) with periodic contributions (¤1200
up-front annually). The sensitivity is measured in per cent points (pp). The cost is
computed for the MS(1-2) model under the Esscher probability measure. The thin dashed
line represents the guarantee increase from -2% to 0% p.a., the bold dashed line – from
0% to 2% p.a., and the solid line – from 2% to 4% p.a., respectively.

4.7.2.4 Impact of the investment strategy on the guarantee cost

This Section addresses the impact of the investment strategy on the guarantee

price. First, buy-and-hold strategies will be discussed, followed by life-cycle

strategies, and lastly, the zero-bond strategy.

From the option price theory it is known that the option price increases

with the increase of volatility. Figure 4.5 shows that the normalized cost of

the guarantee increases as the proportion of stocks in the investment portfolio
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Figure 4.5: Impact of the investment strategy on the normalized guarantee

cost

Note:
This figure depicts the impact of the investment strategy on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The solid line with pluses represents the pure stock investment strategy, the solid line with
squares – the 75%-25% stock-bond, the solid line with triangles – the 50%-50% stock-bond,
the solid line with diamonds – the 25%-75% stock-bond, the solid line with inverse triangles
– the pure bond, the solid line with circles – the zero-bond, the dashed line with circles –
the aggressive, the dashed line with squares – the moderate, the dashed line with triangles
– the conservative, the dashed line with diamonds – the naive, and the dashed line with
inverse triangles – the 100-x investment strategy, respectively. In all cases contributions
of ¤1200 are paid up-front annually. The left column represents the low level guarantee
(g = 0% p.a.) and the right row the high level guarantee (g = 4% p.a.), respectively.
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grows. This is true for all guarantee levels and all contract terms. Only in

some cases the increase of the stock proportion does not imply the increase

of the cost. This is true for portfolios with a long duration, a low guarantee

level, and a low stock proportion. For instance, all contracts with a guarantee

level of 0%, a term above 15 years, and a stock proportion of up to 25% have

a zero cost. In these cases, the rise of the stock proportion does not affect

the price, but increases the profit chance.

The impact of the stock proportion is greater, the higher the guaran-

tee level is. Assume that the guarantee provider believes that his potential

clients are willing to pay a maximum of 5% of discounted contributions for

the guarantee. Then, he could sell contracts backed with any buy-and-hold

strategy and the normalized price of the 0% guarantee would still not exceed

5% (excluding a one-year contract backed by the pure stock strategy). How-

ever, in the case of the 4% guarantee, only portfolios with maximum of 50%

stocks have a normalized cost that lies below 5%. The guarantor would thus

only offer his clients these particular investment portfolios.

Thus, to keep the price below 5%, the guarantor has to reduce the guar-

antee level (i.e. he offers less protection) or the equity proportion in the

portfolio (i.e. he lowers the expected portfolio return). Obviously, clients are

interested in both. One way to satisfy both needs and to keep the guarantee

price at a moderate level could be to apply one of the life-cycle strategies

(see Table 4.1). The lower part of Figure 4.5 shows that four of the five life-

cycle discussed strategies are more expensive than the fifty-fifty stock-bond

buy-and-hold strategy. These strategies are: the moderate, the conservative,

the naive one, and the 100-x investment rule. Only the aggressive strategy

can cost more than the fifty-fifty stock-bond strategy, for the middle and the

long term contracts. For some long term contracts, its cost even exceedes
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the cost of the 75%-25% investment portfolio.

Finally, let us turn our attention to the zero-bond strategy. For the risk-

averse guarantee provider, this is clearly the best strategy, as it is costless

for all possible configurations of guarantee levels and contract durations.

However, it is an open question if this strategy is attractive for clients. It

is possible that the price they pay for the protection is an unsatisfactory

expected profit. This issue will be discussed in Section 4.7.2.8.

4.7.2.5 Impact of time on the guarantee cost

This Section addresses the impact of time on the (normalized) guarantee

cost. First, we discuss buy-and-hold strategies, then life-cycle strategies,

and, finally, the zero-bond strategy. The left panel in Figure 4.6 shows the

impact of time on the normalized cost of a 0% guarantee. For all buy-and-

hold investment strategies, the cost function is decreasing (all curves except

the pure stock strategy are concave) and converges toward zero. The lower

the stock proportion in the backed portfolio, the faster the cost decreases

to zero. For portfolios with a stock proportion up to 50%, the cost reaches

zero between the 7th (pure bond) and the 27th year (fifty-fifty stock-bond).

Neither of the remaining strategies reach zero before the 30th year. An

additional simulation, however, has shown that they converge towards zero

afterwards.

The right panel in Figure 4.6 displays the impact of time on the normal-

ized cost of a 4% guarantee. The cost function is concave and decreasing for

strategies with a maximum stock proportion of 20%. However, it does not

reach zero, even in the 30th year. For portfolios with a bond proportion of

more than 20%, the cost function is increasing until a certain maximum, and

then slowly decreases afterwards. The decrease is slower the higher the stock
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Figure 4.6: Impact of time and the contract term on the normalized guarantee

cost (buy-and-hold strategies)

Note:
This figure depicts the impact of time and the contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The solid line with pluses represents the pure stock investment strategy, the solid line with
squares – the 75%-25% stock-bond, the solid line with triangles – the 50%-50% stock-bond,
the solid line with diamonds – the 25%-75% stock-bond, the solid line with inverse triangles
– the pure bond investment strategy, respectively. In all cases contributions of ¤1200 are
paid up-front annually. The left column represents the low level guarantee (g = 0% p.a.)
and the right row the high level guarantee (g = 4% p.a.), respectively.

proportion is. For example, for a 20%-80% stock-bond portfolio, the maxi-

mum of 2.52% is reached after 3 years. Then the normalized cost decreases

to 0.95% after 30 years. For a pure stock portfolio, the maximum of 10.15%

is reached after 17 years. Then the normalized cost decreases to 9.72% after

30 years.

The convergence of the cost toward zero also holds true for a high level

guarantee of 4%, however, it is much slower than for low level guarantees.

Figure 4.7 shows the impact of time on the life-cycle strategies in three

examples: a 10-year contract (thick dashed line), a 20-year contract (thin

dashed line), and a 30-year contract (thin solid line). As stated in Section

4.7.2.4, the behavior of the aggressive strategy is different from the behavior

of the remaining life-cycle strategies. It will therefore be discussed separately.

The remaining life-cycle strategies will be discussed using the example of the
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Figure 4.7: Impact of time and the contract term on the guarantee cost

(life-cycle strategies)
Aggressive strategy

Moderate strategy

Conservative strategy

Naive strategy

continued on the next page
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continued from the previous page
100-x investment rule

Note:
This figure depicts the impact of time and the contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The bold dashed line shows how the normalized cost changes through time for a 10-year
contract, the thin dashed line for a 20-year contract, and the thin solid line for a 30-
year contract, respectively. The bold solid line shows the normalized contract at contract
expiration. The bold pluses depict the 100%-0%, the solid squares – the 75%-25%, the
empty circles – the 70%-30%, the empty squares – the 60%-40%, the solid triangles – the
50%-50%, the empty triangles – the 40%-60%, and the empty diamonds – the 20%-80%
stock-bond buy-and-hold portfolio, respectively. In all cases, contributions of ¤1200 are
paid up-front annually. The left column represents the low level guarantee (g = 0% p.a.),
and the right row the high level guarantee (g = 4% p.a.), respectively.

moderate strategy.

Let us discuss the 0% guarantee backed by the moderate strategy. The

guarantee cost decreases for all three of the discussed contracts. The speed

with which the cost decreases grows at each shifting date (e.g. after the

10th and 20th year for the 30-year contract). The cost for all three contracts

reaches zero before contract expiration, i.e. in the 9th, the 17th, the 28th

year for the 10-, 20-, and 30-year contract, respectively. This means that if

the shift from a more risky toward a less risky portfolio occurred one or two

years later, the client would still recive a contract with a costless guarantee,

however, with a higher expected profit. Thus, the contract provider could

slightly optimize the moderate strategy to better satisfy the needs of the

client, i.e. of safety and of a higher expected profit.
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Furthermore, it is possible to quantify the cost reduction of the moderate

strategy. As the 30-year contract invests in a pure stock portfolio, we can

compare the cost of this portfolio to the cost of the moderate strategy. The

difference in the normalized cost of both investment portfolios equals 0.91%.

For the 20-year contract, the difference between the initial portfolio (i.e. 70%-

30% stock-bond portfolio) and the moderate strategy equals 0.62%. As the

10-year contract invests in the 10%-90% stock-bond portfolio for the whole

investment period, no cost reduction can be found.

Let us discuss the 4% guarantee backed by the moderate strategy. The

normalized cost of the 10-year contract is always decreasing. The normal-

ized cost of the 20- and 30-year contract increases until the first shifting

date and then decreases. Thereby, at each further shifting date, the speed

of cost reduction increases. In contrast to the 0% guarantee, the cost at the

expiration date does not reach zero for either contract. However, the cost

reduction compared to the initial portfolio is much higher than in the case of

the 0% guarantee. For the 20-year contract, the normalized cost at expira-

tion sinks from 7.03% (70%-30% stock-bond portfolio) to 1.53% (moderate

strategy), and for the 30-year contract from 9.72% (pure bond portfolio) to

2.78% (moderate strategy). Since the 10-year contract only invests in the

10%-90% stock-bond portfolio, no cost reduction occurs.

The behavior of the aggressive strategy is slightly different. Although

the cost of the 0% guarantee decreases along with time and although the

normalized cost of the 4% guarantee increases until the first asset shifting

date, and then decreases, it fails to obtain zero for either of the discussed

contracts. Another difference is that the cost reduction is greater for short-

than for long-term contracts.

The cost of the zero-bond strategy is insensitive to changes in time, as it
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equals zero, due to the strategy construction.

4.7.2.6 Impact of the contract term on the guarantee cost

In the case of buy-and-hold investment strategies, the impact of the con-

tract term on the guarantee cost is exactly the same as the impact of time.

Therefore, this discussion will be omitted.

The impact of the contract term on the normalized guarantee cost of life-

cycle strategies is shown in Figure 4.7 (thick solid line). As the aggressive

strategy behaves differently from other life-cycle strategies, it is discussed

separately. Other life-cycle strategies will be discussed using the example of

the moderate strategy.

In the case of the aggressive strategy, the normalized cost of the 0%

guarantee is relatively stable around the 0.45% mark. There are two factors

which influence this behavior. First, the guarantee cost associated with the

initial portfolio (here the pure stock portfolio) sinks as the contract term

increases. Thus, this factor has a greater influence on the long-term contracts.

The second factor is the shifting of assets from more risky into less risky ones.

The influence of this factor increases the shorter the contract term is.

In the case of the aggressive strategy, the normalized cost of the 4%

guarantee increases as the contract term grows. The reason for this is that

the guarantee cost associated with the initial portfolio is relativ high. Since

the risk-reducing influence of asset shifts weakens as the contract term grows,

it is not able to predominate the influence of the first factor. To reduce the

cost of long-term contracts, it would be necessary to start the asset shifting

earlier than in the last five years or to start with a less risky initial portfolio

than the pure stock one (see, for example, the moderate strategy).

The normalized cost of the 0% guarantee associated with the moderate
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strategy is influenced by the same two factors: (1) the sinking cost of the

initial portfolio and (2) the asset shifting. The difference to the agressive

strategy, however, is that the normalized cost is a decreasing function that

converges to zero for a 9-year contract. This is due to the earlier asset shifting

compared to the aggressive portfolio.

The normalized cost of the 4% guarantee associated with the moderate

strategy is a concave function of the contract term, with the minimum being

the 14-year contract. This is due to the strategy construction: First, the

shorter the contract term is, the less risky the initial portfolio. Thus, it does

not predominate the shifting effect. Second, the asset shifting begins prior to

the last five contract years – thus, it has a stronger impact on the guarantee

costs than in the case of the aggressive strategy.

We stated above that the normalized cost function in the moderate in-

vestment strategy with the 4% guarantee has a minimum. It illustrates that

for a given contract term, the desired guarantee cost can be achieved. The

guarantee provider should hence optimize the investment strategy by choos-

ing the optimal initial portfolio and the optimal shifting design.

Finally, we will discuss the zero-bond strategy. Its cost is insensitive to

changes in the contract term, as it equals zero due to the strategy construc-

tion.

4.7.2.7 Impact of the contribution payment scheme on the guar-

antee cost

This section compares the normalized guarantee cost for two alternative con-

tribution payment schemes. The single premium and the periodic premium

(¤1200 up-front annually). For the sake of comparability, the single premium

is chosen to be the net present value of the aggregated periodic payments.
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Figure 4.8: Impact of the contribution payment scheme on the normalized

guarantee cost (buy-and-hold strategies)
(a) Pure stock portfolio (b)

(c) 50%-50% stock-bond portfolio (d)

(e) Pure bond portfolio (f)

Note:
This figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of buy-and-hold strategies, and the MS(1-2) model under the Esscher
probability measure. The solid line represents the periodic payment scheme (¤1200 up-
front annually), and the dashed line the single premium case. The single premium equals
the net present value of periodic contributions. The left column shows contracts with a low
level guarantee (g = 0% p.a.), and the right column contracts with a high level guarantee
(g = 4% p.a.).
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For buy-and-hold strategies, both curves have the same shape (see Figure

4.8). The normalized cost for the periodic payment scheme is higher than

for the single payment scheme when the cost function is concave (see Figure

4.8, Panels (c), (e), and (f)). The opposite holds true if the cost function

is convex. In this case, contracts with a single premium have a higher price

than contracts with a periodic premium (see Figure 4.8, Panels (b) and (d)).

This rule also holds true for cost functions with changing convexity. In such

a case, both cost functions cross at their inflection points (see Figure 4.8,

Panel (a)). Furthermore, the discrepancy between both cost functions is

higher, the higher the stock proportion in the investment portfolio (compare

the top and the bottom row in Figure 4.8) and/or the higher the guarantee

level (compare the left and the right column of Figure 4.8). In other words,

the cost for the single contribution is higher than the cost for the periodic

contribution contract if the risk of achieving the guarantee is high (i.e. for

contracts with a high stock proportion and a high guarantee level). In all

other cases, the contracts with periodic contributions are more expensive.

Figure 4.9 compares the normalized cost of the single and periodic pay-

ment scheme for life-cycle investment strategies. In this case, cost functions

for the single and periodic payment do not necessarily have the same shape.

The cost function for periodic payment is smooth, and for single contribu-

tions it may have kinks. The kinks always occur when the investment design

changes. Consider, for example, the 4% guarantee backed by the naive strat-

egy. The kinks occur in contracts with terms of 10 and 20 years. The reason

for this that all contracts with a term of up to 10 years only invest in the

25%-75% stock-bond portfolio. All contracts with a term between 11 and

20 years invest in the fifty-fifty stock-bond portfolio at the beginning of the

contract, and then the portfolio manager shifts to the 25%-75% stock-bond
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Figure 4.9: Impact of the contribution payment scheme on the normalized

guarantee cost (life-cycle strategies)
Aggressive strategy

Moderate strategy

Conservative strategy

Naive strategy

continued on the next page
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continued from the previous page
100-x investment rule

Note:
This figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies, and the MS(1-2) model under the Esscher prob-
ability measure. The solid line represents the periodic payment scheme (¤1200 up-font
annually) and the dashed line the single premium case. The single premium is equal to
the net present value of periodic contributions. The top row depicts the naive strategy,
and the bottom row – the 100-x investment rule, respectively. The left column represents
the low level guarantee (g = 0% p.a.) and the right row the high level guarantee (g = 4%
p.a.), respectively.

portfolio towards the end of the contract. All contracts with a term be-

tween 21 and 30 years invest in the 75%-25%, then in 50%-50%, and then in

the 25%-75% portfolio. These three classes of contracts therefore have three

different investment designs.

In a further discussion, we divide the investment strategies into two

groups, which disclose a similar behavior. The first group consists of the

aggressive strategy (with both the low and the high level guarantee), and all

remaining life-cycle strategies (with the high level guarantee). The second

group consists of the conservative and naive strategy and the 100-x invest-

ment rule (with the low level guarantee). The moderate strategy with a low

level guarantee has a unique behavior and will thus be discussed separately.

In the first group, the single payment scheme leads to higher cost than in

the periodic payment scheme. There are three exceptions to this rule: the

moderate strategy (for all contracts with terms of up to 10 years), the con-
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servative strategy (with terms of up to 5 years), and the aggressive strategy

(with terms of up to 2 years) the high level guarantee has the same cost for

both payment schemes. For all contracts from the first group, the single con-

tribution curve has kinks. This shows that contracts with a high guarantee

level and a single contribution are more sensitive to changes in the portfolio

design than contracts with periodic contributions. Finally, no contract from

the first group has a zero cost guarantee.

Contracts from the second group have a higher cost if the contribution

payment occurs periodically and the contract term is low. For the remaining

durations, the cost in both payment schemes equals zero.

Another very interesting case is that of the moderate investment strategy

with a low guarantee level. The cost for the single payment contract for short

term contracts is lower than the cost for a periodic contribution payment.

For middle term contracts, the cost of both payment schemes equals zero.

For long term contracts, the cost in the case of the periodic payment remains

zero, but in the case of a single premium, it rises slightly above zero.

The cost of the zero-bond strategy is insensitive to changes in the payment

scheme, as its cost equals zero due to the strategy construction.

4.7.2.8 Interrelation between guarantee cost and expected profit

Sections 4.7.2.3-4.7.2.7 addressed the impact of diverse factors (guarantee

level, investment strategy, time, contract term, and contribution payment

scheme) on the guarantee cost. All of these aspects are important from

the perspective of a financial company considering to sell a guarantee to

its customers or managing the guarantee risk. On the contrary, this section

considers the guarantee from the customer’s point of view. A future pensioner

is interested in three aspects when buying a guarantee: the maximization of
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the protection level (level of the guarantee), the reduction of the cost of the

protection, and the maximization of profit. As we discuss several investment

strategies, we would like to see which one of them is most suitable for a

client and most likely to satisfy his goals. To compare the profit potential of

different investment strategies, we use the normalized expected profit.

Definition 4.53 (Normalized expected profit) Let the stochastic process

(φ)t∈[t0,T ] be an investment strategy with a portfolio value (St)t∈[T0,T ], and an

investment horizon T . Let Ctn be a contribution paid at time tn (t0 < tn < T )

and let r be a riskless interest rate, then

Π̃t0 =
e−r(T−t0)E[ST ]∑T−1
tn=0Ctne

−r(tn−t0)
− 1. (4.33)

is a normalized expected profit of this strategy.

Table 4.4 ranks chosen investment guarantees from the least to the most

costly. If two strategies have the same cost, better ranking is given to the

one with the higher expected profit. The aim of Table 4.4 is to help the

client to decide which product to buy. We thereby assume that he knows

his investment horizon (10, 20 or 30 years) and how much risk protection he

needs (guarantee of 0% or 4%). Furthermore, we assume that he wants to

maximize his normalized profit by a given normalized guarantee cost of 0%

(costless guarantee), 1%, 2.5%, 5%, 7.5% or 10%.

In the following, we will consider the example of the 30-year investment

horizon, the remaining examples can be seen in Table 4.4. A client interested

in a 0% guarantee and accepting only costless investment strategies would

purchase a contract with the zero-bond investment strategy, which has the

normalized expected profit of 86.66%. This example shows how important

the investment strategy is from the client’s point of view: some strategies
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Table 4.4: Ranking of investment strategies (normalized guarantee cost vs.

normalized expected profit)

g=0%, T=10 g=4%, T=10

Strategy Norm. cost Norm. profit Strategy Norm. cost Norm. profit

Moderate∗ 0.00% 8.27% Zero-bond 0.00% 2.08%

Zero-bond 0.00% 7.34% 100% bond 1.12% 6.84%

100% bond 0.00% 6.84% Moderate∗ 1.36% 8.27%

Conservative 0.01% 8.54% Conservative 1.64% 8.54%

Naive∗∗ 0.04% 10.15% Naive∗∗ 2.57% 10.15%

100-x rule∗∗∗ 0.32% 12.74% 20%-80% stock-bond 2.08% 9.17%

Aggressive 0.45% 13.32% 100-x rule∗∗∗ 4.09% 12.74%

50%-50% stock-bond 0.66% 13.63% Aggressive 4.71% 13.32%

80%-20% stock-bond 2.20% 18.22% 70%-30% stock-bond 7.10% 17.17%

100% stock 3.40% 22.20% 100% stock 9.86% 22.20%

g=0%, T=20 g=4%, T=20

Strategy Norm. cost Norm. profit Strategy Norm. cost Norm. profit

Zero-bond 0.00% 33.98% Zero-bond 0.00% 11.08%

25%-75% stock-bond 0.00% 27.18% 100% bond 0.58% 18.57%

Moderate 0.00% 26.38% 10%-90% stock-bond 0.75% 22.20%

Conservative 0.00% 25.60% Conservative 1.38% 25.60%

100% bond 0.00% 18.75% Moderate 1.53% 26.38%

Naive 0.01% 29.82% 30%-70% stock-bond 2.41% 29.94%

40%-60% stock-bond 0.04% 34.00% Naive 2.42% 29.82%

100-x rule 0.05% 34.71% 100-x rule 3.77% 34.71%

Aggressive 0.57% 48.58% 50%-50% stock-bond 4.76% 36.63%

80%-20% stock-bond 0.97% 50.00% 70%-30% stock-bond 7.03% 46.68%

100% stock 1.79% 62.14% Aggressive 7.13% 48.58%

100% stock 10.12% 62.14%

g=0%, T=30 g=4%, T=30

Strategy Norm. cost Norm. profit Strategy Norm. cost Norm. profit

Zero-bond 0.00% 86.66% Zero-bond 0.00% 32.20%

Moderate 0.00% 63.66% 100% bond 0.30% 33.44%

Naive 0.00% 63.17% 20%-80% stock-bond 0.95% 44.96%

30%-70% stock-bond 0.00% 55.07% Conservative 1.49% 52.64%

Conservative 0.00% 52.64% 30%-70% stock-bond 1.85% 55.07%

100% bond 0.00% 33.44% Naive 2.75% 63.17%

100-x rule 0.01% 67.71% Moderate 2.78% 63.66%

50%-50% stock-bond 0.04% 68.51% 100-x rule 3.52% 67.71%

60%-40% stock-bond 0.11% 80.03% 50%-50% stock-bond 4.20% 68.51%

Aggressive 0.38% 104.53% 75%-25% stock-bond 7.17% 95.91%

100% stock 0.91% 123.74% Aggressive 7.76% 104.53%

100% stock 9.72% 123.74%

Note:
This table depicts the ranking of investment strategies according to the normalized guaran-
tee cost (under the Esscher measure) and the normalized expected return for the MS(1-2)
model and periodic contributions (¤1200 up-front annually). The top part represents the
a 10-year contract, the middle part the 20-year contract, and the bottom part the 30-year
contract. The left section depicts the results for the low level guarantee (g = 0% p.a.),
and the right section for the high level guarantee (g = 4% p.a.), respectively.
* – for contracts with a 10-year term, the moderate life-cycle strategy invests in the 10%-
90% stock-bond portfolio. ** – for contracts with a 10-year term, the naive life-cycle
strategy invests in the 25%-75% stock-bond portfolio. *** – for contracts with 10-year
term, the 100-x life-cycle strategy invests in the 40%-60% stock-bond portfolio.
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can lead to the same guarantee cost, but to very different expected portfolio

wealth. For instance, the pure bond strategy and the zero-bond strategy are

both costless but have a normalized expected profit of 33.44% and 86.66%,

respectively. Furthermore, the zero-bond strategy is better than the 60%-40%

stock-bond buy-and-hold portfolio, which has a higher normalized guarantee

cost (0.11%) but a lower normalized profit (80.03%).

Further, note that if the same client accepts a normalized guarantee cost

of 0.91%, he can purchase a pure stock portfolio with the normalized ex-

pected profit of 123.74%, which is significantly higher than the profit of the

zero-bond strategy. This example demonstrates one further regularity. The

guarantee cost of a given investment strategy is twofold: the explicit cost the

customer has to pay (put price) and the opportunity cost (lower expected

profit in comparison to the reference strategy, e.g the pure stock investment

strategy). Thus, instead of buying the zero-bond strategy it would be ad-

visable to the client to pay the normalized price of 0.91% and to buy the

product with a pure stock strategy. The advantage of this strategy would

lie in a much higher normalized expected profit, which would increase from

86.66% to 123.74%.

Assume now that the client maintains the accepted cost level but raises

the protection level from 0% to 4%. If his objective was to buy a costless

guarantee, he would still buy the zero-bond strategy. His normalized ex-

pected profit, however, would decrease from 86.66% (for a 0% guarantee) to

32.20% (for a 4% guarantee). The reason for this is that the portfolio man-

ager has to invest a higher asset proportion into zero-bonds in order to meet

the higher guarantee level. If the client was ready to accept the normalized

cost of up to 1%, he would invest in the 20%-80% stock-bond portfolio. If

we compare this option to a pure stock portfolio with a guarantee of 0%,
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we can state that the cost remains at the same level (0.95% in comparison

to 0.91% in the previous example). However, the normalized expected cost

is 44.96%, which is significantly lower than the 123.74% from the previous

example. This example shows, once again, that the choice of the guarantee

level is not only associated with the explicit guarantee cost, but also with

the opportunity cost of expected profit.

Finally, we focus our attention on the zero-bond strategy. For the 0%

guarantee, the attractiveness of the zero-bond strategy increases with an in-

creasing contract term. For a 10-year contract, the zero-bond strategy is only

more attractive than one other strategy (the pure bond portfolio). For the

20-year contract, it is more attractive than eight strategies (the conservative,

naive, and moderate strategy and all buy-and-hold strategies a the stock

proportion of up to 30%). For the 30-year contract, it is more attractive

than thirteen strategies (all buy-and-hold strategies with a stock portfolio of

up to 50%, and all life-cycle strategies with the excption of the aggressive

one). This is due to the fact that with an increasing contract term, less cap-

ital is needed to assure that the guarantee is fulfilled (i.e. investment in the

zero-bond) and more capital can be invested in risky assets (i.e. equities).

In the 4% guarantee case, the zero-bond strategy is the only costless one,

regardless of the investment horizon. However, it is also the one with the

lowest normalized expected profit. This makes it less attractive in the eyes

of the client. Instead, he should accept a higher explicit guarantee cost,

which would significantly lower the opportunity cost (i.e. it would lead to an

increase of the expected profit).
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4.8 Conclusion

This chapter analyzes seven factors which influence the cost of an investment

guarantee: the initial state (i.e., the market phase at the inception of the

contract), the model governing the stochastic behavior of the investment

portfolio, the guarantee level, the investment strategy, time, the contract

term, and the contribution payment scheme.

We compare the cost of the guarantee within three option pricing models:

the Black-Scholes, the Bollen-Hardy model, and the Webb model. The cost

is the highest in the Black-Scholes and the lowest in the Webb approach.

The Bollen-Hardy price lies in between the above two. This result may seem

surprising at first glance. However, one has to keep in mind that the GBM,

which is used in the Black-Scholes model, does not differentiate between the

low and the high volatility phase (i.e. low and high market risk phase).

A glance at the average regime duration (see Tables B.1-B.13 in Appendix

B) or smoothed probabilities (see Figures D.1-D.39 in Appendix D), how-

ever, shows that the stable market phases are longer than the high volatility

phases. As the GBM does not differentiate between the low and the high risk

market phase, it only provides an average volatility. Furthermore, it does not

account for the fact that the high risk market phases only occur rarely, thus

leading to an overestimation of their impact on the guarantee cost. Thus,

we can state that not taking into account the stochastic volatility risk leads

to an overpricing of the guarantee. This effect is lower, ceteris paribus, (1)

the lower the contract term and/or (2) the lower the stock proportion in the

investment strategy. The effect of neglecting the switching risk (i.e., uncer-

tainty if the market is in the stable or in the turbulent phase) leads to more

crucial overpricement of the guarantee. Furthermore, this effect grows as (1)

the contract term and/or (2) the stock proportion in the strategy increase.
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This is important in the view of the fact that the retirement products we

discuss have a long-term nature.

The guarantee cost under the Markov switching model is very sensitive

to the probability of the initial state for short-term contracts. This effect is

less significant for middle- and long-term contracts. The guarantee cost is

higher when the product is sold in the high volatility market phase. Unfor-

tunately, the market state cannot be observed. However, smoothed proba-

bilities are very good proxies for the initial state probabilities. Additionally,

there are two ways the risk-averse agent can manage the risk associated with

the uncertainty about the initial state. First, he can restrict himself to only

selling guarantees with contract terms above 10 years. This does not pose a

problem, as retirement saving products are generally middle- and long-term

products, which are predominantly sold on the market anyway. Second, the

upper bound of the guarantee cost is always associated with a high volatil-

ity regime at the contract inception. The guarantee provider can therefore

assume this to be the case and use the results as the conservative guarantee

price.

Another cost factor we studied was the contribution payment scheme. We

found that the impact of this factor varies strongly with respect to other cost

factors. Generally, if the cost is high, then the single contribution scheme

yields a higher guarantee cost than the periodic scheme. If the cost is low,

the opposite holds true.

Three further factors which influence the guarantee cost, namely the guar-

antee level, the stock proportion in the investment strategy, and time/contract

term are tightly connected with each other. Accordingly, manipulating one

of the above three factors can achieve the same amount of the cost reduc-

tion. Thus, they should always be considered together. The impact of the
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guarantee level and the stock proportion is always the same: the higher the

guarantee level and/or the higher the stock proportion, the higher the cost

of the guarantee. Furthermore, guarantee levels significantly lower than the

risk-free interest rate (e.g. g = −2%, 0% and 2% p.a.) have a different im-

pact on the guarantee cost and result in a different shape of the cost curve

than guarantee levels closer to the risk-free interest rate (e.g. g = 4% p.a.).

In contrast, the impact of time/contract term on the guarantee cost dif-

fers from that of the guarantee level and the stock proportion in the invest-

ment portfolio. In the case of low level guarantees and in the case of high

level guarantees with a low stock proportion the guarantee cost decreases

as time/contract term increases. On the contrary, for high level guarantees

with a high stock proportion, the cost function of time/contract term has an

inverted U shape.

In conclusion, the cost of low level guarantees can be reduced to an ac-

ceptable level for middle and high contract terms, regardless of the stock

proportion in the investment portfolio. The cost of high level guarantees is

acceptable only if the stock proportion is low. Since the guarantee cost is

rather high for high stock proportions, clients may not purchase such con-

tracts. Instead of selling guarantees backed by investment strategies with a

high stock proportion, the guarantee provider would be advised to sell guar-

antees backed by a life-cycle strategy. The idea of a life-cycle strategy is to

invest in more risky assets at the contract inception and to reduce the stock

proportion as the contract nears its expiration date. This approach enables

the guarantee provider to construct a product which well meets the expec-

tations of his client. This means that, for a given contract term, guarantee

level, and guarantee cost, the guarantee provider can find a life-cycle strategy

which maximizes the expected profit of the individual pension account.
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Apart from the buy-and-hold and life-cycle strategies, the zero-bond strat-

egy also constitutes a very interesting option for the guarantee provider. The

main idea is to invest the portion of the contribution needed to fulfill the

guarantee in a risk-free zero-bond, and the remaining capital in stocks. This

leads to a costless product. This strategy is very interesting for the guarantee

provider, as it does not require any solvency capital (under the assumption

that the seller of the zero-bond cannot default). A very interesting result is

that, for low level guarantees, the expected profit of the zero-bond strategy

outperforms the expected profit of several buy-and-hold and life-cycle strate-

gies with a positive cost. This does not hold true for high level guarantees

when the zero-bond strategy is the only costless one. Thus, the guarantee

provider has the choice between selling low level guarantees backed with a

zero-bond and selling those backed with one of the life-cycle strategies with

a positive – but still acceptable – cost and an expected profit which is higher

than the expected profit of the zero-bond strategy.

If the guarantee provider would like to sell high level guarantees backed

with a zero-bond strategy, he should be aware of the fact that, while being a

costless product, it also yields a very low expected profit. Thus, it is doubtful

whether buying the individual pension product with high level guarantee

backed by the zero-bond strategy really is in the best interest of the client.

The guarantee provider would thus be advised to back high level guarantees

with a life-cycle strategy, instead.
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Chapter 5

Risk analysis and solvency

requirements

5.1 Risk definition

In a financial context, risk can be understood as an ex ante unknown quantity

of the invested portfolio value at the end of the investment horizon. Or,

in a broader sense, as the ex ante unknown distribution of this portfolio

value. Alternatively, one can speak of the ex ante unknown return from the

investment or of its distribution as these two concepts (value and return) are

very closely related with each other.

Fishburn (1984, p. 397) characterizes risk as being based in part on out-

come preferences and targets. (...) risk increases as bad outcomes become

more probable, and as probable bad outcomes get worse. While favorable

outcomes are not associated with risk by themselves, their presence in a dis-

tribution that has positive probability for bad outcomes might decrease the

risk of the distribution.

According to that, this thesis defines risk as Albrecht’s (2004, p. 1493)
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risk of the first type, i.e., as the magnitude of deviations from a target. To

quantify this risk we will use several risk measures, which are defined as

follows.

Definition 5.1 (Risk measure) Let (Ω,F ,P) be a probability space and

let Y be a family of random variables on this probability space, then functional

R : Y → R is called a risk measure (Fischer 2003, p. 136).

This means that there is a rule (risk measure) which allows us to assign a

real number to each random variable (in our case a risky asset) from family Y.

This real number describes the risk level (or “riskiness”) of a particular risky

asset which enables us to compare the risk level of different risk strategies.

This Chapter analyzes the risk and solvency requirements associated with

investment guarantees. It is constructed as follows. Section 5.2 discusses sev-

eral risk measures and their suitability to measure the risk of an investment

guarantee. It proposes using lower partial moments and conditional lower

partial moments for this purpose. Section 5.3 discusses the design of the

study which is similar to that from the previous Chapter. Section 5.4 an-

alyzes the risk of an investment guarantee from the point of view of the

guarantee provider. It discusses the impact of several risk factors on the risk

of an investment guarantee. Section 5.5 extends the discussion by adding

the point of view of the solvency supervising authority and Section 5.6 adds

that of the potential buyer of the guarantee. It proposes to use the mean

excess loss to quantify the required solvency capital. Section 5.7 concludes

the results of this Chapter.
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5.2 Risk measure

5.2.1 Dispersion risk measures

Markowitz (1952) was the first to quantify financial risk. In his groundbreak-

ing Portfolio selection paper he measured the risk by means of standard de-

viation. Alternatively, one can also use variance to quantify financial risk as

Sharpe (1964) did in his Capital Asset Pricing Model. Standard deviation

and variance can be defined as follows:

Definition 5.2 (Standard deviation and variance) Let X be a random

variable with the probability function F and the expected value μ, then

σ2 =

∫ ∞

−∞
(x− μ)2dF (x)

is called variance of X. Additionally, σ =
√
σ2 is called standard deviation

of X.

Ever since Markowitz (1952) and Sharpe (1964), both these dispersion

risk measures have commonly been used in financial literature. Their advan-

tage lies in their understandability and computational straightforwardness.

However, they have the disadvantage of equally weighting the chance (pos-

itive deviation from the mean) and the risk (negative deviation from the

mean). This is unproblematic in the case of symmetric distributions, e.g.,

the normal distribution. Yet, in Section 3.1 it was shown that the returns of

financial time series are not symmetrical. In order to deal with this drawback,

one can use semi-dispersion measures:

Definition 5.3 (Semi-standard deviation and semi-variance) Let X be

a random variable with the probability function F and the expected value μ,
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then

σ2
s =

∫ μ

−∞
(x− μ)2dF (x)

is called semi-variance of X. Additionally, σs =
√
σ2

s is called semi-standard

deviation of X.

Contrary to the standard deviation and variance, semi-dispersion risk

measures only account for a negative deviation from the mean. Thus, they

correspond better to our concept of risk than standard deviation and vari-

ance. They were, e.g., used by Hogan and Warren (1974) who proposed an

equilibrium pricing model with semi-variance as a risk measure.

5.2.2 Quantile risk measures

Another approach is to use risk measures based on quantiles.

Definition 5.4 (Quantile) Let X be a random variable with distribution

function F , and let 0 ≤ α ≤ 1 be a constant, then Qα such that

F (Qα(X)) = α

is called α quantile of X.

A commonly used quantile risk measure is the value at risk (VaR), intro-

duced by JP Morgan (1996) in their RiskMetrics concept and recommended

by the Basel Committee on Banking Supervision (2001) to quantify risk in

the banking system.

Definition 5.5 (Value at risk (VaR)) Let X be a random variable and

let 0 ≤ α ≤ 1, then a (1 − α)-quantile of X, namely

F (V aRα(X)) = 1 − α = F (Q1−α(X)).
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is a value at risk of X at the confidence level α. Thereby, Q denotes a

quantile and F denotes the distribution function of X.

Remark 5.6 Note that Definition 5.5 is the equivalent of

Pr(X > V aRα(X)) = α

(Albrecht 2004, p. 1498).

Value at risk can be interpreted as the maximal loss with a given prob-

ability 100(1 − α)%. The confidence level α can be interpreted as the risk

aversion cofficient. The lower the probabilty α, the more risk averse is the

decision maker.

Value at risk is very controversial as a risk measure. Szegö (2002, p. 1261)

points out several drawbacks of VaR: it does not measure losses exceeding

VaR; it may yield contradictory results for different confidence levels; it is

not sub-additive, which means that diversification may increase the risk; it

is not convex, which implies that it is problematic to use it for optimization

problems; furthermore it has many local maxima, which may lead to unstable

risk rankings. Acerbi and Tasche (2002) and Szegö (2002), among others,

discuss several other quantile risk measures dealing with these drawbacks.

5.2.3 Shortfall risk measures

Both above mentioned risk measure families cannot be used to quantify the

risk of falling below a target portfolio wealth (or a target return). Shortfall

risk measures address precisely this problem. They are based on the idea

that any given financial random variable can be divided into a risk and a

chance component, according to the given target z̄ (e.g. guaranteed portfolio
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value):

X = −max(z̄ −X; 0)︸ ︷︷ ︸
risk

+z + max(X − z̄; 0)︸ ︷︷ ︸
chance

, (5.1)

where −max(z̄ − X; 0) represents the risk and max(X − z̄; 0) the chance

potential, respectively. Define now the loss function, such that L = max(z̄−

x; 0), then the shortfall risk measure can be defined as follows.

Definition 5.7 (Shortfall risk measure) Let X be a random variable with

the distribution function F , let z̄ be a target, and let L : R → R+ ∪ {0} be a

continuous, monotonously decreasing function, then

SRMz̄(X) =

∫ z̄

−∞
L(z̄ − x)dF (x)

is called the shortfall risk measure. The function L is called the loss function

(Albrecht 1994, p. 92).

Remark 5.8 Very often in literature, the loss function is defined as L(x) =

xn with n ≥ 0. Accordingly, the shortfall risk measure SRMz̄(X) is quantified

by LPMn
z̄ (X), i.e. the lower partial moment of the n-th order and the target

z̄ (Albrecht and Klett 2004, p. 3).

The most often used shortfall risk is the lower partial moment.

Definition 5.9 (Lower partial moment) Let X be a random variable with

distribution function F , let n ≥ 0 and z̄ ∈ R be constants, then

LPMn
z̄ (X) =

∫ z̄

−∞
(z̄ − x)ndF (x)

is called the lower partial moment1 of X of the order n and the target z̄

(Albrecht and Klett 2004, p. 3).

1Some authors define the lower partial moment as LPM
n

z̄ (X) = n

√∫ z̄

−∞(z̄ − x)ndF (x),

see Albrecht (2004, p. 1497).
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Example 5.10 The constant n can be interpreted as the risk aversion mea-

sure of the financial agent. It can take on any non-negative value, however,

n ∈ N leads to standard cases. E.g., for n = 0, it is a shortfall probability

LPM0
z̄ (X) =

∫ z̄

−∞
dF (x) = F (z̄) =: PS

z̄ (X), (5.2)

which can be interpreted as the probability of falling below the target. For

n = 1, it is a shortfall expected value

LPM1
z̄ (X) =

∫ z̄

−∞
(z̄ − x)dF (x) =: ES

z̄ [X], (5.3)

which can be interpreted as the expected severity of loss. Other examples of

lower partial moments are: the shortfall variance, for n = 2,

LPM2
z̄ (X) =

∫ z̄

−∞
(z̄ − x)2dF (x) =: VarS

z̄ [X] (5.4)

and the shortfall standard deviation

LPM
2

z̄(X) =

√∫ z̄

−∞
(z̄ − x)2dF (x) =: σS

z̄ [X]. (5.5)

In analogy to the shortfall risk measure, a worst case measure can be

constructed. It is based on conditional lower partial moments.

Definition 5.11 (Conditional lower partial moment) Let X be a ran-

dom variable with distribution function F , let n ≥ 0 and z̄ ∈ R be constants,

then

CLPMn
z̄ (X) = E[max(z̄ −X; 0)n|X ≤ z̄] = E[(z̄ −X)n|X ≤ z̄]

is called a conditional lower partial moment of X of the order n and the

target z̄ (Albrecht and Klett 2004, p. 4).
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Remark 5.12 Note that the partial moment equals the product of the con-

ditional lower partial moment and the shortfall probability.

LPMn
z̄ (X) =

∫ z̄

−∞
(z̄ − x)ndF (x) = F (z̄)

∫ ∞

−∞
(z̄ − x)ndF (x)

= PS

z̄ (X)CLPMn
z̄ (X)

(Albrecht and Klett 2004, p. 5).

Example 5.13 In analogy to the case of lower partial moments, n is a risk

aversion coefficient which can take on all non-negative values. The best

known example of a conditional lower partial moment is the mean excess

loss (MEL), for n = 1,

CLPM1
z̄ (X) = E[z̄ −X|X ≤ z̄] =

1

F (z̄)

∫ z̄

−∞
(z̄ − x)dF (x) =: MELz̄ [X],

(5.6)

which can be interpreted as the expected loss when the loss occurs. Other

examples are the conditional shortfall variance, for n = 2,

CLPM2
z̄ (X) = E[(z̄ −X)2|X ≤ z̄] =

1

F (z̄)

∫ z̄

−∞
(z̄ − x)2dF (x) =: VarCS

z̄ [X]

(5.7)

and the conditional shortfall standard deviation

CLPM
2

z̄(X) =
√

E[(z̄ −X)2|X ≤ z̄] =

√
1

F (z̄)

∫ z̄

−∞
(z̄ − x)2dF (x) =: σCS

z̄ [X].

(5.8)

In the context of investment guarantees embedded in personal pension

plans, the risk is defined as the possibility that the value of the investment

portfolio which backs the guarantee falls below the guaranteed amount (or,

equivalently, that the realized return from the backing portfolio is lower than

the guaranteed return). Thus, from all of the above discussed risk measures,
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the lower partial moments and the conditional partial moments are the best

to quantify this risk, as they address the investment target explicitly. It

is useful to analyze several of them rather than selecting only one. The

shortfall probability can be interpreted as the probability of bankruptcy of

the guarantee provider (under the assumption that he does not have any

reserves). The shortfall expected value quantifies the expected average loss of

the guarantee provider. The shortfall variance (standard deviation) measures

the variance (standard deviation) of the loss.

A very interesting probability risk measure is the mean excess loss, since it

exhibits a worst case measure: it discloses how much on average the guarantee

provider additionally has to pay to the guarantee buyer if the value of the

guaranteed portfolio falls below the guaranteed amount. Therefore, in our

opinion, this measure is very well suited to quantify the solvency requirements

(or, equivalently, the reserves the guarantee provider should hold in order to

avoid his bankruptcy). The last risk measure we discuss in this dissertation

is the conditional shortfall variance (standard deviation), which quantifies

the variance (standard deviation) of the loss when the shortfall occurs.

5.3 Design of the study

Before we present the results of the study on the risk associated with the

return guarantee, the simulation design should be explained. The simulation

is based on the one described in Section 4.7.1.3. However, there are three

major differences: First, the stochastic variables are simulated under the real

world probability measure P. Second, the risk measures are simulated with

20.000.000 iterations. The rise of the iteration number is necessary to achieve

the convergence of several risk measures. In the case of the shortfall prob-
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ability, the shortfall expected value, and the shortfall standard deviation,

this goal was attained. In the case of the mean excess loss and the condi-

tional shortfall standard deviation, this only proved successful for investment

strategies with a high and a middle stock proportion. For strategies with a

low stock engagement, the results are unstable. However, it is not clear how

high the number of iterations should be for the Monte Carlo method to de-

liver robust numerical results. As the numerical approach with 20 million

iterations was very time consuming, we decided not to increase the iteration

number. Thus, for the mean excess loss and the conditional shortfall stan-

dard deviation, the results will be discussed only with regard to investment

strategies with a high stock proportion. We believe, however, that results

for other cases are qualitatively similar, even though we do not receive any

numerical results.

Third, as different contracts have different cash-flows and different guar-

antee values, we need to standardize the risk measures to render results com-

parable. Let LPMn
g (VT ) and CLPMn

g (VT ) be the lower partial moments and

the conditional lower partial moments of portfolio value V at the time point

T and the target portfolio value GT defined in equation (4.30) (guaranteed

value) with the associated guarantee level g. Accordingly, the normalized

shortfall expected value is defined as

L̃PM1
g (VT ) =

e−r(T−t0)LPM1
g (VT )∑T−1

tn=0Ctne
−r(tn−t0)

, (5.9)

the normalized shortfall standard deviation as

L̃PM2
g (VT ) =

e−r(T−t0)LPM2
g (VT )∑T−1

tn=0Ctne
−r(tn−t0)

, (5.10)

the normalized mean excess loss as

M̃EL(VT ) = ˜CLPM1
g (VT ) =

e−r(T−t0)CLPM1
g (VT )∑T−1

tn=0Ctne
−r(tn−t0)

, (5.11)
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and the normalized conditional shortfall standard deviation as

˜CLPM2
g (VT ) =

e−r(T−t0)CLPM2
g (VT )∑T−1

tn=0Ctne
−r(tn−t0)

, (5.12)

with Ctn contribution payed in time tn ∈ [0, T ].

5.4 Risk analysis

5.4.1 Impact of the initial state on the guarantee risk

Figures 5.1-5.2 show the impact of the initial state on the risk measures.

The thin dashed line represents risk measures for the agent who knows with

certainty that the market is in the low volatility state at the beginning of

the contract (Pr[Zt0 = 1] = 1]), and the thick dashed line depicts risk mea-

sures for the agent who knows with certainty that the market is in the high

volatility regime at the contract inception (Pr[Zt0 = 2] = 1]). The solid line

represents risk measures for the agent who does not know which state the

process was in at the beginning of the contract. Therefore, he assumes that

the process was in the low volatility regime with its ergodic probability (see

equation (2.69)). I.e., he assumes: Pr[Zt0 = 1] = π1 and Pr[Zt0 = 2] = π2.

The first two cases represent the lower and the upper bound of the risk

measure in the Markov switching model. From Remark 2.34 we know that

the limit transition probabilities of the homogeneous Markov chain (the state

variable Ztn) is the ergodic probability, as time goes to infinity. Thus, the

case of the uninformed agent is, in fact, the limit of the risk measure.

The impact of the initial state on the risk measures is similar to the impact

on the guarantee cost. The exception is the shortfall probability, which will

be described later. For other risk measures, the spread between the lower

and upper bound is greater, ceteris paribus, the shorter the contract term,
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Figure 5.1: Impact of the initial state on risk measures (periodic contribution)
Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

Normalized mean excess loss

continued on the next page
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continued from the previous page
Normalized conditional shortfall standard deviation

Note:
This figure depicts the impact of the initial state on the guarantee shortfall risk by means
of the pure stock portfolio with periodic contributions (¤1200 up-front annually) and the
MS(1-2) model. The thin dashed line represents the lower bound (Pr[Zt0 = 1] = 1) and
the bold dashed line the upper bound (Pr[Zt0 = 2] = 1) of the risk measure, respectively.
The solid line represents the limit of the risk measure (Pr[Zt0 = 1] = π1). The left
column displays the low level guarantee (g = 0% p.a.) and the right column the high level
guarantee (g = 4% p.a.), respectively.

the higher the guarantee level, and/or the higher the stock proportion in the

investment strategy. Furthermore, contracts with single contributions are

more sensitive to the initial state than contracts with a periodic payment

scheme. The detailed discussion can thus be omitted, as it is similar to

Section 4.7.2.1. In this section we will restrict our discussion to the behavior

of the shortfall probability which is different.

In the case of short term contracts, the impact of the initial state on the

shortfall probability is greater, ceteris paribus, the lower the stock proportion

in the investment strategy and/or the lower the guarantee level. At first

glance, this is contra-intuitive, as one would assume that the higher both

risk factors, the higher the risk, and the higher the sensitivity to the initial

state. In fact, both of these risk factors increase the probability of shortfall.

For instance, a one-year contract with a 0% guarantee backed with a pure

stock contract has a shortfall probability of 43.66% in the low volatility initial

state and 46.42% in the high volatility initial state. Therefore, the shortfall
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Figure 5.2: Impact of the initial state on risk measures (single contribution)
Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

Normalized mean excess loss

continued on the next page
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continued from the previous page
Normalized conditional shortfall standard deviation

Note:
This figure depicts the impact of the initial state on the guarantee shortfall risk by means
of the pure stock portfolio with a single contribution (equal to the net present value of
periodic contributions) and the MS(1-2) model. The thin dashed line represents the lower
bound (Pr[Zt0 = 1] = 1) and the bold dashed line the upper bound (Pr[Zt0 = 2] = 1)
of the risk measure, respectively. The solid line represents the limit of the risk measure
(Pr[Zt0 = 1] = π1). The left column displays the low level guarantee (g = 0% p.a.) and
the right column the high level guarantee (g = 4% p.a.), respectively.

probability is very high independnetly on the initial state. For a pure bond

portfolio, the shortfall probability equals 13.06% for the low volatility initial

state and 25.47% for the high volatility initial state. In this case, the initial

state has a significant influence on the shortfall probability, which explains

why the sensitivity of the shortfall probability to the initial state is higher

when the risk is low.

The impact of the remaining risk factors is the same as in the case of

other risk measures, i.e. the spread between the upper and the lower bound

converges to zero (or equivalently, the shortfall probability converges to the

limit) faster, the lower the guarantee level and/or the lower the stock pro-

portion in the investment portfolio. It also converges faster for the periodic

than for the single contribution scheme.

We conclude that the choice of the initial state is crucial for risk measures,

especially for short time contracts. Unfortunately, the probability of the

initial state cannot be observed. In Section 4.7.2.1 we discuss five ways to
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deal with this issue. Hereafter, we will use the smoothed probabilities from

the EM algorithm (see Table 4.2) as a proxy for initial state probabilities.

5.4.2 Impact of the stochastic model on the guarantee

risk

Figure 5.3 shows the impact of the stochastic model on shortfall measures.

The dashed line represents the result for the geometric Brownian motion,

and the solid line the result for the geometric Brownian motion with Markov

switching (model MS(1-2)). The shortfall probability and the normalized

shortfall expected value is higher in the GBM model. As long as these risk

measures approach zero, the results of both models converge to each other.

The normalized shortfall standard deviation is higher in the GBM model

for contracts with a high and middle stock proportion in the investment

strategy. However, the difference between both models becomes smaller with

growing contract duration. For models with a low stock proportion in the

investment strategy, the shortfall standard deviation is lower in the case

of short-time contracts. The shortfall standard deviation converges to zero

faster in the GBM model. Thus, for the middle term contracts, this risk

measure is higher in the Markov switching model. This phenomenon is not

observed for contracts with a high and middle stock proportion. In these

cases, however, the shortfall standard deviation does not converge to zero –

even for the 30-year contract. However, it can be assumed that this phe-

nomenon occurs later, since the difference between both models diminishes

as the contract duration increases.

Both conditional risk measures, the normalized mean excess loss and the

normalized conditional shortfall standard deviation, behave similarly. For

short term contracts, they are higher in the GBM. In such a case, both
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Figure 5.3: Impact of the stochastic model on risk measures
Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

Normalized mean excess loss

continued on the next page
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continued from the previous page
Normalized conditional shortfall standard deviation

Note:
This figure depicts the impact of the stochastic model on the guarantee shortfall risk
using the example of the pure stock strategy with periodic contributions (¤1200 up-front
annually). The dashed line represents the GBM, and the solid line the MS(1-2) model.
The left column depicts contracts with a low level guarantee (g = 0% p.a.), and the right
column contracts with a high level guarantee (g = 4% p.a.), respectively.

curves cross, and the conditional risk measures are higher in the Markov

switching model. An exception is the normalized MEL for contracts with a

high guarantee level and a high stock proportion. In these cases, conditional

risk measures are greater in the GBM for all contract terms between 1 and

30 years. However, the spread between both models decreases, and it can

thus be assumed that both curves will cross each other for contracts with

higher durations.

5.4.3 Impact of the guarantee level on the guarantee

risk

This section discusses the impact of the guarantee level on the guarantee risk.

The most self-evident finding is that the risk increases with the increase of

the guarantee level. This holds true for all risk measures (see Figure 5.42). In

2Figure 5.4 shows results for the pure stock portfolio. Results for the fifty-fifty stock-

bond portfolio and the pure bond strategy can be found in Figures K.1-K.2 in Appendix

K.
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Figure 5.4: Impact of the guarantee level on risk measures
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation Normalized mean excess loss

Note:
This figure depicts the impact of the guarantee level on the guarantee shortfall risk us-
ing the example of the pure stock strategy with periodic contributions (¤1200 up-front
annually). All risk measures are computed for the MS(1-2) model. The thin dashed line
represents the guarantee of -2% p.a., the bold dashed line – 0% p.a., the thin solid line –
2% p.a., and the bold solid line – 4% p.a., respectively.

most cases, the shape of the risk curve is the same for all studied guarantee

levels. Some exceptions occur for the normalized shortfall standard deviation

and the normalized mean excess loss.

For portfolios with a stock proportion between 80% and 100%, the nor-

malized shortfall expected value is a decreasing function of the contract term

for low guarantee levels (i.e. g = −2%, 0%, 2%). In the case of the high level

guarantee, it is an increasing function for the short-term contracts. Con-

sequently, it reaches a maximum and starts to fall. For other investment

portfolios, the normalized shortfall expected value is a decreasing function of
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Figure 5.5: Sensitivity of risk measures to changes in the guarantee level

(pure stock portfolio)
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation Normalized mean excess loss

Note:
This figure depicts the sensitivity of risk measures to changes of the guarantee level using
the example of the pure stock strategy with periodic contributions (¤1200 up-front annu-
ally). The sensitivity is measured in per cent points (pp). All risk strategies are computed
for the MS(1-2) model. The thin dashed line represents the guarantee increase from -2%
to 0% p.a., the bold dashed line – from 0% to 2% p.a., and the solid line – from 2% to 4%
p.a., respectively.

the contract term, regardless of the guarantee level.

The the case of the normalized shortfall, standard deviation is slightly

different. The shape of this curve is similar for all guarantee levels if the stock

is either low or high. In the first case, the curve decreases, and in the second

case, it increases to a maximum and decreases afterwards. For investment

portfolios with a stock proportion between 20% and 90%, the normalized

shortfall standard deviation is a decreasing function if the guarantee level is

equal to −2% p.a.; and it has the inverted U shape if the guarantee level
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equals 4% p.a. The other two guarantees (i.e. g = 0% or 2% p.a.) behave as

any one of the above two cases.

Figure 5.53 shows how the risk reacts if the guarantee level increases by

2 per cent points: from -2% to 0% (thin dashed line), from 0% to 2% (thick

dashed line), and from 2% to 4% (solid line). The figure shows that the risk

reacts overproportinally to the change in the guarantee level. In particular,

the increase is the lowest if the guarantee level rises from −2% to 0%; and

the highest if the guarantee level rises from 2% to 4%. The sensitivity of the

risk to the guarantee level is much smaller in the two remaining cases (i.e.,

the increase from −2% to 0% and from 0% to 2%).

5.4.4 Impact of the investment strategy on the guar-

antee risk

This section discusses the impact of the investment strategy on the shortfall

risk. One would intuitively assume that the risk associated with buy-and-hold

strategies should decrease along with the decrease of the stock proportion

in the portfolio. This holds true regardless of which risk measure is used

to quantify the risk (see Figure 5.6). The risk of the short-term buy-and-

hold strategies is always greater than zero. However, for some strategies,

it can drop to zero when the contract term is higher. This is the case for

investment strategies with a low level guarantee (i.e. g = 0% p.a.), and

a stock proportion between 0% and 40% (the lower the stock proportion,

the earlier the guarantee becomes riskless). For the 4% guarantee, only the

normalized shortfall expected value allows to declare the 10%-90% stock-

3Figure 5.4 shows the results for the pure stock portfolio. Results for the fifty-fifty

stock-bond portfolio and the pure bond strategy can be found in Figures K.4-K.5 in

Appendix K.
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Figure 5.6: Impact of the investment strategy on the guarantee risk (buy-

and-hold strategies)

Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

continued on the next page
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continued from the previous page

Normalized mean excess loss

Note:
This figure depicts the impact of the investment strategy on the guarantee shortfall risk.
All risk measures are computed for the MS(1-2) model. The solid line with pluses rep-
resents the pure stock investment strategy, the solid line with squares – the 75%-25%
stock-bond, the solid line with triangles – the 50%-50% stock-bond, the solid line with
diamonds – the 25%-75% stock-bond, the solid line with inverse triangles – the pure bond
strategy, respectively. In all cases, contributions of ¤1200 are paid up-front annually. The
left column represents the low level guarantee (g = 0% p.a.) and the right row the high
level guarantee (g = 4% p.a.), respectively.

bond and the pure bond strategies as riskless for certain long-term contracts.

The shortfall probability and shortfall standard deviation have a positive

value, even for the pure bond strategy with a 30-year investment horizon.

They are, however, close to zero. On the countrary, the normalized MEL

is significantly higher than zero for all investment strategies. The less risky

strategy, namely the pure bond one, has a normalized MEL between 2.62%

and 3.66%.

The normalized MEL of the 0% guarantee seems to be higher for the pure

bond strategy than for the 25%-75% stock-bond strategy, e.g., for the 16-year

contract. This is not due to the higher risk of the pure bond strategy, but

due to the fact that the Monte Carlo simulation with 20 millions iterations

does not provide any stable results. This conclusion can be derived from the

irregularity of the pure-bond-curve.
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Figure 5.7: Impact of the investment strategy on the guarantee risk (all

strategies)

Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

continued on the next page
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continued from the previous page

Normalized mean excess loss

Note:
This figure depicts the impact of the investment strategy on the guarantee shortfall risk.
All risk measures are computed for the MS(1-2) model. The solid line with pluses rep-
resents the pure stock investment strategy, the solid line with triangles – the 50%-50%
stock-bond, the solid line with inverse triangles – the pure bond, the solid line with circles
– the zero-bond, the dashed line with circles – the aggressive, the dashed line with squares
– the moderate, the dashed line with triangles – the conservative, the dashed line with
diamonds – the naive, and the dashed line with inverse triangles – the 100-x investment
strategy, respectively. In all cases, contributions of ¤1200 are paid up-front annually. The
left column represents the low level guarantee (g = 0% p.a.) and the right row the high
level guarantee (g = 4% p.a.), respectively.

Persuant to the above discussion, we can state that in order to reduce

the shortfall risk, the guarantee provider can reduce the stock proportion in

the buy-and-hold strategies. Another solution would be to use one of the

life-cycle strategies defined in Table 4.1. Figure 5.7 shows the impact of life-

cycle investment strategies on the guarantee risk. The results are the same

for all risk measures.

The least risky of the life-cycle strategies is the conservative one. This

is followed by the moderate, the naive, the 100-x, and the aggressive strat-

egy. There are some exceptions for the middle-term contracts which yield a

slightly higher risk for the conservative strategy than for the moderate one.

The risk of the conservative strategy is always lower than the risk of

the 25%-75% buy-and-hold strategy, independent of the guarantee level or
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contract term. The risk of the conservative and the moderate investment

strategy is almost always lower than the risk of the 25%-75% stock-boond

strategy. Only long-term contracts with a 4% guarantee have a lower risk

when backed by the 25%-75% stock-bond portfolio than when backed by

the conservative or moderate strategy. The naive strategy has the same

risk as the 25%-75% stock-bond portfolio for short-term contracts due to

the strategy construction. For the middle and long-term contracts, the risk

for this strategy lies between the risk of the 25%-75% and the fifty-fifty

stock-bond strategy, independent of the guarantee level. The risk of the

100-x investment rule always lies between the risk of the 25%-75% and the

50%-50% buy-and-hold stratgy. The aggressive strategy is the most risky

one among the life-cycle strategies. For the short-term contracts, its risk is

below that of the 25%-75% buy-and-hold strategy. However, for middle-term

contracts, its risk exceeds the risk of the fifty-fifty, and for very long-term

contracts, it even exceeds the risk of the 75%-25% buy-and-hold strategy.

Lastly, we turn our attention to the zero-bond strategy, which is riskless

due to its construction for all possible configurations of the guarantee level

and the contract duration. From the point of view of the guarantee provider,

it is clearly the best strategy, as it does not require any solvency capital.

However, it remains an open question if this strategy is attractive for his

clients, since the price for the risk reduction might be a significantly lower

expected profit. This issue will be discussed in Section 5.6.

5.4.5 Impact of time on the guarantee risk

This Section discusses the impact of time on the guarantee shortfall risk.

First, buy-and-hold strategies will be discussed. We will then proceed by

examining life-cycle strategies and lastly, we focus our attention on the zero-
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bond strategy.

We will begin by discussing the impact of time on the 0% guarantee

backed by buy-and-hold strategies (see left column of Figure 5.8). The

shortfall probability and the normalized shortfall expected value are con-

vex decreasing functions of time. The same holds true for the normalized

shortfall standard deviation if the stock proportion in the backing portfolio

is not higher than 50%. If the stock proportion is between 60% and 75%, the

normalized shortfall standard deviation is a decreasing function of time, how-

ever, it is not convex any more. For the remaining buy-and-hold portfolios,

this risk measure increases to a certain maximum and decreases thereafter.

This maximum occurs in the 2nd or 3rd year. The normalized mean excess

loss increases until it reaches a peak and decreases thereafter. The maximum

occurs between the 2nd and the 8th year. The Monte Carlo simulation with

20.000.000 iterations does not provide any stable results for the normalized

conditional shortfall standard deviation.

Generally speaking, contracts with a low and middle stock proportion

have a moderate risk, regardless of the risk measure we use. Furthermore, as

time increases, they become riskless. On the contrary, the risk of contracts

with a high stock proportion is significantly high in the short time. As time

passes, the risk of these contracts becomes moderate.

The impact of time on the risk of the 4% guarantee backed by the buy-

and-hold strategies is slightly different (see right column of Figure 5.8). Only

the shortfall probability is a convex decreasing function of time for all buy-

and-hold strategies. The normalized shortfall expected value and the normal-

ized shortfall standard deviation are decreasing functions of time if the stock

proportion does not exceed 75% and 10%, respectively. In case of remaining

portfolios, these risk functions increase to a certain maximum and decrease
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Figure 5.8: Impact of time and the contract term on the guarantee shortfall

risk (buy-and-hold strategies)

Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

continued on the next page
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continued from the previous page

Normalized mean excess loss

Note:
This figure depicts the impact of time and the contract term on the guarantee shortfall
risk. All risk measures are computed for the MS(1-2) model. The solid line with pluses
represents the pure stock investment strategy, the solid line with squares – the 75%-25%
stock-bond, the solid line with triangles – the 50%-50% stock-bond, the solid line with
diamonds – the 25%-75% stock-bond, the solid line with inverse triangles – the pure bond
investment strategy, respectively. In all cases, contributions of ¤1200 are paid up-front
annually. The left column represents the low level guarantee (g = 0% p.a.) and the right
row the high level guarantee (g = 4% p.a.), respectively.

afterwards. The normalized shortfall expected value reaches its maximum

between the 4th (80%-20% stock bond portfolio) and the 6th (pure stock

portfolio) year, and the normalized shortfall standard deviation reaches its

maximum between the 2nd (20%-80% stock bond portfolio) and the 11th

(pure stock portfolio) year. The normalized mean excess loss is an increasing

function of time in the interval between 1 and 30 years. The Monte Carlo

simulation with 20.000.000 iterations only provides stable results for the nor-

malized conditional shortfall standard deviation for portfolios with a high

stock proportion. In these cases, this risk measure is an increasing function

of time.

Generally speaking, contracts with low stock portfolios have a moderate

risk when the risk is measured with the normalized shortfall expected value,

the normalized shortfall standard deviation, or the normalized MEL. On the
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Figure 5.9: Impact of time and the contract term on the guarantee shortfall

risk (moderate strategy)
Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

Normalized mean excess loss

continued on the next page
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continued from the previous page

Normalized conditional shortfall standard deviation

Note:
This figure depicts the impact of time and the contract term on the guarantee shortfall
risk using the example of the moderate strategy with periodic contributions (¤1200 are
paid up-front annually). All risk measures are computed for the MS(1-2) model. The
bold dashed line shows how the risk measure changes over time for a 10-year contract,
the thin dashed line for a 20-year contract, and the thin solid line for a 30-year contract,
respectively. The bold solid line shows the normalized contract at contract expiration.
The bold pluses depict the 100%-0% and the empty circles – the 70%-30% stock-bond
buy-and-hold portfolio, respectively. The left column represents the low level guarantee
(g = 0% p.a.), and the right row the high level guarantee (g = 4% p.a.), respectively.

contrary, risk measured by the shortfall probability for the short time is very

high. As time increases, the risk measured with the shortfall probability,

normalized shortfall expected value, and the normalized shortfall standard

deviation becomes lower or even vanishes completely. Only the normalized

MEL increases along time. This means that for short time, the shortfall

occurs relatively often. However, in these cases, the realized loss is moderate.

As time increases, the probability of shortfall decreases, but solvency capital

increases slightly. On the other hand, the risk of contracts with a high and

a middle stock proportion is high. As time increases, the risk remains on a

high level regardless of the risk measure used.

The impact of time on the life-cycle strategies will be discussed in the

example of the moderate strategy (see Figure 5.9). These results are rep-
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Figure 5.10: Impact of time and the contract term on the guarantee shortfall

risk (aggressive strategy)
Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

Normalized mean excess loss
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Normalized conditional shortfall standard deviation

Note:
This figure depicts the impact of time and the contract term on the guarantee shortfall
risk using the example of the aggressive strategy with periodic contributions (¤1200 are
paid up-front annually). All risk measures are computed for the MS(1-2) model. The
bold dashed line shows how the normalized cost changes over time for a 10-year contract,
the thin dashed line for a 20-year contract, and the thin solid line for a 30-year contract,
respectively. The bold solid line shows the normalized contract at contract expiration. The
bold pluses depict the pure stock buy-and-hold portfolio, respectively. The left column
represents the low level guarantee (g = 0% p.a.), and the right row the high level guarantee
(g = 4% p.a.), respectively.

resentative for all but the aggressive strategy (see Figure 5.10), which will

be discussed separately. Results for all life-cycle strategies can bee seen in

Figures L.1-L.5 in Appendix L.

Figure 5.9 shows the impact of time on the moderate strategy for three

examples: a 10-year contract (thick dashed line), a 20-year contract (thin

dashed line), and a 30-year contract (thin solid line). At the beginning of

the contract, the moderate strategy has the same risk as its initial portfolio,

i.e. the 10%-90% stock-bond portfolio (not depicted on the figure), 70%-

30% stock bond portfolio (empty circles), and the pure stock portfolio (thick

pluses) for the 10-year, 20-year, and 30-year contract, respectively. Beginning

at the first shifting date, the risk starts to decrease, regardless of whether

the risk of the initial portfolio grows or falls. On each further shifting date,
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the speed of the risk reduction increases. The longer the contract term, the

higher the risk reduction in comparison to the risk of the initial portfolio.

These results remain the same, regardless of the risk measure used to quantify

the shortfall risk.

Figure 5.10 shows the results for the aggressive strategy. In this case,

the risk is also equal to the risk of the initial portfolio (i.e the pure stock

portfolio), and it decreases after the shifting date – independent of whether

the risk measure of the initial portfolio grows or declines. However, the risk

reduction is higher, the shorter the contract term. This is due to the strategy

construction: the shorter the contract term the proportionally longer the

contract invests in the less risky pure bond portfolio.

The shortfall risk of the zero-bond strategy is insensitive to the change of

time, as it is equal to zero due to the strategy construction.

5.4.6 Impact of the contract term on the guarantee

risk

In the case of buy-and-hold investment strategies, the impact of the contract

term on the guarantee risk is exactly the same as the impact of time. There-

fore, we omit this discussion, and only discuss the life-cycle strategies and

the zero-bond strategy.

The impact of the contract term on the life-cycle strategy will be dis-

cussed in the example of the moderate strategy, which is representative for

all but the aggressive strategy. The aggressive strategy will thus be discussed

separately. (Remaining investment strategies can be found in Figures L.1-L.5

in Appendix L). The normalized conditional shortfall standard deviation will

be discussed only for the 4% guarantee backed with the aggressive strategy,

as it is the only case in which the Monta Carlo simulation produced stable
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results.

The results for the moderate strategy are depicted in Figure 5.9 (thick

solid line). The risk of the 0% guarantee is low for short-term contracts.

The risk measured with the shortfall probability, the normalized shortfall ex-

pected value, and the noramlized shortfall standard deviation decreases very

rapidly towards zero and remains at this level. The risk measured with the

normalized MEL is stable at the level of ca. 2% for contract terms between 1

and 14. Thereafter the curve becoms irregular, because the shortfall occurs

too rarely. Thus, the Monte Carlo simulation with 20 milions runs is not

able to give a stable numerical solution.

The shortfall risk the 4% guarantee backed with the moderate strategy

is a convex U-shaped function of the contract term. Several risk measures

have a minimum for different contract terms. The shortfall probability has

its minimum for the 19-year contract at the level of 14.03%, the normalized

shortfall expected value for the 17-year contract at the level of 0.06%, the

normalized shortfall standard deviation for the 18-year contract at the level

of 0.64%, and the normalized MEL for the 2-year contract at the level of

0.02.88%, respectively. This shows that the shortfall risk can be optimized by

a suitable choice of a contract term and a suitable design of the investment

strategy (by choosing an optimal initial portfolio and an optimal shifting

design). These results are similar to those of the guarantee cost, see Section

4.7.2.6.

Figure 5.10 shows the impact of the contract term on the shortfall risk

of the aggressive strategy (thick solid line). We begin with a discussion of

the 0% guarantee. The shortfall probability equals 15.11% for the one year

contract, it then decreases rapidly and for contracts with a duration greater

than 5 years, it remains stable at a level of ca. 2%. The normalized shortfall
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expected value and the normalized shortfall standard deviation are stable

at a level of 0.1% and 1%, respectively, for all contract terms between 1

and 30 years. The normalized MEL has an inverted U-shape. It increases

from 1.86% (one year contract) to 6.99% (19 years contract), and then starts

decreasing to 6.29% (30-year contract).

Curves of the shortfall risk measures for a 4% guarantee backed by the

aggressive strategy have the same shape as for a 0% guarantee. However, the

risk is higher than in the case of the 0% guarantee. The shortfall probability

starts at a very high level of 52.05% (one year contract), then sinks to 21.34%

(5-year contract) and remains near the 20% mark with a slightly decreasing

tendency thereafter. The remainig risk measures behave similarly. They

are stable for contracts with maturities between 1 and 5 years and increase

thereafter. The normalized expected value increases from 1.52% to 2.92%, the

normalized shortfall standard deviation from 2.64% to 9.04%, the normalized

MEL from 2.93% to 18.97%, and the normalized shortfall standard deviation

from 5.08% to 58.83%, between the 1-year and 30-year contract, respectively.

It can be seen that the slope is higher (a) for higher partial moments and (b)

for conditional rather than for unconditional risk measures.

The shortfall risk of the zero-bond strategy is insensitive to the change of

contract term, as it equals zero due to the strategy construction.

5.4.7 Impact of the contribution payment scheme on

the guarantee risk

This Section compares the guarantee risk for two alternative contribution

payment schemes: the single premium and the periodic premium (¤1200

up-front yearly). For the sake of comparability, the single premium is cho-

sen to take on the net present value of aggregated periodic payments. The
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Figure 5.11: Impact of the contribution payment scheme on risk measures

(pure stock portfolio)
Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

Normalized mean excess loss
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continued from the previous page
Normalized conditional shortfall standard deviation

Note:
This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the pure stock strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (¤1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (g = 0% p.a.), and the right
column contracts with a high level guarantee (g = 4% p.a.), respectively.

subsequent paragraph begins by discussing the buy-and-hold strategies. We

will proceed by examining the life-cycle strategies and lastly, the zero-bond

strategy.

Figures 5.11 and 5.12 show the impact of the contribution payment scheme

using the example of a pure stock and a pure bond portfolio, respectively.

The shortfall probability is higher for contracts with periodic contributions

independent of the stock engagement and guarantee level.

The normalized shortfall expected value, the normalized shortfall stan-

dard deviation, and the normalized MEL react in the same way with respect

to change in the contribution payment. In the case of the 0% guarantee,

the shortfall risk is higher for the periodic contribution payment when using

these three risk measures. The only exceptions are short-term contracts with

a very high stock proportion (see Figure 5.11). In the case of the 4% guar-

antee, the shortfall risk is higher for contracts with single premium backed

by buy-and-hold portfolios with a very high stock proportion (see Figure
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Figure 5.12: Impact of the contribution payment scheme on risk measures

(pure bond portfolio)

Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation
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Normalized mean excess loss

Note:
This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the pure bond strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (¤1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (g = 0% p.a.), and the right
column contracts with a high level guarantee (g = 4% p.a.), respectively.

5.11). If the bond proportion is high, contracts with periodic premiums have

a slightly higher shortfall risk (see Figure 5.12). For all other buy-and-hold

portfolios, the risk measure curves cross each other. For short-term con-

tracts, the shortfall risk is higher for the single premium payment scheme.

For long-term contracts, the shortfall risk is higher in the periodic contribu-

tion payment scheme. The lower the stock proportion in the portfolio, the

sooner both curves cross each other.

The normalized conditional shortfall standard deviation behaves differ-

ently from the three risk measures discussed above. In the case of the 0%

guarantee, the normalized conditional shortfall standard deviation is higher

for short-term contracts with a single premium. As the contract term grows,

the discrepancy between both payment schemes declines. For middle-term

contracts, both curves cross each other. For long-term contracts, the sin-

gle contribution scheme yields a lower shortfall risk. In the case of the 4%

guarantee, the risk is higher in the single premium scheme, independent of
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the respective stock engagement and the contract term (for cases which yield

stable numeric results).

The impact of the contribution payment scheme on the life-cycle strat-

egy will be discussed using the example of the moderate strategy (see Figure

5.13) which is representative for all but the aggressive strategy. The ag-

gressive strategy (see Figure 5.14) will be discussed separately. (Remaining

investment strategies can be found in Figures M.1-M.5 in Appendix M).

First, we turn our attention to the moderate strategy (see Figure 5.13).

In this case the shortfall probability, the normalized shortfall expected value,

and the normalized shortfall standard deviation behave similarly. Consider-

ing the 0% guarantee, the shortfall risk is higher for a periodic contribution

scheme when the contract term is short. For the middle contract term, the

shortfall risk sinks to zero independent of the payment scheme. As the con-

tract term grows, the risk in the periodic contribution scheme remains at

the zero level, but the risk in the single contribution scheme becomes slightly

positive. Only the shortfall expected value remains at the zero level – even in

the single contribution scheme. Now we consider the the 4% guarantee level.

For short-term contracts, the shortfall risk is higher in the periodic contribu-

tion scheme. Approximately at the 10-year mark of the contract term both

curves cross each other and then the single contribution scheme yields the

higher risk. The discrepancy is higher, the longer the contract term. It is

worth mentioning that the shortfall risk of the 4% guarantee has a minimum

in both payment schemes. However, the minimum of the single contribution

function occurs for lower contract terms than the minimum of the periodic

payment scheme.

The normalized MEL is higher for the single payment scheme, regardless

of the guarantee level. The normalized conditional shortfall standard devia-
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Figure 5.13: Impact of the contribution payment scheme on the guarantee

shortfall risk (moderate strategy)

Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation
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Normalized mean excess loss

Note:
This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the moderate strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (¤1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (g = 0% p.a.), and the right
column contracts with a high level guarantee (g = 4% p.a.), respectively.

tion does not yield any stable numeric results for the moderate strategy.

Figure 5.14 shows the results for the aggressive strategy. All of the dis-

cussed risk measures react similarly to the change of the payment scheme

regardless of the guarantee level. For short-term contracts, the shortfall risk

is lower in the single contribution scheme. Nevertheless, both curves cross

each other at the latest in the 5-year contract. After that, the shortfall risk

is higher in the single payment scheme. In contrast to the moderate strat-

egy, the gap between both payment schemes does not widen with a growing

contract term. The discrepancy is the highest for about the 10-year contract

and then begins to decline. In the case of the normalized MEL, the scissors

even close in the case of a 0% guarantee, and for a contract term higher or

equal to 28, the risk is higher for the periodic contribution scheme.

The shortfall risk of the zero-bond strategy is insensitive to a change

of the contribution payment scheme as it equals zero due to the strategy

construction.
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Figure 5.14: Impact of the contribution payment scheme on the guarantee

shortfall risk (aggressive strategy)
Shortfall probability

Normalized shortfall expected value

Normalized shortfall standard deviation

Normalized mean excess loss
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Normalized conditional shortfall standard deviation

Note:
This figure depicts the impact of the payment scheme on the guarantee shortfall risk using
the example of the aggressive strategy and the MS(1-2) model. The solid line represents
the periodic payment scheme (¤1200 up-front annually), and the dashed line the single
premium case. The single premium equals the net present value of periodic contributions.
The left column shows contracts with a low level guarantee (g = 0% p.a.), and the right
column contracts with a high level guarantee (g = 4% p.a.), respectively.

5.5 Solvency requirements

Section 5.4 addresses the impact of diverse factors (guarantee level, invest-

ment strategy, time, contract term, and contribution payment scheme) on

the guarantee risk. All of these aspects are important from the perspective

of the financial company managing the guarantee risk or considering to sell

a guarantee to its customers.

However, for the solvency supervising authority, a very important issue

concerns the question of how to quantify solvency requirements. As we have

mentioned already at the end of Section 5.2.3, the mean excess loss is a very

good measure of solvency requirements as it quantifies the average loss when

loss occurs. In other words, it quantifies how much capital on average the

guarantee provider should collect ex ante to compensate the loss resulting

from falling of the portfolio value below the guaranteed amount when this

scenario would realize. For this reason the MEL can be considered as a

worst-case measure and therefore it is interesting from the point of view of
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Table 5.1: Ranking of investment strategies (g = 0%)

g=0%, T=10

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL norm. cost norm. profit

Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 7.34%

Moderate∗ 0.00% 0.00% 0.01% 1.86% 0.00% 8.27%

Conservative 0.01% 0.00% 0.03% 2.16% 0.01% 8.54%

100% bond 0.01% 0.00% 0.02% 2.36% 0.00% 6.84%

Naive∗∗ 0.09% 0.00% 0.10% 2.46% 0.04% 10.15%

100-x rule∗∗∗ 1.23% 0.06% 0.68% 4.62% 0.32% 12.74%

Aggressive 2.41% 0.12% 1.04% 5.12% 0.45% 13.32%

50%-50% stock-bond 2.99% 0.18% 1.41% 6.18% 0.66% 13.63%

75%-25% stock-bond 8.76% 0.88% 3.82% 10.03% 1.92% 18.20%

100% stock 15.40% 2.08% 6.70% 13.54% 3.40% 22.20%

g=0%, T=20

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL norm. cost norm. profit

Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 33.98%

100% bond 0.00% 0.00% 0.00% 0.00% 0.00% 18.57%

Moderate 0.00% 0.00% 0.00% 0.05% 0.00% 26.38%

25%-75% stock-bond 0.00% 0.00% 0.00% 1.28% 0.00% 27.18%

Naive 0.00% 0.00% 0.01% 2.22% 0.01% 29.82%

Conservative 0.00% 0.00% 0.00% 2.52% 0.00% 25.60%

100-x rule 0.07% 0.00% 0.13% 3.58% 0.05% 34.71%

50%-50% stock-bond 0.33% 0.02% 0.37% 4.91% 0.15% 36.63%

Aggressive 2.33% 0.16% 1.36% 6.98% 0.57% 48.58%

75%-25% stock-bond 2.59% 0.22% 1.72% 8.34% 0.80% 49.68%

100% stock 7.09% 0.81% 3.82% 11.46% 1.79% 62.14%

g=0%, T=30

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL norm. cost norm. profit

Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 86.66%

Conservative 0.00% 0.00% 0.00% 0.00% 0.00% 52.64%

25%-75% stock-bond 0.00% 0.00% 0.00% 0.00% 0.00% 49.75%

100% bond 0.00% 0.00% 0.00% 0.00% 0.00% 33.44%

Moderate 0.00% 0.00% 0.00% 1.37% 0.00% 63.66%

Naive 0.00% 0.00% 0.01% 2.04% 0.00% 63.17%

100-x rule 0.01% 0.00% 0.03% 2.70% 0.01% 67.71%

50%-50% stock-bond 0.04% 0.00% 0.10% 3.72% 0.04% 68.51%

Aggressive 1.41% 0.09% 0.95% 6.29% 0.38% 104.53%

75%-25% stock-bond 0.83% 0.05% 0.75% 6.40% 0.33% 95.91%

100% stock 3.51% 0.31% 2.08% 8.94% 0.91% 123.74%

Note:
This table ranks investment strategies according to the normalized solvency capital (fifth
column) and the normalized expected return (seventh column) for the low level guarantee
(g = 0% p.a.) with periodic contributions (¤1200 up-front annually). All results are
computed for the MS(1-2) model. The top section represents the 10-year contract, the
middle section the 20-year contract, and the bottom section the 30-year contract. SEV
denotes the shortfall expected value, SSD the shortfall standard deviation, and MEL the
mean excess loss.
* – for contracts with a 10-year term, the moderate life-cycle strategy invests in the 10%-
90% stock-bond portfolio. ** – for contracts with a 10-year term, the naive life-cycle
strategy invests in the 25%-75% stock-bond portfolio. *** – for contracts with a 10-year
term, the 100-x life-cycle strategy invests in the 40%-60% stock-bond portfolio.
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the solvency supervising authority.

Tables 5.1 and 5.2 rank the chosen investment guarantees from the lowest

to the highest solvency capital (i.e. normalized MEL) in the case of the 0%

and the 4% guarantee respectively. Please note that in the case of the low

level guarantee with middle and high investment horizon, there are several

investment strategies which require no solvency capital (or reserves). For

example, for the 30-year contract, these are the zero-bond strategy, the con-

servative strategy and all buy-and-hold strategies with a stock proportion

of up to 25%. The shorter the investment horizon, the less the number of

investment guarantees which do not require any solvency capital. For exam-

ple, for the 10-year contract only the zero-bond strategy requires no solvency

capital. Similarly, in the case of the 4% guarantee, the zero-bond strategy is

the only one which does not require any solvency capital independent of the

contract term.

Tables 5.1 and 5.2 show additionally that the supervising authority should

rather require from the guarantee provider (1) to hold solvency capital ac-

cording to the risk exposure of investment guarantees, rather than (2) to

hold a constant solvency capital rate independent of the risk management

measure the guarantee provider employs. The second solution would punish

the guarantee providers who pursue a conservative risk management policy.

It would also give an incentive to retail products which are near this solvency

rate, in order to avoid of “wasting” of the solvency capital. This would lead

to an increase of the risk affinity of guarantee providers which may not be

intended by the supervising authority.

In our opinion, the best solution is one which joins both of the above

mentioned possibilities. The supervising authority should let the guarantee

provider hold the solvency capital according to the risk he is exposed to. How-
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Table 5.2: Ranking of investment strategies (g = 4%)

g=4%, T=10

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL norm. cost norm. profit

Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 2.08%

100% bond 3.74% 0.12% 0.87% 3.27% 1.12% 6.84%

Moderate∗ 3.74% 0.12% 0.86% 3.29% 1.36% 8.27%

Conservative 5.23% 0.19% 1.14% 3.72% 1.64% 8.54%

Naive∗∗ 9.51% 0.49% 2.08% 5.18% 2.57% 10.15%

100-x rule∗∗∗ 15.81% 1.28% 4.15% 8.10% 4.09% 12.74%

Aggressive 20.73% 1.94% 5.39% 9.35% 4.71% 13.32%

50%-50% stock-bond 19.94% 2.03% 5.79% 10.16% 5.13% 13.63%

75%-25% stock-bond 26.90% 4.08% 9.85% 15.15% 7.62% 18.20%

100% stock 33.05% 6.58% 14.05% 19.90% 9.86% 22.20%

g=4%, T=20

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL norm. cost norm. profit

Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 11.08%

100% bond 0.36% 0.01% 0.29% 3.57% 0.58% 18.57%

Conservative 1.13% 0.05% 0.63% 4.42% 1.38% 25.60%

Moderate 1.48% 0.07% 0.75% 4.68% 1.53% 26.38%

25%-75% stock-bond 2.00% 0.11% 1.00% 5.35% 1.91% 27.18%

Naive 3.38% 0.22% 1.54% 6.42% 2.42% 29.82%

100-x rule 6.64% 0.60% 3.01% 9.05% 3.77% 34.71%

50%-50% stock-bond 9.54% 1.06% 4.38% 11.10% 4.76% 36.63%

Aggressive 18.51% 2.99% 8.55% 16.13% 7.13% 48.58%

75%-25% stock-bond 17.08% 2.90% 8.72% 17.00% 7.63% 49.68%

100% stock 24.48% 5.53% 13.50% 22.58% 10.12% 62.14%

g=4%, T=30

Strategy shortf. prob. norm. SEV norm. SSD norm. MEL norm. cost norm. profit

Zero-bond 0.00% 0.00% 0.00% 0.00% 0.00% 32.20%

100% bond 0.04% 0.00% 0.10% 3.66% 0.30% 33.44%

25%-75% stock-bond 0.44% 0.02% 0.46% 5.27% 1.38% 49.75%

Conservative 0.62% 0.03% 0.57% 5.53% 1.49% 52.64%

Moderate 3.08% 0.25% 1.80% 7.97% 2.78% 63.66%

Naive 2.46% 0.20% 1.66% 8.16% 2.75% 63.17%

100-x rule 3.47% 0.34% 2.34% 9.76% 3.52% 67.71%

50%-50% stock-bond 4.85% 0.55% 3.17% 11.28% 4.20% 68.51%

75%-25% stock-bond 11.44% 2.00% 7.31% 17.49% 7.17% 95.91%

Aggressive 15.37% 2.92% 9.04% 18.97% 7.76% 104.53%

100% stock 19.02% 4.44% 12.20% 23.33% 9.72% 123.74%

Note:
This table ranks investment strategies according to the normalized solvency capital (fifth
column) and the normalized expected return (seventh column) for the high level guarantee
(g = 4% p.a.) with periodic contributions (¤1200 up-front annually). All results are
computed for the MS(1-2) model. The top section represents the 10-year contract, the
middle section the 20-year contract, and the bottom section the 30-year contract. SEV
denotes the shortfall expected value, SSD the shortfall standard deviation, and MEL the
mean excess loss.
* – for contracts with a 10-year term, the moderate life-cycle strategy invests in the 10%-
90% stock-bond portfolio. ** – for contracts with a 10-year term, the naive life-cycle
strategy invests in the 25%-75% stock-bond portfolio. *** – for contracts with a 10-year
term, the 100-x life-cycle strategy invests in the 40%-60% stock-bond portfolio.
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ever, it should forbid selling guarantees which require the solvency capital

above some arbitrary upper boundary. This would not punish a conservative

risk policy and prevent taking too much risk into books.

Having arrive at the end of this Section, it is worth noting that the value

at risk is not a suitable solvency measure. Table 5.1 shows that in the case

of the 0% guarantee with a 30-year contract term, the 75%-25% stock-bond

strategy has the shortfall probability of 0.83% and the normalized shortfall

expected value of 0.05%. This corresponds to the value at risk of 0.05%

at the confidence level of 99.2%. However, if the shortfall would occur, the

guarantee provider suffers an average loss of 6.40% (see normalized MEL).

This example shows that the value at risk can lead to the underfunding of

the risk position of the guarantee provider and thus jeopardize his existence.

One could argue that the guarantor could then try to acquire the capital on

the market in order to cover the loss. Neverless, this scenario is more likely

to occur in times of financial market distress, when the guarantee provider

could have difficulties to aquiring the necessary capital.

5.6 Interrelation between solvency requirements

and expected profit

The previous Section has shown that several investment strategies do not

require any solvency capital. Thus, as one possible strategy, the guarantee

seller can choose contracts which do not require any solvency capital and of-

fer these to clients. However, a future pensioner is interested in three aspects

when buying a guarantee: the protection level (level of the guarantee), the

reduction of the cost of protection, and the maximization of profit. Thus,

it might happen that an investment strategy that does not require any sol-
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vency capital would be unsatisfactory from the client’s point of view. For

instance, its expected profit would be too low. As we discuss several invest-

ment strategies, we would like to see which one of these is most suitable for a

client and most likely to satisfy his goals and still be financeable in terms of

solvency capital, for the guarantee provider. To compare the profit potential

of different investment strategies, we use the normalized expected profit as

defined in Definition 4.53.

Tables 5.1 and 5.2 rank chosen investment guarantees from the lowest to

the highest solvency capital (i.e. normalized MEL). If two strategies have the

same solvency capital, the better ranking is given to the one with the higher

expected profit. We thereby assume that the client knows his investment

horizon (10, 20 or 30 years) and how much risk protection he needs (guaran-

tee of 0% or 4%). Besides the solvency capital, Tables 5.1 and 5.2 show the

remaining risk measures (i.e., shortfall probability, normalized shortfall ex-

pected value, and normalized shortfall standard deviation4) and normalized

cost computed in previous Chapter.5

In the following we will discuss the 0% guarantee at the 30-year invest-

ment horizon example. Results for the 20-year horizon are similar. Results

for the 10-year horizon are similar to results for the 4% guarantee, which will

be discussed later in this section. Six investment strategies (the zero-bond,

the conservative, and buy-and-hold strategies with up to 25% stock propor-

tion) do not require any solvency capital. From all of them the zero-bond

investment strategy has the highest normalized profit of 86.66%. In com-

4Normalized conditional shortfall standard deviation was postponed as it does not yield

results for all studied investment strategies within the 20 million Monte Carlo runs.
5All risk measures are based on the 20 million simulations, and the normalized cost

and the normalized expected profit are based on 1 million simulations in order to provide

a convergence of results.
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parison, the pure bond strategy has a normalized expected profit of 33.44%.

This shows that it is possible to choose an investment strategy that does

not require any solvency reserves. Moreover, it does matter which of these

strategies the guarantee provider chooses, as an unsuitable strategy can sig-

nificantly lower the profit the customer can expect.

Surprisingly, a higher normalized expected profit yields the most conser-

vative investment strategy: the zero-bond strategy.

Another interesting result is that several investment strategies (the mod-

erate, the naive, the 100-x rule, and the 50%-50% stock-bond strategy) re-

quire a positive solvency capital. However, these yield a lower expected

return than the zero-bond strategy. For example, the 50%-50% stock-bond

buy-and-hold strategy requires 3.72% of the net present value of contribu-

tions as solvency capital and has a normalized expected value of 68.51%.

First, far riskier strategies yield higher expected return than the zero-bond

strategy. For instance, the aggressive strategy requires a solvency capital of

6.29% and yields a normalized expected profit of 104.53%.

Last, we discuss the case of the 4% guarantee using the example of a 30-

year time horizon (see Table 5.2). Results for other investment horizons, e.g.

for 10 and 20 years are similar. The zero-bond strategy is the only one which

does not require any solvency capital. However, it yields a normalized profit

of only 32.20% which is rather unsatisfactory for the investment horizon of 30

years. This low expected profit is a result of the high guarantee level which

requires that a high portion of capital has to be invested in a riskless zero-

bond in order to fulfill the guarantee of 4%. This lead us to the conclusion

that a higher protection (4% p.a. instead of 0% p.a.) results in an oppor-

tunity cost of a lower expected profit. As one of the goals of pension saving

is the maximization of consumption in old age, this investment strategy is
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rather unfavorable for the customer. The increase of the expected profit is

equivalent to the increase of the solvency capital. For instance, the pure

bond buy-and-hold strategy yields the normalized expected profit of 33.44%

(which is only 1.24 per cent points higher in comparison to the zero-bond

strategy) but it requires a solvency capital of 3.66%.

5.7 Conclusion

This Chapter analyzes seven factors which influence the risk of an invest-

ment guarantee: the initial state (i.e., the market phase at the inception of

the contract), the model governing the stochastic behavior of the investment

portfolio, the guarantee level, the investment strategy, time, the contract

term, and the contribution payment scheme. We have discussed five risk

measures: the shortfall probability, the shortfall expected value, the shortfall

standard deviation, the mean excess loss, and the conditional shortfall stan-

dard deviation. The most interesting one is the MEL, as it is a worst case

risk measure. Thus, we propose using it as a quantification of the solvency

capital the guarantee provider should accumulate.

We maintain that the GBM model overestimates the risk associated with

the investment guarantee with the comparison to the GBM with Markov

switching. The GBM does not differentiate between the low and high volatil-

ity phase (i.e. low and high market risk phase). A glance at the average

regime duration (see Tables B.1-B.13 in Appendix B) or smoothed probabil-

ities (see Figures D.1-D.39 in Appendix D), however, shows that the stable

market phases are longer than the high volatility phases. As the GBM does

not differentiate between the low and the high risk market phase, it only

provides an average volatility. Furthermore, it does not account for the fact
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that the high risk market phases occur seldomly and thus lead to an overes-

timation of their impact on the shortfall risk.

The Markov switching model is very sensitive to the probability of the

initial state for short-term contracts. This effect is less significant for middle-

and long-term contracts. The risk is higher when the product is sold in the

high volatility market phase. Unfortunately, the market state cannot be ob-

served. However, smoothed probabilities are very good proxies for the initial

state probabilities. Additionally, there are two ways the risk-averse agent

can manage the risk associated with the uncertainty about the initial state.

First, he can restrict himself to selling only guarantees with contract terms

above 10 years. This does not pose a problem, as retirement saving products

are generally middle and long-term products, which are predominantly sold

on the market anyway. Second, the upper bounds of all risk measures dis-

cussed in this thesis are always associated with the high volatility regime at

the contract inception. The guarantee provider can therefore assume this to

be the case and use the results as the conservative risk measure.

Another risk factor we studied was the contribution payment scheme.

We found out that the impact of this factor varies strongly with respect to

other risk factors, e.g. the investment strategy underlying the guarantee, the

guarantee level, time/contract term, and the risk measure used.

Three further risk factors, namely the guarantee level, the stock propor-

tion in the investment strategy, and time/contract term are tightly connected

with each other. Accordingly, manipulating one of the above three factors

can achieve a risk reduction of the same amount. Thus, they should always

be considered together. The impact of the guarantee level and the stock pro-

portion is always the same: the higher the guarantee level and/or the higher

the stock proportion, the higher the risk of the guarantee, regardless of which
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risk measure is used. Furthermore, guarantee levels significantly lower than

the risk-free interest rate (e.g. g = −2%, 0% and 2% p.a.) have a different

impact on the risk level and result in a different shape of the risk measure

curve than guarantee levels closer to the risk-free interest rate (e.g. g = 4%

p.a.).

On the contrary, the impact of time/contract term is different for different

risk measures. The shortfall probability decreases if time/contract term in-

creases regardless of the guarantee level and stock proportion. In most cases,

the normalized shortfall expected value decreases as time/contract term in-

creases. The exception are high level guarantees with a high stock proportion.

In these cases, the normalized shortfall expected value function has an in-

verted U shape. The normalized shortfall standard deviation is a decreasing

function of time/contract term when the stock proportion is low. For a high

stock proportion it increases to a maximum and then decreases. This holds

true for both the low and the high guarantee levels. In the case of low level

guarantees, the normalized MEL is a decreasing function of time/contract

term if the stock proportion is low, and an inverted U shape function if the

stock proportion is high. For the high level guarantees, the normalized MEL

is an increasing function of time/contract term. The normalized conditional

shortfall standard deviation can be only computed for investment strategies

with a high stock proportion. In this case, it is an increasing function of

time/contract term.

These results can be summed up in the following manner. Risk measures

we use here are more sensitive to changes in time/contract term, the higher

the order of the lower partial or conditional lower partial moment is. Further-

more, conditional lower partial moments are more sensitive with respect to

time/contract term than lower partial moments. In addition, it is vital that
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the risk manager takes into account that all risk measures used here can be

interpreted differently. The most informative ones seem to be the probability

of shortfall and the MEL, which can be interpreted as the required solvency

capital.

In conclusion, the risk of low level guarantees can be reduced to an ac-

ceptable level for middle and high contract terms, regardless of the stock

proportion in the investment portfolio. The risk of high level guarantees is

only acceptable for middle and high contract terms only if the stock propor-

tion is low. Since the risk is rather high for a high stock proportion, such

products should not be offered to clients as it could significantly jeopardize

the existence of the guarantee provider, which is evidently not in the inter-

est of guarantee buyers. Instead of selling guarantees backed by investment

strategies with a high stock proportion, the guarantee provider can sell guar-

antees backed by a life-cycle strategy. The idea of a life-cycle strategy is to

invest in more risky assets at the contract inception and to reduce the stock

proportion as the contract nears its expiration date. This approach enables

the guarantee provider to construct a product which fits the expectations

of his client. This means that, for a given contract term, guarantee level,

risk level, and/or solvency capital one can find a life-cycle strategy which

maximizes the expected profit of the individual pension account.

Apart from the buy-and-hold and life-cycle strategies, the zero-bond strat-

egy also constitutes a very interesting option for the risk manager. The main

idea is to invest the portion of the contribution needed to fulfill the guaran-

tee in a risk-free zero-bond and the remaining capital in stocks. This leads

to a risk-free product. This strategy is very interesting for the guarantee

provider, as it does not require any solvency capital (under the assumption

that the seller of the zero-bond cannot default). A very interesting result
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is that, for low level guarantees, the expected profit of the zero-bond strat-

egy outperforms the expected profit of several buy-and-hold and life-cycle

strategies which have a positive risk (and positive solvency capital require-

ment). This does not hold true for high level guarantees when the zero-bond

strategy is the only riskless (and solvency capital free) one. Thus, the guar-

antee provider has the choice between selling low level guarantees backed

with a zero-bond and those backed with one of the life-cycle strategies with

a positive – but still acceptable – risk (solvency capital) and an expected

profit which is higher than the expected profit of the zero-bond strategy. If

the guarantee provider would like to sell high level guarantees backed with

a zero-bond strategy, he should be aware of the fact that, while being a

risk-free product, it yields a very low expected profit. Thus, it is doubtful

that it would be in the interest of the client who buys an individual pension

product. The guarantee provider should instead back high level guarantees

with a life-cycle strategy. However, he should be aware that these are very

risky and thus require a high solvency capital.

Last but not least, we discussed the solvency capital requirements for

investment guarantees embedded in personal pension plans. We have shown

in an example that the value at risk which is used in the banking industry

to quantify solvency requirements, can lead to an underestimation of the

solvency capital and thus should not be used in this context. Instead, we

proposed applying the mean excess loss for this purpose. In our opinion, the

solvency supervising authority should allow the guarantee provider to hold

solvency capital according to his risk exposure and set a maximal allowed

risk position in order to prevent too risky behavior of guarantee providers.
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Chapter 6

Main results and further

research

6.1 Main results

This thesis discusses how to price, how to measure risk, and how to quantify

solvency capital for investment guarantees embedded in individual pension

products. The first main contribution of this thesis is to implement a model

with a stochastic volatility of the return rate of risky assets backing the

guarantee. This is all the more important since the saving process of a

pension product lasts for several decades. Furthermore, it is unreasonable to

assume that the risky asset backing the guarantee follows the GBM. We

decided to use the Markov regime model among several other stochastic

volatility models as it has a very appealing intuitive interpretation. This

model takes into account the stylized fact that the financial market reveals

two phases: the bull and the bear market phase.

Since the Markov switching model we use is not as well-known as the

GBM, we discussed how to estimate and test its parameters. Thus, the sec-
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ond main contribution of this thesis is a discussion on the suitability of the

MS model for the German financial market (stock and interest rate). Fur-

thermore, to the best of our knowledge, we are the first to implement suitable

statistical tests in order to test the null hypothesis of the MS model against

the arithmetic Brownian motion/Vasiček model in the context of financial

markets. Other authors only use the AIC and BSC or the likelihood ratio

test (see, e.g., Hardy (2001)). Particularly, the third one is unsuitable for

testing this null hypothesis, as Markov models violate certain crucial assump-

tions of the likelihood ratio test. Instead, we implemented tests proposed by

Hamilton (1996) and Garcia (1998).

We found that the GBM with Markov switching better describes the

stochasticity of Germany stocks than the GBM. Moreover, the Vasiček pro-

cess with Markov switching better describes the stochasticity of the German

interest rates.1 Our results are very robust as we used several tests designed

especially for MS models, all of which provided similar results.

The price one has to pay for using MS models is an estimation and testing

procedure, as well as an option pricing theory which are more complex than

those of the GBM model. However, we should take into consideration that

pension saving products have contract durations of many years and that

the differences especially of the guarantee cost within both approaches are

significant. In our opinion, this additional effort is therefore worth making.

Third, the usage of the MS model implies the incompleteness of the finan-

cial market. This affects option pricing since several martingale risk measures

are possible in the arbitrage-free market. There is a common consensus that

1We use GBM with Markov switching for the bond portfolio, as there is no option

pricing theory for the Vasiček process with Markov switching. This simplification, however,

should not influence the results to a noteworthy degree.
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the market “chooses” the “right” martingale measure. However, guarantees

discussed in this thesis are not traded on the market, therefore, their prices

cannot be observed. Accordingly, the guarantee provider has to make a

suitable choice concerning the equivalent probability measure based, among

others, on his risk aversion. We decided to opt for the Esscher measure which

is well-known in actuarial science. Reasons for this choice are fourfold: (1)

The process under the Esscher martingale measure Q remains in the same

class of models as the process under the real-word probability measure P.

(2) The solution reduces to the well-known Black and Scholes (1973) formula

in the case of one switching regime (i.e. K = 1). (3) The Esscher transform

approach is conform with maximizing the expected utility with the constant

risk aversion utility function u(x) = xγ

γ
(0 < γ < 1). (4) The Esscher proba-

bility measure allows us to price the uncertainty of whether the market is in

a stable or in a turbulent phase.

We compared these results with those of the Black-Scholes and Bollen-

Hardy model. The comparison has shown that the difference between the

Back-Scholes and the Esscher model can be explained by two factors: the

stochastic volatility and the unobservable state variable. The latter factor

has a stronger impact.

Fourth, we proposed measuring the risk of the guarantee with several

lower partial and conditional lower partial moments. In our opinion, they are

better able to quantify the risk of the discussed guarantees than dispersion or

quantile risk measures (especially the value at risk widely used in the banking

industry). The reason for this is that they quantify the risk which is defined

as an unfavorable deviation from a target (e.g. guaranteed portfolio wealth).

By this means, they take into account the intuitive difference between “risk”

and “chance”.
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Fifth, we discussed the solvency capital requirements for investment guar-

antees embedded in personal pension plans. We have shown in an example

that the value at risk, which is used in the banking industry to quantify sol-

vency requirements, can lead to an underestimation of the solvency capital

and thus should not be used in this context. Instead, we proposed applying

the mean excess loss for this purpose. In our opinion, the solvency supervis-

ing authority should allow the guarantee provider to hold solvency capital

according to his risk exposure and set a maximal allowed risk position in

order to prevent too risky behavior of guarantee providers.

Sixth, we found that the GBM overestimates the cost and risk of the

guarantee in comparison to the GBM with Markov switching. This result is

rather suprising, since we added an additional source of uncertainty to the

model: the market state variable, which describes whether the market is in

a stable or in a turbulent phase. However, a descriptive analysis of the MS

model shows that stable phases (i.e. phases with a low volatility σ1) last

significantly longer on average than in turbulent phases (i.e. phases with

a high volatility σ2). On the other hand, the GBM only has one market

phase with volatility σGBM such that σ1 < σGBM < σ2. Thus, it inevitable

overestimates the influence of the turbulent market phase on the outcomes,

which also explains why the GBM provides biased results.

Seventh, we discussed several factors which influence the cost and the

risk of an investment guarantee. From the point of view of the risk manager,

three of these factors are of particular importance: the guarantee level, the

stock proportion, and time/contract term. Making a suitable choice among

these factors enables one to control the risk associated with the guarantee.

Eighth, we discussed several investment strategies the guarantee provider

can use. We showed that life-cycle strategies are more suitable than buy-and-
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hold strategies to control the cost and risk of the guarantee and/or increase

its expected profit. A suitable management of these variables can give the

guarantee provider a competitive advantage, since the purchaser of an indi-

vidual pension account is interested in both a high safety for his savings and

in a maximization of the expected profit. The life-cycle strategies we dis-

cussed reduce the volatility of the investment portfolio as the contract nears

its date of expiration, regardless of the market phase. An interesting topic

for further research would be studying investment strategies which take the

market phase into account. This would imply investing more risky during the

bull market phase and less risky during the bear market phase. We decided

against implementing such strategies, as such a program code would be too

time-consuming in GAUSS. We suppose, however, that it would be feasible

in other programing languages such as C++.

Ninth, we discussed the zero-bond strategy. The idea of this strategy is to

invest a portion of the contribution needed to fulfill the guarantee in a riskless

zero-bond, in order to provide a costless/riskless guarantee. The remaining

capital is to be invested in stocks in order to maximize the expected profit.

It turned out that this strategy performs very well for low level guarantees.

With respect to the expected profit, it even outperforms several buy-and-hold

and life-cycle strategies with positive cost, positive risk, or positive solvency

capital. For the high level guarantees there exists only one costless (riskless,

and solvency capital free) strategy and it could theoretically be implemented

by a risk averse guarantee provider. However, the expected profit of the

zero-bond strategy decreases along with an increase of the guarantee level.

For instance, a 4% guarantee backed with a zero-bond strategy is completely

uninteresting with respect to the expected profit. Therefore, it is doubtful

if such a product could be successful in the market. Instead, the guaran-
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tee provider should concentrate on low level guarantees or use a more risky

investment strategy. In our opinion, the first solution is more advisable as

high level guarantees with a satisfactory expected profit are expensive, risky,

and require a high solvency capital. Lastly, we should discuss some practical

constraints of the zero-bond strategy. It assumes that the portfolio manager

can purchase a riskless zero-bond with every desired maturity. However, such

zero-bonds migth not be available in the market, particularly for very long

maturities.

6.2 Further research

In our model we have made several assumptions. Relaxing them would pro-

vide an opportunity for further research. Below, we will discuss several of

them, some of which we are working on already. First, we have studied

deterministic guarantees. As we mentioned in Chapter 1, there are several

guaranteed pension products all over the world containing stochastic guar-

antees, e.g., a stochastic benchmark portfolio or inflation. Such guarantees

could be priced as the Margrabe (1978) option to exchange one risky asset

for another.

Second, we omitted the mortality risk, which could easily be implemented

using the maturity tables. We intentionally discarded this solution as it would

merely constitute a sum of option prices (risk measures or solvency require-

ments) weighted by the mortality probabilities, since the market and biomet-

ric risks are independent from each other. While being able to quantify the

mortality risk, however, this approach does not contribute to understand-

ing the stochasticity of this type of risk. In our opinion, it would be much

more interesting to use one of modern stochastic mortality models, e.g. Dahl
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(2004) or Cox and Lin (2005).

Third, we do not take the credit risk into account. Adding it to the

model would provide some interesting results. At this point, one could use

the approach proposed by Schönbucher (2000).

Fourth, the model could be extended by the stochastic risk-free interest

rate, e.g., the Vasiček (1977), the Cox, Ingersoll, and Ross (1985), or the

Heath, Jarrow, and Morton (1992) model could be implemented.

Fifth, the choice of the Esscher martingale measure does not allow for

hedging. As this is a very important issue for a manager of option risk,

a stochastic volatility model which allows to construct a hedging strategy

would be very interesting. At this point, e.g., the mean-variance approach,

which was introduced by Föllmer and Sondermann (1986) and Föllmer and

Schweizer (1988) could be used.

Sixth, we assumed the guarantee to be an European-option-type. An

extension of the model with a surrender American-option-typed guarantee

would be interesting. For instance, one could use the Longstaff and Schwartz

(2001) least-squares model.

Finally, it would be interesting to study the performance of the guarantees

we discussed in this thesis within a stochastic volatility model. In this case,

performance measures such as the Sortino, the Omega, or the Psi ratio could

be implemented, see Keating and Shadwick (2002a, 2002b) and Sortino and

Satchell (2001).
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Appendix A

Proofs for Chapter 3

A.1 Assumptions for the Hansen test

Assumption A.1

sup
αααH∈A

√
T‖D(αααH)‖ = Op(1), (A.1)

where D(αααH) = γ̂γγ1(αααH) − γγγ1(αααH).

Assumption A.2

sup
αααH∈A, γγγ1∈Γ

‖MT (αααH , γγγ1)‖ = Op(T ), (A.2)

with

MT (αααH , γγγ1) =
∂2

∂γγγ1γγγ1

LT (αααH , γγγ1).

Assumption A.3 Assume now that Q∗
T (αααH) satisfies an empirical process

law:

Q∗
T (αααH) →p

Q(αααH)√
V (αααH)

:= Q∗(αααH), (A.3)

where Q∗(αααH) is a zero mean normal with the covariance function

K∗(αααH
1 ,ααα

H
2 ) =

K∗(αααH
1 ,ααα

H
2 )√

V (αααH
1 )V (αααH

2 )
.
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Assumption A.4 Let

1. AG and Δ are compact.

2. Q(αααG, δδδ) = limT→∞ EQT (αααG, δδδ) is continuous in (αααG, δδδ) uniformly over

AG × Δ.

3. QT (αααG, δδδ) →p Q(αααG, δδδ) for all (αααG, δδδ) ∈ AG × Δ.

4. QT (αααG, δδδ) − Q(αααG, δδδ) is stochastically equi-continuous in (αααG, δδδ) over

AG × Δ.

5. For all δδδ ∈ Δ, Q(αααG, δδδ) is uniquely maximized over αααG ∈ AG at αααG
0 .

Assumption A.5 For αααG ∈ AG
0 = {αααG ∈ AG : h(αααG) = 0}, QT (αααG, δδδ) does

not depend upon δδδ.

Assumption A.6 Let

1. M(αααG, δδδ) = limT→∞ E[MT (αααG, δδδ)] and V (αααG, δδδ) = limT→∞ E[Sc
T (αααG, δδδ) Sc

T (αααG, δδδ)′]

are continuous in (αααG, δδδ) uniformly over AG
ε × Δ, where αααG

ε is some

neighbourhood of αααG
0 .

2. [MT (αααG, δδδ), VT (αααG, δδδ)] →p [M(αααG, δδδ), V (αααG, δδδ)] for all (αααG, δδδ) ∈ AG
ε ×

Δ.

3. MT (αααG, δδδ)−M(αααG, δδδ) and VT (αααG, δδδ)−V (αααG, δδδ) are stochastically equi-

continuous in (αααG, δδδ) over AG
ε × Δ.

4. M(δδδ) = M(αααG
0 , δδδ) and V (δδδ) = V (αααG

0 , δδδ) are positive definite uniformly

over δδδ ∈ Δ.

5.
√
TSc

T (αααG
0 , δδδ)

p→ Sc(δδδ) on δδδ ∈ Δ, where Sc(·) is a zero-mean Gaussian

process with the covariance function K(δδδ1, δδδ2) = limT→∞ TE[Sc
T (αααG

0 , δδδ1), S
c
T (αααG

0 , δδδ2)′],
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where
p→ denotes a weak convergence of probability measures with re-

spect to the uniform metric.

A.2 Proof of Lemma 2

Proof of Lemma 3.3 from Section 3.6.2.

Knowing the log-likelihood function for observation yt

lt(yt|YT ;θθθ∗) =

2∑
Zt(δδδ)=1

⎧⎨⎩−1

2
ln[2π] − 1

2
ln

⎡⎣(σ1 +

K∑
j=2

σ∗
j I[Zt=j]

)2
⎤⎦

− ε2
t

2
(
σ1 +

∑K
j=2 σ

∗
j I[Zt=j]

)2

⎫⎪⎬⎪⎭ pt,

(A.4)

with the increment

εt = yt − (μ1 +

K∑
j=2

μ∗
jI[Zt=j] +

r∑
i=1

(
φi(1) +

K∑
j=2

φ∗
i(j)I[Zt=i]

)
yt−i)

and the smoothed probability

pt = Pr[Zt(δδδ) = zt(δδδ)|YT ;αααG, δδδ]

computing derivatives
∂lt(yt|YT ;θθθ∗)

∂αααG becomes fairly straightforward

∂lt(yt|YT ;θθθ∗)

∂μ1
=

εt

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt (A.5)

∂lt(yt|YT ;θθθ∗)

∂μ∗
2

=
εtI[Zt(δδδ)=2]

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt (A.6)

∂lt(yt|YT ;θθθ∗)

∂φi(1)

=
yt−iεt

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt, i = 1, . . . , r (A.7)

∂lt(yt|YT ;θθθ∗)

∂φ∗
i(2)

=
yt−iεtI[Zt(δδδ)=2]

(σ1 + σ∗
2I[Zt(δδδ)=2])2

pt, i = 1, . . . , r (A.8)

∂lt(yt|YT ;θθθ∗)

∂σ2
1

=
1

2σ1(σ1 + σ∗
2I[Zt(δδδ)=2])

(
ε2

t

(σ1 + σ∗
2I[Zt(δδδ)=2])2

− 1

)
pt (A.9)
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∂lt(yt|YT ;θθθ∗)

∂σ∗2
2

=
I[Zt(δδδ)=2]

2σ∗
2(σ1 + σ∗

2I[Zt(δδδ)=2])

(
ε2

t

(σ1 + σ∗
2I[Zt(δδδ)=2])2

− 1

)
pt. (A.10)

Now, it remains to use the average log-likelihood of the full sample which

is given by

LT (θθθ∗) =
1

T

T∑
t=1

K∑
Zt(δδδ)=1

lt(yt|YT ;θθθ∗) (A.11)

and its score
∂LT (θθθ∗)

∂αααG
=

1

T

T∑
t=1

K∑
Zt(δδδ)=1

∂lt(yt|YT ;θθθ∗)

∂αααG
. (A.12)

Subsequently, the scores (3.41)-(3.46) follow.

Proof of Lemma 3.4 from Section 3.6.2.

In this proof the elements of the K(δδδ1, δδδ2) matrix are computed.1 At

the beginning, one should bear in mind that the matrix K(δδδ1, δδδ2) is the

covariance process of the test statistic under the null hypothesis. Thus it is

useful to note that the variance of the Markov switching process equals(
σ1 + σ∗

2I[Zt(δδδ)=2]

)2
= σ2

1 (A.13)

regardless of the value of the nuisance parameter vector δδδ.

Then, according to equations (3.38), (3.41) and (A.13) the (μ1, μ1) ele-

ment of the covariance matrix can be computed as

K(δδδ1, δδδ2)μ1,μ1 = lim
T→∞

TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

εt

σ2
1

εs

σ2
1

ptps, (A.14)

where

pt = Pr[Zt(δδδ1) = zt(δδδ1)|YT ;αααG
0 , δδδ1]

ps = Pr[Zs(δδδ2) = zs(δδδ2)|YT , zs(δδδ1);ααα
G
0 , δδδ1].

Note that ps is dependent on zs(δδδ1). This results from the fact that filters

based on δδδ1 and δδδ2 are not independent because they are both derived from

the same series Yt.

1The proof is analogical to the proof of Garcia (1998, Appendix 2, p. 781-785).
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As the sums of the products of the probabilities pt and ps, respectively,

are equal to unity, one has

K(δδδ1, δδδ2)μ1,μ1 = lim
T→∞

ET

T∑
t=1

T∑
s=1

1

T 2

εtεs

σ4
1

. (A.15)

Since the increments ε are serially independent and under the null hypothesis

E[ε2t ] = σ2
1, it follows that

K(δδδ1, δδδ2)μ1,μ1 = lim
T→∞

T

T∑
t=1

1

T 2

E[ε2
t ]

σ4
1

= lim
T→∞

1

σ2
1

=
1

σ2
1

. (A.16)

Now, compute the (μ1, μ
∗
2) element of the covariance matrix. From equa-

tions (3.38), (3.41) and (3.42) it follows that

K(δδδ1, δδδ2)μ1,μ∗
2

= lim
T→∞

TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

εt

(σ1 + σ∗
2I[Zt(δ1δ1δ1)=2])2

εsI[Zs(δ2δ2δ2)=2]

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])2

ptps

(A.17)

From the fact that pt sum to unity and ε are serially independent, it follows

that

K(δδδ1, δδδ2)μ1,μ∗
2

= lim
T→∞

TE

T∑
s=1

2∑
Zs(δδδ2)=1

1

T 2

ε2
sI[Zs(δ2δ2δ2)=2]

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])4

ps. (A.18)

As ε and z(δδδ) are independent, therefore this equation can be rewritten as

K(δδδ1, δδδ2)μ1,μ∗
2

= lim
T→∞

TE

[
T∑

s=1

1

T 2

ε2
s

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])4

E
[
I[Zs(δ2δ2δ2)=2]|YT ,ααα

G
0 , δδδ2

]]
.

(A.19)

Then apply the law of iterated expectations

E
[
E[I[Zs(δ2δ2δ2)=2]|YT ,ααα

G
0 , δδδ2]

]
= E[I[Zs(δ2δ2δ2)=2]] (A.20)

and note that E[I[Zs(δ2δ2δ2)=2]] = π2(δδδ2) and use the fact that under the null

hypothesis E[εs] = σ2
1 and (A.13), which provides the following equation

K(δδδ1, δδδ2)μ1,μ∗
2

= lim
T→∞

π2(δδδ2)

σ2
1

=
π2(δδδ2)

σ2
1

. (A.21)
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Analogically the (μ∗
2, μ1) element of the covariance matrix equals

K(δδδ1, δδδ2)μ∗
2 ,μ1 =

π2(δδδ1)

σ2
1

. (A.22)

To compute the (μ∗
2, μ

∗
2) element of the covariance matrix one has to use

equations (3.38) and (3.42), from which follows that

K(δδδ1, δδδ2)μ∗
2 ,μ∗

2
= lim

T→∞
TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

εtI[Zt(δ1δ1δ1)=2]

(σ1 + σ∗
2I[Zt(δ1δ1δ1)=2])2

εsI[Zs(δ2δ2δ2)=2]

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])2

ptps

(A.23)

From independence between ε and z(δδδ), it follows that

K(δδδ1, δδδ2)μ∗
2 ,μ∗

2
= lim

T→∞
TE

[
T∑

t=1

T∑
s=1

1

T 2
E[I[Zt(δ1δ1δ1)=2]I[Zs(δ2δ2δ2)=2]|Yt,ααα

G
0 , δδδ1, δδδ2]

εsεt

(σ1 + σ∗
2I[Zt(δ1δ1δ1)=2])2(σ1 + σ∗

2I[Zs(δ2δ2δ2)=2])2

]
.

(A.24)

Now, apply the law of iterated expectations (A.20) and note that E[I[Zt(δ1δ1δ1)=2]I[Zs(δ2δ2δ2)=2]] =

min[π2(δδδ1), π2(δδδ2)]. Additionally, use the serial independence of ε and (A.13),

which results in

K(δδδ1, δδδ2)μ∗
2,μ∗

2
= lim

T→∞
T

T∑
t=1

1

T 2
min[π2(δδδ1), π2(δδδ2)]

E[ε2
t ]

σ4
1

= lim
T→∞

min[π2(δδδ1), π2(δδδ2)]
1

σ2
1

= min[π2(δδδ1), π2(δδδ2)]
1

σ2
1

.

(A.25)

To find the (μ1, φi(1)) elements of the covariance matrix, let us prove the

two following lemmas.

Lemma A.7

lim
T→∞

T∑
t=1

1

T
yt−i = μ1 (A.26)
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Proof. The left-hand side of the equation (A.26) can be rewritten as

lim
T→∞

T∑
t=1

1

T
yt−i = lim

T→∞

T∑
t=1

1

T
yt︸ ︷︷ ︸

(1)

+ lim
T→∞

1

T

i∑
j=1

(y1−j − yT+1−j)︸ ︷︷ ︸
(2)

(A.27)

Note that term (1) converges to the expected value of YT which under the

null hypothesis equals μ1 and term (2) tends to zero as i � T . Thus, the

right-hand side of (A.27) is equal to μ1 and equation (A.26) is proven.

Lemma A.8

lim
T→∞

T∑
t=1

1

T
yt−iyt−j = cov[yt−i, yt−j] + 2μ2

1 (A.28)

Proof. The left-hand side of equation (A.28) can be rewritten as

lim
T→∞

T∑
t=1

1

T
yt−iyt−j = lim

T→∞

T∑
t=1

1

T
(yt−i − μ1)(yt−j − μ1)︸ ︷︷ ︸

(1)

+ μ1 lim
T→∞

1

T
yt−i︸ ︷︷ ︸

(2)

+μ1 lim
T→∞

1

T
yt−j︸ ︷︷ ︸

(3)

−μ2
1 lim

T→∞

1

T︸ ︷︷ ︸
(4)

(A.29)

Note that term (1) converges to the (i, j) element of the auto-covariance

matrix, as under the null hypothesis the expected value of YT equals μ1.

According to Lemma A.7, terms (2) and (3) converge to μ1. Furthermore,

term (4) goes to zero. Therefore the right-hand side of the equation (A.29)

converges to cov[yt−i, yt−j] + 2μ2
1 as postulated in equation (A.28).

Now, use equations (3.38), (3.41) and (3.43)

K(δδδ1, δδδ2)μ1,φi(1)
= lim

T→∞
TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

εt

(σ1 + σ∗
2I[Zt(δ1δ1δ1)=2])2

εsys−i

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])2

ptps.

(A.30)
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As the probabilities pt and ps sum to unity, respectively, the ε are serially

independent, E[ε2
t ] = σ2

1 and (A.13), thus it follows that

K(δδδ1, δδδ2)μ1,φi(1)
=

1

σ2
1

lim
T→∞

(
1

T

T∑
s=1

ys−i

)
. (A.31)

From Lemma A.7 it follows that

K(δδδ1, δδδ2)μ1,φi(1)
=
μ1

σ2
1

. (A.32)

Analogically, the (φi(1), μ1) element of the covariance matrix equals

K(δδδ1, δδδ2)φi(1),μ1 =
μ1

σ2
1

. (A.33)

The (μ1, φ
∗
i(2)) element of the covariance matrix can be computed from

equations (3.38), (3.41) and (3.44)

K(δδδ1, δδδ2)μ1,φ∗
i(2)

= lim
T→∞

TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

εt

(σ1 + σ∗
2I[Zt(δ1δ1δ1)=2])2

ys−iεsI[Zs(δδδ)=2]

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])2

ptps.

(A.34)

Since pt sum to unity and ε are serially independent, thus

K(δδδ1, δδδ2)μ1,φ∗
i(2)

= lim
T→∞

TE

T∑
s=1

2∑
Zs(δδδ2)=1

ys−i

T 2

ε2
sI[Zs(δ2δ2δ2)=2]

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])4

ps. (A.35)

From the independence between ε and z(δδδ) it follows that

K(δδδ1, δδδ2)μ1,φ∗
i(2)

= lim
T→∞

TE

[
T∑

s=1

1

T 2

ys−iε
2
s

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])4

E
[
I[Zs(δ2δ2δ2)=2]|YT ,ααα

G
0 , δδδ2

]]
.

(A.36)

Apply then, the law of iterated expectations (A.20) and note that E[I[Zs(δ2δ2δ2)=2]] =

π2(δδδ2). In addition, apply the fact that under the null hypothesis E[ε2
s] = σ2

1

and (A.13)

K(δδδ1, δδδ2)μ1,φ∗
i(2)

=
π2(δδδ2)

σ2
1

lim
T→∞

1

T
ys−i. (A.37)
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From Lemma A.7 one concludes that

K(δδδ1, δδδ2)μ1,φ∗
i(2)

=
μ1π2(δδδ2)

σ2
1

. (A.38)

Analogically, the (φ∗
i(2), μ1) element of the covariance matrix equals

K(δδδ1, δδδ2)φ∗
i(2)

,μ1 =
μ1π2(δδδ1)

σ2
1

, (A.39)

the (μ∗
2, φi(1)) element of the covariance matrix equals

K(δδδ1, δδδ2)μ∗
2,φi(1)

=
μ1π2(δδδ1)

σ2
1

(A.40)

and the (φi(1), μ
∗
2) element of the covariance equals

K(δδδ1, δδδ2)φi(1),μ
∗
2

=
μ1π2(δδδ2)

σ2
1

. (A.41)

The (μ∗
2, φ

∗
i(2)) element of the covariance matrix can be computed from

equations (3.38), (3.42) and (3.44)

K(δδδ1, δδδ2)μ∗
2 ,φ∗

i(2)
= lim

T→∞
TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

εtI[Zt(δδδ1)=2]

(σ1 + σ∗
2I[Zt(δδδ1)=2])2

ys−iεsI[Zs(δδδ2)=2]

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

ptps.

(A.42)

Now, use the independence between ε and z(δδδ) which enables to rewrite this

equation as

K(δδδ1, δδδ2)μ∗
2,φ∗

i(2)
= lim

T→∞
TE

[
T∑

t=1

T∑
s=1

1

T 2
E[I[Zt(δδδ1)=2]I[Zs(δδδ2)=2]|Yt,ααα

G
0 , δδδ1, δδδ2]

ys−iεsεt

(σ1 + σ∗
2I[Zt(δδδ1)=2])2(σ1 + σ∗

2I[Zs(δδδ2)=2])2

]
.

(A.43)

Then apply the law of iterated expectations

E
[
E[I[Zt(δ1δ1δ1)=2]I[Zs(δ2δ2δ2)=2]|YT ,ααα

G
0 , δδδ2]

]
= E[I[Zt(δ1δ1δ1)=2]I[Zs(δ2δ2δ2)=2]] (A.44)
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and note that E[I[Zt(δ1δ1δ1)=2]I[Zs(δ2δ2δ2)=2]] = min[π2(δδδ1), π2(δδδ2)]. Furthermore, ap-

ply the serial independence of ε, the fact that under the null hypothesis

E[ε2
s] = σ2

1 and (A.13)

K(δδδ1, δδδ2)μ∗
2,φ∗

i(2)
= lim

T→∞
T

T∑
s=1

1

T 2
min[π2(δδδ1), π2(δδδ2)]

ys−iE[ε2
s]

σ4
1

= min[π2(δδδ1), π2(δδδ2)]
1

σ2
1

lim
T→∞

T∑
s=1

ys−i

T
.

(A.45)

Applying Lemma A.7 one has

K(δδδ1, δδδ2)μ∗
2,φ∗

i(2)
= min[π2(δδδ1), π2(δδδ2)]

μ1

σ2
1

. (A.46)

Analogically, the (φ∗
i(2), μ

∗
2) element of the covariance matrix equals

K(δδδ1, δδδ2)φ∗
i(2)

,μ∗
2

= min[π2(δδδ1), π2(δδδ2)]
μ1

σ2
1

. (A.47)

Then, according to equations (3.38), (3.43) and (A.13) the (φi(1), φj(1))

element of the covariance matrix can be computed

K(δδδ1, δδδ2)φi(1),φj(1)
= lim

T→∞
TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

yt−iεt

σ2
1

ys−jεs

σ2
1

ptps.

(A.48)

From the fact that the probabilities sum to unity, the increments ε are serially

independent and under the null hypothesis E[ε2] = σ2
1 , and it follows that

K(δδδ1, δδδ2)φi(1),φj(1)
=

1

σ2
1

lim
T→∞

T∑
t=1

1

T
yt−iys−j. (A.49)

From Lemma A.8 one can conclude that

K(δδδ1, δδδ2)φi(1),φj(1)
=

1

σ2
1

(
cov[yt−i, yt−j ] + 2μ2

1

)
. (A.50)
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The (φi(1), φ
∗
j(2)) element of the covariance matrix can be derived from

equations (3.38), (3.43) and (3.44)

K(δδδ1, δδδ2)φi(1),φ
∗
j(2)

= lim
T→∞

TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

yt−iεt

(σ1 + σ∗
2I[Zt(δδδ1)=2])2

ys−jεsI[Zs(δδδ2)=2]

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

ptps.

(A.51)

As the probabilities pt sum to unity and increments ε are serially independent

K(δδδ1, δδδ2)φi(1),φ
∗
j(2)

= lim
T→∞

TE

T∑
s=1

2∑
Zs(δδδ2)=1

1

T 2
ys−iys−j

ε2
sI[Zs(δ2δ2δ2)=2]

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])4

ps.

(A.52)

Now, use the independence between ε and z(δδδ) to write

K(δδδ1, δδδ2)φi(1),φ
∗
j(2)

= lim
T→∞

E

[
T∑

s=1

1

T

ys−iys−jε
2
s

(σ1 + σ∗
2I[Zs(δ2δ2δ2)=2])4

E[I[Zs(δ2δ2δ2)=2]|YT ,α0α0α0
G, δδδ2]

]
.

(A.53)

Then apply the law of iterated expectations (A.20) and note that E[I[Zs(δ2δ2δ2)=2]] =

π2(δδδ2). Furthermore, apply the fact that under the null hypothesis E[ε2
s] = σ2

1

and (A.13)

K(δδδ1, δδδ2)φi(1),φ
∗
j(2)

=
π2(δδδ2)

σ2
1

lim
T→∞

1

T

T∑
s=1

ys−iys−j. (A.54)

From Lemma A.8 it follows that

K(δδδ1, δδδ2)φi(1),φ
∗
j(2)

=
π2(δδδ2)

σ2
1

(cov[ys−i, ys−j] + 2μ2
1). (A.55)

Analogically, the (φ∗
i(2), φj(1)) element of the covariance matrix equals

K(δδδ1, δδδ2)φ∗
i(2)

,φj(1)
=
π2(δδδ1)

σ2
1

(cov[yt−i, yt−j] + 2μ2
1). (A.56)
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Now, according to equations (3.38) and (3.44) compute the (φ∗
i(2), φ

∗
j(2))

element of the covariance matrix

K(δδδ1, δδδ2)φ∗
i(2)

,φ∗
j(2)

= lim
T→∞

TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

yt−iεtI[Zt(δδδ1)=2]

(σ1 + σ∗
2I[Zt(δδδ1)=2])2

ys−jεsI[Zs(δδδ2)=2]

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

ptps.

(A.57)

Using the independence between ε and z(δδδ) this can be rewritten as

K(δδδ1, δδδ2)φ∗
i(2)

,φ∗
j(2)

= lim
T→∞

TE

[
T∑

t=1

T∑
s=1

1

T 2

ys−iys−jεtεs

(σ1 + σ∗
2I[Zt(δδδ1)=2])2(σ1 + σ∗

2I[Zs(δδδ2)=2])2

E[I[Zt(δδδ1)=2]I[Zs(δ2δ2δ2)=2]|YT ,α0α0α0
G, δδδ1, δδδ2]

]
.

(A.58)

Now, apply the law of iterated expectations (A.44) and note that E[I[Zt(δ1δ1δ1)=2]I[Zs(δ2δ2δ2)=2]] =

min[π2(δδδ1), π2(δδδ2)]. In addition, apply the serial independence of increments

ε, the fact that under the null hypothesis E[ε2] = σ2
1 and (A.13), then

K(δδδ1, δδδ2)φ∗
i(2)

,φ∗
j(2)

=
min[π2(δδδ1), π2(δδδ2)]

σ2
1

lim
T→∞

1

T

T∑
s=1

ys−iys−j. (A.59)

From Lemma A.8 it follows that

K(δδδ1, δδδ2)φ∗
i(2)

,φ∗
j(2)

=
min[π2(δδδ1), π2(δδδ2)]

σ2
1

(cov[ys−i, ys−j] + 2μ2
1). (A.60)

The (σ2
1, σ

2
1) element of the covariance matrix can be computed from

equations (3.38), (3.45) and (A.13)

K(δδδ1, δδδ2)σ2
1 ,σ2

1
= lim

T→∞
TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

1

2σ2
1

1

2σ2
1

(
ε2

t

σ2
1

− 1

)(
ε2

s

σ2
1

− 1

)
ptps.

(A.61)

As probabilities pt and ps sum to unity, respectively, it follows that

K(δδδ1, δδδ2)σ2
1 ,σ2

1
= lim

T→∞
TE

T∑
t=1

T∑
s=1

1

T 2

1

4σ4
1

(
ε2

t

σ2
1

− 1

)(
ε2

s

σ2
1

− 1

)
. (A.62)
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Since the increments ε are serially independent, thus

K(δδδ1, δδδ2)σ2
1 ,σ2

1
= lim

T→∞
TE

T∑
t=1

1

T 2

1

4σ4
1

(
ε4

t

σ4
1

− 2
ε2

t

σ2
1

+ 1

)
. (A.63)

Now, note that under the null hypothesis E(ε4
t ) = 3σ4

1 and E(ε2
t ) = σ2

1 , from

which one can conclude that

K(δδδ1, δδδ2)σ2
1 ,σ2

1
= lim

T→∞

1

2σ4
1

=
1

2σ4
1

. (A.64)

According to equations (3.38), (3.45) and (3.46) compute the (σ2
1 , σ

∗2
2 )

element of the covariance matrix

K(δδδ1, δδδ2)σ2
1 ,σ∗2

2
= lim

T→∞
TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

1

2σ1(σ1 + σ∗
2I[Zt(δδδ1)=2])

I[Zt(δδδ1)=2]

2σ∗
2(σ1 + σ∗

2I[Zs(δδδ2)=2])(
ε2

t

(σ1 + σ∗
2I[Zt(δδδ1)=2])2

− 1

)(
ε2

s

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

− 1

)
ptps.

(A.65)

Since the probabilities pt sum to unity and the increments ε are serially

independent, thus

K(δδδ1, δδδ2)σ2
1 ,σ∗2

2
= lim

T→∞
TE

T∑
s=1

2∑
Zs(δδδ2)=1

1

T 2

I[Zs(δδδ2)=2]

4σ1σ
∗
2(σ1 + σ∗

2I[Zs(δδδ2)=2])2

(
ε2

s

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

− 1

)2

ps.

(A.66)

After applying the independence between ε and z(δδδ) the equation can be

rewritten as

K(δδδ1, δδδ2)σ2
1 ,σ∗2

2
= lim

T→∞
TE

T∑
s=1

[
1

T 2

1

4σ1σ∗
2(σ1 + σ∗

2I[Zs(δδδ2)=2])2(
ε2

s

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

− 1

)2

E
[
Zs(δδδ2)|YT ,ααα

G
0 , δδδ2

]]
.

(A.67)
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Then apply the law of iterated expectations (A.20) and note that E[Zs(δδδ2)] =

π2(δδδ2) and that under the null hypothesis (A.13)

K(δδδ1, δδδ2)σ2
1 ,σ∗2

2
= lim

T→∞
TE

T∑
s=1

1

T 2

1

4σ3
1σ

∗
2

(
ε2

s

σ2
1

− 1

)2

π2(δδδ2)

= lim
T→∞

TE

T∑
t=1

1

T 2

1

4σ3
1σ

∗
2

(
ε4

s

σ4
1

− 2
ε2

s

σ2
1

+ 1

)
π2(δδδ2).

(A.68)

Since E(ε4
t ) = 3σ4

1 and E(ε2
t ) = σ2

1 under the null hypothesis, the equation

simplifies to

K(δδδ1, δδδ2)σ2
1 ,σ∗2

2
= lim

T→∞

π2(δδδ2)

2σ3
1σ

∗
2

=
π2(δδδ2)

2σ3
1σ

∗
2

. (A.69)

Analogically, the (σ∗2
2 , σ

2
1) element of the covariance matrix equals

K(δδδ1, δδδ2)σ∗2
2 ,σ2

1
=
π2(δδδ1)

2σ3
1σ

∗
2

(A.70)

The (σ∗2
2 , σ

∗2
2 ) element of the covariance matrix can be computed from

equations (3.38) and (3.46)

K(δδδ1, δδδ2)σ∗2
2 ,σ∗2

2
= lim

T→∞
TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

I[Zt(δδδ1)=2]

2σ∗
2(σ1 + σ∗

2I[Zt(δδδ1)=2])

I[Zs(δδδ2)=2]

2σ∗
2(σ1 + σ∗

2I[Zs(δδδ2)=2])(
ε2

t

(σ1 + σ∗
2I[Zt(δδδ1)=2])2

− 1

)(
ε2

s

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

− 1

)
ptps.

(A.71)

Applying the independence of ε and z(δδδ) the equation reduces to

K(δδδ1, δδδ2)σ∗2
2 ,σ∗2

2
= lim

T→∞
TE

[
T∑

t=1

T∑
s=1

1

T 2

E[I[Zt(δδδ1)=2]I[Zs(δδδ2)=2](δδδ2)|YT ,ααα
G
0 , δδδ1, δδδ2]

4σ∗2
2 (σ1 + σ∗

2I[Zt(δδδ1)=2])(σ1 + σ∗
2I[Zs(δδδ2)=2])(

ε2
t

(σ1 + σ∗
2I[Zt(δδδ1)=2])2

− 1

)(
ε2

s

(σ1 + σ∗
2I[Zs(δδδ2)=2])2

− 1

)]
.

(A.72)
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Then apply the law of iterated expectations (A.44) and note that E[Zt(δδδ1)Zs(δδδ2)] =

min[π2(δδδ1), π2(δδδ2)]. In addition, use the serial independence of ε and (A.13),

which provides that

K(δδδ1, δδδ2)σ∗2
2 ,σ∗2

2
= lim

T→∞
TE

T∑
s=1

1

T 2

1

4σ2
1σ

∗2
2

(
ε2

s

σ2
1

− 1

)2

min[π2(δδδ1), π2(δδδ2)]

= lim
T→∞

TE

T∑
t=1

1

T 2

1

4σ2
1σ

∗2
2

(
ε4

s

σ4
1

− 2
ε2

s

σ2
1

+ 1

)
min[π2(δδδ1), π2(δδδ2)].

(A.73)

Finally, recall that under the null hypothesis E(ε4
t ) = 3σ4

1 and E(ε2
t ) = σ2

1,

thus

K(δδδ1, δδδ2)σ∗2
2 ,σ∗2

2
= lim

T→∞

min[π2(δδδ1), π2(δδδ2)]

2σ2
1σ

∗2
2

=
min[π2(δδδ1), π2(δδδ2)]

2σ2
1σ

∗2
2

. (A.74)

The (μ1, σ
2
1) element of the covariance matrix results from equations

(3.38), (3.41), (3.45) and (A.13)

K(δδδ1, δδδ2)μ1,σ2
1

= lim
T→∞

TE

T∑
t=1

T∑
s=1

2∑
Zt(δδδ1)=1

2∑
Zs(δδδ2)=1

1

T 2

1

2σ2
1

(
ε2

t

σ2
1

− 1

)
εt

σ2
1

ptps.

(A.75)

Given the fact that the products of the probabilities pt and ps equal unity,

respectively, and the increments ε are serially independent,

K(δδδ1, δδδ2)μ1,σ2
1

= lim
T→∞

T
T∑

t=1

1

T 2
E

[
εt

2σ4
1

(
ε2

t

σ2
1

− 1

)]

= lim
T→∞

T
T∑

t=1

1

T 2
E

[
ε3

t

2σ6
1

− εt

2σ4
1

]
.

(A.76)

Since εt is normally distributed, E(ε3
t ) = 0 and E(εt) = 0, thus

K(δδδ1, δδδ2)μ1,σ2
1

= 0. (A.77)
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Analogically, all elements of the covariance matrix dependent on μ2, φi(1)

or φi(2) on the one side, and dependent on σ2
1 or σ∗2

2 on the other side are equal

zero. Collecting all elements of the covariance matrix K(δδδ1, δδδ2) computed

above in the matrix (3.47) ends the proof.
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Appendix B

MS estimation (1.1975-12.2004)

– parameters
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Appendix C

States of Markov switching

models (1.1975-12.2004)
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Figure C.1: States in the Markov switching models: DAX30

Note:
The top panel shows log-returns of the pure DAX30 portfolio, the bottom panel shows
states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1), MS(2-2) and
MS(2-2)-AR(1), the grey area represents the high volatility regime and for MS(2-1) and
MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the smoothed probability
Pr[Zt = 2|YT ] > 0.5).
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Figure C.2: States in the Markov switching models: REXP(10%)-

DAX30(90%)

Note:
The top panel shows log-returns of the REXP(10%)-DAX30(90%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.3: States in the Markov switching models: REXP(20%)-

DAX30(80%)

Note:
The top panel shows log-returns of the REXP(20%)-DAX30(80%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.4: States in the Markov switching models: REXP(25%)-

DAX30(75%)

Note:
The top panel shows log-returns of the REXP(25%)-DAX30(75%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.5: States in the Markov switching models: REXP(30%)-

DAX30(70%)

Note:
The top panel shows log-returns of the REXP(30%)-DAX30(70%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.6: States in the Markov switching models: REXP(40%)-

DAX30(60%)

Note:
The top panel shows log-returns of the REXP(40%)-DAX30(60%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.7: States in the Markov switching models: REXP(50%)-

DAX30(50%)

Note:
The top panel shows log-returns of the REXP(50%)-DAX30(50%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.8: States in the Markov switching models: REXP(60%)-

DAX30(40%)

Note:
The top panel shows log-returns of the REXP(60%)-DAX30(40%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).

307



Figure C.9: States in the Markov switching models: REXP(70%)-

DAX30(30%)

Note:
The top panel shows log-returns of the REXP(70%)-DAX30(30%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.10: States in the Markov switching models: REXP(75%)-

DAX30(25%)

Note:
The top panel shows log-returns of the REXP(75%)-DAX30(25%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.11: States in the Markov switching models: REXP(80%)-

DAX30(20%)

Note:
The top panel shows log-returns of the REXP(80%)-DAX30(20%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.12: States in the Markov switching models: REXP(90%)-

DAX30(10%)

Note:
The top panel shows log-returns of the REXP(90%)-DAX30(10%) portfolio, the bottom
panel shows states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1),
MS(2-2) and MS(2-2)-AR(1), the grey area represents the high volatility regime and
for MS(2-1) and MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the
smoothed probability Pr[Zt = 2|YT ] > 0.5).
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Figure C.13: States in the Markov switching models: REXP

Note:
The top panel shows log-returns of the pure REXP portfolio, the bottom panel shows
states in the Markov switching models. For the MS(1-2), MS(1-2)-AR(1), MS(2-2) and
MS(2-2)-AR(1), the grey area represents the high volatility regime and for MS(2-1) and
MS(2-1)-AR(1), the grey area represents the low mean regime (i.e the smoothed probability
Pr[Zt = 2|YT ] > 0.5).
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Appendix D

Conditional moments

(1.1975-12.2004) – graphs
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Figure D.1: Conditional moments: DAX30 - MS(1-2)-AR(0)

Note:
The top panel shows the log-returns of the pure DAX30 portfolio. The remaining pan-
els indicate the moments for the MS(1-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with πj replaced by smoothed probabilities
Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.2: Conditional moments: DAX30 - MS(2-1)-AR(0)

Note:
The top panel shows the log-returns of the pure DAX30 portfolio. The remaining pan-
els indicate the moments for the MS(2-1) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with πj replaced by smoothed probabilities
Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

315



Figure D.3: Conditional moments: DAX30 - MS(2-2)-AR(0)

Note:
The top panel shows the log-returns of the pure DAX30 portfolio. The remaining pan-
els indicate the moments for the MS(2-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with πj replaced by smoothed probabilities
Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.4: Conditional moments: REXP(10%)-DAX30(90%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(10%)-DAX30(90%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.5: Conditional moments: REXP(10%)-DAX30(90%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(10%)-DAX30(90%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.6: Conditional moments: REXP(10%)-DAX30(90%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(10%)-DAX30(90%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.7: Conditional moments: REXP(20%)-DAX30(80%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(20%)-DAX30(80%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.8: Conditional moments: REXP(20%)-DAX30(80%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(20%)-DAX30(80%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

321



Figure D.9: Conditional moments: REXP(20%)-DAX30(80%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(20%)-DAX30(80%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.10: Conditional moments: REXP(25%)-DAX30(75%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(25%)-DAX30(75%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.11: Conditional moments: REXP(25%)-DAX30(75%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(25%)-DAX30(75%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.12: Conditional moments: REXP(25%)-DAX30(75%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(25%)-DAX30(75%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.13: Conditional moments: REXP(30%)-DAX30(70%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(30%)-DAX30(70%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.14: Conditional moments: REXP(30%)-DAX30(70%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(30%)-DAX30(70%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.15: Conditional moments: REXP(30%)-DAX30(70%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(30%)-DAX30(70%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.16: Conditional moments: REXP(40%)-DAX30(60%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(40%)-DAX30(60%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.17: Conditional moments: REXP(40%)-DAX30(60%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(40%)-DAX30(60%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.18: Conditional moments: REXP(40%)-DAX30(60%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(40%)-DAX30(60%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

331



Figure D.19: Conditional moments: REXP(50%)-DAX30(50%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(50%)-DAX30(50%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.20: Conditional moments: REXP(50%)-DAX30(50%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(50%)-DAX30(50%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.21: Conditional moments: REXP(50%)-DAX30(50%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(50%)-DAX30(50%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.22: Conditional moments: REXP(60%)-DAX30(40%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(60%)-DAX30(40%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.23: Conditional moments: REXP(60%)-DAX30(40%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(60%)-DAX30(40%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.24: Conditional moments: REXP(60%)-DAX30(40%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(60%)-DAX30(40%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.25: Conditional moments: REXP(70%)-DAX30(30%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(70%)-DAX30(30%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.26: Conditional moments: REXP(70%)-DAX30(30%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(70%)-DAX30(30%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.27: Conditional moments: REXP(70%)-DAX30(30%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(70%)-DAX30(30%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.28: Conditional moments: REXP(75%)-DAX30(25%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(75%)-DAX30(25%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.29: Conditional moments: REXP(75%)-DAX30(25%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(75%)-DAX30(25%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.30: Conditional moments: REXP(75%)-DAX30(25%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(75%)-DAX30(25%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.31: Conditional moments: REXP(80%)-DAX30(20%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(80%)-DAX30(20%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).

344



Figure D.32: Conditional moments: REXP(80%)-DAX30(20%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(80%)-DAX30(20%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.33: Conditional moments: REXP(80%)-DAX30(20%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(80%)-DAX30(20%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.34: Conditional moments: REXP(90%)-DAX30(10%) - MS(1-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(90%)-DAX30(10%) portfolio. The re-
maining panels indicate the moments for the MS(1-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.35: Conditional moments: REXP(90%)-DAX30(10%) - MS(2-1)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(90%)-DAX30(10%) portfolio. The re-
maining panels indicate the moments for the MS(2-1) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.36: Conditional moments: REXP(90%)-DAX30(10%) - MS(2-2)-

AR(0)

Note:
The top panel shows the log-returns of the REXP(90%)-DAX30(10%) portfolio. The re-
maining panels indicate the moments for the MS(2-2) model conditional on the smoothed
probabilities, computed with equations (2.57)-(2.60) with πj replaced by smoothed prob-
abilities Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third
panel shows the conditional variance, the fourth panel displays the conditional skewness,
and the bottom panel shows the conditional excess kurtosis. The grey area represents the
high volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.37: Conditional moments: REXP - MS(1-2)-AR(0)

Note:
The top panel shows the log-returns of the pure REXP portfolio. The remaining pan-
els indicate the moments for the MS(1-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with πj replaced by smoothed probabilities
Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.38: Conditional moments: REXP - MS(2-1)-AR(0)

Note:
The top panel shows the log-returns of the pure REXP portfolio. The remaining pan-
els indicate the moments for the MS(2-1) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with πj replaced by smoothed probabilities
Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
mean regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Figure D.39: Conditional moments: REXP - MS(2-2)-AR(0)

Note:
The top panel shows the log-returns of the pure REXP portfolio. The remaining pan-
els indicate the moments for the MS(2-2) model conditional on the smoothed probabil-
ities, computed with equations (2.57)-(2.60) with πj replaced by smoothed probabilities
Pr[Ztn = j|YT ]. The second panel depicts the conditional expectation, the third panel
shows the conditional variance, the fourth panel displays the conditional skewness, and
the bottom panel shows the conditional excess kurtosis. The grey area represents the high
volatility regime (i.e the smoothed probability Pr[Ztn = 2|YT ] > 0.5).
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Appendix E

Histogram of the log-returns

(1.1975-12.2004)
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Figure E.1: Histograms of the log-returns of the REXP-DAX30 portfolios

Continued on the next page.
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Note:

The diagrams depict the histograms of the log-returns of the DAX30/REXP mixed port-

folios (grey bars). The values of the first four moments of these distributions (μ for mean,

σ2 for variance, γ for skewness, and κ for the excess-kurtosis) and the Jarque-Bera test

statistic (JB) with the associated p value (pJB) are located in the top right corner. The

solid line represents the density of the normal distribution with the same mean (μ) and

variance (σ2) as the empirical distribution of the log-returns. Note that for estimated

portfolios the histograms are plotted for different intervals.
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Appendix F

Information Criterion Tests

(1.1975-12.2004)
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Table F.1: Information Criterion Tests: DAX30 (1.1975-12.2004)

Model L(θ) AIC SBC

GBM 505.3850 503.3850 499.4989

AR(1) 505.1181 502.1181 496.2889

MS(1-2)-AR(0) 539.1954 534.1954∗ 524.4802∗

MS(1-2)-AR(1) 538.9984 532.9984 521.3401

MS(2-1)-AR(0) 530.8818 525.8818 516.1665

MS(2-1)-AR(1) 532.1312 525.1312 511.5298

MS(2-2)-AR(0) 539.8721 533.8721 522.2138

MS(2-2)-AR(1) 540.3052 532.3052 516.7608

ARCH(1)-AR(0) 511.4766 508.4766 502.6474

ARCH(1)-AR(1) 510.8315 506.8315 499.0593

ARCH(2)-AR(0) 522.0284 518.0284 510.2562

ARCH(2)-AR(1) 521.4442 516.4442 506.7289

ARCH(3)-AR(0) 526.0642 521.0642 511.3489

ARCH(3)-AR(1) 525.5402 519.5402 507.8819

GARCH(1,1)-AR(0) 529.8907 525.8907 518.1185∗

GARCH(1,1)-AR(1) 529.4322 524.4322 514.7169

E-ARCH(1)-AR(0) 513.2663 509.2663 501.4941

E-ARCH(1)-AR(1) 512.9044 507.9044 498.1892

E-ARCH(2)-AR(0) 519.8657 513.8657 502.2074

E-ARCH(2)-AR(1) 519.9709 512.9709 499.3695

E-ARCH(3)-AR(0) 524.5419 516.5419 500.9975

E-ARCH(3)-AR(1) 524.3925 515.3925 497.9050

E-GARCH(1,1)-AR(0) 531.0400 526.0400∗ 516.3248

E-GARCH(1,1)-AR(1) 530.6973 524.6973 513.0390

T-ARCH(1)-AR(0) 513.0173 509.0173 501.2451

T-ARCH(1)-AR(1) 512.6031 507.6031 497.8878

T-ARCH(2)-AR(0) 523.8126 518.8126 509.0973

T-ARCH(2)-AR(1) 523.4650 517.4650 505.8067

T-ARCH(3)-AR(0) 526.8153 520.8153 509.1569

T-ARCH(3)-AR(1) 526.4255 519.4255 505.8241

T-GARCH(1,1)-AR(0) 530.4080 525.4080 515.6927

T-GARCH(1,1)-AR(1) 530.0564 524.0564 512.3981

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.2: Information Criterion Tests: REXP(10%)-DAX30(90%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 543.5887 541.5887 537.7026

AR(1) 543.2778 540.2778 534.4486

MS(1-2)-AR(0) 575.5732 570.5732∗ 560.8579∗

MS(1-2)-AR(1) 575.3713 569.3713 557.7130

MS(2-1)-AR(0) 567.3510 562.3510 552.6357

MS(2-1)-AR(1) 568.5750 561.5750 547.9736

MS(2-2)-AR(0) 576.1791 570.1791 558.5208

MS(2-2)-AR(1) 576.5748 568.5748 553.0304

ARCH(1)-AR(0) 549.5258 546.5258 540.6967

ARCH(1)-AR(1) 548.8451 544.8451 537.0729

ARCH(2)-AR(0) 559.3363 555.3363 547.5641

ARCH(2)-AR(1) 558.6935 553.6935 543.9782

ARCH(3)-AR(0) 563.1767 558.1767 548.4615

ARCH(3)-AR(1) 562.5998 556.5998 544.9415

GARCH(1,1)-AR(0) 566.7938 562.7938∗ 555.0216∗

GARCH(1,1)-AR(1) 566.2973 561.2973 551.5821

E-ARCH(1)-AR(0) 551.2057 547.2057 539.4335

E-ARCH(1)-AR(1) 550.8272 545.8272 536.1120

E-ARCH(2)-AR(0) 557.1632 551.1632 539.5049

E-ARCH(2)-AR(1) 557.1811 550.1811 536.5797

E-ARCH(3)-AR(0) 561.6330 553.6330 538.0885

E-ARCH(3)-AR(1) 561.4255 552.4255 534.9380

E-GARCH(1,1)-AR(0) 567.4892 562.4892 552.7739

E-GARCH(1,1)-AR(1) 567.1041 561.1041 549.4457

T-ARCH(1)-AR(0) 551.0046 547.0046 539.2324

T-ARCH(1)-AR(1) 550.5849 545.5849 535.8697

T-ARCH(2)-AR(0) 561.0884 556.0884 546.3731

T-ARCH(2)-AR(1) 560.7067 554.7067 543.0484

T-ARCH(3)-AR(0) 563.9340 557.9340 546.2757

T-ARCH(3)-AR(1) 563.5006 556.5006 542.8993

T-GARCH(1,1)-AR(0) 567.1168 562.1168 552.4016

T-GARCH(1,1)-AR(1) 566.7122 560.7122 549.0539

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.

359



Table F.3: Information Criterion Tests: REXP(20%)-DAX30(80%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 585.7735 583.7735 579.8874

AR(1) 585.4329 582.4329 576.6037

MS(1-2)-AR(0) 615.5740 610.5740∗ 600.8588∗

MS(1-2)-AR(1) 615.3795 609.3795 597.7212

MS(2-1)-AR(0) 607.6496 602.6496 592.9343

MS(2-1)-AR(1) 608.8376 601.8376 588.2362

MS(2-2)-AR(0) 616.1200 610.1200 598.4617

MS(2-2)-AR(1) 616.4807 608.4807 592.9363

ARCH(1)-AR(0) 591.5056 588.5056 582.6764

ARCH(1)-AR(1) 590.7971 586.7971 579.0249

ARCH(2)-AR(0) 600.4899 596.4899 588.7177

ARCH(2)-AR(1) 599.7873 594.7873 585.0720

ARCH(3)-AR(0) 604.0787 599.0787 589.3634

ARCH(3)-AR(1) 603.4471 597.4471 585.7888

GARCH(1,1)-AR(0) 607.4099 603.4099∗ 595.6377∗

GARCH(1,1)-AR(1) 606.8781 601.8781 592.1628

E-ARCH(1)-AR(0) 593.0388 589.0388 581.2666

E-ARCH(1)-AR(1) 592.6514 587.6514 577.9361

E-ARCH(2)-AR(0) 598.2876 592.2876 580.6293

E-ARCH(2)-AR(1) 598.2330 591.2330 577.6316

E-ARCH(3)-AR(0) 602.4986 594.4986 578.9542

E-ARCH(3)-AR(1) 602.2370 593.2370 575.7496

E-GARCH(1,1)-AR(0) 607.5735 602.5735 592.8583

E-GARCH(1,1)-AR(1) 607.1185 601.1185 589.4602

T-ARCH(1)-AR(0) 592.9157 588.9157 581.1435

T-ARCH(1)-AR(1) 592.5029 587.5029 577.7877

T-ARCH(2)-AR(0) 602.2085 597.2085 587.4933

T-ARCH(2)-AR(1) 601.7954 595.7954 584.1371

T-ARCH(3)-AR(0) 604.8545 598.8545 587.1962

T-ARCH(3)-AR(1) 604.3792 597.3792 583.7779

T-GARCH(1,1)-AR(0) 607.5611 602.5611 592.8458

T-GARCH(1,1)-AR(1) 607.0997 601.0997 589.4414

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.4: Information Criterion Tests: REXP(25%)-DAX30(75%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 608.6370 606.6370 602.7509

AR(1) 608.2896 605.2896 599.4604

MS(1-2)-AR(0) 637.1615 632.1615∗ 622.4462∗

MS(1-2)-AR(1) 636.9782 630.9782 619.3199

MS(2-1)-AR(0) 629.4895 624.4895 614.7742

MS(2-1)-AR(1) 630.6530 623.6530 610.0517

MS(2-2)-AR(0) 637.6832 631.6832 620.0249

MS(2-2)-AR(1) 638.0285 630.0285 614.4841

ARCH(1)-AR(0) 614.2417 611.2417 605.4125

ARCH(1)-AR(1) 613.5238 609.5238 601.7516

ARCH(2)-AR(0) 622.7696 618.7696 610.9974

ARCH(2)-AR(1) 622.0374 617.0374 607.3222

ARCH(3)-AR(0) 626.2048 621.2048 611.4895

ARCH(3)-AR(1) 625.5455 619.5455 607.8872

GARCH(1,1)-AR(0) 629.3608 625.360∗ 617.5886∗

GARCH(1,1)-AR(1) 628.8128 623.8128 614.0976

E-ARCH(1)-AR(0) 615.6853 611.6853 603.9131

E-ARCH(1)-AR(1) 615.3024 610.3024 600.5872

E-ARCH(2)-AR(0) 620.5718 614.5718 602.9134

E-ARCH(2)-AR(1) 620.4793 613.4793 599.8780

E-ARCH(3)-AR(0) 624.5955 616.5955 601.0511

E-ARCH(3)-AR(1) 624.2556 615.2556 597.7681

E-GARCH(1,1)-AR(0) 629.2497 624.2497 614.5345

E-GARCH(1,1)-AR(1) 628.7615 622.7615 611.1031

T-ARCH(1)-AR(0) 615.6133 611.6133 603.8411

T-ARCH(1)-AR(1) 615.2107 610.2107 600.4955

T-ARCH(2)-AR(0) 624.4692 619.4692 609.7540

T-ARCH(2)-AR(1) 624.0421 618.0421 606.3838

T-ARCH(3)-AR(0) 626.9950 620.9950 609.3367

T-ARCH(3)-AR(1) 626.5001 619.5001 605.8988

T-GARCH(1,1)-AR(0) 629.4428 624.4428 614.7275

T-GARCH(1,1)-AR(1) 628.9513 622.9513 611.2930

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.5: Information Criterion Tests: REXP(30%)-DAX30(70%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 632.8643 630.8643 626.9782

AR(1) 632.5173 629.5173 623.6882

MS(1-2)-AR(0) 659.9572 654.9572∗ 645.2420∗

MS(1-2)-AR(1) 659.7898 653.7898 642.1315

MS(2-1)-AR(0) 652.6225 647.6225 637.9072

MS(2-1)-AR(1) 653.7556 646.7556 633.1542

MS(2-2)-AR(0) 660.4584 654.4584 642.8001

MS(2-2)-AR(1) 660.7890 652.7890 637.2446

ARCH(1)-AR(0) 638.3207 635.3207 629.4915

ARCH(1)-AR(1) 637.5980 633.5980 625.8258

ARCH(2)-AR(0) 646.3558 642.3558 634.5836

ARCH(2)-AR(1) 645.5949 640.5949 630.8796

ARCH(3)-AR(0) 649.6143 644.6143 634.8991

ARCH(3)-AR(1) 648.9278 642.9278 631.2695

GARCH(1,1)-AR(0) 652.5720 648.5720∗ 640.7998∗

GARCH(1,1)-AR(1) 652.0094 647.0094 637.2941

E-ARCH(1)-AR(0) 639.6556 635.6556 627.8834

E-ARCH(1)-AR(1) 639.2873 634.2873 624.5720

E-ARCH(2)-AR(0) 644.1798 638.1798 626.5215

E-ARCH(2)-AR(1) 644.0385 637.0385 623.4371

E-ARCH(3)-AR(0) 647.9908 639.9908 624.4464

E-ARCH(3)-AR(1) 647.6933 638.6933 621.2058

E-GARCH(1,1)-AR(0) 652.2033 647.2033 637.4881

E-GARCH(1,1)-AR(1) 651.7719 645.7719 634.1136

T-ARCH(1)-AR(0) 639.6499 635.6499 627.8777

T-ARCH(1)-AR(1) 639.2634 634.2634 624.5481

T-ARCH(2)-AR(0) 648.0331 643.0331 633.3178

T-ARCH(2)-AR(1) 647.5932 641.5932 629.9349

T-ARCH(3)-AR(0) 650.4225 644.4225 632.7641

T-ARCH(3)-AR(1) 649.9095 642.9095 629.3081

T-GARCH(1,1)-AR(0) 652.6025 647.6025 637.8872

T-GARCH(1,1)-AR(1) 652.0794 646.0794 634.4211

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.6: Information Criterion Tests: REXP(40%)-DAX30(60%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 686.0921 684.0921 680.2060

AR(1) 685.7774 682.7774 676.9482

MS(1-2)-AR(0) 709.7270 704.7270∗ 695.0118∗

MS(1-2)-AR(1) 709.6024 703.6024 691.9441

MS(2-1)-AR(0) 703.3806 698.3806 688.6653

MS(2-1)-AR(1) 704.4328 697.4328 683.8314

MS(2-2)-AR(0) 710.1928 704.1928 692.5345

MS(2-2)-AR(1) 710.5015 702.5015 686.9571

ARCH(1)-AR(0) 691.1746 688.1746 682.3455

ARCH(1)-AR(1) 690.4620 686.4620 678.6898

ARCH(2)-AR(0) 698.0841 694.0841 686.3119

ARCH(2)-AR(1) 697.2734 692.2734 682.5581

ARCH(3)-AR(0) 700.9072 695.9072 686.1920

ARCH(3)-AR(1) 700.1700 694.1700 682.5117

GARCH(1,1)-AR(0) 703.3973 699.3973∗ 691.6251∗

GARCH(1,1)-AR(1) 702.8121 697.8121 688.0969

E-ARCH(1)-AR(0) 692.3283 688.3283 680.5561

E-ARCH(1)-AR(1) 692.0058 687.0058 677.2906

E-ARCH(2)-AR(0) 696.3620 690.3620 678.7037

E-ARCH(2)-AR(1) 696.0833 689.0833 675.4820

E-ARCH(3)-AR(0) 699.5672 691.5672 676.0228

E-ARCH(3)-AR(1) 699.3367 690.3367 672.8492

E-GARCH(1,1)-AR(0) 702.8994 697.8994 688.1842

E-GARCH(1,1)-AR(1) 702.4073 696.4073 684.7490

T-ARCH(1)-AR(0) 692.3972 688.3972 680.6250

T-ARCH(1)-AR(1) 692.0649 687.0649 677.3496

T-ARCH(2)-AR(0) 699.6942 694.6942 684.9790

T-ARCH(2)-AR(1) 699.2363 693.2363 681.5780

T-ARCH(3)-AR(0) 701.7568 695.7568 684.0985

T-ARCH(3)-AR(1) 701.2157 694.2157 680.6143

T-GARCH(1,1)-AR(0) 703.4039 698.4039 688.6886

T-GARCH(1,1)-AR(1) 702.8124 696.8124 685.1541

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.7: Information Criterion Tests: REXP(50%)-DAX30(50%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 747.0932 745.0932 741.2071

AR(1) 746.8760 743.8760 738.0469

MS(1-2)-AR(0) 766.2067 761.2067∗ 751.4915∗

MS(1-2)-AR(1) 766.1446 760.1446 748.4862

MS(2-1)-AR(0) 761.3885 756.3885 746.6733

MS(2-1)-AR(1) 762.3362 755.3362 741.7348

MS(2-2)-AR(0) 766.6560 760.6560 748.9977

MS(2-2)-AR(1) 766.9586 758.9586 743.4142

ARCH(1)-AR(0) 751.6724 748.6724 742.8432

ARCH(1)-AR(1) 751.0151 747.0151 739.2429

ARCH(2)-AR(0) 757.2090 753.2090 745.4368

ARCH(2)-AR(1) 756.3753 751.3753 741.6600

ARCH(3)-AR(0) 759.4674 754.4674 744.7521

ARCH(3)-AR(1) 758.6964 752.6964 741.0381

GARCH(1,1)-AR(0) 761.4098 757.4098∗ 749.6376∗

GARCH(1,1)-AR(1) 760.8167 755.8167 746.1015

E-ARCH(1)-AR(0) 752.5376 748.5376 740.7654

E-ARCH(1)-AR(1) 752.3341 747.3341 737.6189

E-ARCH(2)-AR(0) 755.9808 749.9808 738.3225

E-ARCH(2)-AR(1) 755.8381 748.8381 735.2367

E-ARCH(3)-AR(0) 758.5124 750.5124 734.9680

E-ARCH(3)-AR(1) 758.3807 749.3807 731.8933

E-GARCH(1,1)-AR(0) 761.0593 756.0593 746.3440

E-GARCH(1,1)-AR(1) 760.4096 754.4096 742.7513

T-ARCH(1)-AR(0) 752.7308 748.7308 740.9586

T-ARCH(1)-AR(1) 752.5002 747.5002 737.7849

T-ARCH(2)-AR(0) 758.6795 753.6795 743.9642

T-ARCH(2)-AR(1) 758.2226 752.2226 740.5643

T-ARCH(3)-AR(0) 760.3404 754.3404 742.6820

T-ARCH(3)-AR(1) 759.7906 752.7906 739.1892

T-GARCH(1,1)-AR(0) 761.5563 756.5563 746.8411

T-GARCH(1,1)-AR(1) 760.8911 754.8911 743.2328

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.8: Information Criterion Tests: REXP(60%)-DAX30(40%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 817.9412 815.9412 812.0551

AR(1) 817.9352 814.9352 809.1061

MS(1-2)-AR(0) 831.4834 826.4834∗ 816.7681∗

MS(1-2)-AR(1) 831.3772 825.3772 813.7189

MS(2-1)-AR(0) 828.5282 823.5282 813.8129

MS(2-1)-AR(1) 829.3607 822.3607 808.7593

MS(2-2)-AR(0) 831.8985 825.8985 814.2402

MS(2-2)-AR(1) 832.1894 824.1894 808.6450

ARCH(1)-AR(0) 821.8803 818.8803 813.0511

ARCH(1)-AR(1) 821.3667 817.3667 809.5945

ARCH(2)-AR(0) 825.7276 821.7276 813.9554

ARCH(2)-AR(1) 824.9485 819.9485 810.2332

ARCH(3)-AR(0) 827.2926 822.2926 812.5774

ARCH(3)-AR(1) 826.5410 820.5410 808.8826

GARCH(1,1)-AR(0) 828.6796 824.6796∗ 816.9074∗

GARCH(1,1)-AR(1) 828.1091 823.1091 813.3938

E-ARCH(1)-AR(0) 822.4937 818.4937 810.7215

E-ARCH(1)-AR(1) 822.5206 817.5206 807.8053

E-ARCH(2)-AR(0) 825.2233 819.2233 807.5650

E-ARCH(2)-AR(1) 825.3152 818.3152 804.7138

E-ARCH(3)-AR(0) 826.9675 818.9675 803.4231

E-ARCH(3)-AR(1) 827.0512 818.0512 800.5637

E-GARCH(1,1)-AR(0) 828.9814 823.9814 814.2661

E-GARCH(1,1)-AR(1) 828.2141 822.2141 810.5558

T-ARCH(1)-AR(0) 822.6968 818.6968 810.9246

T-ARCH(1)-AR(1) 822.6525 817.6525 807.9373

T-ARCH(2)-AR(0) 826.9516 821.9516 812.2363

T-ARCH(2)-AR(1) 826.5499 820.5499 808.8916

T-ARCH(3)-AR(0) 828.1449 822.1449 810.4866

T-ARCH(3)-AR(1) 827.6377 820.6377 807.0363

T-GARCH(1,1)-AR(0) 829.1975 824.1975 814.4822

T-GARCH(1,1)-AR(1) 828.4623 822.4623 810.8040

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.9: Information Criterion Tests: REXP(70%)-DAX30(30%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 900.6899 898.6899 894.8038∗

AR(1) 901.1033 898.1033 892.2741

MS(1-2)-AR(0) 908.6233 903.6233∗ 893.9080∗

MS(1-2)-AR(1) 908.6912 902.6912 891.0329

MS(2-1)-AR(0) 906.9026 901.9026 892.1873

MS(2-1)-AR(1) 907.7328 900.7328 887.1314

MS(2-2)-AR(0) 909.3142 903.3142 891.6559

MS(2-2)-AR(1) 910.1357 902.1357 886.5913

ARCH(1)-AR(0) 903.9931 900.9931 895.1640

ARCH(1)-AR(1) 903.8112 899.8112 892.0390

ARCH(2)-AR(0) 905.9051 901.9051 894.1329

ARCH(2)-AR(1) 905.4121 900.4121 890.6968

ARCH(3)-AR(0) 906.7322 901.7322 892.0169

ARCH(3)-AR(1) 906.1795 900.1795 888.5212

GARCH(1,1)-AR(0) 907.7665 903.7665 895.9943

GARCH(1,1)-AR(1) 907.3124 902.3124 892.5972

E-ARCH(1)-AR(0) 904.2318 900.2318 892.4596

E-ARCH(1)-AR(1) 904.7370 899.7370 890.0218

E-ARCH(2)-AR(0) 905.8549 899.8549 888.1966

E-ARCH(2)-AR(1) 906.4341 899.4341 885.8327

E-ARCH(3)-AR(0) 906.8083 898.8083 883.2639

E-ARCH(3)-AR(1) 907.3730 898.3730 880.8856

E-GARCH(1,1)-AR(0) 908.6020 903.6020 893.8868

E-GARCH(1,1)-AR(1) 907.9011 901.9011 890.2428

T-ARCH(1)-AR(0) 904.4911 900.4911 892.7189

T-ARCH(1)-AR(1) 904.8161 899.8161 890.1009

T-ARCH(2)-AR(0) 906.7210 901.7210 892.0057

T-ARCH(2)-AR(1) 906.5925 900.5925 888.9342

T-ARCH(3)-AR(0) 907.4473 901.4473 889.7890

T-ARCH(3)-AR(1) 907.1656 900.1656 886.5643

T-GARCH(1,1)-AR(0) 908.7736 903.7736 894.0583

T-GARCH(1,1)-AR(1) 908.0695 902.0695 890.4112

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.10: Information Criterion Tests: REXP(75%)-DAX30(25%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 946.5840 944.5840 940.6979∗

AR(1) 947.3466 944.3466 938.5174

MS(1-2)-AR(0) 952.6548 947.6548∗ 937.9395∗

MS(1-2)-AR(1) 953.3999 947.3999 935.7416

MS(2-1)-AR(0) 950.7026 945.7026 935.9873

MS(2-1)-AR(1) 952.4809 945.4809 931.8796

MS(2-2)-AR(0) 953.4877 947.4877 935.8294

MS(2-2)-AR(1) 954.8684 946.8684 931.3239

ARCH(1)-AR(0) 949.7645 946.7645 940.9354∗

ARCH(1)-AR(1) 949.8958 945.8958 938.1236

ARCH(2)-AR(0) 950.7991 946.7991 939.0269

ARCH(2)-AR(1) 950.6632 945.6632 935.9479

ARCH(3)-AR(0) 951.3268 946.3268 936.6116

ARCH(3)-AR(1) 951.0719 945.0719 933.4136

GARCH(1,1)-AR(0) 952.3619 948.3619 940.5897

GARCH(1,1)-AR(1) 952.0943 947.0943 937.3790

E-ARCH(1)-AR(0) 949.7166 945.7166 937.9444

E-ARCH(1)-AR(1) 950.6749 945.6749 935.9596

E-ARCH(2)-AR(0) 950.7251 944.7251 933.0668

E-ARCH(2)-AR(1) 951.7432 944.7432 931.1418

E-ARCH(3)-AR(0) 951.3144 943.3144 927.7700

E-ARCH(3)-AR(1) 952.3218 943.3218 925.8344

E-GARCH(1,1)-AR(0) 953.3516 948.3516 938.6364

E-GARCH(1,1)-AR(1) 952.8574 946.8574 935.1991

T-ARCH(1)-AR(0) 950.1006 946.1006 938.3284

T-ARCH(1)-AR(1) 950.7590 945.7590 936.0437

T-ARCH(2)-AR(0) 951.3480 946.3480 936.6327

T-ARCH(2)-AR(1) 951.6025 945.6025 933.9442

T-ARCH(3)-AR(0) 951.8891 945.8891 934.2307

T-ARCH(3)-AR(1) 951.9398 944.9398 931.3384

T-GARCH(1,1)-AR(0) 953.4637 948.4637∗ 938.7484

T-GARCH(1,1)-AR(1) 952.9431 946.9431 935.2848

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.11: Information Criterion Tests: REXP(80%)-DAX30(20%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 994.4461 992.4461 988.5600∗

AR(1) 995.7300 992.7300 986.9008

MS(1-2)-AR(0) 1000.0601 995.0601 985.3448∗

MS(1-2)-AR(1) 1001.4135 995.4135 983.7552

MS(2-1)-AR(0) 997.2255 992.2255 982.5103

MS(2-1)-AR(1) 1001.5554 994.5554 980.9541

MS(2-2)-AR(0) 1000.7053 994.7053 983.0470

MS(2-2)-AR(1) 1003.5288 995.5288∗ 979.9844

ARCH(1)-AR(0) 997.9415 994.9415 989.1124∗

ARCH(1)-AR(1) 998.6077 994.6077 986.8355

ARCH(2)-AR(0) 998.3823 994.3823 986.6101

ARCH(2)-AR(1) 998.8935 993.8935 984.1783

ARCH(3)-AR(0) 998.7810 993.7810 984.0657

ARCH(3)-AR(1) 999.1178 993.1178 981.4595

GARCH(1,1)-AR(0) 999.9388 995.9388 988.1666

GARCH(1,1)-AR(1) 1000.1872 995.1872 985.4719

E-ARCH(1)-AR(0) 997.5094 993.5094 985.7372

E-ARCH(1)-AR(1) 999.1807 994.1807 984.4654

E-ARCH(2)-AR(0) 998.1307 992.1307 980.4724

E-ARCH(2)-AR(1) 999.8759 992.8759 979.2745

E-ARCH(3)-AR(0) 998.4948 990.4948 974.9504

E-ARCH(3)-AR(1) 1000.2132 991.2132 973.7257

E-GARCH(1,1)-AR(0) 1000.9413 995.9413∗ 986.2260

E-GARCH(1,1)-AR(1) 1000.9072 994.9072 983.2489

T-ARCH(1)-AR(0) 998.1512 994.1512 986.3790

T-ARCH(1)-AR(1) 999.3781 994.3781 984.6628

T-ARCH(2)-AR(0) 998.6895 993.6895 983.9743

T-ARCH(2)-AR(1) 999.6659 993.6659 982.0076

T-ARCH(3)-AR(0) 999.1640 993.1640 981.5056

T-ARCH(3)-AR(1) 999.8805 992.8805 979.2791

T-GARCH(1,1)-AR(0) 1000.9211 995.9211 986.2058

T-GARCH(1,1)-AR(1) 1000.9223 994.9223 983.2640

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.12: Information Criterion Tests: REXP(90%)-DAX30(10%) (1.1975-

12.2004)

Model L(θ) AIC SBC

GBM 1082.8462 1080.8462 1076.9601

AR(1) 1086.3876 1083.3876 1077.5584

MS(1-2)-AR(0) 1092.3177 1087.3177 1077.6025

MS(1-2)-AR(1) 1096.5412 1090.5412∗ 1078.8828∗

MS(2-1)-AR(0) 1087.6867 1082.6867 1072.9715

MS(2-1)-AR(1) 1095.8523 1088.8523 1075.2509

MS(2-2)-AR(0) 1092.7810 1086.7810 1075.1227

MS(2-2)-AR(1) 1097.6935 1089.6935 1074.1491

ARCH(1)-AR(0) 1090.0045 1087.0045 1081.1754

ARCH(1)-AR(1) 1093.7291 1089.7291 1081.9569

ARCH(2)-AR(0) 1090.4338 1086.4338 1078.6616

ARCH(2)-AR(1) 1094.3255 1089.3255 1079.6102

ARCH(3)-AR(0) 1091.7058 1086.7058 1076.9905

ARCH(3)-AR(1) 1094.8356 1088.8356 1077.1772

GARCH(1,1)-AR(0) 1094.8277 1090.8277 1083.0555

GARCH(1,1)-AR(1) 1099.2014 1094.2014∗ 1084.4861∗

E-ARCH(1)-AR(0) 1088.7425 1084.7425 1076.9703

E-ARCH(1)-AR(1) 1094.0499 1089.0499 1079.3346

E-ARCH(2)-AR(0) 1090.4625 1084.4625 1072.8041

E-ARCH(2)-AR(1) 1095.9958 1088.9958 1075.3944

E-ARCH(3)-AR(0) 1091.0672 1083.0672 1067.5228

E-ARCH(3)-AR(1) 1096.1260 1087.1260 1069.6385

E-GARCH(1,1)-AR(0) 1095.9996 1090.9996 1081.2844

E-GARCH(1,1)-AR(1) 1099.4253 1093.4253 1081.7669

T-ARCH(1)-AR(0) 1090.1117 1086.1117 1078.3395

T-ARCH(1)-AR(1) 1094.5388 1089.5388 1079.8236

T-ARCH(2)-AR(0) 1090.5360 1085.5360 1075.8208

T-ARCH(2)-AR(1) 1094.9809 1088.9809 1077.3226

T-ARCH(3)-AR(0) 1091.9059 1085.9059 1074.2476

T-ARCH(3)-AR(1) 1095.5048 1088.5048 1074.9034

T-GARCH(1,1)-AR(0) 1095.0432 1090.0432 1080.3279

T-GARCH(1,1)-AR(1) 1099.4961 1093.4961 1081.8378

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Table F.13: Information Criterion Tests: REXP (1.1975-12.2004)

Model L(θ) AIC SBC

GBM 1113.4151 1111.4151 1107.5290

AR(1) 1121.0048 1118.0048 1112.1756

MS(1-2)-AR(0) 1129.5333 1124.5333 1114.8181

MS(1-2)-AR(1) 1138.8598 1132.8598∗ 1121.2015∗

MS(2-1)-AR(0) 1122.3571 1117.3571 1107.6418

MS(2-1)-AR(1) 1132.4950 1125.4950 1111.8936

MS(2-2)-AR(0) 1129.5800 1123.5800 1111.9217

MS(2-2)-AR(1) 1139.0877 1131.0877 1115.5433

ARCH(1)-AR(0) 1120.9730 1117.9730 1112.1439

ARCH(1)-AR(1) 1130.4496 1126.4496 1118.6774

ARCH(2)-AR(0) 1121.3755 1117.3755 1109.6033

ARCH(2)-AR(1) 1131.2224 1126.2224 1116.5071

ARCH(3)-AR(0) 1122.3499 1117.3499 1107.6346

ARCH(3)-AR(1) 1131.3569 1125.3569 1113.6986

GARCH(1,1)-AR(0) 1125.9038 1121.9038 1114.1316

GARCH(1,1)-AR(1) 1136.9318 1131.9318∗ 1122.2166∗

E-ARCH(1)-AR(0) 1120.7666 1116.7666 1108.9944

E-ARCH(1)-AR(1) 1130.2170 1125.2170 1115.5017

E-ARCH(2)-AR(0) 1121.4488 1115.4488 1103.7904

E-ARCH(2)-AR(1) 1131.3639 1124.3639 1110.7625

E-ARCH(3)-AR(0) 1123.1402 1115.1402 1099.5958

E-ARCH(3)-AR(1) 1131.7382 1122.7382 1105.2507

E-GARCH(1,1)-AR(0) 1126.8686 1121.8686 1112.1533

E-GARCH(1,1)-AR(1) 1137.4573 1131.4573 1119.7990

T-ARCH(1)-AR(0) 1121.3916 1117.3916 1109.6194

T-ARCH(1)-AR(1) 1132.3429 1127.3429 1117.6276

T-ARCH(2)-AR(0) 1121.9218 1116.9218 1107.2066

T-ARCH(2)-AR(1) 1133.0920 1127.0920 1115.4337

T-ARCH(3)-AR(0) 1122.8179 1116.8179 1105.1596

T-ARCH(3)-AR(1) 1133.1365 1126.1365 1112.5351

T-GARCH(1,1)-AR(0) 1126.5432 1121.5432 1111.8280

T-GARCH(1,1)-AR(1) 1137.7694 1131.7694 1120.1110

Note:
GBM - Geometric Brownian motion, AR(p) denotes an auto-regressive model of the p-
th order, MS(m-s) denotes a Markov switching model with m mean equations and s

regimes for the variance, (G)ARCH(p,q) - (Generalised) Auto-regression Conditional Het-
eroscedasticity with q GARCH processes and p ARCH processes, E-(G)ARCH - exponen-
tial (G)ARCH, T-(G)ARCH - threshold (G)ARCH, L(θ) - log-likelihood, AIC - Akaike
Information Criterion

[
AIC=L(θ) − k

]
, SBC - Schwarz Bayesian Information Criterion[

SBC=L(θ) − 0.5k ln(T )
]
, k - number of parameters, T - number of observations. Bold -

model with the best information statistic. * - the best statistics in the MS or (G)ARCH
model class, respectively.
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Appendix G

Wald and likelihood ratio test

(1.1975-12.2004)
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Table G.1: Wald and LR tests: DAX30

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
923.15∗∗∗ 1143.56∗∗∗ 3.74∗ 4.03∗∗ 937.36∗∗∗ 1017.73∗∗∗

WT
(
H(3)

0

)
— — 88.25∗∗∗ 49.84∗∗∗ 0.84 1.10

WT
(
H(4a)

0

)
32.63∗∗∗ 32.16∗∗∗ — — 31.66∗∗∗ 31.38∗∗∗

WT
(
H(5)

0

)
— — — 0.33 — 0.55

LR
(
H(2b)

0

)
25.99∗∗∗ 26.52∗∗∗ 8.76∗∗∗ 10.80∗∗∗ 21.74∗∗∗ 18.64∗∗∗

LR
(
H(4b)

0

)
— — — — 17.98∗∗∗ 16.35∗∗∗

LR
(
H(6)

0

)
— — — — 1.35 2.61

Table G.2: Wald and LR tests: REXP(90%)-DAX30(90%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
881.41∗∗∗ 1108.86∗∗∗ 3.66∗ 3.83∗ 900.15∗∗∗ 1022.84∗∗∗

WT
(
H(3)

0

)
— — 83.02∗∗∗ 45.85∗∗∗ 0.78 1.08

WT
(
H(4a)

0

)
31.96∗∗∗ 31.47∗∗∗ — — 31.18∗∗∗ 30.87∗∗∗

WT
(
H(5)

0

)
— — — 0.26 — 0.49

LR
(
H(2b)

0

)
25.44∗∗∗ 25.90∗∗∗ 8.54∗∗∗ 10.52∗∗∗ 21.57∗∗∗ 18.45∗∗∗

LR
(
H(4b)

0

)
— — — — 17.66∗∗∗ 16.00∗∗∗

LR
(
H(6)

0

)
— — — — 1.21 2.41

Note:
MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, **, *** - the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(2b)

0 : p11 = 1 − p22 H(2b)
1 : p11 �= 1 − p22

H(3)
0 : μ1 = μ2, σ2

1 �= σ2
2 , p11, p22 - not specified, H(3)

1 : μ1 �= μ2

H(4a)
0 : μ1 �= μ2, σ2

1 = σ2
2 , p11, p22 - not specified, H(4a)

1 : σ2
1 �= σ2

2

H(4b)
0 : μ1 �= μ2, φ1(1) �= φ1(2), σ2

1 = σ2
2 , p11 �= 1 − p22, H(4b)

1 : σ2
1 �= σ2

2

H(5)
0 : φ1(1) = φ1(2), p11, p22 - not specified, H(5)

1 : φ1(1) �= φ1(2)

H(6)
0 : μ1 = μ2, φ1(1) = φ1(2), σ2

1 �= σ2
2 , p11 �= 1 − p22, H(6)

1 : μ1 �= μ2, φ1(1) �= φ1(2)
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Table G.3: Wald and LR tests: REXP(20%)-DAX30(80%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
804.42∗∗∗ 1048.45∗∗∗ 3.60∗ 3.49∗ 848.57∗∗∗ 1000.91∗∗∗

WT
(
H(3)

0

)
— — 77.30∗∗∗ 40.50∗∗∗ 0.72 1.05

WT
(
H(4a)

0

)
30.96∗∗∗ 30.47∗∗∗ — — 30.29∗∗∗ 30.03∗∗∗

WT
(
H(5)

0

)
— — — 0.18 — 0.43

LR
(
H(2b)

0

)
24.48∗∗∗ 24.89∗∗∗ 8.23∗∗∗ 10.09∗∗∗ 21.00∗∗∗ 17.90∗∗∗

LR
(
H(4b)

0

)
— — — — 16.94∗∗∗ 15.29∗∗∗

LR
(
H(6)

0

)
— — — — 1.09 2.20

Table G.4: Wald and LR tests: REXP(25%)-DAX30(75%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
767.11∗∗∗ 1002.53∗∗∗ 3.54∗ 3.44∗ 817.24∗∗∗ 974.09∗∗∗

WT
(
H(3)

0

)
— — 74.14∗∗∗ 40.68∗∗∗ 0.71 1.06

WT
(
H(4a)

0

)
30.23∗∗∗ 29.81∗∗∗ — — 29.61∗∗∗ 29.40∗∗∗

WT
(
H(5)

0

)
— — — 0.17 — 0.31

LR
(
H(2b)

0

)
23.81∗∗∗ 24.19∗∗∗ 8.03∗∗∗ 9.80∗∗∗ 20.54∗∗∗ 17.44∗∗∗

LR
(
H(4b)

0

)
— — — — 16.39∗∗∗ 14.75∗∗∗

LR
(
H(6)

0

)
— — — — 1.04 2.10

Note:
MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, **, *** - the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(2b)

0 : p11 = 1 − p22 H(2b)
1 : p11 �= 1 − p22

H(3)
0 : μ1 = μ2, σ2

1 �= σ2
2 , p11, p22 - not specified, H(3)

1 : μ1 �= μ2

H(4a)
0 : μ1 �= μ2, σ2

1 = σ2
2 , p11, p22 - not specified, H(4a)

1 : σ2
1 �= σ2

2

H(4b)
0 : μ1 �= μ2, φ1(1) �= φ1(2), σ2

1 = σ2
2 , p11 �= 1 − p22, H(4b)

1 : σ2
1 �= σ2

2

H(5)
0 : φ1(1) = φ1(2), p11, p22 - not specified, H(5)

1 : φ1(1) �= φ1(2)

H(6)
0 : μ1 = μ2, φ1(1) = φ1(2), σ2

1 �= σ2
2 , p11 �= 1 − p22, H(6)

1 : μ1 �= μ2, φ1(1) �= φ1(2)
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Table G.5: Wald and LR tests: REXP(30%)-DAX30(70%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
715.00∗∗∗ 944.61∗∗∗ 3.43∗ 3.46∗ 758.47∗∗∗ 934.88∗∗∗

WT
(
H(3)

0

)
— — 70.85∗∗∗ 36.96∗∗∗ 0.69 1.05

WT
(
H(4a)

0

)
29.34∗∗∗ 29.00∗∗∗ — — 28.78∗∗∗ 28.66∗∗∗

WT
(
H(5)

0

)
— — — 0.12 — 0.43

LR
(
H(2b)

0

)
22.96∗∗∗ 23.32∗∗∗ 7.79∗∗∗ 9.44∗∗∗ 19.91∗∗∗ 16.83∗∗∗

LR
(
H(4b)

0

)
— — — — 15.67∗∗∗ 14.07∗∗∗

LR
(
H(6)

0

)
— — — — 1.00 2.00

Table G.6: Wald and LR tests: REXP(40%)-DAX30(60%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
555.66∗∗∗ 765.58∗∗∗ 3.16∗ 3.20∗ 593.23∗∗∗ 797.03∗∗∗

WT
(
H(3)

0

)
— — 63.29∗∗∗ 35.14∗∗∗ 0.68 1.07

WT
(
H(4a)

0

)
26.87∗∗∗ 26.69∗∗∗ — — 26.23∗∗∗ 26.49∗∗∗

WT
(
H(5)

0

)
— — — 0.0496 — 0.25

LR
(
H(2b)

0

)
20.64∗∗∗ 20.96∗∗∗ 7.16∗∗∗ 8.47∗∗∗ 18.03∗∗∗ 15.06∗∗∗

LR
(
H(4b)

0

)
— — — — 13.62∗∗∗ 12.14∗∗∗

LR
(
H(6)

0

)
— — — — 0.93 1.80

Note:
MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, **, *** - the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(2b)

0 : p11 = 1 − p22 H(2b)
1 : p11 �= 1 − p22

H(3)
0 : μ1 = μ2, σ2

1 �= σ2
2 , p11, p22 - not specified, H(3)

1 : μ1 �= μ2

H(4a)
0 : μ1 �= μ2, σ2

1 = σ2
2 , p11, p22 - not specified, H(4a)

1 : σ2
1 �= σ2

2

H(4b)
0 : μ1 �= μ2, φ1(1) �= φ1(2), σ2

1 = σ2
2 , p11 �= 1 − p22, H(4b)

1 : σ2
1 �= σ2

2

H(5)
0 : φ1(1) = φ1(2), p11, p22 - not specified, H(5)

1 : φ1(1) �= φ1(2)

H(6)
0 : μ1 = μ2, φ1(1) = φ1(2), σ2

1 �= σ2
2 , p11 �= 1 − p22, H(6)

1 : μ1 �= μ2, φ1(1) �= φ1(2)
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Table G.7: Wald and LR tests: REXP(50%)-DAX30(50%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
289.67∗∗∗ 454.82∗∗∗ 2.80∗ 3.00∗ 324.88∗∗∗ 516.33∗∗∗

WT
(
H(3)

0

)
— — 53.97∗∗∗ 35.23∗∗∗ 0.69 1.13

WT
(
H(4a)

0

)
21.53∗∗∗ 22.75∗∗∗ — — 21.30∗∗∗ 22.78∗∗∗

WT
(
H(5)

0

)
— — — 0.0027 — 0.0775

LR
(
H(2b)

0

)
17.19∗∗∗ 17.48∗∗∗ 6.23∗∗ 7.03∗∗∗ 15.07∗∗∗ 12.32∗∗∗

LR
(
H(4b)

0

)
— — — — 10.53∗∗∗ 9.24∗∗∗

LR
(
H(6)

0

)
— — — — 0.90 1.63

Table G.8: Wald and LR tests: REXP(60%)-DAX30(40%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
134.64∗∗∗ 147.64∗∗∗ 2.25 2.38 68.33∗∗∗ 124.75∗∗∗

WT
(
H(3)

0

)
— — 41.14∗∗∗ 29.60∗∗∗ 0.55 1.19

WT
(
H(4a)

0

)
16.13∗∗∗ 15.94∗∗∗ — — 10.39∗∗∗ 14.08∗∗∗

WT
(
H(5)

0

)
— — — 0.0121 — 0.0022

LR
(
H(2b)

0

)
12.88∗∗∗ 12.84∗∗∗ 4.87∗∗ 5.00∗∗ 11.17∗∗∗ 8.55∗∗∗

LR
(
H(4b)

0

)
— — — — 6.74∗∗∗ 5.66∗∗

LR
(
H(6)

0

)
— — — — 0.83 1.62

Note:
MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, **, *** - the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(2b)

0 : p11 = 1 − p22 H(2b)
1 : p11 �= 1 − p22

H(3)
0 : μ1 = μ2, σ2

1 �= σ2
2 , p11, p22 - not specified, H(3)

1 : μ1 �= μ2

H(4a)
0 : μ1 �= μ2, σ2

1 = σ2
2 , p11, p22 - not specified, H(4a)

1 : σ2
1 �= σ2

2

H(4b)
0 : μ1 �= μ2, φ1(1) �= φ1(2), σ2

1 = σ2
2 , p11 �= 1 − p22, H(4b)

1 : σ2
1 �= σ2

2

H(5)
0 : φ1(1) = φ1(2), p11, p22 - not specified, H(5)

1 : φ1(1) �= φ1(2)

H(6)
0 : μ1 = μ2, φ1(1) = φ1(2), σ2

1 �= σ2
2 , p11 �= 1 − p22, H(6)

1 : μ1 �= μ2, φ1(1) �= φ1(2)
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Table G.9: Wald and LR tests: REXP(70%)-DAX30(30%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
110.34∗∗∗ 124.12∗∗∗ 1.39 1.22 127.97∗∗∗ 108.02∗∗∗

WT
(
H(3)

0

)
— — 23.34∗∗∗ 19.02∗∗∗ 1.18 1.69

WT
(
H(4a)

0

)
16.98∗∗∗ 15.15∗∗∗ — — 16.88∗∗∗ 15.09∗∗∗

WT
(
H(5)

0

)
— — — 0.11 — 0.10

LR
(
H(2b)

0

)
9.28∗∗∗ 9.00∗∗∗ 3.03∗ 2.40 6.14∗∗ 6.12∗∗

LR
(
H(4b)

0

)
— — — — 4.82∗∗ 4.81∗∗

LR
(
H(6)

0

)
— — — — 1.38 2.89

Table G.10: Wald and LR tests: REXP(75%)-DAX30(25%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
122.98∗∗∗ 134.66∗∗∗ 0.91 0.65 120.31∗∗∗ 140.44∗∗∗

WT
(
H(3)

0

)
— — 14.51∗∗∗ 4.45∗∗ 1.37 2.88∗

WT
(
H(4a)

0

)
80.36∗∗∗ 81.78∗∗∗ — — 90.57∗∗∗ 90.56∗∗∗

WT
(
H(5)

0

)
— — — 19.61∗∗∗ — 1.55

LR
(
H(2b)

0

)
8.64∗∗∗ 9.31∗∗∗ 1.88 0.79 2.63 5.38∗∗

LR
(
H(4b)

0

)
— — — — 5.57∗∗ 4.77∗∗

LR
(
H(6)

0

)
— — — — 1.67 2.94

Note:
MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, **, *** - the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(2b)

0 : p11 = 1 − p22 H(2b)
1 : p11 �= 1 − p22

H(3)
0 : μ1 = μ2, σ2

1 �= σ2
2 , p11, p22 - not specified, H(3)

1 : μ1 �= μ2

H(4a)
0 : μ1 �= μ2, σ2

1 = σ2
2 , p11, p22 - not specified, H(4a)

1 : σ2
1 �= σ2

2

H(4b)
0 : μ1 �= μ2, φ1(1) �= φ1(2), σ2

1 = σ2
2 , p11 �= 1 − p22, H(4b)

1 : σ2
1 �= σ2

2

H(5)
0 : φ1(1) = φ1(2), p11, p22 - not specified, H(5)

1 : φ1(1) �= φ1(2)

H(6)
0 : μ1 = μ2, φ1(1) = φ1(2), σ2

1 �= σ2
2 , p11 �= 1 − p22, H(6)

1 : μ1 �= μ2, φ1(1) �= φ1(2)
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Table G.11: Wald and LR tests: REXP(80%)-DAX30(20%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
199.66∗∗∗ 227.24∗∗∗ 0.51 2.14 154.36∗∗∗ 153.59∗∗∗

WT
(
H(3)

0

)
— — 9.79∗∗∗ 5.51∗∗ 0.99 3.63∗

WT
(
H(4a)

0

)
76.62∗∗∗ 78.04∗∗∗ — — 79.55∗∗∗ 82.40∗∗∗

WT
(
H(5)

0

)
— — — 19.79∗∗∗ — 4.07

LR
(
H(2b)

0

)
67.10∗∗∗ 10.14∗∗∗ 0.90 1.76 3.73∗ 5.03∗∗∗

LR
(
H(4b)

0

)
— — — — 6.96∗∗∗ 3.95∗∗∗

LR
(
H(6)

0

)
— — — — 1.29 4.23

Table G.12: Wald and LR tests: REXP(90%)-DAX30(10%)

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
321.97∗∗∗ 615.70∗∗∗ 0.90 2.77∗ 207.86∗∗∗ 23.07∗∗∗

WT
(
H(3)

0

)
— — 14.21∗∗∗ 12.14∗∗∗ 0.60 2.30

WT
(
H(4a)

0

)
8.28∗∗∗ 7.83∗∗∗ — — 6.54∗∗ 6.24∗∗

WT
(
H(5)

0

)
— — — 37.70∗∗∗ — 5.69∗∗

LR
(
H(2b)

0

)
13.69∗∗∗ 16.68∗∗∗ 1.23 2.50 7.20∗∗∗ 6.11∗∗

LR
(
H(4b)

0

)
— — — — 10.19∗∗∗ 3.68∗

LR
(
H(6)

0

)
— — — — 0.93 2.30

Note:
MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, **, *** - the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(2b)

0 : p11 = 1 − p22 H(2b)
1 : p11 �= 1 − p22

H(3)
0 : μ1 = μ2, σ2

1 �= σ2
2 , p11, p22 - not specified, H(3)

1 : μ1 �= μ2

H(4a)
0 : μ1 �= μ2, σ2

1 = σ2
2 , p11, p22 - not specified, H(4a)

1 : σ2
1 �= σ2

2

H(4b)
0 : μ1 �= μ2, φ1(1) �= φ1(2), σ2

1 = σ2
2 , p11 �= 1 − p22, H(4b)

1 : σ2
1 �= σ2

2

H(5)
0 : φ1(1) = φ1(2), p11, p22 - not specified, H(5)

1 : φ1(1) �= φ1(2)

H(6)
0 : μ1 = μ2, φ1(1) = φ1(2), σ2

1 �= σ2
2 , p11 �= 1 − p22, H(6)

1 : μ1 �= μ2, φ1(1) �= φ1(2)
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Table G.13: Wald and LR tests: REXP

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

WT
(
H(2b)

0

)
436.51∗∗∗ 499.71∗∗∗ 1.09 2.51 364.78∗∗∗ 22.38∗∗∗

WT
(
H(3)

0

)
— — 13.36∗∗∗ 11.46∗∗∗ 0.08 2.98∗

WT
(
H(4a)

0

)
8.65∗∗∗ 8.44∗∗∗ — — 8.32∗∗∗ 3.08∗

WT
(
H(5)

0

)
— — — 33.80∗∗∗ — 6.14∗∗

LR
(
H(2b)

0

)
19.63∗∗∗ 22.53∗∗∗ 2.20 1.75 10.80∗∗∗ 8.66∗∗∗

LR
(
H(4b)

0

)
— — — — 14.45∗∗∗ 13.19∗∗∗

LR
(
H(6)

0

)
— — — — 0.09 0.46

Note:
MS(m-s) denotes a Markov switching model with m mean equations and s regimes for the
variance. WT - Wald test, LR - likelihood ratio test. *, **, *** - the null hypothesis can
be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(2b)

0 : p11 = 1 − p22 H(2b)
1 : p11 �= 1 − p22

H(3)
0 : μ1 = μ2, σ2

1 �= σ2
2 , p11, p22 - not specified, H(3)

1 : μ1 �= μ2

H(4a)
0 : μ1 �= μ2, σ2

1 = σ2
2 , p11, p22 - not specified, H(4a)

1 : σ2
1 �= σ2

2

H(4b)
0 : μ1 �= μ2, φ1(1) �= φ1(2), σ2

1 = σ2
2 , p11 �= 1 − p22, H(4b)

1 : σ2
1 �= σ2

2

H(5)
0 : φ1(1) = φ1(2), p11, p22 - not specified, H(5)

1 : φ1(1) �= φ1(2)

H(6)
0 : μ1 = μ2, φ1(1) = φ1(2), σ2

1 �= σ2
2 , p11 �= 1 − p22, H(6)

1 : μ1 �= μ2, φ1(1) �= φ1(2)
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Appendix H

Newey-Tauchen-White test

(1.1975-12.2004)
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Table H.1: Newey-Tauchen-White test: DAX30

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 0.0385∗∗∗ 0.1245∗∗∗ 2.6824∗∗∗ 0.7404∗∗∗ 0.5320∗∗∗ 0.4048∗∗∗

H(8)
0 0.2494∗∗∗ 0.2691∗∗∗ 1.2467∗∗∗ 1.4783∗∗∗ 0.0802∗∗∗ 0.0682∗∗∗

H(9)
0 1.5982∗∗∗ 3.5223∗∗∗ 0.0001∗∗∗ 0.0004∗∗∗ 2.6309∗∗∗ 3.9217∗∗∗

Table H.2: Newey-Tauchen-White test: REXP 10% DAX30 90%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 0.0506∗∗∗ 0.0908∗∗∗ 2.5655∗∗∗ 0.8089∗∗∗ 0.3944∗∗∗ 0.3868∗∗∗

H(8)
0 0.1238∗∗∗ 0.1472∗∗∗ 1.0878∗∗∗ 1.3169∗∗∗ 0.0436∗∗∗ 0.0485∗∗∗

H(9)
0 1.7578∗∗∗ 3.9651∗∗∗ 0.0001∗∗∗ 0.0003∗∗∗ 3.2040∗∗∗ 4.8181

Table H.3: Newey-Tauchen-White test: REXP 20% DAX30 80%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 0.0589∗∗∗ 0.0702∗∗∗ 2.0102∗∗∗ 1.0355∗∗∗ 0.5587∗∗∗ 0.7242∗∗∗

H(8)
0 0.0673∗∗∗ 0.0694∗∗∗ 1.3934∗∗∗ 1.1404∗∗∗ 0.0799∗∗∗ 0.1608∗∗∗

H(9)
0 1.7616∗∗∗ 4.1819∗∗∗ 0.0000∗∗∗ 0.0002∗∗∗ 2.6404∗∗∗ 4.2862∗∗∗

Table H.4: Newey-Tauchen-White test: REXP 25% DAX30 75%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 0.1129∗∗∗ 0.0263∗∗∗ 3.1287∗∗∗ 1.3197∗∗∗ 0.3398∗∗∗ 0.5532∗∗∗

H(8)
0 0.1331∗∗∗ 0.0552∗∗∗ 0.6830∗∗∗ 0.9238∗∗∗ 0.3896∗∗∗ 0.5991∗∗∗

H(9)
0 1.5622∗∗∗ 3.8840∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗ 2.8789∗∗∗ 4.7363

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
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]
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Table H.5: Newey-Tauchen-White test: REXP 30% DAX30 70%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 0.1140∗∗∗ 0.0236∗∗∗ 3.7029∗∗∗ 1.3446∗∗∗ 1.3728∗∗∗ 2.0674∗∗∗

H(8)
0 0.5985∗∗∗ 0.8335∗∗∗ 0.6045∗∗∗ 0.6354∗∗∗ 2.5051∗∗∗ 2.2552∗∗∗

H(9)
0 1.9194∗∗∗ 4.3325∗∗∗ 0.0000∗∗∗ 0.0001∗∗∗ 3.1280∗∗∗ 4.7664

Table H.6: Newey-Tauchen-White test: REXP 40% DAX30 60%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 0.2412∗∗∗ 0.0000∗∗∗ 3.8495∗∗∗ 2.9442∗∗∗ 1.1010∗∗∗ 1.8956∗∗∗

H(8)
0 3.3005∗∗∗ 3.0942∗∗∗ 1.5099∗∗∗ 1.2272∗∗∗ 2.7466∗∗∗ 2.2147∗∗∗

H(9)
0 2.4685∗∗∗ 4.7443 0.0000∗∗∗ 0.0000∗∗∗ 1.5288∗∗∗ 2.8541∗∗∗

Table H.7: Newey-Tauchen-White test: REXP 50% DAX30 50%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 0.5671∗∗∗ 0.0863∗∗∗ 2.1997∗∗∗ 1.7095∗∗∗ 0.7707∗∗∗ 1.4316∗∗∗

H(8)
0 3.5214∗∗∗ 3.0547∗∗∗ 1.7089∗∗∗ 0.9912∗∗∗ 3.6182∗∗∗ 2.9731∗∗∗

H(9)
0 2.0993∗∗∗ 3.6666∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 1.0599∗∗∗ 1.9203∗∗∗

Table H.8: Newey-Tauchen-White test: REXP 60% DAX30 40%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 1.5262∗∗∗ 0.5206∗∗∗ 0.4421∗∗∗ 0.1869∗∗∗ 1.8566∗∗∗ 1.8112∗∗∗

H(8)
0 3.5318∗∗∗ 3.1192∗∗∗ 1.8435∗∗∗ 0.8816∗∗∗ 3.3500∗∗∗ 2.6457∗∗∗

H(9)
0 2.7483∗∗∗ 3.5277∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.8615∗∗∗ 0.6491∗∗∗

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
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Table H.9: Newey-Tauchen-White test: REXP 70% DAX30 30%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 5.2262∗ 3.1539 1.3988∗∗∗ 1.6960∗∗∗ 2.3853∗∗∗ 1.6922∗∗∗

H(8)
0 2.5963∗∗∗ 2.2208∗∗∗ 1.2558∗∗∗ 0.1098∗∗∗ 3.3305∗∗∗ 2.6419∗∗∗

H(9)
0 2.6925∗∗∗ 3.0857∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.8577∗∗∗ 0.2747∗∗∗

Table H.10: Newey-Tauchen-White test: REXP 75% DAX30 25%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 2.3163∗∗∗ 1.7864∗∗∗ 6.9399∗ 1.8300∗∗∗ 0.7654∗∗∗ 0.3508∗∗∗

H(8)
0 2.9348∗∗∗ 2.1521∗∗∗ 1.2195∗∗∗ 2.6644∗∗∗ 2.8147∗∗∗ 2.3179∗∗∗

H(9)
0 2.1356∗∗∗ 2.2766∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.5837∗∗∗ 1.2836∗∗∗

Table H.11: Newey-Tauchen-White test: REXP 80% DAX30 20%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 3.9834∗ 3.2329 8.0251∗ 2.4802∗∗∗ 2.0132∗∗∗ 0.7650∗∗∗

H(8)
0 2.5076∗∗∗ 1.5242∗∗∗ 0.7389∗∗∗ 3.5001 3.2705∗∗∗ 2.0356∗∗∗

H(9)
0 1.1283∗∗∗ 1.1823∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 3.2306∗∗∗ 0.9423∗∗∗

Table H.12: Newey-Tauchen-White test: REXP 90% DAX30 10%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 8.1041∗∗ 2.0137∗∗∗ 20.4211∗∗ 4.0373∗∗∗ 6.3384∗ 7.3723∗

H(8)
0 2.8795∗∗∗ 3.7998∗∗∗ 1.1200∗∗∗ 3.5334 4.6619 7.7374∗

H(9)
0 4.9265 5.0124 0.0000∗∗∗ 0.0000∗∗∗ 1.6992∗∗∗ 2.7630∗∗∗

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
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Table H.13: Newey-Tauchen-White test: REXP

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(7)
0 20.1919∗∗ 1.7086∗∗∗ 25.3082∗∗ 10.0650∗∗ 13.5856∗∗ 12.1780∗∗

H(8)
0 3.1807∗∗∗ 1.9153∗∗∗ 0.6140∗∗∗ 7.4031∗∗ 3.9949∗∗∗ 3.4779∗∗∗

H(9)
0 2.6856∗∗∗ 2.6608∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 2.7332∗∗∗ 1.9048∗∗∗

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(7)

0 : E
[
hhhc

t(μ̂j)
∣∣hhhc

t−1(μ̂i)
]

= 0 H(7)
1 : E

[
hhhc

t(μ̂j)
∣∣hhhc

t−1(μ̂i)
]
�= 0 (i,j=1,. . . ,K)

H(8)
0 : E

[
hhhc

t(σ̂
2
j )
∣∣hhhc

t−1(σ̂
2
i )
]

= 0 H(8)
1 : E

[
hhhc

t(σ̂
2
j )
∣∣hhhc

t−1(σ̂
2
i )
]
�= 0 (i,j=1,. . . ,K)

H(9)
0 : E

[
hhhc

t(p̂jj)
∣∣hhhc

t−1(p̂ii)
]

= 0 H(9)
1 : E

[
hhhc

t(p̂jj)
∣∣hhhc

t−1(p̂ii)
]
�= 0 (i,j=1,. . . ,K)

383



384



Appendix I

Lagrange multiplier test

(1.1975-12.2004)
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Table I.1: Lagrange multiplier test: DAX30

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 0.5134∗∗∗ 3.1364 1.5889∗∗∗ 32.0739∗∗ 0.0469∗∗∗ 7.3589∗∗

H(11)
0 1.3375∗∗∗ 3.3922 2.4954∗∗∗ 32.6655∗∗ 0.5255∗∗∗ 7.4295∗∗

Table I.2: Lagrange multiplier test: REXP 10% DAX30 90%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 0.6146∗∗∗ 2.9073 1.4475∗∗∗ 31.6912∗∗ 0.3752∗∗∗ 7.4362∗∗

H(11)
0 1.4965∗∗∗ 3.1855 2.1163∗∗∗ 32.0458∗∗ 0.8734∗∗∗ 7.4735∗∗

Table I.3: Lagrange multiplier test: REXP 20% DAX30 80%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 0.7113∗∗∗ 2.9885 1.2838∗∗∗ 27.5140∗∗ 0.3679∗∗∗ 6.9847∗∗

H(11)
0 1.5682∗∗∗ 3.1392 3.2836 28.1928∗∗ 1.2182∗∗∗ 7.0760∗∗

Table I.4: Lagrange multiplier test: REXP 25% DAX30 75%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 0.5003∗∗∗ 2.5266∗∗∗ 2.9217 26.8444∗∗ 1.7288∗∗∗ 8.0665∗∗

H(11)
0 1.2676∗∗∗ 2.7711 4.2705∗ 27.6564∗∗ 3.8086 8.8296∗∗

Table I.5: Lagrange multiplier test: REXP 30% DAX30 70%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 1.7347∗∗∗ 4.2598∗ 3.7162 25.5256∗∗ 2.1742∗∗∗ 8.0737∗∗

H(11)
0 4.5544∗ 6.3333∗ 4.3131∗ 26.2148∗∗ 4.2882∗ 8.7864∗∗

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(10)

0 : ρ = 0 H(10)
1 : (yt|Xt, zt, zt−1;θθθ, ρ) ∼ N({xxx′

tβββzt + ρ(yt−1 − xxx′
t−1βββzt−1)}, σ2

zt
)

H(11)
0 : ξ = 0 H(11)

1 : (yt|Xt, zt, zt−1;θθθ, ξ) ∼ N

(
xxx′

tβββzt , σ
2
zt

[
1 +

ξ(yt−1−xxx′
t−1βββzt−1 )2

σ2
zt−1

])
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Table I.6: Lagrange multiplier test: REXP 40% DAX30 60%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 1.7930∗∗∗ 4.4297∗ 4.1814∗ 22.8426∗∗ 1.4301∗∗∗ 6.6310∗

H(11)
0 4.4790∗ 6.1316∗ 4.6978∗ 23.3392∗∗ 2.9664 7.0271∗∗

Table I.7: Lagrange multiplier test: REXP 50% DAX30 50%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 1.4459∗∗∗ 4.0189∗ 3.4487 20.4251∗∗ 0.9632∗∗∗ 6.0025∗

H(11)
0 4.3124∗ 5.7061∗ 4.1420∗ 20.7475∗∗ 2.5985∗∗∗ 6.5242∗

Table I.8: Lagrange multiplier test: REXP 60% DAX30 40%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 1.3026∗∗∗ 3.3304 2.5108∗∗∗ 14.4731∗∗ 0.8554∗∗∗ 5.9498∗

H(11)
0 4.2470∗ 5.0723∗ 3.9228∗ 14.9722∗∗ 2.0995∗∗∗ 6.1672∗

Table I.9: Lagrange multiplier test: REXP 70% DAX30 30%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 2.2077∗∗∗ 3.3280 1.3547∗∗∗ 6.8935∗∗ 1.4149∗∗∗ 8.9650∗∗

H(11)
0 4.8967∗ 4.9808∗ 2.6618∗∗∗ 7.0226∗∗ 3.1584 8.3499∗∗

Table I.10: Lagrange multiplier test: REXP 75% DAX30 25%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 2.2907∗∗∗ 4.6571∗ 1.0178∗∗∗ 32.6253∗∗ 2.2687∗∗∗ 2.9427

H(11)
0 4.8184∗ 8.0783∗∗ 2.3351∗∗∗ 32.1797∗∗ 5.0304∗ 5.9998∗

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(10)

0 : ρ = 0 H(10)
1 : (yt|Xt, zt, zt−1;θθθ, ρ) ∼ N({xxx′

tβββzt + ρ(yt−1 − xxx′
t−1βββzt−1)}, σ2

zt
)

H(11)
0 : ξ = 0 H(11)

1 : (yt|Xt, zt, zt−1;θθθ, ξ) ∼ N

(
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2
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Table I.11: Lagrange multiplier test: REXP 80% DAX30 20%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 3.4497 3.9394∗ 1.7673∗∗∗ 34.1679∗∗ 3.5869 2.4138∗∗∗

H(11)
0 4.6954∗ 5.8412∗ 1.9581∗∗∗ 33.5088∗∗ 4.4118∗ 3.7996

Table I.12: Lagrange multiplier test: REXP 90% DAX30 10%

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 7.1439∗∗ 1.1552∗∗∗ 7.0739∗∗ 41.0724∗∗ 6.1799∗ 11.0327∗∗

H(11)
0 3.0185 0.9793∗∗∗ 3.4857 41.1626∗∗ 3.1917 11.7223∗∗

Table I.13: Lagrange multiplier test: REXP

MS(1-2) MS(2-1) MS(2-2)
AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

H(10)
0 16.6099∗∗ 2.1669∗∗∗ 13.9641∗∗ 40.9100∗∗ 64.0846∗∗ 23.8996∗∗

H(11)
0 1.9282∗∗∗ 2.6027∗∗∗ 2.6903∗∗∗ 49.0283∗∗ 62.8667∗∗ 22.4693∗∗

Note:
MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s regimes
for the variance and p auto-regression lags in each mean equation. *, **, *** - the null
hypothesis can be rejected at the 10%, the 5% and the 1% confidence level, respectively.
H(10)

0 : ρ = 0 H(10)
1 : (yt|Xt, zt, zt−1;θθθ, ρ) ∼ N({xxx′

tβββzt + ρ(yt−1 − xxx′
t−1βββzt−1)}, σ2

zt
)

H(11)
0 : ξ = 0 H(11)

1 : (yt|Xt, zt, zt−1;θθθ, ξ) ∼ N

(
xxx′

tβββzt , σ
2
zt

[
1 +

ξ(yt−1−xxx′
t−1βββzt−1 )2

σ2
zt−1
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Appendix J

Garcia test (1.1975-12.2004)
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Table J.1: Distribution of Garcia’s SupC statistics: DAX30 (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.95 1.87 1.85 3.49 3.48 4.93
5 2.54 2.49 2.47 4.39 4.34 5.97
10 2.95 2.91 2.91 4.99 4.91 6.67
15 3.29 3.25 3.27 5.37 5.35 7.23
20 3.58 3.54 3.58 5.74 5.73 7.64
25 3.86 3.82 3.88 6.08 6.06 8.02
30 4.13 4.09 4.13 6.41 6.39 8.38
35 4.39 4.36 4.40 6.73 6.71 8.73
40 4.66 4.63 4.65 7.04 7.01 9.08
45 4.96 4.91 4.92 7.38 7.34 9.44
50 5.24 5.20 5.19 7.70 7.69 9.83
55 5.55 5.51 5.51 8.07 8.05 10.23
60 5.85 5.83 5.85 8.41 8.40 10.67
65 6.23 6.22 6.20 8.83 8.80 11.12
70 6.63 6.62 6.59 9.30 9.26 11.54
75 7.09 7.05 7.07 9.84 9.74 12.10
80 7.66 7.59 7.64 10.45 10.28 12.76
85 8.35 8.36 8.33 11.27 10.94 13.60
90 9.31 9.25 9.22 12.35 12.03 14.69
95 10.98 10.67 10.79 14.01 13.64 16.41
99 14.39 13.97 14.66 17.65 17.18 20.48

Note:
Simulated distributions ware conducted for specifications from table B.1 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.2: Distribution of Garcia’s SupC statistics: REXP(10%)-

DAX30(90%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.88 1.90 1.91 3.55 3.45 4.85
5 2.55 2.53 2.57 4.41 4.36 6.00
10 2.96 2.95 2.97 4.98 4.94 6.67
15 3.29 3.26 3.31 5.39 5.38 7.19
20 3.56 3.55 3.61 5.77 5.74 7.62
25 3.84 3.83 3.88 6.12 6.13 8.03
30 4.08 4.11 4.17 6.40 6.44 8.40
35 4.33 4.37 4.43 6.72 6.77 8.76
40 4.60 4.63 4.69 7.04 7.10 9.12
45 4.89 4.91 4.97 7.35 7.41 9.47
50 5.19 5.19 5.25 7.67 7.76 9.83
55 5.51 5.52 5.55 8.02 8.12 10.21
60 5.82 5.86 5.87 8.36 8.49 10.64
65 6.20 6.20 6.23 8.80 8.91 11.12
70 6.59 6.58 6.64 9.21 9.33 11.57
75 7.05 7.01 7.11 9.72 9.88 12.15
80 7.57 7.57 7.66 10.36 10.47 12.82
85 8.29 8.28 8.36 11.11 11.26 13.60
90 9.22 9.16 9.27 12.07 12.25 14.64
95 10.74 10.64 10.76 13.65 14.05 16.47
99 14.55 14.12 14.39 17.58 17.81 20.59

Note:
Simulated distributions ware conducted for specifications from table B.2 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.3: Distribution of Garcia’s SupC statistics: REXP(20%)-

DAX30(80%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.91 1.86 1.94 3.50 3.48 4.91
5 2.56 2.53 2.55 4.36 4.35 6.01
10 3.00 2.98 2.96 4.97 4.95 6.66
15 3.33 3.30 3.29 5.39 5.40 7.16
20 3.61 3.60 3.60 5.76 5.75 7.59
25 3.86 3.87 3.87 6.07 6.10 7.95
30 4.13 4.12 4.11 6.39 6.41 8.34
35 4.41 4.37 4.37 6.71 6.73 8.69
40 4.67 4.64 4.65 7.03 7.06 9.04
45 4.95 4.90 4.92 7.38 7.39 9.44
50 5.24 5.17 5.21 7.71 7.75 9.78
55 5.53 5.48 5.49 8.07 8.09 10.19
60 5.84 5.80 5.82 8.45 8.46 10.59
65 6.19 6.16 6.14 8.83 8.88 11.02
70 6.64 6.57 6.55 9.26 9.31 11.50
75 7.08 7.02 6.99 9.80 9.82 12.02
80 7.60 7.57 7.56 10.46 10.41 12.69
85 8.32 8.21 8.25 11.17 11.20 13.45
90 9.26 9.18 9.12 12.23 12.20 14.56
95 10.84 10.76 10.60 13.91 13.82 16.28
99 14.09 14.08 14.00 17.65 17.43 19.99

Note:
Simulated distributions ware conducted for specifications from table B.3 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.4: Distribution of Garcia’s SupC statistics: REXP(25%)-

DAX30(75%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.87 1.90 1.91 3.54 3.43 4.97
5 2.52 2.51 2.51 4.40 4.39 5.98
10 2.95 2.96 2.95 4.94 4.96 6.65
15 3.29 3.30 3.28 5.37 5.37 7.18
20 3.56 3.60 3.58 5.74 5.76 7.61
25 3.86 3.88 3.87 6.10 6.09 8.03
30 4.11 4.14 4.14 6.42 6.43 8.39
35 4.35 4.41 4.41 6.74 6.76 8.78
40 4.62 4.66 4.66 7.06 7.09 9.13
45 4.87 4.92 4.94 7.40 7.45 9.47
50 5.16 5.23 5.22 7.71 7.80 9.85
55 5.47 5.54 5.51 8.08 8.13 10.25
60 5.81 5.85 5.87 8.45 8.52 10.65
65 6.17 6.19 6.22 8.89 8.89 11.08
70 6.56 6.56 6.63 9.35 9.34 11.59
75 7.02 7.02 7.08 9.86 9.88 12.10
80 7.57 7.57 7.62 10.46 10.51 12.73
85 8.23 8.25 8.31 11.24 11.26 13.53
90 9.16 9.15 9.29 12.26 12.29 14.59
95 10.76 10.70 10.77 14.03 13.93 16.19
99 14.31 14.48 14.31 17.70 17.51 19.87

Note:
Simulated distributions ware conducted for specifications from table B.4 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.5: Distribution of Garcia’s SupC statistics: REXP(30%)-

DAX30(70%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.90 1.90 1.90 3.50 3.54 4.94
5 2.53 2.54 2.50 4.41 4.40 6.01
10 2.94 2.97 2.95 4.95 4.95 6.67
15 3.30 3.30 3.27 5.37 5.39 7.20
20 3.58 3.59 3.58 5.75 5.78 7.65
25 3.87 3.86 3.84 6.12 6.15 8.03
30 4.12 4.12 4.12 6.43 6.47 8.42
35 4.37 4.39 4.36 6.77 6.81 8.76
40 4.63 4.63 4.63 7.13 7.13 9.10
45 4.89 4.92 4.88 7.47 7.48 9.48
50 5.17 5.21 5.16 7.83 7.82 9.88
55 5.44 5.52 5.47 8.18 8.16 10.27
60 5.75 5.83 5.80 8.54 8.52 10.69
65 6.12 6.16 6.16 8.94 8.94 11.13
70 6.55 6.56 6.54 9.40 9.38 11.62
75 7.00 7.03 6.95 9.94 9.89 12.16
80 7.51 7.61 7.47 10.59 10.49 12.82
85 8.18 8.24 8.16 11.34 11.26 13.57
90 9.07 9.15 9.10 12.37 12.30 14.71
95 10.65 10.75 10.60 14.08 14.08 16.55
99 14.26 14.09 13.97 17.69 17.67 20.28

Note:
Simulated distributions ware conducted for specifications from table B.5 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.

394



Table J.6: Distribution of Garcia’s SupC statistics: REXP(40%)-

DAX30(60%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.91 1.97 1.91 3.41 3.51 4.89
5 2.51 2.54 2.51 4.36 4.41 6.01
10 2.95 2.94 2.95 4.93 5.01 6.69
15 3.30 3.28 3.28 5.37 5.46 7.18
20 3.58 3.55 3.58 5.77 5.82 7.59
25 3.86 3.82 3.87 6.10 6.16 7.99
30 4.14 4.12 4.14 6.45 6.51 8.36
35 4.38 4.37 4.39 6.79 6.83 8.69
40 4.65 4.63 4.65 7.09 7.13 9.04
45 4.91 4.91 4.93 7.43 7.45 9.41
50 5.19 5.21 5.21 7.77 7.79 9.79
55 5.53 5.50 5.52 8.14 8.15 10.19
60 5.87 5.81 5.86 8.49 8.53 10.60
65 6.23 6.15 6.20 8.89 8.94 11.04
70 6.64 6.54 6.58 9.32 9.39 11.55
75 7.10 6.98 7.00 9.81 9.85 12.11
80 7.64 7.58 7.54 10.44 10.42 12.76
85 8.29 8.23 8.27 11.21 11.13 13.56
90 9.23 9.15 9.23 12.21 12.10 14.66
95 10.70 10.66 10.77 13.94 13.82 16.58
99 14.37 14.14 13.96 17.57 17.36 20.16

Note:
Simulated distributions ware conducted for specifications from table B.6 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.7: Distribution of Garcia’s SupC statistics: REXP(50%)-

DAX30(50%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.92 1.95 1.88 3.53 3.47 4.93
5 2.53 2.54 2.54 4.42 4.36 6.07
10 2.97 2.99 2.95 4.98 4.92 6.75
15 3.28 3.33 3.28 5.41 5.36 7.24
20 3.55 3.60 3.56 5.81 5.74 7.65
25 3.83 3.88 3.85 6.14 6.11 8.06
30 4.11 4.15 4.12 6.46 6.45 8.41
35 4.39 4.41 4.39 6.78 6.76 8.72
40 4.65 4.67 4.65 7.13 7.08 9.08
45 4.93 4.94 4.92 7.47 7.41 9.46
50 5.22 5.22 5.22 7.80 7.74 9.82
55 5.52 5.54 5.53 8.15 8.08 10.18
60 5.84 5.86 5.87 8.53 8.44 10.60
65 6.20 6.19 6.24 8.90 8.83 11.04
70 6.60 6.56 6.63 9.34 9.29 11.56
75 7.09 6.99 7.06 9.87 9.80 12.12
80 7.63 7.57 7.59 10.47 10.35 12.77
85 8.30 8.23 8.23 11.21 11.11 13.53
90 9.23 9.15 9.13 12.22 12.20 14.67
95 10.68 10.69 10.67 13.74 13.81 16.59
99 14.29 14.28 14.28 17.61 17.18 20.56

Note:
Simulated distributions ware conducted for specifications from table B.7 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.8: Distribution of Garcia’s SupC statistics: REXP(60%)-

DAX30(40%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.89 1.92 1.94 3.43 3.60 5.00
5 2.50 2.52 2.55 4.39 4.38 6.03
10 2.94 2.93 2.99 4.95 4.96 6.72
15 3.27 3.28 3.32 5.37 5.38 7.21
20 3.58 3.58 3.63 5.76 5.74 7.62
25 3.87 3.89 3.91 6.09 6.08 8.01
30 4.15 4.15 4.18 6.44 6.40 8.39
35 4.43 4.40 4.42 6.77 6.73 8.76
40 4.68 4.67 4.67 7.11 7.04 9.11
45 4.95 4.95 4.93 7.47 7.36 9.47
50 5.25 5.24 5.21 7.79 7.70 9.84
55 5.53 5.54 5.51 8.13 8.08 10.23
60 5.85 5.86 5.84 8.54 8.43 10.62
65 6.20 6.22 6.18 8.94 8.87 11.07
70 6.61 6.63 6.57 9.37 9.33 11.53
75 7.10 7.09 7.05 9.85 9.85 12.07
80 7.61 7.64 7.62 10.47 10.45 12.71
85 8.27 8.31 8.28 11.22 11.18 13.55
90 9.20 9.13 9.15 12.20 12.22 14.65
95 10.79 10.74 10.77 13.86 13.71 16.29
99 14.17 14.18 14.35 17.48 17.35 20.31

Note:
Simulated distributions ware conducted for specifications from table B.8 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.9: Distribution of Garcia’s SupC statistics: REXP(70%)-

DAX30(30%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.90 1.88 1.91 3.53 3.54 4.90
5 2.52 2.53 2.55 4.39 4.37 5.99
10 2.94 2.97 2.98 5.00 4.96 6.68
15 3.29 3.30 3.31 5.42 5.36 7.19
20 3.58 3.59 3.61 5.78 5.76 7.65
25 3.85 3.84 3.89 6.11 6.12 8.05
30 4.13 4.11 4.15 6.44 6.43 8.42
35 4.39 4.37 4.42 6.77 6.75 8.79
40 4.68 4.63 4.70 7.11 7.08 9.15
45 4.95 4.92 4.99 7.45 7.40 9.51
50 5.25 5.19 5.27 7.79 7.77 9.87
55 5.52 5.47 5.58 8.16 8.10 10.27
60 5.85 5.79 5.87 8.53 8.50 10.69
65 6.22 6.12 6.22 8.95 8.91 11.13
70 6.62 6.52 6.61 9.37 9.31 11.61
75 7.09 6.99 7.05 9.89 9.82 12.17
80 7.64 7.49 7.56 10.50 10.42 12.80
85 8.30 8.18 8.24 11.23 11.20 13.59
90 9.25 9.13 9.21 12.23 12.17 14.70
95 10.75 10.68 10.71 13.98 13.76 16.44
99 14.58 14.38 13.90 17.73 17.12 20.41

Note:
Simulated distributions ware conducted for specifications from table B.9 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.10: Distribution of Garcia’s SupC statistics: REXP(75%)-

DAX30(25%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.89 1.87 1.91 3.53 3.41 4.87
5 2.53 2.53 2.54 4.38 4.32 6.02
10 2.95 2.95 2.97 4.93 4.92 6.69
15 3.29 3.28 3.31 5.36 5.37 7.19
20 3.59 3.58 3.60 5.71 5.74 7.62
25 3.88 3.83 3.89 6.07 6.08 7.99
30 4.17 4.08 4.15 6.40 6.42 8.33
35 4.43 4.36 4.43 6.70 6.73 8.71
40 4.70 4.62 4.70 7.01 7.06 9.08
45 4.95 4.89 4.99 7.33 7.40 9.46
50 5.24 5.19 5.27 7.68 7.74 9.84
55 5.54 5.51 5.58 8.08 8.10 10.21
60 5.85 5.82 5.90 8.46 8.44 10.61
65 6.23 6.18 6.23 8.84 8.86 11.06
70 6.64 6.60 6.61 9.31 9.28 11.53
75 7.10 7.05 7.06 9.77 9.77 12.10
80 7.61 7.60 7.58 10.39 10.41 12.76
85 8.28 8.30 8.26 11.15 11.13 13.55
90 9.26 9.22 9.15 12.19 12.12 14.56
95 10.71 10.75 10.68 13.93 13.75 16.43
99 14.16 14.13 13.77 17.54 17.61 19.78

Note:
Simulated distributions ware conducted for specifications from table B.10 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.11: Distribution of Garcia’s SupC statistics: REXP(80%)-

DAX30(20%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.90 1.90 1.86 3.52 3.47 4.88
5 2.52 2.53 2.53 4.39 4.35 5.99
10 2.97 2.96 2.94 4.99 4.94 6.65
15 3.30 3.31 3.28 5.43 5.39 7.14
20 3.60 3.59 3.56 5.79 5.76 7.57
25 3.86 3.85 3.84 6.15 6.11 7.98
30 4.12 4.10 4.11 6.44 6.44 8.34
35 4.38 4.37 4.36 6.75 6.76 8.70
40 4.66 4.63 4.63 7.06 7.11 9.06
45 4.93 4.91 4.91 7.38 7.41 9.42
50 5.22 5.20 5.19 7.71 7.77 9.79
55 5.51 5.50 5.51 8.06 8.15 10.15
60 5.83 5.82 5.82 8.46 8.52 10.57
65 6.20 6.20 6.14 8.84 8.94 11.01
70 6.59 6.58 6.54 9.28 9.37 11.50
75 7.09 7.03 6.98 9.76 9.89 12.07
80 7.63 7.55 7.50 10.39 10.45 12.71
85 8.35 8.24 8.18 11.14 11.22 13.54
90 9.24 9.19 9.12 12.17 12.21 14.67
95 10.76 10.73 10.71 13.93 13.80 16.49
99 13.96 14.11 13.98 17.63 17.71 20.51

Note:
Simulated distributions ware conducted for specifications from table B.11 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.12: Distribution of Garcia’s SupC statistics: REXP(90%)-

DAX30(10%) (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.89 1.94 1.86 3.45 3.58 4.95
5 2.53 2.55 2.53 4.36 4.38 5.98
10 2.94 2.97 2.95 4.94 4.95 6.69
15 3.28 3.31 3.32 5.42 5.39 7.18
20 3.56 3.59 3.60 5.78 5.76 7.66
25 3.84 3.88 3.87 6.11 6.11 8.04
30 4.10 4.14 4.13 6.46 6.46 8.42
35 4.36 4.39 4.40 6.79 6.78 8.82
40 4.62 4.63 4.66 7.10 7.11 9.18
45 4.89 4.91 4.93 7.43 7.40 9.54
50 5.17 5.19 5.21 7.76 7.70 9.91
55 5.47 5.49 5.52 8.13 8.05 10.31
60 5.80 5.82 5.87 8.50 8.44 10.75
65 6.14 6.14 6.21 8.88 8.87 11.17
70 6.56 6.54 6.61 9.30 9.32 11.64
75 7.00 6.97 7.05 9.83 9.86 12.17
80 7.53 7.46 7.59 10.47 10.44 12.85
85 8.21 8.16 8.26 11.23 11.22 13.70
90 9.13 9.07 9.16 12.25 12.27 14.80
95 10.61 10.59 10.76 13.85 13.98 16.58
99 14.01 14.05 13.97 17.85 17.38 20.00

Note:
Simulated distributions ware conducted for specifications from table B.12 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Table J.13: Distribution of Garcia’s SupC statistics: REXP (1.1975-12.2004)

Quantile MS(1-2) MS(2-1) MS(2-2)
(%) AR(0) AR(1) AR(0) AR(1) AR(0) AR(1)

1 1.85 1.91 1.88 3.48 3.45 4.90
5 2.47 2.56 2.54 4.42 4.37 6.04
10 2.93 2.97 2.96 4.99 4.96 6.68
15 3.25 3.32 3.27 5.41 5.41 7.18
20 3.54 3.59 3.58 5.77 5.78 7.60
25 3.82 3.87 3.84 6.15 6.12 7.99
30 4.09 4.15 4.10 6.50 6.46 8.38
35 4.38 4.41 4.39 6.80 6.77 8.74
40 4.64 4.68 4.65 7.11 7.09 9.08
45 4.93 4.95 4.91 7.42 7.45 9.46
50 5.22 5.24 5.19 7.79 7.77 9.80
55 5.53 5.54 5.47 8.17 8.14 10.22
60 5.85 5.85 5.79 8.53 8.49 10.65
65 6.22 6.17 6.18 8.95 8.92 11.14
70 6.58 6.56 6.57 9.41 9.36 11.62
75 7.05 7.03 7.02 9.96 9.89 12.19
80 7.58 7.56 7.55 10.58 10.48 12.88
85 8.28 8.28 8.18 11.30 11.27 13.66
90 9.28 9.17 9.13 12.30 12.26 14.73
95 10.80 10.59 10.63 13.99 13.80 16.38
99 14.20 14.29 14.17 18.09 17.51 19.93

Note:
Simulated distributions ware conducted for specifications from table B.13 and 10,000 sim-
ulations. MS(m-s)-AR(p) denotes a Markov switching model with m mean equations, s
regimes for the variance and p auto-regression lags in each mean equation.
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Appendix K

Impact of the guarantee level

on the guarantee risk
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Figure K.1: Impact of the guarantee level on risk measures (pure bond port-

folio)
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation

Note:
The figure depicts the impact of the guarantee level on the normalized guarantee cost using
the example of the pure stock (to left panel), the fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel). The cost is computed for the MS(1-2) model
under the Esscher probability measure. The thin dashed line represents the guarantee of
-2% p.a., the thick dashed line – 0% p.a., the thin solid line – 2% p.a., and the thick solid
line – 4% p.a., respectively.
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Figure K.2: Impact of the guarantee level on risk measures (50%-50% stock-

bond portfolio)
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation Normalized mean excess loss

Note:
The figure depicts the impact of the guarantee level on the normalized guarantee cost using
the example of the pure stock (to left panel), the fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel). The cost is computed for the MS(1-2) model
under the Esscher probability measure. The thin dashed line represents the guarantee of
-2% p.a., the thick dashed line – 0% p.a., the thin solid line – 2% p.a., and the thick solid
line – 4% p.a., respectively.
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Figure K.3: Impact of the guarantee level on risk measures (pure stock port-

folio)
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation Normalized mean excess loss

Note:
The figure depicts the impact of the guarantee level on the normalized guarantee cost using
the example of the pure stock (to left panel), the fifty-fifty stock-bond (top right panel),
and the pure bond portfolio (bottom panel). The cost is computed for the MS(1-2) model
under the Esscher probability measure. The thin dashed line represents the guarantee of
-2% p.a., the thick dashed line – 0% p.a., the thin solid line – 2% p.a., and the thick solid
line – 4% p.a., respectively.
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Figure K.4: Sensitivity of risk measures to changes in the guarantee level

(pure bond portfolio)
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation

Note:
The figure depicts the sensitivity of the normalized cost to the change of the guarantee
level using the example of the pure stock (to left panel), the fifty-fifty stock-bond (top
right panel), and the pure bond portfolio (bottom panel). The cost is computed for the
MS(1-2) model under the Esscher probability measure. The thin dashed line represents
the guarantee increase from -2% to 0% p.a., the thick dashed line – from 0% to 2% p.a.,
and the solid line – from 2% to 4% p.a., respectively.
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Figure K.5: Sensitivity of risk measures to changes in the guarantee level

(50%-50% stock-bond portfolio)
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation Normalized mean excess loss

Note:
The figure depicts the sensitivity of the normalized cost to the change of the guarantee
level using the example of the pure stock (to left panel), the fifty-fifty stock-bond (top
right panel), and the pure bond portfolio (bottom panel). The cost is computed for the
MS(1-2) model under the Esscher probability measure. The thin dashed line represents
the guarantee increase from -2% to 0% p.a., the thick dashed line – from 0% to 2% p.a.,
and the solid line – from 2% to 4% p.a., respectively.
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Figure K.6: Sensitivity of risk measures to changes in the guarantee level

(pure stock portfolio)
Shortfall probability Normalized shortfall expected value

Normalized shortfall st. deviation Normalized mean excess loss

Note:
The figure depicts the sensitivity of the normalized cost to the change of the guarantee
level using the example of the pure stock (to left panel), the fifty-fifty stock-bond (top
right panel), and the pure bond portfolio (bottom panel). The cost is computed for the
MS(1-2) model under the Esscher probability measure. The thin dashed line represents
the guarantee increase from -2% to 0% p.a., the thick dashed line – from 0% to 2% p.a.,
and the solid line – from 2% to 4% p.a., respectively.
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Appendix L

Impact of time and the contract

term on the guarantee shortfall

risk (life-cycle strategies)
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Figure L.1: Impact of time and the contract term on the shortfall probability

(life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy

continued on the next page
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continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line – for a 20-year contract, and the thin solid line – for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Figure L.2: Impact of time and the contract term on the normalized shortfall

expectation (life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy

continued on the next page
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continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line – for a 20-year contract, and the thin solid line – for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Figure L.3: Impact of time and the contract term on the normalized shortfall

standard deviation (life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy

continued on the next page
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continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line – for a 20-year contract, and the thin solid line – for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Figure L.4: Impact of time and the contract term on the normalized mean

excess loss (life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy

continued on the next page
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continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line – for a 20-year contract, and the thin solid line – for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Figure L.5: Impact of time and the contract term on the normalized condi-

tional shortfall standard deviation (life-cycle strategies)

Aggressive strategy

Moderate strategy

100-x investment rule

Note:
The figure depicts the impact of time and contract term on the normalized guarantee
cost. The cost is computed for the MS(1-2) model under the Esscher probability measure.
The thick dashed line shows how the normalized cost changes through time for a 10-
year contract, the thin dashed line – for a 20-year contract, and the thin solid line – for
a 30-year contract, respectively. The thick solid line shows the normalized contract at
contract maturity. The left column represents the 0% guarantee, and the right row the
4% guarantee.
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Appendix M

Impact of the contribution

payment scheme on the

guarantee shortfall risk

(life-cycle strategies)
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Figure M.1: Impact of the contribution payment scheme on the shortfall

probability (life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy

continued on the next page
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continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (¤1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis – the normalized
guarantee cost in per cent.
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Figure M.2: Impact of the contribution payment scheme on the normalized

shortfall expectation (life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy
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continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (¤1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis – the normalized
guarantee cost in per cent.
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Figure M.3: Impact of the contribution payment scheme on the normalized

shortfall standard deviation (life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy
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continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (¤1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis – the normalized
guarantee cost in per cent.
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Figure M.4: Impact of the contribution payment scheme on the normalized

mean excess loss (life-cycle strategies)

Aggressive strategy

Moderate strategy

Conservative strategy

continued on the next page

428



continued from the previous page

Naive strategy

100-x investment rule

Note:
The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (¤1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis – the normalized
guarantee cost in per cent.
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Figure M.5: Impact of the contribution payment scheme on the normalized

conditional shortfall standard deviation (life-cycle strategies)
Aggressive strategy

Moderate strategy

Conservative strategy
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continued from the previous page
Naive strategy

100-x investment rule

Note:
The figure depicts the impact of the payment scheme on the normalized guarantee cost
using the example of life-cycle strategies. The solid line represents the periodic payment
scheme (¤1200 up-font yearly) and the dashed line the single premium case. The single
premium is equal to the net present value of periodic contributions. The left column
shows contracts with a 0% guarantee and the right column contracts with a 4% guarantee.
The x-axis shows the time/contract maturity in years and the y-axis – the normalized
guarantee cost in per cent.
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