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Introduction

Models of learning and adaptive behavior have received much attention in the Economic 
literature in recent years. Different classes of learning approaches have been proposed, which 
vary in  a  variety  of  dimensions,  such as  the  requirements  on individuals'  rationality,  the 
degree of interaction, the number of interacting individuals as well as the time-horizon. In 
this dissertation, I focus on two classes of learning models, which are particularly important.
    
The first two papers study the long-run outcome of learning in situations in which a large 
number of players interact repeatedly. A central assumption here is that players do not carry 
out complex strategic considerations but rather follow relatively simple decision rules which 
are  based on past  experience.  It  is  often argued that  such  approaches  do a  better  job in 
capturing  the  behavior  of  real-world  decision  makers  than  models  which  assume ideally 
rational behavior. In the paper On the Dynamics in a Market for long-term Relationships, I 
study a model in which players are faced with a modified version of the Prisoner’s Dilemma 
which gives them the choice between either maintaining or quitting the relationship with their 
current partner. I show that limited information about the environment combined with simple 
learning behavior may induce players to adopt cooperation in the long run. Moreover, in the 
paper  Learning under  Incomplete  Information with Applications  to  Auctions,  I  show that 
bidders may adopt highly rational bidding strategies over time, even if they employ simple 
adaptive  learning  rules.  This  result  allows  for  a  reinterpretation  of  classical  equilibrium 
results in the following sense. While such approaches view the equilibrium of an auction as 
the  result  of  careful  reasoning  among  highly  rational  bidders,  I  argue  that  a  bidding 
equilibrium  can  also  be  viewed  as  the  long-run  outcome  of  interaction  between  less 
sophisticated bidders.

There is another important class of learning models, which is generally referred to as the class 
of herding models. The main objective of this literature is to explain phenomena of uniform 
social  behavior,  such  as  fads,  fashions  or  stock  market  bubbles.  This  literature  studies 
situation in which rational individuals observe the actions of others and draw conclusions 
about the private information underlying these actions. The bulk of the literature assumes that 
payoffs only depend upon the information of others, but not on their actions. Since this seems 
to be at odds with many real-world situations, the paper Observational Learning & Strategic  
Externalities analyzes  a  herding  model  in  which  there  is  a  direct  dependence  between 
individuals'  payoffs  and  the  actions  of  others.  I  study  how  this  assumption  affects  the 
incentives to imitate others and under which conditions uniform behavior occurs.
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1 Introduction

Both the theoretical and experimental literature on cooperation in the pri-
soner’s dilemma (PD) mostly concentrated on settings in which agents play
the PD repeatedly against exogenously determined opponents1. For many
cases in real-life situations, such as labor markets or business relations, this
is unnatural: One usually has the option to maintain or to quit the relation-
ship with a certain person. However, a framework in which agents have this
option, has rarely been analyzed. For a summary, see Mailath and Samuelson
(2006), chapter 5.2.

In this paper, we therefore consider the following setup: After observing
the opponent’s action choice in the stage game (the PD or a variation of the
PD), each agent of an infinite population has the option to maintain or to quit
the relationship with her current opponent. If and only if both agents choose
the first option, they play against each other in the next period with positive
probability. Otherwise they return to a “market for long-term relationships”
and are matched randomly to other players in this market. The matching
process in the market is global and non-assortative. Furthermore, there are
no information flows between pairs.

The most important contribution for this game was made by Gosh and
Ray (1996): There are two types of agents in the population—myopic and
patient ones. Patient players “test” their opponent in the first periods of a
new relationship by increasing slowly the degree of cooperation. While myopic
players defect after few periods and the relationship is broken up subsequent-
ly, patient agents maintain the relationship and continue to cooperate. With
this strategy of “starting small”, any gain from defection is wiped out by the
subsequent restart of a phase of low payoffs in the new relationship. However,
the resulting equilibrium relies on two assumptions:

(1.) Players know the aggregate play of agents in the market.

(2.) There are fixed shares of myopic and patient individuals.

In a paper by Datta (1993), the second assumption is suppressed. The strate-
gies are the same, i.e., in the first periods of a new relationship agents choose

1For the theory on infinitely repeated games with fixed opponents, see Mailath and Sa-
muelson (2006) as reference, experiments were conducted by Roth and Murnighan (1978),
Murnighan and Roth (1983), Aoyagi and Fréchette (2003), Dal Bó and Fréchette (2007)
or Duffy and Ochs (2003). Cooperation in random matching games was analyzed theo-
retically by Ellison (1994) and Kandori (1992). Experimental evidence on cooperation in
random matching games can be found in Duffy and Ochs (2003), and in one-shot games
for example in Brosig (2001).
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not to cooperate (or only a very small degree of cooperation) and start to
cooperate in later periods. With this strategy, cooperation can be established
in an homogenous population. Gosh and Ray (1996) note that the conside-
red strategy then does not fulfill the criterion of “bilateral rationality”: Given
that all other players in the population stick to the described path of play,
it is optimal for two agents who meet for the first time in the market, to
quit the punishment in the first periods and to start the relationship with
cooperation immediately. This would not violate any incentive constraint.
However, if all pairs act in this way, we are no longer in equilibrium. Thus,
there is no cooperative equilibrium in the above game in a homogenous po-
pulation in pure strategies which do not violate the refinement of “bilateral
rationality”. Conventional approaches therefore do not provide a convincing
solution.

We solve this dilemma by dropping also the first assumption: Players
do not know the aggregate play of agents in the market. They only know
that some agents play according to a “cooperative strategy” (for example, a
“starting small” strategy as in the papers cited above), which entails a long-
term relationship, and some agents play according to a “non-cooperative
strategy”, which is to defect in each period. Thus, after finite time each
agent knows the play of her current opponent. Players choose to maintain the
relationship with their current opponent if and only if her play is consistent
with the cooperative strategy. Furthermore, they have a subjective belief
µ̃ about the share of agents in the market µ who play according to the
cooperative strategy. Agents update this belief based on past experiences.
For a given subjective belief, they choose the strategy which maximizes the
sum of discounted expected payoffs.

The cooperative strategies we consider start with T ∗ periods of defection,
i.e., we allow for “starting small” strategies. However, we are mainly intere-
sted to what extent cooperation can prevail in the population if long-term
relationships start with cooperation immediately which means that T ∗ = 0.
Note that such a strategy would never support a symmetric Nash equilibrium
in pure strategies with cooperation. We will see that cooperation in the po-
pulation may be a stable outcome even if T ∗ = 0. Therefore, we do not only
drop an unrealistic assumption, we also maintain a more plausible solution,
as the outcome of a cooperative relationship can not be improved by players,
and therefore agents’ behavior is “bilateral rational”.

As updating rule we take “fictitious play”, initially introduced by Brown
(1951) as a means of calculating Nash-equilibria and extensively studied the-
reafter. Under fictitious play, each player assumes that her opponents are
playing according to a stationary distribution. In each round, every indi-
vidual plays a best response to the empirical frequency of her opponent’s
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play—see for example Fudenberg and Levine (1998). In particular, players
do not try to influence the future play of their opponents. This assumption
may be problematic in small populations, but is very reasonable in large po-
pulation frameworks, where players will not meet again after a relationship
was broken up.

Due to the nature of the game, there is one important difference to the
standard fictitious play model: Agents count one opponent’s strategy choice
as one observation (and not one action choice). Two types of fictitious play
will be considered: In the first one, agents calculate the average behavior
using all their observations. In the second one, agent’s memory is limited to
the last n observations. Throughout the paper we assume that agents are
symmetric with respect to the updating rule.

The optimal strategy depends on the subjective belief. Assume, for ex-
ample, that the cooperative strategy prescribes to cooperate in each period.
Then we can observe the following:

• If an agent has met mainly players who followed the non-cooperative
strategy, then she assumes that the probability of meeting an agent
in the market who plays according to the cooperative strategy, is very
small and thus chooses the non-cooperative strategy in order to avoid
exploitation.

• If an agent has met mainly players who followed the cooperative stra-
tegy, then she assumes that the probability of meeting an agent in the
market who plays according to the cooperative strategy, is very high
and thus chooses the non-cooperative strategy in order to exploit future
opponents.

• If an agent has made mixed experiences, then she chooses the coopera-
tive strategy in order to establish a cooperative long-term relationship
which is expected to be more beneficial than staying in the market.

The goal of this paper is to analyze the aggregate dynamics in the population,
i.e., the evolution of the share of agents who choose the cooperative strategy.
We proof that with unlimited memory, beliefs converge to a single value
whenever aggregate play in the market converges. This value is consistent
with a Nash equilibrium of the game.

Under limited memory, beliefs may remain heterogenous even when ag-
gregate play converges. We show that the state in which all agents defect,
can be asymptotically stable—depending on the discount factor and the exo-
genous rate of breakup. Furthermore, if the cooperative strategy involves
sufficiently many periods of non-cooperation at the beginning of a relation-
ship, the state in which all agents play cooperatively, can be asymptotically
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stable. This result then replicates Datta (1993) without the assumption of
knowledge.

In general, the dynamics under both updating rules can not be deter-
mined explicitly and we are not aware of any method that allows to proof
convergence in our setting. We therefore simulate the model and focus on the
cooperative strategy which prescribes to start with cooperation immediately,
i.e. T* = 0. We observe that aggregate behavior always converges under both
specifications of the updating rule. For a large set of parameter specificati-
ons and distributions of initial beliefs, cooperation is a stable outcome. With
limited memory, aggregate behavior is in general inconsistent with the Nash
equilibrium of the game. Therefore, the results of the present approach may
differ substantially from the ones obtained in settings with the assumption
of knowledge of aggregate play.

In a further step, we consider the model for large but finite populations,
such that the outcome becomes stochastic. The main result is that the dyna-
mics resemble the ones obtained in an infinite population if the population
is sufficiently large. However, we also show that for some parameter values,
cooperation breaks down in a finite population, while it would be a stable
outcome in the infinite case under the same specification.

The rest of the paper is organized as follows: The next section outlines
the model. In chapter 3, we present the updating rules and derive analyti-
cal results regarding the stability and degree of cooperation. In chapter 4,
we summarize the results of the simulation. Most of our intuition for the
dynamics of the model will follow from this section. Chapter 5 extends the
model to finite populations. Readers who are not interested in determinstic
approximation may wish to skip this section. Chapter 6 concludes. All proofs
and figures can be found in the appendix.

2 The Basic Model

We consider an infinitely repeated two-player PD which is played simulta-
neously by a continuum of agents. Time is discrete and denoted by t ∈
{1, 2, ...}. Every agent plays the PD in each period with some opponent: an
agent has the options “cooperate” (C) and “do not cooperate” (D). Payoffs
are shown in the following matrix (where player 1 chooses rows and player 2
chooses columns):

D C
D 1, 1 H, 0
C 0, H G,G
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We fix G,H ∈ R with 1 < G < H < 2G, such that the sum of payoffs is
maximal at the profile (C,C). After observing the opponent’s action choice,
each agent has to choose whether to maintain (M) or to quit (Q) the current
relationship. If and only if both partners choose action M they play the game
together again in the next period with probability 1 − σ. The parameter σ
is the exogenous rate of breakup. If and only if an agent plays the PD in
period t with the opponent of the previous period, we call the link between
those two agents a long-term relationship. Agents who are not in a long-term
relationship in t, will be paired up randomly at the beginning of period t.
The pool of agents who are not in a long-term relationship at the beginning
of a period, will be called the ‘market for long-term relationships’.

2.1 Evaluation of the Current Opponent and Strate-
gies

Let c(t) be a counting function. If c(t) = i, then the agent plays the stage
game in period t against her i’th opponent. Accordingly, we have c(0) = 1.
Further, denote by T i ∈ N the number of periods in which the agent played
the PD with opponent number i until the current period. Let hT i be the
history of actions of opponent i in the T i periods in which an agent played
the PD with this opponent, i.e., each element in hT i is either D or C. Let
T, T ∗ ∈ N and define hcT as a history of actions where

• all elements are equal to D if T ≤ T ∗ and

• the first T ∗ elements are equal to D and the remaining ones are equal
to C if T > T ∗.

Then define the evaluation function as

g(hT i) =


1 if T i > T ∗ and hT i = hcT i
0 if T i ≤ T ∗ and hT i = hcT i
−1 otherwise

.

Whenever an agent is in the market, she chooses between two strategies:
a cooperative one, f cT ∗ , and a non-cooperative one, fdT ∗ . The strategies are
specified as follows:

f cT ∗ : Choose D if T i ≤ T ∗. Choose C if T i > T ∗. As long as the value of g
for your current opponent is equal to 0 or 1, choose M , otherwise Q.

fdT ∗ : Choose D in each period. As long as the value of g for your current
opponent is equal to 0 or 1, choose M , otherwise Q.
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The interpretation of the evaluation function g is then as follows: As long as
for a given opponent the value of g is equal to 0, an agent does not know
her strategy. If it is equal to 1, she knows that her opponent plays according
to the cooperative strategy, if it is equal to -1, she knows that her opponent
plays according to the non-cooperative strategy or any other strategy. If
T ∗ > 0, players start a long-term relationship with non-cooperation and
switch to cooperation after T ∗ periods. This sort of strategy decreases the
sum of expected discounted payoffs of agents who play according to the non-
cooperative strategy relative to cooperative agents.

2.2 Evaluation of the Population

Define by µ(t) the share of agents in the market in period t who play according
to the cooperative strategy. Each player has a subjective belief µ̃(t) over µ(t).
Let

hsc(t) = {g(hT−n+1), ..., g(hT c(t))}

be an agent’s history of evaluations in period t, where the vector

{g(hT−n+1), ..., g(hT 0)}, (1)

for n ∈ N, and g(hT i) ∈ {−1, 1} for all i ∈ {−n + 1, ..., 0}, determines
the agent’s subjective belief in the first period (the ‘preplay-observations’).
Denote by

HSc(n) =
{
{gi}i∈{1,...,n+c} | gi ∈ {−1, 0, 1}

}
the set of all histories of evaluations of length n+ c and by

HS(n) =
⋃
c>0

HSc(n)

the set of all finite histories of evaluations with length of at least n+ 1. For
given n, the belief in a period t then is given by an updating rule

µ̃ : HS(n)→ [0, 1].

Let µ̃(t) be the abbreviation for µ̃(hsc(t)).

2.3 Strategy Choice and Sequence of Events

Agents discount future gains with δ and maximize over the sum of discounted
expected utility. Each agent in the market chooses the strategy which yields
her the highest sum of discounted expected utility for given subjective belief
µ̃(t). Denote by E[fdT ∗ , µ̃(t)] the sum of discounted expected utility if in period
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t the non-cooperative strategy fdT ∗ is chosen, and by E[f cT ∗ , µ̃(t)] the sum of
discounted expected utility if in period t the cooperative strategy f cT ∗ is
chosen. For the case E[fd, µ̃(t)] = E[f c, µ̃(t)] we assume that agents select
the cooperative strategy. After some calculations (given in the appendix), we
find that

E[f cT ∗ , µ̃(t)] =
1 + δT

∗
(1− σ)T

∗
(µ̃(t)G− 1)

(1− δ)(1− δT ∗+1(1− σ)T ∗+1(1− µ̃(t)))
(2)

and

E[fdT ∗ , µ̃(t)] =
1 + δT

∗
(1− σ)T

∗
[(1− δ(1− σ))(µ̃(t)H + 1− µ̃(t))− 1]

(1− δ)(1− δT ∗+1(1− σ)T ∗+1)
. (3)

We summarize the collection of parameters of the game by Γ = {H,G, δ, σ}.
With equations (2) and (3), we can show the following result:

Lemma 1 [Cooperative Intervals]

(a) For any payoffs H, G and given T ∗, there are values δ̄ < 1, σ̄ > 0,
such that for δ ≥ δ̄ and σ ≤ σ̄ there is an interval ∇ = [µ

Γ,T ∗
, µ̄Γ,T ∗ ] with

0 < µ
Γ,T ∗

< µ̄Γ,T ∗ ≤ 1, where we have E[f cT ∗ , µ̃(t)] ≥ E[fdT ∗ , µ̃(t)] whenever

µ̃(t) ∈ ∇, and E[f cT ∗ , µ̃(t)] < E[fdT ∗ , µ̃(t)] otherwise.

(b) If T ∗ > H−G
G−1

, then for any µ̃∗ ∈ (0, 1], there are values δ̄ < 1, σ̄ > 0,

such that for δ ≥ δ̄ and σ ≤ σ̄, we have E[f cT ∗ , µ̃(t)] ≥ E[fdT ∗ , µ̃(t)] whenever
µ̃(t) ∈ [µ̃∗, 1].

Proof. See Appendix.

If T ∗ = 0, then for very small and very high values of µ̃, an agent in the
market chooses the non-cooperative strategy. In between, she chooses the
cooperative strategy if δ is sufficiently high and σ is sufficiently small. For an
example, consider figure (I). We plot the sum of expected discounted utility
for T ∗ = 0, T ∗ = 1 and T ∗ = 2. For T ∗ = 0 and Γ0 = {3.5, 2, 0.98, 0.08}, there
is no subjective belief at which an agent chooses the cooperative strategy.
For T ∗ = 0 and Γ1 = {3.5, 2, 0.98, 0.04}, we get that µ

Γ1,0
≈ 0, 083 and

µ̄Γ1,0 ≈ 0, 305. If we increase T ∗, the cooperative interval also increases. For
T ∗ = 2, we have that µ̄Γ1,2 = 1. The sequence of play in every period t is
then as follows:

(i) Pairs in which both agents have chosen M in the previous period, are
matched together with probability 1− σ.
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(ii) Those agents who were not matched in [(i)], are paired up randomly.

(iii) Those agents who are matched to a new opponent, choose a strategy
according to their current belief µ̃(t). All other agents maintain the
strategy from the last period.

(iv) The PD is played according to the respective strategies.

(v) Agents observe the action choice of their opponent and evaluate her
according to g.

(vi) Agents choose to maintain or to quit the relationship.

(vii) Agents update their beliefs to µ̃(t+ 1).

The assumption that agents only optimize when they are in the market, rules
out that a player starts the relationship with strategy f cT ∗ and switches to
fdT ∗ in the next period, after her opponent has been evaluated as cooperative.
Without this assumption, the values of µ̃(t) and µ(t) no longer would be one-
dimensional, as there are more than two types of observed behavior.

2.4 Nash Equilibria in Symmetric Strategies

Assume for a moment that agents have common knowledge of the aggregate
behavior of the population. Further assume that

0 < µ
Γ,T ∗

< µ̄Γ,T ∗ ≤ 1.

Then one can show that for the considered strategies there are two mixed
Nash-equilibria and one strict Nash-equilibrium in the described game:

(i) In the market, all agents play with probability µ
Γ,T ∗

according to f cT ∗

and with probability 1− µ
Γ,T ∗

according to fdT ∗ in each period.

(ii) In the market, all agents play with probability µ̄Γ,T ∗ according to f cT ∗
and with probability 1− µ̄Γ,T ∗ according to fdT ∗ in each period.

(iii) All agents play according to fdT ∗ in each period.

At a later stage, we will compare the outcome of the game without knowledge
of aggregate play to these equilibria.
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2.5 Distribution of States, Beliefs and Histories

Each updating rule µ̃ gives rise to a set of subjective beliefs B which poten-
tially are reached. Let

Y (t) ∈ ∆(BT ∗+2) (4)

be the distribution of states and beliefs in period t, i.e., a single element in
Y (t) is the share of players at the beginning of period t who have a certain
subjective belief and are (or are not) in a long-term relationship since l ∈
{1, ..., T ∗} or more periods. Accordingly, denote by

Y HS(t) ∈ ∆(HS(n)T
∗+2) (5)

the distribution of states and histories in period t, i.e., a single element in
Y HS(t) is the share of players who have the same history of evaluations and
are (or are not) in a long-term relationship since l ∈ {1, ..., T ∗} or more
periods. The sequences

Y = {Y (t)}t≥0

and
YHS =

{
Y HS(t)

}
t≥0

are implied by the updating rule µ̃, T ∗, n, Γ and the distribution of states
and beliefs in the initial period, Y HS(0). We will call such a sequence a
“process” without making further reference to the underlying parameters.
Define a function

τµ̃ : ∆(HS(n)T
∗+2)→ ∆(BT ∗+2),

which assigns to each element of ∆(HS(n)T
∗+2) the corresponding distribu-

tion of states and beliefs. Obviously, this mapping depends on the updating
rule µ̃. Therefore, we have

Y = {τµ̃FP (Y HS(t))}t≥0.

2.6 Definition of the Steady State and Stability

With the definitions of the preceding section, we can introduce the notion of
a steady state to our framework:

Definition [Steady state]

A distribution of states and beliefs Y ∗ ∈ ∆(BT ∗+2) is called a steady state
of Y if there exists a Y HS ∈ τ−1

µ̃ (Y ∗), such that Y HS(t) = Y HS implies
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Y HS(t+ s) ∈ τ−1
µ̃ (Y ∗) for all s > 0.

We classify the steady states as follows:

Definition [Classification of steady states]

A steady state Y ∗ ∈ ∆(BT ∗+2) of Y is called “non-cooperative” if the cor-
responding value of µ∗ equals 0, while it is called “cooperative” if µ∗ > 0. A
steady state Y ∗ with µ∗ = 1 is called “fully-cooperative”.

It is straightforward to adapt two important definitions of stability to our
framework.

Definition [Lyapunov stability]

A state Y ∈ ∆(BT ∗+2) is called Lyapunov stable with respect to Y if in every
neighborhood B of Y , there is a neighborhood B0 of Y with B0 ⊂ B, such
that for all t > 0, from Y (0) ∈ B0 ∩∆(BT ∗+2) it follows that Y (t) ∈ B.

Definition [Asymptotic stability]

An element Y ∈ ∆(BT ∗+2) is called asymptotically stable if it is Lyapunov
stable, and there is a neighborhood B of Y , such that from Y (0) ∈ B, it
follows that limt→∞ Y (t) = Y . Note that we defined stability as a property
of distributions of states and strategies, not histories. We therefore require
that for an element Y (t) ∈ ∆(BT ∗+2) which is sufficiently close to an asym-
ptotically stable steady state Y , we get convergence to Y , regardless of the
distribution of histories which generates Y (t).

3 On the Dynamics under Fictitious Play

3.1 Average over all Observations

Under fictitious play, every player has two weight functions κc(t) and κd(t)
from which she calculates the subjective belief about the aggregate play of
agents in the market. The weights are updated in the following way:

κc(t) =

c(t)∑
i=−n+1

1{g(hTi )=1},
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κd(t) =

c(t)∑
i=−n+1

1{g(hTi )=−1},

where 1 is the indicator function. Individual beliefs are given by

µ̃FP (t) =
κc(t)

κc(t) + κd(t)
.

The subjective belief in the first period, µ̃FP (0), therefore is determined by
(1): the more elements in (1) take on the value 1, the more optimistic is the
agent about the behavior of her opponents at the beginning. Since beliefs are
always given by a rational number, we have

B = R ∩ [0, 1].

The corresponding process YHS is called the fictitious play process. Let yµ̃(t)
denote the fraction of individuals in the market in period t with subjective
belief equal to µ̃ ∈ B and let ymµ̃ (t) denote the fraction of individuals in long-
term relationships with subjective belief equal to µ̃. For the case T ∗ > 0,
we denote the fraction of individuals which have been in a relationship for
l ∈ {1, ..., T ∗} periods and hold belief µ̃ by ylµ̃(t).

Definition [Convergence]

The process Y converges to Z ∈ ∆(BT ∗+2) if for all ε > 0, all µ̃∗ ∈ B
and all l ∈ {1, ..., T ∗} it holds that for t→∞ we have∑

µ̃∈[µ̃∗−ε,µ̃∗+ε]

yµ̃(t) →
∑

µ̃∈[µ̃∗−ε,µ̃∗+ε]

zµ̃,∑
µ̃∈[µ̃∗−ε,µ̃∗+ε]

ylµ̃(t) →
∑

µ̃∈[µ̃∗−ε,µ̃∗+ε]

zlµ̃,∑
µ̃∈[µ̃∗−ε,µ̃∗+ε]

ymµ̃ (t) →
∑

µ̃∈[µ̃∗−ε,µ̃∗+ε]

zmµ̃ .

For some value µ̃∗ ∈ B, let Yµ̃∗ ⊂ ∆(BT ∗+2) denote the collection of dis-
tributions of states and beliefs which assign their entire mass to belief µ̃∗.
Thus, Y0 ∈ ∆(BT ∗+2) is the distribution of states and beliefs where every
agent has a subjective belief of 0 and does not cooperate. With this, we can
state:

12



Lemma 2 [Beliefs under convergence]

Let Y ∗ ∈ ∆(BT ∗+2) and µ∗ the corresponding market share of cooperators. If
the fictitious play process converges to Y ∗ or if Y ∗ is a steady state (or both),
then Y ∗ ∈ Yµ∗.

Proof. See Appendix.

For the stationarity assumption of fictitious play to make sense, we are
particularly interested in the average behavior of the population. Since players
are randomly and anonymously assigned to each other, every individual be-
haves as if she was always assigned to the same opponent who plays a mixed
strategy given by the subjective belief µ̃(t). The crucial question is whether
the average play in the population converges, rather than convergence of indi-
vidual play. However, it can easily be checked from lemma 2 that convergence
of individual play (as defined before) is in fact equivalent to convergence of
aggregate play (convergence of µ). In particular, our model prevents deter-
ministic cycles on the individual level which can arise from correlated play
between players. Fudenberg and Kreps (1993) for example show that such
cycles may persist under fictitious play even if the empirical distribution of
actions converges. This is not possible in an anonymous random matching
scheme, where players can only observe the actions of their particular op-
ponents but ignore what the entire population is doing—compare Hopkins
(1995).

Proposition 1 [Limit points and steady states]

Assume that 0 < µ
Γ,T ∗

< µ̄Γ,T ∗ ≤ 1.

(a) The state Y0 is a steady state of the fictitious play process. There exists
a steady state Y ∈ Yµ̄Γ,T∗ if and only if µ̄Γ,T ∗ = 1. There are no other steady
states.

(b) If fictitious play converges to some Y ∈ ∆(BT ∗+2), then either Y = Y0,
Y ∈ Yµ

Γ,T∗
or Y ∈ Yµ̄Γ,T∗ .

Proof. See Appendix.

One of the standard results about fictitious play states that every strict
Nash equilibrium is an absorbing state—see for example Fudenberg and Le-
vine (1998). The first part of proposition 1 shows that this result also holds in
our framework. Another well known result about fictitious play is that if the
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empirical distribution over player’s choices converges, then the corresponding
strategy profile is a Nash equilibrium. This is what is stated in the second
part of proposition 1. With the above learning rule, individuals asymptoti-
cally learn the true parameter µ—given that µ converges—and the limit sets
support homogeneous beliefs. This property assures that we get a very clear
prediction about the limit of the learning process.

3.2 Average over finitely many Observations

Under the previous updating rule, the speed of belief updating converges to
0. This is implausible whenever µ changes over time. The speed of updating
remains constant if in a given period t, only the last n observations determine
the subjective belief. This is also more appropriate if the agents’ memory is
finite and, more importantly, players account for the dynamic structure of the
market. A subjective belief µ̃(t) then can take on only finitely many values,
such that

B =

{
0,

1

n
, ...,

n− 1

n
, 1

}
. (6)

Note that there is a trade-off in the size of n: If µ remains constant over time,
the agent has a more precise estimate of µ if n is large. However, as long as µ
varies over time, agents should replace very old observations quickly by new
ones such that n should be limited. Define

k(t) = argk∈N


c(t)∑
i=k

1{g(hTi )6=0} = n

 .

In words: k(t) is the oldest of n observations with g(hT i) ∈ {−1, 1}, i.e.,
observations with an evaluation equal to 0 are not taken into account. As all
of the considered observations have the same weight, the required updating
rule is given by

µ̃A(t) =
1

n

c(t)∑
i=k(t)

1{g(hTi )=1}.

The subjective belief in the first period is again determined by the vector
given in (1). As µ̃(t) can take on only finitely many values given in (6), we
introduce the following notation related to the boundaries µ

Γ,T ∗
and µ̄Γ,T ∗ :

kΓ,T ∗,n = [nµ
Γ,T ∗

]+, (7)

k̄Γ,T ∗,n = [nµ̄Γ,T ∗ − 1]+,

14



where [·]+ denotes the smallest integer which is larger or equal than the
expression in the brackets. In order to keep notation tractable, we drop the
subscripts {Γ, T ∗, n} in the following. If δ and n are sufficiently large and σ
is sufficiently small, then k < k̄ and strategy f cT ∗ is chosen in t if and only if

µ̃(t) ∈
[
k
n
, k̄
n

]
.

Consider first the cooperative strategy with T ∗ = 0. The set of distribu-
tions of beliefs and strategies is then given by ∆(B2). Define the elements
of Y (t) ∈ ∆(B2) as follows: yi(t) is the share of players in period t who are
in the market and have the belief µ̃(t) = i

n
, i ∈ {0, 1, ...n}. Furthermore, let

ymi (t) be the share of players who are in a long-term relationship and have
the belief µ̃(t) = i

n
. The share of agents in the market with strategy f c0 in

period t therefore is given by

yC(t) =
k̄∑
i=k

yi(t),

where the share of agents in the market with strategy fd0 is

yD(t) =

k∑
i=0

yi(t) +
n∑
i=k̄

yi(t).

With these specifications, we get

µ(t) =
yC(t)

yD(t) + yC(t)

as the share of agents in the market who behave cooperatively.

Obviously, for each T ∗ the element of ∆(BT ∗+2) with y0 = 1 is a steady state.

Proposition 2 [Non-cooperative steady state]

Assume that for all agents µ̃ is given by µ̃A, T ∗ = 0 and n ≥ 2, such that
n and Γ imply k ≥ 2. Then, the element Y ∈ ∆(B2) with y0 = 1 is an
asymptotically stable steady state.

Proof. See Appendix.

Now assume that T ∗ > 0. Then, there is a share of agents in a long-term
relationship whose opponent’s evaluation still is equal to zero. Denote the
share of players in period t who have the subjective belief i

n
and are in a

15



long-term relationship since l ∈ {1, ..., T ∗} periods, by yli(t). The function µ̃A

is specified such that the belief does not change if the relationship is broken
up by chance before agents start to cooperate. We have

yl+1
i (t) = (1− σ)yli(t− 1) (8)

for i ∈ {0, ..., n} and l ∈ {1, ..., T ∗ − 1}. From Lemma 1(b) it follows that
for appropriate values of δ and σ, we have k = 1 and k̄ = n if T is chosen
sufficiently large. Then we get the following result.

Proposition 3 [Fully cooperative steady state]

Assume that for all agents µ̃ is given by µ̃A, n > 2 and that for given payoffs
H, G, we have T ∗ > H−G

G−1
. Then, there are values δ̄, σ̄, such that for δ ≥ δ̄,

σ ≤ σ̄ and y0(0) < 1, we have limt→∞ µ(t) = 1, i.e., the fully cooperative
steady state is asymptotically stable.

Proof. See Appendix.

Thus, if the cooperative strategy involves sufficiently many periods of
non-cooperation at the beginning of each relationship, we get almost global
convergence to the fully cooperative steady state. Note that in this case
each agent’s subjective belief converges to 1 and behavior again converges
to a Nash equilibrium. We therefore obtain the same results as in models
with the assumption of common knowledge. However, for smaller values of
T ∗, it remains subject to simulations of the model, under which conditions
convergence occurs and cooperation is a stable outcome.

4 Simulation

To complement on the analytical results of the last section, we simulated2

the model for many parameter specifications Γ. We are mainly interested in
the question whether µ converges to a limit point µ∗ or not. In this section,
we present the results for some illustrative examples. The statements below
are valid for all specifications we ever considered. We spend most efforts on
scenarios with T ∗ = 0, as

• for T ∗ > 0 and µ̄Γ,T ∗ < 1, we make the same observations,

• for T ∗ > 0 and µ̄Γ,T ∗ = 1, we have an analytical result on the outcome
(for δ sufficiently high and σ sufficiently small) in the propositions 1
and 3

2The code can be downloaded from http://www.vwl.uni-mannheim.de/gk/ gaigl.
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• for T ∗ = 0 the cooperative strategy is robust against communicati-
on: players can not improve the outcome of a cooperative long-term
relationship.

For each of the considered scenarios Γ, we vary n ∈ {5, 10, 20}, and the dis-
tribution of initial beliefs. Note that for µ̃FP the number n has only meaning
for the distribution of beliefs in the initial period. The distributions of beliefs
for each n are given table (I).

For µ̃A we specify that in the first period, all histories which give rise to
the same belief, have the same relative frequency. The following scenarios,
Γ1, Γ2, Γ3 and Γ4, imply different cooperative intervals (for T ∗ = 0):

H G δ σ µ
Γ,0

µ̄Γ,0

Γ1 3.5 2.0 0.98 0.04 0.083 0.305
Γ2 3.5 3.0 0.98 0.04 0.032 0.780
Γ3 2.0 1.5 0.99 0.01 0.044 0.467
Γ4 2.0 1.9 0.99 0.01 0.023 0.899

Whether a limit point µ∗ is implied by a steady-state or not, we know for
µ̃FP from the proposition 1. For µ̃A we can conclude that this is the case if
the distribution of beliefs converges to a constant Y ∗ ∈ ∆(B2).

The results of the presented examples are summarized in table (II). We im-
mediately recognize:

Observation 1a Under µ̃FP , µ converges under all scenarios, values of n
and initial beliefs to either µ∗ = 0 or µ∗ = µ̄Γ,0.

The intuitive reason for this observation is that only the players that hold
beliefs in the neighborhood of µ

Γ,0
and µ̄Γ,0 change their actions as a result

of changing belief. Since the size of the change in individual beliefs goes to
zero over time, either the rate in which these players switch between actions,
goes to zero, or the agents’ beliefs become closer to 0, µ

Γ,0
or µ̄Γ,0. Therefore,

the distribution of beliefs in the population converges to a single value.
We find that the cooperative limit point is always given by µ̄Γ,0. This

can be explained intuitively as follows: any belief distribution concentrated
around µ̄Γ,0 that assigns more than mass µ̄Γ,0 to cooperative beliefs, satisfies
µ > µ̄Γ,0. Since individual’s beliefs approach µ over time, more and more
individuals switch to defection and hence, µ decreases. The reverse argument
shows that the share of cooperators in the market increases if µ < µ̄Γ,0. For
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µ
Γ,0

this argument does not work: If µ > µ
Γ,0

holds for several periods, more

and more agents switch to the cooperative strategy such that µ increases
even further.

Observation 1b Under µ̃A, µ converges under all scenarios, values of n
and initial beliefs.

To the best of the author’s knowledge, there is no setting in which µ does
not converge to a single value. However, among the different updating rules,
the dynamics in the market in the first periods and the number of periods,
until µ is close to the respective limit point, may vary substantially—see
figure (II), [TOP]. We also can observe that the smaller σ is, the slower µ
convergences, as agents are less often in the market.

Observation 2 Under the updating rules µ̃FP and µ̃A, we have µ∗ > 0
if the distribution of initial beliefs is not too pessimistic.

We see from the table (II) that under µ̃A, there is no case in which µ conver-
ges to 0 although under some distributions of initial beliefs, agents are quite
pessimistic in the first periods. Under µ̃FP , a cooperative outcome is reached
if the distribution of initial beliefs is not too pessimistic.

This observation is of course dependent on the fact that there are some
cooperative agents in the initial period. If µ(0) = 0, then µ stays at this
level forever. Very pessimistic beliefs in the first period are less harmful for
cooperation if memory is finite, as preplay-observations will be substituted
by more recent ones. This is not the case under µ̃FP , where agents recall the
entire history of preplay-observations: the non-cooperative steady state is re-
ached if the subjective beliefs in the initial period are very pessimistic—see
figure (II), [Top-left].

Observation 3 The limit points of the updating rules can differ substan-
tially.

We can observe that the conditions in the market for long-term relation-
ships vary among the different updating rules: Under µ̃A, the cooperative
limit point µ∗ is bounded away from 0 and 1. The limit points under µ̃FP

and µ̃A can differ substantially—see for example in the scenarios Γ2 and Γ4.
In general, aggregate play does not converge to the Nash equilibrium under
the updating rule with limited memory.
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Finally, we display in figure (II), [BOTTOM], the distribution of beliefs
in the market for all updating rules, when µ is close to its limit point in
scenario Γ1: Under µ̃FP , beliefs are distributed closely around µ̄Γ1,0 and will
converge even further in the next periods. For µ̃A, we get significant variation
in the distribution subjective beliefs in the steady state.

5 The Finite Population Process and its De-

terministic Approximation

Up to now we used deterministic processes in order to analyze the population
dynamics. We understood them as approximations to the stochastic popula-
tion processes that occur when finitely many agents are randomly matched
for interaction. In this section we explore whether the deterministic process
is in fact a good approximation of the stochastic population process as the
population size goes to infinity. In particular, we are interested in the relati-
onship between the long run behavior of the deterministic and the stochastic
process.3

In order to be consistent with the infinite population case, we must the-
refore exclude that players hold different beliefs about every particular op-
ponent. We achieve this by assuming that players are matched anonymously.
Moreover, we assume that players do not carry out any strategic reasoning,
but simply play best responses to their current beliefs. This is a weak as-
sumption in finite, but large population because every action has a very
small effect on the overall dynamics.

In order to provide the first result, we look at some arbitrary period t and
therefore skip time indices. We abstract from the set of matched players and
only analyze the matching procedure in the market. Let M denote the num-
ber of individuals in the market. Consider the standard matching procedure
that assigns one partner to every player, such that all pairs are equally likely.
For any hs ∈ HS(n), let the random variable mM(hs, f cT ∗) denote the frac-
tion of players with history of evaluations hs that are matched to a partner

3This deterministic approximation approach is frequently used by biologists and eco-
nomists for analyzing interaction in large populations where individuals are matched ran-
domly. Many approximation results have been established so far—see for example Boylan
(1995), Corradi and Sarin (1999) or Benäım and Weibull (2003). These models assume that
the time between two matches as well as the fraction of the population which is matched
each time, are diminishing over time. Typically, this results in a differential equation in
the limit. In our model, the entire population is matched at fixed points in time. Since we
are not aware of an approximation results for such a framework, we are going to provide
one in this section.
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which plays according to strategy f cT ∗ . As before, µ denotes the fraction of
individuals in the market which play according to strategy f cT ∗ . The following
lemma provides a version of the law of large numbers which is adapted to
our needs.

Lemma 3 [A law of large numbers]

For all hs ∈ HS(n) and any ε > 0:

lim
M→∞

Pr
[
|mM(hs, f cT ∗)− µ| > ε

]
= 0.

Proof. See Appendix.

The definition of the stochastic population process

XHS
N =

{
XHS(t)

}
t≥0

is straightforward from our model. The state space of XHS
N is given by

∆(HS(n)T
∗+2). Moreover, for any updating rule µ̃, we denote by XN the

process τµ̃(XHS
N ) induced by XHS

N . The deterministic approximation process
YHS is derived from XHS

N in the following way. First, assume a continuum po-
pulation and denote by yhs the share of individuals in the market with history
of evaluations hs ∈ HS(n). Now, probabilities are replaced by shares: for all
hs ∈ HS(n), the fraction yhsm

M(hs, f cT ∗) of individuals in the market meets
an individual which plays strategy f cT ∗ and the fraction yhs(1−mM(hs, f cT ∗))
meets an individual which plays strategy fdT ∗ . Accordingly, individuals switch
to new individual histories (and possibly get matched or divorced). Moreover,
for every hs ∈ HS(n) and t ≤ T ∗, the share σ of the matched individuals gets
divorced. Let Y denote the process τµ̃(YHS) induced by YHS. The following
result shows that Y can be considered as the limiting case of the random
process XN .

Proposition 4 [Finite population process]

For a given population of size N , consider the deterministic process YHS
derived from XHS

N as described above. Moreover, consider the corresponding
processes Y and XN . If XHS

N (0) = Y HS(0), then 4

Pr [d (XN(t), Y (t)) > ε]→ 0 as N →∞,

for all ε > 0 and all t > 0.

4For any two distributions of states and beliefs Y and Z, we choose the distance function
in a way that it is well-defined whenever the supporting beliefs of Y and Z are discrete
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Proof. See Appendix.

Consider any asymptotically stable steady state Y ∗ ∈ ∆(BT ∗+2). We de-
fine its basin of attraction as the set of all initial states in ∆(HS(n)T

∗+2)
from which Y approaches Y ∗.5 Formally,

B(Y ∗) =
{
Y HS ∈ ∆(HS(n)T

∗+2) : Y HS(0) = Y HS ⇒
d(Y (t), Y ∗)→ 0 as t→∞} .

The following corollary is straightforward.

Corollary 1

Let Y ∗ ∈ ∆(BT ∗+2) be an asymptotically stable steady state. Whenever

XHS
N (0) ∈ B(Y ∗),

then

lim
t→∞

lim
N→∞

Pr [d(XN(t), Y ∗) > ε] = 0,

for all ε > 0.

The corollary assures that XN is likely to be close to Y ∗ for a very long time,
given that the population is sufficiently large and that XHS

N starts in the
basin of attraction of Y ∗. In most of our simulations we found two asympto-
tically stable steady states of Y , namely a cooperative and a non-cooperative
one. It follows from the corollary that they can be used as predictors of the
outcome of the finite population process in the medium and long run.

This result may be satisfactory in many frameworks. However, note that
for finite N , the outcome of XN in the very long run might still be far away
from Y ∗, even if XHS

N starts in the basin of attraction of Y ∗.

points in the interval [0, 1]. Let µ̃ ∈ [0, 1] and L = {1, ..., T ∗} (assume that L = ∅ if T ∗=0).

d(Y,Z) =
∑

µ̃ : yµ̃>0 , zµ̃>0

|yµ̃ − zµ̃|+
∑
l∈L

∑
µ̃ : yl

µ̃
>0 , zl

µ̃
>0

|ylµ̃ − zlµ̃|+
∑

µ̃ : ym
µ̃
>0 , zm

µ̃
>0

|ymµ̃ − zmµ̃ |

5Note that in case of fictitious play, Y ∗ has discrete support in [0, 1] (lemma 2) and
therefore Y ∗ is a feasible argument of the distance function d.
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Proposition 5 [Long run outcome in a finite population]

Consider some finite N (not too small) and the updating rule µ̃A. Then

lim
t→∞

Pr [XN(t) = Y0] = 1, if k ≥ 2, and

lim
t→∞

Pr [XN(t) = Y0|XN(0) 6= Y0] = 0, if k = 1.

Proof. See Appendix.

6 Conclusion

In this paper we analyzed the dynamics in a market for long-term relati-
onships when agents do not observe aggregate play but rather form beliefs
through their private observations. We saw that for a large measure of initial
distributions of beliefs, aggregate play converges to a cooperative outcome if
agents update their beliefs based on past experiences. This remains true if
strategies are very simple and punishment within a relationship is not pos-
sible. The steady state has the property that, even though aggregate play
remains constant, different agents make different experiences in the market
and therefore act differently. We observed from the simulations of the model
that aggregate play converges in many (if not all) cases. However, if agents
base their subjective belief on finitely many observations, aggregate play in
a steady state may not be consistent with a Nash equilibrium of the game.

We experienced that the analytical tools for analyzing the considered
model are fairly limited. Future research may concentrate on finding methods
from non-linear dynamics in order to make the model tractable. The benefit
could be the identification of tools for predicting behavior in more complex
games without the assumption of common knowledge.
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Appendix

Calculation of (2) and (3)
We calculate these two terms from the expressions

E[fcT∗ µ̃(t)] = µ̃(t)

σ T∗−1∑
T=0

[
(1− σ)T

T∑
τ=0

δτ

]
+ σ

∞∑
T=T∗

(1− σ)T

T∗−1∑
τ=0

δτ +

T∑
τ=T∗

δτG


+ σ

∞∑
τ=0

δτ+1(1− σ)τE[fcT∗ , µ̃(t)]

]
+ (1− µ̃(t))

σ T∗−1∑
T=0

[
(1− σ)T

T∑
τ=0

δτ

]

+ σ

T∗−1∑
τ=0

δτ+1(1− σ)τE[fcT∗ , µ̃(t)] + δT
∗+1(1− σ)T

∗
E[fcT∗ µ̃(t)]

 ,
and

E[fdT∗ µ̃(t)] = σ

T∗−1∑
T=0

[
(1− σ)T

T∑
τ=0

δτ

]
+ µ̃(t)δT

∗
(1− σ)T

∗
H + (1− µ̃(t))δT

∗
(1− σ)T

∗

+σ

T∗−1∑
τ=0

δτ+1(1− σ)τE[fdT∗ , µ̃(t)] + δT
∗+1(1− σ)T

∗
E[fdT∗ , µ̃(t)].

Proof of Lemma 1
First consider the ratio

ET∗ (µ̃) =
E[fcT∗ , µ̃]

E[fdT∗ , µ̃]
. (9)

Taking the limit yields us

lim
σ→0

ET∗ (µ̃) =
[1 + δT

∗
(µ̃G− 1)][1− δT∗+1]

[1− (1− µ̃)δT∗+1][1 + δT∗ ((1− δ)(µ̃H + 1− µ̃)− 1)]
,

and with l’Hospitals rule

lim
δ→1

lim
σ→0

ET∗ (µ̃) =
G(T ∗ + 1)

(T ∗ + 1) + µ̃(H − 1)
, (10)

which is larger than 1 for all µ̃ ∈ [0, 1] if T ∗ is chosen sufficiently high. Further, it follows that the
right-hand side of (10) is larger than 1 if

µ̃ < (T ∗ + 1)
G− 1

H − 1
.

As δ and σ enter (9) continuously, part (b) of the result follows from (10).

Now fix a µ̃∗ such that the right-hand side of (10) is strictly larger than 1 if µ̃ = µ̃∗. As ET∗ (µ̃) is
continuous in δ and σ, there are values δ̄ and σ̄, such that

E[fcT∗ , µ̃
∗] > E[fdT∗ , µ̃

∗] (11)

whenever δ ≥ δ̄ and σ ≤ σ̄. We can calculate that

lim
µ̃→0

ET∗ (µ̃) =
1− δT∗ (1− σ)T

∗

1− δT∗+1(1− σ)T∗+1
< 1. (12)

Define
∇ET∗ (µ̃) = E[fcT∗ , µ̃]− E[fdT∗ , µ̃].
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From (11) and (12) we know that ∇ET∗ (µ̃∗) > 0 and ∇ET∗ (0) < 0. Further from

∂∇ET∗ (µ̃)2

∂2µ̃
=
−2G(1− δ)2δT

∗+1(1− σ)T
∗+1[A− δT∗+1(1− σ)T

∗+1(1− δT∗ (1− σ)T
∗
)]

[(1− δ)(1− δT∗+1(1− σ)T∗+1) + (1− δ)δT∗+1(1− σ)T∗+1µ̃]3
< 0

with
A = δT

∗
(1− σ)T

∗
G(1− δT

∗+1(1− σ)T
∗+1)

we get that ∇ET∗ (µ̃) is a concave function. With this, part (a) of the result follows.
Q.E.D.

Proof of Lemma 2
We assume that Y ∗ is the limit point of the fictitious play process (in case Y ∗ is a steady state, the proof

is analogue). Suppose, by contradiction, that Y ∗ ∈ ∆(BT∗+2) assigns positive mass to beliefs different
from µ∗. Since µ(t)→ µ∗ as t→∞, it follows from the properties of fictitious play that every individual
belief µ̃ converges to µ∗ as well, a contradiction.
Q.E.D.

Proof of Proposition 1
(a) Y0 is a steady state because ∀t > 0 : Y (t) = Y0 ⇒ µ(t) = 0⇒ Y (t+ 1) = Y0. If µ̄ = 1, it can easily be

checked that the state Y ∈ Y1 with y1 = σ, yl1 = σ(1−σ)l for all l ∈ {1, .., T ∗} and ym1 = 1−
∑T∗

i≥0 σ(1−σ)i

is a steady state. On the other hand, if µ̄ < 1, no element of the set Y1 can be a steady state, because:

∀t > 0 : Y (t) ∈ Y1 ⇒ µ(t) = 0⇒ Y (t+ 1) /∈ Y1.

From Lemma 2 we know that every steady state belongs to some set Yx. No state Y ∈ Yx with x /∈
{{0}, {1}} can be a steady state which can be seen as follows. Let all individuals hold belief x at time t.
It is easy to see that at least at one of the dates t and t+ 1 the market is non-empty. Hence, at time t+ 2,

there will be some individuals with either one of the beliefs
(n+t)x+1
n+t+1

or
(n+t)x
n+t+1

.

(b) Assume that fictitious play converges to some Y ∈ Yx and assume that x ∈ (µ, µ̄). Since indivi-
dual beliefs converge to x, for any b ∈ (0, 1), there exists a t > 0 such that µ(t) > b, a contradiction. The
similar argument holds for the cases x ∈ (0, µ) and x ∈ (µ̄, 1).
Q.E.D.

Proof of Proposition 2
To economize on notation, let yi(t) be also the “set” of agents with belief i

n
in period t. Consider two

periods t and t+n. We compare the flow ∇1(t) from the set 1−y0(t)−y1(t) to the set y0(t+n)+y1(t+n)
and the flow ∇2(t) of agents from the set y0(t) + y1(t) to the set 1 − y0(t + n) − y1(t + n). As yC(t) ≤
1− y0(t)− y1(t), we have µ(t) ≤ 1− y0(t)− y1(t). Further, we can estimate

max{µ(τ) | τ ∈ [t, t+ n]} ≤ 2n(1− y0(t)− y1(t)),

as in each period, every cooperator can only meet one defector in the market who himself becomes a
cooperator. Thus, the probability that an agent who is in the set 1 − y0(t) − y1(t), is also in the set
y0(t+ n), is at least σ(1− 2n(1− y0(t)− y0(t)))n. Then, we have

∇1(t) > σ(1− 2n(1− y0(t)− y1(t)))n(1− y0(t)− y1(t)).

An agent in the set y0(t) [y1(t)] must meet at least two [one] cooperators in the market to become a
cooperator himself between the periods t and t+ n. Therefore we can estimate that

∇2(t) < n
(
22n(1− y0(t)− y1(t))2y0(t) + 2n(1− y0(t)− y1(t))y1(t)

)
.
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We therefore get
∇1(t)

∇2(t)
>

σ(1− y0(t)− y1(t))

n(22n(1− y0(t)− y1(t))y0(t) + 2ny1(t))
, (13)

which is larger than 1 if y0(t) is sufficiently close to 1. In this case, we have µ(t+n) < µ(t) and y0(t+n) >
y0(t). By going through the same steps, one can also show that for sufficiently large y0(t)

µ(t+ n− 1) < µ(t). (14)

With
y1(t+ 1) < (1− µ(t))y2(t) + µ(t) < (1− µ(t))µ(t) + µ(t) < 2µ(t)

and (14) we get y1(t+ n) < 2µ(t+ n− 1) < 2µ(t). Thus, we have

∇1(t+ n)

∇2(t+ n)
>

σ(1− y0(t)− y1(t))

n(22n(1− y0(t)− y1(t))y0(t) + 2n+1µ(t))
. (15)

If the expressions on the right-hand side of (13) and (15) are larger than 1, this yields us

∇1(t+ in)

∇2(t+ in)
>

σ

n2nµ(t)
> 1

for all i ≥ 2. Thus, it follows that if Y (t) is sufficiently close to Y0, we get

lim
t→∞

y0(t) = 1,

which completes the proof.
Q.E.D.

Proof of Proposition 3
Assume that k = 1 and k̄ = n where n ≥ 2. Consider the set ∇1(t) of agents who are both in y1(t) and
y0(t+ T ∗ + 1) and the set ∇2(t) of agents who are both in y0(t) and y1(t+ T ∗ + 1). We then have

∇1(t) ≤ (1− σ)T
∗
(1− µ(t))y1(t),

∇2(t) = (1− σ)T
∗
µ(t)y0(t).

From the definition of µ(t) it follows that ∇2(t) > ∇1(t) if
∑n
i=2 yi(t) > 0. Furthermore, it follows from

the assumption y0(0) < 1 that y0(t) > 0 implies y1(t + T ∗ + 1) > 0 and y2(t + 2T ∗ + 2 + s) > 0 for all
s ≥ 0. Therefore, we get

lim
t→∞

y0(t) = 0,

which implies that
lim
t→∞

µ(t) = 1,

as
yC(t) > σ(1− y0(t− 1)).

The result then follows from lemma 1(b).
Q.E.D.
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Proof of Lemma 3
We proof statement (9) by showing that the expected value of mM (hs, fcT∗ ) goes to µ and that its variance
goes to 0 (this implies convergence in probability, which is equivalent to (9)). Consider a market of size
M ∈ N and any hs ∈ HS(n) such that the best response to belief µ̃(h) is fcT∗ . Let L denote the number
of individuals in the market with history of evaluations hs and let yhs denote the corresponding fraction
of the population. Moreover, we denote by C the number of individuals which play fcT∗ . Hence,

L = yhsM

C = µM.

Let Lc denote the number of individuals of class hs that are matched to an individual which plays fcT∗ .
We decompose Lc into the number Lc,1 of individuals that are matched to group hs and the number Lc,2
of individuals that are matched to individuals which play fcT∗ but not to group hs:

Lc = Lc,1 + Lc,2.

It will be convenient to decompose the matching procedure into two steps. In the first step, all individuals
from the population are assigned randomly to two equally large subsets A and B. In the second step, each of
the individuals in A is assigned randomly to one of the individuals in B. Clearly, this matching procedure is
equivalent to the one-step random matching procedure. Let LA denote the number of individuals from class
hs that are assigned to set A. Given the first step of this matching procedure, LA follows a hypergeometric
distribution with parameters M/2, L and M . It is well known that E(LA) = (M/2) · (L/M) = L/2. The
second moment of LA can be calculated as follows:

E(L2
A) = E(LA)(LA − 1) + E(LA)

=

min{L,M/2}∑
k=0

k(k − 1)
(L
k

)( M−L
M/2−k

)( M
M/2

) + E(LA)

= L(L− 1)

( M−2
M/2−2

)( M
M/2

) min{L−2,M/2−2}∑
k=2

(L−2
k−2

)( M−2−(L−2)
M/2−2−(k−2)

)
( M−2
M/2−2

) + E(LA)

Since the sum is equal to one, one gets

E(L2
A) =

L(L− 1)M/2(M/2− 1)

M(M − 1)
+
M/2L

M
=
L(L− 1)(M − 2)

4 · (M − 1)
+
L

2
(16)

Note that Lc,1 is always an even number. For given LA, Lc,1/2 follows a hypergeometric distribution with
parameters LA, L− LA and M/2, hence

E(Lc,1) = E(E(Lc,1|LA))

= 2 ·E
(
LA(L− LA)

M/2

)
=

4

M

(
LE(LA)−E(L2

A)
)

=
L(L− 1)

M − 1

Moreover, for given Lc,1 = c, Lc,2 follows a hypergeometric distribution with parameters L − c, C − L
and M − L. Hence,

E(Lc,2) = E(E(Lc,2|Lc,1))

= E

(
(L− Lc,1)(C − L)

M − L

)

=

(
L− L(L−1)

M−1

)
(C − L)

M − L
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Thus, we can establish the first part of the proof:

E
(
mM (hs, fcT∗ )

)
=

1

L
(E(Lc,1) + E(Lc,2))

=
1

L

(
L(C − 1)

M − 1

)
=

µM − 1

M − 1
→ µ as M →∞ (17)

It remains to show that the following expression goes to zero:

Var
(
mM (hs, fcT∗ )

)
=

E(L2
c)−E2(Lc)

L2

=
1

L2

[
E(L2

c,1) + E(L2
c,2) + 2E(Lc,1Lc,2)−E2(Lc)

]
(18)

Using equation (16) we get

E(L2
c,1) = 4 ·E

(
(L− LA)(L− LA − 1)LA(LA − 1)

M
2

(M
2
− 1)

)
+ 2

L(L− 1)

M − 1

=
16 ·

[
(L(1− L))E(LA) + (L2 + L− 1)E(L2

A)− 2LE(L3
A) + E(L4

A)
]

M(M − 2)
+ 2

L(L− 1)

M − 1
,

The third and the fourth moment of the hypergeometric distribution can be calculated in the same way
as the second moment, namely

E(L3
A) =

L(L− 1)(L− 2)M/2(M/2− 1)(M/2− 2)

M(M − 1)(M − 2)
+ 3 ·E(L2

A)− 2 ·E(LA)

=
(M − 4)L(L− 1)(L− 2)

8(M − 1)
+ 3 ·E(L2

A)− 2 ·E(LA) (19)

and

E(L4
A) =

L(L− 1)(L− 2)(L− 3)M/2(M/2− 1)(M/2− 2)(M/2− 3)

M(M − 1)(M − 2)(M − 3)

+6 ·E(L3
A)− 11 ·E(L2

A) + 6 ·E(LA)

=
(M − 4)(M − 6)L(L− 1)(L− 2)(L− 3)

16(M − 1)(M − 3)
+ 6 ·E(L3

A)− 11 ·E(L2
A) + 6 ·E(LA) (20)

Plugging equations (16), (19) and (20) into the expression for E(L2
c,1), dividing by L2 and replacing L by

yhsM yields
E(L2

c,1)

L2
→ 16 ·

[
0 +

y2
hs

4
−

2y2
hs

8
+
y2
hs

16

]
+ 0 = y2

hs, as M →∞. (21)

Furthermore,

E(L2
c,2) = E

(
(C − L)(C − L− 1)(L− Lc,1)(L− Lc,1 − 1)

(M − L)(M − L− 1)
+

(L− Lc,1)(C − L)

M − L

)
=

(C − L)(C − L− 1)

(M − L)(M − L− 1)

[
E(L2

c,1) + (1− 2L)E(Lc,1) + L(L− 1)
]

+
C − L
M − L

(L−E(Lc,1))

Using E(Lc,1)/L→ yhs and (21), we get from the previous equation

E(L2
c,2)

L2
→

(µ− yhs)2

(1− yhs)2

[
y2
hs − 2yhs + 1

]
+ 0 = (µ− yhs)2, as M →∞.
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Finally, the third term of equation (18) can be evaluated as follows:

E(Lc,1Lc,2) = E(E(Lc,1Lc,2|Lc,1))

= E

(
Lc,1

(L− Lc,1)(C − L)

M − L

)
=

C − L
M − L

[
LE(Lc,1)−E(L2

c,1)
]
.

It has the following limit:

E(Lc,1Lc,2)

L2
→

µ− yhs
1− yhs

[
yhs − y2

hs

]
= yhs(µ− yhs), as M →∞.

Since all limits exist, sums and limits and interchangeable and we finally get from equation (18)

Var
(
mM (hs, fcT∗ )

)
→ y2

hs + (µ− yhs)2 + 2yhs(µ− yhs)− µ2 = 0, as M →∞. (22)

It follows from (17) and (22) that mM (hs, fcT∗ )
p→ µ. The same proof applies to fdT∗ (by just renaming

fcT∗ by fdT∗ ). It follows that mM (hs, fcT∗ )
p→ µ holds for all hs ∈ HS. This accomplishes the proof.

Q.E.D.

Proof of Proposition 4
For any Y HS ∈ ∆(HS(n)T

∗+2), define

||Y HS || =
∑

hs∈HS(n)

∑
s∈{0,..,T∗+1}

|Y HShs,s|.

Moreover, for any hs ∈ HS(n)T
∗+2, let YHShs denote the process YHS with initial condition Y HS(0) = hs

and define UNt = XHS
N (t + 1) − YXHS

N
(t)(1). By Lemma 3 and by construction of the process YHS , we

know that for all population shares hs ∈ HS(n) and states s ≤ T ∗:

|XHS
N,i,s(t+ 1)− YXHS

N
(t),i,s(1)| p→ 0.

Hence, ||UNt || =
p→ 0, and therefore

∑t
s=0 ||UNs ||

p→ 0.

From Y HS
XHS
N

(0)
(1) = Y HS(1) and continuity of YHS it follows that

||YXHS
N

(1)(1)− Y HS(2)|| p→ 0 (23)

...

||YXHS
N

(t)(1)− Y HS(t+ 1)|| p→ 0, (24)

and hence
t∑

s=0

||Y HS
XHS
N

(s)
(1)− Y HS(s+ 1)|| p→ 0.

This implies

Pr
[
||XHS

N (t)− Y HS(t)|| > ε
]

= Pr

[
||

t∑
s=0

Y HS
XHS
N

(s)
(1)− Y HS(s+ 1) + UNs || > ε

]

≤ Pr

[
t∑

s=0

||Y HS
XHS
N

(s)
(1)− Y HS(s+ 1)||+ ||

t∑
s=0

UNs || > ε

]
→ 0 ∀ε > 0.

Finally, the claim follows from the fact that the updating function τµ̃ is continuous.
Q.E.D.

28



Proof of Proposition 5
Since we only consider the three updating rules with finite use of information, we can redefine XHSN as

a process on the space of finite histories of length n, without changing the dynamics. In this case, XHSN
clearly satisfies the Markov property and has finite state space. Moreover, the state Y0 is an absorbing
state of the corresponding process XN because for each of the three updating rules, it holds that XN (t) =
Y0 ⇒ XN (t + 1) = Y0. Now we are going to show that there exists a s ∈ N such that for all times t ∈ N
and all states Y ∈ ∆(BT∗+2), the Markov chain XHSN satisfies

Pr
[
XHS
N (t+ s) ∈ τ−1

µ̃ (Y0)|XHS
N (t) ∈ τ−1

µ̃ (Y )
]
> 0. (25)

Let Nc denote the number of individuals in the market which play according to fcT∗ , let Np
d denote the

number of individuals in the market that hold pessimistic belief and play according to fdT∗ and let No
d

denote the number of individuals in the market that hold optimistic belief and play according to fdT∗ .
Consider any distribution of beliefs which is different from Y0. Now we describe a particular sequence
of matches that leads the process XN to reach Y0 and has positive probability. In the first round, all
individuals from the classes Nc, N

p
d and No

d are matched to partners of the same class (the following
argument also holds in case that two of these sets do not contain an even number of individuals, because
then the remaining two individuals can be matched until they have the same belief). After T ∗+ 1 rounds,
all the individuals from No

d except for two are matched to members of the same class until they enter
Nc and finally get matched. The two remaining individuals of class No

d are repeatedly matched to two
individuals from a divorced long-term relationship. Meanwhile, all members from Np

d are matched to each
other and no other couples are separated. Hence, there are always exactly two individuals in Nc and two
individuals in No

d and these pairs are matched to each other until the pair in Nc enters the set Np
d . After

this, they are matched to each other and a new couple gets divorced to be matched with the two individuals
in No

d . This procedure is carried on until all matched individuals have moved to Np
d . Finally, each of the

individuals in Np
d is matched to either one of the two individuals of No

d and if k ≥ 2 and N ≥ 2n + 2
it follows that all individuals are members of the set Np

d and XN reaches Y0 after some finite time. This
sequence of matches can be executed in finite time, is time independent and has positive probability which
proves statement (25).

Therefore, any state Y HS ∈ ∆(HS(n)T
∗+2) which satisfies τµ̃(Y HS) 6= Y0 is a transient state of

XHSN (which means that XHSN returns to Y HS with some probability strictly smaller than one, once it

leaves Y HS). It it a well known fact from the theory about Markov chains that the limit distribution
assigns zero probability to each transient state. Hence, XN reaches Y0 with certainty, which proves the
statement in case k ≥ 2.

If k = 1 and XN (t) 6= Y0 for some t, then at least one individual cooperates and therefore XN (t+1) 6= Y0.
The claim follows from XN (0) 6= Y0.
Q.E.D.
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FIGURE I

Caption: [Gray] E[fdT∗ , µ̃] [Black] E[fcT∗ , µ̃] [Horizontal axis] µ̃

[Top-left] Γ0, T ∗ = 0 [Top-right] Γ1, T ∗ = 0 [Bottom-left] Γ1, T ∗ = 1 [Bottom-right] Γ1, T ∗ = 2
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TABLE I: Distribution of initial beliefs for n ∈ {5, 10, 20}

n = 20 Y 1,20 Y 2,20 Y 3,20 Y 4,20 Y 5,20 Y 6,20 Y 7,20 Y 8,20 Y 9,20 Y 10,20

µ̃ = 0.00 0.990 0.900 0.330 0.166 0.125 0.048 0.000 0.000 0.125 0.000
µ̃ = 0.05 0.000 0.000 0.340 0.166 0.125 0.048 0.000 0.000 0.125 0.000
µ̃ = 0.10 0.010 0.000 0.330 0.166 0.125 0.048 0.000 0.000 0.125 0.000
µ̃ = 0.15 0.000 0.000 0.000 0.170 0.125 0.048 0.000 0.000 0.125 0.000
µ̃ = 0.20 0.000 0.000 0.000 0.166 0.125 0.048 0.000 0.000 0.000 0.000
µ̃ = 0.25 0.000 0.000 0.000 0.166 0.125 0.048 0.000 0.000 0.000 0.000
µ̃ = 0.30 0.000 0.000 0.000 0.000 0.125 0.047 0.000 0.000 0.000 0.000
µ̃ = 0.35 0.000 0.000 0.000 0.000 0.125 0.047 0.000 0.000 0.000 0.000
µ̃ = 0.40 0.000 0.100 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
µ̃ = 0.45 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
µ̃ = 0.50 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
µ̃ = 0.55 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
µ̃ = 0.60 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
µ̃ = 0.65 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
µ̃ = 0.70 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.125
µ̃ = 0.75 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.125
µ̃ = 0.80 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.000
µ̃ = 0.85 0.000 0.000 0.000 0.000 0.000 0.048 0.250 0.000 0.125 0.000
µ̃ = 0.90 0.000 0.000 0.000 0.000 0.000 0.048 0.250 0.000 0.125 0.000
µ̃ = 0.95 0.000 0.000 0.000 0.000 0.000 0.048 0.250 0.000 0.125 0.000
µ̃ = 1.00 0.000 0.000 0.000 0.000 0.000 0.048 0.250 1.000 0.125 0.000

n = 10 Y 1,10 Y 2,10 Y 3,10 Y 4,10 Y 5,10 Y 6,10 Y 7,10 Y 8,10

µ̃ = 0.00 0.990 0.330 0.250 0.090 0.000 0.000 0.250 0.000
µ̃ = 0.10 0.010 0.340 0.250 0.090 0.000 0.000 0.250 0.000
µ̃ = 0.20 0.000 0.330 0.250 0.090 0.000 0.000 0.000 0.000
µ̃ = 0.30 0.000 0.000 0.250 0.090 0.000 0.000 0.000 0.000
µ̃ = 0.40 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.250
µ̃ = 0.50 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.250
µ̃ = 0.60 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.250
µ̃ = 0.70 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.250
µ̃ = 0.80 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.000
µ̃ = 0.90 0.000 0.000 0.000 0.090 0.500 0.000 0.250 0.000
µ̃ = 1.00 0.000 0.000 0.000 0.090 0.500 1.000 0.250 0.000

n = 5 Y 1,5 Y 2,5 Y 3,5 Y 4,5 Y 5,5 Y 6,5

µ̃ = 0.00 0.990 0.500 0.166 0.000 0.500 0.000
µ̃ = 0.20 0.010 0.500 0.166 0.000 0.000 0.000
µ̃ = 0.40 0.000 0.000 0.166 0.000 0.000 0.500
µ̃ = 0.60 0.000 0.000 0.170 0.000 0.000 0.500
µ̃ = 0.80 0.000 0.000 0.166 0.000 0.000 0.000
µ̃ = 1.00 0.000 0.000 0.166 1.000 0.500 0.000
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FIGURE II

[TOP]

Caption: [Black-solid] µ under µ̃FA [Gray-solid] µ under µ̃A [Horizontal axis] µ̃

[Top-left] Γ1, T ∗ = 0, n = 10, initial beliefs Y 1,10 [Top-right] Γ1, T ∗ = 0, n = 10, initial beliefs

Y 4,10

[BOTTOM]

Caption: [Horizontal axis] µ̃ [Vertical axis] yµ̃(500)

Parameters: Γ1, n = 10, T ∗ = 0, initial beliefs are Y 4,10

[Bottom-left] µ̃FP [Bottom-right] µ̃A
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TABLE II: Limit points

Γ1 n = 5 [k = 1, k̄ = 1] n = 10 [k = 1, k̄ = 3] n = 20 [k = 2, k̄ = 6]
µ̃FP 0.305 0.305 0.000 (*), 0.305 (**)
µ̃A 0.331 0.393 0.364

Γ2 n = 5 [k = 1, k̄ = 3] n = 10 [k = 1, k̄ = 7] n = 20 [k = 1, k̄ = 15]
µ̃FP 0.780 0.780 0.780
µ̃A 0.620 0.677 0.715

Γ3 n = 5 [k = 1, k̄ = 2] n = 10 [k = 1, k̄ = 4] n = 20 [k = 1, k̄ = 9]
µ̃FP 0.467 0.467 0.467
µ̃A 0.488 0.464 0.481

Γ4 n = 5 [k = 1, k̄ = 4] n = 10 [k = 1, k̄ = 8] n = 20 [k = 1, k̄ = 17]
µ̃FP 0.896 0.896 0.896
µ̃A 0.755 0.753 0.810

(*) Under Y 1,20, (**) Under all other initial beliefs.
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1 Introduction

The most common solution concept employed in game theory is the concept
of Nash equilibrium. This approach assumes that players play best responses
to their beliefs about their opponents’ behavior and that these beliefs are con-
sistent with actual play of their opponents. However, in many situations is
in no way clear how players may obtain such consistent beliefs. In particular,
if players lack common knowledge of important characteristics of the game,
such as common knowledge of rationality, equilibrium approaches are hard
to justify. Recently, game theorists have addressed this problem by assuming
that players obtain consistent beliefs via learning and repeated interaction.
One of the most prominent learning rule is fictitious play, which was intro-
duced by Brown (1951). An excellent account of the literature on learning
can be found in either Weibull (1997) or Fudenberg and Levine (1998).

While in standard learning models, players are assumed to have fixed
types in each encounter, I extend the analysis to the area of Bayesian games
in which players do not know each other’s types. I show how a learning
approach may justify the concept of Bayesian Nash equilibrium in such a
setting. More specifically, I assume that a static Bayesian game is played
repeatedly and that players form beliefs about opponents’ future play from
their behavior in the past. It is assumed that the distribution of types is com-
mon knowledge and that each players’ type (as well as her action) is revealed
to all the other players with a certain probability after each round. Moreover,
there exist public records about the behavior of each type of each player in
the past. Players are not assumed to be highly sophisticated in the sense
that they carry out complicated strategic considerations. Instead, they play
simple myopic best responses to beliefs implied by the public records. I show
that, even with these low requirements on players’ rationality and knowl-
edge, behavior approaches Nash equilibrium play in the long-run. Results
are obtained by using specific properties of best-reply graphs, a technique in-
troduced by Young (1993). The approach taken in Young (1993) is extended
to games of incomplete information and several tools are developed which
facilitate the analysis of best-reply graphs for such games.

The second part of this paper applies the learning approach under incom-
plete information to auctions, in particular to first- and second price auction
with either private or interdependent valuations. These auction formats have
been extensively studied over the past decades. Most of the literature has
focused on the Bayesian equilibria of the corresponding one-shot games, see
Krishna (2002) for an extensive account of the theory. There exist very few
approaches that apply models of learning and evolution to auctions. Most
notably, Hon-Snir, Monderer and Sela (1998) study a model in which bidders’
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valuations (i.e. their types) are determined before the first round. Then, a
fixed set of players repeatedly plays a first-price auction and players observe
the profile of bids at the end of each auction. Since players interact with a
fixed set of opponents whose types are fixed, bidders eventually learn their
opponent’s types and play converges to the Nash equilibrium of the one-shot
auction in which types are common knowledge (the highest valuation bidder
wins and pays a price equal to the second-highest valuation). Their approach
imitates standard learning models of complete information and is therefore
very different from the type of learning considered here.

In order to integrate learning and auction models, the action space as
well as the type space have to be discretized. The resulting discrete one-shot
auction model turns out to have a variety of equilibria. I show for different
auction settings that if small perturbations are introduced on players’ beliefs,
the set of equilibria reduces to a unique, in most cases symmetric, equilib-
rium and I show that the learning process almost surely converges to these
equilibria. Note that, in contrast to Kandori, Mailath and Rob (1993) and
Young (1993), equilibrium selection here is not directly a result of learning
itself but rather relies on these perturbations of beliefs.

Classical auction theory sometimes takes ad hoc approaches when it
comes to equilibrium selection. For example, the second-price auction with
common values is known to have many asymmetric equilibria, but theorists
usually focus on the symmetric ones for the simple reason that they are more
tractable. The equilibrium selection results obtained here can be very useful
in justifying some of these approaches. Moreover, some auction models reject
the symmetric equilibria and predict a unique asymmetric outcome, such as
the second-price auction model by Klemperer (1998). He shows that if one
introduces (arbitrarily) small asymmetries between the players, the unique
equilibrium of the auction game is such that the favored player always wins.
I show that in the presence of small asymmetries, the learning process selects
this extreme outcome. In other words, the equilibrium of Klemperer (1998)
can be viewed as the outcome of learning.

My approach to learning under incomplete information is similar to the
one adopted in Jensen, Sloth and Whitta-Jacobsen (2005). They, however,
focus rather on equilibrium selection and efficiency by using the concept of
stochastic stability. Moreover, they make restricting assumptions on the
way beliefs are formed and they only consider two player games. Other ap-
proaches focus on equilibrium selection in dynamic games under incomplete
information. Examples of equilibrium selection in signalling games include
Canning (1992), Nöldeke and Samuelson (1997) and Jacobsen, Jensen and
Sloth (2001). Finally, see Agastya (2004) for an application of the concept
of stochastic stability to double auctions with complete information.
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The paper is structured as follows. In section 2, I introduce a model of
learning under incomplete information in a n-player game and derive some
general results with respect to convergence. Section 3 introduces a basic
auction model which is studied in detail in sections 4 and 5. In section 4,
convergence of the learning process in case of private and common values is
studied for a second-price auction. Section 5 analyzes first-price auctions.
Since no general results can be obtained in this case, convergence is studied
for two examples (one of private and one of common values).

2 An Incomplete Information Learning Model

Let Γ be a finite n-person game of incomplete information, and let N be
the set of players. For each player i ∈ N , let Si denote the finite set of
player i’s types (or signals) and let Bi denote the set of actions available to
player i. Let fi be the distribution of types. Assume that all fi are common
knowledge. For any profile of actions b = (b1, b2, ..., bn) and any profile of
types s = (s1, s2, ..., sn), player i’s utility is given by the von Neumann utility
function ui(b, s).

Let t = 0, 1, 2, .... denote successive time periods. Γ is played once in each
period by the n players. In every period t, player i ∈ N observes her private
signal si(t), where signals are drawn independently over time and players.
Thereafter, player i chooses an action bi(t) from her action space according
to a rule described below. At the end of each period t, player i’s data set
(bi(t), si(t)) is revealed to all the other players with probability γ > 0. The
assumption that types are revealed to other players makes particular sense
in situations in which payoffs have enough structure so that players can infer
their opponents’ types from their own payoffs. Note that players do not have
a strategic incentive to hide their types in this model, because new types are
drawn independently in each round and the distribution of types is common
knowledge.

Let me describe the decision-making rule. Each player i forms beliefs
about her opponents’ future behavior based on their action choices in past
periods. Player i’s actions are best responses to these beliefs. I assume that
players form beliefs about each opponent’s entire strategy (i.e. about the
mapping from types to actions) and not just about aggregate play. Specifi-
cally, for every player i ∈ N and for all types s ∈ S, there exists a (public)
record (or history) hs

i = (hs,1
i , hs,2

i , ..., hs,`
i ) which contains her actions in the

` ≥ 1 most recent periods in which she has been of type s, and in which
her type-strategy profile was publicly observable. Let hi = (h1

i , h
2
i , ..., h

Ti
i )

denote player i’s personal history and let h = (h1, h2, ..., hn) denote the en-
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tire history of play. As usual, h−i = (h1, h2, ..., hi−1, hi+1, ..., hn) denotes the
history of play of all players other than i. Let the corresponding collection of
histories be denoted by Hi, H and H−i. Note that this finite-history approach
is similar to fictitious play. Under fictitious play, however, agents base their
decisions on the entire history of actions by other agents. Here, I assume that
agents only consider limited information from the recent past. This seems to
be more realistic1 than fictitious play.

The belief of players j 6= i about the behavior of player i’s s-type is
given by a belief function βs

i : Hi 7→ ∆(B) (for any finite set X, ∆(X)
denotes the collection of probability distributions over X). Note that this
specification implicitly contains the assumptions that belief functions are
time-independent and that the belief about player i’s behavior is independent
of other player’s previous play. However, beliefs βs

i may well depend on past
observations of other (neighboring) types of the same player i. Furthermore,
the belief functions might incorporate some sort of weighting in the sense
that more recent observations have a bigger impact on current beliefs than
old observations.

For any history of play h ∈ H, let BRs
i (h) ⊂ B be the set of best responses

of player i’s s-type to the family of beliefs {βs
j (hj)}j 6=i. More specifically,

b ∈ BRs
i (h) if and only if

b ∈ arg max
b′∈B

∑
s−i∈S−i

∑
b−i∈B−i

[∏
j 6=i

fj(sj)β
sj

j (hj)(bj)

]
ui(b

′, b−i, s, s−i),

where s−i, b−i, S−i and B−i are defined in the usual way.2 If player i is of
type s, she takes an action from the set BRs

i . In case BRs
i is not a singleton,

player i’s action is determined by a tie-breaking rule that assigns positive
probability to all elements in BRs

i . Let me denote the family {βs
i }s of beliefs

about player i by βi.
Assume that the first actions are taken in round 1 and that before round

1, there exists an initial history of actions h0 ∈ H. The initial history might,
for example, result from a (sufficiently long) initial experimentation phase.
The sequence of histories {h(t)} with initial state h(0) = h0 forms a Markov
chain on the state space H. Let me refer to {h(t)} simply as the learning
process. The transition probabilities follow from the distribution of types,
the tie-breaking rule and γ.

In order to introduce some more stochastic variability into the learning
process let me assume that the probability γ that players reveal their private

1or ‘less fictitious’, as Young (1993) puts it
2s−i = (s1, s2, ..., si−1, si+1, ..., sn), b−i = (b1, b2, ..., bi−1, bi+1, ..., bn), S−i = S1 × S2 ×

...× Si−1 × Si+1 × ...× Sn and B−i = B1 × B2 × ...× Bi−1 × Bi+1 × ...× Bn.
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information is strictly smaller than one. This additional degree of variability
will turn out to be crucial in showing convergence of the learning process. If
not stated otherwise, this assumption is maintained throughout the paper.

Assumption 1. γ < 1 (i.e. players do not always reveal their private infor-
mation)

Define the best-reply graph GΓ of Γ as follows. Each vertex b of GΓ is a
profile of bids that assigns to each type s of each player i some bid bsi ∈ B.
Let B denote the collection of all vertices. It is straightforward to extend
the definition of the best response correspondence to the space of vertices.
For any vertex b ∈ B, the set BRs

i (b) is defined by the set BRs
i (h), where h

is such that hs
i = (bsi , b

s
i , ..., b

s
i ), ∀i ∈ N , s ∈ S. For any two vertices b and

b̂, GΓ exhibits a directed edge from b to b̂ if and only if b 6= b̂ and there is
exactly one type s of one player i such that b̂si ∈ BRs

i (b) and bs
′

j = b̂s
′

j , for all
(j, s′) 6= (i, s). A sink b∗ of GΓ is defined as a vertex from which there exists
no directed edge to some other vertex. Let B∗ ⊂ B∪∅ be the set of all sinks
of GΓ. Note that any sink b∗ satisfies BRs

i (b
∗) = {b∗,si } for every type s of

every player i. From this, it is easy to see that every sink corresponds to an
absorbing state of the learning process and to a strict pure Bayesian Nash
equilibrium of Γ. Moreover, Γ is weakly acyclic if from any vertex b ∈ B of
GΓ, there exists a directed path (i.e. a succession of zero or more directed
vertices) to some sink b∗. This concept is due to Following Young (1993).

Proposition 1. If Γ is weakly acyclic and assumption 1 holds, then the
learning process converges almost surely to an absorbing state. In case each
player has a (weakly) dominant strategy for at least one of her types, then
assumption 1 is not required.

Proof. Let H denote the set of all states h ∈ H for which there exists some
vertex b ∈ B such that hs

i = (bsi , b
s
i , ..., b

s
i ), ∀i ∈ N and s ∈ S. Moreover, let

H∗ ⊂ H be the subset of states h ∈ H for which there exists some vertex
b∗ ∈ B∗ such that hs

i = (b∗,si , b∗,si , ..., b∗,si ), ∀i ∈ N and s ∈ S. In the following,
I show that there exists a finite number m and a strictly positive probability
p such that from any state h ∈ H, the probability that the learning process
reaches H∗ in at most m periods is at least p. Therefore, the probability of
not reaching H∗ after at least rm periods is at most (1− p)r, which goes to
zero as r goes to infinity.

Let T =
∑N

i=1 Ti and consider any state h1 ∈ H. I show that there
exists a sequence of `T transitions of the learning process (starting at period
1) that satisfies h(1) = h1 and h(`T ) ∈ H. The sequence is subdivided
into n subsequences, where each of them is denoted by i and has length `Ti.
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Assume that in each subsequence, player i is of each type s ∈ Si for ` rounds.
Assumption 1 assures that, with positive probability, all beliefs βj about
players j 6= i are constant in the entire subsequence i and therefore all sets of
best responses of player i, BRs

i , remain constant with positive probability. It
is easy to see that in case all players have dominant strategies, beliefs about
players j 6= i are constant with positive probability, even if assumption 1
is not satisfied. Therefore, with positive probability, each s-type of player
i takes constant actions throughout subsequence i. Assume that agent i’s
private information is revealed in each period of subsequence i (which has
positive probability according to assumption 1). It follows that in period `T ,
all vectors hs

i contain ` identical observations, which implies that h(`T ) ∈ H
is satisfied. Let p(h1) denote the probability of the sequence and define
p1 = minh1∈H p(h1).

Let b ∈ B denote the vertex that corresponds to the end-point h(`T )
of the above sequence and fix some sink b∗ ∈ B∗, where h∗ denotes the
corresponding state of {ht}. Let m(b) be the length of the shortest directed
path from b to b∗ (which exists becauseGΓ is weakly acyclic). By constructing
a sequence in the spirit of the first part of the proof, one finds that there exists
a transition path of length `m(b) from h to h∗. Let p(b) be the corresponding
transition probability. By putting together the two sequences, it follows that
{h(t)} reaches H∗ from any initial condition in at most m = `(T+maxbm(b))
periods with probability of at least p = p1 minb p(b) > 0. Both, m and p exist
since the state space H is finite.

A vertex b of GΓ is undominated if there does not exist a player i ∈ N and
a type s ∈ Si such that bsi is weakly dominated, i.e. there exists some action
k 6= bsi such that for all opponents’ types and actions, k is always weakly
better than bsi . It is easy to see that for any dominated vertex b′, there exists
a directed path of GΓ to an undominated vertex. Therefore, if the sub-graph
of GΓ which only contains undominated vertices is weakly acyclic, it follows
that GΓ is weakly acyclic as well. This property will turn out to be very
useful in the auction context studied in sections 4 and 5.

For games Γ in which players’ types and actions can be ordered, lemma
1 provides a way of further reducing the size of the best-reply graph. An
additional condition on players’ utility functions is needed, which requires
that higher types have a higher incentive to take higher actions. Assume
that B,Si ⊆ N0. For any vertex b ∈ B, denote the expected utility of player
i’s s-type from k ∈ Bi by us

i (k) = E [ui(k, b−i, s, s−i)], where expectations are
taken with respect to f−i.

Condition 1. For all players i ∈ N , types s, s′ ∈ Si and actions k, k′ ∈ Bi,
Γ satisfies us

i (k
′)− us

i (k) ≤ us′
i (k′)− us′

i (k) whenever s′ ≥ s and k′ ≥ k.
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Lemma 1 ensures that higher types never (i.e. for any distribution of
opponents’ types and actions) take actions below the actions of all the lower
types. This implies that GΓ is weakly acyclic if from all vertices b in which
bsi is weakly increasing, there exists a directed path to some sink. Since
condition 1 is satisfied in most standard auction frameworks (see lemma 2),
lemma 1 will turn out to be an important tool for showing convergence in
the next two sections.

Lemma 1. If there exists a directed path from any undominated vertex b to
some sink b∗, then Γ is weakly acyclic. Moreover, if Γ satisfies condition 1
and there exists a directed path from any undominated vertex b with bsi ≤ bs

′
i

for all s, s′ ∈ Si, s ≤ s′, to some sink b∗, then Γ is weakly acyclic.

Proof. Let B′ ⊂ B denote the subset of all vertices b ∈ B that satisfy bsi ≤ bs
′

i

for all s, s′ ∈ Si, where s ≤ s′. Consider any vertex b ∈ B. In the same
way as in the proof of proposition 1, consider a sequence consisting of n
subsequences in which each hs

i is updated exactly ` times. With positive
probability, only undominated actions are played in each of the `T periods
and therefore, the final vertex is undominated. In order to show that there
exists a sequence with end point in B′, it remains to be shown that for all
i ∈ N and s, s′ ∈ Si, s < s′, k′ ∈ BRs

i (b) implies that us′
i (k) ≤ us′

i (k′) for all
k < k′. Assume (by contradiction) that the claim does not hold, i.e. there
exists some k < k′ with us′

i (k) > us′
i (k′). By assumption, type s (weakly)

prefers k′ to k and type s′ strictly prefers k to k′. Hence,

us
i (k
′)− us

i (k) ≥ 0

us′

i (k)− us′

i (k′) > 0.

By adding the two inequalities, one obtains a contradiction to condition
1.

3 A Discrete Auction Model

In this section, I provide a discrete auction game ΓA which is a special case
of the general n-person game introduced in the previous section. There
are n = 2 identical bidders that play the auction repeatedly. Before each
round of play, each bidder i ∈ N = {1, 2} observes a signal si from the set
Si = S = {0, 1, ..., T} and proposes bids from the set Bi = B = {0, 1, ...M},
where M is some sufficiently large number. Assume that belief functions are
identical for both bidders, i.e. βs

1 ≡ βs
2 ≡ βs. Signals are assumed to be

independently and equally distributed and the probability that bidder i is of
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type si ∈ S is denoted by pi. For any given profile of signals s ∈ S2, bidder i’s
valuation for the object is given by vi(si, s−i) = si + αis−i, where αi ∈ [0, 1].
This model of interdependent valuations includes the cases of private values
(αi = 0) and common values (αi = 1) as special cases. The seller has a zero
valuation for the object. Except for the realization of the opponent’s signal,
all components of the models are common knowledge among the players. I
consider the two most common auction formats, namely the first-price and
second-price sealed bid auctions. I assume that bidders are risk-neutral and
that each bidder gets the object with probability 1

2
if both bidders propose the

same bid. For ease of presentation, I assume that in case of a tie, each bidder
receives her expected utility. This assumption is innocuous since bidders are
risk-neutral. Hence, bidder i’s utility in the first-price auction is given by

uI
i (bi, b−i, si, s−i) =


v(si, s−i)− bi if bi > b−i
1
2
(v(si, s−i)− bi) if bi = b−i

0 otherwise.

Likewise, bidder i’s utility in the second-price auction is given by

uII
i (bi, b−i, si, s−i) =


v(si, s−i)− b−i if bi > b−i
1
2
(v(si, s−i)− b−i) if bi = b−i

0 otherwise.

Lemma 2. The auction game ΓA satisfies condition 1.

Proof. It needs to be shown that for all i ∈ N , s, s′ ∈ Si and k, k′ ∈ Bi, ΓA

satisfies us
i (k
′)−us

i (k) ≤ us′
i (k′)−us′

i (k) whenever s′ ≥ s and k′ ≥ k. Let me
drop the explicit dependence of h−i and let pb

−i denote the probability that
bidder i bids b (i.e. pb

−i =
∑

s∈S fsβ
s(h−i)(b)). Bidder i’s expected utility

conditional on her type s and bid k can be written as follows.

us
i (k) = s

[
1

2
pk
−i +

k−1∑
m=0

pm
−i

]
+ g2(k) = sg1(k) + g2(k),

where g2(·) is an arbitrary function that is independent of s. Hence,
us

i (k
′)− us

i (k)− us′
i (k′) + us′

i (k) = (s− s′)(g1(k′)− g1(k)) ≤ 0.
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4 Learning in a Second-price Auction

4.1 Common Values and Locally Perturbed Beliefs

It is well known that in a continuous second-price auction with common
values, there exists one symmetric equilibrium and an infinite amount of
asymmetric equilibria, see Milgrom (1981) or Klemperer (1998). It is, for
example, an equilibrium for player 1 to bid ks1, and for player 2 to bid
k−1

k
s2, where k ∈ N and k ≥ 2 (the symmetric equilibrium is obtained by

setting k = 2). In particular, there is a symmetric equilibrium in which both
bidders follow the strategies bi(si) = 2si. I show that learning in the discrete
auction model converges almost surely to a state that corresponds to the
symmetric equilibrium.

In this section, I assume that bidders form beliefs about the behavior of
a specific type of their opponent exclusively from observations of this par-
ticular type’s past actions, i.e. beliefs are not influenced by past behavior of
neighboring types. Moreover, it is assumed that belief functions never assign
probability one to some specific bid. Instead, bidders’ reasoning incorpo-
rates the possibility that the opponent’s future action may slightly depart
from what she did in the past. Formally, the assumption looks as follows.

Assumption 2. For any given player i and type s: whenever hs
i = (b, b, ..., b),

βs
i (h) assigns probability 1 − 2ε to b and probability ε > 0 to both b − 1 and
b + 1 (in case b = 0 or b = T , βs

i (h) assigns probability 1 − ε to b and
probability ε to 1, resp. T − 1).

This assumption is necessary because there exist many equilibria (sym-
metric and asymmetric ones) in the discrete auction model. It is easy to
check that all such equilibria are weak, in the sense that there exists at least
one type of one player who is indifferent between two alternatives. This im-
plies that if beliefs are formed by attributing to each player’s type her past
average behavior, the learning process never settles down and therefore clear
predictions about its limit behavior are impossible to make. By adding as-
sumption 2, convergence can be obtained. This is the case because learning
may settle down due to the fact that all types of both players have unique
best responses.

Let ĥ denote the state h of the learning process that satisfies hs
i =

(2s, 2s, ..., 2s) for all players i and types s, i.e. ĥ corresponds to the symmet-

ric equilibrium. Lemma 3 shows that ĥ is an absorbing state of the learning
process under the class of belief functions defined in this section. This re-
sult relies on the fact that beliefs are perturbed. In case there are no such
perturbations (ε = 0), any type s > 0 would be indifferent between bidding
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2s − 1, 2s or 2s + 1. If ε is positive however, it is easy to see that 2s is a
unique best response for player i’s s-type.

Lemma 3. Under assumption 2, ĥ is an absorbing state of the learning
process (i.e. BRs

i = {2s} for all i ∈ N and s ∈ S).

Proof. For any given history of bidder i, let pb
i denote the (unconditional)

probability that player i bids b and let Ab
i denote the expected type of player

i, conditional on player i bidding b and provided that pb
i > 0. In case pb

i = 0,
I define Ab

i = 0. Define πs
i (b → b′) = us

i (b
′) − us

i (b). For all k ∈ B, one can
write

πs
i (k → k + 1) =

1

2
pk
−i

[
Ak

i + s− k
]

+
1

2
pk+1
−i

[
Ak+1

i + s− k − 1
]
.

Ak
i = k

2
is satisfied in case k is even and in case k is odd, one obtains

Ak
i = (faa+fbb)/(fa+fb), where a = k−1

2
and b = k+1

2
. Hence, Ak

i ∈ (k−1
2

k+1
2

)
is satisfied for all k ≤ 2T . For all s ∈ S, it follows that πs

i (k → k + 1) is
strictly positive for all k ≤ 2s − 1, strictly negative for k = 2s and non-
positive for k > 2s. Hence, bsi = 2s is the unique best response for every type
s of every bidder i.

Note that lemma 3 states that the (symmetric) equilibrium in which ev-
erybody bids twice her signal (let me denote it by b∗) is a trembling-hand
perfect equilibrium of ΓA. This is the case because restricting beliefs to inte-
rior points corresponds directly to Selten’s definition of perturbed games. In
this sense, b∗ is the unique trembling hand perfect equilibrium, if one restricts
the sequence of perturbed games in Selten’s definition according to the local
trembles considered here.

Proposition 2 demonstrates that the learning process eventually converges
to ĥ from any initial condition. This implies that ĥ is the only absorbing
state of the learning process in the class of belief functions defined by assump-
tion 2. Therefore it is worth noting that the equilibrium selection argument
contained in proposition 2 is not directly a result of learning itself but rather
a result of the specification of the belief function. Moreover, the proposition
assumes that the distribution of types is uniform in order to avoid technical
difficulties. The proof shows that ΓA is weakly acyclic with respect to any
belief function of the class defined by assumption 2. Therefore, proposition
1 and lemma 1 together imply the result.

Proposition 2. Consider the second-price auction game ΓA with common
values and a uniform distribution of types. If the belief function satisfies
assumption 2, the learning process converges almost surely to ĥ.

11



Proof. Consider the best-reply graph of ΓA and let me show that it is weakly
acyclic, i.e. that from every vertex, there exists a directed path to a unique
sink which satisfies bsi = 2s, for all i and s. This fact in combination with
lemma 1 and lemma 2 imply that it is sufficient to restrict attention to
vertices b that satisfy bsi ≤ bs

′
i for all s, s′ ∈ Si, s ≤ s′. For any given vertex,

let pn
i , An

i and πs
i (m → n) = ui(n|s)− ui(m|s) be defined as in the proof of

lemma 3. The assertion is established via a set of claims.

Claim 1. Consider any vertex b ∈ B2(T+1). For all i ∈ N and s ∈ S,
us

i (s) ≥ us
i (k) is satisfied for all k ∈ B that satisfy k < s (i.e. with positive

probability, type s proposes a bid no smaller than s).

Proof. Consider any type s ∈ S and let k ∈ {0, 1, ..., s − 1}. If player i of
type s raises her bid from k to k + 1, she gains

πi(k → k + 1) =
1

2
pk
−i

[
Ak
−i + s− k

]
+

1

2
pk+1
−i

[
Ak+1
−i + s− k − 1

]
.

πi(k → k+1) ≥ 0 follows directly from s ≥ k+1, Ak
−i ≥ 0 and Ak+1

−i ≥ 0.

Claim 2. Let i ∈ N and ŝ ∈ S ∪ {T + 1}, where ŝ ≥ 1. For all b ∈ B2(T+1)

that satisfy bs
′
−i = 2s′ ∀s′ ∈ S s.t. s′ ≥ ŝ, it holds that us

i (s + ŝ − 1) ≥ us
i (k)

for all s ∈ S, s ≤ ŝ− 1, and k > s+ ŝ− 1 (i.e. with positive probability, any
type s below ŝ bids no higher than s+ ŝ− 1).

Proof. Consider any type s ∈ S of bidder i that satisfies s ≤ ŝ−1. Moreover,
let k ∈ {0, 1, ...,M − s − ŝ}. Bidder i’s utility from raising her bid from
s+ ŝ− 1 + k to s+ ŝ+ k is given by

πs
i (s+ ŝ− 1 + k → s+ ŝ+ k) =

1

2
ps+ŝ−1+k
−i

[
As+ŝ−1+k
−i − ŝ+ 1− k

]
+

1

2
ps+ŝ+k
−i

[
As+ŝ+k
−i − ŝ− k

]
.

In case ŝ = T + 1, πs
i (s + ŝ − 1 + k → s + ŝ + k) ≤ 0 follows directly

from As+ŝ−1+k
−i ≤ T and As+ŝ+k

−i ≤ T . In case ŝ ≤ T , for all s ≤ ŝ − 1

and all 0 ≤ n ≤ T − ŝ, b satisfies bŝ+n
−i > 2ŝ − 1 + n ≥ s + ŝ + n, which

implies As+ŝ−1+n
−i ≤ ŝ + n − 1 (and therefore As+ŝ+n

−i ≤ ŝ + n). Hence,
πs

i (s+ ŝ− 1 + k → s+ ŝ+ k) ≤ 0 for all k.

Claim 3. Let i ∈ N and ŝ ∈ S ∪ {T + 1}, where ŝ ≥ 2. For all b ∈ B2(T+1)

that satisfy bsi = bs−i = 2s, ∀s ∈ S s.t. s ≥ ŝ, there exists some b̂ ∈ B2(T+1)

that is connected to b through a finite number of edges and satisfies b̂si =

b̂s−i = 2s,∀s ∈ S s.t. s ≥ ŝ− 1.

12



Proof. See Appendix.

Let b̂ denote the unique vertex that satisfies bsi = 2s for all i ∈ N and all
s ∈ S and let me show that the above claims imply that from any vertex there
exists a path to b̂. Consider any vertex b(0) ∈ B2(T+1) and let me construct
a finite sequence of vertices (b(0), b(1), ..., b(T ), b(T+1)) that leads to b̂ through
a finite number of best responses. Apply claim 3 with ŝ = T + 1 for both
i ∈ N . It follows that there exists a finite number of best responses that
leads to some other vertex b(1) which satisfies b

T,(1)
i = b

T,(1)
−i = 2T . This, in

turn, enables the application of claim 3 with ŝ = T and so on. After T such
iterations, claim 2 can be applied for ŝ = 1 and both i ∈ N . Hence, the final
vertex of this sequence satisfies b(T+1) = b̂. Hence, ΓA is weakly acyclic and
proposition 1 implies the assertion.

Let me summarize the main intuitions behind this proof. In order to
establish the assertion, I relate the best-reply graph to the learning process,
which is a Markov chain on H2. Each vertex of the best-reply graph natu-
rally corresponds to a state of the Markov chain. Moreover, each edge of the
best-reply graph corresponds to a sequence of state transitions of the Markov
chain. This is the case because assumption 1 assures that the history of bids
of one player remains constant for a very long time, which implies a positive
probability that a given type of her opponent plays the same best response in
many consecutive rounds. Hence, ĥ can be reached with positive probability
from any initial state h0 ∈ H2 within a finite number of steps. Moreover, ĥ is
an absorbing state of the Markov chain. It is easy to see that the probability
of reaching the unique absorbing state approaches one as time goes to infinity.

The following proposition relaxes the assumption of a uniform distribution
of types to any strictly positive distribution. The number of types, however,
is restricted to two.

Proposition 3. Consider the second-price auction game ΓA with common
values, T = 1 (i.e. two types) and an arbitrary, but strictly positive, distribu-
tion of types. If the belief function satisfies assumption 2 (with ε sufficiently

small), the learning process converges almost surely to ĥ.

Proof. Let b̂ denote the vertex of the best-reply graph that corresponds to ĥ.
It is easy to check that any vertex b which satisfies b0

i > 1 or b1
i > 2 for some

i, is (weakly) dominated according to the definition in section 2. Therefore,
according to lemma 1 and lemma 2, it is sufficient to show that there exists
a directed path of the best-reply graph from any vertex of the set

B′ = {(b0
1, b

1
1, b

0
2, b

1
2) : b0

1, b
0
2 ∈ {0, 1}; b1

1, b
1
2 ∈ {0, 1, 2}; b0

1 ≤ b1
1, b

0
2 ≤ b1

2},
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to some sink. Let F = {f0, f1} denote the distribution of types, where
f0 > 0 and f1 > 0, and let (k0, k1)i denote the subset of vertices b ∈ B′ that
satisfy b0

i = k0 and b1
i = k1. For any vertex in (0, 0)i there exists a directed

path to a vertex in (1, 2)−i, because π0
−i(0 → 1) = 1−ε

2
f1 − ε

2
f0 > 0 and

π1
−i(1 → 2) = ε

2
f1 > 0. For any vertex in (1, 1)i there exists a directed path

to a vertex in (0, 2)−i, because π0
−i(0→ 1) = ε

2
f1− 1−2ε

2
f0 < 0, π1

−i(0→ 1) =
ε
2
f0 + ε+1

2
f1 > 0 and π1

−i(1→ 2) = 1−2ε
2
f1 − ε

2
f0 > 0.

Consider the set of vertices (0, 1)i. In this case, π0
−i(0→ 1) = ε

2
(f1 − f0),

π1
−i(0 → 1) = 1−ε

2
f0 + 1

2
f1 > 0 and π1

−i(1 → 2) = 1−2ε
2
f1 > 0. Hence, if

f1 ≥ f0, there exists a directed path to a vertex in (1, 2)−i and if f1 ≤ f0,
there exists a directed path to a vertex in (0, 2)−i. Moreover, consider the
set of vertices (1, 2)i. In this case, π0

−i(0→ 1) = −1−2ε
2
f0 < 0, π1

−i(0→ 1) =
ε
2
(f0 + f1) > 0 and π1

−i(1 → 2) = ε
2
(f1 − f0). Hence, if f1 ≥ f0, there exists

a directed path to a vertex in (0, 2)−i and if f1 ≤ f0, there exists a directed
path to a vertex in (0, 1)−i. By putting together these transitions (separately
for both cases f1 ≥ f0 and f1 < f0), it easily follows that for each vertex

b ∈ B′, there exists a directed path to b̂. This completes the proof since b̂ is
absorbing according to lemma 3.

4.2 Uniform Trembles and Common Values

It is well known that different ways of modeling perturbations and trembles
in economic models may result in surprisingly different outcomes, even if
perturbations are very small in scale (see, for example, Bergin and Lipman
(1996) for the effect of state-dependent mutations on the outcome of evolu-
tionary models). Therefore, I study a different type of perturbations in this
section in order to check whether the results obtained in section 4.1 are ro-
bust to modifications in the way perturbations are modelled. In particular,
I use a model of uniform trembles which has been frequently used in the
literature on learning and evolution. No analytical results can be obtained
in this case, so I will restrict attention to an example which I will implement
in a computer simulation.

In order to define the uniform trembles, let U [0,M ′] denote the uniform

distribution on the set {0, 1, ...,M ′} and let β̂ be the (standard) belief func-
tion which maps histories to relative frequencies of past play.

Assumption 3. Beliefs about each player i’s s-types are given by βs
i = (1−

ε)β̂s
i + εU [0,M ′], whenever ε is arbitrarily small and M ′ < M is sufficiently

large (the composition of the two discrete probability distributions is defined
in the obvious way).
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Example 1. Consider the second-price auction game ΓA with a uniform
distribution of types, a uniform tie-breaking rule and let T = 8. Moreover,
let the belief function satisfy assumption 3. Let any b ∈ B be denoted by
[b1, b2] and define

b(1) = [(1, 3, 5, 7, 8, 10, 12, 14, 16), (0, 2, 4, 6, 8, 9, 11, 13, 15)]

b(2) = [(1, 3, 5, 7, 8, 9, 11, 13, 15), (0, 2, 4, 6, 8, 10, 12, 14, 16)]

b(3) = [(0, 2, 4, 6, 8, 9, 11, 13, 15), (1, 3, 5, 7, 8, 10, 12, 14, 16)]

b(4) = [(0, 2, 4, 6, 8, 10, 12, 14, 16), (1, 3, 5, 7, 8, 9, 11, 13, 15)],

The simulation is carried out in the following way. In simulation step 1, I
select a random vertex b(1) from the set B of vertices of the best-reply graph,
according to a uniform distribution over B. In each further simulation step
t, types are randomly determined for both player and players choose best
responses to b(t− 1) as described in section 3. The best responses determine
the new state b(t). In other words, I generate directed paths through the best-
reply graph. As soon as a sink is reached (i.e. b(t∗) = b(t∗ + 1) = ...), the
absorbing state is saved and a new simulation begins. Figure 1 summarizes
the result of 1000 such simulations. The result suggests that the best-reply
graph is weakly acyclic, which implies that learning converges almost surely
to one of the four states in which players exhibit the behavior described by
b(1), b(2), b(3) and b(4), according to proposition 1. These limit state are such
that each type s proposes a bid which is equal to s − 1, s or s + 1. Hence,
the result of this numerical example is consistent with the analytical result
of section 4.1.3

b(1) b(2) b(3) b(4) other total
abs. freq. 255 241 268 236 0 1000

Figure 1: Absolute frequencies of the limit states for simulated transitions in
the best-reply graph with random initial conditions.

4.3 Common Values and Asymmetries

In the previous specifications of the auction model, the learning process al-
ways converged to a symmetric absorbing state in which each bidder of type

3The resemblance of the limit states becomes stronger if the number of types in the
present example is increased. The matlab-code of the simulation can be downloaded on
the author’s web-page.
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s proposed a bid equal to 2s. These absorbing states correspond to sym-
metric equilibria of the baseline model. Klemperer (1998) argues that small
asymmetries between the bidders may result in unique equilibria which are
asymmetric in a very strong sense. Let me introduce a (arbitrarily) small
asymmetry between the bidders in order to check whether symmetry is a
crucial assumption for the symmetric outcome to be obtained. Consider the
following modification of the model. Whenever bidder one wins the auction,
she receives a (small) bonus η > 0 in addition to the common value of the
object. As before, bidder two only receives the common value of the object.
Alternatively, assume that bidder one receives a small fraction η > 0 of the
revenues after each auction. As the following proposition shows, both of
these asymmetries have the same effect on the equilibrium and the outcome
of the learning process.

The following assumptions on perturbations is similar to assumption 2.
For technical reasons, I allow for trembles by more than one bid.

Assumption 4. For any given player i and type s: whenever hs
i = (b, b, ..., b),

βs
i (h) assigns probability ε|b−b| to any bid b 6= b and the remaining probability

mass 1−
∑

b6=k ε
|b−b| to b, where ε > 0.

Proposition 4. Consider the second-price auction game ΓA with common
values and a uniform distribution of types. Let T = 2 (i.e. three types)
and let η be a sufficiently small but positive number. Either assume that
bidder one receives a fixed bonus of η whenever she wins the object or assume
that bidder one receives a fraction η of the revenues after each auction. If the
belief function satisfies assumption 3 and the perturbation ε > 0 is sufficiently
small, the learning process converges almost surely to a state in which bidder
one always wins.

Proof. See Appendix.

These results are consistent with those in Klemperer (1998). I showed
that the introduction of small asymmetries in favor of bidder one (in combi-
nation with small perturbations of the belief function) implies convergence
to a unique asymmetric state in which bidder one always wins, regardless of
bidders’ types.

While this result relies on the specific assumption on perturbations, figure
2 shows that for uniform perturbations (as defined in assumption 3), results
are similar, but less extreme. Two Monte Carlo simulations runs with 10000
rounds each have been carried out. Despite the small degree of asymmetries,
player one wins significantly more often than player two in both runs (66.2%,
resp. 59.3%).
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pl.1 wins pl.2 wins tie total
` = 4, T = 6 6620 3299 81 10000
` = 5, T = 9 5931 3965 104 10000

Figure 2: Asymmetries, uniform trembles, 10000 rounds, η=0.1, ε=0.01,
M’=2T+2

4.4 Private Values

It is well known that if valuations are private (i.e. α1 = α2 = 0), each bidder
has a weak incentive to propose a bid which is equal to her private signal
(irrespectively of whether signals are continuous or discrete). Let ĥ denote
the corresponding state of the learning process. If the learning process is
currently in state ĥ, the highest type T is indifferent between bidding T
and any bid equal or larger than T + 1. Eventually, she will propose a bid
larger than T which, in turn, provides an incentive for type T −1 to increase
her bid as well. In other words, ĥ is not an absorbing state of the learning
process and convergence can not be obtained without further assumptions.
Therefore, I assume as before that belief functions are slightly perturbed.
This allows for the following result.

Proposition 5. Consider the second-price auction game ΓA with private
valuations. If the perturbations of the belief function satisfy either assumption
2, assumption 3 or assumption 4 (while ε > 0 has to be sufficiently small in

each case), the learning process converges almost surely to ĥ.

Proof. For any initial state, each type of each player has a weak incentive to
bid according to ĥ. Hence, ĥ is reached from any initial state after 2`(T +

1) rounds with strictly positive probability. In ĥ, each bidder has a strict

incentive to bid according to ĥ.

5 First-price Auction: Some Examples

It is well known that in a first-price auction with private values (and con-
tinuous signals), there do not exist asymmetric equilibria. Under common
values, asymmetric equilibria may exists but they are hard to study and
not much is known about their properties, see Milgrom and Weber (1982).
The symmetric equilibria of the first-price auction models under private and
common valuations are given by the strategies bi(si) = si/2 and bi(si) = si,
respectively. By employing a simple example with only 6 types, I show in
section 5.1 that if valuations are private, learning in a discrete version of this
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model may converge to a state in which bidders follow strategies similar to
the equilibrium strategies of the continuous benchmark model. Moreover, I
show in section 5.2 that a similar result holds under common values.

As before, the distribution of types is assumed to be uniform. Since no
general results can be obtained in this framework, I merely focus on examples.
The following assumption on the belief function is maintained throughout
this section.

Assumption 5. For any given player i and type s: whenever hs
i = (b, b, ..., b),

βs
i (h) assigns probability one to b.

5.1 First-price Auction with Independent Values

The following example suggests that, if the continuous auction model with
private valuations is discretized and the number of types is limited, learn-
ing may converge to a state which is consistent with the prediction obtained
from the equilibrium analysis. Note that in this example, the lowest types
dispose of weakly dominant strategies (proposing a bid of zero) and there-
fore, according to proposition 1, the convergence result holds even without
assumption 1.

Claim 4. Consider the first-price auction game ΓA with private valuations,
T = 5 (i.e. six types) and a uniform distribution of types. The learning

process converges almost surely to a symmetric state ĥ, which satisfies ĥs
i =

{b s
2
c, b s

2
c, ..., b s

2
c}, for all i ∈ N and s ∈ S (where bxc denotes the largest

integer which is smaller or equal than x).

Proof. Let b̂ denote the vertex of the best-reply graph that corresponds to
ĥ, i.e. b0

i = b1
i = 0, b2

i = b3
i = 1 and b4

i = b5
i = 2 (for i ∈ N). Clearly, any

vertex b which satisfies b0
i > 0, for some i, is (weakly) dominated according

to the definition in section 2. The same is true for any vertex b which satisfies
bsi ≥ s, where s > 0. Moreover, any vertex with b0

i = 0, b1
i = 0 and b2

−i 6= 1 is
weakly dominated as well, because π2

−i(0 → 1) ≥ 2
6
(2 − 1) − 1

2
2
6
(2 − 0) = 0.

Therefore, according to lemma 1 and lemma 2, it is sufficient to show that
there exists a directed path of the best-reply graph from any vertex of the
set

B′ = {b ∈ B : b0
i = b1

i = 0, b2
i = 1, b3

i ≤ 2, b4
i ≤ 3, b5

i ≤ 4,

and b2
i ≤ b3

i ≤ b4
i ≤ b5

i , i ∈ N}

to some sink. Let (k3, k4, k5)i denote the subset of vertices b ∈ B′ that
satisfy b3

i = k3, b4
i = k4 and b5

i = k5. For any vertex in (1, 1, 1)i, there exists
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a directed path to a vertex in (1, 2, 2)−i, because π3
−i(1 → 2) = −1

3
< 0,

π4
−i(1 → 2) = 0, π4

−i(2 → 3) = −1 < 0, π5
−i(1 → 2) = 1

3
> 0, π5

−i(2 →
3) = π5

−i(3 → 4) = −1 < 0. Similarly, it can be shown that there exists a
directed path to a vertex in (1, 2, 2)−i from any vertex contained in either of
the sets (1, 1, 2)i, (1, 2, 2)i, (1, 2, 3)i, (1, 2, 4)i, (2, 2, 2)i, (2, 2, 3)i and (2, 2, 4)i.
Moreover, there exists a directed path to a vertex in (1, 1, 2)−i from any
vertex contained in either of the sets (1, 1, 3)i, (1, 1, 4)i, (1, 3, 3)i, (1, 3, 4)i,
(2, 3, 3)i and (2, 3, 4)i. By putting together these transitions, it easily follows

that there exists a directed path to b̂ from any vertex b ∈ B′. Finally, ĥ is
absorbing, i.e. BRs

i (̂b) = {b̂si}, because π3
i (1 → 2) = −1

6
< 0, π4

i (1 → 2) =
1
6
> 0, π4

i (2 → 3) = −2
3
< 0, π5

i (1 → 2) = 1
2
> 0, π5

i (2 → 3) = −1
2
< 0 and

π5
i (3→ 4) = −1 < 0.

5.2 First-price Auction with Common Values

In the case of common values, the equilibrium analysis in the continuous
benchmark model assures the existence of a symmetric equilibrium, in which
strategies are given by bi(si) = si. Not much is known about asymmetric
equilibria. The following example suggests that learning in a discrete model
leads to symmetric outcomes, that correspond to the symmetric equilibrium
of the continuous model.

Claim 5. Consider the first-price auction game ΓA with common valuations,
T = 2 (i.e. three types) and a uniform distribution of types. Moreover,
let assumption 1 hold. The learning process converges almost surely to a
symmetric state ĥ, which satisfies ĥs

i = {s, s, ..., s}, for s ∈ {0, 1} and ĥ2
i =

{1, 1, ..., 1}, for all i ∈ N .

Proof. Let b̂ denote the vertex of the best-reply graph that corresponds to
ĥ, i.e. b0

i = 0 and b1
i = b2

i = 1 (for i ∈ N). According to lemma 1, I restrict
attention to vertices of the best-reply graph that satisfy b0

i ≤ b1
i ≤ b2

i . This
implies that players of type s can, in expectation, never gain more than their
own signal s plus the average type of the opponent, i.e. they can never gain
more than s+1. Therefore, according to lemma 1 and lemma 2, it is sufficient
to show that there exists a directed path of the best-reply graph from any
vertex of the set

B′ = {b ∈ B : b0
i ≤ 1, b1

i ≤ 2, b2
i ≤ 3, b0

i ≤ b1
i ≤ b2

i , i ∈ N}

to some sink. Let (k0, k1, k2)i denote the subset of vertices b ∈ B′ that
satisfy b0

i = k0, b1
i = k1 and b2

i = k2. For any vertex in (0, 0, 0)i, there exists
a directed path to a vertex in (0, 1, 1)−i, because π0

−i(0 → 1) = −1
2
< 0,
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π1
−i(0 → 1) = 0, π1

−i(1 → 2) = −1 < 0, π2
−i(0 → 1) = 1

2
> 0 and π2

−i(1 →
2) = π2

−i(2 → 3) = −1 < 0. Similarly, it can be shown that there exists a
directed path to a vertex in (0, 1, 1)−i from any vertex contained in either of
the sets (0, 0, 1)i, (0, 1, 1)i, (0, 1, 2)i, (0, 1, 3)i, (1, 1, 1)i, (1, 1, 3)i and (1, 2, 3)i.
Moreover, there exists a directed path to a vertex in (0, 0, 1)−i from any vertex
contained in either of the sets (0, 0, 2)i, (0, 0, 3)i and (0, 2, 3)i and there exists
a directed path to a vertex in (0, 1, 2)−i from any vertex contained in either
of the sets (1, 1, 2)i and (1, 2, 2)i. Finally, it can be shown that there exists a
directed path to a vertex in (0, 0, 2)−i from any vertex on the set (0, 2, 2)i. By
putting together these transitions, it easily follows that there exists a directed
path to b̂ from any vertex b ∈ B′. Finally, ĥ is absorbing, i.e. BRs

i (̂b) = {b̂si},
because π0

i (0 → 1) = −1
6
< 0, π1

i (0 → 1) = 1
3
> 0, π1

i (1 → 2) = −1
2
< 0,

π2
i (0→ 1) = 5

6
> 0, π2

i (1→ 2) = −1
6
< 0 and π2

i (2→ 3) = −1 < 0.

By undertaking considerably more numerical effort, the example can be
extended to four and five types. It can be shown that in the case of four
types, learning converges almost surely to a state in which the two low types
bid 0 and the two high types bid 2. In the case of five types, the process
converges almost surely to a state in which the lowest type bids 0, the next
two types bid 1 and the highest two types bid 3. Moreover, in all three
examples, there exist equilibria in which both players propose bids equal
to their signals. These equilibria, however, are not strict and therefore not
absorbing.

6 Conclusion

In the first part of this paper, I presented a general n−player model of learn-
ing under incomplete information and I introduced a framework based on
best-reply graphs which allows to study its outcome. In particular, I showed
that the problem of convergence can be reduced if the utility functions meet
a simple monotonicity condition.

In the second part, I introduced a class of discrete 2−player auction mod-
els which fits the general model. In particular, it covers first- and second-price
auctions under private and common valuations. For these different specifi-
cations of the auction model, I showed that the learning process converges
to states which correspond to the Nash equilibria of the respective continu-
ous benchmark models. I argued that this justifies the ad hoc equilibrium
selection approach taken by classical auction theory. Furthermore, I argued
that such a learning approach justifies the concept of Nash equilibrium as a
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solution concept more generally. Since the above mentioned condition is sat-
isfied by the considered class of auctions, I used it throughout the remainder
of the paper in order to proof all main results.

I showed that in the second-price auction with common valuations and
slightly perturbed beliefs, learning converges to a unique absorbing state of
the learning process, provided either that types follow a uniform distribu-
tion or that the number of types is equal to two. The absorbing state was
shown to be consistent with the equilibrium of the corresponding continuous
benchmark model. Through the use of Monte Carlo simulations, I generated
evidence which suggests that the obtained convergence results do not hinge
on the specific characteristics of the perturbations of beliefs. Moreover, I
showed that if small asymmetries are introduced into the model, the out-
come of learning remains consistent with the equilibrium of the continuous
benchmark case. Finally, I showed that in the case of private valuations even-
tually every bidder proposes a bid equal to her own valuation. As before,
this is consistent with the equilibrium of the continuous benchmark model.

Moreover, I provided two examples of a first-price auction model with
independent and common valuations. These examples suggest that, under
certain conditions, also the well-known equilibria of continuous first-price
auctions can be regarded as the outcome of a learning process.
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Appendix: Proofs

Proof of Claim 3

Consider any vertex b that satisfies the above condition and assume, in ad-
dition, that for all s with 1 ≤ s < ŝ, b satisfies bsi ≤ 2(ŝ − 1), ∀i ∈ N ,
and max{s; bs−1

i } ≤ bsi ≤ s + ŝ − 1. This assumption on b is without loss of
generality because lemma 1, claim 1 and claim 2 imply that some vertex b′

that satisfies these requirements is connected to b through a finite number
of directed edges. Consider this vertex b′ and call it b (with slight abuse of
notation). Let me construct a sequence of transitions which reaches some
vertex in which both bidders bid 2(ŝ − 1) when they are of type ŝ − 1. To
this end, I need to show that

πŝ−1
i (k → k + 1) =

1

2
pk
−i

[
Ak
−i + ŝ− 1− k

]
+

1

2
pk+1
−i

[
Ak+1
−i + ŝ− 1− k − 1

]
is non-negative for all i ∈ N and k ∈ B with k ≤ 2ŝ − 3. Let me first show
that Ak

−i ≥ k − ŝ + 1 for all k ≤ 2ŝ − 3 with pk
−i > 0 (this implies that

πŝ−1
i (k → k + 1) ≥ 0 for all k ≤ 2ŝ − 4). Remember that k ≥ ŝ − 1 and

consider the following two (exhaustive) cases.

case A: bk−ŝ+1
−i = k

It follows from lemma 1 that bk−ŝ+2
−i ≥ k. Since, bk−ŝ

−i ≤ k − 1 and bk−ŝ+2
−i ≤

k + 1, it follows that Ak
−i is minimized if bk−ŝ

−i = k − 1 and bk−ŝ+2
−i = k + 1.

Hence,

Ak
−i ≥ ε (k − ŝ) + (1− 2ε) (k − ŝ+ 1) + ε (k − ŝ+ 2) = k − ŝ+ 1.

case B: b−i(b− ŝ+ 1) < b and pk
−i > 0

Lemma 1 and claim 2 imply that Ab
−i is minimized if bk−ŝ

−i = bk−ŝ+1
−i = bk−ŝ+2

−i .
Hence,

Ak
−i ≥

1

3
(k − ŝ+ k − ŝ+ 1 + k − ŝ+ 2) = k − ŝ+ 1.

It remains to be shown that πŝ−1
i (2ŝ − 3 → 2ŝ − 2) ≥ 0. This is clearly the

case if A2ŝ−2
−i ≥ ŝ− 1 or if p2ŝ−2

−i = 0. There are two cases that satisfy neither
of these two conditions.

case I: bŝ−1
−i = bŝ−2

−i = 2ŝ− 3

In this case, A2ŝ−2
−i = 1

2
(ŝ− 1) + 1

2
(ŝ− 2) = ŝ− 3

2
. If ŝ = 2, one gets A1

−i = 1
2
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and with p1
−i = 2−4ε

T+1
and p2

−i = 2ε
T+1

, it follows that π1
−i(1→ 2) = 1−ε

T+1
≥ 0 if

ε ≤ 1. In case ŝ > 2, A2ŝ−3
−i is minimized if bŝ−3

−i = 2ŝ− 4, hence

A2ŝ−3
−i ≥ (1− 2ε)(ŝ− 1) + (1− 2ε)(ŝ− 2) + ε(ŝ− 3)

2− 3ε
.

Since p2ŝ−3
−i = 2−3ε

T+1
and p2ŝ−2

−i = 2ε
T+1

it follows after a few transformations
that

πŝ−1
i (2ŝ− 3→ 2ŝ− 2) ≥ 1− 4ε

2(T + 1)
≥ 0 if ε ≤ 1

4
.

case II: bŝ−1
−i = 2ŝ− 2 and bŝ−2

−i = 2ŝ− 3

First, consider the case ŝ ≥ 3 and bŝ−3
−i = 2ŝ−4. It follows from the first part

of this proof that there exists a best response of bidder i when she is of type
ŝ− 1 which is either 2ŝ− 3 or 2ŝ− 2. Moreover, it is not hard to check that
πŝ−1

i (2ŝ−3→ 2ŝ−2) < 0. Therefore, in case b−i(ŝ−3) = 2ŝ−4 (and ŝ ≥ 3),
the claim does not follow directly and I need to construct a finite sequence
of best responses that induces bidder −i to shade her bid when she is of type
ŝ − 3. Let b̂ ∈ B2(T+1) denote the end point of this sequence. Clearly, I can
assume that b̂ŝ−1

i = 2ŝ− 3. From claim 2 it follows that there exists a finite

sequence of best responses that induces b̂si ≤ ŝ + s − 2 for all s ≤ ŝ − 2. It

remains to show that b̂ as specified above satisfies πŝ−3
−i (2ŝ−5→ 2ŝ−4) ≤ 0.

In case ŝ = 3, π0
−i(1 → 2) is maximized if b̂1

i = b̂0
i = 0, which implies

A2
i = 2 and A1

i = 0.5. Hence, π0
−i(1 → 2) < 0 and therefore b̂0

−i = 1. Now

consider the case ŝ ≥ 4. Given the restrictions on b̂i, it is not hard to see
that this expression is maximized if b̂ŝ−2

i ≤ 2ŝ − 6 and b̂ŝ−q
i ≤ 2ŝ − 7 for all

q ∈ {3, 4.., ŝ}. Hence, A2ŝ−4
i = ŝ − 1 and A2ŝ−5

i = ŝ − 2, if p2ŝ−5
i > 0. It

follows that πŝ−2
−i (2ŝ− 4→ 2ŝ− 5) ≤ 0 and therefore b̂ŝ−3

−i ≤ 2ŝ− 5. Finally,
either assume ŝ ≥ 2 and consider any vertex b or let ŝ ≥ 3 and consider the
state b̂ derived above. It follows that A2ŝ−3

−i = ε(ŝ−1)+(1−2ε)(ŝ−2)
1−ε

= ŝ− 2 + ε
1−ε

and A2ŝ−2
−i = ε(ŝ−2)+(1−2ε)(ŝ−1)

1−ε
= ŝ − 1

1−ε
. Using A2ŝ−2

−i + A2ŝ−3
−i = 2ŝ − 3 it

finally follows that πŝ−1
i (2ŝ− 3→ 2ŝ− 2) = 0.

Q.E.D.
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Proof of Proposition 4

Let b̂ denote the vertex of the best-reply graph that satisfies b0
1 = 0, b1

1 = 1,
b2

1 = 2, b0
2 = 3, b1

2 = 4 and b2
2 = 5. Clearly, any vertex b which satisfies b0

2 > 2,
b1

2 > 3 or b2
2 > 4 and any vertex b which satisfies b0

1 > 3, b1
1 > 4 or b2

1 > 5
is (weakly) dominated according to the definition in section 2. Therefore,
according to lemma 1 and proposition 2, it is sufficient to show that there
exists a directed path of the best-reply graph from any vertex of the set

B′ = {b ∈ B : b0
1 ≤ 3, b1

1 ≤ 4, b2
1 ≤ 5, b0

2 ≤ 2, b1
2 ≤ 3, b2

2 ≤ 4

and b0
1 ≤ b1

1 ≤ b2
1, b

0
2 ≤ b1

2 ≤ b2
2}

to some sink. Let (k0k1k2)i denote the subset of vertices b ∈ B′ that
satisfy b0

i = k0, b1
i = k1 and b2

i = k2. For any vertex in (000)2, there exists a
directed path to a vertex in (234)1, because

π0
1(0→ 1) =

1

2

[
(1− ε′)

(
0 + 1 + 2

3
+ η − 0

)
+ ε

(
0 + 1 + 2

3
+ η − 1

)]
> 0

(where ε′ represents an expression which is larger than ε and goes to zero
as ε goes to zero), π0

1(1 → 2) = 1
2

[ε2(η − 1) + εη] > 0, π0
1(2 → 3) =

1
2

[ε3(η − 2) + ε2(η − 1)] < 0, π1
1(2 → 3) = 1

2
[ε3(η − 1) + ε2η] > 0, π1

1(3 →
4) = 1

2
[ε4(η − 2) + ε3(η − 1)] < 0, π2

1(3 → 4) = 1
2

[ε4(η − 1) + ε3η] > 0 and
π2

1(4→ 5) = 1
2

[ε5(η − 2) + ε4(η − 1)] < 0.
In the same way, in can be shown that there exist directed paths from the

following vertices to the following sets. From any vertex in (011)2 and (111)2

to (234)1, from any vertex in (001)2 to (344)1, from any vertex in (002)2,
(012)2, (013)2 to (345)1, from any vertex in (003)2, (022)2, (023)2 to (145)1,
from any vertex in (004)2, (024)2 to (135)1, from any vertex in (014)2 to
(235)1, from any vertex in (022)2, (222)2 to (134)1, from any vertex in (033)2

to (124)1, from any vertex in (034)2 to (125)1, from any vertex in (112)2,
(113)2, (123)2 to (045)1, from any vertex in (114)2, (134)2 to (025)1, from
any vertex in (112)2 to (034)1, from any vertex in (124)2 to (035)1, from any
vertex in (133)2 to (024)1, from any vertex in (223)2, (224)2, (234)2 to (015)1

and from any vertex in (233)2 to (014)1.
It is sufficient to show that from any vertex of the above sets, there exists a

directed path to a sink. For any vertex in (234)1, there exists a directed path
to a vertex in (013)2, because π0

2(0 → 1) = 1
6

[−ε+ 2ε3 + ε4] < 0, π1
2(0 →

1) = 1
6

[2ε2 + 4ε3 + 3ε4] > 0, π1
2(1 → 2) = 1

6
[−(1− ε′) + 2ε2 + 2ε3] < 0,

π2
2(1 → 2) = 1

6
[2ε+ 4ε2 + 3ε3] > 0, π2

2(2 → 3) = 1
6

[ε+ 2ε2] > 0 and
π2

2(3 → 4) = 1
6

[−ε− 2ε2] < 0. Similarly, it can be shown that there exists
a directed path to (013)2 from any vertex in (045)1, (134)1, (135)1, (145)1
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and (235)1, a directed path to (012)2 from any vertex in (344)1 and (345)1, a
directed path to (023)2 from any vertex in (025)1, (034)1, (035)1 and (125)1

and a directed path to (024)2 from any vertex in (014)1, (015)1, (024)1 and
(124)1.

As shown before, from any vertex in (012)2, (013)2, (023)2 and (024)2

vertices in (135)1, (145)1 and (345)1 can be reached, from which, in turn,
vertices in (012)2, (013)2 can be reached, from where (345)1 can be reached.
Hence, from any vertex in B′, there exists a directed path to a vertex in
(345)1 and therefore a connected path to b̂.

Finally, it remains to be shown that ĥ is absorbing, i.e. BRs
i (̂b) = {b̂si}.

First, consider a state in (012)2. In this case,

π0
1(0→ 1) =

1

6

[
2(1− ε′)η + ε(3η + 1) + ε2(η + 2)

]
> 0

π0
1(1→ 2) =

1

6

[
2(1− ε′)η + ε(3η − 1) + ε2(η − 2)

]
> 0

π0
1(2→ 3) =

1

6

[
(1− ε′)η + 2ε(η − 1) + 2ε2(η − 2) + ε3(η − 3)

]
> 0

π0
1(3→ 4) =

1

6

[
ε(η − 1) + 2ε2(η − 2) + 2ε3(η − 3) + ε4(η − 4)

]
< 0

π1
1(3→ 4) =

1

6

[
εη + 2ε2(η − 1) + 2ε3(η − 2) + ε4(η − 3)

]
> 0

π1
1(4→ 5) =

1

6

[
ε2(η − 1) + 2ε3(η − 2) + 2ε4(η − 3) + ε5(η − 4)

]
< 0

π2
1(4→ 5) =

1

6

[
ε2η + 2ε3(η − 1) + 2ε4(η − 2) + ε5(η − 3)

]
> 0

π2
1(5→ 6) =

1

6

[
ε3(η − 1) + 2ε4(η − 2) + 2ε5(η − 3) + ε6(η − 4)

]
< 0,

which implies that BR0
1(̂b) = {3}, BR1

1(̂b) = {4} and BR2
1(̂b) = {5}. Second,

consider a state in (345)1. In this case, π0
2(0→ 1) = 1

6
[−ε2 + 2ε4 + 2ε5] < 0,

π1
2(0 → 1) = 1

6
[2ε3 + 4ε4 + 3ε5] > 0, π1

2(1 → 2) = 1
6

[−ε+ 2ε3 + 2ε4] < 0,
π2

2(1→ 2) = 1
6

[2ε2 + 4ε3 + 3ε4] > 0 and π2
2(2→ 3) = 1

6
[−(1− ε′) + 2ε2 + 2ε3] <

0, which implies BR0
2 = {0}, BR1

2 = {1} and BR2
2 = {2}.

Q.E.D.
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1 Introduction

There is a large number of social and economic situations in which indi-
viduals are influenced by the actions of others. Common examples include
consumer purchase decisions, the choice of a restaurant, the adoption of a
new technology and asset market decisions. It is well known that individuals
may underestimate their private information in such situations and that this
can lead to inefficient behavior such as fads, booms, financial market bubbles
and busts, bank runs, or the failure of firms to coordinate on the adoption the
best technology. A comprehensive literature pioneered by Banerjee (1992)
and Bikhchandani, Hirshleifer and Welch (1992) has used herd behaviour
and informational cascades to explain a variety of such phenomena. This lit-
erature analyzes sequential action models with incomplete and asymmetric
information, where agents can observe actions taken by their predecessors
but not the information upon which these actions were taken. These models
generally predict that agents eventually herd on one action, i.e. that rational
agents imitate their predecessors’ behavior even if it conflicts with their own
information.

A central assumption of most herding models is that agents’ payoffs are
independent of the actions of others. Therefore, agents are concerned about
the actions of others only to the extent that they reveal private information
about the unknown state of the world. In other words, the only external-
ity present in these models is an informational one. In many real-world
situations, however, social learning is significantly affected by the direct de-
pendence of payoffs on actions. This dependence may have a crucial impact
on the occurrence of herds and informational cascades. A long waiting line in
front of a night club, for example, may well indicate high quality of the club,
but herding nevertheless only occurs to a certain extent because eventually
newcomers are deterred by the long line. This paper contributes to the lit-
erature on social learning by relaxing the assumption of pure informational
externalities and by allowing for strategic externalities. Strategic external-
ities will be referred to as strategic substitutabilities (complementarities) if
they are negative (positive).

In models with pure informational externalities, there is no incentive for
agents to behave strategically. Therefore, they exhibit pure backward-looking
behaviour, which is relatively easy to study. In the presence of strategic exter-
nalities, however, agents also need to consider the impact of their actions on
the actions of successors, i.e. they need to exhibit forward-looking behavior.
In the technology adoption problem, for example, the choices of predecessors
are just as important as the choices of successors because each firm attempts
to adopt the technology used by the majority of all firms. This may lead
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to complex types of behavior, involving strategic signalling of private infor-
mation. Agents’ behavior in such models is very hard to study and there
is generally a multiplicity of equilibria, see for example Dasgupta (2000) or
Drehmann, Oechssler and Roider (2007).

In this paper, I analyze strategic externalities in standard herding mod-
els under the restricting assumption that externalities are imposed only on
successors. This implies that agents are entirely backward-looking. They do
not behave strategically but are merely interested in learning their prede-
cessors’ private information from previous actions, while taking into account
the strategic externality effects of these actions. In appendix A, I briefly
introduce a model with allows individuals to be backward-looking as well
as forward-looking. Since externalities cancel each other out in this model,
there exists a simple and efficient equilibrium in which agents rely entirely
on their own signal.

There are many real-world situations in which individuals impose exter-
nalities only on their successors. Examples include waiting lists for a new
product or the choice of a parking lot (if availability is not observable before
entering the parking lot). More generally, all first-come-first-served queuing
systems with waiting costs and uncertainty about the quality of service are
valid examples, see Debo, Parlour and Rajan (2005). While these examples
involve strategic substitutabilities, there are other situations in which actions
impose strategic complementarities on successors. Consider, for example, an
individual’s decision on whether or not to commit a crime. If a potential
criminal observes that many peers have committed the same crime, she may
infer that the probability of gain is high, see Kahan (1997). In addition to
this informational externality, there is a strategic complementarity (imposed
only on successors) due to reduced law enforcement in case many crimes have
been committed in the past.

There is another way of interpreting the backward-looking approach. The
model adopted here is equivalent to a model in which payoffs are fully de-
pendent on actions of predecessors and successors, but in which individuals
are boundedly rational in the sense that they do not consider the impact
of their choice on the actions of successors. Experimental evidence suggests
that individuals may indeed behave in this fashion, see Drehmann, Oechssler
and Roider (2007).

The general model is introduced in section 2. I consider a standard setting
of social learning, in which agents choose binary actions in a chronological
order. Before deciding on a particular action, each agent receives some infor-
mation (this will be specified below) about the behavior of her predecessors
and a private signal that is correlated with the unknown state of the world.
The action space is discrete throughout this paper, and I study the model
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under both a continuous and a discrete signal space in order to make it com-
parable to large parts of the social learning literature. While the bulk of
this literature is of the discrete-signal-discrete-action type, some interesting
models of the continuous-signal-discrete-action type have been proposed as
well, most notably Smith and Sørensen (2000).

The main focus of my paper is on the efficiency of learning. While
sufficiently strong strategic substitutabilities always imply inefficient and
strongly non-conformist behavior (so-called anti-herding), I show that mod-
erate strategic substitutabilities may lead to an increase in efficiency since
neither herding nor anti-herding arise. In particular, I show that there ex-
ists a special case in which the informational externality of each action and
the corresponding strategic externality cancel each other out. This induces
agents to rely entirely on their private information and therefore learning
is efficient. Moreover, I show that strategic complementarities have a nega-
tive effect on the efficiency of learning since they increase agents’ tendency
towards conformity and therefore reinforce inefficient herding.

In section 3, I study the model under a continuous signal space. Continu-
ous signals have the feature that they allow a distinction between strong and
weak signals, which affects agents’ tendency towards incorporating predeces-
sor’s decisions into their own action choice. It will turn out that analyzing
this tendency subject to agents’ confidence in their private information re-
veals some interesting insights. I show how agents’ signals influence their
decisions and under what conditions (anti-)herding and cascade behavior
arises. Most analytical expressions are derived under a uniform distribution.
However, at the end of the section, I show that the results do not change
qualitatively if one allows for a general distribution.

The two central concepts studied here are herds and informational cas-
cades. While in discrete models such as Banerjee (1992) and Bikhchandani,
Hirshleifer and Welch (1992), these notions are used to address the same
phenomenon, Smith and Sørensen (2000) introduce them as two separate
concepts. According to their definitions, an informational cascade is an in-
finite sequence of agents who all neglect their private information and base
their actions entirely on the observations of the behavior of others. Hence,
once a cascade starts, public information stops accumulating. Herd behavior,
on the other hand, describes a situation in which all agents take the same
action, not necessarily ignoring their private information. In this case, public
information can in principle still be accumulated.

The social learning literature generally finds that informational cascades
arise in situations in which agents imitate their predecessors, i.e. they are due
to conformist behavior. This paper shows that in the presence of strategic
externalities, extreme forms of non-conformist behavior may provide another
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explanation for informational cascades. It is shown that if strategic substi-
tutabilities are sufficiently strong, agents neglect their private information
and engage in anti-herding behavior. In other words, I show that in the pres-
ence of strategic externalities, informational cascades are neither necessary
nor sufficient for the occurrence of herding behavior. This result contrasts
with previous results obtained in models of pure informational externalities.

A common feature of most models of social learning is that agents are
able to observe all actions taken by their predecessors (which I refer to as
’perfect observability’). In reality, however, individuals can usually only ob-
serve a limited number of others. Several models of social learning take this
into account by making restrictions on the observability of other players. For
example, Smith and Sørensen (1996) study a model in which recent predeces-
sors are more likely to be observed. In section 3, I study two specifications of
the continuous-signal version of my model; one with perfect observability and
one with imperfect observability. For the sake of simplicity, I assume that
under imperfect observability, agents only observe the actions taken by their
immediate predecessors. Both of these informational scenarios are treated
by Çelen and Kariv (2004). They find that the informational structure mat-
ters for the occurrence of herds. I show that this result only holds true in
the presence of pure informational externalities. In the presence of strate-
gic externalities, herding and cascade behavior occur independently of the
informational scenario. Moreover, I show that some other results of Celen
and Kariv (2004) are not robust since they strongly depend on the absence
of strategic externalities.

In addition to greater realism, the imperfect observability scenario has
another motivation. Since each agent’s information structure is relatively
simple in this case (it is two-dimensional: agents observe their private signal
and their predecessor’s action), it is possible to study directly how agents re-
spond to behavior of their predecessors depending on the degree of strategic
externalities. In particular, imitative and contrarian behavior can be elicited
(contrarian behavior is defined as taking the action opposite to the prede-
cessor’s action). In the perfect observability scenario, this is analytically
impossible due to the large and time-varying sets of possible observational
histories. I find that if agents only observes their predecessors’ actions, weak
signals induce them to (rationally) base their action choice on the obser-
vation of their predecessor’s action, by entirely neglecting their own signal.
This either happens through imitating or through contrarian behavior. If
strategic externalities are strong, even agents with relatively strong private
signals engage into imitation or contrarian behavior and, at the extreme,
this may lead to herding or anti-herding. This analysis produces (recursive)
analytical expressions describing the relationship between individual tenden-
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cies towards imitative or contrarian behavior and the overall social tendency
towards herding, anti-herding or cascade behavior.

In section 4, I study the model under the assumption of binary signals
(and perfect observability). I show that in the presence of strategic comple-
mentarities, herding always occurs, as in Banerjee (1992) and Bikhchandani,
Hirshleifer and Welch (1992). Under strategic substitutabilities, herding
never occurs but there always is an informational cascade with anti-herding.
It is shown that anti-herding typically occurs after a substantial degree of
learning has taken place and I show that strategic complementarities may
significantly increase the efficiency of learning. However, it is shown that
there always exist two possible outcomes of social learning, one in which the
public belief is close to the true state of the world and one, in which the pub-
lic belief assigns a probability close zero to it. It is shown that the problem of
convergence to either one of these two states can be transformed into a ver-
sion of the Gambler’s Ruin Problem. Specifically, the probability that social
learning is correct is equivalent to the probability that the gambler doubles
her fortune, while the probability that social learning is wrong is equal to the
probability that the gambler goes broke. Using the solution to the Gambler’s
Ruin Problem, it is shown that social learning becomes arbitrarily accurate
(i.e. the public belief is arbitrarily close to the true state of the world, with
arbitrarily high probability), provided that either the precision of the signal
goes to one or the magnitude of the strategic externalities goes to zero. How-
ever, there may be very long spells of imitative behavior between two agents
who reveal their signals. I show via Monte Carlo simulation that learning
may indeed take a very long time to reach the absorbing state.

Some alternative studies of the interplay between informational and strate-
gic externalities have been proposed. Choi (1997) analyzes this relationship
in a technology adoption framework. In his model, firms do not observe
private signals about the quality of alternative technologies and therefore
herding is merely due to strategic externalities. Dasgupta (2000) introduces
strategic complementarities into a sequential choice model with continuous
private signals. Agents receive a positive return from investing only if all the
other agents also choose to invest. Moreover, Frisell (2003) studies the in-
terplay between strategic and informational externalities in a waiting game.
Finally, there exists a recent literature that combines models of social learn-
ing with queueing models, see Debo, Parlour and Rajan (2005) and Debo and
Veeraraghavan (2008). This literature analyzes the relationship between the
(positive) informational externalities of long lines and the (negative) strategic
externalities induced by the corresponding waiting costs.
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2 The Basic Model

Consider a countable set of identical agents, indexed by n = 1, 2, ..., N ,
where N ∈ N ∪ ∞. Each agent n has to make a once-in-a-lifetime deci-
sion an between two alternatives from the set A ≡ {−1, 1}. Decisions are
made sequentially in an exogenously determined order. Let Na(n) denote
the number of predecessors of agent n who have chosen alternative a, i.e.
Na(n) =

∑n−1
i=1 1{ai=a}, where 1{·} represents the indicator function. The

payoff of alternative a depends on Na as well as on the payoff-relevant qual-
ity Qa ∈ R of alternative a. Since relative qualities are sufficient to describe
agent’s choices, the state of the world is defined as θ0 = Q1 − Q−1. Assume
that agents are risk-neutral with utility function

un(a) = σNa(n) + Qa(θ0),

where σ ∈ (−∞, +∞) measures the size of strategic externalities.

The state of the world is unknown to all agents but each agent n observes
a private signal θn ∈ ΘS ⊂ R which is correlated with θ0. Assume that,
conditional on θ0, all θn are iid and follow a commonly known distribution.

Furthermore, let In denote the payoff-relevant information available to
agent n. I study two different informational scenarios. In the perfect ob-
servability (PO) scenario, agents observe the actions of all their predeces-
sors, whereas in the imperfect observability (IO) scenario only the immedi-
ate predecessor’s action is observable. Formally, IPO

n = (θn, (ai)
n−1
i=1 ) and

IIO
n = (θn, an−1). It follows that for given In, agent n’s optimal decision rule

is given by:

an = 1 if and only if E [σN1(n) − σN−1(n) + Q1(θ0) − Q−1(θ0) | In]

= E

[
σ

n−1∑

i=1

ai + θ0 | In

]
≥ 0. (1)

The decision rule contains the implicit assumption that agents always chose
alternative a = 1 in case of indifference. This assumption does not affect the
results since indifference is an event of zero-measure for each of the specifi-
cations of the model.

The focus of this paper is mainly on the occurrence of informational cas-
cades, herds and antiherds (these concepts will be defined below), i.e. on
agents’ behavior as the number N of agents goes to infinity. Therefore, I
either consider the limit of a sequence of economies indexed by N , where
N tends to infinity (as in section 3) or I set N directly equal to infinity (as
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in section 4). The finite-economy approach is used in the continuous signal
case in section 3 because under this specification of the model, an economy
of finite (but possibly very large) size is required. Note that this approach
is analytically straightforward since agents’ behavior exclusively depends on
the actions of their predecessors and therefore the size of the economy is irrel-
evant to the decision of any agent. For notational convenience, I occasionally
consider only the limit as n goes to infinity without explicitly stating the
double limit as both N and n tend to infinity.

Definition 1. An informational cascade occurs if there is some agent n0 and
some alternative a ∈ A such that for all n ≥ n0: θn ∈ ΘS ⇒ an = a (i.e. all
agents n ≥ n0 disregard their private signals). In case N < ∞, this property
has to be satisfied in the limit as N goes to infinity.

Definition 2. A run1 (anti-run) at position n0 of length mN
n0

satisfies an =
an−1 (an = −an−1) for all n = n0 + 1, n0 + 2, ..., n0 + mN

n0
. If N = ∞, a

herd (anti-herd) is said to occur if there is some n0 such that mN
n0

= ∞. If
N < ∞ a herd (anti-herd) is said to occur if there exists some n0 such that
limN→∞ mN

n0
= ∞ (i.e. a run (anti-run) that grows arbitrarily large as the

size of the economy goes to infinity). Herding (anti-herding) is complete if
n0 = 1.

Definition 3. Agent n is self-reliant (for given θn), if an is independent of
(ai)

n−1
i=1 . Agent n is purely self-reliant if she is self-reliant for all θn ∈ ΘS.

3 Continuous signals

In this section, private signals θn follow a symmetric distribution with c.d.f.
F over the support ΘS ≡ [−b, b], where b < ∞. For simplicity, I assume that
F is continuous and differentiable. The set of agents is finite, i.e. N < ∞,
and the state of the world is given by the sum of individual signals, i.e.
θ0 =

∑N

i=1 θi. Hence, agent n’s optimal behavior is determined by:

an = 1 if and only if E

[
σ

n−1∑

i=1

ai +

N∑

i=1

θi | In

]
≥ 0

Using the fact that the expected value of successors’ signals is always zero, the
decision rule can conveniently be expressed as a history-contingent cutoff-rule
for θn:

an = 1 if and only if θn ≥ −E

[
σ

n−1∑

i=1

ai +

n−1∑

i=1

θi | In

]
. (2)

1This term is borrowed from Drehmann, Oechssler and Roider (2007).
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Let θ̂n denote the right-hand side of this inequality, i.e. the cutoff-level for
agent n’s signal. Note that θ̂n is sufficient to describe the behavior of agent
n. Therefore, I focus my analysis on the stochastic process {θ̂n}, which I will
refer to as the learning process. In the remainder of this section, I study the
properties of the learning process under different assumptions on the signal
distribution F as well as different assumptions on the degree of observability
of other agents’ actions. In subsection 3.1, I assume that F is uniform, while
subsection 3.2 shows that this assumption can be relaxed without loosing
some of the key properties.

3.1 Uniform Signals

Let F be a uniform distribution on the interval [−1, 1], i.e. b = 1. In the
following, I study the corresponding learning processes in the perfect and the
imperfect observability scenarios.

3.1.1 Perfect Observability and Uniform Signals

Let In = IPO
n , i.e. assume that in addition to her private signal θn, each

agent n observes the entire sequence (ai)
n−1
i=1 of predecessors’ actions before

taking a decision. In this case, the learning process is a stochastic process
which is characterized as follows.

Proposition 1. The learning process satisfies θ̂1 = 0 and

θ̂n+1 =





1 if θ̂′n+1 > 1

−1 if θ̂′n+1 < −1

θ̂′n+1 otherwise

where θ̂′n+1 = θ̂n

2
− an

(
1
2

+ σ
)
.

Proof. Using the fact that F is uniform and equation (2), it follows that

an = 1 iff θn ≥ θ̂n = −E

[
n−1∑

i=1

(θi + σai) | (ai)
n−1
i=1

]

= θ̂n−1 − E
[
θn−1 + σan−1 | (ai)

n−1
i=1

]

= θ̂n−1 −
{

1
2
(θ̂n−1 + 1) + σ if an−1 = 1

1
2
(θ̂n−1 − 1) − σ if an−1 = −1

=
θ̂n−1

2
− an−1

(
1

2
+ σ

)

Clearly, agent one’s cutoff is θ̂1 = 0, because a1 = 1 iff θ1 ≥ 0.
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Figures 1 and 2 show the realizations of several Monte Carlo simulations of
θ̂n for different σ (and for sufficiently large N). In case σ = 0.01, the learning

process eventually settles down in the point θ̂ = 1, which implies identical
actions, regardless of private signals. This is equivalent to an informational
cascade with herding. Moreover, the plots suggest that the autocorrelation
of the learning process increases in σ. Intuitively, this is due to the fact that
increasingly strong strategic substitutabilities increase agents’ tendency to
’avoid’ the actions of their predecessors. The following proposition describes
the behavior of the learning process for different σ.

0 10 20 30 40 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Simulation runs of θ̂n for σ = 0.01 (left) and σ = −0.01 (right).
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Figure 2: Simulation runs of θ̂n for σ = −0.1 (left) and σ = −1 (right).
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Proposition 2.

(a) If σ > 0, an informational cascade with herding almost surely occurs
after finite time.

(b) If σ = 0, all agents are self-reliant with positive probability and there
is no informational cascade but herding occurs after a finite time, see
Çelen and Kariv (2004).

(c) If σ ∈ (−2, 0), all agents are self-reliant with positive probability and
neither an informational cascade nor herding occurs. In particular, if
σ = −0.5, all agents are purely self-reliant.

(d) If σ ≤ −2, an informational cascade with anti-herding occurs.

Proof. All claims follow directly from proposition 2 in section 3.2, with the
exception of part (c). Let σ ∈ (−2, 0). The boundaries of the learning process

are given by its fixed points. The solution to the equation θ̂ = θ̂/2−an(0.5+σ)

is either θ̂ = −(1 + 2σ) or θ̂ = (1 + 2σ). Hence, θ̂n ∈ (−(1 + 2σ), (1 + 2σ)) ⊂
[−1, 1] and therefore all agents are self-reliant with positive probability.

Consider the case σ ∈ (−0.5, 0). It is shown in the proof of proposition 2

that in this case θ̂n ∈ (−(1+2σ), (1+2σ)) ⊂ [−1, 1] for all n. In particular, if
σ is close to 0, the cutoff process is close to either 1 or −1 and switches occur
only rarely (see figure 1, right). Therefore, agent’s behavior is characterized
by long spells of imitative behavior and only rarely (with probability close
to σ) an agent receives a signal which is sufficiently strong to induce her to
deviate from the previous run. By overturning a previous run, the deviator
reveals an extreme contrary signal which induces a big jump in the cutoff
process (see figure 1, right) and makes her successor close to indifferent be-
tween the two actions. It is easy to see that in the limit as N and n tend to
infinity, the learning process never settles down because behavior overturns
forever. This result contrasts with Çelen and Kariv (2004) who demonstrate
that in the absence of strategic externalities, i.e. σ = 0, a herd must arise in
finite time (intuitively, their result is based on the fact that the probability of
overturning an ongoing run goes to zero quite rapidly). Hence, their finding
is not robust in the sense that every arbitrarily small size of strategic substi-
tutability causes behavior to overturn forever and therefore makes herding
impossible.

An interesting phenomenon arises if σ = −0.5. In this case, strategic and
informational externalities cancel each other out. Assume that some agent k
observes the action an of some other agent n 6= k. This observation reveals
that agent n’s private signal has been in favor of alternative an, which has a
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positive effect on agent k’s expected payoff of alternative a. In case σ = −0.5,
the strategic substitutability imposed by this choice has an opposing effect of
exactly the same magnitude and therefore the payoff of alternative a remains
unaffected by the observation of agent n’s choice. Therefore, despite being
informative about the true state of the world, the observations of the behavior
of others are worthless in this case and agents rely entirely on their private
signals.

3.1.2 Imperfect Observability and Uniform Signals

In addition to her private signal θn, agent n observes only her immediate
predecessor’s action an−1 before taking an action. The following proposition
characterizes the corresponding learning process in terms of two cutoff levels,
θn and θn, depending on whether an−1 = −1 or an−1 = 1.

Proposition 3. The learning process satisfies θ̂1 = 0 and

θ̂n+1 =

{
θn+1 if an = 1
θn+1 if an = −1

where θn+1 = −θn+1,

θn+1 =





1 if θ
′
n+1 > 1

−1 if θ
′
n+1 < −1

θ
′
n+1 otherwise

and θ
′
n+1 = −σ − 1

2

(
1 + θ

2

n

)
.

Proof. See Appendix.

Figure 3 illustrates the evolution of the cutoff levels θn and θn as specified
in proposition 3. In case σ > −0.5 (left graph), θn is larger than θn. Hence,
whenever agent n receives a private signal within the interval (θn, θn), she
chooses the same action as her predecessor. This is the case because her
private signal is too close to zero in order to be sufficiently informative to
guide her decision. If, on the other hand, σ < −0.5 (right graph), θn is smaller
than θn and whenever their private signal is within the interval (θn, θn),
agents choose the action opposite to their predecessor’s action. This leads to
the following definition.

Definition 4. Agent n is a conformist if θn < θn and θn ∈ [θn, θn], and
a contrarian if θn > θn and θn ∈ [θn, θn]. Agent n is a pure conformist
(contrarian) if she is a conformist (contrarian) for all θn ∈ ΘS.
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Figure 3: The cutoff-values θn (dashed line) and θn = −θn (straight line) as
a function of n (for different σ).

Figure 3 suggests that in case σ ∈ (−2, 0), all cutoff values θn and θn

are strictly within the interval (−1, 1) (with the exception of agent n = 1 in
case σ is close to −2) and therefore all agents are self-reliant with positive
probability, provided that their private signals are sufficiently close to either
1 or −1. Hence, an informational cascade does not arise in this case. As σ
gets close to either −2 or 0, conformist, resp. contrarian, behavior becomes
increasingly likely because the interval [θn, θn], resp. [θn, θn], approaches the
entire signal space. Beyond these thresholds, agents always disregard their
private information and select their optimal action entirely on the grounds of
their predecessor’s action, i.e. agents are pure conformists in the former case
and pure contrarians in the latter. An informational cascade always arises
in this case due to herding, resp. anti-herding. Note that, like under perfect
observability, strategic and informational externalities cancel each other out
if σ = −0.5. It is easy to see that behavior must be independent of the
observational structure in this case. The following proposition summarizes.

Proposition 4.

(a) If σ < −0.5 (σ > −0.5), all agents are contrarians (conformists) with
positive probability and there are no conformists (contrarians).

(b) If σ > 0, there exists some agent n0 ≥ 2 such that all agents n ≥ n0 are
pure conformists and an informational cascade with herding occurs.

(c) If σ ∈ (−2, 0], all agents are self-reliant with positive probability and
neither an informational cascade nor herding occurs. In particular, if
σ = −0.5, all agents are purely self-reliant.
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(d) If σ ≤ −2, all agents are pure contrarians and an informational cascade
with anti-herding occurs.

Proof. Let me use the fact that θn = −θn for all n (see proposition 3).
part (a): Let x := −σ − 0.5 > 0 and let xm := min{x, 1}. First, I

show that θn > 0 ∀n ≥ 2. Assume that θn ∈ (0, xm). This implies that

θn+1 = min{x − θ
2

n/2, 1} ∈ (0, xm) and the claim follows by induction since
θ1 = 0, θ2 = xm and θ3 = min{x − x2/2, 1} ∈ (0, xm). The second part of
the proof works in the same way.

part (b): See the general proof of proposition 9.
part (c): In case σ ∈ (−2, 0), it can be shown (cf proof of proposition 5)

that θn → −1 +
√
−2σ and θn → 1 −

√
−2σ as N → ∞ and n → ∞. Hence

all agents are self-reliant with positive probability. In order to show that all
agents are purely self-reliant if σ = −0.5, it is sufficient to show that θn = 0
∀n. This follows by induction since θn = 0 implies that θn+1 = −σ−1/2 = 0
∀n and since θ1 = 0. In the special case σ = 0, the interval [θn, θn] converges
to the interval [−1, 1]. Nevertheless, a herd does not exist as shown by Çelen
and Kariv (2004).

part (d): It can be shown via direct calculation that in case σ ≤ −2,
θn = 1 for all n ≥ 2 which implies an informational cascade with anti-
herding.

The question of whether herding occurs in the limiting case without
strategic externalities is answered by Çelen and Kariv (2001). In this case, θn

monotonically increases in n and the interval [θn, θn] converges to the entire
signal space [−1, 1] (in the limit as N and n tend to infinity). Çelen and

Kariv (2001) show that the cutoff process {θ̂n} as defined in proposition 3
does not converge in this case.2 Since divergence of cutoffs implies divergence
of actions, standard herd behavior is impossible, even though the expected
length of runs is increasing and goes to infinity. In contrast to this result,
it is shown here that if σ > 0, the interval [θn, θn] reaches the entire sig-
nal space after some finite number of agents and therefore an informational
cascade and herd behavior arise after finite time. Since this is the case for
any arbitrarily small size of strategic complementarities, the above analysis
shows that the no-herding result of Çelen and Kariv (2001) is not robust in
this sense.

As shown by the proposition, if strategic externalities are within the interval

2For any agent k, it can be shown that, as N → ∞, the probability that all of agent

k’s successors take the same action is equal to zero, i.e. Π∞
n=k

1−θn

2
= 0, see corollary 5 in

Çelen and Kariv (2001).
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(−2, 0), neither an informational cascade nor (anti-)herding occur because
agents are self-reliant with strictly positive probability. As noted before,
agents become increasingly likely to engage in conformist or contrarian be-
havior if σ approaches the boundaries of this interval and therefore one ex-
pects behavior to come close to cascade and (anti-)herding behavior at these
boundaries. The following proposition supports this expectation with ana-
lytical expressions. In particular, the expected length of a run is calculated
as a function of σ. This expression tends to 0 as σ approaches −2 (from
above) due to an increasing tendency towards anti-herding. As σ approaches
0 (from below), the expected length of a run tends to +∞ and hence ap-
proaches herding behavior in the limit (see figure 4). Similarly, the proposi-
tion shows that behavior approaches cascade behavior at the boundaries in
the sense that the expected number of consecutive contrarians (conformists)
approaches +∞ as σ → −2 (as σ → 0). Moreover, as σ approaches −0.5,
runs become increasingly short and entirely disappear in case σ = −0.5 since
all agents are entirely self-reliant (see figure 4).
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1
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expected length
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expected number
of consecutive
contrarians/conformists

Figure 4: Behavior approaches cascade and (anti-)herding behavior as σ
approaches the boundaries of the interval [−2, 0].

Proposition 5.

(a) If σ ∈ (−2, 0), θn → 1−
√
−2σ as n → ∞ and the expected length of a

run starting at agent n tends to 2√
−2σ

− 1.

(b) In case σ ∈ (−2,−0.5], the expected number of consecutive contrarians

following agent n tends to
√
−2σ−1

2−√−2σ
as n → ∞. In case σ ∈ (−0.5, 0)

the expected number of consecutive conformists following agent n tends
to 1√−2σ

− 1 as n → ∞.
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Proof. part (a): The limit point 1−
√
−2σ of the sequence {θn} is given by the

(feasible) root of the equation θn+1−θn = 0. Furthermore, the probability for
agent n to choose action an = an−1 is equal to Pr(θn ∈ (θn, 1)) = (1 − θn)/2
and approaches 1 −

√
−2σ/2 as n → ∞. Hence, the distribution of the

length of a run following agent n approaches a geometric distribution with
parameter p =

√
−2σ/2 and expected value (1 − p)/p = 2√−2σ

− 1.

part(b): In case σ ∈ (−2,−0.5], the probability that agent n is a con-
trarian is equal to (θn − θn)/2 and approaches

√
−2σ − 1 as n → ∞. Hence,

the distribution of the number of successive contrarians approaches a ge-
ometric distribution with parameter p = 2 −

√
−2σ and expected value

(1−p)/p =
√
−2σ−1

2−√−2σ
. Similarly, in case σ ∈ (−0.5, 0), the number of successive

conformists approaches a geometric distribution with parameter p =
√
−2σ

and expected value (1 − p)/p = 1√
−2σ

− 1.

Figure 5 summarizes the findings of this section. Remember from defini-
tion 2 that herding and anti-herding are complete if all agents n 6= 1 engage
in it. Anti-herding is always complete and it is easy to show that complete
herding occurs beyond σ = 0.5.

σ−2 0.50−0.5

inf. cascade
& complete
anti-herding

purely
self-reliant

inf. cascade & herding
’contrarianism’ increases ’conformism’

increases compl. herding

Figure 5: The relationship between informational cascades, (anti-)herds and
the size of strategic externalities.

Propositions 2 and 4 suggest that the informational structure does not
affect the long-run outcome of behavior whereas strategic externalities do.
Only in the absence of strategic externalities, the long-run outcome is affected
by the informational structure. This shows that the main finding of Çelen
and Kariv (2004) strongly depends on the absence of strategic externalities.
The following corollary summarizes.

Corollary 1. For any σ 6= 0, an informational cascade (a herd, an anti-herd)
occurs under perfect observability if and only if it occurs under imperfect
observability. This property is violated in case σ = 0.
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3.2 General Signals

In this section, I drop the assumption of a uniform signal distribution and
allow for a general symmetric distribution characterized by its continuous
and differentiable c.d.f. F over the finite support ΘS ≡ [−b, b]. Let E+(x)
denote the expected value of the signal θ, conditional on being larger than
some number x, i.e. E+(x) =

∫ b

x
θdF (θ).

3.2.1 Perfect Observability and General Signals

Assume perfect observability, i.e. In = IPO
n . Proposition 6 specifies a law

of motion of the learning process and proposition 7 describes its properties.
The most important properties of the uniform case carry over to the general
case, such as the existence of a σ under which both types of externalities can-
cel each other out, the occurrence of an informational cascade with herding
in the presence of positive σ as well as the occurrence of an informational
cascade with anti-herding in the presence of negative (and sufficiently small)
σ. The main difference is that under a general signal distribution, some
agents may be pure imitators or pure contrarians even if strategic external-
ities are moderate, i.e. σ ∈ (−2b, 0). However, proposition 7 shows that
an informational cascade or (anti-)herding is nevertheless impossible in this
case.

Proposition 6. The learning process satisfies θ̂1 = 0 and

θ̂n+1 =





b if θ̂′n+1 > b

−b if θ̂′n+1 < −b

θ̂′n+1 otherwise

where θ̂′n+1 = θ̂n − an

[
E+
(
an · θ̂n

)
+ σ
]
.

Proof. Since all the information revealed by the history (ai)
n−1
i=1 is already

contained in θ̂n, θ̂n+1 is altered only by the new information revealed through

an, i.e. θ̂n+1 = θ̂n−E
(
θn + σan|θ̂n, an

)
. The claim follows from the fact that

E
(
θn|θ̂n, 1

)
= E+(θ̂n) and E

(
θn|θ̂n,−1

)
= −E+(−θ̂n).

Proposition 7.

(a) If σ > 0, an informational cascade with herding almost surely occurs
after finite time.
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(b) If σ = 0, all agents are self-reliant with positive probability and there
is no informational cascade but herding occurs after a finite time, see
Smith and Sorenson (2000).

(c) If σ ∈ (−2b, 0), neither an informational cascade nor herding occurs.
If σ = −E+(0), all agents are purely self-reliant.

(d) If σ ≤ −2b, an informational cascade with anti-herding occurs.

Proof. part (a): Consider any agent n0 and let θ̂n0
≥ 0. For n′ = ⌈ b

σ
⌉,

the probability that θ̂n0+n′ = b is at least p =
(

1
2

)n′

. Since the symmetric

argument applies for θ̂n0
< 0, the claim follows from

Pr(min{n : θ̂n ∈ {−b, b}} = ∞) ≤ lim
i→∞

(1 − p)i = 0.

part (c): It is sufficient to prove that for any agent n0, there exists some

agent n ≥ n0 such that θ̂n ∈ (−b, b). Consider some n ≥ n0 and suppose that

θ̂n /∈ (−b, b), i.e. either θ̂n = −b or θ̂n = b. In this case either θ̂n+1 = −b−σ ∈
(−b, b) or θ̂n+1 = b+σ ∈ (−b, b), respectively. Moreover, σ = −E+(0) implies

θ̂n = 0 for all n.
part (d): It is easy to show that in case σ ≤ −2b, θ̂2 ∈ {−b, b} and

θ̂n+1 = −θ̂n for all n ≥ 2, which implies the claim.

3.2.2 Imperfect Observability and General Signals

Assume imperfect observability, i.e. In = IIO
n . Proposition 8 specifies a law

of motion of the learning process and proposition 9 describes its properties.
Like in the perfect observability case, the most important properties of the
uniform case carry over to the general case.

Proposition 8. The learning process satisfies θ̂1 = 0 and

θ̂n+1 =

{
θn+1 if an = 1
θn+1 if an = −1

where θn+1 = −θn+1,

θn+1 =






b if θ
′
n+1 > b

−b if θ
′
n+1 < −b

θ
′
n+1 otherwise

and θ
′
n+1 = θn − 2F (θn)

[
θn + E+(−θn)

]
− σ.
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Proof. If can be shown that even in the case of a general signal distribution
P (an = 1) = 0.5 and θn + θn = 0 is satisfied for all n (see Çelen and Kariv
(2001) for a similar proof). Moreover,

θ
′
n+1 =

[
1 − F (θn)

] [
θn − E+(θn) − σ

]
+ [1 − F (θn)]

[
θn − E+(θn) − σ

]

= θn − 2
[
F (θn)θn + (1 − F (θn))E+(θn)

]
− σ. (3)

The last transformation uses the fact that 1 − F (θn) = F (−θn) = F (θn).
Finally, the symmetry of the signal distribution implies that

(1 − F (θ))E+(θ) = F (θ)E+(−θ).

Hence,
θ
′
n+1 = θn − 2F (θn)

[
θn + E+(−θn)

]
− σ. (4)

Proposition 9.

(a) If σ > 0, there exists some agent n0 ≥ 2 such that all agents n ≥ n0

are pure conformists and an informational cascade with herding occurs.
Herding is complete if σ ≥ b − E+(0).

(b) If σ ∈ [−b, 0], all agents are self-reliant with positive probability. There
is no informational cascade and no (anti-)herding. If σ = −E+(0), all
agents are purely self-reliant.

(c) If σ < −b, all agents are either contrarians or self-reliant. If |σ| is
sufficiently large, all agents n ≥ 2 are pure contrarians and an infor-
mational cascade with complete anti-herding occurs.

Proof. In the following, I only show that the claims hold for θn. The full
claims easily follow from θn = −θn.

part (a): It needs to be shown that ∃n0 s.t. θn = −b and θn = b
∀n > n0. Plugging the inequality E+(−θn) > −θn into equation (4) gives

θ
′
n+1 < θn − σ. Hence θn = −1 after finitely many steps. Complete herding

requires that θ2 = θ3 = −1 which holds if σ ≥ b − E+(0).
part (b): It needs to be shown that θn, θn ∈ (−b, b) ∀ n. Using E+(θn) >

θn in both equations (3) and (4) gives θn+1 < min{θn,−θn}−σ. Since σ ≥ −b
it follows that θn+1 < b. On the other hand, equation (4) and the inequality
E+(−θn) < b imply θn+1 > −b − σ ≥ −b (since σ ≤ 0). Hence, |θn| < b ∀n
which implies the impossibility of an informational cascade. See Çelen and
Kariv (2004) for the proof in the special case σ = 0. In case σ = −E+(0), it is
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easy to check that θn = 0 implies θn+1 = −E+(0)−σ = 0 (since F (0) = 1/2).
Hence, the claim follows by induction since θ1 = 0.

part (c): It needs to be shown that θn > 0 and θn < 0. This follows
from part (b) since θn > −b − σ > 0. Moreover, it immediately follows from

equation (3) that θ
′
n+1 > b for all n > 1 provided that |σ| is sufficiently

large.

4 Binary Signals

Let N = ∞. The space of states of the world as well as the space of agents’
private signals are binary, i.e. Θ ≡ ΘS ≡ {−1, 1}.3 The prior distribution
of θ0 is symmetric and common knowledge. The precision of each agent n’s
signal θn satisfies Pr(θn = 1 | θ0 = 1) = Pr(θn = −1 | θ0 = −1) = q > 0.5.
Assuming perfect observability, i.e. In = IPO

n , the optimality condition (1)
becomes:

an = 1 iff E
(
θ0 | IPO

n

)
≥ −σ

n−1∑

i=1

ai.

Let pn denote agent n’s (private) belief about the likelihood of the event
θ0 = 1, conditional on her information IPO

n . Hence, E(θ0|IPO
n ) = 2pn−1 and

the optimal decision rule of agent n can be rewritten in the following way:

an = 1 iff pn ≥ p̂n, where p̂n = 0.5(1 − σ
n−1∑

i=1

ai).

{p̂n}n≥1 is a stochastic process which satisfies p̂1 = 0.5 and its dynamics can
be summarized by:

p̂n+1 = p̂n − σ

2
an. (5)

This process specifies cutoff values of agent’s private beliefs and is therefore
referred to as the cutoff process. Furthermore, let bn denote agent n’s belief
before she observes θn and let bθn

n denote her belief after having observed
θn, i.e. pn = bθn

n . Bayesian updating implies b1
n = qbn

qbn+(1−q)(1−bn)
and b−1

n =
(1−q)bn

(1−q)bn+q(1−bn)
. I refer to {bn}n≥1 as the process of public beliefs and I denote

its state space by B = {Bi}+∞
i=−∞. It is straightforward to show that

Bi =

(
1 +

(
1 − q

q

)i
)−1

. (6)

3In terms of the basic model presented in section 2, this describes the special case where
either Q1 = −Q−1 = 1/2 or Q1 = −Q−1 = −1/2 is satisfied in either of the two states of
nature.
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Let me first characterise the behavior of the first two agents before proceeding
to a more general analysis. Agent one follows her private signal, i.e. a1 = θ1,
since p̂1 = 0.5. For the sake of illustration, assume that a1 = θ1 = 1 (in the
other case, the inverse reasoning holds). Agent two observes a1, correctly
deduces θ1 and updates her belief via Bayes’ rule to b2 = q. Upon observing
her private signal and applying Bayes’ rule for a second time, agent two’s
private belief either becomes p2 = b1

2 = q2/(q2 + (1 − q)2) (if θ2 = 1) or
p2 = b−1

2 = 0.5 (if θ2 = −1). Her optimal behavior as a function of q and
σ can accordingly be derived from her cutoff-value p̂2 = 0.5(1 − σ). In case
θ2 = 1, one obtains a2 = 1 iff σ ≥ 1−2q2/(q2 +(1−q)2) and in case θ2 = −1,
one obtains a2 = 1 iff σ ≥ 0. Figure 6 summarizes agent two’s behavior for
different combinations of σ and q. Note that if θ2 = −θ1, signals cancel each
other out and the optimal choice of agent two depends on whether strategic
externalities are positive or negative. Hence, if σ > 0, agent two always
imitates the action of agent one, irrespectively of her own signal (i.e. she is
a pure conformist in the spirit of section 4). If, however, σ is negative and
agent two observes a private signal which is equal to the action of agent one,
i.e. θ2 = a1, her optimal choice depends on the tradeoff between the positive
informational externality of two signals in favor of action one against the
strategic substitutability induced by agent one’s action. Hence, this tradeoff
depends on the relative magnitudes of q and |σ|. For any q, agent two chooses
the action opposition to agent one’s action, provided that σ is sufficiently
small (i.e. she is a pure contrarian in the spirit of section 4). It is easy to
check that the parameter combinations under which agent two reveals her
private information, i.e. under which she is purely self-reliant, is given by
{(σ, q) : 1 − 2q2/(q2 + (1 − q)2 < σ < 0}, see figure 6. In the following,
I analyze the learning process more generally, by studying the behavior of
agents beyond agent two.

First, consider the case σ > 0.4 Agent one chooses the action that equals
her signal, i.e. a1 = θ1 and agent two chooses a2 = a1, since strategic
complementarities provide a strict incentive to imitate (see above). Hence,
agent two does not reveal her private information. Consequently, agent three
finds herself in the same position as agent two and it follows by induction that
no subsequent agent ever reveals her private signal. The following proposition
summarizes this result.

Proposition 10. If σ > 0, only agent one reveals her private information
and all subsequent agents follow her action. In other words, there exists an
informational cascade with herding.

4I only study the two cases σ > 0 and σ < 0. For the case σ = 0 see standard models
such as Banerjee (1992) and Bikhchandani et al. (1992).
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σ

q0.5 1

a2 = a1

a2 = θ2

a2 = −a1

Figure 6: For different combinations of q and σ, agent two is either a pure
conformist, purely self-reliant or a pure contrarian.

In the case of strategic complementarities, the learning process ’gets stuck’
in a herd after the first agent. If σ < 0, a herd can not occur since nega-
tive externalities reduce the expected payoff of every new agent who joins
a ongoing run and eventually the contrary action yields a higher expected
payoff. Specifically, learning happens in two distinct ways. Either by some
agent who breaks away from the uniform behavior of her predecessors and
thereby reveals a contrary signal, or by an agent who deliberately imitates
her predecessors despite the negative payoff effects of their uniform behav-
ior and thereby reveals a signal that favors their actions. Hence, learning is
necessarily more accurate in the case of strategic substitutabilities because
it does not stop after agent one. However, I will show that in this case, an
informational cascade occurs after some finite (and random) point in time
and behavior settles down in an anti-herd. The following lemma character-
izes the corresponding limit points of learning in terms of the public belief
process {bn}n.

Lemma 1. Let σ < 0. There exist two absorbing states b∗−1, b
∗
1 ∈ (0, 1) of

{bn}n that satisfy b∗−1 + b∗1 = 1 and b∗−1 < b∗1. {bn}n does not reach any other
absorbing states.

Proof. Define b∗1 = min{b ∈ B : b−1 > 0.5 + j |σ|
2

and b1 < 0.5 + (j + 1) |σ|
2
}

and b∗−1 = 1 − b∗1. Note that b∗−1 and b∗1 clearly exist since |b−1 − b1| goes
to 0 as b approaches either 0 or 1 and since |σ| is constant. Moreover, from
equation (6) it is easy to check that Bi − 0.5 = 0.5−B−i for all i > 0, which
implies that b∗−1 + b∗1 = 1 and b∗−1 < b∗1. In order to show that b∗−1 and b∗1 are
absorbing states of {bn}n let bn = b∗−1 or bn = b∗1. Since, by definition, there
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is no j ∈ Z that satisfies 0.5 + j |σ|
2

∈ (b−1, b1), it follows that p̂n /∈ (b−1, b1)
and therefore the private signals of agent n and any of her successors will not
be revealed. Hence, {bn}n remains constant forever and σ < 0 implies that
actions satisfy an = −an+1. Finally, by definition of b∗1, none of the states
b ∈ (b∗−1, b

∗
1) are absorbing.

The two plots in figure 7 illustrate convergence to the absorbing state b∗1.
Once this state is reached, an informational cascade with anti-herding occurs
(as shown by the proof of lemma 1). The cutoff-process {p̂n}n fluctuates
around the interval (b−1

n , b1
n) but bn is constant since no agent reveals her

private information.
Lemma 1 states that there are two possible outcome of social learning,

only one of which is close to the true state of the world θ0. Even though
θ0 is never learned with certainty, I show below (lemma 3) that for certain
parameter configurations, the public belief will eventually be very close to
either one or zero. However, this does not exclude the possibility that social
learning settles in near the ’wrong’ state.

Definition 5 defines the notion of correct learning and lemma 2 provides
two sufficient conditions for the probability of correct learning to be close to
one.

Definition 5. Learning is correct if {bn} reaches the absorbing state b∗θ0
.

Pσ,q denotes the ex ante probability that learning is correct.

Lemma 2. Let σ < 0 and consider any ε > 0. If q > 0.5 is fixed, Pσ,q > 1−ε
if |σ| is sufficiently small. The same is true if σ is fixed and q is sufficiently
close to one.

Proof. To keep notation simple, I assume that θ0 = 1 (the proof in the
other case is symmetric). Let me first prove that for all bn ∈ (b∗−1, b

∗
1) and

p̂n, there exists some finite integer δ ≥ 1 such that Pr(bn+δ = b1
n) = q,

Pr(bn+δ = b−1
n ) = 1 − q and bn+i = bn for all i = 0, .., δ − 1. The claim

follows immediately if p̂n ∈ [b−1
n , b1

n) (where δ = 1) because in this case agent
n chooses the action that equals her signal. Furthermore, let me show that
if the condition p̂n ∈ [b−1

n , b1
n) is not satisfied, it will nevertheless hold after a

finite and deterministic number of steps. Assume that bn > 0.5 (the proof for
the case bn < 0.5 is symmetric) and let p̂n /∈ [b−1

n , b1
n). Agent n does not reveal

her action and therefore bn+1 = bn. Moreover, p̂n+1 approaches the interval
[b−1

n , b1
n) by a fixed step size of |σ|/2 (see equation 5). Since bn ∈ (b∗−1, b

∗
1)

implies that there exists some j > 0 such that 0.5 + j σ
2
∈ [b−1

n , b1
n] and since

the step size is constant, it follows by iteration that {p̂n} eventually (after δ
steps) enters the interval [b−1

n , b1
n). Depending on the signal of agent n + δ,

either bn+δ = b1
n (with probability q) or bn+δ = b−1

n (with probability 1 − q).
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Figure 7: Two simulation runs of the processes {bn} (black), {p̂n} (dark
grey), {b−1

n } (light grey) and {b1
n} (light grey) for σ = −0.1 (first plot) and

σ = −0.02 (second plot).
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Let k∗ denote the positive integer that satisfies b∗1 = Bk∗. It is easy to
check that k∗ → ∞ if either q → 1 (for fixed σ) or |σ| → 0 (for fixed q), since
Bi − Bi−1 monotonically approaches zero (in i) and since Bi → 1 as q → 1
∀i > 0, resp. Bi → 0 ∀i < 0. Let the random sequence T = {n1, n2, ..., n

∗}
denote the positions at which the public belief changes (i.e. n ∈ T ⇒ p̂n−1 ∈
(b−1

n , b1
n)). The first part of the proof implies that all ni+1 −ni are finite. Let

me define a stochastic process {Bt}∞t=1 by

Bt =

{
bnt

if t ≤ n∗

Bt−1 if t > n∗

{Bt} is a simple Markov Process with finite state space B ∩ [b−1
n , b1

n] and
transition probabilities Pr(Bi → Bi+1) = 1−Pr(Bi → Bi−1) = q and Pr(b∗1 →
b∗1) = Pr(b∗−1 → b∗−1) = 1. Hence, the problem is equivalent to the ’Gambler’s
Ruin Problem’ which states that Pσ,q = Pr(∃ t > 0 : Bt = b∗1) = (1+mk∗

)−1,
where m = (1 − q)/q. Hence, Pσ,q → 1 is implied by either q → 1 or
|σ| → 0.

The intuition of the proof of lemma 2 is the following. The social learning
process can be rewritten as a Markov process which ’jumps’ towards the
correct state with probability q and away from it with probability 1− q. If q
is large, the outcome of the process is therefore more likely to be correct. On
the other hand, the smaller |σ|, the more agents find it optimal to herd on the
same action. In other words, it takes more steps for the learning process to
reach one of the absorbing states. This implies that learning is correct with
higher probability (the solution to the problem of convergence is equivalent
to the solution of a special version of the Gambler’s Ruin Problem5).

As noted before, an informational cascade always occurs after finite time.
However, the following proposition implies that the learning process may
nevertheless end up very close to either zero or one. This is the case because
the expected start of a cascade goes to infinity as |σ| tends to zero. The
lemma establishes this result via a simple relation between the precision of
learning and the probability of correct learning.

Lemma 3. b∗θ0
= Pσ,q and b∗−θ0

= 1 − Pσ,q.

Proof. Let k∗ denote the positive integer that satisfies b∗1 = Bk∗ and let
m = (1 − q)/q. It is a well known fact that Pσ,q = (1 − mk∗

)/(1 − m2k∗

),

5A special version of the Gambler’s Ruin Problem can be describes as follows. A
gamber is offered an (infinite) sequence of bets. In each bet she gains one unit of money
with probability q and looses one unit with probability 1− q. Starting out with a fortune
of size M , one can determine the probability that her fortune reaches 2M before she goes
broke.
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provided that q 6= 0.5 (this is the solution to a version of the Gambler’s Ruin
Problem in which the gambler seeks to double her fortune, cf. footnote 5).
From the fact that the denominator can be rewritten as (1−mk∗

) · (1+mk∗

),
it easily follows that Pσ,q = Bk∗ = 1/(1 + mk∗

).

The following proposition summarizes the results of this section.

Proposition 11. If σ < 0, the outcome of social learning is arbitrarily close
to the true state of the world with arbitrarily high probability, provided that
either |σ| is sufficiently small (for given q) or q is sufficiently close to one
(for given σ).

Proof. The claim is implied by lemma 2 and lemma 3.

Proposition 11 states that in the limit as |σ| tends to 0, the true state of
the world is learned with probability one. This contrasts with the standard
herding models without strategic externalities such as the ones in Banerjee
(1992) and Bikhchandani et al. (1992). Table 8 shows explicit values of
b∗1 = Pσ,q for different parameter combinations, provided that the true state
of the world satisfies θ0 = 1.6

Note, however, that if |σ| and q are both small, learning may take a
long time to reach one of the absorbing states. For example, in case q =
0.51 and σ = −0.01, one obtains an average time of convergence of around
3555 periods.7 Other parameter combinations produce considerably faster
convergence (e.g. around 10.5 periods for q = 0.7 and σ = −0.2, despite
the fact that the probability that learning is correct is as high as 96.7%), see
figure 9.

q | σ -0.2 -0.1 -0.05 -0.02 -0.01

0.51 0.520 0.520 0.540 0.885 0.943
0.52 0.540 0.579 0.863 0.954 0.977
0.55 0.833 0.917 0.961 0.985 0.992
0.60 0.945 0.975 0.989 0.995 0.998
0.70 0.967 0.986 0.994 0.997 0.999

Figure 8: Probabilities Pσ,q of convergence to the correct belief b∗1, where
Pσ,q = b∗1.

6These values have been determined analytically according to the procedures used in
the proofs of lemma 1 and lemma 2.

7The average has been calculated over one million simulation runs.
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q | σ -0.2 -0.05 -0.01

0.51 7.0 26.0 3554.5
0.55 39.1 173.2 577.4
0.70 10.5 33.4 147.1

Figure 9: Average time of reaching the correct absorbing state b∗1, conditional
on reaching it (1 million simulation runs each).

5 Conclusion

In this paper, I studied the occurrence of herds and informational cascades
in the presence of strategic externalities. I presented two specifications of a
basic model, one with continuous signals and one with binary signals.

In the continuous case, I showed that if strategic externalities are negative
and sufficiently weak, (anti-)herding and cascade behavior never occur. On
the other hand, I showed that an informational cascade always occurs if
strategic externalities are either positive or negative and sufficiently strong.
I demonstrated that these results can be obtained by focusing on individuals’
incentives to engage in either imitative or contrarian behavior. Moreover, I
argued that my results underline that the herding as well as non-herding
results of Çelen and Kariv (2004) strongly rely on their assumption of pure
informational externalities. Finally, I showed that the obtained results are
not altered by different assumptions on the observability of predecessors’
actions. This contrasts with the case of pure informational externalities.

In the discrete version of the model, herding always occurs provided that
strategic externalities are non-negative. In case they are negative, I showed
that the learning process eventually reaches one of two possible absorbing
states, one in which the corresponding public belief is close to the ’correct’
state of the world and one in which it is close to the ’wrong’ state of the
world. I showed that if either strategic externalities are sufficiently small or
signals are sufficiently accurate, the public belief ends up arbitrarily close to
the ’correct’ state of the world - with arbitrarily high probability.
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Appendix A: Continuous State Space, Binary

Signals, Complete Learning and the Rule of

Succession

In this appendix, I study a simple model which is different from the basic
model of section 2. It also incorporates the idea of learning in the presence
of strategic externalities (negative externalities in this case) but unlike the
previous model, agent’s payoffs do not only depend on predecessors’ actions,
but on the actions off all agents.

Let there be N firms, indexed by n = 1, 2, ..., N . Each firm has to make
a once-in-a-lifetime entry decision an between two markets A and B. Total
profits in both markets are known to be of size one, but the exact distribu-
tion is unknown. Let θ0 denote the fraction of total profits that are earned in
market A. It is common knowledge that θ0 is drawn from a uniform distribu-
tion on [0, 1]. Each firm n employs an expert who makes a recommendation
θn ∈ {A, B}, and each firm only observes their own expert’s recommendation.
Moreover, recommendations are independent of each other and accurate in
the sense that Pr(θn = A) = 1 − Pr(θn = B) = θ0. Profits in each market
are divided equally among all companies who operate within this market.
Let NA denote the total number of firms who choose market A. Firms are
risk-neutral with utility function

u(a) =

{ θ0

NA
if a = A

1−θ0

N−NA
if a = B

Decisions are taken sequentially, where each firm n observes the actions of
a subset of size λn ∈ {0, 1, ..., n − 1} of its predecessors.8 Moreover, firms
update their beliefs about θ0 via Bayes’ rule. The following proposition shows
that there always exists an efficient equilibrium in which all firms are purely
self-reliant (i.e. they entirely rely on their own information and neglect the
actions of others). This result is independent of the information structure.
The reason why the information about the behavior of others is worthless
is that for each agent’s action choice, the strategic substitutability induced
by the action exactly outweighs the corresponding positive informational
externality.

Proposition 12. There exists an equilibrium in which all firms reveal their
private information, i.e. an = θn for all n, regardless of their sample size λn.

8It is irrelevant to the solution whether the information structure of the firms are known
by the other firms.
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Proof. Consider any firm n and assume that all other firms n′ 6= n play
according to the strategy an′ = θn′ . I show that agent n’s best response to
this strategy profile is an = θn.

Let k ≤ λn denote the number of predecessors in firm n’s sample who
chose actions A and let ÑA denote the total number of agents other than
agent n who choose action A. Hence,

E [u(A)|θn] =
N−1−λn∑

i=0

Pr
[
ÑA = k + i|θn

] E
[
θ0|ÑA = k + i, θn

]

1 + k + i
(7)

It follows from the uniform prior and Bayesian updating that, conditional on
ÑA and θn, θ0 follows a Beta distribution with parameters α = 1 + ÑA +
1{θn=A} and β = 1 + N − ÑA − 1{θn=A} (cf. the rule of succession). Since
the expected value of a Beta distributed random variable with parameters α
and β is α/(α + β), it follows that:

E [u(A)|θn] =
1

N + 2

N−1−λn∑

i=0

Pr
[
ÑA = k + i|θn

] 1 + k + i + 1{θn=A}
1 + k + i

.

Similarly,

E [u(B)|θn] =
1

N + 2

N−1−λn∑

i=0

Pr
[
ÑA = k + i|θn

] N − k − i − 1{θn=A}
N − k − i

.

The claim follows from pairwise evaluation of the summands of these two
expressions. If θn = A, one gets

2 + k + i

1 + k + i
>

N − k − i

N − k − i
= 1,

and if θn = B, one gets

1 + k + i

1 + k + i
= 1 <

N − k − i + 1

N − k − i
.

Hence, E [u(A)|A] > E [u(B)|A] and E [u(A)|B] < E [u(B)|B] are satisfied
regardless of the actions in agent n’s sample. This implies that firm n’s
best-response to the strategy profile is given by an = θn.
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Appendix B

Proof of proposition 3

Assume that θ
′
n is always within the interval [−1, 1], i.e. θn = θ

′
n. The case

in which θ
′
n ’jumps’ out of the interval is mathematically straightforward and

challenging only in terms of the notation.

First, let me show by induction that Pr(an = 1) = 1
2

and θn+θn = 0 for all n.

Assume that Pr(am = 1) = Pr(am = −1) = 1
2

and θm+1+θm+1 = 0 is satisfied
for some m and let me show that this implies that it must be satisfied for m+1
as well. Symmetry implies directly that Pr(am+1 = 1) = Pr(am+1 = −1) = 1

2
.

Moreover,

θm+2 + θm+2

= −E(θm+1 | am+1 = 1) − E(θm+1 | am+1 = −1)

−
∑

j∈{−1,1}

∑

k∈{−1,1}
Pr(am = j|am+1 = k) E

[
m−2∑

i=1

(θi + σai) | am = j, am+1 = k

]

= θm−1(Pr(am = 1|am+1 = 1) − Pr(am = −1|am+1 = 1)

+ Pr(am = 1|am+1 = −1) − Pr(am = −1|am+1 = −1)) = 0.

The last equality is implied by the fact that the second and the third (as well
as the first and the fourth) summand within the brackets add up to zero (this
is easy to proof). It remains to show that the statement holds for m = 1.
Clearly, Pr(a1 = 1) = Pr(θ1 ≥ 0) = 0.5 and straightforward evaluation of
equation (2) in section 3 yields θ2 = − (σ + 1/2) and θ2 = σ + 1/2.

Moreover, equation (2) in section 3 implies that

θn = −E

[
n−2∑

i=1

(θi + σai) | an−1 = 1

]
− E [θn−1 + σan−1 | an−1 = 1]
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Let me calculate the two parts of the right-hand expression separately.

E

[
n−2∑

i=1

(θi + σai) | an−1 = 1

]

=
∑

k∈{−1,1}
Pr(an−2 = k|an−1 = 1) E

[
n−2∑

i=1

(θi + σai) | an−1 = 1, an−2 = k

]

=
Pr(an−2 = 1) Pr(an−1 = 1 | an−2 = 1)

Pr(an−1 = 1)
(−θn−1)

+
Pr(an−2 = −1) Pr(an−1 = 1 | an−2 = −1)

Pr(an−1 = 1)
(−θn−1)

=
1
4
(1 − θn−1)

1
4
(1 − θn−1) + 1

4
(1 + θn−1)

(−θn−1) +
1
4
(1 + θn−1)

1
4
(1 − θn−1) + 1

4
(1 + θn−1)

(+θn−1)

=
1 − θn−1

2
(−θn−1) +

1 + θn−1

2
(+θn−1) = θ

2

n−1

Furthermore,

E [θn−1 | an−1 = 1] =
∑

k∈{−1,1}
Pr(an−2 = k|an−1 = 1) E [θn−1 | an−2 = k]

= (1 − θn−1)
1 + θn−1

2
+ (1 + θn−1)

1 − θn−1

2
=

1

2

(
1 − θ

2

n−1

)

Hence,

θn = −θ
2

n−1 −
1

2

(
1 − θ

2

n−1

)
− σ = −σ − 1

2

(
1 + θ

2

n−1

)

and θn = −θn = σ + 1
2

(
1 + θ

2

n−1

)
.

Q.E.D.
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[4] Çelen, B. and Kariv, S., 2001. Observational learning under imperfect
observability. CESS working paper 02-03. New York University.
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