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Abstract

The continuous-time principal-agent model with exponential util-
ity developed by Holmstrém and Milgrom (1987) admits a simple
closed-form solution: The second-best sharing rule is a linear func-
tion of aggregated output. Here, we show that the first-best sharing
rule is also linear in aggregated output. The result follows immedi-
ately from the separability of the problem and the fact that principal
and agent both have CARA utility.
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Schweizerischer Nationalfonds and Deutsche Forschungsgemeinschaft, Sonderforschungs-
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Editor whose suggestions led to a tremendous improvement of the paper. Also, I would
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1 Introduction

The continuous-time principal-agent model with exponential utility was in-
troduced by Holmstrém and Milgrom (1987) and later generalized by Schét-
tler and Sung (1993, 1997) and Sung (1995). In this model, an agent contin-
uously controls the drift of a Brownian motion during a fixed time interval.
Unlike the static principal-agent model, the continuous-time version admits a
simple closed-form solution: The second-best sharing rule is a linear function
of aggregated output. In this paper, we show that the first-best sharing rule
is also linear in aggregated output.

The result follows from the fact that in the absence of incentive constraints
the principal’s problem is separable. Given the optimal action, efficient risk-
sharing dictates the usual linear sharing rule implied by CARA utility due to
the equality of marginal rates of substitution across states. Incidentally, this
has nothing to do with the agent’s control or the form of the technology. By
contrast, the second-best linearity result derived by Holmstrém and Milgrom
depends critically on the stationarity of the technology and the constancy of
the optimal control. The production technology can be thought of as having
a riskless output (as a function of the action choice) plus independent noise.
Therefore, the optimal action is obtained by dominance, maximizing net
output. The only place where the technology and preferences interact is in
the computation of the exact sharing of gains to trade. This is reflected in
the specific parameters of the optimal sharing rule which are determined by
efficiency and the agent’s individual rationality constraint.

2 The Model and Second-Best Sharing Rule

For ease of exposition, we confine ourselves to the case of one-dimensional
Brownian motion. The notation is primarily adopted from Schéattler and
Sung (1993). At time 0, principal and agent agree on a sharing rule which
specifies a payment from the principal to the agent at time 1. The sharing
rule may depend on a stochastic outcome process X defined on the interval
[0, 1] which satisfies Xy = 0 and which is publicly observable. Formally, X is
governed by a stochastic differential equation of the form

dX; = f () dt + 0dB,, (1)

where f (u;) is the instantaneous mean, u; = u; (¢, X) is the agent’s control
at time ¢, o is the diffusion rate, and B is a standard Brownian motion.
The principal receives the end-of-period output X;. Besides, the principal
can observe the process X, but not the agent’s control. Let (Q, F, P) denote
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the underlying probability space. The control u is an F;—predictable process
with values in some open bounded control set U C R,. That is, the agent’s
control can be revised continuously during the time interval [0, 1] and may
depend on the history of X in [0,¢]. but not on the future (¢,1]. Denote the
class of all such processes by Y. The "production function” f (-) is bounded
with derivatives f'(-) > 0 and f”(-) < 0, and the diffusion rate lies in
some bounded subset of R4y. The agent incurs effort cost ¢ (u;), where ¢(+)
is bounded with derivatives ¢ (-) > 0 and ¢”(-) > 0. Finally, principal and
agent both have negative exponential von Neumann-Morgenstern utility with
constant coefficient of risk aversion R and r. respectively.

The principal’s second-best problem is to choose a sharing rule S and a
control u that maximize her expected utility subject to the usual individ-
ual rationality and incentive compatibility constraints. Let W, denote the
agent’s certainty equivalent at time 0. The principal solves

max B [—exp {~R(Xi - 5)}] (2)
- dX; = f (us) dt + od By, (3)
E [— exp{—v“ (S — /Olc(ut) dt) H > —exp{—rWa}, (4)

and

u €arg max I |—exp {—r (S - /0] c () dt) H (5)

aueU
Holmstrém and Milgrom (1987) and Schittler and Sung (1993) show that

the optimal sharing rule takes the form

o Cw)
S* = Kk
)

where K is a constant. Hence, the second-best optimal control is constant

Xi, (6)

(i.e. uf = u*) and the agent’s remuneration is a linear function of aggregated
output X;. However, Schittler and Sung (1997) have pointed out that the
slightest deviation from the model such as the introduction of a time- or
state-dependent drift or cost function yields a (stochastic) feedback control
and typically destroys the linearity result.

3 The First-Best Sharing Rule

In a first-best world, the agent’s control is observable and can be enforced at
no cost. The principal’s first-best problem is

max E[—exp {~R(X; - 5)}] (7)
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s.t.

and

FE [— exp{—r <S - /Olc(ut) dt) H > —exp{—rWa}, (9)

In the absence of incentive constraints, this problem is separable and can be
solved as a standard static risk-sharing problem. The following proposition
shows that the optimal control is constant and the optimal sharing rule is a
linear function of aggregated output Xj.

Proposition 3.1: The first-best sharing rule is

X;. 1
R+r b (10)

where K is a constant. Moreover, the first-best control is constant, unique,
and determined by the equality of marginal productivity and marginal cost

[ (uwg) = (upp). (11)

Proof: Define net compensation as Z = S — [ ¢ (u¢) dt. The problem
can be simplified further by integrating (8) and inserting the result in (7).
The principal’s first-best problem can then be expressed as

max F [— exp {—R <031 + /01 [f (ue) — c(ug)] dt — Z) H (12)

Zu

s.t.
El—exp{—rZ}] > —exp{—rWix}. (13)

Pointwise maximization yields the first-order conditions
f (uipp) = ¢ (uipp) (14)

for all ¢, and

1 Ar 1 R
7 = () = R [ cluipg)di| + ——xi. 15

R—I—rln(}?) Oc(utFB> ]—I_R—I—r 1 (15)
where X; = aB; + [y f(us)dt, and where X is the Lagrangean multiplier.
Constancy and uniqueness of the first-best control follows from (14) and
the fact that f(-) and ¢(-) are strictly concave and convex, respectively.



Finally, substituting back Z* = S5, — fo ¢ (u/g) dt in (15) and setting K =
R:-r {ln (%) +r fy e (Wpp) dt} yields (10). m

Proposition 3.1 follows immediately from the separability of the problem.
Since both parties have CARA utility, efficient risk-sharing dictates that
principal and agent share the risk linearly in proportion to their share of
total absolute risk tolerance.
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