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List of Symbols XXII

OStype
all optimality share of the respective approach (type ∈

{GS, SS, HS}) within all three approaches

RBtype relative benefit of the respective approach (type ∈
{GS, SS, HS})

Inventory control and replenishment variables
~B〈i,j〉 vector of local order-up-to levels in the subnetwork from

stage i to j

Si echelon order-up-to level at stage i

F [S1,...Si] echelon distribution function at i

Q(j,i),t (replenishment) quantity that i sources from j in period

t

δj,i sourcing fraction, i.e. fraction of the total order quantity

that i sources from supplier j

Optimization model

xtype

〈i,j〉 indicator variable that is 1, if the GS subnetwork (type =

GS) or HS stage (type = HS) from i to j is chosen or 0

otherwise

ctype
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1 Introduction

1.1 Motivation

According to a study of the Aberdeen Group (see Viswanathan (2007)), inventory

management was ranked on top of the list of investments in application-oriented

software for companies in 2007. Within inventory management, multi-tier or multi-

echelon inventory optimization was the top priority. This software application area

grew by 32% while the overall supply chain management space grew about 7%

(see Trebilcock (2009b)). Although in 2008 the market for supply chain manage-

ment software applications and services saw only a slight increase of 4% over 2007

according to AMR Research (see Trebilcock (2009a)), companies are still putting

much emphasis on improving their inventory management activities. 91% of over

170 companies that were surveyed by the Aberdeen Group in 2009 indicated that

they have made, or have been asked to provide, recommendations in the past six

months to management on how to improve their inventory management processes

(see Viswanathan (2009)). An effective inventory management is particularly im-

portant in times of economic downturn, like the current global recession. In order to

contain cost and free working capital, inventories need to be reduced. On the other

hand, there is the risk of losing business in case of insufficient inventories. For the

solution of this cost-service trade-off, management more and more often employs

advanced software tools to support their decisions (see Ellis et al. (2009)).

Traditional inventory management planning processes and software applications

have only been capable of managing inventory at the individual site level. Even

though a company might plan its inventory levels at several locations of its supply

network centrally, the actual inventory optimization is done one location (or echelon)

at a time (see Figure 1.1(a)). Such a sequential single-echelon approach completely

1
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neglects interdependencies between the sites, however. Thus, too much inventory

might be held or inventory could end up in the wrong place, because aspects such

as the following are not taken into account: Is it more costly to hold inventory at

an upstream or downstream location? How does the order decision of a downstream

location affect the demand process that the upstream location sees? Which level of

service should the individual upstream locations provide to their internal customers

such that the external customer demand can be satisfied according to the service

target there?

External
Customer

External
Supplier

1Stock-
keeping site

2Stock-
keeping site

Lead time

Lead time

Demand

Optimization
site 2

Optimization
site 1

(a) Sequential single-echelon approach

External
Customer

External
Supplier

1Stock-
keeping site

2Stock-
keeping site

Lead time

Lead time

Simultaneous
optimization
site 1 and 2

Demand

(b) Multi-echelon approach

Figure 1.1: Sequential single-echelon vs. multi-echelon approach

In contrast, the inventory optimization software tools that have been developed over

the past two decades take a holistic approach to inventory management. Such multi-

echelon approaches consider all locations in the supply network simultaneously, from

the external supplier to the end-customer, with the objective of minimizing total in-

ventory cost in the entire system subject to the service, which is to be guaranteed

towards the external customer (see Figure 1.1(b)). Thus, the shortcomings of the

sequential single-echelon approach are counteracted. It is reported that ‘it is not

unusual for a global supply chain to see inventory levels reduced by as much as

15-25%’ (Ellis et al. (2009)). There are two major drivers for these advances. First,

information and computer technology has gone through great improvements mak-
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ing information across the entire supply network available for such a multi-echelon

application and enabling the solution of very large and complex problems. Second,

the advancement in multi-echelon inventory research in recent years has produced

models that can capture and handle a broad variety of real-world problems and

problem sizes (see, e.g., Willems (2008)). None of the software vendors such as

LogicTools (which is now a part of IBM), Optiant R©, SmartOpsR©, or ToolsGroup

explain in detail the algorithms that are implemented in their tools. However, a

closer look at the affiliated scientists and their scientific contributions in this area

clearly suggests that these models and algorithms represent extensions of the two

pioneering contributions to multi-echelon inventory research by Simpson (1958) and

Clark and Scarf (1960).

Based on these two seminal papers on multi-echelon inventory models in base-

stock/order-up-to level environments without lot-sizing, two competing research

strands have developed over the years. Although they solve the same inventory

optimization problem in their core, they make a different assumption with regard to

the role of safety stock. The resulting consequences for the material flow in the sys-

tem coined the terms full-delay and no-delay approaches (van Houtum et al. (1996)),

or stochastic- and guaranteed-service approaches (Graves and Willems (2003)). In

the stochastic-service (SS) approach, safety stock is assumed to be the only buffer

against demand variability. The guaranteed-service (GS) approach, on the other

hand, assumes that safety stock is sized to cover demand variability up to a certain

level only, i.e. the normal or maximum reasonable demand. All variability exceeding

this level is dealt with by other extraordinary countermeasures.

Both assumptions are quite strong. In reality, the truth probably lies somewhere

in between. A single supply network might consist of stages with low flexibility as

well as stages with high flexibility. For the former ones, the SS approach would

be the appropriate one to use, whereas the latter ones are appropriate candidates

for the application of the GS approach. In both the academic literature and the

currently available software applications, the two approaches are mainly treated

and implemented as mutually exclusive frameworks, however. Since both approaches

yield different results due to the differing underlying assumptions, a practitioner (as

a buyer of these products) faces the dilemma of choosing the appropriate approach

and thus software tool for the inventory optimization of its supply networks. This
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thesis provides assistance in this respect by outlining both approaches in detail and

comparing them in generic network settings. Even though this helps in selecting

the better of the two approaches, still not all cost-saving potentials can be realized

due to the choice of a single approach for the entire supply network, instead of a

stage-wise decision within a single network. Therefore, the second contribution of

this thesis lies in the development of an integrated framework, which combines the

two pure approaches and thus enables a stage-wise choice.

Within each of the two pure multi-echelon frameworks various (additional) real-

world aspects of inventory systems have been incorporated over the past two decades.

These include non-stationary demand, forecasts, capacity constraints on the orders,

to name a few. Another aspect has received less attention, even though it has

become increasingly important for companies starting from around the turn of the

century in the wake of 9/11 and a growing number of natural disasters that could

cause disruptions in the supply flow: the sourcing strategy. The main decisions that

characterize the sourcing strategy concern (see, e.g., Chopra and Meindl (2007)): (a)

criteria for supplier identification (How to establish the supplier base?), (b) criteria

for supplier selection (How to pick suppliers from the base, who will receive an order

from the company?), and (c) procurement (How much to order from each selected

supplier?). Whereas the first two aspects represent supply chain design decisions,

the third one actually concerns inventory optimization and as such falls within the

scope of this thesis. In most of the multi-echelon models it is implicitly assumed that

the first two decisions result in the choice of a single supply source. Although such

a single-sourcing strategy has been advocated to have many advantages, such as

a stronger, long-term relationship with the supplier and the reduction of overheads

required for managing multiple supplier relationships, it also has its risks in the form

of total dependency of the functioning of the entire supply chain on a single source.

Any disruption at the source could disable the supply chain (see, e.g., Lee and Wolfe

(2003)). That is why companies turn to more flexible sourcing strategies, like dual

or multiple sourcing, i.e. they rely on two or more supply options. These supply

options can refer to different suppliers, e.g., an overseas plant and another one close

by, or to different transportation modes, e.g., trucking, sea-, or air-shipping. This

not only increases supply chain security, but also represents a means to effectively

solve the cost-service trade-off with respect to inventory management. Examples are
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reported in the literature for Hewlett Packard (Beyer and Ward (2000)), Caterpillar

(Rao et al. (2000)), or Océ (Scheller-Wolf et al. (2007)), amongst others. The supply

options incur different costs, but also take up different amounts of time. Thus, one

strategy could be to replenish the majority of items using the cheaper, but slower

source, and to use the fast, but expensive source only in case of imminent stockouts

caused by the volatility of demand. For example, HP produces the majority of its

DeskJet printers in Singapore, because of that country’s lower cost structure. Thus,

the focus with this source is on cost efficiency. In addition, HP has manufacturing

in Vancouver. This source ensures a fast response to the North American market

and is utilized to guarantee high service (see Lee and Wolfe (2003)). Consequently,

a dual-sourcing strategy enables a company to serve demand at low costs without

compromising on service. In order to realize these potential gains from dual sourcing,

an effective inventory control policy needs to be in place, which tells the company

when to order from which source and how much.

In contrast to single-sourcing models, where optimal policy results are available for

single-echelon as well as multi-echelon settings, the findings for dual-sourcing models

are much more limited. Even for single-echelon models the optimal policy is just

known for special cases. In more general settings, it can only be determined numer-

ically by using complex mathematical models that require considerable amounts of

computation time. This renders it inapt for the application in practice. That is why

various non-optimal policies have been proposed in the literature that are easier to

compute and manage. These include the single-index (SIP), constant-order (COP),

dual-index (DIP), and order-splitting policy (OSP). The relative performance has

been tested only of certain policies, however. Scheller-Wolf et al. (2007) provide a

comparison of the SIP and DIP. The COP and OSP have not yet been taken into

consideration. This thesis closes this gap by comparing the COP and the DIP. The

OSP can be excluded from this single-echelon policy comparison due to its arguably

inferior performance in the analyzed deterministic lead-time setting. This policy is

usually studied under stochastic lead times as a simple and effective means to pool

lead-time risk (see, e.g., Thomas and Tyworth (2006)). Thus, the thesis gives guid-

ance to the practitioner as to which policy is an effective choice in specific supply

system settings.
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Even though the use of an effective dual-sourcing policy, which is found by the

single-echelon analysis, might already save cost, a true supply chain inventory opti-

mization approach would have to incorporate all locations of the supply network and

thus take a multi-echelon perspective. Since at best only approximate approaches

to this problem are available in the literature (see, e.g., the presented ideas in the

final section of Graves and Willems (2005)) and therefore implemented in the avail-

able software applications, there is room for improvement in this area. As another

contribution, this thesis aims at filling this void.

Consequently, the thesis contributes to the body of literature on dual-sourcing in-

ventory control models in a single- and multi-echelon setting. In preparation of

the multi-echelon dual-sourcing model development, the literature on multi-echelon

inventory models with a single source of supply is extended, as well. The thesis

centers around two major research topics:

(i) the detection of effective dual-sourcing inventory control policies in a single-

echelon model, and

(ii) the integration of dual-sourcing into a multi-echelon inventory model.

1.2 Research questions

This thesis deals with inventory optimization in supply networks with multiple sourc-

ing. The coordination of replenishment decisions, when two or more suppliers for

the same item are available, is mostly studied in a single-echelon setting in the

literature. This is also selected as the starting point of this thesis.

The first major research question that is addressed in this thesis is what are ef-

fective dual-sourcing inventory control policies in a single-echelon setting. In this

context, the term ‘effective’ is understood in the sense of easily implementable and

performing close to optimal. Although the optimal policy delivers the lowest cost,

its computation might be rather complex, and thus render it less effective from a

practicability point of view. Hence, non-optimal policies, which are simpler to com-

pute and still show a satisfactory cost performance, can be regarded as being more

effective. Consequently, in order to answer this major research question, several
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aspects need to be addressed. These make up the following subset of more specific

research questions, which are analyzed in turn:

1. How can the optimal inventory control policy for the studied single-echelon

dual-sourcing problem be determined?

2. What are simple non-optimal policy alternatives and how can their optimal

parameters be computed?

3. How do these (non-optimal) inventory control policies perform?

The second major research question that is investigated in this thesis is how to in-

tegrate dual sourcing into a multi-echelon inventory model. The integration of dual

sourcing into a multi-echelon setting requires good acumen of multi-echelon inven-

tory models with a single sourcing option as a starting point. Here, the literature

on multi-echelon inventory models without lot-sizing distinguishes between models

following the stochastic-service or guaranteed-service framework, in general. It is

not clear from the available contributions, whether any of these approaches is supe-

rior to the other. Therefore, it seems worthwhile to first analyze and compare both

approaches, before the integration of dual sourcing is addressed. If one of the ap-

proaches was generally superior to the other, the extension to dual sourcing would

only have to be done for this approach. Hence, the answer to the main research

question is multilayered again. That is why it is broken down into several more

specific research questions, which eventually provide an answer to the major one.

These include:

1. Given the characteristic assumptions and features of the two competing multi-

echelon inventory optimization model strands in the literature, i.e. the stochastic-

and guaranteed-service framework, is one of them generally superior to the

other?

If this is not the case, in which settings does each approach perform well?

2. Depending on the outcome of the first question, is a mutually exclusive im-

plementation of a single multi-echelon approach for the entire supply network

reasonable?
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Put differently, do situations exist where a combination of both approaches pro-

vides additional benefits and how can such an integrated approach be designed?

3. Provided that none of the approaches is generally superior to the other, how

can dual sourcing be accommodated in the guaranteed-service approach?

At first glance, the second specific research question might not seem to be directly

related to the ultimate goal of this thesis, which is the integration of dual sourcing

into a multi-echelon inventory model. Although this question refers to an extension

of the single-sourcing multi-echelon frameworks, the answer to this question fosters

a better understanding of the two multi-echelon models and as such represents a

valuable basis for the extension to dual sourcing. Moreover, a newly developed in-

tegrated multi-echelon framework with single sourcing also represents an additional

candidate for a potential dual-sourcing extension. However, this thesis focuses on the

extension of the guaranteed-service approach only. The integration of dual sourcing

into any other approaches is postponed to future research.

1.3 Structure and overview

This thesis is divided into 5 chapters. After the presentation of the research mo-

tivation, the specific research questions, and the overall structure of the thesis in

this chapter, Chapter 2 outlines fundamentals that are required for a thorough un-

derstanding of the thesis and reviews the relevant literature. Section 2.1 starts by

briefly discussing the relevant demand distributions in Section 2.1.1. Demand is

regarded as the primary source of uncertainty in the inventory models studied in

this thesis. In Section 2.1.2, the basic inventory control terminology is introduced

followed by a description of several performance measures for the evaluation of an

inventory control policy. Next, a basic infinite-horizon inventory model is presented,

i.e. the single-echelon periodic-review order-up-to level model with single sourcing.

Section 2.1.3 is concerned with the basics of multi-echelon inventory control. The

notion of a process, stockpoint, and stage is explained together with the basic supply

network structures that can be encountered in practice.

The literature review in Section 2.2 follows the general structure of the thesis. First,

the body of literature on single-echelon inventory models with multiple sourcing is
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discussed in Section 2.2.1. The contributions are characterized into works that are

concerned with the derivation of the optimal policy and works that deal with the

parameter optimization for a given (not necessarily optimal) policy. This classifica-

tion also reflects the historical development quite well. Whereas early contributions

have focused on the determination of the optimal policy, more recent contributions

rather center around policies that are applicable in practice. Second, Section 2.2.2

reviews multi-echelon inventory models with single sourcing. This field of literature

can broadly be classified into models following the stochastic-service framework and

those following the guaranteed-service framework. In each field, contributions that

concentrate on the derivation of the optimal policy structure or the computation

of the optimal policy parameters for different network structures are summarized.

Moreover, the review includes works that compare or combine both modeling frame-

works, since these are also aspects addressed in this thesis. Third, Section 2.2.3

gives an overview over multi-echelon inventory models with dual or multiple sourc-

ing. Here, the available literature is rather limited, which demonstrates that there

is room (and also need) for further model developments as provided in this thesis.

In Chapter 3, which is concerned with the first major research question, a single-

echelon periodic-review inventory model with two suppliers is considered. Following

an introduction of the main assumptions and notations in Section 3.2, Section 3.3

presents several dual-sourcing inventory control policies. First, the computation of

the optimal policy is addressed in Section 3.3.2. While for the special case of consec-

utive lead times, i.e. a lead-time difference of one period between the two suppliers,

the optimal policy is known to be the single-index policy, it is shown for offsetting

lead times how the optimal policy can be found by using a Markov Decision Process

(MDP) formulation. As is directly apparent from the MDP model and also reported

in the literature by Veeraraghavan and Scheller-Wolf (2008), for instance, the opti-

mal policy can only be computed for limited problem sizes in a reasonable amount

of time. That is why in Section 3.3.3 several simpler and, in general, non-optimal

policies are outlined. These include the single-index (SIP), constant-order (COP),

dual-index (DIP), and the order-splitting policy (OSP). These policies have already

been studied in the literature by different authors; however, mostly in isolation. In

order to foster the understanding of the policy differences in view of the policy com-

parison in Section 3.4, their mode of operation and the major available results are
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reiterated in Section 3.3.3 using a unified notational framework. It is indicated at

certain points where known results are complemented by new aspects. Each policy is

studied in a backorder-cost model. Extensions to model formulations with different

types of service-level constraints are presented, as well. It is shown how the policy

parameters for these policies can be optimized. Except for special cases, which are

addressed in a subsection of the respective policy section, the optimization can be

performed by a one-dimensional search procedure over the relevant policy parameter

region. In case of the COP and DIP a so-called stationary overshoot distribution

needs to be derived. Exact and approximate approaches of how this can be done

are outlined for these policies.

Section 3.4 is based on Klosterhalfen et al. (2010a) and is concerned with the com-

parison of the (non-optimal) dual-sourcing policies. The comparison focuses on

the COP and DIP only. While the SIP and DIP have already been compared in

Scheller-Wolf et al. (2007), the OSP is arguably inferior to the other policies in the

deterministic lead-time setting analyzed in this chapter. The theoretical findings,

which can be derived from the extreme strategies of the COP and DIP, suggest

that the cost difference between the policies decreases as the lead-time difference

increases. For a sufficiently large lead-time difference it can be presumed that the

COP outperforms the DIP (Section 3.4.2). In order to support this presumption,

a numerical study is conducted in Section 3.4.3. The numerical results confirm the

finding. In settings with a significant lead-time difference and small expediting pre-

mium the COP is identified as an effective dual-sourcing policy alternative to the

DIP. In general, however, the DIP shows a superior performance, but is also the

more complex policy to manage. In situations with a small lead-time difference and

large expediting premium, single sourcing is found to be a reasonable alternative to

the DIP. From a practitioner’s point of view, the outcome of the COP-DIP compar-

ison is particularly interesting for two reasons. First, the COP is the more easily

implementable and controllable policy in practice. Second, the guarantee of a con-

stant order for one of the suppliers is helpful for supply negotiations. It prevents the

supplier from any demand fluctuations or even the bullwhip effect, which facilitates

the production planning.

Chapter 4 shifts the focus to multi-echelon inventory models and addresses the

second major research question. First, the two main modeling frameworks in this
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body of literature are outlined in Section 4.2, i.e. the stochastic-service (SS) and

guaranteed-service (GS) approach. In addition to the presentation of the existing

models and results, the major point of criticism of the GS approach is addressed.

This approach assumes that further countermeasures besides safety stock exist to

cope with demand variability, if it exceeds a certain normal or reasonable level. This

‘operating flexibility’ is not explicitly modeled in the framework, however, and the

inventory optimization only takes into account normal demand variability. In this

section, which is partly based on Klosterhalfen and Minner (2010), the standard GS

model is extended to explicitly consider the effect that operating flexibility measures

have on the material flow in the system. One possible modeling option is analyzed in

detail and its reasonability is tested in a simulation study. This option assumes that

missing items are expedited from the pipeline inventory of a stage. Due to the model

extension, the optimization problem minimizes the on-hand stock cost in the entire

supply network in its objective function, in contrast to the safety stock cost in the

standard GS formulation. Based on different arguments, Minner (1997) and Minner

(2000) also suggest the use of the on-hand stock expression in the objective function

rather than the safety stock one. Moreover, the extended GS model developed in

this section permits a cost-based derivation of the maximum reasonable demand

level, up to which demand variability is covered by safety stock only. This level

can be expressed as an internal service level and easily determined by a closed-

form expression provided that a cost parameter for the use of operating flexibility

is available. The specification of such a cost might often be easier for management

than the direct setting of a service level.

In Section 4.3, which is also partly based on Klosterhalfen and Minner (2010), both

multi-echelon inventory optimization approaches are compared. For each approach,

an individual benefit is identified on the basis of theoretical considerations. The SS

approach possesses the allocation benefit, whereas the GS approach takes advantage

of the decoupling benefit. The SS approach can make its stock allocation decision

according to the holding-cost relationships between the stages, taking into account

the final-stage service level(s) only. The GS approach, on the other hand, has to

comply with the service level (internal or external) of each stage that holds stock.

On the upside, however, the operating flexibility measures allow for a decoupling

of the stages, i.e. no stochastic delays occur in case of supply shortages, which
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otherwise would increase the stock requirement at downstream stages. In order to

gain further insights into the relative performance of both approaches a numerical

study is conducted for serial and divergent systems. Internal and external service

levels of the α-service level type are considered with internal service levels ranging

from 17% to 75% and external service levels of 85%, 95%, and 99%. From this study,

the following three important drivers of the advantage of one approach over the other

are derived: processing-time pattern, final-stage service level(s), and internal service

level (or operating flexibility cost). In compliance with the individual benefits, the

GS approach is found to be superior to the SS model in settings with a degressive

processing-time pattern, high final-stage service level(s), and a low internal service

level. For the SS model, the opposite is true. Among the three drivers, the internal

service-level parameter has the biggest influence on the approach superiority. Most

importantly, the results of the numerical study show that none of the approaches

is superior to the other, in general. Both approaches have their advantages and

disadvantages in certain settings. Hence, the integration of dual sourcing into any

of the two approaches represents a valuable extension. One such extension, namely

the integration into the GS approach, is the focus of Section 4.5.

Before the dual-sourcing extension is addressed, the joint exploitation of both in-

dividual benefits is at the core of Section 4.4, where the SS and GS approaches

are combined in the so-called hybrid-service (HS) approach. This approach itself

represents a candidate for a potential extension to incorporate dual sourcing, which

is postponed to future research, however. The section is based on Dittmar et al.

(2009). The HS approach allows the entire network to consist of both SS and GS

subnetworks. This makes the appropriate modeling of the subnetwork interfaces

an important issue of this section. Moreover, for serial systems the optimization

problem is formulated and a pseudo-polynomial time dynamic programming algo-

rithm for the determination of the optimal network partitioning and stock sizing

is developed. Extensions to divergent and convergent systems are also discussed.

The major contribution of the HS approach is that a practitioner does not have to

choose one of the two multi-echelon inventory optimization approaches exclusively

for the entire supply network, but (s)he can make a stage-wise choice. Thus, at least

the better of the two pure approaches is selected and in some instances even addi-

tional cost-savings can be realized through a hybrid-service structure. This finding
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is also supported by the results of a numerical study conducted for serial systems

with up to five stages. The largest additional cost-saving amounts to 10.5% and the

average to 1.9%. The best HS performance is observed in settings with relatively

low internal service levels, a broad internal service-level range, degressive lead-time

structure, and progressive holding-cost pattern.

Section 4.5 focuses on the integration of dual sourcing into the standard GS model

and is based on Klosterhalfen et al. (2010b). The dual-sourcing extension of the other

two multi-echelon frameworks (SS, HS) is postponed to future research. Note that

even the GS approach with only a single supplier for each item can be interpreted as

a kind of dual-sourcing model. Due to the assumed operating flexibility, items can

be speeded up in case of an imminent stockout, which can be regarded as a second

supply option with a shorter processing time. This option, however, is not regarded

as dual sourcing in the way this term is understood in this thesis. In order to keep

the dual-sourcing model analysis analytically tractable, the order-splitting policy

(OSP) is selected as inventory control policy. Moreover, one of the policy parameters,

namely the sourcing fraction, is assumed to be exogenous to the model. The model

objective is to determine the optimal safety stock allocation and sizing. Extensions

of this model to more than two suppliers or the simultaneous optimization of the

sourcing fractions and safety stocks are discussed, as well. Moreover, the integration

of other inventory control policies like the SIP, COP, or DIP is addressed. In the

model development it is shown that certain changes to the standard GS approach

with single sourcing are required. In the single-sourcing situation, each stockpoint

is preceded by a single process, which allows for an aggregation of the process and

the stockpoint into a stage with a single index. In the dual-sourcing setting, several

processes can precede a stockpoint depending on the number of suppliers. This

prohibits an aggregation into a stage with a single processing time. Instead of the

stockpoint and its index, the process needs to be assigned to the arc connecting

two stockpoints. Otherwise, differing processing times of the two supply processes

cannot be accurately reflected and an exact computation of the safety stock at

the dual-sourced stockpoint is not possible. A dynamic programming algorithm is

developed for the optimization of the safety stocks in serial and convergent systems.

It is shown that this approach represents an improvement of the only approximate

modeling idea outlined in the final section of Graves and Willems (2005), which
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is one of very few contributions available in the literature that address a similar

problem.

Chapter 5 concludes the thesis. It summarizes the major findings and discusses

implications and extensions for future research.



2 Fundamentals and literature

review

The goal of this chapter is to provide the reader with the basic terminology of

single- and multi-echelon inventory control theory as well as an understanding of an

elementary inventory control model that forms the basis of the upcoming chapters.

Furthermore, it reviews the relevant literature related to this thesis.

2.1 Fundamentals

2.1.1 Demand

Companies operate in uncertain environments. Apart from uncertainties on the

supply side resulting from possible vehicle or machine break downs or production

rescheduling, for instance, a major difficulty arises on the demand side, because

future customer orders cannot be predicted exactly (see, e.g., Simchi-Levi et al.

(2008)). The latter is the source of uncertainty considered in this thesis. One way to

still enable smooth operation and provide a high level of service/product availability

is the introduction of inventory buffers, called safety stocks. Other measures include

safety lead times or additional capacities, for instance. Yet another way is the use

of additional suppliers, who offer fast service in emergency situations, which in turn

also reduces the stock requirement, but causes higher procurement costs. Safety

stocks and dual sourcing as countermeasures are analyzed in this thesis.

With regard to the incorporation of the demand into an analytical inventory con-

trol model, two approaches can be distinguished. Given a sample of demand data,

the empirical demand distribution based on these data can be directly used in the

15
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model. Alternatively, the parameters of a theoretical distribution can be estimated

from the available data. The latter approach is widely used in the inventory control

literature, because it smoothes the tasks of analysis and calculation and thus enables

the derivation of solution properties. This approach is also pursued in this thesis.

The theoretical demand distributions used are briefly outlined in this section. The

description is mainly based on Chapter 6 in Law and Kelton (2000). The probability

density (pdf) or mass function (pmf) is represented by f for continuous or discrete

random variables, respectively. The cumulative distribution function (cdf) is indi-

cated by F . fL and FL denote their L-fold convolutions, respectively. Different

superscripts are used to refer to the different distribution types.

2.1.1.1 Continuous distributions

Normal distribution

The probably most commonly used demand distribution in inventory theory is the

normal distribution. It is characterized by two parameters, the demand expectation

µ and standard deviation σ. The probability density function is given as

fnorm(x) =
1

σ ·
√

2π
· e−

(x−µ)2

2σ2 −∞ ≤ x ≤ ∞ . (2.1)

The corresponding cumulative distribution function is

F norm(x) =

∫ x

−∞

fnorm(u) du . (2.2)

For numerical computations any normal distribution can be transformed into the

standard normal distribution with µ = 0 and σ = 1 by substituting z := x−µ

σ
. The

standard normal probability density, φ(z), and cumulative distribution function,

Φ(z), are given as

φ(z) =
1√
2π

· e− z2

2 (2.3)

Φ(z) =

∫ z

−∞

φ(u) du . (2.4)

The standard normal distribution values are tabulated such that the computation
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of integral expressions is possible. Moreover, rational approximations exist for Φ(z)

(see, e.g., Abramowitz and Stegun (1970), p. 932).

Note that, when using a normal distribution to model customer demand, negative

demand values have a positive probability. If the probability mass for these negative

values is small, however, this still represents a reasonable approximation. This is

usually the case, if the coefficient of variation, CV = σ/µ, is smaller than 0.5 (see,

e.g., Schneider (1981)). In various settings for fast moving items, where the demand

per period is relatively large, a reasonable goodness of fit of the normal distribution

is reported (see, e.g., Tijms and Groenevelt (1984)).

Since ordered items are not received immediately, but after a lead time, during which

further demands need to be satisfied, the demand distribution over the lead-time is

relevant for inventory control. For a deterministic lead time L, the distribution is

the L-fold convolution of the single period demand random variable, if the demand

process is assumed to be stationary and the single period demands are identically

and independently distributed (i.i.d.). Consequently, in case the single period de-

mand has a normal distribution, the lead-time demand is also normally distributed

with an expected value of µ · L and standard deviation σ ·
√

L. For the lead-time

demand computation in case of stochastic lead times see, e.g., Tijms and Groenevelt

(1984) and Eppen and Martin (1988).

Gamma distribution

The normal distribution disadvantage of possible negative values, which is espe-

cially critical for large coefficients of variation, induces Burgin (1975) to propose the

gamma distribution for inventory control. Other contributions like Tyworth et al.

(1996) also assume gamma distributed demand. The gamma distribution is only de-

fined for non-negative values. The probability density and cumulative distribution

function are given as

f gam(x) =






θκxκ−1e−θx

Γ(κ,θ)
x ≥ 0

0 otherwise
(2.5)

F gam(x) =

∫ x

0

f gam(u) du (2.6)
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where θ > 0 is a scale parameter and κ > 0 the shape parameter (modulus). The

term Γ(κ, θ) is the complete gamma function

Γ(κ, θ) =

∫ ∞

0

θκxκ−1e−κx dx (2.7)

ensuring that
∫∞

0
f gam(x) dx = 1. If κ is an integer, then Γ(κ, θ) = (κ − 1)!. The

mean and variance are

µ =
κ

θ
(2.8)

σ2 =
κ

θ2
. (2.9)

Based on the first two moments of some observed data, the scale and shape param-

eter can be determined as

κ =
µ2

σ2
(2.10)

θ =
µ

σ2
. (2.11)

Given that the period demand is i.i.d. gamma distributed with κ and θ, the lead-

time demand for a deterministic lead time of L periods has shape parameter L · κ
and scale parameter θ, i.e.

f gam
L (x) =

θLκxLκ−1e−θx

Γ(Lκ, θ)
. (2.12)

For the computation of integral expressions the use of tables or rational approxima-

tions is required again (see, e.g., Abramowitz and Stegun (1970), p. 257).

2.1.1.2 Discrete distributions

Discrete demand is well modeled by the following three distribution types, which

provide a range of shapes that satisfy a variety of demand patterns encountered in

practice (see Banks et al. (2009), p. 182).
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Poisson distribution

In situations where item demand is rather low, the use of the Poisson distribution is

very common in inventory theory for several reasons (see, e.g., Zipkin (2000), p. 179).

The distribution is easy to specify, because it has only one parameter λ. Further, in

many situations the model is shown to be fairly accurate. Finally, its mathematical

simplicity facilitates analytical calculations. The probability mass and cumulative

distribution function are defined as

fPois(x) =






e−λλx

x!
x = 0, 1, ...

0 otherwise
(2.13)

F Pois(x) =





e−λ ·∑x

i=0
λi

i!
x = 0, 1, ...

0 otherwise
. (2.14)

The mean and variance are

µ = σ2 = λ . (2.15)

The sum of i = 1, 2..., m independent Poisson random variables with parameters

λi is Poisson distributed with parameter λ =
∑m

i=1 λi. For the lead-time demand

random variable it follows that, if period demands are identically and independently

distributed according to a Poisson distribution with parameter λ1, the lead-time

random variable for a deterministic lead time of L periods has a Poisson distribu-

tion with parameter L · λ1.

Geometric distribution

Besides the Poisson distribution, the geometric distribution is used in inventory the-

ory to model demand (see, e.g., Beckmann (1964)). Due to its recursive probability

structure (see (2.20)) it lends itself to a more thorough analytical analysis in some

cases. The probability mass and cumulative distribution function of the geometric
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distribution are defined as

f geom(x) =





p(1 − p)x x = 0, 1, ...

0 otherwise
(2.16)

F geom(x) =





1 − (1 − p)x+1 x = 0, 1, ...

0 otherwise
(2.17)

with 0 < p ≤ 1. The mean and variance are given as

µ =
1 − p

p
(2.18)

σ2 =
1 − p

p2
. (2.19)

In addition, the following recursion holds

f geom(x) = (1 − p) · f geom(x − 1) . (2.20)

The sum of L independent geometrically distributed random variables with param-

eter p follows a negative binomial distribution with parameters L and p (cf. Law

and Kelton (2000)). (The geometric distribution can be viewed as a special case of a

negative binomial distribution with L = 1 and the same value for p.) In terms of the

demand, this means that, if the single-period demand has a geometric distribution,

the lead-time demand random variable has a negative binomial distribution.

Negative binomial distribution

In situations with low but highly variable item demand, e.g., for certain service parts

(see Muckstadt (2005)) or in retailing (see Agrawal and Smith (1996)), the Poisson

distribution might not fit well, because its fixed variance to mean ratio of one is too

small. Here, the use of the negative binomial distribution for modeling demand is

appropriate. The negative binomial distribution has two parameters r (a positive

integer) and 0 < p < 1. Its probability mass and cumulative distribution function
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are defined as

fnbin(x) =






(
r+x−1

x

)
pr(1 − p)x x = 0, 1, ...

0 otherwise
(2.21)

F nbin(x) =






∑x
i=0

(
r+i−1

i

)
pr(1 − p)i x = 0, 1, ...

0 otherwise .
(2.22)

The mean and variance are

µ = r · 1 − p

p
(2.23)

σ2 = r · 1 − p

p2
. (2.24)

For the computation of the lead-time demand random variable it is important to note

that the sum of independent negative-binomially distributed random variables with

the same value of the parameter p but the ‘r-values’ r1 and r2 is negative-binomially

distributed with the same p but with ‘r-value’ r1 + r2 (cf. Law and Kelton (2000)).

Consequently, if the single-period demands are identically and independently dis-

tributed according to a negative binomial distribution with parameters p and r, the

lead-time demand random variable for a deterministic lead time of L periods has

negative binomial distribution with parameters p and L · r.

2.1.1.3 Discretized (continuous) distribution

Although the fit of a continuous distribution to the empirical data might be good,

some mathematical models require a discrete demand distribution for computational

reasons. Whenever a discretized distribution is referred to in this thesis, the following

kind of distribution is meant. Let F denote the single-period cumulative distribution

function of a demand random variable D with positive but unlimited support, e.g.,

a gamma distribution. (In case of the normal distribution, negative values would

be neglected and their probability mass cumulated at zero.) Further, specify D̄ as
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a very large number such that

Pr
{
D > D̄

}
≤ ǫ (2.25)

where ǫ is a very small number, e.g., ǫ = 0.00001. Then, the mass probability

function is given as

f(x) =






F (0.5) x = 0

F (x + 0.5) − F (x − 0.5) x = 1, 2, ...D̄ − 1

1 − F
(
D̄ − 0.5

)
x = D̄

. (2.26)

2.1.2 Inventory control

2.1.2.1 Inventory level classifications

In probabilistic demand settings, the following terms are used for conceptually clas-

sifying inventories. The explanations are based on Silver et al. (1998).

On-hand stock, OH

This term describes the stock quantity that is physically on the shelf and is available

for directly satisfying customer demand. The on-hand stock can never be negative.

In connection with a period index t, OHt denotes the on-hand stock at the end

of period t before deliveries. Consequently, the quantity of available items at the

beginning of period t (before any orders are received) corresponds to OHt−1.

Backorders, BO

In case demand in a period exceeds the available stock, a shortage occurs. Provided

that customers are willing to wait for their products, the backorders represent the

quantity of items that have already been requested, but are still to be delivered

(backorder case). If customers do not wait, the shortage quantity is lost (lost-sales

case). If a period index t is introduced, BOt refers to the backorders at the end of

period t.
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Net stock, NS

The net stock is defined as the difference between the on-hand stock and the backo-

rders. Obviously, it can become negative. For a given period t, the net stock at the

end of this period is

NSt = OHt − BOt . (2.27)

Pipeline inventory, PI

The pipeline inventory denotes the outstanding orders, i.e. the quantity of items, for

which an order has already been placed, but has not yet been received. Together

with the period index t, PIt specifies the outstanding orders at the beginning of a

period, before any of these items arrive in stock at a location.

PIt =
L∑

i=1

Qt−i (2.28)

where L denotes the replenishment lead time and Qt the order placed in period t.

Inventory position, IP

The inventory position at the beginning of a period t before ordering and receipt of

any order is calculated as follows:

IPt = OHt−1 + PIt − BOt−1 . (2.29)

The inventory position comprises of the relevant information to trigger an order,

because it also includes the stock on order. Compared to a situation where net

stock is used as a trigger, this avoids the ordering of materials today, for which an

order has already been placed and which are due in tomorrow.

Safety stock, SST

‘The safety (or buffer) stock is defined as the average level of the net stock just
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before a replenishment arrives.’ (Silver et al. (1998), p. 235)

SST = E[NS] (2.30)

If demand during the replenishment lead time is larger than average, a positive

safety stock provides coverage against possible stockouts resulting from this fact.

The numerical value of the safety stock depends on whether customer demands that

occur during a stockout period are backordered or lost. If demands are lost, the

net stock remains zero throughout the stockout period. In the backordering case,

however, net stock is negative just before the next replenishment arrives. Since

safety stock represents the average net stock just before a replenishment arrives, its

value also depends on which kind of assumption applies.

2.1.2.2 Performance measures for inventory control

An inventory control system or policy manages the inventory level at a location by

providing answers to the following three questions (see Silver et al. (1998), p. 235):

1. How often should the inventory status be determined?

2. When should a replenishment order be placed?

3. How large should the replenishment order be?

The performance of an inventory control system can be measured either in terms of

cost or service. Under a cost performance measure, the objective is to find control pa-

rameters that minimize the sum of ordering, holding, and stockout penalty/backorder

costs (see Minner (2000), p. 30). However, in many practical situations backorder

costs are generally hard to quantify. To overcome this difficulty, a service perfor-

mance measure can be introduced such that the objective of the inventory control

system is to achieve a predefined service level with minimal holding costs. van Hou-

tum and Zijm (2000) show that for a variety of models a one-to-one relationship

between cost models and service models exists. Three common measures of service

are the α-, β-, and γ-service levels (also known as P1-, P2-, P3-service measures or

the non-stockout probability, fill rate, and ready rate or modified fill rate, see Silver
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et al. (1998)). These service measures can be related to different time intervals,

e.g., average period, average replenishment cycle, or lead time. Since customers are

usually only interested in the quality of demand satisfaction in every period and do

not care about the order cycle, solely period-based service definitions are presented

in the following paragraphs.

α-service level

In situations where only the occurrence of a stockout is important and not the

quantity and duration of the shortage, the α-service level should be used. This

service level is defined as the ‘probability of satisfying demand in an arbitrary period’

(Klemm (1973), p. 170). In the spirit of the β-service level description of Chen et al.

(2003) and Thomas (2005), which follows in the next paragraph, the random variable

defining the non-stockout probability for T periods is

αT ≡
∑T

t=1 1 · I {FDt = Dt}
T

(2.31)

where Dt denotes the demand random variable of period t (assuming non-negativity)

and FDt the filled demand, i.e. the number of units of the demand in period t that

can be satisfied from stock. Furthermore, I{x} denotes the indicator function of

event x. Equivalently, in a backorder setting, αT can be seen as the random variable

indicating the probability that the net stock at the end of a period is non-negative,

i.e.

αT ≡
∑T

t=1 1 · I {NSt ≥ 0}
T

. (2.32)

For the infinite-horizon case T → ∞ under backordering, it follows that

α = lim
T→∞

E[αT ] ≡ Pr {NS ≥ 0} (2.33)

where NS denotes the net stock random variable.
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β-service level

The β-service level is defined as the fraction of demand satisfied directly from stock

(see, e.g., Silver et al. (1998), p. 245). Using Dt and FDt as defined in the α-service

level case, the fill-rate random variable for T periods is (see, e.g., Thomas (2005))

βT ≡ FD1 + · · ·+ FDT

D1 + · · ·+ DT

. (2.34)

In the infinite-horizon case T → ∞ and assuming i.i.d. period demands,

β = lim
T→∞

E[βT ] ≡ E[FD]

µ
(2.35)

where FD denotes the filled demand random variable. Assuming a backorder sit-

uation, this expression can be rewritten using the ‘expected units short’ (see, e.g.,

Silver and Bischak (2010)):

β = 1 − expected units short per period
expected demand per period

= 1 − E [BO] − E
[
BObeg

]

µ
. (2.36)

In (2.36), E[BO] indicates the expected backorders at the end of a period, whereas

E
[
BObeg

]
the ones at the beginning of a period (after outstanding orders have been

received and existing backorders have been satisfied as far as being feasible).

Chen et al. (2003) establish the following interesting result for a periodic-review

order-up-to S model with a deterministic lead time and backordering (see Section

2.1.2.3 for details on this kind of inventory model):

E [β1] (S) ≥ E [βT ] (S) ≥ lim
t→∞

E [βT ] (S) , (2.37)

i.e. the expected finite-horizon fill rate is greater than the infinite-horizon fill rate

and less than the single-period expected fill rate.

γ-service level

Whereas the β-service level only takes into account new shortages in a period, the

γ-service level considers the entire backorders (or cumulative shortages) at the end

of a period (see Schneider (1981), p. 617). Therefore, this service measure is only
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relevant in the backorder case, where it provides a lower bound for the β-service

level. Due to this relation and its simpler way of computing, the γ-service level is

often used as an approximation for the β-service level. For the infinite-horizon case,

it is defined as:

γ = 1 − expected cumulative units short per period
expected demand per period

= 1 − E [BO]

µ
. (2.38)

For the upcoming exposition it is sometimes convenient to express the service-level

constraint in terms of a constraint on the expected backorders. For a given γ-service

level target, γtarget, (2.38) can be reformulated into

BOγ
target = E [BO] (2.39)

where BOγ
target denotes the maximum permissible value given as

BOγ
target =

(
1 − γtarget

)
µ . (2.40)

In case of a finite horizon of T periods, it follows from (2.38) that the modified

fill-rate random variable γT is

γT ≡ 1 − BO1 + · · ·+ BOT

D1 + · · ·+ DT

. (2.41)

Note that whenever there is reference to a service level in this thesis, it applies to

the infinite-horizon definition.

2.1.2.3 Single-echelon order-up-to level model with single sourcing

As a preliminary for the upcoming analyses that refer to dual-sourcing and multi-

echelon inventory models, an elementary single-sourcing single-echelon stochastic

inventory control model with periodic review and backordering is presented in this

section. In settings with linear holding (h) and backorder costs (b) per unit and

period, where fixed ordering costs are zero or negligible, an order-up-to level policy

represents the optimal inventory control strategy (see, e.g., Veinott (1966)). Under

such a policy the inventory position is checked at each review instant and, if neces-



2.1 Fundamentals 28

sary, an order Qt is placed to raise it up to B, the order-up-to level. The inventory

position is defined as the net stock at the end of the previous period plus all out-

standing orders. Under the assumption that the review period is equal to one and

it takes L periods for an order to arrive, the inventory position at the beginning of

period t before ordering is

IPt = NSt−1 +
L∑

i=1

Qt−i (2.42)

and the inventory position recursion is

IPt = IPt−1 + Qt−1 − dt−1 = B − dt−1 (2.43)

where dt−1 denotes the demand realization in period t − 1. Due to the order-up-to

structure, the inventory position after ordering in each period, IP+
t−1 = IPt−1+Qt−1,

is equal to B. Hence, the order quantity in period t, Qt = (B − IPt)
+ = dt−1, i.e. it

corresponds to the demand of the previous period. Consequently, the net stock at

the end of period t is

NSt = IP+
t−L −

L∑

i=0

dt−i = B −
L∑

i=0

dt−i . (2.44)

Under stationary conditions t → ∞, the net stock is a random variable given as

NS = B − D(L + 1) (2.45)

where D(L + 1) denotes the demand random variable over L + 1 periods. The

expected on-hand stock and backorders are

continuous demand: E [OH(B)] =

∫ B

x=0

(B − x) · fL+1(x) dx (2.46)

E [BO(B)] =

∫ ∞

x=B

(x − B) · fL+1(x) dx (2.47)
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discrete demand: E [OH(B)] =

B∑

x=0

(B − x) · fL+1(x) (2.48)

E [BO(B)] =

∞∑

x=B+1

(x − B) · fL+1(x) , (2.49)

respectively. In case of continuous (discrete) demand and the infinite horizon aver-

age cost criterion, the optimal B is the (smallest) B that satisfies the critical-fractile

(in)equality:

FL+1(B) ≥ b

b + h
. (2.50)

If instead of a backorder cost b per unit and period a service-level constraint is used,

the optimal order-up-to level can be determined as follows. For the α-service level

it is found from (2.33) and (2.45) that

α = Pr {B − D(L + 1) ≥ 0} = Pr {D(L + 1) ≤ B} = FL+1(B) . (2.51)

Comparing (2.50) and (2.51) shows that the following equivalence relation exists

between the backorder cost and α-service-level approach, i.e.

α =
b

b + h
. (2.52)

For the β-service level computation, the expected backorders at the beginning and

the end of an arbitrary period are required. The latter ones are given by (2.47) or

(2.49). The former ones can simply be calculated as the expected backorders over

L periods (instead of L + 1). Consequently,

continuous demand: β = 1 −
∫∞

B
(x − B)fL+1(x) dx −

∫∞

B
(x − B)fL(x) dx

µ

(2.53)

discrete demand: β = 1 −
∑∞

x=B+1(x − B)fL+1(x) −∑∞
x=B+1(x − B)fL(x)

µ
.

(2.54)
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Similarly, the γ-service level equations are

continuous demand: γ = 1 −
∫∞

B
(x − B)fL+1(x) dx

µ
(2.55)

discrete demand: γ = 1 −
∑∞

x=B+1(x − B)fL+1(x)

µ
. (2.56)

2.1.3 Supply network modeling

2.1.3.1 Stockpoint, process, and stage

In this thesis, a (potential) location for holding inventory of an item is referred to

as a stockpoint and graphically represented by an upside-down triangle. At each

stockpoint only one specific item can be stocked, e.g., a raw material, component, or

finished product. Before an item enters a stockpoint, it has to pass through a process,

e.g., the manufacture of a subassembly or the transportation of an item from another

stockpoint to this stockpoint. Such a process (together with the item availability

at preceding stockpoints in a multi-echelon setting) determines the replenishment

lead time of a stockpoint and is visualized by a circle. In a single-sourcing setting, a

stockpoint and its preceding process can be combined and jointly represented by a

stage (see Figure 2.1). Since each item is only sourced from a single supplier, there

is only a single process preceding a stockpoint, which can then be associated directly

with the stockpoint and its index (see, e.g., Graves and Willems (2000)).

Stock-
pointProcess

Stage

Figure 2.1: Stage structure

In a dual- or multiple-sourcing setting, an item can be delivered by several suppliers.

Depending on the geographic distance, the transportation processes might take up

different amounts of time. That means, a stockpoint can have several preceding
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processes depending on the number of suppliers. Consequently, an integration into

a stage with a single processing time is not possible any more. Instead of associating

the processing time with the stockpoint (and its index) it needs to be associated with

the arc between the specific supplier and the stockpoint. This distinction becomes

relevant in Section 4.5 where further details are provided.

2.1.3.2 Network structures

If the inventory model not only refers to a single stage (or stockpoint), but to mul-

tiple stages, which are linked with each other through supply-demand relationships,

it is called a multi-stage or multi-echelon inventory model. The stages form a supply

network, i.e. a directed graph where the nodes depict the stages and the arcs repre-

sent the supply-demand relationships (see Zipkin (2000), p. 108). Chapter 4 deals

with multi-echelon inventory optimization under centralized control and single- and

dual-sourcing aspects for different types of supply networks. The basic network

structures are the following.

Serial system

The simplest way of linking several stages represents a serial system. Such a system

consists of n stages where each stage supplies the next downstream one with its item.

Only, the first (most upstream) stage is supplied by an external supplier and the

most downstream stage faces external customer demand for the finished product (see

Zipkin (2000), p. 108). In a serial system, each stage has a single direct predecessor

and successor. For the upcoming exposition it is useful to assign a level code to

each stage. Whereas this is less relevant in the serial system case, since there is

only one stage on each level, it is of great importance for the other more complex

structures. A practical example of this type of system can be found in the chemical

industry, for instance, where a product passes through several consecutive chemical

reaction processes. In other industries this system is of importance, if some level of

aggregation is applied, i.e. if not each assembled part is modeled in detail. From an

academic point of view the analysis of this system structure is a good starting point

before investigating more complex ones.
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Level 3 Level 2 Level 1

External
Customer

External
Supplier

Figure 2.2: Serial system

Divergent system

Similar to a serial system, a divergent or distribution system is a network, in which

there is a single most upstream stage that receives external supply. However, now

several stages exist that supply external customers. The stages in such a system

can be interpreted as warehouses where, e.g., a central warehouse supplies regional

warehouses which, in turn, feed retail outlets. In terms of a production network,

one can think of a raw material that is specialized into several products as it moves

through the system (see Zipkin (2000), p. 109). The distinguishing feature of a

divergent network is that each stage has only one direct predecessor, but can have

several direct successors (see Muckstadt and Roundy (1993), p. 81).

Level 3 Level 2 Level 1

External
Customer

External
Supplier

Level 4

External
Customer

External
Customer

Figure 2.3: Divergent system

Convergent system

In a convergent or assembly system a single finished product is assembled from sev-

eral components. These components, in turn, may be manufactured using several

raw materials. Hence, a convergent network is characterized by the fact that each

stage has at most one direct successor, but may have more than one direct prede-

cessor (see Federgruen (1993), p. 144.). As before, all stages on the most upstream

level receive items from external suppliers and the stage on the most downstream
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level meets external customer demand (see Zipkin (2000), p. 109).

Level 3 Level 2 Level 1

External
Customer

External
Supplier

External
Supplier

External
Supplier

Figure 2.4: Convergent system

(Spanning-)Tree system

A tree system contains features of a convergent system and a divergent system. The

first part of the network is roughly characterized by an assembly structure ending

in one or more stages. From these stages, distribution structures may continue (see

Zipkin (2000), p. 109). Any two stages must not be connected by more than one arc,

however. Depending on the level of aggregation, many supply networks in reality

exhibit either this kind of structure or a general (acyclic) one (see, e.g., Willems

(2008) for real-world instances).

Level 3 Level 2 Level 1

External
Customer

External
Supplier

External
Supplier

External
Customer

External
Customer

Figure 2.5: Tree system

General (acyclic) system

Finally, a general (acyclic) system relaxes the constraint of the tree system. Any

possible links between stages are permitted except for links pointing in a backward

direction (see Zipkin (2000), p. 109-110).



2.2 Literature review 34

Level 3 Level 2 Level 1

External
Customer

External
Supplier

External
Supplier

External
Customer

External
Customer

Figure 2.6: General (acyclic) system

2.2 Literature review

The study of multiple sourcing inventory models dates back about 50 years. Those

early contributions by Barankin (1961), Daniel (1962), Fukuda (1964), and Whitte-

more and Saunders (1977), amongst others, focus on the derivation of the optimal

policy for dual-sourcing problems in a single-echelon setting. In the subsequent

decades, rather few contributions can be found addressing dual-sourcing models.

It was not until the turn of the century that there has been a renewed interest

in studying this problem induced by a need for replenishment decision support of

companies such as Hewlett Packard (Beyer and Ward (2000)) or Caterpillar (Rao

et al. (2000)), which rely on dual- or multiple supply modes. Analytical/theoretical

results have been used to guide the development of heuristics like the constant-

order, single-index, or dual-index policy. Section 2.2.1 presents a survey of the key

contributions.

Dual or multiple sourcing in multi-echelon inventory models has rarely been studied.

The yet considerable complexity of multi-echelon inventory models stemming from

the objective of optimally allocating stocks across the supply network has made

researchers focus almost exclusively on single-sourcing settings. The relevant works

in this area are reviewed in Section 2.2.2.

Nevertheless some contributions are available in the literature that incorporate mul-

tiple sourcing in a multi-echelon context. An overview is provided in Section 2.2.3.
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2.2.1 Single-echelon inventory models with multiple sourcing

options

According to Minner (2003) the literature on inventory models with multiple sourc-

ing options can be distinguished into two strands. The first is characterized by

deterministic lead-time models where the use of multiple suppliers results from the

motive of emergency ordering to prevent stockouts. The second is comprised of

stochastic lead-time models where the motive for using multiple suppliers is the

reduction of the effective lead time by order splitting. An overview over the body

of literature on order-splitting models is available in Thomas and Tyworth (2006).

This thesis focuses mainly on the first body of literature. Since a comprehensive

review of these models up to around 2001 is provided in Minner (2003), only key

results before that time are discussed in the following subsections and the main focus

lies on relevant research since the turn of the century.

2.2.1.1 Derivation of the optimal policy

Early contributions focus on the structure of the optimal policy for periodic-review

inventory systems with dual sourcing. Barankin (1961) studies a single-period prob-

lem with a lead time of the fast supplier of 0 and the slow supplier of 1 period. Daniel

(1962), Bulinskaya (1964), and Neuts (1964) extend this model to the n-period and

infinite horizon case. An extension to the case of an arbitrary (non-negative) de-

terministic lead time of the fast supplier and a lead-time difference of exactly one

period, i.e. consecutive lead times, is presented in Fukuda (1964). The optimal pol-

icy in this situation is an order-up-to policy with one inventory position as the order

trigger and two order-up-to levels, one for each supplier. This policy is called the

single-index policy (SIP) in the upcoming sections.

For several extensions of the consecutive lead-time model, optimal policies can be

derived. Yazlali and Erhun (2009) introduce minimum and maximum capacity lim-

its on the orders and show that (what they term) a ‘two-level modified base stock

policy’ is optimal without any restrictions on the ordering costs. This policy ba-

sically corresponds to a single-index policy, which takes into account the capacity

constraints on the orders.
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Fixed ordering costs as well as demand forecast updates are included by Sethi et al.

(2003). They show that the optimal policies for both fast and slow orders are of

an (s, S)-type. Fast orders are based on an inventory position, which includes the

slow order issued in the previous period (fast inventory position). The slow order is

triggered by an inventory position that takes the fast order into account, which is

released during the period (slow inventory position).

Other contributions that derive the optimal policy in settings with fixed ordering

costs but with zero lead times or positive, but identical lead times are Fox et al.

(2006) and Yi and Scheller-Wolf (2003). The former paper shows that a reduced

form of generalized (s, S)-policy is optimal for both finite and (discounted) infinite-

horizon problems, provided that the demand density is strongly unimodal. A density

f(x) is strongly unimodal, if f is unimodal and if the convolution of f with any

unimodal g is unimodal. The exposition focuses on the lost-sales case, but required

modifications for the backorder case are discussed, too. Whereas given deterministic

prices are usually assumed, the latter contribution by Yi and Scheller-Wolf (2003)

allows for a stochastic price, which is formed at a spot market. In addition, a fixed

cost is incurred when something is ordered at the spot market. The authors show

that the optimal policy has a structure similar to the (s, S)-policy.

For a general lead-time difference or more than two suppliers with consecutive lead

times Whittemore and Saunders (1977) and later Feng et al. (2006a) and Feng et al.

(2006b) show that the optimal policy has a highly complex structure. Ordering

decisions need to be based not only on a single state variable like the inventory

position, but the system needs to keep track of all orders of the lead-time difference

horizon individually. Due to this complexity, several simpler policies have been

proposed in the literature for such cases, which will be reviewed next.

2.2.1.2 Parameter determination for a given (non-optimal) policy

The complexity of the optimal policy induced researchers to study the optimal

parameter determination for given (non-optimal) policies. These policies can be

classified by various dimensions. The following two are used here: (i) single- vs.

dual-index policies depending on the number of inventory positions that are tracked

and (within the former distinction) (ii) single vs. dual base-stock policies depending
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on the number of order-up-to levels employed by the policy.

The constant-order policy, which is a single-index policy with one order-up-to level

(for the fast supplier) and one fixed order (for the slow supplier), is studied by Zhang

and Hausman (1994) and Janssen and de Kok (1999). While both consider linear

inventory costs, the latter one is slightly more general by also allowing a fixed order

cost for both suppliers. In each of the two contributions, approximations are used to

derive the optimal parameters for this periodic-review policy. A continuous-review

version called the Tailored Base Surge policy is analyzed in Allon and van Mieghem

(2010), who use a Brownian approximation for the parameter computation.

A standing-order policy is similar to the constant-order policy. However, in addition

to the order-up-to level, also a dispose down-to-level is specified. This type of policy

was first studied by Rosenshine and Obee (1976), who find the optimal parameters

by modeling the system as a Markov Chain. While Rosenshine and Obee (1976) only

determine the parameters after having predefined the policy structure as mentioned

above, Chiang (2007) actually shows that for a predetermined standing-order size,

which is larger than the expected period demand, the optimal policy exhibits this

structure.

Another single-index policy with two order-up-to levels, one for each supplier, is

investigated in Scheller-Wolf et al. (2007). They call it the single-index policy for

short. For the periodically reviewed dual-sourcing inventory problem with a lead-

time difference of one, this policy is optimal (see above). For larger differences

they find that it provides reasonably good results. Furthermore, it is shown that

the optimal policy parameters can be computed easily when demand distributions

are mixtures of Erlang distributions. A continuous-review variant of this policy is

considered in Bradley (2004). By using a Brownian approximation, a closed-form

expression for one base stock (the slow supplier) and an analytical expression for

the other are derived.

A dual-index policy with periodic review and two order-up-to levels referred to as

the dual-index policy for brevity reasons by Veeraraghavan and Scheller-Wolf (2008)

is analyzed in various works. Kiesmüller (2003) proposes the use of such a policy

structure in the context of a remanufacturing system, which can be regarded as a

special kind of a dual-sourcing model. The key idea in this contribution is to base
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the order decision with any source only on the information about orders that will

arrive no later than the order, which is to be determined. This is exactly mirrored by

the dual-index policy. Veeraraghavan and Scheller-Wolf (2008) study this policy in a

dual-sourcing context. They provide a separability result, which allows to separate

the originally two-dimensional optimization problem into two one-dimensional ones.

Optimal parameters are found by a simulation-based optimization procedure due to

the difficulty of deriving the stationary overshoot distribution. The overshoot is the

quantity, by which the fast inventory position might exceed the order-up-to level

of the fast supplier. Instead of using simulation, Arts et al. (2009) show that the

stationary overshoot distribution can be efficiently approximated by using a one-

dimensional Markov Chain based on limiting results. This approach also extends

to a special case of stochastic lead times. Song and Zipkin (2009) study the dual-

index policy in a continuous-time framework. They show that the system can be

viewed as a network of queues with a state-dependent routing mechanism called an

overflow bypass. Closed-form expressions for the policy evaluation and optimization

are obtained. Furthermore, they present extensions to stochastic lead times, batch-

ordering policies, non-Poisson demand processes, and multiple demand classes.

Recently, due to the relationship between the periodic review dual-sourcing problem

and the lost-sales inventory problem established by Sheopuri et al. (2010), policies

that show a good performance for the latter problem are transferred to the dual-

sourcing problem. These include policies, which use a single index, namely the

inventory position that takes into account all outstanding orders, and one order-up-

to level plus, as a second decision variable, an allocation parameter that determines

in each period which fraction of the total order quantity is sourced from each of the

two suppliers. Consequently, these policies resemble an order-splitting policy, where

the splitting decision, which is usually made once for all periods, is adjusted each

period, however.

2.2.2 Multi-echelon inventory models with single sourcing

Due to the already increased complexity of multi-echelon inventory models (com-

pared to single-echelon ones) caused by the task of the cost-optimal deployment of

inventories across the various stages of the supply network, large parts of the litera-
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ture only consider single sourcing in a multi-echelon context. Based on the two semi-

nal papers by Simpson (1958) and Clark and Scarf (1960) on base-stock/order-up-to

level models without lot-sizing, two competing research strands have developed over

the years. The difference refers to the assumption made with regard to the role of

safety stock and the resulting consequences for the material flow in the system, which

coined the terms full-delay and no-delay (van Houtum et al. (1996)) or stochastic-

service (SS) and guaranteed-service (GS) approaches (Graves and Willems (2003)).

The SS approach assumes that safety stock is the only buffer against demand vari-

ability and thus explicitly takes into account that occasional material shortages at a

supplying stage cause delays in the delivery of the material request to the ordering

stage. Consequently, the service of a stage is stochastic. The GS framework assumes

deterministic or ‘guaranteed’ service. That means, orders of any size can be met by

the supplying stage after the committed service time. This 100% service is achieved

by a combination of safety stock and so-called operating flexibility (i.e. some sort

of emergency measure) in case of material shortages. How this additional means

of flexibility influences the material flow in the system is not explicitly modeled in

most of the GS contributions. This problem will be further discussed and resolved

in Chapter 4.2.3 of this thesis. In the remainder of the thesis the classification of

Graves and Willems (2003) is employed. Over the decades, both approaches have

been treated mainly in isolation. Only few contributions have been concerned with

the comparison or combination of the two approaches, which will be a major aspect

addressed in Chapter 4 of this thesis. In the SS model strand, the focus has first

been put on finding the optimal inventory control policy for different network struc-

tures. Then, efficient numerical methods to compute the optimal inventory control

parameters have been developed. In the GS model strand, a base-stock policy is

assumed and the primary focus has always been on the computation of the optimal

parameters for different network structures.

2.2.2.1 Stochastic-service approach

The stochastic-service (SS) approach dates back to the seminal work by Clark and

Scarf (1960). They establish the optimality of an echelon base-stock policy and

derive a basic decomposition result for uncapacitated periodically reviewed serial

systems with a finite horizon and without lot-sizing. The echelon stock consists of
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the stock at a given location plus all stock in transit to or on hand at locations

located downstream in the supply chain minus backorders at the most downstream

location. Thus, an echelon policy bases its ordering decision on the echelon inven-

tory position that comprises of the echelon stock plus all units in transit to the

given location. Federgruen and Zipkin (1984) extend the results to the stationary

infinite-horizon setting. Rosling (1989) and Langenhoff and Zijm (1990) consider

uncapacitated assembly systems and independently find that every convergent sys-

tem can be transformed into an equivalent serial one. An extension of the echelon

stock concept to divergent systems is already discussed by Clark and Scarf (1960),

who recognize that due to the problem of imbalance, base-stock policies are not opti-

mal in general. Diks and de Kok (1998) extend the exact two-level system analyses

of Federgruen and Zipkin (1984) and Langenhoff and Zijm (1990) to the general

N -level case and show that the decomposition result holds under the so-called bal-

ance assumption. This assumptions states that the echelon inventory positions with

respect to all stockpoints that satisfy external customer demand are balanced after

allocation in all periods. This implies, however, that it is allowed that some echelon

inventory positions are decreased by the allocation, which corresponds to a negative

shipment quantity to a stockpoint.

Numerical procedures for the inventory control parameter calculation in periodi-

cally reviewed uncapacitated serial systems are discussed, amongst others, in Fed-

ergruen and Zipkin (1984), van Houtum and Zijm (1991), and van Houtum and

Zijm (1997). The latter two derive both approximate and exact algorithms based

on incomplete convolutions of mixtures of Erlang distributions. For serial systems

with Markov-modulated (integer) demand and Markov-modulated stochastic lead

times Muharremoglu and Tsitsiklis (2008) provide an efficient algorithm for the cal-

culation of the optimal base-stock levels based on a decomposition of the problem

into single unit-customer pairs. They also show the optimality of state-dependent

echelon base-stock policies. Shang and Song (2006) develop closed-form approxima-

tions for the calculation of the base-stock levels for serial systems with Poisson de-

mand. Simulation-based heuristics for the base-stock level calculation are discussed

in Daniel and Rajendran (2005), Kwon et al. (2006), and Daniel and Rajendran

(2006), amongst others. An algorithm for the parameter calculation in distribution

systems is presented in Diks and de Kok (1999). de Kok and Visschers (1999) show
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how to decompose spanning-tree networks (also called general assembly networks)

into pure serial or divergent ones, for which the inventory control parameters calcu-

lation is known again. They denote this concept as synchronized base-stock policies

(see also de Kok and Fransoo (2003) for further details). The synchronization refers

to the fact that common components are coordinated according to the insights from

convergent systems and are allocated before they actually arrive in stock.

For spanning-tree structures, Lee and Billington (1993) develop a decentralized

model. For each stage in the supply network, they develop an approximation for

the base-stock calculation that takes into account random delays induced by short-

ages at upstream stages. Ettl et al. (2000) consider a similar setting, but under a

continuous-time base-stock policy. They characterize the delays in the material de-

livery of a stage due to shortages by using a queueing model approximation. For the

optimization of the safety factors or service levels at the stages they use conjugate

gradient methods. Simchi-Levi and Zhao (2005) consider spanning tree network

structures with stochastic lead times and Poisson demand and develop approxima-

tions and algorithms to coordinate the base-stock levels in these systems. In a

subsequent paper, Zhao (2008a) extends the previous findings to compound Poisson

demand and more general network structures with at most one directed path be-

tween two stages. This network class comprises of assembly, distribution, spanning

tree, and two-level general networks as special cases. Zhao (2008b) analyzes general

acyclic supply networks and derives the structural result that a dedicated stocking

strategy (i.e. dedicated stock for each path) always outperforms the best shared

stocking strategy (i.e. shared stock for all paths).

Extensions of the SS model are manifold. The optimal policy in a capacitated two-

stage serial system is shown to be a modified echelon base-stock policy by Parker and

Kapuscinski (2004). Whereas they use a dynamic programming approach to derive

their result, Janakiraman and Muckstadt (2009) use a decomposition approach, i.e.

an extension of the ‘single-unit, single-customer’ approach introduced by Axsäter

(1990), to prove this. They also discuss the structure of the optimal policy in larger

serial supply chains. Glasserman and Tayur (1995) use infinitesimal perturbation

analysis to find the optimal policy parameters for capacitated spanning-tree systems

under a base-stock policy. Simple approximations for the base-stock level determi-

nation are developed in Glasserman and Tayur (1996).
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The first SS extension to incorporate lot-sizing has been made by Clark and Scarf

(1962). They allow a fixed ordering cost at each stage and consider a periodic-

review (s, S)-policy. Otherwise, the setting is identical to the one in Clark and

Scarf (1960). A solution method is derived that successively computes the optimal

(s, S) policy for each stage. Although this procedure does not guarantee the opti-

mal multi-echelon policy, it gives upper and lower bounds on its cost. Many later

extensions have been made for the continuous-review case, see, e.g., Chen (2000) for

serial and assembly systems with batch ordering and various works by Axsäter for

divergent systems like Axsäter (1993), Axsäter (1998), Axsäter (2000). Shang and

Song (2007) develop optimal policy parameter bounds and approximations for serial

supply chains with economies of scale based on single-stage considerations. Shang

(2008) provides a simple heuristic for a serial system with fixed order costs that

is controlled by an echelon-stock (R, nQ) policy. For a periodically reviewed serial

system with batch ordering and fixed replenishment intervals Chao and Zhou (2009)

derive the optimal ordering policy for given batch sizes, which is an echelon-stock

(R, nQ) policy. Thus, they generalize the work of Chen (2000) and van Houtum

et al. (2007). Moreover, they develop an efficient algorithm for the computation

of the optimal reorder points. Shang and Zhou (2009a) consider a periodic-review

serial system with echelon (R, nQ, T ) policies and two types of fixed costs: one is

incurred for each order batch and the other one for each inventory review. Under an

echelon (R, nQ, T ) policy an inventory location checks its echelon inventory position

every T periods. If the inventory position is at or below R, the smallest multiple of

batch size Q is ordered, which brings the inventory position above R again. The au-

thors show how to compute the optimal parameters and also develop a near-optimal

heuristic. In Shang and Zhou (2009b) the authors propose a simpler heuristic than

the one of Shang and Zhou (2009a), which generates a solution by sequentially solv-

ing a deterministic demand problem, a subproblem with fixed reorder intervals, and

a subproblem with fixed batch sizes. They find that this heuristic even outperforms

the one of Shang and Zhou (2009a). Cachon (2001) analyzes a periodically reviewed

two-level divergent system with one warehouse and N identical retailers. The au-

thor shows how to evaluate the average inventory, backorders, and fill rates at the

locations exactly. While the safety stocks at the retailers are evaluated exactly, a

good approximation is given for the safety stock at the warehouse.
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Further extensions of the original Clark and Scarf framework focus on the consid-

eration of time-correlated demand and systems with returns. Dong and Lee (2003)

show that the structure of the optimal stocking policy of Clark and Scarf (1960)

holds under time-correlated demand processes using a Martingale model of forecast

evolution. Furthermore, they present an approximation, which gives a lower bound

to the optimal order-up-to levels. Levi et al. (2006) provide computationally efficient

approximations using a new marginal holding cost accounting approach (based on

the findings in Levi et al. (2007) and Levi et al. (2008)) to determine provably good

ordering policies. The policies are shown to be near-optimal in many instances with

a worst-case performance of 2.

DeCroix (2006) analyzes a serial multi-echelon system with returns in addition to

the traditional forward material flows. It is shown that, if remanufactured items

enter the most upstream stage, the system can be optimized by decomposition into

a sequence of single-stage systems. Each downstream stage follows an echelon base-

stock policy and the most upstream stage follows a three-parameter policy with a

simple structure. If remanufactured items enter a downstream stage, similar struc-

tural results are derived, but the definition of the echelon inventory needs to be

adjusted for all stages upstream of the remanufacturing stage. DeCroix et al. (2005)

study the steady-state behavior of a serial system with possibly negative stochastic

demand, which basically represents returns. They develop exact and approximate

methods for the evaluation of any echelon base-stock policy and an optimization

procedure that returns a good policy. Extensions to a base-stock policy with local

information and the occurrence of returns at several stages are discussed, too.

2.2.2.2 Guaranteed-service approach

The guaranteed-service (GS) framework makes use of the base-stock concept by

Kimball (1988), i.e. each stage of the network operates a periodically reviewed base-

stock policy. In his fundamental work, Simpson (1958) shows for uncapacitated serial

systems that an all-or-nothing policy is optimal for this stock allocation problem, i.e.

each stage either holds sufficient stock to completely decouple it from its successor

or no stock at all. Based on this so-called extreme point property, Graves (1988)

notes that the optimization problem can be solved by dynamic programming. In
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subsequent years, this approach has been extended to other network structures.

Extensions to assembly and distribution systems, spanning trees or even general

acyclic network structures can be found in Inderfurth (1991), Inderfurth and Minner

(1998), Graves and Willems (2000), Minner (2000), Humair and Willems (2006), and

Humair and Willems (2010).

Basically, all of the afore-mentioned contributions make use of dynamic program-

ming as optimization technique. For general acyclic networks, for which Lesnaia

(2004) shows that the optimization problem is NP-hard, Humair and Willems (2010)

imbed the dynamic program developed for spanning trees into an overall branch-and-

bound algorithm. Minner (2000) presents several heuristic approaches for this net-

work type. Magnanti et al. (2006) approximate the concave objective function with

piecewise linear functions and make use of powerful Linear Programming solvers.

Over the last two decades, the GS framework has been extended in several ways.

Whereas the original (standard) GS model assumes a common review period at all

stages, Bossert and Willems (2007) allow for an arbitrary, integer review period at

each stage. Three different inventory control policies are analyzed, i.e. the constant

base stock, constant safety stock, and adaptive base stock policy, and a solution to

the inventory optimization problem is obtained by a modified version of the dynamic

programming procedure of Graves and Willems (2000).

For products with short life cycles, Graves and Willems (2008) present an extension

of the GS framework to non-stationary demand. For such situations a dynamic

service-time policy is optimal. Since this policy is difficult to implement in practice,

they consider a simpler so-called constant service-time policy and show that the

optimization algorithm for the stationary demand case can be used for the safety

stock determination.

Schoenmeyr and Graves (2009b) study the placement of safety stocks in supply

chains, for which an evolving demand forecast exists. They show that under spe-

cific assumptions, the optimization problem is equivalent to the one for stationary

demand and base-stock policies. Consequently, the optimal solution can be found

by the already existing algorithms.

A generalization of the GS model to include capacity constraints is presented in

Schoenmeyr and Graves (2009a). In their model, the order quantity of each stage
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is restricted by some capacity limit. It is shown that, if the objective function is

concave and a base-stock policy is used, the all-or-nothing property holds as in the

original contribution without capacities by Simpson (1958). Moreover, the authors

establish that the optimization algorithm for uncapacitated systems can be employed

to compute the optimal safety stock placement. In addition to the standard base-

stock policy, they study a ‘censored’ ordering policy, where each stage orders the

minimum of its capacity and the order it receives (plus extra quantities to ‘catch up’,

as necessary). An optimal solution can be obtained by a slightly modified version of

the dynamic programming algorithm of Graves and Willems (2000). Interestingly,

Schoenmeyr and Graves (2009a) find that the inventory holding costs for the latter

policy are less than for the standard base-stock policy. Sometimes, the costs are

even smaller than those for the uncapacitated system. The authors argue that this

effect results from a smoothing of the original demand process through the censored

orders.

2.2.2.3 Comparison and combination of the stochastic- and

guaranteed-service approach

Only few contributions in the literature can be found that compare, contrast, or

try to combine both modeling strands. One such comparison is presented in Graves

and Willems (2003). They apply both approaches to an assembly system and a

spanning-tree network and find that (under their assumptions) the GS model out-

performs the SS model. For two-level distribution systems, Klosterhalfen and Minner

(2010) provide a model comparison and show that the superiority of any of the two

approaches heavily depends on the specific parameter setting and cannot be estab-

lished in general. Moreover, they present a method to derive appropriate internal

service levels, which define the operating flexibility usage in the GS model, based

on cost considerations.

Lawson and Porteus (2000) and Minner et al. (2003) combine aspects of both frame-

works by including the possibility of expediting into the SS model. One way to think

about the implicitly assumed operating flexibility in the GS approach is that missing

items are speeded up from pipeline inventory. Minner et al. (2003) derive insights

into the appropriate use of operating flexibility. Lawson and Porteus (2000) show
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for their extended SS model that a ‘top-down base-stock policy’ is optimal in each

period. Muharremoglu and Tsitsiklis (2003) extend this work by allowing a more

general cost structure for expediting, i.e. supermodular instead of additive. In a

single-echelon continuous-time setting Gallego et al. (2007) also study the possibil-

ity of expediting existing orders and derive the optimal policy for Poisson demand,

which is a threshold policy. Neither of these contributions allows the entire supply

network to consist of subnetworks of both approaches, however.

2.2.3 Multi-echelon inventory models with multiple sourcing

options

The majority of literature on multi-echelon inventory models with multiple sourcing

options is limited to rather small supply chain settings with at most two echelons

and mainly continuous review. Ganeshan (1999) considers a continuous review one-

warehouse, multiple retailer system where the warehouse order is split across several

identical suppliers, thus incorporating the multiple-supplier aspect. A near-optimal

(s, Q) policy is presented and verified by means of a simulation study. A similar two-

echelon system is analyzed by Muckstadt and Thomas (1980), where each location

operates a (S − 1, S) policy. Instead of splitting the warehouse order across mul-

tiple suppliers, emergency orders with a shorter lead time than that of the regular

orders are placed (both by the warehouse and the retailers) whenever the on-hand

inventory drops to zero and another item is demanded. Aggarwal and Moinzadeh

(1994) consider a two-echelon production/distribution system, where the retailers

use a (S − 1, S) policy and the production facility does not hold any inventory, but

produces to order. Retailer orders can either be of regular or emergency type de-

pending on whether the number of outstanding orders exceeds a certain level or not.

Emergency orders are processed first at the facility, which represents their advan-

tage over regular orders. The objective is to determine the order-up-to levels and

threshold values. Moinzadeh and Aggarwal (1997) study a one warehouse, multiple

retailer system with a (S−1, S) policy in place at each location, where each location

can decide to either place a regular or emergency order similar to the single-stage

model by Moinzadeh and Schmidt (1991). An optimization procedure for the policy

parameters is developed and the benefit over a single resupply mode is illustrated
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in a numerical study.

Multi-echelon inventory models with lateral transshipments can also be regarded as a

kind of dual-sourcing setting. Besides the regular replenishment from the warehouse,

a retailer can also place an emergency order with another nearby located retailer

for a lateral transshipment. Thus, the retailer has two supply options with differing

lead times. A recent literature review on lateral transshipment models is available in

Paterson et al. (2009). In some of these models, e.g., Alfredsson and Verrijdt (1999),

there exist even more than two supply options. In addition to lateral transshipments,

direct shipments from the warehouse or even direct shipments from an external

supplier are incorporated.

For larger multi-echelon systems Graves and Willems (2005) present two ideas of how

to incorporate dual sourcing in the guaranteed-service approach in the final section

of their paper. Both approaches are only approximate, however. Assume that the

demand split to the two sources is decided a priori. Then, in the first approach, the

original stage is replaced by two stages. Each of these stages receives its respective

fraction of demand and has a processing time equal to its transportation time. In

this case, the safety stock computation is only approximate, because both stages

are treated as if they provide different items and therefore hold separate stocks. In

the second approach, a joint stage is created with a cost and replenishment time

that represents a mixture of both supply options. Here, the difficulty lies in deriving

these joint parameters. Since these parameters influence the safety stock calculation,

this approach is approximate, too. An exact way of how the incorporation of dual

sourcing can be achieved is presented in Section 4.5 of this thesis.

Note that the GS approach in its standard version, i.e. with a single supply source

for each item, can be regarded as a kind of dual-sourcing model, too. The assumed

operating flexibility enables a shortening of the processing time, if required. Thus,

there are two supply modes available, a normal and an expedited one. However, in

this thesis this special kind of sourcing flexibility is not understood or referred to as

dual sourcing.



3 Single-echelon inventory model

with dual sourcing

3.1 Introduction

In this chapter, a periodic-review single-echelon inventory model with two supply

options and deterministic lead times is considered. The supply options can refer to

either two different suppliers, e.g., one situated overseas and the other one close by,

or two different modes of supply, e.g., transportation by air and ship. For clarity’s

sake, only the term supplier will be used in the remainder of the thesis to refer to

both such options.

Dual-sourcing inventory models play a key role in practice. Many companies rely

on two (or more) suppliers for their material procurement. Such sourcing strate-

gies enable them to serve demand at low costs without compromising on service.

Having two suppliers available, the majority of materials can be replenished from

the cheaper one, which usually has a longer procurement lead time (slow supplier).

In case of a surge in demand that leaves the inventory low with most outstanding

orders far away, a replenishment order can be placed with the more expensive, but

faster supplier in order to avoid future stockouts. Examples for such dual-sourcing

practices are reported in the literature for Hewlett Packard (Beyer and Ward (2000))

or Caterpillar (Rao et al. (2000)), amongst others.

In contrast to a single-sourcing model, difficulties arise in the dual-sourcing context

due to potential order crossing, which can occur if more than one supplier is used.

This problem makes the analysis and derivation of the optimal policy or close-to-

optimal heuristics a challenging task.

48
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Consequently, although companies already employ dual sourcing, they are still ask-

ing for simple, yet effective policies to support their replenishment decisions. Hence,

the main research question that is addressed in this chapter is: What are effective

dual-sourcing inventory control policies in a single-echelon setting? ‘Effective’ in this

context means easily implementable and performing close to optimal. In order to

answer this broad question, it is broken down into several smaller and more specific

research questions, which are addressed in turn. These include:

1. How can the optimal inventory control policy for the studied dual-sourcing

problem be determined? (Section 3.3.2)

2. What are simple non-optimal policy alternatives and how can their optimal

parameters be computed? (Section 3.3.3)

3. How do these (non-optimal) inventory control policies perform? (Section 3.4)

The outline of this chapter is as follows. In Section 3.2 the basic dual-sourcing

inventory model and assumptions are set forth. Section 3.3 explains how the optimal

policy can be derived and introduces several non-optimal policies, which are easier

to compute and manage than the optimal one. Special cases and extensions of

these policies are addressed in the respective policy subsections. A comparison of

the dual-sourcing policies is presented in Section 3.4 on a theoretical and numerical

basis.

3.2 Assumptions and notations

Throughout this chapter, a periodically reviewed single-item inventory model is

considered with the following characteristics. Customer demand D per period is

stochastic, with the demands of different periods being i.i.d. non-negative random

variables from a stationary distribution. Without loss of generality, D is assumed

to be discrete. Let F denote the cumulative distribution function of D with mean

E[D]
def
= µ < ∞ and standard deviation

√
VAR[D]

def
= σ < ∞. FL represents the

L-period cumulative distribution function. Materials are replenished each period by

placing orders with two potential suppliers. Via the slow supplier, s, it takes Ls
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periods for the order to be delivered. The faster order arrives after Lf periods with

0 ≤ Lf < Ls. Let L∆ = Ls − Lf . (Alternatively, the terms regular and expedited

supplier are used in the literature to refer to the slow and fast supplier.) Both lead

times are assumed to be deterministic and an integer multiple of the base (review)

period. Let t ∈ {0, 1, 2, ...} denote the period index. The shorter lead time comes

at a higher procurement cost per unit, cf > cs. Otherwise, since there are no fixed

cost per order present in the model, one would only use the expedited supplier. The

difference, c = cf − cs, is denoted as the expediting premium. For each unit of

on-hand stock at the end of a period, an inventory holding cost h is incurred, which

is independent of the procurement cost that has been paid for this unit. Unsatisfied

customer demand is backordered at a cost of b per unit and period. The performance

measure used is the infinite horizon expected average cost. (Extensions to service-

level criteria are presented in the respective policy sections.) The total expected

average cost, TC, consists of (i) inventory holding costs for the on-hand stock, OH ,

(ii) backorder costs for the backordered quantity, BO, and (iii) procurement costs

for the quantities ordered with both suppliers, Qs and Qf :

TC = h · E [OH ] + b · E [BO] + cs · E [Qs] + cf · E
[
Qf
]

. (3.1)

Note that the pipeline stock costs do not have to be taken into account explicitly

in the cost function. If it is assumed that the holding cost h is also paid for each

unit in the two pipelines, the actual procurement cost of the slow supplier cs can

simply be increased by h · (Ls −Lf ) to account for the additional holding costs due

to the longer lead time. Alternatively, in some situations it might be reasonable to

assume that all materials are paid for after receipt. On average, the sum of both

orders equals the period demand, i.e.

µ = E [Qs] + E
[
Qf
]

. (3.2)

By inserting (3.2) into (3.1) and exploiting the fact that cs · µ cannot be influenced

by the inventory control decisions, (3.1) reduces to the total relevant cost

TRC = h · E [OH ] + b · E [BO] + c · E
[
Qf
]

, (3.3)
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which shows that only the expediting premium, c, is relevant and not the specific

values of cs and cf .

In order to avoid trivial solutions, it is required that c < b · L∆. If c ≥ b · L∆,

it is cheaper to wait for the slow order to arrive and incur backorder costs than

to use the faster supplier. Consequently, the problem would reduce to a standard

single-sourcing inventory problem (see Section 2.1.2.3).

It is assumed that in each period the sequence of events is as follows:

• placement and arrival of orders (at the beginning of a period),

• satisfaction of backorders (at the beginning of a period),

• occurrence and satisfaction of demand (sometime during the period),

• assessment of costs (at the end of a period).

All terms in equation (3.3) depend on the inventory control policy that is in place,

because this influences not only the on-hand stock and backorder quantity but also

the orders placed with each supplier and therefore the procurement costs.

3.3 Inventory control policies

3.3.1 Definitions

Since the terms, by which dual-sourcing inventory control policies are described in

the literature, are not always used consistently, it is shortly explained at this point

what is meant by specific terms in this thesis. The most common distinctions are

between single- and dual-index policies, depending on whether one or two inventory

positions are tracked and, somewhat independently of the previous distinction, be-

tween single and dual base-stock policies, depending on the number of order-up-to

levels used by the policy. For the purpose of this thesis, the following inventory

control policies are defined.

Definition 3.3.1.1 A single-index policy with two order-up-to levels, one for each

supplier, is called a single-index policy (SIP) for short.
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Definition 3.3.1.2 A single-index policy with a fixed order quantity for the slow

supplier and an order-up-to level for the fast order determination is called a constant-

order policy (COP).

Definition 3.3.1.3 A dual-index policy with two order-up-to levels, one for each

supplier, is called a dual-index policy (DIP) for short.

A slightly different dual-sourcing strand in the literature are order-splitting models.

They are concerned with the optimal allocation of the demand to the different sup-

pliers and mostly studied under deterministic demand and stochastic lead times. In

stochastic demand, deterministic lead-time settings as analyzed in a single-echelon

context in this chapter, an order-splitting policy is not a reasonable candidate, be-

cause demand is always allocated across the suppliers according to fixed portions

(see Section 3.3.3.4 for more details). Nevertheless, such a policy is very appealing

from the point of view of analytical tractability, which becomes especially relevant

in the multi-echelon context in Chapter 4. Therefore, this policy is also defined and

addressed here.

Definition 3.3.1.4 A policy that at each review instant splits the total replen-

ishment order according to fixed fractions among the suppliers is called an order-

splitting policy (OSP).

The indices that are used by these inventory control policies are defined as follows:

• Inventory position used for replenishments with the fast supplier

(Fast inventory position)

The fast inventory position at the beginning of period t before ordering com-

prises of the net stock at the end of the previous period plus all outstanding

orders with any of the two suppliers that will arrive prior to or together with

the fast order that is to be determined.

IP f
t = NSt−1 +

Ls∑

i=L∆

Qs
t−i +

Lf∑

j=1

Qf
t−j (3.4)
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• Inventory position used for replenishments with the slow supplier

(Slow inventory position)

The slow inventory position consists of the net stock at the end of the previous

period plus all outstanding orders in the system excluding the potential fast

order that is placed in period t.

IP s
t = NSt−1 +

Ls∑

i=1

Qs
t−i +

Lf∑

j=1

Qf
t−j = IP f

t +

L∆−1∑

i=1

Qs
t−i (3.5)

3.3.2 Optimal policy

For a single-sourcing problem with the above specified cost structure a stationary

order-up-to policy is optimal (see, e.g., Veinott (1966)). For the dual-sourcing prob-

lem, policies with an order-up-to structure are only optimal for the special case

of consecutive lead times (L∆ = 1). Barankin (1961), Daniel (1962), Bulinskaya

(1964), and Neuts (1964) show for the case with Lf = 0 and Ls = 1 and Fukuda

(1964) for the more general case with Lf = m and Ls = m + 1, m ∈ {0, 1, ...} that

the optimal policy is a SIP (see Section 3.3.3.1 for details).

For offsetting lead times (L∆ > 1), order-up-to policies are no longer optimal, as

shown by Whittemore and Saunders (1977). This also directly follows from the re-

cently established analogy of the dual-sourcing problem to the lost-sales inventory

problem by Sheopuri et al. (2010). For the lost-sales problem the non-optimality of

order-up-to policies is well-known (see Karlin and Scarf (1958)). Consequently, the

optimal policy needs to be computed by dynamic programming, i.e. formulating the

problem as a discrete-time Markov Decision Process (MDP). Although Veeraragha-

van and Scheller-Wolf (2008) mention that they compute the optimal policy in this

way, they do not provide any modeling details, as is done here.

3.3.2.1 General Markov Decision Process formulation

The following general description of a Markov Decision Process (MDP) is based on

Puterman (1994). An MDP model consists of five elements:
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1. Decision epochs (or periods),

2. States,

3. Actions (or decisions),

4. Transition probabilities, and

5. Rewards (or cost).

Decision epochs characterize the points in time, at which a decision is made. The

number of epochs can be either finite or infinite and decisions can be made at

discrete points in time or continuously. For the purpose of this study, the focus is

on discrete-time infinite horizon MDPs, i.e. time is divided into periods or stages,

t = 0, 1, ... .

At each decision epoch the system is in a certain state, i. Since a state can comprise

of one or multiple state variables, the vector notation is used. The set of all possible

states, also known as the state space, is denoted as SSP .

Given a certain state i, the decision maker can choose an action or decision a(i)

from the set of all possible decisions in state i, DSP(i), i.e. a ∈ DSP(i). (For ease

of presentation, the dependency of a on state i is not explicitly indicated, if it is

already indicated in the decision space DSP(i).) It is assumed that SSP and DSP
do not vary in t. Usually, these sets are arbitrary finite or countably infinite sets.

The choice of decision a ∈ DSP(i) in state i at decision epoch t results in a reward,

r(i, a) for the decision maker. If the reward is negative, it is also referred to as cost.

In the application of the MDP later on only costs are considered. That is why in

the remainder only the term cost is used. The cost might consist of the

• cost of being in state i,

• cost associated with decision a, and

• cost associated with the transition from state i to state j.

A transition, as mentioned above as the last cost aspect, is induced by the chosen

decision. The decision moves the system from state i at decision epoch t to another

state j at decision epoch t + 1 with a certain transition probability, pij(a).
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A decision rule prescribes a procedure for action selection in each state at a specified

decision epoch. Only a deterministic decision rule is considered here, i.e. this rule

chooses exactly one action/decision (with certainty) that is to be taken in a specific

state. A policy specifies the decision rule to be used at all decision epochs. Let a∗(i)

denote the optimal decision in state i and (a∗)∞ the optimal policy.

The average cost, AC, of a given policy, (a)∞, is

AC((a)∞) =
∑

i∈SSP

πi r(i, a) (3.6)

with a ∈ (a)∞. πi denotes the steady-state probability of being in state i under a

given policy and results from solving the following system of linear equations:

πj =
∑

i∈SSP

πi pij(a) j ∈ SSP (3.7)

∑

i∈SSP

πi = 1 . (3.8)

An optimal policy (a∗)∞ is one, for which

AC ((a∗)∞) ≤ AC ((a)∞) , (3.9)

i.e. a policy, for which the average cost of this policy is smaller than or equal to

that of all other feasible policies. An optimal policy can be found by using a value

iteration algorithm, policy iteration algorithm, or linear programming (see, e.g.,

Puterman (1994)).

3.3.2.2 Application to the dual-sourcing inventory problem

Decision epoch, state, and decision definition

In the dual-sourcing inventory problem, the decision variables are the fast and slow

order quantities in period t, Qf
t and Qs

t , respectively. That means a decision is given

by a =
(
Qs

t , Q
f
t

)
. Since we assume a periodically reviewed system, a decision about

these quantities can be made at the beginning of each period, which defines the

decision epoch.
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In order to find an appropriate state definition, it is first analyzed which information

is required to make optimal ordering decisions in this system. At the beginning of

period t before ordering the following information is available:

• The net stock, which is equal to the net stock at the end of the previous period,

NSt−1.

• The orders placed with the fast supplier that are still outstanding, i.e.

Qf

t−Lf , ..., Q
f
t−1.

• The orders placed with the slow supplier that are still outstanding, i.e.

Qs
t−Ls , ..., Qs

t−1.

The earliest point in time that can be influenced by the ordering decision made in

period t is the period, in which the fast order, Qf
t , will arrive, i.e. period t + Lf .

The costs of all previous periods {t, t + 1, ..., t + Lf − 1} are sunk. Consequently,

all information about the (fast and slow) orders that will arrive prior to or together

with this order can be compressed into one number. Together with the current

stock situation this corresponds to the fast inventory position at the beginning of

period t before ordering, IP f
t (see (3.4)). Only the remaining slow orders that

have already been determined and are outstanding need to be tracked individually.

Hence, the state of the system can be described by a Ls − Lf = L∆ dimensional

vector
(
IP f

t , Qs
t−1, Q

s
t−2, ..., Q

s
t−L∆+1

)
.

Let Yt =
(
yt, qt,1, qt,2, ..., qt,L∆−1

)
describe a generic state vector of period t with

yt = IP f
t (3.10)

qt,i = Qs
t−i i = 1, 2, ..., L∆ − 1. (3.11)

The state space SSP consists of the permutation of all individual state variables

and their respective admissible values. In order to reduce the complexity, lower

and upper bounds for all variables are helpful. For tractability reasons, demand is

assumed to be limited by some upper bound D̄, i.e. d ∈
{
0, 1, ..., D̄

}
. Then, the

following upper and lower bounds can be derived:
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• Order quantities

Veeraraghavan and Scheller-Wolf (2008) find that the optimal orders never

exceed the maximum possible demand D̄, which is to be expected due to the

stationary cost structure and uncapacitated orders. Hence, the upper bound

on the order quantities can be set to D̄ + 1. Moreover, the minimum order

quantity is zero since negative quantities are not permitted. Consequently,

Qs, Qf , q ∈
{
0, 1, ..., D̄ + 1

}
. (3.12)

• On-hand stock

Since h > 0, the maximum on-hand stock is restricted to (Ls+1)·(D̄+1). This

can be explained as follows. In order to avoid any backorders in future periods,

the system would place the largest feasible order each period, i.e. D̄ + 1. This

means that Ls · (D̄ + 1) units are outstanding in total plus one order of size

D̄ + 1 that arrives in the current period. If there is a series of zero demands,

all of these orders would arrive and increase the on-hand stock to a maximum

of (Ls +1) · (D̄ +1). Since the risk of backorders is 0 and h > 0, no additional

orders would be placed.

• Backorders

Since b > 0, the backorders are restricted to (Ls + 1) · D̄. The reasoning is

similar to the on-hand stock line of thought. In the worst case, only orders of

zero are placed and the maximum demand, D̄, occurs several times in a row,

resulting in maximum backorders of (Ls + 1) · D̄.

• Net stock

From the on-hand stock and backorder bounds, it follows that the admissible

values of the net stock are

NS ∈
{
−(Ls + 1) · D̄, ..., (Ls + 1) · (D̄ + 1)

}
. (3.13)

• Slow inventory position after ordering

The slow inventory position after ordering, IP s+
, corresponds to the sum of

the net stock and all outstanding orders in the system (including the current
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orders). The maximum value of this expression is

IP s+

max = (Ls + 1) · (D̄ + 1) (3.14)

because this already ensures a service of 100%, i.e. no backorders. So, there is

no need for any further orders.

Let i denote an element of state vector i. Based on the above-derived bounds, the

set of feasible decisions in state i is given by

DSP(i) =

{
(
Qs, Qf

)
∣∣∣∣∣
∑

∀i∈i

i + Qs + Qf ≤ IP s+

max

}

. (3.15)

Transition probabilities

In period t + 1, the state vector is Yt+1 =
(
yt+1, qt+1,1, qt+1,2, ..., qt+1,L∆−1

)
with

yt+1 = yt + Qf
t + qt,L∆−1 − dt (3.16)

qt+1,1 = Qs
t (3.17)

qt+1,k = qt,k−1 k = 2, ..., L∆ − 1. (3.18)

Let pij(a) = Pr {Yt+1 = j | Yt = i} denote the transition probability from state i in

t to j in t + 1 under decision a =
(
Qs

t , Q
f
t

)
. Under stationary conditions t → ∞,

Y = (y, q1, q2, ..., qL∆−1). Then,

pij(a) =






Pr
{
D = y(i) − y(j) + Qf + qL∆−1(i)

}
if Qs = q1(j), ..., qk(j) = qk−1(i),

k = 2, ..., L∆ − 1

0 otherwise

.

(3.19)

These probabilities result from the fact that a transition only has positive probabil-

ity, if the demand and the fast order transfer the fast inventory position from y(i)

to y(j) and the remaining outstanding order vector has the same entries (shifted by

one period and the latest order with the slow supplier inserted).
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Costs

The total cost in a state i, if decision a is chosen, consists of two components. First,

the direct cost, DC, of the decision a is calculated as

DC(a) = cs · Qs + cf · Qf . (3.20)

Second, there are the expected holding and backorder costs in the first future period

that can be influenced by the current decision, whose function is given as

HB(x) = h ·
x∑

d=0

(x − d)fLf +1(d) + b ·
(Lf +1)·D̄∑

d=x+1

(d − x)fLf +1(d) . (3.21)

Consequently, the total cost in state i, if decision a is chosen, is

r(i, a) = DC(a) + HB
(
y(i) + Qf

)
. (3.22)

3.3.3 Non-optimal policies

For large lead-time differences and demand distributions with a large number of pos-

sible realizations, the MDP suffers from the curse of dimensionality, because the state

and decision space grow considerably. That means the optimal policy can no longer

be computed in a reasonable amount of time. Due to the computational complexity

of the optimal policy, several simpler policies have been proposed in the literature

for this problem. The most prominent ones are the single-index, constant-order,

and dual-index policy. The exposition of these policies in the upcoming subsections

contains many results that are already known from previous contributions. As the

policies have been studied mainly in isolation in those works, however, the reiter-

ation of the major results in this section using a unified notational framework is

intended to foster a better understanding of the policy differences, which is partic-

ularly relevant for the policy comparison in Section 3.4. It is indicated explicitly,

whenever known results are complemented by new aspects.

Recently, further policies have received increased attention because of the analogy

of the periodic-review dual-sourcing problem to the lost-sales inventory problem
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established by Sheopuri et al. (2010). These policies exhibit features of an order-

splitting policy. They only consider the total order quantity in a period and decide

about the allocation of this quantity across the two suppliers, which is in contrast to

the other policies that determine the two order quantities by using an order-up-to

structure for the fast order and a separate control mechanism for the slow one. That

is why a simple version of an order-splitting policy is addressed at the end of this

section, too. This policy also plays a key role when it comes to the integration of

dual sourcing into a multi-echelon setting (see Section 4.5).

3.3.3.1 Single-index policy

Policy description

The single-index policy (SIP) is analyzed in Scheller-Wolf et al. (2007), which forms

the basis of this section. The presented lemmata are basically a modification of the

ones derived by Scheller-Wolf et al. (2007) for continuous demand distributions to

the discrete demand case, which is studied in this chapter. As already mentioned

above, the SIP is optimal for consecutive lead times. The SIP specifies two order-

up-to levels, one for the replenishments with the fast supplier (Bf) and one for the

replenishments with the slow supplier (Bs). Let ∆ = Bs −Bf . Due to this relation,

either
(
Bf , Bs

)
,
(
Bf , ∆

)
, or (∆, Bs) can be chosen as decision variables. Since the

latter combination simplifies the upcoming analysis, this one is used. The system

keeps track of a single inventory position, i.e. the slow inventory position, IP s, which

comprises of all units on-hand, on order, and owed to the customer (see (3.5)). In

each period, the inventory position is checked against the fast order-up-to level first,

and, if it is below, an order is placed to make up for the difference. Then, a slow

order is made to bring the inventory position up to the slow order-up-to level. The

inventory position recursion under this policy is

IP s
t = IP s

t−1 + Qf
t−1 + Qs

t−1 − dt−1 , (3.23)

which reduces to

IP s
t = Bs − dt−1 = Bf + ∆ − dt−1 . (3.24)
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The order quantities are given as

Qf
t =

(
Bf − IP s

t

)+
=
(
Bf −

(
Bf + ∆ − dt−1

))+
= (dt−1 − ∆)+ (3.25)

Qs
t =

(
Bs −

(
IP s

t + Qf
t

))+

=
(
Bs −

(
Bs − dt−1 + (dt−1 − ∆)+))+ = min {∆, dt−1} .

(3.26)

From (3.25) and (3.26) it can be seen that in any period the fast order corresponds

to the portion of demand that exceeds ∆ and the rest is ordered from the slow

supplier with a maximum quantity of ∆. Furthermore, it holds that the total order

quantity in a period corresponds to the demand of the previous period

Qf
t + Qs

t = dt−1 . (3.27)

In the extreme cases the SIP can mimic both fast and slow single sourcing with an

order-up-to policy by setting ∆ = 0, i.e. Bf = Bs, where Bf is the solution to (2.50)

with L = Lf or ∆ = ∞ and Bs as the solution to (2.50) with L = Ls, respectively.

Policy evaluation

In order to evaluate a parameter combination, (∆, Bs), expressions for the expected

on-hand stock, backorders, and fast order quantity are required for the computation

of TRC according to (3.3). From (3.25) it directly follows that

E
[
Qf
]

= E
[
(D − ∆)+] , (3.28)

which results in the following lemma that is stated without proof, since it is obvious

from (3.28):

Lemma 3.3.3.1 Under the SIP, the expected fast order quantity, E
[
Qf
]
, is solely

determined by ∆, independent of Bs or Bf .

In the process of deriving expressions for the on-hand stock and backorders at the

end of a period, first an expression for the net stock at the end of a period is
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developed. The net stock is related to the other two quantities via (2.27), i.e.

OHt = (NSt)
+ (3.29)

BOt = (NSt)
− (3.30)

where (x)+ = max{0, x} and (x)− = max{0,−x}. Using (3.25), (3.26), and (3.27),

the net stock at the end of period t (assuming w.l.o.g. that NS0 = Bs) is

NSt = Bs −
t∑

i=0

dt−i +

t∑

i=Ls

Qs
t−i +

t∑

i=Lf

Qf
t−i

= Bs −
Ls∑

i=0

dt−i +

Ls+1∑

i=Lf

Qf
t−i = Bs −

Ls∑

i=0

dt−i +

Ls+1∑

i=Lf

(dt−i − ∆)+

= Bs −
Lf∑

i=0

dt−i −
Ls∑

i=Lf+1

min{dt−i, ∆} . (3.31)

Let the random variable D̂(∆) be defined as:

D̂(∆) =

Lf∑

i=0

Di +

Ls∑

i=Lf+1

min {Di, ∆} . (3.32)

Then, under stationary conditions t → ∞ the net stock is given as

NS = Bs − D̂(∆) (3.33)

with

E

[
D̂(∆)

]
= (Ls + 1) · µ − L∆ · E

[
(D − ∆)+

]
. (3.34)

From (3.33) it is obvious that for a given ∆ the net stock at the end of a period and

consequently also the on-hand stock and the backorders are only determined by Bs.

The optimal Bs results according to the following lemma.
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Lemma 3.3.3.2 Under the SIP, for a given ∆, the optimal Bs, Bs∗(∆), is the

smallest value that satisfies

Pr
{

D̂(∆) ≤ Bs
}
≥ b

b + h
. (3.35)

Proof:

See Appendix B.1. �

Given Bs∗(∆), the expected on-hand stock and backorders are computed according

to (2.48) and (2.49) as

E
[
OH(Bs∗(∆))

]
=

Bs∗∑

x=0

(
Bs∗ − x

)
· Pr

{
D̂(∆) = x

}
(3.36)

E
[
BO(Bs∗(∆))

]
=

∞∑

x=Bs∗+1

(
x − Bs∗

)
· Pr

{
D̂(∆) = x

}
. (3.37)

Remark. The above analysis can also be done slightly different from the one in

Scheller-Wolf et al. (2007), namely in terms of Bf instead of Bs. Substituting

Bs = Bf + ∆ in the net stock computation (3.31) yields

NSt = Bf −
Lf∑

i=0

dt−i + ∆ −
Ls+L∆−1∑

i=Ls

min {dt−i, ∆} . (3.38)

The first two terms on the right-hand side correspond to the net stock computation

in the single-sourcing order-up-to level model, if only the fast supplier was available

(see (2.44)). Due to the additional slow supply option, the maximum inventory

value in period t − Ls is not equal to Bf , but equal to

Bf + ∆ −
Ls+L∆−1∑

i=Ls

min {dt−i, ∆} . (3.39)
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The additional quantity can be seen as a so-called overshoot in period t − Ls:

Ot−Ls = ∆ −
Ls+L∆−1∑

i=Ls

min {dt−i, ∆} . (3.40)

Note that the stationary distribution of such an overshoot is of relevance in the

analysis of the other dual-sourcing policies, too. That is why this alternative analysis

is presented here. Redefining the random variable D̂(∆) as

D̂(∆) =
Lf∑

i=0

Di −



∆ −
Ls∑

i=Lf +1

min {Di, ∆}



 (3.41)

yields the net stock as

NS = Bf − D̂(∆) (3.42)

with

E

[
D̂(∆)

]
=
(
Lf + 1

)
· µ −

[
∆ − L∆ ·

(
µ − E

[
(D − ∆)+

])]
. (3.43)

The expected on-hand stock and backorders follow from (3.36) and (3.37) with Bs

replaced by Bf .

Policy optimization

Due to Lemma 3.3.3.2 the optimal parameter combination (∆∗, Bs∗) can be com-

puted by a one-dimensional search over ∆. The relevant region is 0 ≤ ∆ ≤ ∞
(or D̄ in case there exists a maximum demand value). The stepsize of ∆ corre-

sponds to the difference between two adjacent demand realizations. Since the SIP

can mimic both fast and slow single-sourcing order-up-to policies, it holds that

Bs
min ≤ Bs(∆) ≤ Bs

max, where Bs
min and Bs

max are the optimal order-up-to levels

to the fast and slow single-sourcing problem, respectively. The following procedure

yields the optimal SIP parameters:
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1. For each ∆, the optimal Bs is computed via (3.35) where D̂(∆) is given by

(3.32).

2. The total relevant cost of each parameter combination, TRC(∆, Bs∗(∆)), is

calculated according to (3.3) using (3.36), (3.37), and (3.28).

3. The optimal combination (∆∗, Bs∗) is found as

(∆∗, Bs∗) = argmin
(∆,Bs∗(∆))

TRC
(
∆, Bs∗(∆)

)
. (3.44)

Unfortunately, it cannot be shown that the TRC function is unimodal in ∆. How-

ever, all numerical tests conducted so far confirm this (cf. Scheller-Wolf et al.

(2007)). Therefore, instead of searching over the entire space, ∆ could be increased

gradually until the total relevant cost increases for the first time.

Special case: Consecutive lead times

For the case of consecutive lead times, Lf = m and Ls = m + 1, m ∈ {0, 1, 2, ...},
Whittemore and Saunders (1977) show that for continuous demand the optimal Bf

is given by

Bf∗

L∆=1
= F−1

Lf +1

(
b − c

b + h

)
. (3.45)

The optimal Bs or ∆ results as the solution to

−c + (c − b)F
(
Bs − Bf

)
+ (h + b)

∫ Bs−Bf

0

FLf +1 (Bs − x) f(x) dx = 0 , (3.46)

which becomes (by using the definition Bs − Bf = ∆)

−c + (c − b)F (∆) + (h + b)

∫ ∆

0

FLf +1

(
Bf + ∆ − x

)
f(x) dx = 0 . (3.47)

For m = 0, this has previously been shown by Bulinskaya (1964) and later also by

Zhang and Hausman (1994), and Zhang (1996).
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In case of discrete demand, the optimal Bf is the smallest value that satisfies

FLf +1

(
Bf
)
≥ b − c

b + h
. (3.48)

Similarly, (3.47) can be rewritten and the optimal ∆ found as the smallest value

that satisfies

−c + (c − b)F (∆) + (h + b)
∆∑

x=0

FLf +1

(
Bf + ∆ − x

)
f(x) ≥ 0 , (3.49)

which can be rearranged as

∆∑

x=0

FLf +1

(
Bf + ∆ − x

)
f(x) ≥ c · F̄ (∆) + b · F (∆)

b + h
(3.50)

where F̄ (x) = 1 − F (x) = Pr {D > x}. This reformulation allows for an intuitive

interpretation. The left-hand side shows that due to the second supply option,

the inventory position (after ordering from the fast supplier) at the beginning of

a period is not equal to Bf , but can be higher. Depending on this value, which

characterizes the stock availability, holding and backorder costs are incurred, which

are represented by b + h in the denominator on the right-hand side as in the stan-

dard single-sourcing order-up-to level model. In contrast to the standard model, a

distinction has to be made in the nominator, however. If an order is placed with the

fast supplier, the expediting premium is incurred. This happens with probability

F̄ (∆). Otherwise, only the standard backorder cost accrues. This finding about the

‘critical ratio’ might be helpful in the development of simple heuristics.

Extensions

As extensions, the optimization model under various service-level constraints is con-

sidered first. Afterwards, further aspects are addressed including the incorporation

of capacities on the orders and the sourcing from more than two suppliers.

Service-level model. In this section, the dual-sourcing problem under the SIP is

studied, if instead of a backorder cost per unit and period a service-level constraint

is used. For didactical reasons the α-service level is addressed first, followed by the
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γ one, and finally the β-service level.

In the single-sourcing order-up-to level model it holds that α = b
b+h

(see (2.52)).

Furthermore, it is shown in this section that the computation of the net stock under

the SIP corresponds to the one in the single-sourcing order-up-to level model, if

the lead-time demand D(L + 1) is replaced by D̂(∆). Consequently, the optimal

slow order-up-to level under the SIP can be determined by (3.35). Following the

same line of argument as in van Houtum and Zijm (2000), it can be shown that the

relation α = b
b+h

also holds under the SIP. Under this policy, each period orders

are placed with both suppliers such that the slow inventory position is raised to Bs.

The characterization of (3.35) shows that in the cost model the slow order-up-to

level in period t should be chosen such that the probability that no stockout occurs

at the end of period t + Ls (i.e. NSt+Ls ≥ 0, cf. (3.31)) is larger than or equal to
b

b+h
. This probability is just the definition of the α-service level, which establishes

the above-mentioned relation. Consequently, the parameter optimization for the

α-service level case can be done as described above.

Under a γ-service level constraint the optimization problem can be formulated as

follows (in general terms)

min TRCγ
SIP (∆, Bs) = c · E

[
Qf
]
+ h · E [OH ] (3.51)

s.t. 1 − E [BO]

µ
≥ γtarget (3.52)

∆, Bs ∈ N (3.53)

for γtarget ∈ (0, 1). The integrality constraint on ∆ and Bs follows from the discrete

nature of demand (and is not required for continuous demand). Using (3.28), (3.33),

(3.29), (3.30), and (2.39) the optimization problem can be reformulated as

min TRCγ
SIP (∆, Bs) = c · E

[
(D − ∆)+]+ h · E

[(
Bs − D̂(∆)

)+
]

(3.54)

s.t. E

[(
D̂(∆) − Bs

)+
]
≤ BOγ

target (3.55)

∆, Bs ∈ N . (3.56)

Analyzing the properties of this formulation reveals:
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Lemma 3.3.3.3 For the γ-service level problem, given a fixed ∆:

1. The objective function is constant for Bs ≤ 0 and non-decreasing for Bs > 0.

2. The average backorders E

[(
D̂(∆) − Bs

)+
]

are non-increasing in Bs;

E

[(
D̂(∆) − Bs

)+
]
↑ ∞ as Bs → −∞; E

[(
D̂(∆) − Bs

)+
]
↓ 0 as Bs → ∞.

Proof:

See Appendix B.2. �

Lemma 3.3.3.3 implies that the smallest Bs satisfying (3.55) is the optimal one for

a given ∆. Consequently, the same one-dimensional search procedure over ∆ as

in the backorder cost approach can be conducted to find the optimal parameter

combination.

Scheller-Wolf et al. (2007) show this lemma for continuous demand (with 0 < F (x) <

1 for all x ∈ (0,∞) and F (0) = 0) together with an additional property that holds,

namely: For a given ∆, there is a unique finite positive value, Bs(∆), for which

(3.55) is satisfied at equality. At optimality this equality holds: Bs = Bs(∆). Based

on this lemma and a lower bound on the optimal value of ∆, which they derive, they

develop an optimization procedure for the continuous demand case. Furthermore,

for the special case of mixed-Erlang distributed demand they derive exact closed-

form expressions for E

[(
D̂(∆) − Bs

)+
]

and E
[
(D − ∆)+] such that the average

cost for a given Bs(∆) can be easily determined.

In contrast to the γ-service level, the β-service level only takes into consideration

the new backorders each period. The optimization problem can be formulated as

min TRCβ
SIP (∆, Bs) = c · E

[
Qf
]
+ h · E [OH ] (3.57)

s.t. 1 − E [BO] − E
[
BObeg

]

µ
≥ βtarget (3.58)

∆, Bs ∈ N (3.59)
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for βtarget ∈ (0, 1). In comparison to the γ-service level formulation an additional

expression for E
[
BObeg

]
is required. To this end, a new random variable is defined

D̂beg(∆) =
Lf∑

i=1

Di +
Ls∑

i=Lf+1

min{Di, ∆} . (3.60)

Then,

E
[
BObeg(Bs)

]
= E

[(
D̂beg(∆) − Bs

)+
]

=
∞∑

x=Bs+1

(x − Bs) · Pr
{

D̂beg(∆) = x
}

.

(3.61)

Using the specific expressions for the SIP the optimization problem reads:

min TRCβ
SIP (∆, Bs) = c · E

[
(D − ∆)+]+ h · E

[(
Bs − D̂(∆)

)+
]

(3.62)

s.t. E

[(
D̂(∆) − Bs

)+
]
− E

[(
D̂beg(∆) − Bs

)+
]
≤ BOβ

target (3.63)

∆, Bs ∈ N . (3.64)

with BOβ
target = (1 − βtarget)µ. For this optimization problem, an analog of Lemma

3.3.3.3 can be proven (see Scheller-Wolf et al. (2007)) such that the optimal Bs

results as the smallest value that satisfies (3.63).

Further aspects. Scheller-Wolf et al. (2007) present extensions of the SIP model

to capacitated suppliers and more than two supply modes. Both aspects can be

incorporated into the SIP quite easily. If there is a capacity CAP f on the fast

orders, Lemma 3.3.3.2 holds with the modification that

D̂(∆) =

Lf∑

i=0

Di +

Ls∑

i=Lf+1

Wi (3.65)
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where

Wi =






Di Di ≤ ∆,

∆ ∆ < Dj ≤ CAP f + ∆,

Di − CAP f CAP f + ∆ < Di.

(3.66)

If there is a capacity CAP s on the slow orders all the results above hold, with the

additional constraint that ∆ ≤ CAP s.

Also in the case of more than two supply modes, the SIP yields a considerable

dimensional reduction compared to the optimal policy. For three suppliers, for

instance, it follows that: If there are three supply modes, for each ∆1 and ∆2, given

L∆
1 < L∆

2 < L∆
3 and B3 = B2 + ∆2, B2 = B1 + ∆1, Lemma 3.3.3.2 holds with the

modification that:

D̂(∆1, ∆2) =

L1∑

i=0

Di +

L2∑

i=L1+1

min {Di, ∆1 + ∆2} +

L3∑

i=L2+1

min {Di, ∆2} . (3.67)

3.3.3.2 Constant-order policy

Policy description

The constant-order policy (COP) is studied in Zhang and Hausman (1994), Janssen

and de Kok (1999), and Klosterhalfen et al. (2010a). Under this policy, in each

period a fixed quantity, Qs
t = Q, is ordered from the slow supplier. The fast order,

Qf
t , is determined according to an order-up-to logic with order-up-to level, Bf . Thus,

the decision variables are Q and Bf . The COP generates a constant inflow of Q

units from the slow supplier each period, irrespective of Ls. Only Lf is relevant for

the inventory position that is used as fast order trigger, IP f
t . Since Qs

t = Q, (3.4)

becomes

IP f
t = NSt−1 + (Lf + 1) · Q +

Lf∑

j=1

Qf
t−j . (3.68)
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The slow constant order that arrives in period t might cause the inventory position

to assume a value above Bf resulting in a so-called overshoot. This overshoot at

the beginning of a period after ordering from the fast supplier is denoted as

Ot = IP f
t + Qf

t − Bf =
(
IP f

t − Bf
)+

(3.69)

where (x)+ = max{x, 0}. The order quantities are

Qs
t = Q (3.70)

Qf
t =

(
Bf − IP f

t

)+

. (3.71)

The COP is very appealing from a practical viewpoint. The constant-order property

might facilitate the supply negotiations with the slow supplier. This supplier does

not suffer from any demand variability or even the bullwhip effect, for instance,

which makes the production planning much easier.

As an extreme case, the COP can mimic single sourcing from the fast supplier with

an order-up-to policy, i.e. Q = 0. Single sourcing from the slow supplier requires

Q = µ, which is not of an order-up-to level type, however. For simplicity reasons,

this less interesting boundary case is excluded from the upcoming analysis, because

the optimal slow single-sourcing policy for the specified inventory model is known

to be of an order-up-to level type (see Section 2.1.2.3), so that Q = µ cannot be

better than that.

Policy evaluation

The evaluation of a parameter combination, (Q, Bf ), requires expressions for the

expected on-hand stock, backorders, and expedited order quantity. For a given Q,

the latter quantity immediately results from (3.2) as

E
[
Qf
]

= µ − Q . (3.72)

The other two quantities depend on the overshoot in the system, where the following

can be noted (cf. Klosterhalfen et al. (2010a)).
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Lemma 3.3.3.4 The overshoot under a COP is a function of Q independent of Bf ,

Ot(Q).

Proof:

See Appendix B.3. �

Due to the possible overshoot, the inventory position after ordering in each period

t is IP f+

t = Bf + Ot(Q). Thus, the net stock calculation is

NSt = IP f+

t−Lf −
Lf∑

i=0

dt−i = Bf −




Lf∑

i=0

dt−i − Ot−Lf (Q)



 . (3.73)

Denote D̃t(Q) =
∑Lf

i=0 dt−i−Ot−Lf (Q) as the net demand, i.e. the realized demands

in periods t − Lf to t (including periods t − Lf and t) are convolved with the

negative overshoot at the beginning of period t − Lf . Since they are independent,

the stationary distribution of D̃(Q) can be determined as the convolution of the

demand over Lf + 1 periods with the overshoot random variable, O(Q), which is

independent of Bf (Lemma 3.3.3.4), but dependent on Q, i.e.

Pr
{
D̃(Q) = x

}
=

∞∑

i=0

Pr
{
D(Lf + 1) = x + i

}
· Pr {O(Q) = i} . (3.74)

Using D̃(Q), the net stock under stationary conditions t → ∞ follows from (3.73)

as

NS = Bf − D̃(Q) . (3.75)

Thus, as in the SIP case, (3.75) resembles the net stock calculation in an order-up-to

level system with lead-time demand D̃(Q) (see (2.45)). Therefore, the optimal Bf

for a given Q, Bf∗
(Q), is the smallest Bf that satisfies

Pr
{

D̃(Q) ≤ Bf
}
≥ b

b + h
. (3.76)

Given Bf∗
(Q), the expected on-hand stock and backorders are computed according
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to (2.48) and (2.49) as

E
[
OH(Bf∗

(Q))
]

=

Bf∗

∑

x=0

(
Bf∗ − x

)
· Pr

{
D̃(Q) = x

}
(3.77)

E
[
BO(Bf∗

(Q))
]

=
∞∑

x=Bf∗+1

(
x − Bf∗) · Pr

{
D̃(Q) = x

}
. (3.78)

It remains to be shown how to derive the stationary overshoot distribution for a

given Q, which enters (3.76), (3.77), and (3.78) through the net demand. Three

ways to do this are explained here, out of which the first one is exact and the other

two are approximations:

1. One-dimensional Markov Chain

According to Klosterhalfen et al. (2010a), the overshoot process can be mod-

eled as a Markov Chain. It is completely defined by recurrence relation (B.2),

i.e.

Ot+1 = (Ot + Q − dt)
+ , (3.79)

because Q and the demand probability mass function are known. The state

space is infinite, Ot ∈ SSP := {0, 1, ...}. The transition probabilities pij =

Pr{Ot+1 = j | Ot = i} of the transition matrix P = (pij) can be obtained by

distinguishing between the cases j = 0 and j > 0. For j = 0, it follows from

(3.79) and t → ∞ that

pi0 = Pr {i + Q − D ≤ 0} = Pr {D ≥ i + Q} . (3.80)

Similarly, for j > 0:

pij = Pr {j = i + Q − D} = Pr {D = i + Q − j} . (3.81)

Let oi = Pr {O(Q) = i}, i ∈ SSP , o = [o0, o1, ...], and e = [1, 1, ...]T . Then

the stationary distribution o can be obtained as the eigenvector of P for the
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eigenvalue 1 (see, e.g., Steward (2009), Chapter 10)

o = Po with oe = 1 . (3.82)

2. Queueing model equivalence

Janssen and de Kok (1999) find that the overshoot recursion corresponds to the

recursion of the waiting time in a GI/D/1 queue with the distribution of the

inter-arrival times equal to the period demand distribution F (.) and determin-

istic service Q. An overview of the available literature regarding the waiting

time in a GI/D/1 queue is given in Chaudhry (1992), which also provides

an exact method. However, Janssen and de Kok (1999) consider this exact

method as relatively hard to implement. They rather suggest an approximate

moment-iteration method developed for GI/G/1 queues (see de Kok (1989)).

Based on the equivalence relation either the entire overshoot distribution or

at least values for the first two moments of the stationary overshoot distribu-

tion and the probability of an overshoot can be computed. In the latter case,

an appropriate distribution needs to be fitted to these moments again, e.g., a

mixed-Erlang distribution.

3. Simulation

Instead of using any of the two above-described methods, the system can be

simulated. For a sufficiently large number of periods, the resulting overshoot

distribution will be close to the optimal one. This approach is suggested by

Veeraraghavan and Scheller-Wolf (2008) in their analysis of the DIP.

Policy optimization

The optimal policy parameters can be computed by a one-dimensional full enu-

merative search over Q (cf. Janssen and de Kok (1999)). The relevant region is

0 ≤ Q < µ, which follows from (3.2) and the fact that both order quantities must

be non-negative together with the remarks on the extreme cases at the end of the

COP ‘Policy description’ section. In case of discrete integer demand the smallest

stepsize of Q is 1. The procedure is as follows:
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1. For each Q, the optimal Bf∗
(Q) results from (3.76).

2. The total cost of each parameter combination, TRC(Q, Bf∗
(Q)), is computed

according to (3.3) using (3.77), (3.78), and (3.72).

3. The optimal combination, (Q∗, Bf∗
), is found as

(Q∗, Bf∗

) = argmin
(Q,Bf∗(Q))

TRC(Q, Bf∗

(Q)) . (3.83)

Similar to the SIP case, it could not be shown so far that TRC is unimodal with

respect to Q. However, in all numerical tests that have been conducted no coun-

terexample to this assumption has been found, either. When assuming unimodality,

not the entire feasible region of Q needs to be searched, but one could simply start

with the largest feasible value for Q and decrease it gradually until the total relevant

cost increases for the first time.

Special case: Geometric demand

If demand is distributed according to a geometric distribution (see Section 2.1.1), the

stationary overshoot distribution is found to be computable by recursive expressions,

which have not yet been derived in previous works.

Lemma 3.3.3.5 If period demand follows a geometric distribution, the steady-state

probabilities, oi, of the overshoot distribution can be derived as

o1 =
1

1 −∑∞
j=Q+1 H(j)

·

[
Pr{D = Q − 1} −∑∞

j=Q+1 H(j)Pr{D = Q + j − 1}
]

1 −
[∑Q

j=1(1 − p)1−jPr{D = Q + j − 1} +
∑∞

j=Q+1 G(j)Pr{D = Q + j − 1}
]

· 1

1 +
PQ

j=1(1−p)1−j+
P∞

j=Q+1 G(j)

1−
P∞

j=Q+1 H(j)

[Pr{D=Q−1}−
P∞

j=Q+1 H(j)Pr{D=Q+j−1}]
1−[

PQ
j=1(1−p)1−jPr{D=Q+j−1}+

P∞
j=Q+1 G(j)Pr{D=Q+j−1}]

(3.84)

o0 =
1 − o1

(∑Q

j=1(1 − p)1−j +
∑∞

j=Q+1 G(j)
)

1 −∑∞
j=Q+1 H(j)

(3.85)
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oi = o1(1 − p)1−i i = 2, ..., Q (3.86)

oi = o1G(i) − o0H(i) i ≥ Q + 1 (3.87)

with

G(i) =
1

(1 − p)x(i)Q+x(i)−2+j(i,x)
+

x(i)−1∑

n=1

(−1)npn
X n

x(i)(j(i, x))

(1 − p)x(i)Q+x(i)+j(i,x)−2−nQ

+ (−1)x(i)px(i)
X x(i)

x(i) (j(i, x))

(1 − p)x(i)+j(i,x)−2
(3.88)

H(i) =
p

(1 − p)(x(i)−1)Q+x(i)−1+j(i,x)
+

x(i)−1∑

n=2

(−1)n−1pn
Yn

x(i)(j(i, x))

(1 − p)x(i)Q+x(i)+j(i,x)−1−nQ

+ (−1)x(i)−1px(i)
Yx(i)

x(i) (j(i, x))

(1 − p)x(i)+j(i,x)−1
(3.89)

and x(i) and j(i, x) computed as

x(i) =

⌊
i

Q + 1

⌋
(3.90)

j(i, x) = i − x(Q + 1) + 1 (3.91)

and the functions X n
x (j) and Yn

x (j) defined as follows for x ≥ 1

X n
x (j) =






∑j−1
k=1 X n−1

x−1 (k + 1) x = n

X n
x−1(Q + 1) +

∑j
k=1 X n−1

x−1 (k) x > n
n ≥ 1 (3.92)

X 0
x = 1 (3.93)

Yn
x (j) =






∑j
k=1 Yn−1

x−1 (k) x = n, n ≥ 2

Yn
x−1(Q + 1) +

∑j

k=1 Yn−1
x−1 (k) x > n, n ≥ 1

(3.94)

Y1
1 =





0 if x from (3.90) for the first/largest Q-cycle is equal to 1

1 otherwise
(3.95)

Y0
x = 0 . (3.96)
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Proof:

See Appendix B.4. �

Extensions

As in the SIP section, the extensions refer to service-level models and capacity

constraints. Moreover, a short remark is made on fixed ordering costs as well as on

a variant of the COP called a standing-order policy.

Service-level model. Based on the same arguments as in the SIP case, the optimal

Bf for a given Q can be determined by (3.76) for the α-service level problem, too.

The optimal Q is found by a full enumerative search.

Similar to the SIP, but adjusted to the COP expressions, the optimization problem

under a γ-service level constraint can be stated as follows

min TRCγ
COP (Q, Bf ) = c · (µ − Q) + h · E

[(
Bf − D̃(Q)

)+
]

(3.97)

s.t. E

[(
D̃(Q) − Bf

)+
]
≤ BOγ

target (3.98)

Q, Bf ∈ N . (3.99)

The properties stated in Lemma 3.3.3.3 for the SIP also hold for the COP, which can

be shown as follows. The expected backorders on the left-hand side can be rewritten

using (3.74):

E

[(
D̃(Q) − Bf

)+
]

=
∞∑

i=0

E

[(
D(Lf + 1) − Bf − i

)+]
Pr {O(Q) = i} . (3.100)

Similarly, the on-hand stock expression in the objective function is

E

[(
Bf − D̃(Q)

)+
]

=

∞∑

i=0

E

[(
Bf + i − D(Lf + 1)

)+]
Pr {O(Q) = i} . (3.101)

Expression (3.101) is non-decreasing in Bf , which is easy to see by recalling that

probabilities are non-negative and using finite differences. This implies that the

smallest integer Bf that satisfies (3.98) is the optimal solution to the optimization
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problem. Since it can also be shown that (3.100) is non-increasing in Bf , the optimal

Bf can be found by a simple numerical method like a bisection procedure. The

optimal Q is found by the search procedure described in the backorder cost approach.

The optimization problem for the β-service level is:

min TRCβ
COP (Q, Bf ) = c · (µ − Q) + h · E

[(
Bf − D̃(Q)

)+
]

(3.102)

s.t. E

[(
D̃(Q) − Bf

)+
]
− E

[(
D̃(Q)beg − Bf

)+
]
≤ BOβ

target (3.103)

Q, Bf ∈ N (3.104)

with BOβ
target = (1 − βtarget) µ for βtarget ∈ (0, 1), where the random variable

D̃(Q)beg is defined as

Pr
{

D̃(Q)beg = x
}

=

∞∑

i=0

Pr
{
D(Lf ) = x + i

}
· Pr {O(Q) = i} . (3.105)

Again, the properties of Lemma 3.3.3.3 adjusted to the COP case hold, which de-

termines the optimal Bf as the smallest value that satisfies (3.103).

Further aspects. A fixed ordering cost for each supplier can also be incorporated

in the COP. This is shown by Janssen and de Kok (1999), who consider a system

with a linear holding cost and a β-service level constraint.

Capacity constraints on the orders have not yet been considered in the COP. The

integration of a capacity CAP s on the slow order is straightforward. Simply the

constraint Q ≤ CAP s needs to be added, which can be done without affecting any

of the above results. A capacity CAP f on the fast order requires further analysis.

Due to such a constraint the fast order might not be able to bring the fast inventory

position up to the fast order-up-to level, i.e. fast shortfall occurs. By using similar

arguments as Veeraraghavan and Scheller-Wolf (2008) do in the DIP case (see their

Lemma 5.1, p. 854) it can be shown that the shortfall as well as the overshoot are

functions of Q, which are independent of Bf . The optimal Bf for a given Q can be

computed as the solution to a critical fractile inequality similar to (3.76). However,
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instead of the net demand, a stationary distribution of the convolution of the fast

lead-time demand, the fast shortfall, and the negative overshoot is required. This

distribution can be determined easily by the use of simulation. The optimization of

the inventory control parameters can be done by a full enumerative search over Q.

A similar, but slightly different variant of the COP is the standing-order policy. Such

a policy not only specifies a fixed order quantity and an order-up-to level, but also

a dispose-down-to level. It is studied in Rosenshine and Obee (1976) and Chiang

(2007), who show how to compute the optimal values.

3.3.3.3 Dual-index policy

Policy description

The dual-index policy (DIP), which is analyzed by Veeraraghavan and Scheller-Wolf

(2008), Arts et al. (2009), and Klosterhalfen et al. (2010a), specifies two order-up-

to levels, one for the slow (Bs) and one for the fast supplier (Bf ). As in the SIP

case, the difference is denoted as ∆ = Bs − Bf . Thus, as decision variables either

(Bf , Bs), (Bf , ∆), or (∆, Bs) can be used. For ease of presentation of the upcoming

exposition (Bf , ∆) is chosen. For the execution of replenishment orders, the DIP

keeps track of two inventory positions, IP f
t and IP s

t , which are defined in (3.4) and

(3.5), respectively. That means each inventory position at the beginning of a period t

is given by the net stock at the end of the previous period plus all outstanding orders

with any of the two suppliers that will arrive no later than the order of the specific

supplier, which is to be determined in t. In each period, the inventory position of the

fast supplier, IP f
t , is checked first and a potential fast order is placed. (Note that

the inventory position of the slow supplier, IP s
t , does not include this fast order.)

The order quantities are given as

Qf
t =

(
Bf − IP f

t

)+

(3.106)

Qs
t = Bs −

(
IP s

t + Qf
t

)
. (3.107)

IP s
t + Qf

t is always equal to or larger than Bf . Thus, the maximum regular or-

der quantity is ∆. For a lead-time difference of one, both inventory positions are

identical. Hence, the DIP reduces to the SIP, which represents the optimal policy.
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Moreover, the DIP can mimic both single-sourcing strategies in the form of order-

up-to policies by either setting Bf = Bs ⇒ ∆ = 0 and Bf as the solution to (2.50)

with L = Lf (fast single sourcing) or Bs as the solution to (2.50) with L = Ls and

Bf = −∞ ⇒ ∆ = ∞ (slow single sourcing). Note that the DIP cannot mimic the

ordering behavior of the COP. In the DIP both orders vary according to the demand

variability and the outstanding orders in the system. In the COP only the fast order

varies, but not the slow one.

Policy evaluation

As in the COP case, it is possible in the DIP that the fast inventory position in

period t lies above the respective order-up-to level, Bf , representing an overshoot,

because the slow order placed t − L∆ periods ago enters IP f
t . The same applies to

periods t + 1, ..., t + L∆, because the slow orders that will enter the fast inventory

position calculation in these periods are already known at time t, but not taken into

account in IP f
t . In the DIP, Veeraraghavan and Scheller-Wolf (2008) show in their

Proposition 4.1 (p. 854) that the overshoot only depends on ∆, but is independent

of Bf . This is denoted as O(∆) and it is obvious that the maximum overshoot is ∆.

Consequently, once the stationary distribution of O(∆) is known, the net demand

distribution can be computed as in the COP case via (3.74). The optimal Bf for a

given ∆, Bf∗
(∆), follows from (3.76) and the expected on-hand stock and backorder

quantities from (3.77) and (3.78). The fast order quantity, E
[
Qf
]
, which is also

required for the computation of TRC(∆, Bf∗
(∆)) according to (3.3), can be derived

as follows for a given ∆. Using (3.4), (3.5) can be rewritten as

IP s
t = IP f

t +

L∆−1∑

i=1

Qs
t−i . (3.108)

After placement of the slow order in t the relation becomes

Bs = Bf + Ot +

L∆−1∑

i=1

Qs
t−i + Qs

t . ⇒ Ot = ∆ −
L∆−1∑

i=0

Qs
t−i (3.109)

⇒ E [O] = ∆ − L∆ · E [Qs] (3.110)

Once the stationary overshoot distribution is known, E [O] is known as well (or can
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be computed). From (3.110), E [Qs] follows and through relation (3.2) E
[
Qf
]

is

found.

Note that the term
∑L∆−1

i=0 Qs
t−i in (3.109) represents the pipeline stock after ordering

in period t that will not arrive within the fast lead time. Denote this quantity as

At. The following interesting relation holds (see Arts et al. (2009), Lemma 4.1):

∆ = Ot + At . (3.111)

This relation shows that for a given ∆, any knowledge about At implies knowledge

about Ot, which is useful for the derivation of the stationary overshoot distribution

described next.

The stationary overshoot distribution can be computed by using different approaches.

The first one presented is exact, whereas the other two are approximations.

1. Multi-dimensional Markov Chain

According to Klosterhalfen et al. (2010a) the exact stationary overshoot dis-

tribution can be computed via a multi-dimensional Markov Chain. Similar to

(3.79) and proven by Veeraraghavan and Scheller-Wolf (2008) the overshoot

in the DIP satisfies

Ot+1 =
(
Ot + Qs

t−(L∆−1) − dt

)+

. (3.112)

As explained above the overshoot is caused by the outstanding regular or-

ders that are already determined at time t and will arrive in future periods,

but are not included in the fast inventory position, i.e. Qs
t , Q

s
t−1, ..., Q

s
t−(L∆−1).

Consequently, these orders need to be stored in the state information. Given

these orders and the demand probability mass function, which is known, the

Markov Chain is completely defined by (3.112). Hence, the state is described

by a (L∆ + 1)-dimensional vector

Zt =
(
Qs

t , Q
s
t−1, ..., Q

s
t−(L∆−2), Q

s
t−(L∆−1), Ot

)
. (3.113)

Note that the state is defined after ordering, because the overshoot distribution

and not the distribution of the inventory position before ordering is of interest.



3.3 Inventory control policies 82

From (3.109) it follows that the sum of all state variables equals ∆. Conse-

quently, the state space is given by all possible state variable combinations

that fulfill this condition and its size is

∆∑

k=0

k∑

x1=0

k−x1∑

x2=0

· · ·
k−

PL∆−1
i=1 xi∑

x
L∆=0

(
k

x1, x2, ..., xL∆

)
(3.114)

where

(
k

x1, x2, ..., xL∆

)
=

k!

x1!x2! · · ·xL∆ !
and

L∆∑

i=1

xi = k . (3.115)

In period t + 1, the state is

Zt+1 =
(
Qs

t+1, Q
s
t , ..., Q

s
t−(L∆−3), Q

s
t−(L∆−2), Ot+1

)
. (3.116)

With regard to the determination of the transition probabilities pij = Pr{Zt+1 =

j | Zt = i}, it is important to note that pij > 0, if (and only if) the state vector

elements of j at positions 2 to L∆ correspond to the ones of i at positions

1 to (L∆ − 1). Otherwise, pij = 0. Under stationary conditions t → ∞,

Z = (Qs
1, ..., Q

s
L∆ , O). Then, using Qs

t+1 = Ot − Ot+1 + Qs
t−(L∆−1), which fol-

lows from (3.113), (3.116), and (3.109), and Ot+1 =
(
Ot + Qs

t−(L∆−1) − dt

)+

yields

pij =






Pr {D = Qs
1(j)} if O(j) > 0, Qs

k(j) = Qs
k−1(i) ∀k = 2, ..., L∆

Pr {D ≥ Qs
1(j)} if O(j) = 0, Qs

k(j) = Qs
k−1(i) ∀k = 2, ..., L∆

0 otherwise

.

(3.117)

As in the COP case, the stationary overshoot distribution can be obtained by

solving equations (3.82).

2. One-dimensional Markov Chain approximation

Arts et al. (2009) provide a one-dimensional Markov Chain approximation for

the overshoot with ∆ + 1 states. Instead of studying Ot, they study At, for
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which the following recurrence relation holds:

At+1 = ∆ − Ot+1 = min
{
∆, At − Qs

t+1−L∆ + dt

}
. (3.118)

The Markov Chain for At is defined by this relation, if the probability mass

function of D and
{
Qs

t+1−L∆ | At

}
are known. Then, the transition probabil-

ities pij = Pr{At+1 = j | At = i} can be obtained by distinguishing between

the cases j < ∆ and j = ∆ (see Arts et al. (2009)). For j < ∆ it follows that

pij = Pr {At+1 = j | At = i}
= . . .

=

j∑

k=0

Pr
{
Qs

t+1−L∆ = i + k − j | At = i
}

Pr {D = k} . (3.119)

In case j = ∆:

pi∆ = Pr {At+1 = ∆ | At = i}
= . . .

=
i∑

k=0

Pr
{
Qs

t+1−L∆ = k | At = i
}

Pr {D ≥ ∆ + k − i} . (3.120)

The transition probabilities form the transition matrix P = (pij)

P =





p00 · · · p0∆

...
. . .

...

p∆0 · · · p∆∆



 . (3.121)

The stationary distribution results as described above (see (3.82)). The diffi-

culty is that the demand probability mass function is known, but the distri-

bution of
{
Qs

t+1−L∆ | At

}
is not. The latter one can be approximated based

on the following limiting results (see Proposition 4.5 in Arts et al. (2009)):

a) As ∆ → ∞,

Pr
{
Qs

t+1 = x
}
→ Pr {Dt = x}.
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b) As ∆ → ∞,

Pr
{
Qs

t+1−L∆ = x | At = y
}
→ Pr

{
Dt+1−L∆ = x |∑t

i=t+1−L∆ Di = y
}
.

c) For ∆ = 1,

Pr
{
Qs

t+1−L∆ = x | At = y
}
→ Pr

{
Dt+1−L∆ = x |∑t

i=t+1−L∆ Di = y
}
.

The first two results are obvious, because ∆ = ∞ corresponds to slow single

sourcing. In this case it holds that Qs
t+1 = dt. Since the second and third

results show that for very large and very small ∆ Pr
{
Qs

t+1−L∆ = x | At = y
}

is given by Pr
{
Dt+1−L∆ = x |∑t

i=t+1−L∆ Di = y
}
, this expression is used to

approximate Pr
{
Qs

t+1−L∆ = x | At = y
}

in general:

Pr
{
Qs

t+1−L∆ = x | At = y
}
≈ Pr




Dt+1−L∆ = x

∣∣∣∣∣∣

t∑

i=t+1−L∆

Di = y






=
Pr {D = x} Pr

{
D(L∆ − 1) = y − x

}

Pr {D(L∆) = y} .

(3.122)

With the help of this approximation the stationary distribution of A can be

computed, Pr{A = x}, and the stationary overshoot distribution results as

Pr {O = x} = Pr {A = ∆ − x} due to relation (3.111). Note that this ap-

proximation is exact for L∆ = 1, where the DIP reduces to the SIP, which is

the optimal policy.

3. Simulation

As in the COP case, the overshoot distribution can also be computed via

simulation (cf. Veeraraghavan and Scheller-Wolf (2008)). It has to be ensured

that a sufficiently large number of periods is simulated in order to obtain a

resulting distribution close to the exact one.

Given the stationary overshoot distribution, the net demand distribution results

from (3.74).
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Policy optimization

Since the overshoot only depends on ∆ (but not on Bf ), the optimal policy param-

eters are found by a one-dimensional search over ∆ as in the SIP case. Again, the

smallest stepsize of ∆ is given by the difference of two adjacent demand realizations

in case of a discrete demand distribution. The procedure is as follows:

1. For each ∆, the stationary overshoot distribution is determined.

2. Bf∗
(∆) then follows from (3.76) and Bs∗ = Bf∗

(∆) + ∆.

3. The globally optimal parameters result as

(∆∗, Bf∗

) = argmin
(∆,Bf∗(∆))

TRC(∆, Bf∗

(∆)) (3.123)

where the cost components of TRC are computed via (3.77), (3.78), and E
[
Qf
]

via E [Qs] from (3.110) and relation (3.2).

In contrast to the COP, where Q is bounded from below by 0 and from above by

µ, only a (finite) lower bound, 0, exists for ∆ in the DIP. The upper bound is

∆ = ∞ (=̂ slow single sourcing). Although no proof for TRC being unimodal in

∆ is available yet, no counterexample has been observed, either (see Veeraraghavan

and Scheller-Wolf (2008)). Consequently, assuming that TRC is unimodal in ∆, a

simple numerical search procedure like a golden section search could be performed

to find the optimal value of ∆ as already outlined for the SIP.

Analogy of the DIP and an order-up-to policy in a lost-sales inventory

model

As previously mentioned, Sheopuri et al. (2010) show that the dual-sourcing problem

is a generalization of the lost-sales problem. The orders placed with the fast supplier

can be interpreted as ‘lost sales’ for the slow supplier. Due to this analogy, the DIP

can be connected to a lost-sales model with an order-up-to policy in the way shown in

Table 3.1. Let BLS denote the order-up-to level in the lost-sales case. The overshoot

process corresponds to the evolution of the on-hand stock at the end of a period.
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DIP model Lost-sales model

∆ BLS (order-up-to level)
O (overshoot) on-hand stock at the end of a period
E [Qs] expected average demand satisfied per period
E
[
Qf
]

expected average demand lost per period
L∆ − 1 lead time

Table 3.1: Relationship between DIP model and lost-sales model

That means, any results derived for the lost-sales problem can be transferred to the

dual-sourcing problem. This relation is exploited in the next section, for instance.

Special case: Geometric demand

For the special case of geometric period demand, Johansen and Thorstenson (2008)

present a closed-form expression for the distribution of the on-hand stock at the end

of a period in a lost-sales model with an order-up-to policy. Since the on-hand stock

process corresponds to the overshoot process in the DIP model (see Table 3.1), a

direct computation of the overshoot distribution is possible for geometric demand.

Recall from Section 2.1.1 that if the one period demand has a geometric distribution

with parameter p, the L-period demand has a negative binomial distribution with

parameters L and p and is defined as follows:

f geom
L (x) = fnbin(x) =

(
x + L − 1

L − 1

)
pL(1 − p)x x = 0, 1, 2, ... , (3.124)

which for L = 1 returns the geometric distribution. The L-period cumulative dis-

tribution function results accordingly. Define

cLS =
1

F geom

L∆−1
(∆)

. (3.125)

The stationary probabilities of the overshoot are computed as

oi =





1 − cLSF geom

L∆ (∆ − 1) i = 0

cLSf geom

L∆ (∆ − i) 1 ≤ i ≤ ∆
. (3.126)
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The long-run average is given as

E [O] = cLS

∆∑

i=1

F geom

L∆ (i − 1) . (3.127)

The expected slow order quantity can be computed as

E [Qs] = cLS

(
∆∑

i=1

F geom

L∆−1
(i − 1) −

∆∑

i=1

F geom

L∆ (i − 1)

)
(3.128)

or via (3.110) using (3.127). Then, the expected fast order quantity, E
[
Qf
]
, results

via (3.2).

Extensions

As with the other two policies, the extensions cover the analysis of the service-level

model formulations followed by capacity constraints and further aspects.

Service-level model. If an α-service level constraint is used, the optimal Bf for

a given ∆ results from (3.76) (using the net demand distribution computed for this

∆) due to the equivalence of α = b
b+h

, which can be shown following the same line of

argument as in the SIP. Consequently, the same optimization procedure as described

for the backorder cost problem can be applied.

Under a γ-service level constraint, the optimization problem can be formulated

similarly to the SIP and COP case as (see Arts et al. (2009)):

min TRCγ
DIP (∆, Bf ) = c · E

[
Qf
]
+ h · E

[(
Bf − D̃(∆)

)+
]

(3.129)

s.t. E

[(
D̃(∆) − Bf

)+
]
≤ BOγ

target (3.130)

∆, Bf ∈ N . (3.131)

Since the expected fast order quantity is fixed for a given ∆, c · E
[
Qf
]

becomes a

fixed constant for a given ∆. Moreover, the properties of Lemma 3.3.3.3 also hold

for the DIP under a γ-service level constraint. The same argumentation as in the

COP case can be pursued. That means, the smallest integer Bf that satisfies (3.130)
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is the optimal solution to the optimization problem and it can be found by a simple

numerical method like a bisection procedure.

The optimization problem for the β-service level is given as:

min TRCβ
DIP (∆, Bf) = c · E

[
Qf
]
+ h · E

[(
Bf − D̃(∆)

)+
]

(3.132)

s.t. E

[(
D̃(∆) − Bf

)+
]
− E

[(
D̃(∆)beg − Bf

)+
]
≤ BOβ

target (3.133)

∆, Bf ∈ N (3.134)

with BOβ
target = (1 − βtarget) µ for βtarget ∈ (0, 1), where the random variable

D̃(∆)beg is defined as

Pr
{

D̃(∆)beg = x
}

=
∞∑

i=0

Pr
{
D(Lf ) = x + i

}
· Pr {O(∆) = i} . (3.135)

It can be shown that the properties of Lemma 3.3.3.3 adjusted to the DIP case still

hold. Consequently, the optimal Bf is the smallest value that satisfies (3.133).

Further aspects. Veeraraghavan and Scheller-Wolf (2008) extend the DIP to in-

corporate capacity constraints on the orders placed with the fast and slow supplier.

They show that, also under these circumstances, the overshoot process is indepen-

dent of Bf and only dependent on ∆. Furthermore, since they use simulation to

determine the stationary overshoot distribution, their method can also be applied to

settings with non-stationary demand, random stoppages, random yield, and certain

types of lead-time variability.

Arts et al. (2009) also address the aspect of lead-time variability in the DIP. They

allow for a stochastic integer lead time of the slow supplier. Provided that the lower

bound of the support of this random variable is at least Lf + 1, it is shown that the

separability result of the deterministic lead-time case still holds, i.e. the overshoot

and order processes only depend on ∆ and not on the concrete values of Bf and Bs.

Furthermore, approximations of the transition probabilities for the one-dimensional

Markov Chain approach (see above) based on limiting results are derived.
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3.3.3.4 Order-splitting policy

Policy description

In the literature, order-splitting policies (OSPs) are usually studied in deterministic

demand, stochastic lead-time settings as an effective means to pool lead-time risk.

A recent overview is presented in Thomas and Tyworth (2006). In contrast to the

previously described policies, which could also be used to this end, an OSP has

a simpler policy structure and therefore lends itself to a more thorough analytical

investigation. It only considers the total order quantity in a period. This quantity

corresponds to the demand of the previous period, because (in this thesis) it is

assumed that an order-up-to policy is in place, which uses the slow inventory position

as order trigger. The decision, which remains, is how to allocate the total order

quantity across the two suppliers. The proportion that is sourced from each supplier

is called the allocation or sourcing fraction. (In the remainder of the thesis only the

latter term will be used.)

Since most contributions consider deterministic demand models, the (optimal) sourc-

ing fraction is determined ex ante according to the demand and cost parameter

settings. No periodical adjustment of the fraction takes place. In situations with

stochastic demand and deterministic lead times, such a ‘fixed’ OSP is rather un-

usual, because it is presumably ineffective due its inflexibility to adjust the sourcing

fraction. Intuitively, this can be explained as follows. Imagine several successive

periods with low demand. The OSP would place orders with the fast and more

expensive supplier, even though no stockout is imminent. In such situations, the

previously mentioned policies (SIP, COP, DIP) would not order anything from the

fast supplier and thus incur a lower cost.

The reason why such a fixed OSP is presented here, anyway, is its analytical

tractability. This aspect is less important in the single-echelon context studied

in this chapter, but becomes highly relevant in the multi-echelon setting analyzed

in Chapter 4.5. Moreover, an analysis of the OSP with deterministic lead times, as

presented in this section, is not available in the literature.
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Policy evaluation

Let δm where m ∈ {f, s} denote the sourcing fraction with the fast and slow supplier.

The following logical constraints need to hold:

δm ≥ 0 m ∈ {f, s} (3.136)

δf + δs = 1 . (3.137)

In each period, the order quantities with both suppliers are given as

Qf
t = δf · dt−1 = (1 − δs) · dt−1 (3.138)

Qs
t = δs · dt−1 , (3.139)

i.e. they only depend on the sourcing fractions. On average, the expected order

quantities are

E
[
Qf
]

= δf · µ = (1 − δs) · µ (3.140)

E [Qs] = δs · µ . (3.141)

Next, an expression for the net stock is derived. W.l.o.g. it is assumed that

NS0 = Bs.

NSt = Bs −
t∑

i=0

dt−i +
t∑

i=Ls

Qs
t−i +

t∑

i=Lf

Qf
t−i

= Bs −
t∑

i=0

dt−i + δs ·
t∑

i=Ls+1

dt−i + δf ·
t∑

i=Lf+1

dt−i

= Bs −
Ls∑

i=0

dt−i + δf ·
Ls∑

i=Lf+1

dt−i

= Bs −
Lf∑

i=0

dt−i − δs ·
Ls∑

i=Lf+1

dt−i . (3.142)

Define

Ď(δs) = D(Lf + 1) + δsD(L∆) . (3.143)
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Then, under stationary conditions t → ∞ the net stock results as

NS = Bs − Ď(δs) (3.144)

with

E
[
Ď(δs)

]
=
(
(Lf + 1) + δsL∆

)
µ (3.145)

VAR
[
Ď(δs)

]
=
(
(Lf + 1) + [δs]2L∆

)
σ2 . (3.146)

(3.144) shows that for a given δs, the net stock only depends on Bs. Consequently,

given the stationary distribution of Ď(δs) the optimal Bs follows from (3.35) with

D̂(∆) replaced by Ď(δs). The expected on-hand stock and backorders for Bs∗(δs)

are computed according to (2.48) and (2.49) as

E
[
OH(Bs∗(δs))

]
=

Bs∗∑

x=0

(
Bs∗ − x

)
· Pr

{
Ď(δs) = x

}
(3.147)

E
[
BO(Bs∗(δs))

]
=

∞∑

x=Bs∗+1

(
x − Bs∗

)
· Pr

{
Ď(δs) = x

}
. (3.148)

Policy optimization

According to (3.3),

TRCOSP (δs, Bs∗(δs)) =

h

Bs∗∑

x=0

(
Bs∗ − x

)
Pr
{
Ď(δs) = x

}
+ b

∞∑

x=Bs∗+1

(
x − Bs∗

)
Pr
{
Ď(δs) = x

}
+ c (1 − δs) µ.

(3.149)

Lemma 3.3.3.6 If the critical ratio assumes a value such that a positive safety

stock is required, i.e. Bs∗(δs) ≥ E
[
Ď(δs)

]
, and the demand distribution is strongly

unimodal, the TRCOSP function is unimodal in δs.
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Proof:

See Appendix B.5. �

If TRCOSP is unimodal in δs, the optimal δs can be found by a simple one-dimensional

search procedure like a golden section search over the feasible region 0 ≤ δs ≤ 1.

Unfortunately, this could only be shown so far for critical ratios that require a

positive safety stock, i.e. Bs∗(δs) ≥ E
[
Ď(δs)

]
, and strongly unimodal demand dis-

tributions, i.e. a distribution that is still unimodal after convolution, which applies

to all distributions analyzed in this thesis (Lemma 3.3.3.6).

If these prerequisites are not met, discretization needs to be applied to δs. Then,

the optimal inventory control parameters can be found by a full-enumerative one-

dimensional search over δs over the feasible region 0 ≤ δs ≤ 1. The procedure is as

follows:

1. For each δs, compute the respective Bs∗ from (3.35) with D̂(∆) replaced by

Ď(δs).

2. The globally optimal parameters are determined as

(δs∗ , Bs∗) = argmin
(δs,Bs∗(δs))

TRCOSP

(
δs, Bs∗(δs)

)
. (3.150)

Special case: Normally-distributed demand

If period demand is normally distributed, the demand random variable Ď can be

standardized (see Section 2.1.1), which yields

kĎ =
x − E

[
Ď(δs)

]
√

VAR
[
Ď(δs)

] =
x −

(
(Lf + 1) + δsL∆

)
µ

σ
√

(Lf + 1) + [δs]2L∆
. (3.151)

Applying standardization to Bs gives

k =
Bs −

(
(Lf + 1) + δsL∆

)
µ

σ
√

(Lf + 1) + [δs]2L∆

⇒ Bs =
(
(Lf + 1) + δsL∆

)
µ + k · σ

√
(Lf + 1) + [δs]2L∆ . (3.152)
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Similar to the other policies, the optimal order-up-to level for a given δs can be

determined according to (3.35) with D̂(∆) replaced by Ď(δs). Due to the continuous

nature of the demand, equality must hold in (3.35). Using k and the standard normal

probability density and cumulative distribution function, φ(x) and Φ(x), instead of

Bs and Ď(δs), the optimal k results as

FĎ(δs)(B
s) =

b

b + h
⇒ Φ (k) =

b

b + h
⇒ k = Φ−1

(
b

b + h

)
. (3.153)

Applying standardization to the expected backorder integral yields

E [BO] = σ
√

(Lf + 1) + [δs]2L∆

∫ ∞

k

(x − k)φ(x) dx (3.154)

= σ
√

(Lf + 1) + [δs]2L∆ (φ(k) − k(1 − Φ(x))) . (3.155)

Similarly, the expected on-hand stock integral becomes

E [OH ] = σ
√

(Lf + 1) + [δs]2L∆

∫ k

−∞

(k − x)φ(x) dx (3.156)

= σ
√

(Lf + 1) + [δs]2L∆ (kΦ(k) + φ(k)) . (3.157)

Consequently, the TRC function can be rewritten as follows

TRCnorm
OSP = h · σ

√
(Lf + 1) + [δs]2L∆ (kΦ(k) + φ(k))

+ b · σ
√

(Lf + 1) + [δs]2L∆ (φ(k) − k(1 − Φ(x)))

+ c · (1 − δs)µ . (3.158)

The optimal δs can be found by solving the following optimization problem:

min TRCnorm
OSP (δs) (3.159)

s.t. 0 ≤ δs ≤ 1 (3.160)

and exploiting the following lemma:

Lemma 3.3.3.7 The cost function TRCnorm
OSP is convex in δs.
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Proof:

See Appendix B.6. �

Convexity of the objective function (Lemma 3.3.3.7) implies that the first-order

conditions are sufficient for optimality. For ease of presentation of (3.158), define

rOH = h · σ (kΦ(k) + φ(k)) (3.161)

rBO = b · σ (φ(k) − k(1 − Φ(x))) (3.162)

which are both non-negative for all feasible values of k. Then, the Lagrange function

is

L := L(δs, ω1, ω2) = rOH

√
(Lf + 1) + [δs]2L∆ + rBO

√
(Lf + 1) + [δs]2L∆

+ c · (1 − δs)µ + ω1δ
s + ω2(1 − δs) (3.163)

with the Lagrangian multipliers ω1 and ω2 associated with (3.160). The Karush-

Kuhn-Tucker conditions (KKT) for an optimal solution can be stated as

∂L

∂δs
= rOH

(
(Lf + 1) + [δs]2L∆

)− 1
2 δsL∆ + rBO

(
(Lf + 1) + [δs]2L∆

)− 1
2 δsL∆ − c · µ

+ ω1 − ω2
!
= 0 (3.164)

where ω1 and ω2 must satisfy the complementary slackness conditions

ω1 ≥ 0 and ω1 · δs = 0 (3.165)

ω2 ≥ 0 and ω2 · (1 − δs) = 0 . (3.166)

From (3.164), (3.165), and (3.166) it follows that the cases (i) ω∗
1 > 0 and ω∗

2 = 0,

(ii) ω∗
1 = 0 and ω∗

2 > 0, and (iii) ω∗
1 = ω∗

2 = 0 lead to feasible solutions. For all three

cases, the KKT are satisfied, which indicates that an optimal solution can either be

an inner solution (case (iii)) or one of the extreme solutions (case (i), i.e. δs = 0, or

case (ii), i.e. δs = 1). By solving (3.164) for δs the optimal values for the different
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cases are found as

δs∗ =






0 L∆(rOH + rBO)2 ≤ (c · µ)2

1
(L∆(rOH+rBO))

2

Lf+1+L∆ < (c · µ)2 < L∆(rOH + rBO)2

√
Lf +1

„

L∆(rOH+rBO)

c·µ

«2

−L∆

otherwise

(3.167)

(see Appendix B.7).

Extensions

The aspects covered in this subsection extend to the service-level optimization mod-

els under the OSP. At the end, a brief remark on similar policies to the OSP is

made, too.

Service-level model. Due to the backorder cost-service level relation α = b
b+h

,

which is known from the single-sourcing order-up-to level model, the optimal Bs for

a given δs follows from (3.35) with Ď(δs) (instead of D̂(∆)) in the α-service level

case, because the net stock computation in the OSP model can be transformed to

resemble the one in the single-sourcing order-up-to level model. Then, the same

arguments as in the SIP case can be applied. Hence, the optimization can be done

as in the backorder cost model.

The γ-service level optimization model is

TRCγ
OSP (δs, Bs) = c · (1 − δs)µ + h · E

[(
Bs − Ď(δs)

)+]
(3.168)

s.t. E

[(
Ď(δs) − Bs

)+] ≤ BOγ
target (3.169)

0 ≤ δs ≤ 1 (3.170)

Bs ∈ N . (3.171)

For a given δs the expected fast order quantity (first term in the objective function)

is fixed. Since the properties of Lemma 3.3.3.3 also hold for the OSP (based on the

same arguments), the smallest integer Bs that satisfies (3.169) is the optimal one.

Thus, the optimization only needs to be done over δs.
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In the β-service level problem, the random variable Ď(δs)beg needs to be computed,

which is

Ď(δs)beg = D(Lf) + δsD(L∆) . (3.172)

Given this random variable, the optimization problem is similar to the γ-service

level one with the same properties.

TRCβ
OSP (δs, Bs) = c · (1 − δs)µ + h · E

[(
Bs − Ď(δs)

)+]
(3.173)

s.t. E

[(
Ď(δs) − Bs

)+]− E

[(
Ď(δs)beg − Bs

)+] ≤ BOβ
target (3.174)

0 ≤ δs ≤ 1 (3.175)

Bs ∈ N . (3.176)

where BOβ
target = (1 − βtarget) µ. Therefore, the optimal Bs is the smallest value

that satisfies (3.174).

Further aspects. Recently, policies that adjust the sourcing fractions periodically

according to the outstanding orders have been studied. The interested reader is

being referred to Sheopuri et al. (2010).

3.3.4 Summary and implications

In this section, several inventory control policies for a single-echelon periodic-review

inventory model with dual sourcing have been studied. It has been shown how

to derive the optimal policy. While for the case of consecutive lead times, i.e. a

lead-time difference of one period between the two suppliers, the optimal policy is

known to be the single-index policy, in the case of offsetting lead times it needs to

be derived by using a Markov Decision Process formulation. Due to the increased

complexity and computational intractability of the optimal policy in larger settings,

several simpler non-optimal policies have been discussed, i.e. the single-index (SIP),

constant-order (COP), dual-index (DIP), and order-splitting policy (OSP). For these

policies, relevant results from the literature have been reiterated using a unified

notational framework and complemented at certain points by new aspects.
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For each policy, the backorder-cost model has been addressed in detail and a proce-

dure for the optimal policy parameter determination has been presented. Service-

level models have also been dealt with in the ‘Extension’ subsection of each policy

section. In case of the COP and DIP, the derivation of the stationary overshoot

distribution has been identified as the biggest challenge in the optimization process.

Exact and approximate methods for the computation of this distribution have been

discussed. A simplification results for the special case of geometric demand, where

a recursive procedure for the derivation of the overshoot distribution can be applied

in the COP case and a closed-form expression is available in case of the DIP. The

parameter optimization is also simplified in the setting with consecutive lead times,

where one of the parameters of the SIP can be calculated directly via a critical

fractile (in)equality and an analytical expression for the other parameter can be

derived, from which the optimal value can be computed numerically. Moreover, in

case of normally distributed period demand, a closed-form expression for the opti-

mal sourcing fraction of the OSP has been derived. The other policy parameter can

be computed as the solution to an (in)equality.

3.4 Comparison of the constant-order and

dual-index policy

3.4.1 Introduction

In the previous section, several dual-sourcing policies have been described and proce-

dures for the optimal inventory control parameter computation presented. In order

to be able to choose the right policy for a specific setting, knowledge about their

cost performance and about the drivers of a potential performance gap is required.

Such an analysis is conducted in this section.

A comparison of the cost performance of the SIP and the DIP has already been

done by Scheller-Wolf et al. (2007). They find that the best DIP is superior to

the SIP in most of the investigated instances (even though often not by far). The

maximum difference is about 3%. Furthermore, Veeraraghavan and Scheller-Wolf

(2008) show that the DIP mimics the behavior of the optimal policy very closely in
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settings where the optimal policy can still be computed via the MDP described in

Section 3.3.2. Based on these findings the DIP can be regarded as a quite effective

dual-sourcing policy.

Moreover, as already explained in the respective policy section, the OSP with fixed

sourcing fractions is not a reasonable dual-sourcing policy for the single-echelon

setting. Consequently, this policy is excluded from the upcoming analysis. Hence,

the only two policies, whose performance has not yet been compared, are the COP

and the DIP (excluding the SIP due to its slightly inferior performance to the DIP.)

This comparison is the main focus of this section, which is based on Klosterhalfen

et al. (2010a).

Section 3.4.2 develops certain presumptions about the cost performance of the two

policies based on theoretical considerations. In Section 3.4.3, a numerical study is

conducted to gain further insights. Section 3.4.4 summarizes the main findings.

3.4.2 Theoretical considerations

The COP and DIP result in very different order processes. Due to the employment

of two order-up-to levels the DIP can vary both order quantities. In periods with

high demand, large replenishment orders can be placed. In case of low demand, a

small order can be made. The COP, on the other hand, does not have such flexibility

options. The minimum quantity that is delivered each period corresponds to the

fixed order quantity from the slow supplier. Only an increase of the total order

quantity through a fast order is possible. Thus, at first glance one would conjecture

that this lack of flexibility puts the COP at a major disadvantage, i.e. causing higher

cost and rendering the COP less favorable compared to the DIP.

However, a more detailed analysis based on the extreme strategies that both policies

can prescribe, i.e. slow and fast single sourcing, produces slightly different insights

into the policy costs and their relative performance. Since the DIP can mimic

both single-sourcing order-up-to policies, the optimal DIP is at least as good as the

best single-sourcing strategy. Whether slow or fast single sourcing is advantageous

depends on the trade-off between the expediting premium, which has to be paid

when sourcing from the faster supplier, and the higher inventory holding costs in
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case of slow single sourcing due to the longer lead time and therefore larger safety

stocks. Thus, as the lead-time difference increases, slow single sourcing becomes

less attractive and, at some point, is dominated by fast single sourcing. Figure 3.1

illustrates this relationship. Fast single sourcing is represented by a horizontal line,

because its cost does not vary in the slow lead time. On the contrary, the slow

single-sourcing cost increases, as the slow lead time increases. Even though it starts

off at a lower cost, once the slow lead time exceeds a certain length, its cost lies

above the fast single-sourcing cost.
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Figure 3.1: Relationship between single- and dual-sourcing policy costs for Lf = 1

The same reasoning also induces the DIP to source more items from the fast supplier,

as the slow lead time increases, and therefore it approaches the fast single-sourcing

cost. However, since the DIP can mimic both single-sourcing order-up-to policies,

it is never worse than any of two. On the other hand, the COP cost (similar to the

fast single-sourcing cost) is independent of the slow lead time, because it does not

influence the choice of the control parameters. Consequently, its cost is also given by

a horizontal line in Figure 3.1. Since the maximum possible COP cost corresponds

to the fast single-sourcing cost, there must be some intersection (or at least cost

equality) of the two dual-sourcing policies.

Due to the complexity of both dual-sourcing policies, an analytical derivation of

an intersection is omitted. Instead, a numerical study is conducted to gain further

insights.
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3.4.3 Numerical study

3.4.3.1 Numerical design

Three different demand distributions are considered: two frequently used discrete

ones, i.e. (1) the Poisson distribution to model small coefficients of variation (CV s)

and (2) the negative binomial (nbin) distribution for larger CV s. Thirdly, a dis-

cretized Gamma distribution is used, which can reflect both small and large CV s

(see Section 2.1.1 for details). Since only the expediting premium, c, is relevant

for TRC, cs = 100 is fixed and only cf ∈ {102, 105, 110} varies. This represents a

relative premium, c
cs , of 2%, 5%, and 10%. The holding cost per unit and period

is h ∈ {0.1, 0.5, 1.0}, which corresponds to a yearly rate for interest and storage

on cs of 5%, 25%, and 50% under weekly ordering. For each h the corresponding

backorder cost per unit and period is determined according to a b
b+h

-ratio of 95%

and 99%. As lead-time difference the smallest one, for which the optimal policy is

unknown, i.e. L∆ = 2, is considered as well as larger differences of 5 and 10. All

parameters are summarized in Table 3.2.

Type Parameter Value

Demand Poisson Mean, µ 10 100
CV 0.32 0.1

negative Mean, µ 10 100
binomial CV 0.49, 1.05 0.51, 1.0

discretized Mean, µ 10, 100
Gamma CV 0.5, 1.0, 1.5

Lead times Lf 1, 3
L∆ 2, 5, 10

Costs cf (given cs = 100) 102, 105, 110
h 0.1, 0.5, 1.0

Table 3.2: COP-DIP comparison – Parameter values

In total, 1224 instances are analyzed. (By simply permuting all factors and lev-

els 1296 instances result. 72 instances, for which c > b · L∆, are excluded. For

these instances it is cheaper to wait and incur backorder costs than to use the fast

supplier.) Note that the numerical design considered by Veeraraghavan and Scheller-

Wolf (2008) in their DIP analysis is not applied, because for many real-world settings



3.4 Comparison of the constant-order and dual-index policy 101

their holding cost parameter seems to be fairly high.

3.4.3.2 Computational aspects

The complexity of the Markov Chain for the exact computation of the stationary

overshoot distribution in the DIP increases considerably with an increase in L∆

and µ, because the state space grows significantly (see Section 3.3.3.3, ‘Policy eval-

uation’). That is why only instances with small values for these parameters can

be efficiently solved with this approach. The theoretical analysis in Section 3.4.2

reveals, however, that especially instances with a large lead-time difference are of

interest, because in such settings the COP might outperform the DIP. Therefore,

not the Markov Chain approach, but the simulation-based optimization procedure

proposed by Veeraraghavan and Scheller-Wolf (2008) is employed, which does not

suffer from this dimensionality problem. The DIP parameter optimization procedure

remains the same as described in Section 3.3.3.3 (‘Policy optimization’). The only

difference is that the stationary overshoot distribution is computed via simulation

instead of using the Markov Chain. In order to ensure a fair comparison, the same

is done in the COP optimization (see Section 3.3.3.2 ‘Policy optimization’). In the

simulation models of both policies common random numbers are used. The optimal

single-sourcing order-up-to levels are also determined based on the random number

sequences used in the simulation instead of the theoretical distribution. For each

instance, 10 simulation runs with 100,000 periods each are conducted.

The simulation-optimization results are validated by comparing them to the results

of the Markov Chain for instances with L∆ = 2 and µ = 10, for which the Markov

Chain results can still be obtained in a reasonable amount of time. For compu-

tational reasons in the COP, a maximum overshoot state is determined such that

the probability for larger states is negligible. The appropriate choice is checked by

simulation (see, e.g., Tijms (1994), p. 119). Similarly, all considered demand distri-

butions are restricted to a maximum value D̄, which in itself unifies the remaining

probability mass of 0.001%. Given D̄, the upper bound on ∆ in the DIP can be set

to (Ls + 1) · D̄ instead of ∞. The results reveal that the cost difference is within

about 1% for all instances, although the optimal parameter combination sometimes

slightly differs. This is due to the flat shape of the cost curve around the opti-
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mum. Since all policies are optimized with respect to common random numbers,

the relative policy performance is not affected, however.

In order to check the significance of the cost difference between the policies an

ANOVA is conducted with a level of significance of 95%. The required normal dis-

tribution assumption of the 10 cost results is confirmed by the Kolmogorov-Smirnov

test (significance level: 99%). All numbers in the upcoming tables refer to instances

with a significant cost difference. The significance test of the cost difference is not

performed for the comparison between the DIP and single sourcing, because the DIP

will in fact prescribe single sourcing in some instances. Here, simply the average

across the 10 simulation runs is reported.

3.4.3.3 Results

The analysis reveals that the tendency of the results for instances with µ = 10

and µ = 100 basically coincides. That is why for ease of presentation, the results

analysis and interpretation in this section is based on instances with µ = 100 only.

The tables with the results for instances with µ = 10 are presented in Appendix

A.1. First, the advantage of dual sourcing over single sourcing is analyzed. The

following observations can be made.

Observation 1 If inventory holding is inexpensive, the COP performs worse than

the best single-sourcing order-up-to policy.

For h = 0.1, the COP performs worse than the best single-sourcing order-up-to

policy in all instances with L∆ = 2 or 5 and in almost all instances with L∆ = 10

(see Table 3.3). By using a single supplier up to 69% of the cost could be saved.

For higher holding cost values (h = 0.5 or 1.0), the COP performance improves. For

h = 1.0 and L∆ = 10, the COP outperforms single sourcing in all instances.

In instances with a low h, slow single sourcing is the superior single-sourcing strategy

(unless L∆ is very large). Generally speaking, the COP’s advantage over slow single

sourcing lies in a lower on-hand stock, which is obtained by relying on the fast

supplier. However, if h is low, little can be gained from an on-hand stock reduction.

Furthermore, this advantage only materializes for large lead-time differences, where
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single sourcing requires a large safety/on-hand stock. In instances with a small L∆,

the COP additionally suffers from the fact that the total order quantity can only be

increased above Q, but not lowered. In order to allow for some variation of the total

order quantity, which is reasonable in the case of stochastic demand, at least 1 unit,

on average, needs to be ordered from the fast supplier. For this unit the expediting

premium has to be paid. Since this premium is large compared to h, the COP is

inferior.

TRC
BS

a ≥ TRCDIP TRCBS > TRCCOP TRCBS < TRCCOP

No. TRCBS−TRCDIP

TRCDIP
No. TRCBS−TRCCOP

TRCCOP
No. TRCCOP−TRCBS

TRCCOP
n/sb

h = 0.1 Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max Inst.

L∆ = 2
(1, 3) 24 1.40% 0.00% 6.01% 0 – – – 24 44.12% 20.87% 69.07% 0
(3, 5) 24 0.44% 0.00% 2.47% 0 – – – 24 41.37% 21.00% 65.16% 0

L∆ = 5
(1, 6) 30 4.87% 0.00% 15.53% 0 – – – 30 32.75% 3.86% 59.86% 0
(3, 8) 30 2.30% 0.00% 8.53% 0 – – – 30 33.01% 8.47% 57.58% 0

L∆ = 10
(1, 11) 36 10.46% 0.00% 29.30% 8 8.84% 1.18% 17.47% 28 29.07% 1.71% 56.60% 0
(3, 13) 36 6.32% 0.00% 18.36% 3 5.65% 4.11% 8.16% 30 28.96% 4.37% 55.70% 3

h = 0.5 Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max Inst.

L∆ = 2
(1, 3) 36 5.06% 0.01% 12.66% 4 2.92% 1.49% 5.42% 32 22.29% 1.73% 49.80% 0
(3, 5) 36 2.06% 0.00% 6.45% 0 – – – 35 20.37% 2.21% 45.65% 1

L∆ = 5
(1, 6) 36 16.05% 1.83% 29.52% 18 16.34% 2.95% 26.90% 18 13.64% 0.75% 34.15% 0
(3, 8) 36 8.96% 0.58% 17.50% 13 10.57% 3.52% 14.90% 21 14.50% 2.31% 33.81% 2

L∆ = 10
(1, 11) 36 30.92% 9.52% 54.57% 32 28.77% 1.18% 58.10% 4 6.02% 1.71% 14.12% 0
(3, 13) 36 20.64% 5.51% 35.87% 27 20.92% 4.11% 37.80% 6 8.74% 4.37% 17.76% 3

h = 1.0 Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max Inst.

L∆ = 2
(1, 3) 36 8.28% 0.59% 16.24% 12 7.61% 2.51% 11.63% 23 14.56% 0.59% 34.06% 1
(3, 5) 36 3.76% 0.06% 8.54% 8 3.35% 1.62% 5.83% 28 13.11% 1.02% 31.08% 0

L∆ = 5
(1, 6) 36 21.08% 6.74% 37.40% 30 18.45% 2.95% 38.06% 6 5.55% 0.75% 13.49% 0
(3, 8) 36 12.71% 3.01% 22.34% 24 12.39% 3.45% 22.44% 10 6.82% 1.39% 16.07% 2

L∆ = 10
(1, 11) 36 36.18% 6.87% 70.12% 36 36.44% 8.20% 77.74% 0 – – – 0
(3, 13) 36 25.09% 5.90% 44.48% 36 24.27% 4.30% 49.50% 0 – – – 0

aBS = Best single-sourcing policy
bn/s = not significant

Table 3.3: Single- vs. dual-sourcing cost for µ = 100
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Observation 2 If the lead-time difference is small, single sourcing is a reasonable

strategy.

In instances with L∆ = 2, where the COP delivers poor results, the overall benefit

that can be gained from dual sourcing using the DIP is not very large, either. It

ranges between 0.4-8% on average and 16% at most (see Table 3.3). Contrasting

these expected gains of the DIP with the additional policy complexity, single sourcing

is found to be a reasonable strategy in these cases. Far greater benefits from dual

sourcing of up to 78% can be realized in instances with a larger L∆ of 5 or 10.

Due to Observations 1 and 2, instances with h = 0.1 and L∆ = 2 are excluded from

the further analysis. A more detailed COP-DIP comparison is conducted for those

instances, where dual sourcing is most valuable. All effects are mentioned first and

the explanation presented thereafter. The comparison reveals the following issues.

Observation 3 With an increase in the lead-time difference the performance gap

between the COP and DIP closes.

From Tables 3.4 and 3.5 it can be observed that as L∆ increases from 5 to 10,

the COP cost inferiority decreases, on average, from 16% to 5% for Poisson, 12%

to 3% for negative binomial, and 11.5% to 3.5% for Gamma demand. The maxi-

mum difference also diminishes from 55% to 28%, 39% to 18%, and 39% to 19%,

respectively.

Observation 4 With an increase in the holding cost the performance gap between

the COP and DIP closes.

As h increases from 0.5 to 1.0, the average cost inferiority decreases to about 0.5% for

L∆ = 10. This means that both policies perform almost equally well. For L∆ = 5,

the COP still results in about 8-9% higher costs.

Observation 5 With an increase in the expediting premium the performance gap

between the COP and DIP increases.
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While for L∆ = 5 and cf = 102, the average cost difference is only about 2%, this

increases to 9-14% for cf = 105 and 20-33% for cf = 110 (for the different demand

types). However, similar to the worse COP performance, the average DIP benefit

over single sourcing diminishes from about 20% to 5-10%. Maximum cost savings

decrease from about 35% to 13-22%. For L∆ = 10 and cf = 102 even an average

cost superiority of the COP over the DIP of about 2-3% can be observed. With

a cf -increase to 105 and 110, this turns into a cost inferiority of about 2-3% and

9-15%, respectively. Maximum values increase from about -1% to 18-29%. The

striking observation that can be made here is the following:

Observation 6 The COP can outperform the DIP.

Already for L∆ = 5, instances can be found, where the COP outperforms the DIP.

This is indicated by a negative number in the next-to-last ‘Min’-column. The cost

savings only range between 0.3-1%, however. For L∆ = 10, larger cost savings of 1.5-

5% can be realized by using the COP instead of the DIP. For instances with cf = 102

this becomes most obvious. Here, the COP delivers better results irrespective of the

other parameter values. Surely, the cost savings are not very large, but the major

finding is that the COP can outperform the DIP at all.

Observation 7 With an increase in the b
b+h

-ratio, the performance gap between the

COP and DIP closes.

As b
b+h

increases from 0.95 to 0.99 the cost difference decreases on average by about

4% to 14% (Poisson) and 10% (others) for L∆ = 5 and by about 3% to 4% (Poisson)

and 3% (others) for L∆ = 10 . Moreover, the dual-sourcing advantage over single

sourcing becomes larger. The higher backorder cost forces the single sourcing policy

to hold more stock, whereas the dual-sourcing policies can rely on the fast supplier.
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Best single (BS) vs. DIP Best single (BS) vs. COP COP vs. DIP

No. TRCBS−TRCDIP

TRCDIP
No. TRCBS−TRCCOP

TRCCOP
No. TRCCOP−TRCDIP

TRCDIP

Poisson Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 6) 12 15.80% 1.83% 35.05% 12 2.08% -34.15% 36.42% 12 16.60% -1.01% 54.64%
(3, 8) 12 8.40% 0.58% 20.20% 12 -4.59% -33.81% 20.53% 12 16.03% -0.28% 51.96%

h
0.5 12 8.80% 0.58% 24.22% 12 -9.59% -34.15% 20.04% 12 23.64% 3.48% 54.64%
1.0 12 15.41% 3.01% 35.05% 12 7.08% -16.07% 36.42% 12 8.99% -1.01% 23.39%

b
b+h

0.95 12 9.82% 0.58% 29.64% 12 -5.04% -34.15% 30.41% 12 18.93% -0.59% 54.64%
0.99 12 14.38% 2.93% 35.05% 12 2.53% -25.46% 36.42% 12 13.70% -1.01% 41.22%

cf

102 8 20.82% 9.45% 35.05% 8 18.58% 3.52% 36.42% 8 2.07% -1.01% 5.73%
105 8 10.42% 3.01% 21.05% 8 -2.32% -16.07% 14.24% 8 13.67% 5.96% 23.39%
110 8 5.06% 0.58% 12.55% 8 -20.03% -34.15% -4.18% 8 33.21% 16.19% 54.64%

nbin Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 6) 24 19.16% 3.86% 37.17% 24 8.66% -25.03% 37.93% 22 12.22% -0.55% 38.53%
(3, 8) 24 11.22% 1.61% 22.24% 22 1.53% -25.73% 22.09% 21 12.39% 0.54% 36.81%

CV
0.51 24 15.05% 1.61% 37.17% 24 4.27% -25.73% 37.93% 22 13.09% -0.55% 38.53%
1.0 24 15.33% 2.93% 29.17% 22 6.32% -21.32% 26.02% 21 11.48% 0.54% 32.39%

h
0.5 24 12.75% 1.61% 29.17% 23 -1.18% -25.73% 26.02% 24 15.73% 2.45% 38.53%
1.0 24 17.63% 5.08% 37.17% 23 11.68% -10.63% 37.93% 19 7.98% -0.55% 18.01%

b
b+h

0.95 24 13.41% 1.61% 33.41% 24 2.06% -25.73% 33.85% 22 14.00% -0.32% 38.53%
0.99 24 16.96% 5.07% 37.17% 22 8.73% -17.04% 37.93% 21 10.52% -0.55% 28.69%

cf

102 16 21.97% 12.39% 37.17% 16 20.05% 7.60% 37.93% 11 2.33% -0.55% 4.45%
105 16 14.81% 5.08% 26.64% 15 5.54% -10.63% 21.91% 16 9.49% 3.65% 18.01%
110 16 8.79% 1.61% 19.01% 15 -10.83% -25.73% 7.40% 16 21.97% 10.14% 38.53%

Gamma Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 6) 36 19.09% 3.66% 37.40% 36 9.34% -25.34% 38.06% 32 11.45% -0.47% 38.85%
(3, 8) 36 11.39% 1.56% 22.34% 34 2.46% -25.95% 22.44% 31 11.44% 0.53% 37.15%

CV
0.5 24 14.85% 1.56% 37.40% 24 4.26% -25.95% 38.06% 22 12.93% -0.47% 38.85%
1.0 24 15.45% 2.98% 29.52% 22 6.75% -21.01% 26.90% 20 11.67% 2.06% 31.82%
1.5 24 15.44% 4.70% 29.03% 24 7.04% -17.03% 25.43% 21 9.68% 0.53% 27.40%

h
0.5 36 13.58% 1.56% 29.52% 35 0.68% -25.95% 26.90% 36 14.34% 2.06% 38.85%
1.0 36 16.91% 4.90% 37.40% 35 11.31% -10.70% 38.06% 27 7.59% -0.47% 17.91%

b
b+h

0.95 36 13.96% 1.56% 33.18% 36 3.34% -25.95% 33.61% 32 13.20% -0.32% 38.85%
0.99 36 16.52% 4.84% 37.40% 34 8.81% -17.00% 38.06% 31 9.64% -0.47% 28.70%

cf

102 24 19.77% 7.23% 37.40% 24 18.04% 6.70% 38.06% 15 2.28% -0.47% 4.29%
105 24 16.01% 4.90% 27.22% 23 7.51% -10.70% 22.83% 24 8.55% 3.26% 17.91%
110 24 9.95% 1.56% 21.69% 23 -8.09% -25.95% 11.60% 24 20.07% 8.58% 38.85%

Table 3.4: Single- vs. dual-sourcing cost for L∆ = 5, h = 0.5 and 1.0, µ = 100
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Best single (BS) vs. DIP Best single (BS) vs. COP COP vs. DIP

No. TRCBS−TRCDIP

TRCDIP
No. TRCBS−TRCCOP

TRCCOP
No. TRCCOP −TRCDIP

TRCDIP

Poisson Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 11) 12 36.59% 9.52% 70.12% 12 33.06% -14.12% 77.74% 12 4.46% -4.96% 27.53%
(3, 13) 12 23.15% 5.51% 44.48% 12 18.45% -17.76% 49.50% 12 5.43% -3.43% 28.29%

h
0.5 12 23.51% 5.51% 51.67% 12 15.11% -17.76% 56.40% 12 9.37% -3.03% 28.29%
1.0 12 36.23% 12.83% 70.12% 12 36.40% 4.30% 77.74% 12 0.51% -4.96% 8.18%

b
b+h

0.95 12 25.97% 5.51% 61.66% 12 21.01% -17.76% 70.09% 12 6.08% -4.96% 28.29%
0.99 12 33.77% 11.21% 70.12% 12 30.50% -7.54% 77.74% 12 3.81% -4.29% 20.42%

cf

102 8 46.18% 26.93% 70.12% 8 51.09% 28.63% 77.74% 8 -3.15% -4.96% -1.32%
105 8 27.38% 12.83% 46.20% 8 24.38% 4.30% 48.84% 8 2.78% -1.77% 8.18%
110 8 16.05% 5.51% 30.88% 8 1.80% -17.76% 24.84% 8 15.21% 4.84% 28.29%

nbin Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 11) 24 34.49% 12.95% 57.73% 24 31.84% -3.91% 64.08% 24 2.68% -3.87% 17.55%
(3, 13) 24 23.77% 7.79% 42.28% 23 21.22% -8.82% 46.01% 20 4.13% -2.55% 18.22%

CV
0.51 24 31.44% 7.79% 57.73% 23 29.78% -8.82% 64.08% 22 3.40% -3.87% 18.22%
1.0 24 26.82% 10.25% 45.29% 24 23.64% -4.84% 47.36% 22 3.28% -2.50% 15.86%

h
0.5 24 26.83% 7.79% 54.57% 23 21.89% -8.82% 58.10% 24 5.73% -2.63% 18.22%
1.0 24 31.43% 12.33% 57.73% 24 31.21% 9.72% 64.08% 20 0.48% -3.87% 5.85%

b
b+h

0.95 24 27.60% 7.79% 57.73% 24 24.18% -8.82% 64.08% 22 3.97% -3.87% 18.22%
0.99 24 30.66% 12.33% 54.57% 23 29.22% 4.68% 58.10% 22 2.72% -3.04% 13.04%

cf

102 16 34.46% 12.33% 57.73% 16 37.18% 13.83% 64.08% 16 -1.93% -3.87% -0.68%
105 16 31.87% 16.13% 49.63% 16 29.89% 9.72% 51.86% 12 2.38% -1.56% 5.85%
110 16 21.05% 7.79% 37.13% 15 11.95% -8.82% 33.12% 16 9.33% 3.02% 18.22%

Gamma Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 11) 36 31.91% 6.87% 59.42% 36 29.09% -4.35% 65.77% 34 2.86% -3.83% 18.27%
(3, 13) 36 22.16% 5.90% 42.25% 34 19.90% -9.10% 46.11% 27 4.45% -2.64% 18.95%

CV
0.5 24 31.65% 8.12% 59.42% 23 29.86% -9.10% 65.77% 23 3.39% -3.83% 18.95%
1.0 24 26.93% 10.57% 46.23% 24 23.85% -4.37% 47.78% 21 3.38% -2.51% 15.63%
1.5 24 22.52% 5.90% 40.09% 23 20.20% 6.70% 36.36% 17 4.05% -1.67% 13.68%

h
0.5 36 25.84% 8.12% 54.26% 34 21.30% -9.10% 58.08% 32 6.23% -2.52% 18.95%
1.0 36 28.23% 5.90% 59.42% 36 27.77% 6.70% 65.77% 29 0.64% -3.83% 6.09%

b
b+h

0.95 36 26.27% 8.12% 59.42% 35 23.38% -9.10% 65.77% 32 4.02% -3.83% 18.95%
0.99 36 27.80% 5.90% 54.26% 35 25.87% 4.11% 58.08% 29 3.07% -3.12% 13.60%

cf

102 24 27.67% 5.90% 59.42% 24 29.89% 6.70% 65.77% 19 -1.90% -3.83% -0.87%
105 24 30.68% 16.30% 49.39% 24 28.64% 9.62% 51.77% 18 2.32% -1.57% 6.09%
110 24 22.76% 8.12% 40.09% 22 14.50% -9.10% 36.36% 24 8.83% 2.73% 18.95%

Table 3.5: Single- vs. dual-sourcing cost for L∆ = 10, h = 0.5 and 1.0, µ = 100
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The only parameter effect not studied so far is the demand variability (CV ). From

Table 3.4 it can be observed that a CV -increase leads to a better COP performance.

The results of Table 3.5 suggest the same for negative binomially demand, but the

opposite for Gamma. A more detailed comparison for (Lf = 1, Ls = 11) reveals

that the effect, which demand variability has on the two policies, seems to depend

on which policy is superior (see Table 3.6). In instances with cf = 102, the COP

results in lower costs. A CV -increase reduces the COP cost advantage, i.e. the DIP

performance improves. For cf = 105 and h = 0.5, the DIP performs better. Now, a

CV -increase narrows the relative cost gap, too, i.e. the COP performance improves.

cf = 102 cf = 105

h CV Poisson nbin Gamma Poisson nbin Gamma

0.5 0.1 -2.90% – – 7.00% – –
0.5 (0.51) – -2.63% -2.52% – 4.83% 5.09%

1.0 – -1.67% -1.74% – 4.23% 4.21%
1.5 – – -1.07% – – 3.86%

1.0 0.1 -4.96% – – -1.18% – –
0.5 (0.51) – -3.87% -3.83% – -1.56% -1.41%

1.0 – -2.50% -2.51% – -0.88% -0.93%
1.5 – – -1.67% – – -0.45%

Table 3.6: CV -effect on TRCCOP −TRCDIP

TRCDIP
for (Lf = 1, Ls = 11), b

b+h
= 0.95, µ = 100

For the explanation of the effects, in particular the COP superiority in some in-

stances, the on-hand stock, backorders, and order quantities of both policies are

analyzed (see Table 3.7). Note that the non-integer numbers in the ‘Slow order’

COP column result from the fact that the average quantity across the 10 simulation

runs is reported. The sum of the expected regular and expedited order does not cor-

respond exactly to 100, because the actual mean per period of the random numbers

used in the simulation deviates slightly. As expected, an increase in the expediting

premium makes both policies order more units from the slow supplier. On the con-

trary, as the demand variability increases, both policies reduce the expected slow

order. This reduction is usually larger in the COP than in the DIP case. (Only for

cf = 102 and h = 1.0 it is almost identical.) The reason is that in the COP the

total order cannot be adjusted downwards below the slow (constant) order. Thus,

there is an increased risk of excessive on-hand stock, if the slow order is set too

large. Moreover, it can be observed that an increase in h causes an increase in the

expected fast order of both policies to reduce the on-hand stock. This increase is
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larger in the DIP than in the COP, which becomes most obvious for cf = 102. (For

cf = 105 and cf = 110, this tendency can also be observed, but only for CV = 0.5

or 1.0 and an increase from h = 0.5 to 1.0.) Although the DIP starts off with a

far lower fast order quantity for h = 0.1 and cf = 102, it orders basically the same

amount as the COP for h = 1.0, irrespective of the CV . While the backorders are

basically identical, too, the COP produces a lower on-hand stock. This eventually

leads to a lower total cost. Even in instances, where the slow order of the COP is

slightly higher than that of the DIP, e.g., for cf = 102 and h = 0.5, the cost savings

from the on-hand stock reduction outweigh the higher expediting cost and render

the COP superior.

Slow order Fast order On-hand stock Backorders Superior

cf CV h COP DIP COP DIP COP DIP COP DIP policy

102 0.5 0.1 93.00 97.76 7.01 2.25 217.07 245.20 2.37 2.63 DIP
0.5 86.20 88.70 13.81 11.31 157.08 172.85 2.29 2.33 COP
1.0 82.10 81.48 17.91 18.53 146.23 153.44 2.25 2.27 COP

1.0 0.1 87.00 95.00 13.03 5.03 436.63 484.38 6.04 6.31 DIP
0.5 74.80 78.36 25.23 21.67 322.18 345.19 5.93 5.97 COP
1.0 67.50 66.55 32.53 33.48 301.54 311.95 5.91 5.92 COP

1.5 0.1 80.70 91.92 19.28 8.06 633.58 712.18 10.96 10.95 DIP
0.5 65.00 69.13 34.98 30.85 484.12 510.47 11.01 10.97 COP
1.0 56.90 55.64 43.08 44.34 461.38 471.28 10.97 11.00 COP

105 0.5 0.1 95.50 99.46 4.51 0.55 295.07 286.53 2.47 3.19 DIP
0.5 90.70 95.02 9.31 4.99 184.94 210.51 2.34 2.45 DIP
1.0 87.40 90.55 12.61 9.46 162.30 180.69 2.29 2.36 COP

1.0 0.1 91.40 98.47 8.63 1.57 580.90 580.62 6.13 6.84 DIP
0.5 82.30 89.63 17.73 10.41 369.33 413.30 5.99 6.13 DIP
1.0 76.80 81.64 23.23 18.39 331.01 359.23 5.93 6.00 COP

1.5 0.1 86.80 96.81 13.18 3.17 826.86 864.78 10.98 10.82 DIP
0.5 74.50 84.50 25.48 15.47 545.56 608.45 10.97 10.95 DIP
1.0 67.60 73.45 32.38 26.52 496.07 529.67 11.00 10.98 COP

110 0.5 0.1 96.80 99.99 3.21 0.02 387.66 302.10 2.58 4.24 DIP
0.5 93.00 97.76 7.01 2.25 217.07 245.20 2.37 2.63 DIP
1.0 90.70 95.02 9.31 4.99 184.94 210.51 2.34 2.45 DIP

1.0 0.1 93.70 99.89 6.33 0.14 744.53 630.23 6.22 9.53 DIP
0.5 87.00 95.00 13.03 5.03 436.63 484.38 6.04 6.31 DIP
1.0 82.30 89.63 17.73 10.41 369.33 413.30 5.99 6.13 DIP

1.5 0.1 90.20 99.50 9.78 0.48 1064.67 973.30 10.94 15.39 DIP
0.5 80.70 91.92 19.28 8.06 633.58 712.18 10.96 10.95 DIP
1.0 74.50 84.50 25.48 15.47 545.56 608.45 10.97 10.95 DIP

Table 3.7: Quantity details for (Lf = 1, Ls = 11), b
b+h

= 0.95, gamma, µ = 100
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From this analysis it follows that the major advantage of the COP lies in a reduction

of the on-hand stock, which for high holding costs and low expediting premiums even

offsets the sometimes higher expediting costs. Demand fluctuations have no influence

on the slow (constant) order. For small lead-time differences, this is a disadvantage,

because a quick reaction to demand peaks (or drops) is not possible. Consequently,

the effects of these disruptions cannot be alleviated in a timely manner unless the

fast supplier is used at a higher cost. In case of large lead-time differences, a quick

rectifying action via the slow supplier is no longer possible. Nevertheless, the DIP

would sometimes still place very large orders, which, at the time of arrival, are not

required to such an extent and therefore are put on stock. The COP avoids these

extreme cases and thus reduces the extent of the supply-demand mismatch causing

less left-over stock.

3.4.4 Summary and implications

In this section, the constant-order (COP) and dual-index policy (DIP) have been

compared. From the theoretical considerations, which have been based on the anal-

ysis of the extreme strategies that both policies can prescribe, it has been suggested

that the cost difference between the COP and DIP closes as the lead-time difference

increases. At some point, the COP might even outperform the DIP. Since the com-

plexity of both policies has prohibited a further analytical investigation, a numerical

study has been conducted.

Based on the findings from the numerical study a generally good performance of the

DIP can be confirmed as already stated by Veeraraghavan and Scheller-Wolf (2008).

Furthermore, the COP-DIP comparison allows for a supplementation of some of

their assertions. They claim that

‘the performance of the dual-index policy brings significant savings when

the sourcing options differ significantly in lead times, as often is the case’

(p. 859) and ‘dual sourcing is especially beneficial when [...] expediting

costs are moderate, or when single sourcing via the expedited or regular

channels have similar costs’ (p. 864).

In such settings, also the COP delivers a satisfactory performance, sometimes even
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outperforming the DIP, which renders the COP an effective policy here, too. The

general tendency is that as the lead-time difference increases, the COP-DIP cost gap

closes. If, in addition the expediting premium is small, a superior COP performance

can be observed. This confirms the presumption derived from the theoretical con-

siderations. However, in instances where inventory holding is inexpensive relative

to the expediting premium, the DIP is clearly superior to the COP. Here, regular

single sourcing is a reasonable and simple alternative to the DIP, if the lead-time

difference is rather small.

The identification of settings with only a small cost performance difference between

the DIP and COP is particularly of practical relevance for two reasons. First, the

COP is the more easily implementable and controllable policy in practice. Secondly,

such a policy is of particular benefit in supply negotiations. Being able to guarantee

the supplier a constant order increases a company’s bargaining power. The supplier

will be more willing to make concessions, because a constant order facilitates his

production planning significantly and avoids the bullwhip effect.

The latter aspect, namely the pattern of the order process is of particular importance

in multi-echelon settings, because this corresponds to the demand process that the

supplying stage faces and which needs to be taken into account in the inventory

optimization there. Multi-echelon inventory optimization models are the subject of

the next chapter.



4 Multi-echelon inventory model

with dual sourcing

4.1 Introduction

In this chapter, the focus is shifted from a single-echelon inventory model to a multi-

echelon one. The main research question that is addressed is: How can dual sourcing

be integrated into a multi-echelon setting?

Since there is not only a single multi-echelon inventory modeling approach available

in the literature, the different frameworks need to be analyzed first, before the

integration of dual sourcing is discussed. Based on the two pioneering contributions

to multi-echelon inventory research without lot-sizing by Simpson (1958) and Clark

and Scarf (1960), two competing research strands have developed over the years.

Although they solve the same inventory optimization problem in their core, they

make a different assumption concerning the role of safety stock. The choice of the

appropriate framework basically follows from answering the question whether safety

stocks are supposed to protect supply chain performance against all variability or

just against a maximum reasonable variability (see Graves (1988)). The resulting

consequences for the material flow in the system coined the terms full-delay and no-

delay (van Houtum et al. (1996)), or stochastic-service (SS) and guaranteed-service

(GS) approaches (Graves and Willems (2003)).

The SS approach assumes the former and regards safety stock as the only means to

deal with demand variability. Therefore, upstream material shortages cause stochas-

tic delays in the material flow. The GS approach, on the other hand, makes the

latter assumption. Here, it is assumed that, if demand variability exceeds a normal

level, additional countermeasures like overtime or accelerated production are avail-
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able. This ‘operating flexibility’ ensures the timely delivery of ordered items to the

next downstream stage(s). Safety stock is sized to cope with variability up to this

reasonable level only.

Based on each of these approaches, commercial software solutions have been devel-

oped by companies such as OptiantR©, LogicTools (which is now a part of IBM),

SmartOpsR©, etc., which are widely used by large multinationals like IBM, Intel, or

Philips. Which approach forms the basis can be conjectured from taking a closer

look at the affiliated scientists and their scientific contributions in this area. Thus,

both assumptions seem to be justifiable in practice. Since no comprehensive compar-

ative analysis of the two approaches in terms of their cost performance is available

so far, the question arises, whether any of these approaches is generally superior to

the other. If this was the case, it would be reasonable with respect to the main

research question of this chapter to only extend the superior approach. That is why

the main research question of this chapter is broken down into several smaller and

more specific research questions, which are addressed in turn and eventually lead up

to the answer of the main one:

1. Given the characteristic assumptions and features of the two competing multi-

echelon inventory optimization model strands in the literature, i.e. the stochastic-

and guaranteed-service framework, is one of them generally superior to the

other?

If this is not the case, in which settings does each approach perform well?

(Sections 4.2 and 4.3)

2. Depending on the outcome of the first question, is a mutually exclusive im-

plementation of a single multi-echelon approach for the entire supply network

reasonable?

Put differently, do situations exist where a combination of both approaches pro-

vides additional benefits and how can such an integrated approach be designed?

(Section 4.4)

3. Provided that none of the approaches is generally superior to the other, how can

dual sourcing be accommodated in the guaranteed-service approach? (Section

4.5)
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Whereas the first specific research question aims at a comparison between the two

existing single-sourcing multi-echelon frameworks, the second question goes one step

further and targets a combination of both approaches. In view of the ultimate goal

of this chapter, i.e. the integration of dual sourcing into a multi-echelon setting, the

idea is to first exploit the gained knowledge about the two multi-echelon approaches

in terms of the development of a new integrated framework, which then basically

represents an additional candidate for a potential dual-sourcing extension. Due

to the increased complexity of such an integrated approach, however, only the GS

framework is extended to incorporate dual sourcing (third specific research question).

The extension of any other approaches is postponed to future research.

The outline of this chapter is as follows. In Section 4.2 both the SS and GS approach

and their underlying assumptions as well as the individual optimization models and

procedures are presented. Section 4.3 addresses the first of the smaller research ques-

tions by providing a theoretical and numerical comparison of the two approaches.

The combination of both approaches, which is the second smaller research ques-

tion, is the main focus of Section 4.4, in which an integrated framework is developed

together with a pseudo-polynomial time dynamic programming algorithm for the op-

timization of serial supply chains. Section 4.5 deals with the third smaller research

question, namely the extension of the GS model (as one of the three multi-echelon

frameworks) to accommodate dual sourcing.

4.2 Multi-echelon inventory optimization

approaches

For ease of presentation, the two competing multi-echelon modeling frameworks

without lot-sizing, i.e. the SS and GS models, are only described for a serial sys-

tem and an α-service level constraint in detail (unless stated otherwise). For other

network structures and service-level types relevant references are provided in the

respective literature review in Section 2.2.2.
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4.2.1 Common assumptions

A serial production/inventory system is considered consisting of n stages, which

are numbered from i = 1, ..., n starting with the most upstream stage (see Figure

4.1). All stages operate a periodic (echelon) order-up-to level policy with a common

review period. Each stage performs a certain processing function, e.g., a step in a

manufacturing process, and represents a potential location for holding stock after

the process has finished. The processing time at each stage is given by Ti and is

assumed to be deterministic and a multiple of the review period. It is assumed that

Tn includes the review period. No capacity constraints exist at any of the stages or

processes. Customer demand occurs at stage n and is assumed to be stationary and

independent across non-overlapping intervals with mean µ and standard deviation

σ. Let FTi
denote the Ti-period demand cumulative distribution function. At any of

the stages unsatisfied demands are backordered and for each unit of left-over stock

at the end of a period a linear holding cost of hi is incurred. For ease of presentation,

it is assumed that an item at a downstream stage requires exactly one item of the

upstream stage that is connected to it, i.e. production coefficients are set equal to

1. Note that the relaxation of this assumption is not difficult to include into the

model. It would simply make the presentation more complicated and is therefore

omitted. The objective is to determine an optimal order-up-to level for each stage

such that the system cost is minimized subject to a service-level constraint at the

final stage.

External
Customer

External
Supplier ...1 2 n-1 n

Figure 4.1: Serial system illustration

4.2.2 Stochastic-service approach

In the SS approach it is assumed that the only buffer against demand uncertainty

is safety stock, i.e. the production system is inflexible and safety stock needs to

account for all contingencies. If this stock quantity is chosen too small, delays in

the material flow occur, because the delivery of the shortage quantity is delayed
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until new material becomes available. Consequently, the service of a stage, i.e. the

ability to readily provide the requested materials, depends on its stock level and is

therefore stochastic. Under the SS assumption, the system behavior can be fully

described analytically as explained below.

4.2.2.1 Optimization model

For a serial system, the optimization problem in the SS approach, PSS
〈1,n〉, can be

stated as

PSS
〈1,n〉 min CSS

〈1,n〉(
~B〈1,n〉) =

n∑

i=1

hi · E [OHi(Bi)] (4.1)

s.t. αn( ~B〈1,n〉) = αtarget
n .

The decision variables are the local order-up-to levels at all stages, Bi for i = 1, ..., n,

which are summarized by vector ~B〈1,n〉. They are chosen such that the sum of the

inventory holding costs in the entire system 〈1, n〉 are minimized subject to the

fact that the final-stage target service level, αtarget
n , is achieved. Given a certain

vector of local order-up-to levels, ~B〈1,n〉, the expected on-hand stock at stage i can

be calculated as

E [OHi(Bi)] = (Bi − E [BOi−1(Bi−1)]) − Ti · µ + E [BOi(Bi)] i = 1, ..., n (4.2)

with E [BO0] = 0, since it is assumed that the external supplier has ample stock.

Due to potential shortages at the supplying stage (‘stochastic service’) given by the

expected backorders, E [BOi−1], the inventory position at stage i can only be raised

to Bi−E [BOi−1]. Subtracting the expected demand during the replenishment time,

Ti · µ, and adding the expected backorders of stage i itself, E [BOi], results in the

expected on-hand stock. E [BOi] is given as

E [BOi(Bi)] = E
[
(BOi−1(Bi−1) + D(Ti) − Bi)

+] i = 1, ..., n (4.3)

where BOi−1 is a random variable indicating the backorders (shortfall) at the pre-

ceding stage and BO0 ≡ 0. D(Ti) denotes the demand random variable over Ti

periods and (x)+ = max{0, x}.
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4.2.2.2 Optimization procedure

In a single-echelon model consisting of stage n only, the optimal solution to (4.1) is

to set Bn as the solution to (cf. (2.51))

FTn
(Bn) = αtarget

n . (4.4)

Since stage n orders from an external supplier, who by assumption has ample stock,

the inventory position can be raised to Bn each period. Consequently, the proba-

bility that no stockout occurs is given by the probability that the demand over the

processing time is smaller than or equal to the local order-up-to level Bn.

In the multi-echelon model, a material shortage at an upstream stage might oc-

cur. That means, except for the most upstream stage 1, the inventory positions of

all other stages i = 2, ..., n cannot necessarily be increased to Bi in every period,

because the supplying stage i − 1 might not have sufficient stock. The most up-

stream stage 1 experiences a material shortage, if the demand over the processing

time, D(T1), exceeds the local order-up-to level B1. Let F B1
T1

denote the distribution

function of the shortfall random variable
(
D(T1) − B1

)+
. Due to the shortfall at

stage 1, the inventory position at stage 2 can only be raised to B2 −
(
D(T1)−B1

)+
.

Along the same lines (and rearranging terms), the shortfall random variable at stage

2 is given as
(
(D(T1) − B1)

+ + D(T2) − B2

)+
. The distribution of the expression

(D(T1) − B1)
++D(T2) is called the two-fold incomplete convolution F B1

T1
∗FT2 , where

∗ denotes the convolution operator, because it can also be represented as

F B1
T1

∗ FT2(x) =

∫ x

0

FT1(x + B1 − u) dFT2(u) x ≥ 0 . (4.5)

Using this notation, the optimal local order-up-to levels Bi, i = 1, ..., n are to be set

such that the on-hand stock cost in the entire system is minimized subject to

(((
F B1

T1
∗ FT2

)B2 ∗ ... ∗ FTn−1

)Bn−1

∗ FTn

)
(Bn) = αtarget

n . (4.6)

The optimal local order-up-to levels, Bi, can be derived from the echelon order-

up-to levels, Si, which have been shown by Clark and Scarf (1960) to constitute

an optimal policy for such a multi-echelon system. The echelon stock of stage i
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denotes all stock at that stage plus all materials in transit to or on hand at any

downstream stages minus backorders at the most downstream stage. The echelon

inventory position of stage i, which for the order determination is checked against

the echelon order-up-to level Si, is defined as its echelon stock plus all materials in

transit to the stage. Given a certain set of echelon order-up-to levels, the local ones

result as characterized in (4.9) and (4.10) below. Optimal echelon order-up-to levels

can be obtained starting at the final stage n due to the decomposition result derived

by Clark and Scarf (1960). For already determined optimal echelon order-up-to

levels S∗
i+1, ..., S

∗
n, the optimal Si is chosen to satisfy

F [S∗
i ,...,S∗

n]
(
S̃n

)
=

p +
∑i−1

j=1 he
j

p + hn

= αSS
i i = 1, ..., n (4.7)

where S̃n = min{S∗
i , ..., S

∗
n} and he

j = hj − hj−1 denotes the echelon holding cost of

stage j = 1, ..., n with h0 = 0. For all Si, ..., Sn, F [Si,...,Sn](x) is defined as

F [Si,...,Sn](x) :=

(((
F Bi

Ti
∗ FTi+1

)Bi+1 ∗ ... ∗ FTn−1

)Bn−1

∗ FTn

)
(x) x ∈ R (4.8)

with

Bn := S̃n (4.9)

Bj := S̃j − S̃j+1 j = i, ..., n − 1 (4.10)

S̃j := min{Si, ..., Sj} j = i, ..., n . (4.11)

(For i = n, read F [Sn](x) := FTn
(x), x ∈ R.) For more details the reader is referred

to, e.g., van Houtum and Zijm (1991) and van Houtum and Zijm (1997).

For a given α-service level constraint, the penalty cost, p, in (4.7) can be derived

from the equivalence relationship between cost and service models (see, e.g., van

Houtum et al. (1996))

αtarget
n =

p

p + hn

⇔ p =
αtarget

n

1 − αtarget
n

· hn . (4.12)

Note that the service level, αSS
n , with regard to which the optimal final-stage order-

up-to level is sized, is larger than the service level, αtarget
n , which actually is to
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be achieved (see (4.7) and (4.12)). This is due to the potential shortfalls at the

preceding stages that need to be taken into account.

In order to derive an estimate of the computational complexity of the optimal values,

it is first noted that an order-up-to level needs to be calculated exactly once for each

of the n stages due to the decomposition result. Each optimal order-up-to level is

determined by using a bisection procedure, which contains (in)complete convolution

computations. For an arbitrary but fixed targeted precision, e.g., ǫ = 10−6, and a

predefined customer service level, e.g., αtarget
n = 95%, the computational complexity

of the bisection procedure is a logarithmic function in the optimal echelon order-

up-to level of the most upstream stage, S∗
1 , where FM(S∗

1) = αtarget
n and M =

∑n

i=1 Ti, i.e. the sum of all processing times. Convolution operations are done in

O(r log(r)) using Fast Fourier Transform (FFT) (see, e.g., Cooley and Tukey (1965))

with r = D̄ where FM

(
D̄
)

= 1 − ǫ in this case. This yields a total complexity of

O
(
nD̄ log(D̄) log(S∗

1)
)
.

4.2.3 Guaranteed-service approach

In the GS approach, the production system is regarded as being more flexible than in

the SS framework. It is assumed that further countermeasures besides safety stock

exist to cope with demand variability. These additional measures are summarized

by the term ‘operating flexibility’ and comprise of, e.g., overtime or accelerated pro-

duction. Thus, safety stock is only used to cover demand variability up to a certain

level, the so-called maximum reasonable demand level (see, e.g., Graves (1988)). If

demand exceeds this level, the company reverts to the operating flexibility measures

in order to make the requested units available in time. Consequently, due to this

combination of safety stock and operating flexibility there are no stochastic delays

in the material flow. A stage can always guarantee 100% service to its successor(s)

after the promised service time. The service time is the time it takes until the

materials ordered by a stage are received and ready for processing.

A description of the system behavior under the GS assumption in an exact analyt-

ical way proves more difficult than in the SS case. The difficulty stems from the

additionally assumed operating flexibility, which would have to be modeled explic-

itly in order to derive an exact analytical reflection of the real system. To this end
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the following two questions need to be answered:

1. How is the maximum reasonable demand level to be set, i.e. how can a speci-

fication be done of what is normal and what is not?

2. Given this level, how can the effect of the operating flexibility measure on the

material flow in the system be modeled?

Most of the GS contributions only provide answers to the first question. These

models are referred to as the standard GS models in the remainder of this thesis

and described in Section 4.2.3.1. The second question is simply neglected in large

parts of the GS literature, which has caused a lot of criticism of this framework

over the years. In order to counteract this criticism, the second aspect is addressed

in this thesis in greater detail and a so-called extended GS model formulation is

presented in Section 4.2.3.2.

4.2.3.1 Standard optimization model and procedure

Optimization model

The standard GS models only address the question of how the maximum reasonable

demand level can be set. Graves and Willems (2000) argue that for the end-item a

demand bound can be established by management, for instance. It expresses how

often a manager is willing to resort to other tactics to cover demand variability. For

example, under the typical assumption of normally distributed demand with mean

µ and standard deviation σ, the demand bounds for varying time horizons τn at the

final stage n can be specified as:

Dn(τn) = τnµ + knσ
√

τn (4.13)

where kn indicates the percentage of time that the safety stock covers the demand

variation indicating the manager’s willingness to use other countermeasures. In a

serial system, this demand bound directly defines the bounds of the upstream stages

(through the production coefficients aij , which are assumed to be equal to 1 here),
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i.e.

Di(τi) = aijDj(τj) = Dj(τj) i = 1, ..., n − 1, j = i + 1 . (4.14)

This bound linkage between adjacent stages can be viewed as an unnecessary re-

striction, however. A slightly different and more general interpretation can be found

in van Houtum et al. (1996) or Minner (2000), for instance, and is as follows. The

maximum reasonable demand level can be understood as an indicator of a stage’s

flexibility, which can be expressed by an internal service-level requirement, SLi. If

only the fact that an extraordinary operational action has to be taken matters, the

flexibility can be expressed by an α-service level, which represents the target prob-

ability of this event. If, on the other hand, the quantity that needs to be made

available is of relevance, the β- or, as a simpler approximation, γ-service level can

be used. If a stage has a lot of slack capacity, which it can use at no additional cost

in an emergency situation, the service level would be low. High service levels reflect

a less flexible process. However, the flexibility of adjacent stages does not depend on

one another. It can be specified for each stage individually, i.e. ki(SLi), i = 1, ..., n

in (4.13) can vary across the stages of a single supply chain.

In the following exposition, the optimization model and algorithm are described for

the α-service level case only. The analysis also applies to the other service-level

types with minor modifications (see, e.g., Inderfurth and Minner (1998)). Given

a service-level target for each stage, αtarget
i , which specifies this stage’s flexibility

(or the service that is to be guaranteed towards the external customer, if i = n),

the optimal local order-up-to level at a stage can be computed by the well-known

single-echelon formula

Bi(τi) = F−1
τi

(
αtarget

i

)
i = 1, ..., n (4.15)

where τi denotes the time span, for which safety stock has to be held. In the

single-echelon case, this is the replenishment time (plus the review period). In the

multi-echelon case, it is called the net replenishment time and is given as

τi = STi−1 + Ti − STi i = 1, ..., n . (4.16)
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Here, STi−1 and STi denote the incoming and outgoing service time of stage i.

STi−1 represents the time it takes until the materials ordered by stage i are received

(from stage i − 1) and ready for processing at stage i. Thus, the net replenishment

time τi consists of the time it takes until any ordered units are received, processed,

and put on stock at stage i, STi−1 + Ti (i.e. the replenishment time of stage i),

minus any coverage requirements that are postponed to succeeding stages via STi.

Through (4.15) there exists a one-to-one relationship between the net replenishment

time defined by the adjacent service times and the order-up-to level of a stage.

Consequently, instead of searching for the optimal order-up-to levels for the entire

supply chain, one can also try to find the optimal service time or net replenishment

time at each stage.

If it is assumed that any demands that exceed the available stock are dealt with by

operating flexibility measures, no backorders occur at any of the intermediate stages

i = 1, .., n−1. This means that in the long run the average expected (on-hand) stock

quantity of a stage, for which inventory holding costs are incurred, corresponds to

its safety stock, which for a certain τi is given as

SSTi(Bi(τi)) = Bi(τi) − τiµ i = 1, ..., n − 1 . (4.17)

Only at the final stage n might backorders be permitted. Since the service-level

at this stage is usually quite high, αtarget
n ≥ 90%, the backorder quantity is rather

small. That means, for this stage the expected safety stock quantity is also a good

approximation for the expected on-hand stock, the actual quantity, for which holding

costs are incurred, due to relation (2.27) (see, e.g., Silver et al. (1998)).

Since the effect of operating flexibility on the material flow is not explicitly modeled

in the standard GS approach, the pipeline inventory at each stage is simply assumed

to be

E [PIi] = Ti · µ . (4.18)

This expression cannot be influenced by the service time or net replenishment time

choice. Hence, it can be neglected in the optimization problem formulation (without

affecting optimality). Using the common assumption that the external supplier has

ample stock, i.e. ST0 = 0, and the external customer requires immediate demand
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satisfaction, i.e. STn = 0, the optimization problem PGSstd

〈1,n〉 is (cf., e.g., Inderfurth

and Minner (1998))

PGSstd

〈1,n〉 min CGSstd

〈1,n〉 (~τ〈1,n〉) =
n∑

i=1

hi · SSTi(Bi(τi)) (4.19)

s.t.
i∑

j=1

τj ≤
i∑

j=1

Tj i = 1, ..., n − 1

n∑

j=1

τj =
n∑

j=1

Tj

τi ≥ 0 i = 1, ..., n .

~τ〈1,n〉 denotes the vector of net replenishment times in the network from stage 1 to n.

The objective function minimizes the inventory holding costs in the entire system.

The first constraint ensures that the cumulative net replenishment time until stage i

does not exceed the cumulative processing time. The second constraint makes sure

that the cumulative processing time in the entire system is covered. Finally, the net

replenishment time must be non-negative.

Optimization procedure

The optimal net replenishment time combination for this optimization problem can

be found by a dynamic program (DP) with backward recursion. The states, zi,

represent the time that is still to be covered at a specific stage of the supply chain.

The decision variables, ui, represent the net replenishment times, τi. The complex-

ity of the state and decision space and consequently the DP complexity depends on

whether the objective function is a concave function of τi or not. In the former case,

PGSstd

〈1,n〉 is a concave minimization problem under linear constraints, for which an

extreme point property holds (see, e.g., Horst and Tuy (1996)). That means, an op-

timal decision is found at a vertex of the decision space. Hence, a stage either holds

sufficient stock to completely decouple itself from its successor, i.e. τi = STi−1 + Ti,

or no stock at all, i.e. τi = 0 (see Simpson (1958)). In the latter case, (assuming

integrality of the processing times) all feasible integer net replenishment times need

to be considered as decision candidates at a stage. Since the concavity of the objec-

tive function in τi does not hold for all demand distributions, the DP formulation of
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Graves and Willems (2000), which does not depend on this assumption, is presented

as a solution algorithm. The state space is given as

Zi = {z ∈ N | Ti ≤ z ≤ Mi} i = 1, ..., n (4.20)

where Mi denotes the maximum replenishment time for stage i, i.e. Mi =
∑i

l=1 Tl.

The decision space is

Ui(zi) = {ui ∈ N | 0 ≤ ui ≤ zi} i = 1, ..., n − 1 (4.21)

Un(zn) = {zn} . (4.22)

The state transition equation looks as follows:

zi+1 = zi + Ti+1 − ui i = 1, ..., n − 1 . (4.23)

For each ui the inventory holding cost can be calculated as explained above by

substituting ui for τi. The value function is given as

gn(zn) = hn · SSTn(Bn(un)) ∀zn ∈ Zn (4.24)

gi(zi) = min
ui∈Ui(zi)

{hi · SSTi(Bi(ui)) + gi+1(zi + Ti+1 − ui)} ∀zi ∈ Zi ,

i =1, ..., n − 1 . (4.25)

Starting at stage n (down to 1), for each state the preliminary optimal decision is

computed. Having reached stage 1 the overall optimal decisions can be found by

a forward calculation. The complexity of the dynamic program is O(nM2) (where

M is the maximum replenishment time, which is bounded by the sum of processing

times
∑n

l=1 Tl, see Graves and Willems (2000)). In case of a concave objective

function the complexity reduces to O(n2) (see, e.g., Minner (1997)).

4.2.3.2 Extended optimization model and procedure

The GS optimization model formulation of the previous section has been based on

addressing only one of two crucial aspects, namely the specification of the maximum

reasonable demand levels expressed as internal service levels. The second aspect,
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the effect of the operating flexibility measures on the material flow, has not been

taken into account. Further, in the standard GS objective function, costs for using

operating flexibility are not included explicitly, but only implicitly through setting

the internal service level. These two facets are studied in this section, which is partly

based on Klosterhalfen and Minner (2010).

Operating flexibility modeling options

In order to incorporate operating flexibility in the analysis, it needs to be clarified

first what kind of measures operating flexibility can take. There are several possi-

bilities for operating flexibility to achieve the guaranteed service, i.e. ensure that a

material shortage at stage i does not affect the arrival of all ordered items in stock at

stage i+1 after the replenishment time Si +Ti+1. The three probably most obvious

and relevant ones for practice are listed here. The first two modeling interpretations

have already been outlined in Minner (2000).

1. The shortage quantity is directly speeded up from pipeline inventory (PI)

of the stage. Thus, there is no shortage in fact. Due to the expediting,

E [PIi] < Ti · µ. (‘Production setting’)

2. The shortage quantity is not speeded up from pipeline inventory of the stage,

but the stage waits for the items to arrive after the regular processing. Once

the missing quantity is available at the stage, it is sent to the next downstream

stage via a faster transportation mode. Thus, although a shortage occurred

at a stage, it does not affect the next downstream stage, because the timely

arrival of all ordered items in stock at the downstream stage is still ensured.

This option also results in E [PIi] < Ti · µ, since in some periods fewer items

are in the pipeline than actually ordered. (‘Transportation setting’)

3. The shortage quantity is sourced from an external/outside supplier. Also in

this case, the average replenishment order placed with the internal supplier

would no longer be equal to µ and E [PIi] < Ti · µ under the assumed base-

stock policy. Note that this modeling option resembles a lost-sales situation.

(‘Outside supply setting’)
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In all three cases the average expected pipeline inventory is smaller than Ti ·µ, which

is in contrast to the standard GS model that simply assumes E [PIi] = Ti · µ. Since

this thesis is concerned with production rather than transportation settings, the

second modeling option is excluded from the further analysis. The third modeling

aspect assumes a kind of second supply option. Although the incorporation of dual

sourcing into a multi-echelon inventory model is the ultimate goal of this chapter,

this option represents only a special kind of usage of the second supplier and as

such is rather restrictive. Only the missing items are sourced from this outside

supplier and in addition these items are delivered immediately, which is a rather

unrealistic assumption. Moreover, the demand process at the upstream stage would

be influenced, if a second supplier was used. This would further complicate the

analysis. That is why the focus of the remainder of this section lies on the first

operating flexibility interpretation.

A proper incorporation of the first operating flexibility option into the GS model

requires knowledge about two things:

1. The quantity of items that is expedited from pipeline inventory, and

2. The timespan for which the expediting takes place.

The expediting quantity and, in turn, reduction in pipeline stock corresponds to

the expected backorders of a stage, since this is the quantity that, in the absence of

operating flexibility, would have to wait to be delivered until new material becomes

available from incoming orders.

In order to get an idea about the expediting timespan, a simulation study of a single

stage is conducted. Various parameter settings are tested (see Table 4.1). A full-

factorial design is used. In total, 108 settings are analyzed. For each parameter

setting, 10 simulation runs with 100,000 periods each are conducted.

The results of the simulation study are illustrated in Figure 4.2. The bars indicate

the share of items that are expedited by a certain number of periods for different

processing times and internal service levels given on the x-axis. The expediting

timespan is represented by the different shades of the bars. The following results

can be derived:
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Type Parameter Value

Demand discretized Mean, µ 100
Normal CV 0.1, 0.3, 0.5

discretized Mean, µ 100
Gamma CV 0.8, 1.0, 1.5

Processing time T 2, 5, 10

Internal service level αtarget 16.67%, 25%, 50%, 75%, 85%, 95%

Table 4.1: Expediting analysis for the extended GS approach – Parameter values

• For CV ≤ 0.5 and internal service levels of 50% or higher, more than half of

the items are expedited by 1 period only. This means that the speeded-up

items would have arrived in the next period. Segregating the analysis by the

processing time yields:

– For a short processing time (T = 2), the share of items, which are

speeded-up by 1 period only, amounts to 90% or higher.

– For a medium processing time (T = 5), this share is still above 70%.

– Only for a long processing time (T = 10) is the minimum share 54%,

but it increases as the internal service level increases or the coefficient of

variation of period demand decreases.

• For CV ≤ 0.5, the expediting timespan does not exceed the processing time of

the stage. In a multi-echelon setting, this means that the expediting of items

does not take place across upstream stages irrespective of the internal service

level. (For αtarget = 16.67% and αtarget = 25%, negligible shares of 0.24%

and 0.06%, respectively, occurred.) Only items that are in the pipeline of the

stage, which experiences the shortage, need to be speeded up. No items from

upstream stages are required.

• If CV = 0.8, the internal service level needs to be at least 75% in order to

ensure that the speeding up does not affect items from upstream stages in a

significant way. For higher CV s, at least for the short processing time (T = 2)

the share of items that requires expediting by more than 2 periods is not

negligible any more.
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• The setting with CV = 0.8 and αtarget = 75% can be viewed as the minimum

combination, for which the share of items expedited by 1 period amounts to

roughly 50% (T = 10) or higher (T < 10).

Given these findings, the following two simplifying assumptions can be made in

situations with CV ≤ 0.5 and an arbitrary internal service-level target or CV = 0.8

and αtarget ≥ 75%.

Assumption 4.2.3.1 Expediting does not take place across various upstream stages,

but only items in the pipeline of the stage, which experiences a shortage, are speeded

up.

Assumption 4.2.3.2 If a cost per unit for the operating flexibility usage at a stage

is to be specified, a single cost value, cOF
i , is sufficient.

Since the majority of items is speeded up by 1 period only, a specification of several

cost values depending on the expediting time span would unnecessarily complicate

the analysis (without any significant additional benefit). Consequently, the standard

GS cost function of a stage can be extended by a term that accounts for the operating

flexibility costs in the following way. Since pipeline stock is reduced by the amount

of expedited items, this term has to be included in the new cost function, as well.

Ci = hi · (E [PIi] − E [BOi(Bi)] + E [OHi(Bi)]) + cOF
i · E [BOi(Bi)]

= hi · (Ti · µ + E [OHi(Bi)]) +
(
cOF
i − hi

)
· E [BOi(Bi)] . (4.26)

Note that it is assumed that the holding cost of stage i, hi, is also paid for the units

in transit to this stage. The quantity that needs to be made available by operating

flexibility depends on the order-up-to level, which in turn depends on the internal

service level (due to relation (4.15)), since this defines the expected backorders. In

the following, two ways of how this service level can be specified at a stage are dis-

cussed.

Direct internal service-level specification

In some situations management might be able to directly specify an appropriate

internal service-level target at a stage. By having good acumen of how often the
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0%

20%

40%

60%

80%

100%

0.1 0.3 0.5

T=2

0.8 1.0 1.5 0.1 0.3 0.5

T=5

0.8 1.0 1.5 0.1 0.3 0.5 0.8

T=10

1.0 1.5

S
h

ar
e 

o
f 

ex
p

ed
it

ed
 i

te
m

s

Coefficient of variation

11 10 9 8 7 6 5 4 3 2 1

(b) Internal service level 25%
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(c) Internal service level 50%
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(d) Internal service level 75%
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(e) Internal service level 85%
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(f) Internal service level 95%

Figure 4.2: GS approach – Expedited items analysis
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stage can deal with extraordinary situations or how many items can be provided

in extreme situations without causing any additional cost, they can set a service

level, which reflects the stage’s flexibility. If the service level is specified in this way,

the operating flexibility usage is free of any additional charge, which is a reasonable

assumption at least in the short run (see van Houtum et al. (1996)). Since the

current charge per item at a stage is the holding cost and the operating flexibility

cost must not be higher, it must hold that cOF
i ≤ hi. On the other hand, cOF

i must

not be smaller than hi. Otherwise, it would be beneficial to always rely on operating

flexibility and not stock any items at all. Consequently, cOF
i = hi follows and (4.26)

reduces to

Ci = hi · (Ti · µ + E [OHi]) i = 1, ..., n − 1. (4.27)

At the final stage n, the cost function is identical to (4.27). Here, the service-level

target is given by the service that is to be guaranteed towards the external customer.

At this stage no operating flexibility is required to achieve this service.

Cost-based internal service-level specification

In some situations it might be difficult to directly specify a service-level target for a

stage representing its flexibility, i.e. the amount of extraordinary measures that can

be used without any additional charge. The problem is basically comparable to the

specification of the backorder cost per item in a single-echelon backorder cost model.

In the latter model, it can be solved by deriving an implied backorder cost from

the corresponding service-level model. Here, the difficulty points in the opposite

direction. Instead of the service level, a cost per item for the operating flexibility

usage might be available more easily. For instance, it might be quantifiable what

the cost per additional worker is, which can be further broken down into a cost per

item. From (4.26) a relation between the α-service level and the cost parameters cOF
i

and hi can be derived provided that cOF
i ≥ hi, which is a reasonable assumption,

because otherwise it would be optimal not to stock anything at the stage. The

following lemmata hold.
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Lemma 4.2.3.3 For a given τi, the extended cost function is convex in Bi and the

unique optimum is given as

B∗
i (τi) = F−1

τi

(
1 − hi

cOF
i

)
. (4.28)

Proof:

See Appendix B.8. �

Lemma 4.2.3.4 The internal α-service level can be determined independent of τi

as

αtarget
i = 1 − hi

cOF
i

. (4.29)

Proof:

See Appendix B.9. �

Remark. (4.29) is comparable to the α-service level-backorder cost relation in a

single-echelon order-up-to level model (see (2.52)). Setting bi = cOF
i − hi,

bi

bi+hi

results.
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Figure 4.3: Internal service level as a function of the operating flexibility cost

Figure 4.3 shows the resulting internal service level as the operating flexibility cost

(expressed as a multiple of the holding cost at the stage) is increased. The internal
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service level function is very sensitive to an operating flexibility cost of up to 10

times the holding cost. Then it flattens out. Once the internal service level has

been determined for each stage, the optimal net replenishment times can be found

by only considering the holding cost for the pipeline inventory and on-hand stock

at a stage. The optimal trade-off between the holding cost and operating flexibility

cost is taken into account by the internal service level. Thus, only cost function

(4.27) is relevant for the optimization.

Special case: Normally-distributed demand. For the special case of normally-

distributed demand, the following corollary holds due to the possible standardization

of the order-up-to level, which results in the safety factor ki (cf. Klosterhalfen and

Minner (2010)).

Corollary 4.2.3.5 Under an (internal) α-service level constraint and normally dis-

tributed period demand, the extended GS cost function of a stage i (4.26) is a convex

function of the safety factor, ki, and has a unique optimum, which is independent

of the net replenishment time, τi.

Φ(ki) = αtarget
i = 1 − hi

cOF
i

⇔ k∗
i = Φ−1

(
αtarget

i

)
(4.30)

Lemma 4.2.3.6 Under an (internal) α-service level constraint and normally dis-

tributed period demand, the extended GS cost function of a stage is a concave func-

tion of the net replenishment time, τi, for a given safety factor, ki.

Proof:

See Appendix B.10. �

Optimization model

Given both ways of how to specify the internal service level, the objective function

of the standard GS model, which minimizes safety stock costs across the supply

chain, is replaced by the sum of the on-hand stock costs across all stages. Note that

the pipeline inventory expression in (4.27) can be neglected, because it cannot be
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influenced by the decision variables, τi. For a given τi, the expected on-hand stock

at a stage is

E [OHi(Bi(τi))] = Bi(τi) − τi · µ + E [BOi(Bi(τi))] i = 1, ..., n (4.31)

with Bi(τi) from (4.15) and

E [BOi(Bi(τi))] = E
[
(D(τi) − Bi(τi))

+
]

i = 1, ..., n. (4.32)

Note that unlike in (4.2) and (4.3) no backorders from the previous stage have to

be taken into account in the expected on-hand stock and backorder calculation due

to the guaranteed service.

Using the same assumptions as in the standard GS model, namely that the external

supplier has ample stock, i.e. ST0 = 0, and the external customer requires immediate

demand satisfaction, i.e. STn = 0, the optimization problem PGS
〈1,n〉 is

PGS
〈1,n〉 min CGS

〈1,n〉(~τ〈1,n〉) =

n∑

i=1

hi · E[OHi(Bi(τi))] (4.33)

s.t.
i∑

j=1

τj ≤
i∑

j=1

Tj i = 1, ..., n − 1

n∑

j=1

τj =
n∑

j=1

Tj

τi ≥ 0 i = 1, ..., n .

~τ〈1,n〉 denotes the vector of net replenishment times in the network from stage 1 to

n. The objective function minimizes the cost of the expected on-hand stock in the

entire system. The first constraint ensures that the cumulative net replenishment

time until stage i does not exceed the cumulative processing time. The second

constraint makes sure that the cumulative processing time in the entire system is

covered. Finally, the net replenishment time must be non-negative.

The main finding is that the explicit modeling of the operating flexibility effect on

the material flow yields a different objective function than in the standard GS model.

Whereas in the extended model an inventory holding cost for each unit of on-hand
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stock is incurred, the standard GS model calculates this cost on the safety stock

units, which are usually less except for very high service levels.

Optimization procedure

If the internal service levels are specified directly, the optimal net replenishment

time combination for optimization problem PGS
〈1,n〉 can be found directly by using

the dynamic program (DP) with backward recursion of the standard GS model (see

Section 4.2.3.1). Only the stage cost function needs to be adjusted to the on-hand

stock cost.

If the internal service level is derived via the cost-based approach, Lemma 4.2.3.4

allows for a sequential solution procedure. First, the internal service level (which

is independent of the net replenishment time) is determined for each stage based

on the operating flexibility cost per unit. Second, optimal net replenishment times,

τi, are computed given the internal service level via the standard DP again. Under

normally distributed demand, the extended GS cost function of a stage is concave

in the net replenishment time under an α-service level constraint (Lemma 4.2.3.6).

Consequently, an extreme point property holds for this extended GS model. Optimal

net replenishment time values can therefore be found by the simplified standard DP.

4.2.4 Summary and implications

In this section, the two main multi-echelon modeling frameworks that can be found

in the literature have been outlined, i.e. the stochastic-service (SS) and guaranteed-

service (GS) approach. Besides summarizing the existing models and results, one of

the main criticisms of the GS approach has been addressed. In its standard form,

this approach assumes that safety stock is only sized to cover demand variability up

to a certain level, the maximum reasonable demand. All variability exceeding this

threshold is dealt with by other countermeasures, which are simply referred to as

operating flexibility. In the mathematical model, it is not explicitly detailed how

these operating flexibility measures work and what the effect on the material flow

is. Moreover, it is difficult to define what is normal variability and what is not.

In this section, this criticism has been counteracted by modeling the effect of operat-
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ing flexibility on the material flow in the system. It has been assumed that missing

items are made available in time through expediting from the pipeline inventory of

a stage. The reasonability of this assumption has been tested in a simulation study

and confirmed. By taking into account the way operating flexibility works, the ob-

jective function of the standard GS model has been modified. Instead of minimizing

the safety stock cost in the entire system, the on-hand stock cost has become rele-

vant in the extended model. Through the model extension a cost-based derivation

of the internal service level at a stage, which specifies the maximum reasonable de-

mand level, has become possible. Provided that a cost parameter for the operating

flexibility usage can be specified per unit, a closed-form expression has been shown

to exist, which gives the corresponding internal service level. In many situations, the

specification of an operating flexibility cost might be easier for management than

specifying a service level directly.

4.3 Comparison of the stochastic- and

guaranteed-service approach

4.3.1 Introduction

After the description of both multi-echelon frameworks, the question arises: Is one

of them superior to the other, in general? And, if this is not the case, in which

settings does each approach perform well?

In the literature, very few contributions are available that focus on such a compar-

ison. The most prominent one is probably the one by Graves and Willems (2003).

They compare the two approaches in a convergent and spanning-tree system and

find that (under their assumptions) the GS model performs better. Since they use

a slightly different variant of the SS approach from the one presented in the pre-

vious section, their results are not fully conferrable to the SS framework analyzed

in this thesis. Moreover, they apply the demand bound assumption and specify an

identical bound for each stage in the supply network. As mentioned above, this

might not fully reflect reality, where different levels of flexibility can be present at

different stages in the network. That is why in this section a separate theoretical
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and numerical comparison of both approaches is conducted.

The structure of this section is as follows. Section 4.3.2 establishes an individual

benefit of each approach based on theoretical considerations. In Section 4.3.3 numer-

ical studies are conducted in order to derive further insights, first for serial systems

(Section 4.3.3.1), then for divergent systems (Section 4.3.3.2). Some remarks on con-

vergent systems are presented in Section 4.3.3.3. The section closes with a summary

and implications in Section 4.3.4.

4.3.2 Theoretical considerations – Benefits of the approaches

From the framework description in Section 4.2, clear differences between the two

approaches can be observed in terms of the allocation and sizing of safety stock in

the supply chain. These differences result in an individual benefit of each approach:

the allocation benefit of the SS approach and the decoupling benefit of the GS ap-

proach. Minner (2000) also points out these differences in his discussion of the two

approaches. For illustrative purposes assume a two-stage serial system where stage

1 receives external supply and supplies stage 2, which in turn satisfies the external

customer.

4.3.2.1 Allocation benefit of the stochastic-service approach

In the GS model, there is a direct relation between the allocation decision and the

stock quantity at a stage. If a stage holds stock, i.e. τi > 0, i = 1, 2, the exact size

follows directly from the service-level requirement (internal or external).

αtarget
i =

∫ Bi

0

fτi
(u) du ⇒ Bi = F−1

τi

(
αtarget

i

)
i = 1, 2 (4.34)

Due to the predefined internal service level and 100% service guarantee of the prede-

cessor, it is not possible to substitute (safety) stock at the predecessor for additional

(safety) stock at the successor.

In contrast, the SS model allows for such a substitution. Due to the echelon stock

concept, only the total quantity of (safety) stock in the entire supply chain (resulting

from the order-up-to levels of all stages) has to be sufficient to meet the external
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service-level requirement (see (4.7) for i = 1). The ultimate allocation of (safety)

stocks to the individual stages depends on the holding-cost relationship between

them. This is done in the following way. First, an appropriate penalty cost is

derived, which ensures an α-service level for the entire supply chain equal to the

external service-level requirement using relationship (4.12)

αtarget
2 =

p

p + h2
⇒ p = h2 ·

αtarget
2

1 − αtarget
2

. (4.35)

Next, using this penalty cost, implied service levels, αSS
i , i = 1, 2, are derived ac-

cording to (4.7).

αSS
2 =

p + h1

p + h2

, αSS
1 =

p

p + h2

= αtarget
2 (4.36)

Starting with the final stage, these implied service levels are used to determine the

order-up-to levels of the stages in the system.

∫ S2

0

fT2(u) du = αSS
2 (4.37)

∫ S2

0

∫ S1−u

0

fT1(v) fT2(u) dv du = αSS
1 = αtarget

2 (4.38)

(4.37) shows that, in general, the SS approach prescribes larger order-up-to levels

than the GS approach. Assuming that ST1 = 0 (i.e. τ2 = T2) in the GS model, the

final stage order-up-to level is sized with respect to αtarget
2 (see (4.34)). However,

from (4.36) and (4.37) it is obvious that αtarget
2 < αSS

2 , the service level with respect

to which the final stage order-up-to level in the SS model is dimensioned (except

for the case where h1 = 0). The larger order-up-to level is necessary to a certain

extent, since the SS approach does not assume any operating flexibility measures

and consequently delivery delays at the predecessor might occur. Given the final-

stage order-up-to level (and safety stocks) in the SS framework, the order-up-to

level of the predecessor is then set such that the external service-level requirement

is met (see (4.38)). Thus, the SS approach benefits from the flexibility of either

shifting more (safety) stock to upstream stages reducing the stockout risk or to the

downstream ones allowing for a larger stockout probability of the upstream stages,
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whichever is cost-optimal. This is called the allocation benefit.

4.3.2.2 Decoupling benefit of the guaranteed-service approach

In the GS approach, on the other hand, this kind of flexibility with respect to the

(safety) stock quantity is not available. There is no possibility of placing more

(safety) stock at downstream stages than is actually required for the predefined (in-

ternal or external) service level. Nevertheless, there is another kind of flexibility

available in the GS model, namely operating flexibility, which results in a decou-

pling effect between the stages. No shortfall and thus stochastic delay is propagated,

which reduces the stock requirement of the next downstream stage. Each stage has

a deterministic service time and can be viewed as an external supplier with sufficient

stock to always fulfill its service-time guarantee. This is called the decoupling benefit.

In order to quantify the effects of these opposed flexibility types, a numerical study

is conducted in the next section.

4.3.3 Numerical study

4.3.3.1 Serial systems

Numerical design

The simplest version of a serial supply chain is analyzed consisting of two stages,

where stage 1 supplies stage 2 and the parameters given in Table 4.2. The parameters

are chosen such that a large range of supply chain characteristics is captured. With

regard to the processing time a short (2 periods), medium (5 periods), and long

(10 periods) timespan is considered. Holding costs follow a value-adding structure

with the upstream stage holding cost set to h1 = 10 and an increase towards the

downstream one by 20%, 50%, or 100%. The external/final-stage α-service level is

varied between 85%, 95%, or 99%. In all instances, demand per period is assumed to

follow a discretized normal distribution with the demands of different periods being

i.i.d.. Mean demand per period is set to 100 and the coefficient of variation (CV ) is

either 0.1, 0.3, or 0.5. Thus, different levels of variability are captured. Moreover,
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the maximum CV of 0.5 ensures that the simplifying assumptions 4.2.3.1 and 4.2.3.2

with respect to the operating flexibility modeling are not violated irrespective of the

height of the internal service level. Various internal service-level values are studied:

17%, 33%, 50%, 67%, and 75%. Using relation (4.29), these values correspond to

an operating flexibility cost per unit of about 12, 15, 20, 30, 40, i.e. 1.2 times up to

4 times the holding cost of the stage 1.

Parameter Description Value

Ti Processing time of stage i ∈ {1, 2} 2, 5, 10
including the review period at the final stage

h1 Holding cost at stage 1 10
h2 Holding cost at stage 2 12, 15, 20
µ Mean period demand at stage 2 100

CV Coefficient of variation of demand at stage 2 0.1, 0.3, 0.5

α
target
2 α-service level at stage 2 (final-stage) 85%, 95%, 99%

α
target
1 α-service level for GS at stage 1 (internal) 17%, 33%, 50%, 67%, 75%

Table 4.2: Serial system – Parameter values for simulation runs

For each internal service-level value, 243 instances are analyzed in a full-factorial de-

sign. For each instance, 10 simulation runs with 20,000 periods each are conducted.

Computational aspects

For both approaches a simulation model is built in ARENA v10. In case of the SS

approach, optimal order-up-to levels are calculated by the algorithm described in

Section 4.2.2.1 implemented in MAPLE v10. Numerical integration together with

bisections for the echelon order-up-to levels are used to derive the optimal values.

For the GS approach, results are obtained by comparing the extreme points of all

possible net replenishment time combinations and their respective on-hand stock

costs. Computations are performed in MAPLE v10 for all different internal service

levels, as well.

Since the comparison is based on simulation results, an ANOVA is conducted to es-

tablish the significance of the cost difference between the two approaches. The level

of significance is 95%. The required normal distribution assumption of the 10 cost

results is confirmed by the Kolmogorov-Smirnov test with a level of significance of

99%. All numbers reported in the upcoming tables and figures represent significant
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values.

Results

In the analysis, two performance measures are used. The optimality share indicates

the fraction of instances where one or the other approach is optimal, OSm, m ∈
{GS, SS}. The relative benefit of a respective approach quantifies the cost savings

and is defined as

RBGS =

(

1 −
CGS

〈1,n〉

CSS
〈1,n〉

)+

, RBSS =

(

1 −
CSS

〈1,n〉

CGS
〈1,n〉

)+

.

In the figures below, the shaded bars represent the optimality share and refer to

the left-hand y-axis. The average relative benefit is illustrated by (upside-down)

triangles and diamonds, which refer to the right-hand y-axis. On the x-axis the

different levels of the specific factor are indicated for different internal service levels.

As discussed in Section 4.2.3.2, the internal service level can either be set directly

by management or derived from the operating flexibility cost, cOF . In the former

case, no additional costs besides the on-hand stock cost would accrue. In the latter

case, for each expedited item a cost of cOF would have to be paid in addition to the

on-hand stock cost. Results for both cases are reported.

In order to identify drivers for the advantage of one approach over the other, three

parameter dimensions are analyzed: processing time, final-stage service level, and

coefficient of variation of period demand. Within each dimension, the effect of the

varying internal service level is investigated, too. The following observations are

made.

Processing time. Instead of analyzing all possible processing-time combinations

individually, they are summarized into patterns: degressive (deg.), linear (lin.), and

progressive (pro.). Irrespective of the actual internal service level, it can be observed

that the share of GS optima decreases from a degressive over linear to progressive

processing-time pattern. Similarly, the average GS benefit decreases from a degressive

over linear to progressive processing-time pattern. (See Figures 4.4(a) and 4.4(b).)

In the situation without any additional operating flexibility costs, the GS optimality

share for the degressive processing-time pattern is reduced only slightly from 100%



4.3 Comparison of the stochastic- and guaranteed-service approach 142

0%

20%

40%

60%

80%

100%

deg. lin.

17%

pro. deg. lin.

33%

pro. deg. lin.

50%

pro. deg. lin.

67%

pro. deg. lin.

75%

pro.

0%

2%

4%

6%

8%

10%

12%

14%

O
p

ti
m

al
it

y
 s

h
ar

e A
v

erag
e b

en
efit

Processing-time pattern

OS
GS

OS
SS

RB
GS

RB
SS

(a) without cOF

0%

20%

40%

60%

80%

100%

deg. lin.

17%

pro. deg. lin.

33%

pro. deg. lin.

50%

pro. deg. lin.

67%

pro. deg. lin.

75%

pro.

0%

2%

4%

6%

8%

10%

12%

14%

O
p

ti
m

al
it

y
 s

h
ar

e A
v

erag
e b

en
efit

Processing-time pattern

OS
GS

OS
SS

RB
GS

RB
SS

(b) with cOF

Figure 4.4: Serial system – Optimality share and relative benefit with respect to the
processing time

to 92.6% as the internal service level increases from 17% to 75%. For the linear

and progressive pattern the effect is more pronounced with a decrease from 100%

to 80.5% and 34.3%, respectively. In terms of the average GS benefit, for each

internal service-level value the benefit shrinks to about a third (or even less) as

the processing-time pattern changes from degressive over linear to progressive (see

Figure 4.4(a)).

In the situation with additional operating flexibility costs, the GS optimality share is

reduced by a larger extent. For a degressive, linear, and progressive processing-time

pattern it shrinks from 100% to 47.5%, 12%, and 0%, respectively. As a matter of

course, the SS optimality share increases accordingly. With regard to the average GS
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benefit, this benefit decreases to less than a fifth due to the change in the processing-

time pattern for a given internal service level (see Figure 4.4(b)). For an internal

service level of 75% the average relative GS benefit even completely disappears for

a progressive processing-time pattern.

The reason for this effect lies in the different ways both approaches deal with a

processing-time pattern change. The GS approach can use its decoupling benefit

only in case of upstream coverage. Holding stock at upstream stages becomes more

advantageous with larger processing times in the upstream part of the supply chain

compared to the downstream part due to the square root effect of the processing

time. This is reflected by a degressive pattern. Moreover, the GS approach does not

change its internal service level according to the processing time. This is contrary

to the SS approach, which raises the internal service level at the upstream stage as

its processing time increases. This results in a higher stock quantity and thus higher

holding costs compared to the GS model. Obviously, the quantity of expedited items

in the GS approach increases with a longer processing time. However, even for an

operating flexibility cost that is 4 times the holding cost, which translates into an

internal service level of 75%, the optimality share of both approaches are almost

equally balanced and the average GS benefit is still about 1.6% for a degressive

processing-time pattern. Here, the average SS benefit amounts to about 1.1%.

Final-stage service level. From Figures 4.5(a) and 4.5(b) it can be observed that

the GS optimality share increases as the final-stage service level rises. In the GS

approach, a higher final-stage service level requirement simply leads to an increase

in the safety stock at this stage. The internal service level and thus stock quantity

at the upstream stage remains unchanged. This is possible due to the operating

flexibility measure, which enables such a decoupling.

In the SS approach, the change in the final-stage service-level requirement results

in an altered penalty cost and therefore different (safety) stock quantities at both

stages. Both order-up-to levels and thus stock quantities are increased. Due to the

square root effect in the safety stock formula, the safety stock quantity needed for

an increase in the service level grows exponentially the larger the service level gets.

Since the final-stage service level is already higher than the internal service level (cf.

(4.36)), allocating more safety stock to the upstream stage and thus reducing the

stockout probability there, is more efficient than only increasing the safety stocks at
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the downstream stage as is done in the GS approach. Nevertheless, the SS order-

up-to level and stock quantity at the final stage is still higher than that in the GS

approach, because the SS model has to take into account potential supply shortages.

This results in high costs, if the final-stage target service level is high. For the same

reasons, the average GS benefit increases with an increase in the final-stage service

level. Therefore, a higher final-stage service level favors the GS approach in terms

of the optimality share and average relative benefit.
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Figure 4.5: Serial system – Optimality share and relative benefit with respect to the
final-stage service level

If no additional costs are incurred for the operating flexibility usage, the GS approach

shows a very dominant performance over the SS approach in the considered settings

(see Figure 4.5(a)). Only for an internal service level of 75% and a low final-stage

service level of 85%, does the GS optimality share drop to 45%. In all other instances
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it varies above 75%. The average GS benefit increases by about 2% as the final-stage

service level is increased from 85% to 99% for a given internal service level. Only

for an internal service level of 67% or 75% can an average SS benefit be observed.

This benefit is less than 0.2%, however.

If operating flexibility costs have to be paid, the SS optimality share increases consid-

erably starting at an internal service level of 50% (see Figure 4.5(b)). In particular,

for a rather low final-stage service level of 85% the SS optimality share rises from

58.8% to 100% as the internal service level increases from 50% to 75%. Similarly, the

average SS benefit experiences a slight increase from 0.7% to 1%. In both situations

the highest average relative GS benefit can be observed for a high final-stage and

low internal service level with 9.1% and 5.2%, respectively.

Coefficient of variation of period demand. The GS approach performs better in

terms of the optimality share and average relative benefit as demand becomes more

variable. This tendency becomes apparent in both situations, with and without

operating flexibility costs (see Figures 4.6(a) and 4.6(b)). For each internal service

level, the GS optimality share increases as the coefficient of variation (CV ) changes

from 0.1 to 0.3 to 0.5. (Note that the small anomaly in this tendency for an internal

service level of 75% in the situation without additional operating flexibility costs

results from the fact that for CV = 0.3 a relatively large number of instances with

an average relative SS benefit exists, for which this benefit is not significant, however.

Consequently, these instances are not taken into account in the performance measure

calculation, which boosts the optimality share of the GS. If the significance test is

neglected, the optimality shares for CV = 0.1, 0.3, and 0.5 amount to 64.2%, 66.7%,

and 66.7%, i.e. the same tendency as for the other internal service levels can be

observed.)

In the situation without any operating flexibility costs, the GS approach is clearly

superior in the analyzed parameter settings (see Figure 4.6(a)). The average SS

benefit only amounts to 0.2% at most, whereas the average GS benefit varies between

13.2% and 3.2% at most for the different internal service levels.

The clear GS superiority changes when additional operating flexibility costs are

incurred (see Figure 4.6(b)). For internal service levels of 67% and 75% the SS

optimality shares are larger than the GS ones. Also, the average SS benefit increases
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Figure 4.6: Serial system – Optimality share and relative benefit with respect to the
coefficient of variation of period demand

to about 1%. However, the average GS benefit lies above the SS one for almost all

CV s and internal service levels.

The reasons for the better GS performance as the CV increases can be found in the

operating flexibility. When the CV grows, the value of operating flexibility (if used)

increases. Whereas the decoupling benefit of the GS becomes more important, the

SS approach suffers from the CV -increase. This causes the decreasing optimality

share. Nevertheless, in those instances where the SS model is superior to the GS

one even with a low CV , the average SS benefit is more pronounced as the demand

variability increases, i.e. as demand becomes more variable, the SS optimality share

decreases, but the average SS benefit increases.
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4.3.3.2 Divergent systems

Numerical design

In this section, which is based on Klosterhalfen and Minner (2010), the comparison

of the two approaches is extended to the simplest divergent system, i.e. a network

with one warehouse and two retailers (see Figure 4.7).

External
Customer

External
Supplier

1

2

3

External
Customer

Figure 4.7: Divergent system illustration

The parameters are chosen similar to the ones of the numerical study for the serial

system, but reduced to two possible parameter levels for each factor in order to

avoid a too large increase in the number of total instances. All parameters are

summarized in Table 4.3. With regard to the processing time, a time span of 2

periods (short) and 6 periods (medium-long) is considered. The warehouse holding

cost is fixed at h1 = 10 with a value adding towards the retailers by 50% or 100%.

In all instances, demand is assumed to be i.i.d. normally distributed and discretized.

There is no correlation between retailer demands, i.e. ρ23 = 0. The coefficient of

variation is set to either 0.2 or 0.4. Thus, low as well as high demand variability

is captured. Moreover, instances with rather low (85%) and high (95%) retailer

service-level requirements are analyzed. The internal service-level range is identical

to the serial system setting.

All possible parameter combinations are tested (except for cases where σ2 = 40 and

σ3 = 20 for symmetry reasons with instances where σ2 = 20 and σ3 = 40), yielding

384 instances per internal service level in total. For each instance, 10 simulation

runs with 20,000 periods each are conducted.

Computational aspects

As in the serial system case, the simulation is done in ARENA v10. In case of the

SS approach, optimal order-up-to levels are calculated by the algorithm described
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Parameter Description Value

Ti Processing time of stage i ∈ {1, 2, 3} 2, 6
including the review period for retailers

h1 Holding cost at the warehouse 10
hi Holding cost at retailer i ∈ {2, 3} 15, 20
µi Mean period demand at retailer i ∈ {2, 3} 100

CVi Coefficient of variation of period demand at
retailer i ∈ {2, 3} 0.2, 0.4

α
target
i α-service level at retailer i ∈ {2, 3} 85%, 95%

α
target
1 α-service level for GS at warehouse 17%, 33%, 50%, 67%, 75%

Table 4.3: Divergent system – Parameter values for simulation runs

in Diks and de Kok (1999) implemented in MAPLE v10. Numerical integration

together with bisections for the echelon order-up-to levels and other bisections for

the allocation fractions using the consistent appropriate share (CAS) rationing policy

have been used to derive the optimal values. (See van der Heijden et al. (1997) for

details on this and other rationing policies.) For the GS approach, the optimal

values are found by comparing the extreme points of all possible net replenishment

time combinations and their respective costs.

In general, the balance assumption (see Section 2.2.2.1) is violated, because the

physical stock at the warehouse is not always sufficient to ensure an allocation of

non-negative quantities to all retailers. In the simulation, potential imbalance events

are handled following a suggestion by Diks (1997), p. 29. If the inventory control

policy prescribes to allocate a negative quantity to one of the retailers, this quantity

is adjusted to zero and the other retailer gets all available items.

Results

The simulation results are analyzed in the same way as for the serial system. With

respect to the different parameter dimensions, the same (or very similar) observa-

tions can be made for the same reason mentioned in Section 4.3.3.1. That is why only

the observations together with the figures for the divergent system are presented,

but the explanations omitted.

Processing time. In contrast to the serial system case, where the processing-

time pattern characterization is straightforward, the divergent case requires a more

specific explanation. The processing-time patterns are defined as follows:
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• degressive:

T1





≥ max {T2, T3} , T2 6= T3

> max {T2, T3} , T2 = T3

(4.39)

• linear:

T1 = T2 = T3 (4.40)

• progressive:

T1





≤ min {T2, T3} , T2 6= T3

< min {T2, T3} , T2 = T3

. (4.41)

From Figures 4.8(a) and 4.8(b) the following observation can be made. For a given

internal service level, the GS optimality share as well as the average GS benefit

decreases as the processing-time pattern switches from degressive over linear to pro-

gressive.

In the situations without any additional operating flexibility costs, the first drop in

the GS optimality share can be observed for an internal service level of 67% and a

progressive processing-time pattern (see Figure 4.8(a)). The share decreases from

100% to 79.3%. As the internal service level is further increased to 75%, the GS

optimality share decreases further to only 6.5%. The average GS benefit decreases

even faster as the internal service level is raised from 17% to 75%. For the degressive,

linear, and progressive processing-time pattern it drops from 7.2%, 6.1%, 3.9% to

0.8%, 0.3%, 0.1%, respectively.

In the situation with operating flexibility costs, the same tendency is apparent (see

Figure 4.8(b)). However, the decrease of the GS optimality share and average benefit

occurs for an internal service level of 33% already. Except for a small GS optimal-

ity share of 5% and a degressive processing-time pattern, the SS optimality share

amounts to 100% for all patterns and internal service levels from 67%. Similarly,

the average GS benefit drops from about 2.7% to 0% as the internal service level

exceeds about 50%. The average SS benefit, on the other hand, increases from 0.1%
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Figure 4.8: Divergent system – Optimality share and relative benefit with respect
to the processing time

for an internal service level of 33% and a linear processing-time pattern to about

2% for an internal service level of 75% and a progressive pattern.

Final-stage service levels. Higher final-stage service levels have a positive effect

on the GS optimality share as well as the average relative GS benefit. Figures 4.9(a)

and 4.9(b) illustrate how the GS optimality share and average benefit increase for a

given internal service level as one or both final-stage service levels are raised.

For each internal service level, the increase in the average GS benefit as the final-

stage service levels are raised is rather small and amounts to about 0.5% for both

situations, with and without any additional operating flexibility costs.

Whereas the GS approach shows a quite superior performance for the situation where
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Figure 4.9: Divergent system – Optimality share and relative benefit with respect
to the final-stage service level

no operating flexibility costs are incurred, the SS approach is obviously dominant in

the situation with operating flexibility costs and internal service levels larger than

50%. Nevertheless, an increase in the final-stage service level has a clear negative

effect on the average SS benefit, which decreases from 1.6% to 0.9% and 2% to 1.4%

for an internal service level of 67% and 75%, respectively.

Coefficient of variation of period demand. In the divergent system case an

increase in the demand variability has only a minor effect on the optimality share of

the two approaches (see Figures 4.10(a) and 4.10(b)). For a given internal service

level the share remains fairly constant. The average benefit increases, however. For

a low internal service level of up to 50%, this increase is larger in the GS than in the
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SS case. Starting from an internal service level of 67% it is vice versa. Consequently,

it can be stated that the average benefit of the superior approach becomes larger as

demand gets more variable.
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Figure 4.10: Divergent system – Optimality share and relative benefit with respect
to the coefficient of variation of period demand

4.3.3.3 Convergent systems

In the SS approach, any convergent system can be transformed into an equivalent

serial one (see Rosling (1989)). In the GS approach, this equivalence does not hold.

However, the main feature and benefit of the GS approach, the decoupling, is also

present in convergent systems. Therefore, it is expected that a numerical comparison

would deliver results similar to the ones in the serial and divergent system case. Since
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the findings in both settings have not differed significantly, no separate numerical

study is conducted for convergent systems.

4.3.4 Summary and implications

In this section, a comparison of two multi-echelon inventory optimization approaches,

the stochastic- (SS) and guaranteed-service (GS) approach, has been provided. First,

based on theoretical considerations an individual benefit of each approach has been

established: the allocation benefit of the SS model and the decoupling benefit of

the GS model. Next, a simulation study has been carried out in order to compare

the cost performance of both approaches. In the GS framework both modeling op-

tions, with and without additional costs for using operating flexibility, have been

considered.

From the numerical results, three important drivers of the advantage of one approach

over the other can be identified: processing-time pattern, final-stage service level(s),

and internal service level (or operating flexibility cost). The GS approach shows

a superior performance for a degressive processing-time pattern, high final-stage

service level(s), and a low internal service level. For the SS model, the opposite is

true. Although the first two parameters have a significant effect, the superiority of

one approach over the other mainly depends on the internal service-level parameter,

which reflects a stage’s level of flexibility.

The major finding from the comparison is that none of the approaches is superior to

the other, in general. Both approaches have their advantages and disadvantage in

certain settings. This outcome not only shows that the extension of both approaches

to incorporate dual sourcing is valuable, it also raises another question, which is

not directly related to dual sourcing at first glance: Is it possible to combine the

two approaches and thus benefit from both advantages? Such an integrated approach

would solve the dilemma of having to choose a single approach for the entire supply

chain rather than for each stage individually. One can easily imagine that a single

supply chain might comprise of stages with different levels of flexibility. Those

with a high flexibility level would prefer the GS model, whereas the others would

favor the SS model. However, also in terms of dual sourcing the development of a

combined single-sourcing multi-echelon approach is of relevance. If an integration
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of both approaches is possible, the new approach will represent another candidate

for a potential dual-sourcing extension. In the next section, such a combination of

both approaches into an integrated framework is addressed.

4.4 Combination of the stochastic- and

guaranteed-service approach

4.4.1 Introduction

The comparison of the SS and GS approach in Section 4.3 has shown that none of

the two approaches is superior to the other, in general. Most of the multi-echelon

literature as well as many commercial software solutions treat both approaches as

mutually exclusive frameworks. Behind inventory optimization software tools offered

by Optiant, LogicTools, SmartOps, etc., lie numerous extensions of the pioneering

contributions to multi-echelon inventory research by Simpson (1958) and Clark and

Scarf (1960) that form the basis of the GS and SS research strands. Consequently,

the practitioner faces the dilemma of having to decide which approach is appropri-

ate for the safety stock optimization of his entire supply chain knowing that both

approaches might not fully exploit all cost-saving potentials due to the lack of a

stage-wise choice.

Hence, before the focus is shifted to the integration of dual sourcing into one of the

multi-echelon approaches in Section 4.5, the above-mentioned dilemma is resolved

in this section by developing an integrated approach, called the hybrid-service (HS)

approach. This newly developed framework represents yet another candidate for a

potential dual-sourcing extension. The HS approach optimally and endogenously

determines, which strategy is the best at each individual stage of the supply chain.

The integration will implicitly provide the choice of the better of the two frame-

works for a given system and additionally enable further cost savings by allowing

for a stage-wise choice of a framework. A rough idea of a framework combination

is given in Minner (2000). Whereas he only conceptionally outlines how to model

the interfaces between the approaches and restricts the outline to local search meth-

ods, this section provides a detailed interface modeling description and presents a
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pseudo-polynomial time dynamic programming algorithm for the optimization of

the integrated safety stocks in a serial system. Moreover, extensions to convergent

and divergent systems are outlined. The benefit of the HS approach is tested in a

numerical study for a serial system with up to five stages. From this study drivers

that favor the use of hybrid-service structures are identified. The section is based

on Dittmar et al. (2009).

The structure of this section is as follows. First, serial systems are addressed (Sec-

tion 4.4.2). The interface modeling is described in Section 4.4.2.1. Section 4.4.2.2

presents the combination of both approaches into an integrated optimization model

and the dynamic programming algorithm. Section 4.4.2.3 reports the results of a

numerical comparison of the pure and hybrid approaches. In Sections 4.4.3 and

4.4.4 extensions to divergent and convergent systems are discussed. Section 4.4.5

provides a summary of the main findings.

4.4.2 Serial systems

In Section 4.3.2 the allocation benefit of the SS and the decoupling benefit of the GS

approach have been established. The hybrid-service (HS) approach tries to jointly

exploit the benefits of the two pure approaches. For each stage, the HS approach

chooses the cost-optimal framework with regard to the entire supply chain. This

leads to a partitioning of the supply chain into SS and GS subnetworks. Special care

has to be taken at the interface of these subnetworks due to the differing underlying

assumptions of the pure approaches. Each interface and the required adjustments

for the order-up-to level calculation are addressed in turn.

4.4.2.1 Interface modeling

SS subnetwork with preceding GS subnetwork

Consider a situation where a GS subnetwork runs from stage l to i − 1 and an

SS subnetwork from i to j. Due to the operating flexibility of a GS stage, the

succeeding SS subnetwork does not have to include any stochastic delays caused by

its predecessor. However, the preceding GS stage might quote a positive service

time to the SS stage, which can be viewed as a deterministic delay. Consequently,
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when the first SS stage determines its order-up-to level it has to do this with respect

to the replenishment lead time τSS
i = STi−1 + Ti, and not just Ti. The term τSS

i

is used to indicate the similarity to a GS stage through the incoming service time,

STi−1. For each possible incoming service time, a different SS subnetwork needs to

be solved. Note that due to the decomposition result, not all order-up-to levels need

to be recalculated, but only the one of the first SS stage i. Given a certain incoming

service time, the optimization algorithm of the pure SS approach can be applied.

Proposition 4.4.2.1 Suppose an HS serial supply chain, where a GS subnetwork

runs from l to i − 1 and a SS subnetwork from i to j. Then, the net replenishment

time candidate τi−1 = 0 can be excluded, i.e. 1 ≤ τi−1 ≤ Mi−1 ⇔ 0 ≤ STi−1 ≤
Mi−1 − 1.

Proof:

See Appendix B.11. �

As already mentioned in Section 4.2.3.1, the computational complexity of GS mod-

els depends on the behavior of the objective function when the decision variables,

namely the net replenishment times, are changed. A concave objective function

leads to a complexity reduction due to the extreme point property.

Corollary 4.4.2.2 If the GS objective function is a concave function of the net

replenishment time, the extreme point property holds. Hence, in an optimal HS serial

supply chain the final stage i−1 of a GS subnetwork that precedes an SS subnetwork

(from stage i to j) holds sufficient stock to cover all uncovered processing times from

its predecessors, i.e. τi−1 = STi−2 + Ti−1. It completely decouples itself (and the

upstream stages) from the downstream part of the supply chain by quoting a service

time of 0 to the succeeding SS stage, i.e. STi−1 = 0.

Due to Corollary 4.4.2.2, there is only one possible replenishment time candidate for

the first SS stage, i.e. τSS
i = Ti. Consequently, only a single SS subnetwork needs

to be optimized.
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GS subnetwork with preceding SS subnetwork

The first GS stage might experience stochastic delays in the delivery of its order

requests (shortfall). These delays have to be taken into account in the determination

of the order-up-to level. Assume that the SS subnetwork runs from stage l to i − 1

SS SS GS GS GS
1−iT iT 1+iT jT1+iST

SS
lT

...

iii STT −=τ 111 +++ −+= iiii STTSTτ

1,...,0 −= ii TST

‘HS stage’

with:

iST
...

SS SS GS GS GS
1−iT iT 1+iT jT1+iSTlT

...
iST

...

Internal partitioning

External partitioning

Figure 4.11: Interface modeling between an SS and a GS subnetwork

and the GS subnetwork from i to j (see Figure 4.11, ‘external partitioning’). The

order-up-to level of the first GS stage can be computed by treating stage i as if it

was part of the preceding SS subnetwork (‘internal partitioning’). Recall that in

the SS subnetwork each stage has to cope with possible stochastic delays from its

predecessor, too. The combination of the preceding SS subnetwork and the first GS

stage is called a ‘hybrid-service’ (HS) stage. Consequently, the order-up-to level of

GS stage i, BGS
i , follows from optimizing the HS stage running from l to i. That

means BGS
i results from (see Section 4.2.2)

Fτi

(
BGS

i

)
=

p +
∑i−1

k=l h
e
k

p + hi

= αSS
i with p = hi ·

αtarget
i

1 − αtarget
i

. (4.42)

Moreover, from the GS description in Section 4.2.3 it is known that a GS stage might

quote a positive service time to its successor and thereby postpone some coverage

requirement (except for the final stage). Hence, the net replenishment time of the

GS stage, τi, that is required for the SS subnetwork optimization in (4.42) is not

fixed to the processing time, Ti, a priori, but depends on the outgoing service time,

STi. For each τi = Ti−STi a separate HS stage needs to be evaluated. The possible

net replenishment times (or service times) of stage i can be reduced by the following
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proposition:

Proposition 4.4.2.3 Suppose an HS serial supply chain, where an SS subnetwork

runs from l to i− 1 and a GS subnetwork from i to j. Then, the net replenishment

time candidate τi = 0 can be excluded, i.e. 1 ≤ τi ≤ Ti ⇔ 0 ≤ STi ≤ Ti − 1.

Proof:

See Appendix B.12. �

Corollary 4.4.2.4 If the GS objective function is a concave function of the net

replenishment time, the extreme point property holds. Hence, in an optimal HS

serial supply chain it holds for the first stage i of a GS subnetwork that succeeds an

SS subnetwork (from stage l to i − 1) that τi = Ti ⇔ STi = 0.

4.4.2.2 Combination of the approaches

Properties of HS systems

Given the interface modeling, an HS system can be transformed into a system of GS

and HS stages. Figure 4.12 illustrates such an HS system where a GS subnetwork

that ends at stage i−1 is succeeded by an SS subnetwork from i to j, which in turn is

succeeded by another GS subnetwork starting at j +1. Through the introduction of

HS stages, the HS system is similar to a pure GS system. Like a standard GS stage,

the HS stage i faces an incoming service time, STi−1, and quotes an outgoing service

time, STj+1. The incoming service time is quoted to the first SS stage, whereas the

outgoing service time belongs to the first GS stage that directly succeeds the SS

subnetwork. Once both service times of the HS stage are known, the optimal order-

up-to levels and the resulting inventory holding cost of this stage can be calculated.
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Figure 4.12: System illustration with a hybrid-service (HS) stage

Lemma 4.4.2.5 In an HS system it holds that:

1. An HS stage consisting of a single stage comprises of a GS stage only.

2. An HS stage that runs until the most downstream stage n of the entire supply

chain is a pure SS subnetwork.

3. Benefits of the HS approach over the pure approaches (SS, GS) start materi-

alizing in serial supply chains consisting of three stages or more.

Proof:

See Appendix B.13. �

Optimization model

Although the overall objective is to find the optimal partitioning of the entire sup-

ply chain into SS and GS subnetworks, the optimization problem is formulated in

terms of GS subnetworks and HS stages for simplicity reasons (see Figure 4.12).

A back transformation is straightforward based on the explanations above. It is a

two-stage optimization problem. At optimization stage 1, the objective is to find

the cost-optimal partitioning of the entire serial supply chain into GS subnetworks

and HS stages. The cost of each GS subnetwork/HS stage is the outcome of another

optimization problem (optimization stage 2), namely the respective pure optimiza-

tion problem PSS or PGS (see Sections 4.2.2 and 4.2.3). The GS subnetworks are

indicated by superscript GS and the HS stages by superscript HS.

(Note that by only incorporating the on-hand stock cost as the total cost of a GS

subnetwork it is implicitly assumed that the internal service levels are set directly by
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management such that no additional costs for the operating flexibility usage accrue.

In the numerical study in Section 4.4.2.3 the internal service-level values will be

chosen appropriately to make this a reasonable assumption.)

Stage 1: Partitioning into GS subnetworks and HS stages 〈i, j〉

PHS min CHS
〈1,n〉 =

∑

〈i,j〉∈J

[
cGS
〈i,j〉 · xGS

〈i,j〉 + cHS
〈i,j〉 · xHS

〈i,j〉

]
(4.43)

s.t.

∑

〈i,j〉∈J

ak,〈i,j〉 ·
(
xGS
〈i,j〉 + xHS

〈i,j〉

)
= 1 k = 1, ..., n (4.44)

xGS
〈l,i−1〉 + xHS

〈i,i〉 + xGS
〈i,j〉 + xGS

〈1,n〉 + xHS
〈1,n〉 = 1 ∀〈i, j〉 ∈ J , 1 ≤ l < i (4.45)

xGS
〈i,j〉 , xHS

〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ J (4.46)

ak,〈i,j〉 ∈ {0, 1} k = 1, ...n, ∀〈i, j〉 ∈ J (4.47)

Stage 2: Determination of optimal cost for each GS subnetwork/HS stage

ctype

〈i,j〉 =





CGS

〈i,j〉 , if type = GS

CSS
〈i,j〉 , if type = HS

(4.48)

where

J = {〈1, 1〉, ..., 〈1, n〉, 〈2, 2〉, ..., 〈2, n〉, ..., 〈n, n〉}, i.e. set of all feasible GS

subnetworks/HS stages

〈i, j〉 GS subnetwork/HS stage that runs from stage i to j (including i and

j with i ≤ j)

xtype

〈i,j〉 indicator variable that is 1 if the GS subnetwork (type = GS) or HS

stage (type = HS) from i to j is chosen or 0 otherwise

ak,〈i,j〉 k × 〈i, j〉-matrix that shows which stages are part of the GS subnet-

work/HS stage 〈i, j〉
ctype

〈i,j〉 cost of the on-hand stock in the GS subnetwork (type = GS) or HS

stage (type = HS) from i to j
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(4.44) ensures that stage k is part of either a GS subnetwork or an HS stage. (4.45)

ensures that (i) a GS subnetwork does not succeed another GS subnetwork, (ii) an

HS stage that only consists of a single stage does not succeed another GS subnetwork

(Lemma 4.4.2.5 part (1)), and (iii) the entire network can be of a single type.

In order to compute the optimal cost of an HS stage in (4.48), which comprises of

stages i to j, the on-hand stock calculation in optimization problem PSS
〈i,j〉 needs to

be adjusted slightly. Due to possible positive incoming and outgoing service times at

the first and final stage of the HS stage, the time span that is used in the order-up-to

level calculation is not equal to the processing time, but the net replenishment time

of these stages. Therefore, (4.2) becomes

E [OHk(Bk)] = (Bk − E [BOk−1(Bk−1)]) − λk · µ + E [BOk(Bk)] k = i, ..., j

(4.49)

with λk =






τSS
i if k = i

Tk if i < k < j

τj if k = j

and τSS
i and τj as defined in Section 4.4.2.1.

Dynamic programming algorithm

The partitioning problem PHS can be solved by dynamic programming (DP). At

an HS stage, an SS optimization problem needs to be solved to obtain the optimal

cost. Hence, in a pre-processing step the optimal order-up-to levels and resulting

inventory holding costs of all possible HS stages as well as for all incoming and

outgoing service-time combinations of these stages are calculated. Then, all possible

net replenishment times at all stages can be enumerated to find the optimal ones.

State space. The state variable, zk, represents the replenishment lead time of stage

k, i.e. any uncovered processing times from preceding stages (including stage k).

zk ∈ Zk = {z ∈ N | Tk ≤ z ≤ Mk} k = 1, ..., n (4.50)
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where Mk =
∑k

l=1 Tl denotes the maximum replenishment lead time for stage k.

Decision space. A three-dimensional decision variable is defined uk = (u1
k, u

2
k, u

3
k).

u1
k indicates whether stage k is a GS stage or the first stage of an HS stage, i.e.

u1
k ∈ {GS, HS}. u2

k indicates the next downstream GS stage that holds stock, if

u1
k = GS, which implies k ≤ u2

k ≤ n, or the final stage of the HS stage, if u1
k = HS,

which implies k < u2
k ≤ n due to Lemma 4.4.2.5 part (1). (Note that this final stage

is also of type GS.) Finally, u3
k represents the net replenishment time of the stage

u2
k. If u1

k = GS,

u3
k





∈
{

1, 2, ..., zk +
∑u2

k

j=k+1 Tj

}
, if u2

k < n

= zk +
∑u2

k

j=k+1 Tj , if u2
k = n

. (4.51)

If u1
k = HS,

u3
k





∈
{

1, 2, ..., Tu2
k

}
, if u2

k < n

= Tu2
k

, if u2
k = n

. (4.52)

Due to Propositions 4.4.2.1 and 4.4.2.3, u3
k = 0 can be excluded from (4.51) and

(4.52), respectively, for u2
k < n. Further, since immediate customer service is as-

sumed, the final stage n has to cover its replenishment time (including the review

period). The entire decision space of stage k for a given state, Uk (zk), is specified

by all feasible combinations of the three decision variable elements.

State transition equation. The state transition equation denotes how the state

of a succeeding stage of k depends on the state and the decision made by k. It needs

to be distinguished whether stage k acts as a GS stage or starts an HS stage.

zu2
k
+1 (uk) =





zk +

∑u2
k
+1

j=k+1 Tj − u3
k , if u1

k = GS
∑u2

k
+1

j=u2
k

Tj − u3
k , if u1

k = HS
(4.53)

Value function. In the value function the minimum on-hand stock cost of the

current stage and the downstream part of the entire supply chain are calculated

depending on the current state and the decision made at the current stage k. Note

that if an HS stage starts at stage k, the entire cost of the HS stage is assigned to its
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final stage indicated by u2
k. In the GS case, u2

k indicates the next downstream GS

stage that holds stock. The direct cost assigned to stage u2
k, DCu2

k
, can be calculated

as

DCu2
k
(uk) =





hu2

k
· E

[
OHGS

u2
k

(uk)
]

, if u1
k = GS

∑u2
k

m=k hm · E
[
OHSS

m (uk)
]

, if u1
k = HS

(4.54)

with

E

[
OHGS

u2
k

(uk)
]

= Bu2
k
(u3

k) − u3
k · µ + E

[
BOu2

k

(
Bu2

k
(u3

k)
)]

(4.55)

where Bu2
k
(u3

k) = F−1
u3

k

(
αtarget

u2
k

)

E
[
OHSS

m (uk)
]

= (Bm(uk) − E [BOm−1 (Bm−1(uk))]) − λm · µ + E [BOm (Bm(uk))]

(4.56)

where λm =






zk if m = k

Tm if k < m < u2
k

u3
k if m = u2

k

and Bm(uk) =




Bm ∈ ~B〈k,u2
k
〉

∣∣∣∣∣∣
~B〈k,u2

k
〉 = argmin

~B
〈k,u2

k
〉

u2
k∑

i=k

hi · E
[
OHSS

i (Bi)
]

s.t. αu2
k

(
~B〈k,u2

k
〉

)
= αtarget

u2
k






and BOk−1 = 0 .

Given DCu2
k
, the value function is

gn(zn) = DCn ((GS, n, zn)) ∀zn ∈ Zn (4.57)

gk(zk) = min
uk∈Uk(zk)

{
DCu2

k
(uk) + gu2

k
+1

(
zu2

k
+1(uk)

)}
∀zk ∈ Zk , k = 1, ..., n − 1.

(4.58)
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Computational complexity. The computational complexity of the algorithm is

O
(
n3M2D̄ log(D̄) log(S∗

1)
)
. During the pre-evaluation phase all possible HS stages

are optimized. Taking into account all possible incoming and outgoing service times

(at the first and final stage, respectively), the total number of HS stages is found to

be of complexity class O(n2M2). The optimization procedure of an HS stage corre-

sponds to that of a pure SS subnetwork, whose complexity is O
(
nD̄ log(D̄) log(S∗

1)
)

(see Section 4.2.2). Hence, the total pre-evaluation complexity is

O
(
n3M2D̄ log(D̄) log(S∗

1)
)
. The dynamic program for solving the HS approach does

have complexity O(n3M2) resulting from a stage’s state space lying in O(M) and

its decision space lying in O(n2M). Combining these findings results in the total

DP algorithm complexity.

Remark. Most of the computation time is required for the evaluation of the HS

stages due to the (in)complete convolution computation. A major reduction can

be achieved, if the moment-iteration approximation is used as a heuristic (see van

Houtum and Zijm (1991)).

Special case: Concave objective function

If the on-hand stock is a concave function of the net replenishment time, the state

and decision space of the dynamic program can be reduced considerably:

1. State space. Due to the extreme point property, the state space is restricted

to:

Zk =

{
k∑

l=j

Tl , j = 1, ..., k

}
k = 1, ..., n (4.59)

2. Decision space. From Corollary 4.4.2.2 and the new state space definition it

follows that if u1
k = GS,

u3
k =

u2
k∑

j=k

Tj . (4.60)

Due to Corollary 4.4.2.4, the net replenishment time of the GS stage within
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an HS stage corresponds to its processing time. Consequently, if u1
k = HS,

u3
k = Tu2

k
. (4.61)

The restrictions on k and u2
k remain unchanged.

A further simplification concerns equation (4.56), which becomes

E
[
OHSS

m (uk)
]

= (Bm(uk) − E [BOm−1(Bm−1(uk))]) − Tm · µ + E [BOm(Bm(uk))]

(4.62)

i.e. no case differentiation has to be made with respect to the timespan that is

relevant for the order-up-to level computation within the HS stage. At all stages

it is simply the processing time, Tm, that needs to be considered. Keeping these

aspects in mind, the complexity reduces to O
(
n3D̄ log(D̄) log(S∗

1)
)
.

4.4.2.3 Numerical study

Numerical design

In order to gain further insights into the performance of the HS approach a numerical

study for serial supply chains of length n ∈ {3, 4, 5} is conducted. Parameters are

chosen such that a large range of supply chain characteristics is captured. External

customer demand per period is characterized by a discretized Gamma distribution

with a mean of 100 and coefficients of variation (CV ) of 0.2, 0.4, and 0.8 to reflect

different levels of variability. Although the model and DP algorithm itself are not

limited to discrete demand distributions, a discretized version of the Gamma dis-

tribution is chosen such that the mathematical expressions for the SS subnetwork

optimization, which contain multiple (in)complete convolutions, can be evaluated by

exact numerical computations. For serial supply chains of more than three stages,

the evaluation of the multiple-integral expressions, which would result for continuous

demand distributions in these systems, can no longer be computed in an exact way,

except for special cases. That means, approximate methods would have to be used,

which might affect the results. The choice of a discrete distribution avoids these

problems. Based on the assumption that operating flexibility might vary along the
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supply chain, (internal) service-level targets at the intermediate stages correspond

to either 75%, 85%, 95%, or 99% and may differ between the stages of a single

supply chain. (Note that in the model formulation it is assumed exclusively that

no additional costs for using operating flexibility are incurred, which distinguishes

this setting from the comparison of the SS and GS approach in Section 4.3. That

is why the internal service levels are set rather high. In the most flexible produc-

tion system considered at a stage, the probability that operating flexibility is used

must not exceed 25%, which corresponds to an internal service level of 75%. This

parameter choice still ensures that the simplifying assumptions 4.2.3.1 and 4.2.3.2

hold in view of the different CV s.) Final-stage service levels are set to 90%, 95%,

and 99%, which reflect common values in practice. Inspired by the numerical design

in Graves and Willems (2005), progressive, linear, and degressive holding cost and

lead-time patterns are analyzed, which are characterized in Table 4.4 and by which

a large variety of structures that exist in reality can be captured. The constant C in

Pattern Holding cost (i = 1, ..., n) Processing time (i = 1, ..., n)

progressive he
i = i Ti = i

linear he
i = C Ti =

⌈
n+1

2

⌉

degressive he
i = n − i + 1 Ti = n − i + 1

Table 4.4: Holding-cost and processing-time patterns

the linear cost pattern can be set arbitrarily. In the upcoming calculations C = 2 is

used. In total, 1296 (n = 3), 5184 (n = 4), 20736 (n = 5) instances are tested. The

DP algorithm is implemented in Java.

Results

Overview. In the analysis, the same performance measures as in Section 4.3, where

the two pure approaches have been compared, are used, but in a slightly extended

way. The optimality share indicates the fraction of instances where an approach is

optimal (i) within only the pure approaches, OSm
pure, m ∈ {GS, SS}, and (ii) within

all approaches, OSm
all, m ∈ {GS, SS, HS}. The relative benefit of a respective

approach quantifies the cost savings and is defined as
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RBGS =

(
1 −

CGS
〈1,n〉

CSS
〈1,n〉

)+

, RBSS =

(
1 −

CSS
〈1,n〉

CGS
〈1,n〉

)+

, RBHS =



1 −
CHS

〈1,n〉

min
{
CGS

〈1,n〉, C
SS
〈1,n〉

}




+

.

Table 4.5 presents the measures for the entire numerical study. The optimality

share of the pure approaches is almost equally-balanced, if they are the only options

available, with a slight increasing trend towards the GS approach as the supply chain

length increases. If hybrid structures are allowed, the HS approach improves the best

pure approach in about half of the cases or more. In many instances the HS model

can exploit the allocation benefit by introducing SS subnetworks into an originally

pure GS system. In fewer cases it can profit from the decoupling benefit within

originally pure SS systems. In terms of the relative benefit, the superiority of the

GS (SS) approach over the SS (GS) approach can be quite large with 32.6% (23.4%)

at most and 7.6-9.8% (3.9-4.1%) on average. Besides finding the pure optimum, the

HS approach obtains additional benefits of 10.5% at most and 1.4-1.9% on average.

(a) n = 3

OSm
... RBm

m pure all Max Avg.

GS 48.69% 10.88% 24.56% 7.58%
SS 51.31% 41.28% 17.70% 4.06%
HS 47.84% 7.07% 1.40%

(b) n = 4

OSm
... RBm

m pure all Max Avg.

GS 51.60% 3.36% 29.19% 8.77%
SS 48.40% 32.72% 21.03% 3.98%
HS 63.93% 8.63% 1.61%

(c) n = 5

OSm
... RBm

m pure all Max Avg.

GS 55.50% 3.44% 32.59% 9.79%
SS 44.50% 27.41% 23.43% 3.85%
HS 69.15% 10.54% 1.88%

Table 4.5: HS result overview

In the remainder of this section a more detailed analysis of each parameter dimension

for n = 3 is conducted. For the instances with n = 4 and n = 5 the same effects

are observed and therefore these results are not reported in detail. (The figures for

these instances can be found in Appendix A.2.)



4.4 Combination of the stochastic- and guaranteed-service approach 168

Internal service levels. The internal service levels have a major influence on the

preferability of a particular approach. For the sake of clarity, service-level ranges

are used to analyze the results. By combining the four possible internal service

levels as min-max pairs, ten ranges result that cluster all test instances into disjoint

subsets. Ordering by min values first (decreasing) and by maximum values second

(increasing), a sorted sequence of service-level ranges is obtained as shown on the

x-axis in Figure 4.13. For each range, the shaded bars refer to the left-hand y-axis

and indicate the optimality shares. The dashed-lined white bars show the original

shares of the pure approaches that are now outperformed by the HS. The average

relative HS benefit is illustrated by triangles, which refer to the right-hand y-axis.
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Figure 4.13: Optimality share and additional average HS benefit with respect to the
internal service-level ranges

A real HS optimum becomes more likely with a low minimum internal service level

and a broad internal service-level range. No HS optimality share can be observed in

settings with all internal service levels set to 99% and only a small one for ranges

starting at 95%. In these settings, the decoupling benefit is negligible. The high

internal service levels indicate that there is only little operating flexibility at these

stages and most of the demand variability has to be dealt with by using safety stock.

Due to the allocation benefit pure SS solutions are dominant. In ranges starting at

85%, more operating flexibility is available and thus the extent of the decoupling

benefit increases. Now, the HS approach can exploit both individual benefits and

outperform the pure approaches. The HS superiority gets even more pronounced
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for service-level ranges starting at 75%.

Within all ranges starting at 95%, 85%, and 75%, respectively, the average relative

HS benefit increases as illustrated by the solid black triangles. Thus, the aver-

age relative benefit of a real HS optimum increases with the breadth of the internal

service-level range.

Final-stage service levels. When comparing the two pure approaches only, it can

be observed that the optimality share of the SS approach decreases as the final-stage

service level gets higher (see Figure 4.14(a)). An optimal SS solution has to ensure

that the service level is achieved solely by safety stock taking into account potential

supply shortages. This results in high costs, if the final-stage target service level

is high. In contrast, the GS approach can exploit its decoupling benefit and carry

more stock at the upstream stages. Although the HS optimality share increases,

the relative HS benefit remains fairly constant. A higher final-stage service level

increases the HS optimality share, but has a negligible effect on the average relative

HS benefit.

Processing time. From degressive over linear to progressive, the share of HS

optima decreases, the share of GS optima remains fairly constant (it decreases within

the pure approach comparison, though), and the share of SS optima increases (see

Figure 4.14(b)). The GS and HS approach can use their decoupling benefit only

in case of upstream coverage. Holding stock at upstream stages becomes more

advantageous with larger processing times in the upstream part of the supply chain

compared to the downstream part due to the square root effect of the processing

time. Similarly to the optimality share, the average relative HS benefit also decreases

for the same reason. Both the optimality share and the average relative benefit of

the HS approach decrease from degressive over linear to progressive processing-time

patterns.

Holding cost. The optimality share as well as the average relative benefit of the

HS approach increase from degressive over linear to progressive holding-cost patterns.

(Figure 4.15(a).) Generally speaking, if value-adding is high, it is preferrable to hold

more stock upstream. If operating flexibility of the upstream stages is high, the GS

approach can do this at a lower cost than the SS model. In case of low operating

flexibility, the SS approach’s allocation benefit prevails. This causes the relatively
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(a) Final-stage service level
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Figure 4.14: Optimality share and additional average HS benefit with respect to (a)
and (b)
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equally-balanced performance of both pure approaches across the different holding-

cost patterns. Due to the joint exploitation of both individual benefits, the HS

approach produces additional benefits. In particular, for a progressive holding-cost

structure it is advantageous to have a GS subnetwork in the upstream part of the

supply chain making use of the decoupling benefit and an SS one in the downstream

part, where the allocation benefit can be realized.
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(a) Holding-cost pattern
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(b) Coefficient of variation of period demand

Figure 4.15: Optimality share and additional average HS benefit with respect to (a)
and (b)

Coefficient of variation of period demand. When the coefficient of variation

(CV ) grows, the value of operating flexibility (if used) increases. Whereas the

decoupling benefit of the GS approach becomes more important, the SS approach

suffers from the CV -increase. Accordingly, the HS approach cannot make use of the

allocation benefit to a larger extent. The coefficient of variation has no significant
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effect on the HS optimality share and average relative benefit. (Figure 4.15(b).)

4.4.3 Divergent systems

The HS approach directly extends to divergent systems. However, the computa-

tional complexity increases due to the larger number of HS stages that need to be

evaluated, because a stage can have multiple successors now. Moreover, additional

computational effort is required for the optimization of the order-up-to levels within

an HS stage due to material rationing at a preceding SS stage. Not only optimal

order-up-to levels, but also optimal allocation functions need to be determined (see,

e.g., Diks and de Kok (1998)). In the GS subnetworks, due to the internal service of

100%, rationing problems do not exist. If it is further assumed that the service time,

which a preceding GS stage quotes to its successors, is identical for all successors

(which is quite common, see, e.g., Graves and Willems (2000)), the complexity of

the dynamic program for pure divergent GS systems is the same as for serial ones.

SS

SS

SS

(a) Divergent SS-SS-SS
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GS

GS

(b) Divergent GS-GS-GS
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(c) Divergent GS-SS-SS
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(d) Divergent GS-SS-GS
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(e) Divergent SS-GS-GS

SS

SS
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(f) Divergent SS-SS-GS

Figure 4.16: Divergent HS systems

In order to describe the interface modeling, the simplest version of an arborescent

system is considered and displayed in Figure 4.16. Cases 4.16(a) and 4.16(b) are

straightforward since they are pure systems. In Cases 4.16(c) and 4.16(d) the SS

stages need to take into account a potential deterministic delay of the GS predecessor
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through a positive service time. The SS stages’ order-up-to level calculation follows

the same logic as in the serial system case. In Cases 4.16(e) and 4.16(f), the SS

predecessor causes stochastic delays (shortfall). Hence, for the order-up-to level

determination of the succeeding GS stages, these stages are simply added to the

preceding SS subnetwork and form one HS stage, which is optimized with respect

to different outgoing service times at the GS stages.

4.4.4 Convergent systems

In the SS approach, Rosling (1989) and Langenhoff and Zijm (1990) show that any

convergent system can be transformed into an equivalent serial one. Then, optimal

order-up-to levels are found by using the standard method for serial systems. In the

GS approach, since all parts for an assembly need to be available before the process

can start, the incoming service time of the common successor is the maximum of the

predecessors’ outgoing service times. This does not affect the complexity of the DP

algorithm of Graves and Willems (2000), however, which makes pure convergent GS

systems still easy to solve. The presence of multiple predecessors and thus enlarged

number of possible SS systems/HS stages increases the computational effort required

for optimally combining the two approaches. In addition, the HS stages need to be

transformed into the corresponding serial ones first, before they can be evaluated.

The interface modeling is described for the simplest convergent systems illustrated

in Figure 4.17. In the pure Cases 4.17(a) and 4.17(b) the standard solution methods

can be applied. In Case 4.17(c) the order-up-to level of the SS successor needs to

be optimized for all feasible incoming service times, which can be quoted by the GS

stages, as in the serial and divergent case. Case 4.17(d) is solved by merging the GS

stage and the preceding SS stages into a single HS stage. This HS stage is optimized

according to Rosling (1989) with respect to all feasible outgoing service times that

the comprised GS stage can quote. Cases 4.17(e) and 4.17(f) are more difficult to

handle, because the succeeding stage faces a stochastic delay (shortfall) as well as a

potential deterministic delay by the SS and GS predecessor, respectively. Roughly

speaking, the joint shortfall (caused by these delays) needs to be taken into account

at the succeeding stage, i.e. the distribution of a maximum expression of two random

variables is to be computed, which makes the computation more complex.
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Figure 4.17: Convergent HS systems

4.4.5 Summary and implications

In this section an approach has been presented to combine the stochastic-service

(SS) and guaranteed-service (GS) framework. The integrated hybrid-service (HS)

approach derives a cost-optimal partitioning of the supply chain into SS and GS

subnetworks and calculates the optimal order-up-to levels. By the stage-wise choice

of an appropriate approach instead of only a single decision for the entire supply

chain, the HS approach not only resolves the practitioner’s dilemma to find the

better of the two pure approaches, but even realizes additional gains.

From a numerical study for serial systems with up to five stages it has been found

that the cost superiority of the pure GS (SS) over the SS (GS) solution can be

quite large amounting to 32.6% (23.4%) at maximum. The HS approach not only

mitigates the risk of choosing the ‘wrong’ pure approach, but it has even achieved

further cost-savings of up to 10.5% at most and 1.9% on average in the analyzed

experimental design. The numerical results have shown that the largest additional

HS benefits accrue in settings with relatively low internal service levels, a broad

internal service-level range, degressive processing-time structure, and progressive

holding-cost pattern.

Now that both multi-echelon modeling approaches have been outlined (Section 4.2),
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compared (Section 4.3), and even combined (in this section), the focus can be shifted

to the integration of dual sourcing in a multi-echelon context. This aspect is dealt

with in the next section.

4.5 Guaranteed-service approach with dual sourcing

4.5.1 Introduction

While the determination of optimal inventory levels in multi-echelon models already

represents a challenging task, the incorporation of dual sourcing into such settings

increases the complexity even further. That is why only few contributions can be

found in the literature that address this aspect (see Section 2.2.3).

In order to keep the complexity still manageable even under dual sourcing, out of

the three (single-sourcing) multi-echelon approaches that have been described and

developed in the previous sections, the guaranteed-service (GS) approach is chosen

as the basic framework for the dual-sourcing extension in this section for the follow-

ing reasons. In contrast to the stochastic-service (SS) approach, where stochastic

supply delays need to be taken into account in the order-up-to level determination

of a stage, the GS approach only has to cope with deterministic delays through

positive incoming service times. This facilitates the dual-sourcing analysis, which

requires the coordination of orders in the presence of two replenishment lead times

of different length. The hybrid-service (HS) approach, which one could argue is the

most advanced approach, is also postponed to future research, because it not only

suffers from the SS difficulty, but also from an already increased complexity in the

single-sourcing setting resulting from the integration of the two pure multi-echelon

approaches. Moreover, the GS approach has been shown to be (easily) extendable

in various ways. Over the last two decades, it has been extended to incorporate,

e.g., stochastic processing times (Minner (2000)) and differing integer review periods

(Bossert and Willems (2007)) at the stages, non-stationary demand (Graves and

Willems (2008)), evolving forecasts (Schoenmeyr and Graves (2009b)), and capacity

constraints (Schoenmeyr and Graves (2009a)). Dual or multiple sourcing has not

been addressed in this approach yet, except for a brief remark in the final section

of Graves and Willems (2005). In contrast to the model developed in this section,
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their idea does not provide an accurate estimate of the safety stock, however. The

difference between the two modeling ideas is outlined and an example for illustrating

the cost difference is presented. In its standard model framework, the GS approach

does not specify in detail how the operating flexibility measures work to provide

the guaranteed service (recall Section 4.2.3.1). For tactical or strategic decision

guidance, which most of the previously mentioned contributions focus on, this is

of minor importance, anyway. Such a tactical/strategic perspective is also taken in

this section.

Similar to the simplification regarding the underlying multi-echelon framework, not

the most effective (and also most complex) dual-sourcing policy of the four policies

investigated in Section 3.3.3 is chosen to be integrated into a multi-echelon model

(i.e. the dual-index policy (DIP)), but a simple and thus analytically better manage-

able one is selected for the start, i.e. the order-splitting policy (OSP). Whereas the

DIP (and also the single-index (SIP) and constant-order policy (COP)) determine

the allocation of the demand to the different suppliers only indirectly via their policy

parameters, the OSP does this directly as one of the policy parameters. This direct

specification allows for an exact (and relatively simple) derivation of the demand

process at the supplying (upstream) stages in the supply network in contrast to the

other dual-sourcing policies. Moreover, the demand allocation to the suppliers can

either be part of the optimization or treated as exogenous to the model. The latter

is assumed here, i.e. the allocation is determined by company regulations, minimum

production quantities for facilities, and/or supply chain security considerations, for

instance. The primary focus is put on the optimization of safety stocks given a

certain allocation.

Thus, the objective of the model developed in this section differs from the few exist-

ing dual-sourcing multi-echelon models (see Section 2.2.3) mainly in two respects:

1. This model does not view one of the suppliers as the regular (slow) one and

the other one as an emergency option. Rather, it is assumed that a certain

share of the demand shall be allocated to each supplier in every period.

2. The focus lies on larger supply chain settings than the previously studied ones.

This also suggests the use of the GS approach, which has been shown to be

applicable to supply networks of large sizes (see, e.g., Willems (2008)).
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The section is based on Klosterhalfen et al. (2010b). The remainder of this section

is organized as follows. In Section 4.5.2 dual sourcing is introduced in the GS

approach for serial and convergent systems. In Section 4.5.2.1 the basic assumptions,

notations, and changes to the standard GS approach are explained. Section 4.5.2.2

developes the single-echelon model, on which the multi-echelon one in Section 4.5.2.3

builds. A numerical example demonstrating the benefit of the model extension is

presented in Section 4.5.2.4. Section 4.5.3 discusses the extension to other network

structures. Section 4.5.4 deals with further extensions of this approach, i.e. more

than two suppliers, the optimization of the sourcing fractions, and other inventory

control policies. A summary is provided in Section 4.5.5.

4.5.2 Serial and convergent systems

In this section, the GS framework is modified to allow for two suppliers for a single

item. Since a serial system represents a special case of a convergent system, the

upcoming exposition focuses on convergent systems only. Other network structures

are discussed in Section 4.5.3.

4.5.2.1 Assumptions, notations, and changes to the standard

guaranteed-service approach

Most of the notations and assumptions referring to the GS model have already been

explained in Section 4.2. Therefore, only some additional notations, which are due

to the analysis of convergent systems instead of the previously studied serial ones,

are briefly introduced at the end of this section. The focus lies on the changes to

the standard GS framework that are required to accommodate dual sourcing. These

changes include the following two aspects: (i) the replenishment policy has to allow

for sourcing from more than one supplier and (ii) processing times have to be as-

signed to the arcs connecting two potential inventory locations (stockpoints) instead

of the stages, which has been the case in the previous sections. These two aspects

are addressed in more detail in turn.
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Periodic-review order-up-to level replenishment policy with order split-

ting

In line with the standard GS approach it is assumed that the replenishment policy at

each stockpoint follows a standard order-up-to level policy (with a common review

period) where each period location i places an order that raises its inventory position

to the desired order-up-to level, Bi. However, under the dual-sourcing regime, not

the entire demand is ordered from a single supplier j, but only a fraction of δj,i is

placed with each supplier. It is assumed that this fraction is exogenously determined

and not part of the optimization model, which is developed in this section. Since the

order-up-to level policy under steady-state conditions essentially replenishes current

period demand at a stockpoint i, di,t, the replenishment orders are Q(j,i),t = δj,i ·di,t.

Thus, the replenishment policy is basically an order-splitting policy (see Section

3.3.3.4).

In a multi-echelon model the replenishment order process is of particular impor-

tance, because it represents the demand process of the next upstream stockpoint(s).

Under the assumed replenishment policy this process can be derived exactly and

easily. In each period each supplier receives a certain fraction of the current period

demand. This enables an exact inventory optimization at all stockpoints in the sup-

ply network. Under many other replenishment policies (including the ones analyzed

in the single-echelon Chapter 3), the upstream demand process is more difficult and

computationally much more challenging to derive exactly (see Section 4.5.4.3).

Processing times

As explained in Section 2.1.3, the supply network is modeled as a sequence of pro-

cesses, graphically represented by circles, and potential stockpoints after each pro-

cess visualized by triangles. Figure 4.18 illustrates a supply network consisting of

two ‘make’ processes, that take T1 and T2 time periods, and two transportation pro-

cesses, ‘Ship 1,3’ and ‘Ship 2,3’, which last T1,3 and T2,3 time periods with T1,3 6= T2,3.

In all previous sections the processing time, i.e. the time from when all of the inputs

are available until production is completed and available to serve demand, has been

assigned to a stockpoint (and its index) and both form a stage. Since each item has

been sourced from a single supplier so far, there is only a single process preceding
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Figure 4.18: Dual-sourcing supply network represented by processes and stockpoints

a stockpoint. Hence, the respective processing time can be associated directly with

this stockpoint and its index (see, e.g., Graves and Willems (2000)). In a dual- or

multiple-sourcing setting, an item can be delivered by several suppliers. Depending

on the geographic distance, the transportation processes might take up different

amounts of time. That means, a stockpoint can have several preceding processes

depending on the number of suppliers. Consequently, the aggregation into stages

with only a single processing time is no longer possible, as is illustrated by stage 3

in Figure 4.19(a).
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Figure 4.19: Supply network – Stage assignment and current workaround

For such settings, one workaround in the standard GS model, which is outlined at

the end of Graves and Willems (2005) and is currently the only one available in

the literature, is to introduce additional ‘dummy’ stages that preserve the different

processing times and also the property that each stage has only a single processing

time (see Figure 4.19(b)). Stage 3 is basically replaced by three substages 3.1, 3.2,
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and 3.3. The first two stages are associated with the transportation processes and

thus processing times T3.1 = T1,3 and T3.2 = T2,3. Stage 3.3 represents an assembly

stage with a processing time of T3.3 = 0 since no actual process takes place there.

The clear drawback of this remodeling is that, through the breakdown of stage 3

into three substages, the possible inventory pooling at stockpoint 3 is not captured

correctly. In fact, the remodeled system is only able to hold either two separate

safety stocks after the two shipment processes, i.e. at stockpoints 3.1 and 3.2, or

a common safety stock at stockpoint 3.3. Since the ‘dummy’ process preceding

stockpoint 3.3 represents an assembly step, this common safety stock would have

to buffer against the longer of the two transportation times, however (as is known

from assembly systems with single sourcing). By accurately accounting for both

processing times in the safety stock determination at stockpoint 3, a lower common

safety stock could be held, because the risk interval could be reduced below the

longer transportation time.

In order to be able to derive an exact computation of the safety stock quantity

at stockpoint 3, the aggregation of the processes and stockpoints into stages is

omitted. Instead of the stage, the processing time is assigned to the arc connecting

two adjacent stockpoints. For stockpoints j and i, the respective processing time is

denoted as Tj,i. Thus, the supply network of Figure 4.18 becomes the one depicted

in Figure 4.20(a). (Note that index 0 denotes an external supplier.)

T1,3

2?

? 1
T0,1

T0,2

3

δ1,3<1

δ2,3<1
T2,3

(a) Dual-sourcing network

T1,3=T2,3

2?

? 1
T0,1

T0,2

3

δ1,3=1

δ2,3=1

(b) Assembly network

Figure 4.20: Dual-sourcing network vs. assembly network

The distinction between a dual-sourcing situation compared to an assembly situation

is achieved by the use of different arc types. Whereas Figure 4.20(a) refers to the

dual-sourcing case with T1,3 6= T2,3, Figure 4.20(b) illustrates an assembly situation.

Stockpoints 1 and 2 provide different items for the assembly process, which takes

T1,3 = T2,3 periods. Hence, for the safety stock determination at stockpoint 3 either
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of the two processing times could be used. Apart from the arc types, the sourcing

fractions δj,i are an indicator for dual or single sourcing, i.e. δi,j ∈ (0, 1) ⇒ dual

sourcing and δi,j = 1 ⇒ single sourcing.

In the model, it is further assumed that the processing time is not impacted by the

size of the order, i.e. there are no capacity constraints on the production or trans-

portation processes between stockpoints. Also, it is assumed that at a dual-sourced

stockpoint no assembly process can take place in addition. Such an operational step

would be modeled as a separate process after the dual-sourced stockpoint.

Additional assumptions and notations

The stockpoint facing external customer demand is denoted as n. Let A be the arc

set for the network representation of the supply network and (i, j) ∈ A denote the

arc between stockpoints i and j. In addition to the numbering of the stockpoints

from 1 to n, a level code (LC) is assigned to each stockpoint, which is needed for

the dynamic programming formulation later on. The demand stockpoint n receives

level code 1, i.e. LC(n) := 1. All other stockpoints i have LC(i) := 1 + LC(j) with

(i, j) ∈ A. Let N denote the highest level.

For ease of presentation, it is assumed that an item at a downstream stockpoint

requires exactly one item of all the upstream stockpoints that are connected to it,

i.e. the production coefficients ai,j = 1, ∀(i, j) ∈ A. Note that the relaxation of this

assumption is not difficult to include into the model. It would simply make the

presentation more complicated and is therefore omitted.

Further, it is assumed that external demand only occurs at stockpoint n. Due to

the replenishment policy, the demand at an internal stockpoint i is given as

di,t = δi,j · dj,t (i, j) ∈ A . (4.63)

In case of single sourcing, δi,j = 1. Demand per period is assumed to be i.i.d.

with stationary mean µn and standard deviation σn. The coefficient of variation is

denoted as CVn = σn/µn.
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4.5.2.2 Single-echelon model

Inventory model

In this section, the single-echelon model is described, on which the multi-echelon

one is built. Consider a supply network setting where stockpoint i is dual sourcing

from j and k (see Figure 4.21).
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Figure 4.21: Supply network explaining notations

Given the GS assumptions, the items of stockpoint j with (j, i) ∈ A are available

for processing after STj periods. Then, it takes another Tj,i periods until the items

are in stock at i. As a consequence, each replenishment placed with supplier j is

received after a replenishment lead time Lj,i = STj + Tj,i. The same holds for k,

respectively. Let the stockpoint index of the supplier of i that causes the longer

(shorter) replenishment lead time be denoted as pre (pre), i.e.

pre = argmax
∀l:(l,i)∈A

{STl + Tl,i} (4.64)

pre = argmin
∀l:(l,i)∈A

{STl + Tl,i} . (4.65)

Note that at a dual-sourced stockpoint the maximization and minimization in (4.64)

and (4.65) only needs to be done over two preceding stockpoints. The above char-

acterization is more general, however, so that it can be used in the formulation of

the multi-echelon optimization model in Section 4.5.2.3 without any modification.

For an assembly process in the convergent network, multiple components (i.e. more

than two), each delivered by a different stockpoint, might be required. In the opti-

mization model formulation (as will be seen later), the largest outgoing service time

that is quoted by any of the supplying stockpoints needs to be identified. Since the



4.5 Guaranteed-service approach with dual sourcing 183

processing time in (4.64) is identical for all l, because it refers to the same assembly

process, the stockpoint with the largest service time and the time itself are easily

found by (4.64).

Given pre and pre, the following parameters and variables can be defined for stock-

point i, where the superscript s denotes those of the ‘slower’ of the two suppliers

and f the ones of the ‘faster’:

ST s
i = STpre ST f

i = STpre (4.66)

T s
i = Tpre,i T f

i = Tpre,i (4.67)

Ls
i = ST s

i + T s
i Lf

i = ST f
i + T f

i (4.68)

δs
i = δpre,i δf

i = δpre,i = 1 − δs
i (4.69)

Qs
i,t = δs

i · di,t Qf
i,t = δf

i · di,t . (4.70)

Stockpoint i itself quotes a service time STi to its successor. In the calculation

of the net stock (or inventory level) at the end of a period two cases need to be

distinguished: (For ease of presentation the stockpoint index is dropped.)

1. The outgoing service time ST is shorter than (or equal to) both replenishment

lead times, i.e. Ls ≥ Lf ≥ ST .

2. The outgoing service time ST is larger than (or equal to) the fast replenishment

lead time, but shorter than (or equal to) the slow replenishment lead time, i.e.

Ls ≥ ST ≥ Lf .

Note that in case ST ≥ Ls ≥ Lf , the stockpoint does not have to hold any stock

at all, since the downstream stockpoint is willing to wait longer than the larger of

the two replenishment lead times. If ST > Ls, the next upstream stockpoints could

delay their deliveries even further by ST − Ls. In the other two above-mentioned

cases, the stockpoint needs to hold inventory and the net stock calculation is as

follows. W.l.o.g. it is assumed that the net stock at the end of period 0 is equal to

the base-stock level, i.e. NS0 = B. Let superscript m where m ∈ {1, 2} indicate the

specific case, which is considered.

Case 1: Ls ≥ Lf ≥ ST . The net stock at the end of period t can be calculated

similarly to (3.142). Additionally, only the outgoing service time, ST , needs to be
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taken into account.

NS1
t = B1 −

t∑

i=0

dt−i

︸ ︷︷ ︸
(a)

+

t∑

i=Ls

Qs
t−i

︸ ︷︷ ︸
(b)

+

t∑

i=Lf

Qf
t−i

︸ ︷︷ ︸
(c)

+

ST−1∑

i=0

dt−i

︸ ︷︷ ︸
(d)

= B1 −
t∑

i=ST

dt−i + δs ·
t∑

i=Ls

dt−i + δf ·
t∑

i=Lf

dt−i

= B1 −
Lf−1∑

i=ST

dt−i − δs ·
Ls−1∑

i=Lf

dt−i

= B1 −
ST f+T f−1∑

i=ST

dt−i − δs ·
ST s+T s−1∑

i=ST f+T f

dt−i . (4.71)

In period t, all outstanding orders that have been placed with the slow supplier up

to period t−Ls (including the order of period t−Ls) have arrived at the stockpoint,

i.e. (b) in (4.71). Similar, all outstanding orders that have been placed with the fast

supplier up to period t−Lf (including the order of period t−Lf ) have arrived, i.e.

(c) in (4.71). Moreover, demands have occurred in all periods up to t (including

the demand in t). If the outgoing service time ST was zero, all of these demands

would have depleted the stock level, i.e. (a) in (4.71). However, in case of a positive

outgoing service time, the fulfillment of the demands of the most recent ST periods

can be delayed, i.e. (d) in (4.71). That means, all demands that have occurred up to

period t− ST (including the demand in t− ST ) have been filled by the stockpoint.

Figure 4.22 illustrates the timeline for the calculation.

Consequently, the inventory shortfall is given as (cf. (4.71))

ST f +T f−1∑

i=ST

dt−i + δs ·
ST s+T s−1∑

i=ST f+T f

dt−i (4.72)

and under stationary conditions t → ∞ it can be represented by the following

random variable

Ď1(ST f , ST s, ST, δs) = D(ST f + T f − ST ) + δsD(ST s + T s − ST f − T f) .

(4.73)
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Figure 4.22: Case 1 – Timeline for net stock calculation

Instead of the replenishment lead times Ls and Lf , it is expressed in terms of the

service times, which are the decision variables in the GS model. Then, the net stock

results as

NS1 = B1 − Ď1(ST f , ST s, ST, δs) (4.74)

with

E
[
Ď1(ST f , ST s, ST, δs)

]
=

(
(ST f+ T f − ST ) + δs(ST s + T s − ST f − T f)

)
µ (4.75)

VAR
[
Ď1(ST f , ST s, ST, δs)

]
=

(
(ST f+ T f − ST ) + [δs]2(ST s + T s − ST f − T f)

)
σ2. (4.76)

Case 2: Ls ≥ ST ≥ Lf . In this case, the fraction of demand of period t that is

sourced from the fast supplier (1 − δs) · dt arrives after Lf periods and thus before

(or just at the point in time) the demand of period dt actually needs to be filled,

which is after ST periods, because ST ≥ Lf . Consequently, these items are put on

stock. Figure 4.23 illustrates the timeline in this case.
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Figure 4.23: Case 2 – Timeline for net stock calculation

The net stock computation is similar to (4.71) and reads as follows:

NS2
t = B2 −

t∑

i=0

dt−i +

t∑

i=Ls

Qs
t−i +

t∑

i=Lf

Qf
t−i +

ST−1∑

i=0

dt−i

= B2 −
t∑

i=ST

dt−i + δs ·
t∑

i=Ls

dt−i + δf ·
t∑

i=Lf

dt−i

= B2 − δs ·
Ls−1∑

i=ST

dt−i + δf ·
ST−1∑

i=Lf

dt−i

= B2 − δs ·
ST s+T s−1∑

i=ST

dt−i + (1 − δs) ·
ST−1∑

i=ST f+T f

dt−i . (4.77)

By defining Ď2 as

Ď2(ST f , ST s, ST, δs) = δsD(ST s + T s − ST ) − (1 − δs)D(ST − ST f − T f)

(4.78)

the net stock under stationary conditions t → ∞ follows from (4.77) as

NS2 = B2 − Ď2(ST f , ST s, ST, δs) (4.79)

with

E
[
Ď2(ST f , ST s, ST, δs)

]
=

(δs(ST s+ T s − ST ) − (1 − δs)(ST − ST f − T f )
)
µ (4.80)
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VAR
[
Ď2(ST f , ST s, ST, δs)

]
=

(
[δs]2(ST s+ T s − ST ) + (1 − δs)2(ST − ST f − T f)

)
σ2. (4.81)

Based on the net stock calculations, the determination of the safety stock and order-

up-to level for a specific service-level target can be addressed next.

Determination of safety stock and order-up-to level

For a given set of incoming and outgoing service times Ďm(ST f , ST s, ST, δs) where

m ∈ {1, 2} is completely defined (keeping in mind that δs is exogenous to the model

and thus given, too). As in the single-echelon case, the optimal order-up-to level

for a given α-service level and a (discrete) continuous demand distribution is the

(smallest) one, for which the following (in)equality holds

Pr
{
Ďm(ST f , ST s, ST, δs) ≤ Bm

}
≥ αtarget m ∈ {1, 2} . (4.82)

Denote this optimal value as Bm(ST f , ST s, ST, δs, αtarget). Then, the safety stock

is found as

SST m(ST f , ST s, ST, δs, αtarget) =

Bm(ST f , ST s, ST, δs, αtarget) − E
[
Ďm(ST f , ST s, ST, δs)

]
m ∈ {1, 2}. (4.83)

Special case: Normally-distributed demand. If period demand is assumed to

be normally i.i.d. distributed, Ďm(ST f , ST s, ST, δs) where m ∈ {1, 2} also follows a

normal distribution. Hence, the safety stock in case 1, which is required to achieve

an α-service level, is given as

SST 1
norm(ST f , ST s, ST, δs, αtarget) =

k(αtarget)σ

√
(ST f + T f − ST ) + [δs]2 (ST s + T s − ST f − T f) (4.84)

where k denotes the safety factor, which depends an the service-level target (cf.

(3.153) and relation (3.35)). In case 2, the safety stock can be determined as
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SST 2
norm(ST f , ST s, ST, δs, αtarget) =

k(αtarget)σ

√
[δs]2 (ST s + T s − ST ) + (1 − δs)2 (ST − ST f − T f). (4.85)

In both cases m ∈ {1, 2}, the optimal order-up-to level at a stockpoint is given as

Bm
norm(ST f , ST s, ST, δs, αtarget) =

E
[
Ďm(ST f , ST s, ST, δs)

]
+ SST m

norm(ST f , ST s, ST, δs, αtarget). (4.86)

Average order quantities and pipeline inventory

Due to the model assumptions, the average order quantities of stockpoint i with its

suppliers are given as

E [Qj,i(δj,i)] = δj,i · µi ∀j : (j, i) ∈ A . (4.87)

The average pipeline or work-in-process inventory between supplier j and stockpoint

i is given as the average quantity ordered from stockpoint j times the processing

time from j to i, i.e.

E [PIj,i(δj,i)] = δj,i · µi · Tj,i ∀j : (j, i) ∈ A . (4.88)

Since these two quantities are not influenced by the service times (decision vari-

ables), only by the predefined sourcing fraction, they do not need to be included in

the optimization model.

Holding cost

Most of the models dealing with dual sourcing assume a holding cost per unit and

period, which does not depend on the sourcing fraction. In Chapter 3 this assump-

tion has also been made when the holding cost has been modeled as the foregone

interest on the procurement cost of the cheap supplier (according to, e.g., Scheller-

Wolf et al. (2007)). Since the inventory at the end of a period usually consists of

items from both suppliers, this simplification is only reasonable in situations where
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the fraction of items sourced from the cheap supplier is close to 1. Otherwise, the

holding cost is underestimated.

Under the assumed replenishment policy of the multi-echelon setting, the above

assumption might be violated severely. That is why a more precise computation of

the item holding cost is required, which takes the stock composition into account.

Here, it is assumed that in the long run the stock at the end of a period is composed

of exactly the same proportions of items, which are sourced from the two suppliers.

There are two explanations to support this assumption. First, if the dispatch rule is

such that, once the items are in stock, they are randomly picked to satisfy demand

(i.e. there is no possibility of distinguishing between them), the share of items from

supplier j in stock corresponds to δj,i, i.e. the fraction of demand, which is sourced

from j. Second, if a fraction of δj,i is sourced from each supplier, a reduction in

(safety) stock by one unit corresponds to a reduction in tied-up capital by δj,i and

1 − δj,i times the cumulative cost and holding cost rate.

Let cadd
j,i denote the cost added to an item when proceeding from stockpoint j to i and

ccum
i represent the cumulative cost of an item at stockpoint i. Then, the cumulative

cost at a dual-sourced stockpoint i is given as

ccum
i = δj,i

(
ccum
j + cadd

j,i

)
+ (1 − δj,i)

(
ccum
k + cadd

k,i

)
j 6= k and (j, i), (k, i) ∈ A

(4.89)

and the holding cost per unit and period can be calculated as

hi = νccum
i = ν

(
δj,i

(
ccum
j + cadd

j,i

)
+ (1 − δj,i)

(
ccum
k + cadd

k,i

))
if δj,i ∈ (0, 1) (4.90)

where ν denotes the holding-cost/interest rate for the underlying base period, e.g.,

one day or one week. Since the demand at stockpoint i is also filled according to

the δ-ratios, on average, the cumulative cost ccum
i can simply be used in the cost

calculation at the next downstream stockpoint.

If stockpoint i receives each of the required items for its (assembly) process from a

single source, the holding cost is given as

hi = ν
∑

∀j:(j,i)∈A

(
ccum
j + cadd

j,i

)
if δj,i = 1 . (4.91)
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4.5.2.3 Multi-echelon model

Optimization model

In this section, the optimization problem for finding the optimal service times in the

network is formulated. For case m ∈ {1, 2} using (4.83), the optimization problem

can be stated as

Pm min

n∑

i=1

hi

(
Bm

i (ST f
i , ST s

i , STi, δ
s
i , α

target
i ) − E

[
Ďm

i (ST f
i , ST s

i , STi, δ
s
i )
])

(4.92)

s.t.

ST s
i + T s

i ≥






(
ST f

i + T f
i

)
· I{δs

i ∈ (0, 1)} + STi · I{δs
i = 1} ≥ STi m = 1

STi ≥
(
ST f

i + T f
i

)
· I{δs

i ∈ (0, 1)} + STi · I{δs
i = 1} m = 2

i = 1, 2, ..., n (4.93)

STi ∈ N i = 1, 2, ..., n (4.94)

ST0 = 0 (4.95)

STn = 0 (4.96)

where I{x} is the indicator function of the event x. For ease of presentation, the

definition of the parameters and variables referring to the slow and fast supplier,

which are given in (4.64)-(4.69), are not repeated. The objective of Pm is to minimize

the inventory holding cost in the supply network. The constraints ensure that the

service times are non-negative and integer (4.94), the external supplier delivers the

items immediately (4.95), and the demand stockpoint satisfies the external customer

demand immediately (4.96), which is commonly assumed. Constraint (4.93) ensures

the relation between the replenishment lead times and the outgoing service time of

stockpoint i, which is required by case m ∈ {1, 2}, if i is a dual-sourced stockpoint,

or the relation between a single replenishment lead time and the outgoing service

time of stockpoint i, if it is a single-sourced stockpoint.

Note that if there is only a single supplier for an item, all sourcing fractions between

stockpoint i and its suppliers l are equal to 1, i.e. δl,i = 1, ∀l : (l, i) ∈ A, and thus
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δs
i = 1. Consequently, only ST s

i influences the inventory holding cost at stockpoint i,

which is obvious from the definitions of Ďm, m ∈ {1, 2} (cf. (4.73) and (4.78)). That

means, a single incoming service time needs to be taken into account at stockpoint

i, which corresponds to the maximum of the outgoing service times of all suppliers

(cf. (4.64) and (4.66)). If this service time is denoted as SIi instead of ST s
i , (4.73)

and (4.78) collapse to the demand random variable over the net replenishment time,

D(SIi+Ti−STi), which is well-known from the single-sourcing model (cf. Graves and

Willems (2000)), because the processing times between the supplying stockpoints

and the receiving one are identical as they refer to the same process, i.e. Tl,i = Ti,

∀l : (l, i) ∈ A and thus T s
i = T f

i = Ti.

Lemma 4.5.2.1 The objective function of P2 is decreasing in ST f
i for given ST s

i

and STi.

Proof:

See Appendix B.14. �

Due to Lemma 4.5.2.1 the optimal ST f
i value under case 2 will always be the largest

feasible, i.e. ST f
i = STi−T f

i , which comes from constraint (4.93). The cost function

of case 2 then reduces to the one of case 1, which is also defined for STi = ST f
i +T f

i .

Hence, the whole optimization problem can be expressed by using the problem for-

mulation of case 1 only and it is sufficient to develop a single optimization algorithm.

Optimization procedure

In this section, it is shown how to solve P1 by dynamic programming. The dynamic

program uses a forward recursion similar to the one presented in Minner (1997) for

convergent systems with single sourcing, i.e. it proceeds from level N down to 1 and

finds the solution to P1 for all stockpoints at the same level by evaluating a functional

equation. Consequently, when proceeding to the next lower level the inventory

holding costs for all possible outgoing service times of all supplying stockpoints

have already been determined. For the specification of the functional equations, Ni

is defined as the subset of stockpoints that are connected to i on the subgraph with



4.5 Guaranteed-service approach with dual sourcing 192

stockpoints that have a higher level as i. Ni is determined by the following equation:

Ni = {i} +
⋃

∀j:(j,i)∈A

Nj . (4.97)

Functional equations. Two cost functions are defined, CSI
i and CDS

i , one for

a single-sourced stockpoint and one for a dual-sourced stockpoint. The respective

function calculates the minimum inventory holding cost for the subnetwork with

stockpoint set Ni.

1. Single-sourced stockpoint

If each item is delivered by a different supplier, i.e. δj,i = 1, ∀j : (j, i) ∈ A
⇒ δs

i = 1, the minimum cost is a function of the incoming service time,

SIi = ST s
i = max∀j:(j,i)∈A {STj}, and the outgoing service, STi (as specified

in Graves and Willems (2000)). ST f
i is irrelevant in the single-sourcing case,

because it cancels out in Ď1
i (cf. (4.73)) and thus does not need to be further

specified. Note that the function wj(.) is characterized after the introduction

of the cost function for a dual-sourced stockpoint, since it is used in both

formulations.

CSI
i (SIi, STi) =

hi

(
B1

i (ST f
i , ST s

i , STi, δ
s
i , α

target
i ) − E

[
Ď1

i (ST f
i , ST s

i , STi, δ
s
i )
])

+
∑

∀j:(j,i)∈A

wj(min{SIi, Mj}) (4.98)

where ST s
i = SIi = max

∀j:(j,i)∈A
{STj} (4.99)

T s
i = T f

i = Tj,i for any j : (j, i) ∈ A (4.100)

Mi is the maximum replenishment lead time for stockpoint i, which is defined

as

Mi = max
∀j:(j,i)∈A

{Mj + Tj,i} (4.101)
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with M0 = 0, i.e. the maximum replenishment lead time of the external sup-

plier(s) is zero by assumption.

2. Dual-sourced stockpoint

At a stockpoint where the same item is sourced from two different suppliers

j and k, i.e. δj,i ∈ (0, 1) and δk,i = 1 − δj,i, the minimum cost is a function

of both incoming service times, STj and STk, and the outgoing service time,

STi.

CDS
i (STj, STk, STi) =

hi

(
B1

i (ST f
i , ST s

i , STi, δ
s
i , α

target
i ) − E

[
Ď1

i (ST f
i , ST s

i , STi, δ
s
i )
])

+ wj(min{STj , Mj}) + wk(min{STk, Mk}) (4.102)

Note that δj,i, STj, and STk are related to δs
i , ST s

i , and ST f
i as specified in

(4.64)-(4.69).

In each cost function, the first term represents the inventory holding cost of stock-

point i resulting from the incoming and outgoing service times. The remaining term

addresses the stockpoints in Ni that are upstream of i. If stockpoint i has a single

supplier for each required item, for each stockpoint j that supplies stockpoint i with

a different item the minimum inventory holding cost of the subnetwork with stock-

point set Nj is included as a function of the stockpoint’s outgoing service time SIi.

If this outgoing service time is larger than the maximum replenishment lead time

of the stockpoint, it is adjusted accordingly. This means that stockpoint i delays

its orders from stockpoint j by SIi − Mj periods in order to avoid unnecessary in-

ventory. If stockpoint i has two suppliers, j and k, the minimum inventory holding

cost for the subnetworks with stockpoint sets Nj and Nk are included as a function

of the stockpoints’ outgoing service times STj and STk, respectively. Similarly, the

service times are adjusted where necessary.

The following optimization is solved by enumeration to find the functional value

wi(STi):
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wi(STi) = min
SIi

{
CSI

i (SIi, STi)
}
· I {δj,i = 1}

+ min
(STj ,STk)

{
CDS

i (STj, STk, STi)
}
· I {δj,i ∈ (0, 1)} for (j, i) and/or (k, i) ∈ A

(4.103)

s.t. max {0, STi − Tj,i} ≤ SIi ≤ Mi − Tj,i and SIi integer, for (j, i) ∈ A (4.104)

max {0, STi − Tj,i} ≤ STj ≤ Mi − Tj,i and STj integer, for (j, i) ∈ A
(4.105)

max {0, STi − Tk,i} ≤ STk ≤ Mi − Tk,i and STk integer, for (k, i) ∈ A
(4.106)

The lower bound on STj, STk, and SIi comes from P1, while the definition of Mi

provides the upper bound.

Dynamic programming algorithm. The algorithm is as follows:

1. For all stockpoints i with LC(i) := N down to 1, evaluate wi(STi) for STi =

0, 1, ..., Mi.

2. For i := n evaluate wi(STi) for STi = 0 (assuming immediate demand satis-

faction).

3. Minimize wn(STn) for STn = 0 to obtain the optimal objective function value.

An optimal set of service times is found by the standard backtracking procedure for

a dynamic program.

Computational complexity. As one can observe from (4.103), in the GS approach

with two suppliers it is not sufficient to only consider one incoming and outgoing

service time at a time. Rather, at each dual-sourced stockpoint, the stockpoint’s

outgoing service time and the incoming service times of all suppliers need to be

evaluated together in one step. That means, at each dual-sourced stockpoint, M2

incoming service-time combinations have to be evaluated together with all feasible

outgoing service times, M . At each stockpoint with only a single supplier for an
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item, M incoming service times need to be considered. Hence, the complexity of

the algorithm is P SIM2 + P DSM3, where P SI denotes the number of stockpoints

with single sourcing, P DS the number of stockpoints with dual sourcing and M the

maximum replenishment lead time, which is also the maximum outgoing service

time.

4.5.2.4 Numerical example

Even though the superiority of the above-described approach over the GS modeling

with dummy stages (see Section 4.5.2.1) is quite obvious, which currently represents

the only way to include dual sourcing in the GS model that is reported in the

literature, the benefit is illustrated by a small numerical example in this section.

Consider the sample supply network depicted in Figure 4.24(a) with the parameters

given in Table 4.6. The system consists of 6 stockpoints. Stockpoint 5 has two

suppliers for the same item. The sourcing fraction is given with δ3,5 = 0.7. The

processing times between all stockpoints are 1 except for the processing time between

stockpoints 3 and 5, which is 3. For ease of computation, a holding-cost rate of ν =

1 = 100% is assumed, i.e. the cumulative cost per unit at a stockpoint corresponds

to its holding cost. Period demand is normally distributed with a mean of 100 and

standard deviation 30.

Stockpoint

i 0 0 1 2 3 4 5
Parameter j 1 2 3 4 5 5 6

cadd
i,j 0.6 1.2 0.4 0.8 0.1 0.1 0.7
Ti,j 1 1 1 1 3 1 1
δi,j 1 1 1 1 0.7 0.3 1

α
target
j 95% 95% 95% 95% 95% 95% 95%

Table 4.6: GS approach with dual sourcing – Parameter values

The optimal stock allocation pattern prescribes safety stock at stockpoints 5 and 6

(see Figure 4.24(a)) and results in a cost of 241.47. The remodeled supply network

using dummy stages is illustrated in Figure 4.24(b). Stockpoint 5 is replaced by

stockpoints 5.1, 5.2, and 5.3 with processing times T5.1 = T3,5 = 3, T5.2 = T4,5 = 1,

and T5.3 = 0, respectively. All stockpoints have a holding cost of h5.1 = h5.2 = h5.3 =
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(a) Optimal solution
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Stage 5T5.1=
T3,5=3

(b) Remodeled solution

Figure 4.24: Supply network with dual sourcing – Example 1

h5 = 1.4. Here, the total cost amounts to 247.68, a 2.57% increase. Safety stock is

held at the dummy stockpoints 5.1 and 5.2, which in fact means that two separate

safety stocks are held at stockpoint 5. In addition, stockpoint 6 as final stockpoint

holds stock.

The benefit of the new modeling approach cannot be realized in all settings, but

only in those where the optimal allocation pattern prescribes safety stock at a dual-

sourced stockpoint. At these stockpoints the remodeling with dummy stages is only

approximate. In settings where in an optimal solution safety stocks are not held at

a dual-sourced stockpoint, both approaches deliver the same result. As an example,

the following situation is considered. If the processing time between stockpoint 3

and 5 is reduced to 2 periods, safety stocks are held at stockpoint 1 and at the

final stockpoint in both approaches (see Figure 4.25). Consequently, the total safety

stock cost is identical.

Nevertheless, it remains that if safety stock is prescribed at a dual-sourced stock-

point, the new approach computes the safety stock quantity exactly, whereas the

other one does this only approximately.
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(b) Remodeled solution

Figure 4.25: Supply network with dual sourcing – Example 2

4.5.3 Other network structures

The extension of the above-described approach to divergent network structures,

spanning trees, or even more general networks results in an increase in the compu-

tational complexity. To illustrate this, consider the supply network setting in Fig-

ure 4.26. Stockpoints 4 and 5 are both dual-sourced stockpoints with one common

supplying stockpoint, namely stockpoint 2. The solution algorithm for convergent

systems would proceed as follows:

1. Evaluate the cost of stockpoints 1, 2, and 3 for all feasible outgoing service

times.

2. Evaluate the cost of stockpoint 4 and the connected upstream subset of stock-

points for all incoming service-time combinations (ST1, ST2) and an outgoing

service time of 0 (final stockpoint). Choose the cost-minimal set of service

times as the optimal one.

3. Evaluate the cost of stockpoint 5 and the connected upstream subset of stock-

points for all incoming service-time combinations (ST2, ST3) and an outgoing

service time of 0 (final stockpoint). Choose the cost-minimal set of service

times as the optimal one.



4.5 Guaranteed-service approach with dual sourcing 198

2?

? 1

4

3?

5

Figure 4.26: Sample network with dual sourcing and divergent substructure

In step 2 and 3, a problem arises. The service time ST2 influences the cost calculation

and therefore the decision of both stockpoints 4 and 5. Hence, a sequential solution

procedure does not guarantee optimality. The service time ST2 that is optimal

for the cost minimization with regard to stockpoint 4 might not correspond to the

optimal ST2-value in the cost minimization with regard to stockpoint 5. Therefore,

the service times of all five stockpoints have to be considered simultaneously in order

to derive the overall optimal set of service times.

Generally speaking, the outgoing service times of all stockpoints, which are situated

on adjacent levels of the supply network and connected with each other through some

path, need to be considered simultaneously. In Figure 4.26, stockpoints 1 and 3 are

connected through the path 1-4-2-5-3. Consequently, the outgoing service times of

all five stockpoints need to be considered simultaneously. This makes the solution of

this problem computationally much more complex. Nevertheless, a solution might

still be obtained for moderate network sizes by a slightly modified version of the

above-described approach. For larger systems, other solution methods or heuristics

need to be developed.

The problem of simultaneously evaluating multiple service times is not specific to

the dual-sourcing situation only. It also occurs in general (acyclic) network struc-

tures with single sourcing. Consider the above-mentioned setting, if the processes

between the stockpoints are assemblies (see Figure 4.27). In this situation, too,

the outgoing service time of stockpoint 2 influences the safety stock computation

at stockpoints 4 and 5. Therefore, these stockpoints need to be considered to-

gether in the optimization of their incoming service times SI4 = max{ST1, ST2} and
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Figure 4.27: Sample network with single sourcing and general structure

SI5 = max{ST2, ST3} with respect to an outgoing service time of ST4 = ST5 = 0.

For networks with so-called clusters of commonality, which is a special case of gen-

eral networks that contain commonality only between adjacent levels, Humair and

Willems (2006) note that all incoming and outgoing service times in such a cluster

are coupled and therefore the minimization needs to be done over all feasible com-

binations of these times. Nevertheless, the authors show that the safety stocks can

still be optimized with a dynamic programming algorithm. However, for general

networks beyond the clusters of commonality type, the combinatorial complexity

induces Humair and Willems (2010) to develop a branch and bound algorithm as a

solution method.

4.5.4 Extensions

4.5.4.1 Multiple sourcing

The dual-sourcing model for convergent systems can be easily extended to an ar-

bitrary number of suppliers. Consider a supply network setting where stockpoint i

has K suppliers for the same item (see Figure 4.28). As in the dual-sourcing case,

the replenishment lead time from supplier k is Lk,i = STk + Tk,i.

The net stock at the end of period t can be calculated as follows. First, arrange

the suppliers in increasing order according to their replenishment lead time, Lk,i.

Denote the shortest lead time as L1
i , the next one L2

i , and so on until LK
i . Moreover,

denote the corresponding sourcing fractions as δ1
i , δ

2
i , ..., δ

K
i . In case two or more lead

times are identical, represent them by a single Lk
i , sum up the sourcing fractions,
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Figure 4.28: Supply network with multiple suppliers

and denote the sum as δk
i . For ease of presentation, assume that STi = 0 for the

moment. Then, by using the same logic as in the dual-sourcing case, the net stock

at time t at stockpoint i is given as

NSi,t = Bi −




L1

i −1∑

j=0

di,t−j +
(
1 − δ1

i

) L2
i −1∑

j=L1
i

di,t−j +
(
1 −

(
δ1
i + δ2

i

)) L3
i −1∑

j=L2
i

di,t−j

+ · · ·+
(

1 −
K−1∑

l=1

δl
i

)
LK

i −1∑

j=LK−1
i

di,t−j





= Bi −




L1

i −1∑

j=0

di,t−j +
K−1∑

k=1

(
1 −

k∑

l=1

δl
i

)
Lk+1

i −1∑

j=Lk
i

di,t−j



 . (4.107)

Assume that
∑b

j=a xj = 0 for b < a. The term in parenthesis represents the inventory

shortfall. If stockpoint i quotes a positive service time, STi, to its successor, the

inventory shortfall is reduced by
∑STi−1

j=0 di,t−j, i.e.

NSi,t = Bi −




L1

i −1∑

j=0

di,t−j +

K−1∑

k=1

(

1 −
k∑

l=1

δl
i

)
Lk+1

i −1∑

j=Lk
i

di,t−j −
STi−1∑

j=0

di,t−j



 . (4.108)

If STi ≤ L1
i , which is a valid condition as has been shown in the dual-sourcing case,
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this expression reduces to

NSi,t = Bi −




L1

i−1∑

j=STi

di,t−j +
K−1∑

k=1

(
1 −

k∑

l=1

δl
i

)
Lk+1

i −1∑

j=Lk
i

di,t−j



 . (4.109)

For a stockpoint with three suppliers, Figure 4.29 illustrates the timeline for the

net stock and inventory shortfall calculation, which represents a straightforward

extension of the dual-sourcing case. From (4.109) it follows that the inventory

Outstanding orders with fastestsupplier,
i.e. δ1-fraction of demand over this timespan

Demand satisfaction
is delayed by
this timespan

Outstanding orders
with all suppliers

1Lt − STt − t2Lt −3Lt −

Outstanding orders with second fastestsupplier,
i.e. δ2-fraction of demand over this timespan

Outstanding orders with third fastestsupplier,
i.e. δ3-fraction of demand over this timespan

∑
−

=
−

11L

STj
jtd( )∑

−

=
−−

1
1

2

1

1
L

Lj
jtdδ( )( )∑

−

=
−+−

1
21

3

2

1
L

Lj
jtdδδ

Figure 4.29: Timeline for the net stock calculation for a stockpoint with three sup-
pliers

shortfall can be represented by the following random variable

ĎMS
i ( ~SI i, STi, ~δi) = Di(L

1
i − STi) +

K−1∑

k=1

(

1 −
k∑

l=1

δl
i

)

Di(L
k+1
i − Lk

i ) (4.110)

with

E

[
ĎMS

i ( ~SIi, STi, ~δi)
]

=

(
(
L1

i − STi

)
+

K−1∑

k=1

(
1 −

k∑

l=1

δl
i

)
(
Lk+1

i − Lk
i

)
)

µi

(4.111)
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VAR
[
ĎMS

i ( ~SIi, STi, ~δi)
]

=



(L1
i − STi

)
+

K−1∑

k=1

(
1 −

k∑

l=1

δl
i

)2
(
Lk+1

i − Lk
i

)


 σ2
i ,

(4.112)

which depends on the outgoing service times of the suppliers represented by the

vector ~SIi (which influence the lead times Lk
i ) and the outgoing service time, STi.

The sourcing fractions represented by the vector ~δi also influence the distribution of

this random variable, but are predetermined. Under stationary conditions t → ∞
the net stock follows from (4.109) as

NSi = Bi − ĎMS
i ( ~SIi, STi, ~δi) . (4.113)

The optimal order-up-to level for a predefined α-service level target is given by the

(smallest) value that satisfies the following (in)equality for continuous (discrete)

period demand

Pr
{
ĎMS

i ( ~SIi, STi, ~δi) ≤ Bi

}
≥ αtarget

i . (4.114)

The safety stock is found as

SSTi( ~SIi, STi, ~δi, α
traget
i ) = Bi( ~SI i, STi, ~δi, α

traget
i ) − E[ĎMS

i ( ~SIi, STi, ~δi)] .

(4.115)

In case of normally i.i.d. period demand, the safety stock can be calculated as

SSTinorm
( ~SI i, STi, ~δi, α

traget
i ) =

ki(α
target
i )σi

√√√√√



L1
i +

K−1∑

k=1

(
1 −

k∑

l=1

δl
i

)2
(
Lk+1

i − Lk
i

)
− STi



. (4.116)

The complexity of the dynamic program increases considerably the more suppliers

a stockpoint has, because all of these outgoing service times need to be consid-

ered simultaneously. Therefore, the computational complexity is given as P SIM2 +
∑K̄

k=2 P MS
K MK+1, where P SI denotes the number of stockpoints with single sourcing,
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P MS
K the number of multiple-sourced stockpoints with K supplier, K̄ the maximum

number of suppliers, and M the maximum replenishment lead time, which corre-

sponds to the maximum outgoing service time.

4.5.4.2 Optimization of sourcing fractions

Optimization model

If the analysis is restricted to convergent systems with dual sourcing again, a si-

multaneous optimization of the safety stocks and the sourcing fractions is possible,

too. In the upcoming exposition it is assumed that period demand is normally i.i.d..

Once the sourcing fractions become decision variables, the total relevant cost in the

system needs to be expanded by two terms: (i) the cost of goods sold (COGS) and

(ii) the pipeline inventory cost. Both terms are influenced by the sourcing frac-

tions and therefore need to be included in the objective function of the optimization

problem. The COGS at stockpoint i are given by

η
∑

∀j:(j,i)∈A

cadd
j,i δj,iµi i = 1, ..., n . (4.117)

They represent the total cost of all units that are delivered to customers during a

company-defined interval of time. η is a scalar that is used to express the COGS in

the same time unit as the pipeline and safety stock cost (cf. Graves and Willems

(2005)).

With regard to the cost valuation of the units in the pipeline various approaches

can be taken:

1. The units can be costed using the holding cost of the next upstream stockpoint.

Thus, it would be implicitly assumed that the value-adding only takes place

once the units enter the next downstream stockpoint.

2. On the other extreme, the holding cost of the next downstream stockpoint can

be used for all units in the pipeline, which assumes that the entire value is

added right at the start of a process.

3. As a compromise, one can argue that the value-adding occurs during the time,

which the units spent in the pipeline or process. Following Graves and Willems
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(2005), the units in the pipeline between stockpoints j and i could then be

valued at a cost per unit and period of

ν

(
ccum
j + ccum

i

2

)
= ν

(
ccum
i − cadd

j,i + ccum
i

2

)

= ν

(

ccum
i − cadd

j,i

2

)

, (4.118)

i.e. the cost for one unit of pipeline inventory between stockpoints j and i

is the product of the holding cost rate ν and the average of the unit cost at

stockpoints j and i.

Using the second approach, for instance, the entire optimization problem can be

stated as

P3 min
n∑

i=1




η
∑

∀j:(j,i)∈A

cadd
j,i δj,iµi

︸ ︷︷ ︸
COGS

+ ν
∑

∀j:(j,i)∈A

(
ccum
j + cadd

j,i

)
Tj,iδj,iµi

︸ ︷︷ ︸
pipeline inventory cost

+ hiki(α
target
i )σi

√
ST f

i + T f
i + [δs

i ]
2 ·
(
ST s

i + T s
i − ST f

i − T f
i

)
− STi

︸ ︷︷ ︸
safety stock cost





(4.119)

s.t.

ST s
i + T s

i ≥
(
ST f

i + T f
i

)
· I{δs

i ∈ (0, 1)} + STi · I{δs
i = 1} ≥ STi i = 1, 2, ..., n

(4.120)

STi ∈ N i = 1, 2, ..., n (4.121)

ST0 = 0 (4.122)

STn = 0 (4.123)

δs
i + δf

i = 1 i = 1, 2, ..., n (4.124)

0 ≤ δs
i ≤ 1 i = 1, 2, ..., n (4.125)



4.5 Guaranteed-service approach with dual sourcing 205

P3 resembles P1, only the objective function contains additional terms and two

constraints on the sourcing fractions are added. It can be solved by a dynamic pro-

gramming algorithm. The procedure is outlined below.

Optimization procedure

Additional notations and labeling. In addition to the notations and labeling

of stockpoints introduced in Section 4.5.2, the set of stockpoints in the subgraph

from one dual-sourced stockpoint i to the next upstream one (or external supplier)

l (including i, but excluding l) is defined as dual-sourcing subnetwork DS(i) (see

Figure 4.30).

?

?

?

?

74

3

5

8

6

2

1

DS (3)={1,2,3}

DS (7)={4,5,6,7}

FS={8}

Figure 4.30: Dual-sourcing subnetworks

Furthermore, let DSj(i) denote the set of stockpoints in DS(i), which are prede-

cessors of stockpoint i’s supplier j (including j). If no dual-sourcing subnetwork

DS(n) exists, FS is defined as the final-stockpoint subnetwork, which comprises of

all stockpoints that are not an element of any of the dual-sourcing subnetworks. For

each stockpoint j the following function is defined:

Index(j) :=





i if j ∈ DS(i)

n if j ∈ FS
, (4.126)

which returns the dual-sourced stockpoint of the dual-sourcing subnetwork, to which

stockpoint j belongs, or the final stockpoint, if DS(n) does not exist. Moreover, the
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following stockpoint set is introduced

NDS(i)
j = {j} +

⋃

∀l:(l,j)∈A

Nl ∀l, j ∈ DS(i) , (4.127)

which comprises of all stockpoints upstream of j in the dual-sourcing subnetwork

DS(i).

For ease of presentation of the cost functions later on, the following expressions are

defined

COPIm =
∑

∀l:(l,m)∈A,

l∈DSj (i)

(
ν(ccum

l + cadd
l,m)Tl,m + COPIl

)
∀m ∈ DSj(i) (4.128)

COGSm =
∑

∀l:(l,m)∈A,

l∈DSj (i)

(
ηcadd

l,m + COGSl

)
∀m ∈ DSj(i) , (4.129)

which summarize the pipeline inventory cost and cost of goods sold up to stockpoint

m in a dual-sourcing subnetwork without considering the mean demand at these

stockpoints.

The dynamic program proceeds from the most upstream dual-sourcing subnetwork

to the most downstream one (or final-stockpoint subnetwork) and finds the solution

to P3 for each of them by evaluating a functional equation for each stockpoint in

the subnetworks.

Functional equations. Two cost functions are defined, one for single-sourced

stockpoints and one for dual-sourced stockpoints.

1. Singe-sourced stockpoint

At each stockpoint m ∈ DSj(i) (or FS) the sourcing fraction is given and

equal to 1, because only at a dual-sourced stockpoint a decision about the

fraction can be made. Consequently, the pipeline inventory cost and the cost

of goods sold are fixed, too. Moreover, the holding cost hm is not influenced

by the sourcing fraction. The only decision that has to be made at these

stockpoints concerns the safety stock allocation. Hence, the following function

is formulated, which gives the minimum of the sum of the safety stock cost in

the subnetwork with stockpoint set NDS(i)
m (or N FS

m ) and the total cost of the
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preceding dual-sourcing subnetwork:

CSIopt

m (SIm, STm) = hmkm(αtarget
m )σm

√
SIm + Tm − STm

+
∑

∀l:(l,m)∈A

vl(min{SIm, Ml}, m) . (4.130)

The first term corresponds to the well-known GS safety stock cost expression.

There is a single incoming service time SIm, which is the maximum of the

outgoing service times of all suppliers. Furthermore, the processing times be-

tween the suppliers and stockpoint m are identical and therefore only indicated

by Tm. The second term summarizes the safety stock cost of the preceding

stockpoints in the current dual-sourcing subnetwork and the total cost of the

preceding dual-sourcing subnetworks. The function vl(.) is defined after the

cost function of a dual-sourced stockpoint, because it applies to both.

2. Dual-sourced stockpoint

At a dual-sourced stockpoint a decision about the sourcing fraction as well as

the safety stock allocation is made. Therefore, all costs need to be considered.

Without loss of generality, it is assumed that the following relation holds be-

tween the suppliers j and k of stockpoint i: STj +Tj ≥ STk +Tk ≥ STi. Then,

for i from DS(i), the minimum total cost up to this stockpoint is given as

CDSopt

i (STj , STk, STi, δj,i) =

hi(δj,i)ki(α
target
i )σi

√
STk + Tk + [δj,i]

2 (STj + Tj − STk − Tk) − STi

+ δj,iµi

(
ν(ccum

j + cadd
j,i )Tj,i + COPIj + ηcadd

j,i + COGSj

)

+ (1 − δj,i)µi

(
ν(ccum

k + cadd
k,i )Tk,i + COPIk + ηcadd

k,i + COGSk

)

+ vj(min{STj, Mj}, i) + vk(min{STk, Mk}, i) . (4.131)

The first term expresses the safety stock cost at stockpoint i. The second and

third terms represent the cost for pipeline inventory and the cost of goods

sold in the dual-sourcing subnetwork DS(i), which result from sourcing from

supplier j and k, respectively. The fourth and fifth terms account for the

safety stock cost in the current dual-sourcing subnetwork up to supplier j

and k, respectively, as well as the total cost of all preceding dual-sourcing
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subnetworks.

In both cost functions,

vl(STl, m) = min
SIl

{
CSIopt

l (SIl, STl)
}
· I{Index(l) = Index(m)}

+ min
(STj ,STk)

{
CDSopt

l

(
STj, STk, STl, δ

∗
j,l(STj , STk, STl)

)}

· I{Index(l) 6= Index(m)} j 6= k and (j, l), (k, l) ∈ A. (4.132)

In contrast to the situation with predetermined sourcing fractions, where the sourc-

ing fraction itself has been used as an indicator for whether the cost minimization

is to be conducted for a single- or dual-sourced stockpoint, the distinction here is

made by using the affiliation of a stockpoint to a specific dual-sourcing subnetwork,

because the sourcing fraction itself is a decision variable. Due to the definition of a

dual-sourcing subnetwork, each such network only contains one dual-sourced stock-

point, say i. All other stockpoints of this subnetwork are single-sourced ones. The

Index-function of all these stockpoints returns i. Since it holds that stockpoint l is a

direct predecessor of stockpoint m ∈ DS(i), l can only be a dual-sourced stockpoint,

if it belongs to a different dual-sourcing subnetwork, i.e. Index(l) 6= Index(m).

In both summands of (4.132) the optimization (for a given STl) can be done by

enumeration. In the first summand, this can be done as in the standard GS approach

over a single incoming service time, SIl. In the second one, the enumeration has

to be done over all incoming service-time combinations (STj , STk), which define an

optimal supply fraction δ∗j,l(STj, STk, STl).

The cost functions (4.130) and (4.131) still contain unknown parameters besides the

decision variables. The mean demand, µi, and standard deviation, σi, of a stockpoint

in an upstream dual-sourcing subnetwork are influenced by the sourcing fractions of

the downstream subnetworks. Thus, the dynamic programming algorithm cannot

start with the most upstream subnetwork unless some further modifications are

made. To this end, the following lemmata are of help, which are stated without

proofs since they are straightforward.

Lemma 4.5.4.1 In pure convergent networks, the coefficient of variation is the

same at each stockpoint and equal to the one of the final stockpoint, i.e. CVi =
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σi/µi = CVn. This holds irrespective of the sourcing fractions.

Lemma 4.5.4.2 The mean demand and demand variability at all stockpoints m ∈
DSj(i) is identical, namely µm = δj,iµi and σm = δj,iσi.

Due to Lemma 4.5.4.1, µi can be replaced by σi/CVn in (4.131), which gives

CDSopt′

i (STj, STk, STi, δj,i) =

hi(δj,i)ki(α
target
i )σi

√
STk + Tk + [δj,i]

2 (STj + Tj − STk − Tk) − STi

+ δj,i

σi

CVn

(
ν(ccum

j + cadd
j,i )Tj,i + COPIj + ηcadd

j,i + COGSj

)

+ (1 − δj,i)
σi

CVn

(
ν(ccum

k + cadd
k,i )Tk,i + COPIk + ηcadd

k,i + COGSk

)

+ vj(min{STj, Mj}, i) + vk(min{STk, Mk}, i) . (4.133)

Exploitation of Lemma 4.5.4.2 means that σm in (4.130) can be replaced by δj,iσi,

which yields

CSIopt′

m (SIm, STm) = hmkm(αtarget
m )δj,iσi

√
SIm + Tm − STm

+
∑

∀l:(l,m)∈A

vl(min{SIm, Ml}, m) . (4.134)

Now, it can be observed that in all terms of the cost functions (4.133) as well as

(4.134) the factor σi appears. Consequently, it can be neglected without changing

the ultimate outcome. The final modification is based on the following lemma, which

is straightforward and therefore stated without proof.

Lemma 4.5.4.3 For all stockpoints m ∈ DSj(i), δj,i represents a constant factor

in the cost function (4.134). Therefore, the optimal safety stock allocation is not

influenced by it.

Due to Lemma 4.5.4.3, the sourcing fraction δj,i can be included in the cost function

of the dual-sourced stockpoint rather than the single-sourced stockpoints. As a

result, it follows that
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CSIopt′′

m (SIm, STm) = hmkm(αtarget
m )

√
SIm + Tm − STm

+
∑

∀l:(l,m)∈A

vl(min{SIm, Ml}, m)

m ∈ DSj(i) or m ∈ DSk(i) (4.135)

CDSopt′′

i (STj, STk, STi, δj,i) =

hi(δj,i)ki(α
target
i )

√
STk + Tk + [δj,i]

2 (STj + Tj − STk − Tk) − STi

+ δj,i

1

CVn

(
ν(ccum

j + cadd
j,i )Tj,i + COPIj + ηcadd

j,i + COGSj

)

+ (1 − δj,i)
1

CVn

(
ν(ccum

k + cadd
k,i )Tk,i + COPIk + ηcadd

k,i + COGSk

)

+ δj,ivj(min{STj, Mj}, i) + (1 − δj,i)vk(min{STk, Mk}, i) i ∈ DS(i) .

(4.136)

These two cost functions contain no unknown parameters any more, only the decision

variables, i.e. the service times and the sourcing fractions. Consequently, for the

computations in the dynamic programming algorithm, CSIopt

i and CDSopt

i in (4.132)

need to be replaced by CSIopt′′

i and CDSopt′′

i .

Dynamic programming algorithm. The procedure for the simultaneous opti-

mization of the service times and the sourcing fractions is as follows. For all feasible

outgoing service times of a dual-sourced stockpoint i, STi, an enumeration over

all feasible incoming service-time combinations (STj , STk) is conducted. For each

surrounding service-time constellation, the corresponding optimal sourcing fraction,

δ∗j,i(STj , STk, STi), is determined. Unfortunately, the cost function is not convex in

the sourcing fraction. Therefore, the optimal fraction needs to be found by use of

some numerical method.

The dynamic programming algorithm can be stated as:

1. For all DS(i) with LC(i) := N down to 1 (or FS)

2. For all stockpoints m ∈ DS(i) with LC(m) := N down to i (or down to 1 in
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FS)

3. Evaluate vm(STm, i) for STm = 0, 1, .., Mm.

4. For m := n evaluate vm(STm, n) for STm = 0 (assuming immediate demand

satisfaction).

5. Minimize vn(STn, n) for STn = 0 and multiply the resulting expression by

the standard deviation of the customer demand to obtain the optimal objective

function value.

An optimal set of service times is found by the standard backtracking procedure for

a dynamic program.

Benefit of the sourcing fraction optimization

In order to assess the benefit of optimizing the sourcing fractions, the following

analysis is conducted. Due to the decoupling effect in the GS model it is sufficient

to consider a single dual-sourced stockpoint and compare the resulting total relevant

cost of three scenarios:

1. Single sourcing from the slow supplier (slow single sourcing),

2. Single sourcing from the fast supplier (fast single sourcing), and

3. Dual sourcing.

For simplicity reasons, it is assumed that the incoming service times as well as the

outgoing service time are 0. Furthermore, T s = xT f , i.e. the slow processing time

is a multiple of the fast one. The total relevant cost for slow single sourcing is given

as

TRCs = ηcadds

µ + νcadds

xT fµ + νcadds

kσ
√

xT f . (4.137)

Similarly, for fast single sourcing

TRCf = ηcaddf

µ + νcaddf

T fµ + νcaddf

kσ
√

T f (4.138)
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and for dual sourcing

TRCDS = η
(
δscadds

+ (1 − δs)caddf
)

µ

+ ν
(
δscadds

xT f + (1 − δs)caddf

T f
)

µ

+ ν
(
δscadds

+ (1 − δs)caddf
)

kσ

√
T f + [δs]2 (xT f − T f) . (4.139)

Dual sourcing is better than slow single sourcing, if the following relation holds:

TRCs > TRCDS

caddf

cadds <

ν(1 − δs)xT fµ + νkσ

(
T f +

√
xT f − δs

√
[δs]2 (xT f − T f)

)
+ η(1 − δs)µ

ν(1 − δs)T fµ + νkσ(1 − δs)
√

T f + [δs]2 (xT f − T f) + η(1 − δs)µ
︸ ︷︷ ︸

caddf
upper

.

(4.140)

The left-hand side of (4.140) expresses caddf

as a multiple of cadds

. That means,

assuming cadds

is given, the right-hand side of (4.140) defines an upper bound on

caddf

that must not be exceeded, if dual sourcing is to be better than slow single

sourcing. For dual sourcing to be better than fast single sourcing, it has to hold

that

TRCf > TRCDS

caddf

cadds >
νδsxT fµ + νkσδs

√
T f + [δs]2 (xT f − T f) + ηδsµ

νδsT fµ + νkσ

(√
T f − (1 − δs)

√
T f + [δs]2 (xT f − T f)

)
+ ηδsµ

︸ ︷︷ ︸
caddf

lower

.

(4.141)

Similarly to (4.140), (4.141) defines a lower bound on caddf

. Consequently, the range,

within which caddf

(expressed as a multiple of cadds

) can vary such that dual sourcing

is advantageous, is defined by

caddf

upper − caddf

lower . (4.142)
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This range is rather small for reasonable parameter settings as the following example

illustrates (see Table 4.7 and Figure 4.31). If caddf

is expressed as a percentage

of cadds

, the range, within which caddf

has to lie in order to make dual sourcing

preferable, is about 2% or less for a coefficient of variation of up to 1. For the

specific example of cadds

= 100, this means that fast single sourcing is better, if

caddf

< 110, and slow single sourcing is preferable, if caddf

> 112.5 (see Figure 4.31).

Surely, one can benefit to a larger extent from dual sourcing, if demand is more

variable. However, even for a coefficient of variation of period demand of 3 the caddf

-

range is just about 6% wide (see Table 4.7). It is very unlikely that the procurement

cost of the fast supplier falls exactly within that range.

Consequently, in many instances the optimal sourcing fraction assumes one of the

extreme values of the feasible region, 0 or 1, i.e. single sourcing is the optimal

strategy. Presumably, this result will not change in larger supply network settings,

because the major difference there is a potential increase in the processing times,

which could also be reflected in this single-stockpoint model. Graves and Willems

(2005) analyze a related model, where at each stage there is a choice between several

processing/sourcing options differing in terms of the process length and added cost.

One option has to be chosen exclusively, however. Thus, the model described in this

section can be viewed as a generalization of their model. It confirms nevertheless that

an extreme strategy is often a reasonable choice. This finding is further supported

by the fact that the cost advantage of dual sourcing, if it is chosen at all, is not very

large, either. It amounts to not even 1% (see Table 4.8).
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δs Max:

CV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 caddf

upper − cadds

lower

0.3 caddf

upper 110.53% 110.57% 110.59% 110.60% 110.61% 110.61% 110.61% 110.60% 110.60% 0.58%

caddf

lower 109.95% 110.08% 110.19% 110.27% 110.33% 110.38% 110.41% 110.44% 110.45%

0.5 caddf

upper 111.00% 111.07% 111.10% 111.12% 111.13% 111.13% 111.13% 111.13% 111.12% 0.97%

caddf

lower 110.04% 110.27% 110.45% 110.58% 110.68% 110.75% 110.81% 110.85% 110.88%

0.8 caddf

upper 111.71% 111.81% 111.87% 111.90% 111.91% 111.91% 111.91% 111.90% 111.88% 1.54%

caddf

lower 110.17% 110.54% 110.83% 111.04% 111.20% 111.32% 111.41% 111.47% 111.52%

1.0 caddf

upper 112.18% 112.30% 112.38% 112.41% 112.43% 112.43% 112.42% 112.41% 112.39% 1.92%

caddf

lower 110.26% 110.72% 111.08% 111.35% 111.55% 111.69% 111.80% 111.88% 111.95%

1.5 caddf

upper 113.35% 113.53% 113.63% 113.68% 113.70% 113.70% 113.68% 113.65% 113.62% 2.87%

caddf

lower 110.48% 111.17% 111.71% 112.12% 112.41% 112.63% 112.79% 112.91% 113.00%

2.0 caddf

upper 114.51% 114.74% 114.87% 114.94% 114.95% 114.94% 114.91% 114.87% 114.82% 3.80%

caddf

lower 110.70% 111.63% 112.35% 112.88% 113.28% 113.57% 113.78% 113.94% 114.05%

2.5 caddf

upper 115.65% 115.94% 116.10% 116.17% 116.18% 116.16% 116.12% 116.06% 115.99% 4.73%

caddf

lower 110.92% 112.08% 112.98% 113.65% 114.14% 114.50% 114.76% 114.95% 115.09%

3.0 caddf

upper 116.79% 117.13% 117.31% 117.38% 117.39% 117.36% 117.29% 117.21% 117.12% 5.64%

caddf

lower 111.14% 112.53% 113.61% 114.42% 115.01% 115.44% 115.75% 115.97% 116.12%

Table 4.7: caddf

-range for a dual-sourcing cost advantage (T f = 5, T s = 12 · T f , ν = 45%, η = 250, k = 2.33)
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Figure 4.31: caddf

-range for a dual-sourcing cost advantage (T f = 5, T s = 12 · T f ,
ν = 45%, η = 250, k = 2.33, CV = 1)

Dual-sourcing cost advantage over

CV caddf

upper δs∗ slow single sourcing fast single sourcing

0.3 110 0.1 0.43% 0.01%
0.5 111 0.4 0.07% 0.15%
0.8 111 0.2 0.59% 0.08%
1.0 112 0.3 0.24% 0.25%
1.5 113 0.3 0.40% 0.34%
2.0 114 0.3 0.54% 0.43%
2.5 115 0.3 0.68% 0.52%
3.0 116 0.3 0.80% 0.61%

Table 4.8: Dual-sourcing cost advantage (T f = 5, T s = 12·T f , cadds

= 100, ν = 45%,
η = 250, k = 2.33)

The major drivers for this outcome can been seen in the following two aspects:

1. Total relevant cost components

The safety stock cost, which benefits most from dual sourcing, makes up only

a very small share of the total relevant cost. In the COGS expression, the

mean demand is multiplied by η = 250, whereas the safety stock quantity is

only multiplied by ν = 45%, k = 2.33 and σ, which is considerably lower in

total.
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2. Replenishment policy

The replenishment policy might not be well-chosen in view of deterministic

processing times. In the single-echelon case, order splitting is used almost

exclusively in stochastic lead-time scenarios. For deterministic lead times,

there are often better ways than allocating the demand variability evenly to

both suppliers, such as the SIP, COP, or DIP (see Chapter 3).

However, the problem with these other policies is that the upstream demand

process changes depending on the policy parameters. Even for given parame-

ters it is quite cumbersome and complex to determine the upstream demand

processes as will be shown in the next section.

Despite the quite disappointing results, in practice there might still be compa-

nies that employ a kind of order-splitting policy to allocate production volumes

to their factories. For these companies, the optimal safety stock can be deter-

mined with the optimization model for given sourcing fractions (Section 4.5.2)

and, if possible for the given cost parameters, even the sourcing fractions can

be optimized by the approach outlined in this section.

4.5.4.3 Other inventory control policies

If, instead of an order-splitting policy with a predefined sourcing fraction, a different

dual-sourcing policy, such as the SIP, COP, or DIP, is to be used at a stockpoint,

additional aspects need to be analyzed and others modified. These include:

• the holding cost per unit and period,

• the total relevant cost,

• the order processes, and

• the optimization of service times.

Holding cost per unit and period

The OSP specifies the sourcing fraction explicitly as one of the policy parameters.

Consequently, the holding cost per unit and period at a dual-sourced stockpoint can
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be easily computed according to (4.90). In case of the other dual-sourcing policies

the sourcing fractions need to be derived indirectly from the policy parameters. (For

ease of presentation the stockpoint index is dropped.) The analysis for each policy

yields:

SIP:

δf(∆) =
E
[
Qf(∆)

]

µ

(3.28)
=

E
[
(D − ∆)+]

µ
(4.143)

COP:

δf(Q) =
E
[
Qf (Q)

]

µ

(3.72)
=

µ − Q

µ
= 1 − Q

µ
(4.144)

DIP:

δf(∆) =
E
[
Qf(∆)

]

µ

(3.2)
=

µ − E [Qs(∆)]

µ
= 1 − E [Qs(∆)]

µ

(3.110)
= 1 − ∆ − E [O(∆)]

L∆ · µ
(4.145)

and δs = 1− δf . Given the sourcing fractions, the holding cost per unit and period

can be determined according to (4.90).

It is important to note that under all three policies the sourcing fraction only de-

pends on one policy parameter, either ∆ or Q. Consequently, given this parameter

the holding cost is fixed and the optimal value of the second policy parameter can

be derived as previously explained.

Total relevant cost

Since the sourcing fractions are now dependent on the policy parameters, the cost

of goods sold (COGS) and the pipeline inventory cost enter the total relevant cost

function. This resembles the setting analyzed in the previous section, where the

service times and the sourcing fractions have been optimized simultaneously. The

cost expressions are identical to the ones outlined there.
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Order processes

The third aspect refers to the determination of the order processes that a dual-

sourced stockpoint induces. These represent the demand processes of the suppliers.

Under the OSP each supplier faces a fraction of the demand of the downstream

stockpoint each period. That means, the upstream stockpoints see a scaled version

of the demand distribution of the downstream situated dual-sourced stockpoint.

Several demand distributions commonly used in inventory theory, like the Normal

or Gamma, are closed under a scale transformation. Consequently, the demand

distribution of the suppliers can be derived easily and exactly. Under the SIP, COP,

or DIP the derivation proves more difficult. For each of the three policies, the main

aspects are addressed by analyzing the simplest multi-echelon dual-sourcing system

depicted in Figure 4.32. The black and grey lines represent the flow of goods and

information, respectively.
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Figure 4.32: Simple supply network with dual sourcing

SIP. The analysis in Section 3.3.3 shows that the orders under the SIP are given as

Qs = min{∆, D} (4.146)

Qf = (D − ∆)+ . (4.147)

In case of a discrete (non-negative) demand distribution, the distributions of the up-

stream demand random variables for the slow and fast supplier, UDs
SIP and UDf

SIP ,



4.5 Guaranteed-service approach with dual sourcing 219

respectively, can be determined from (4.146) and (4.147) as

Pr {UDs
SIP = x} =






Pr {D = x} 0 ≤ x < ∆

1 −∑∆−1
i=0 Pr {D = i} x = ∆

0 x > ∆

(4.148)

and

Pr
{

UDf
SIP = x

}
=






∑∆
i=0 Pr {D = i} x = 0

Pr {D = x + ∆} x > 0
. (4.149)

In each period, the slow supplier sees a positive demand (unless the external demand

is zero). The fast supplier does not necessarily face a positive demand in each period.

Due to the order-up-to policy structure at the downstream stockpoint that governs

its demand process, periods with zero demand can occur, if the inventory position

is larger than the fast order-up-to level, Bf . The larger ∆, the more frequently this

happens (see (4.149)).

Due to the differing nature of the demand processes at the two suppliers, different

approaches for their order-up-to level determination need to be taken (assuming

that both suppliers operate a periodic-review order-up-to policy). The order-up-to

level of the slow supplier can be determined according to (2.50) as the smallest value

that satisfies the following inequality

Pr {[UDs
SIP ]Ls

≤ Bs} ≥ bs

bs + hs

(4.150)

where [UDs
SIP ]Ls

denotes the upstream-stage demand random variable over Ls pe-

riods and bs and hs the cost parameters at this stockpoint. (Note that the review

period is not included in the characterization of (4.150), because it is assumed that

the upstream stockpoints place their own order after they have observed the order

of the downstream stockpoint.)

The sporadic nature of positive demand events at the fast supplier (intermittent

demand) calls for a different approach. Instead of modeling lead-time demand by

using some non-compound distribution (e.g. truncated normal) and applying (4.150)
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for the order-up-to level computation, the intermittent character is exploited, i.e.

lead-time demand is modeled as a compound binomial process. This method, which

is outlined in Teunter et al. (2010) for a spare parts application, is similar in nature

to Croston’s method of forecasting intermittent demand (see Croston (1972)), where

the demand size and demand interval are updated separately.

The compound binomial (or Bernoulli) process is characterized by the fact that with

a fixed probability there is a positive demand during a period, otherwise demand

is zero. In case of a positive demand, the demand size follows another distribution.

This process has been studied by Dunsmuir and Snyder (1989) for the continuous-

review (s, Q) system and by Janssen et al. (1998) for the periodic-review (R, s, Q)

inventory model. In contrast to the approach of Teunter et al. (2010), which is

exact and applied here, Janssen et al. (1998) use approximations. Let pf denote the

probability that demand for the fast supplier is positive in a period, which is given

as

pf
SIP = Pr {D > ∆} . (4.151)

Since the inventory position after ordering in each period equals the slow order-up-to

level, pf
SIP is identical for all periods and independent across periods. Consequently,

the probability that the fast supplier faces exactly l positive demand events during

the replenishment lead time Lf follows a binomial distribution, i.e.

Pr {l, Lf} =

(
Lf

l

)
· [pf

SIP ]l · (1 − pf
SIP )Lf−l (4.152)

where
(

Lf

l

)
=

Lf !

l!(Lf − l)!
. (4.153)

The distribution of the random variable [UDf
SIP ]pos, which denotes the demand size

for positive realizations only, is computed as

Pr
{

[UDf
SIP ]pos = x

}
=

1

pf
SIP

· Pr
{

UDf
SIP = x

}
x > 0 . (4.154)
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Given these two distributions, the optimal order-up-to level can be computed as the

smallest value that satisfies

Lf∑

l=0

Pr {l, Lf} · Pr
{

[UDf
SIP ]pos

l ≤ Bf

}
≥ bf

bf + hf

(4.155)

where [UDf
SIP ]pos

l denotes the positive demand random variable over l periods.

Approximations. Since the computation of the exact discrete demand distributions

and convolutions might be cumbersome (for distributions with many feasible real-

izations and long lead times), a discrete distribution function can be fitted using

the first two moments of the respective random variable according to Adan et al.

(1995).

Moreover, in case of continuous demand the following approximation can be per-

formed. If external customer demand follows (or can be approximated by) a mixed-

Erlang distribution, the moments of the order distributions can be computed exactly.

E[(Qs)k] = E

[
(UDs

SIP )k
]

k = 1, 2, ... (4.156)

E[(Qf )k] = E

[(
UDf

SIP

)k
]

k = 1, 2, ... (4.157)

Given pf
SIP = Pr {D > ∆},

E

[(
[UDf

SIP ]pos
)k
]

=
1

pf
SIP

· E

[(
UDf

SIP

)k
]

k = 1, 2, ... . (4.158)

Based on these first two moments, a new mixed-Erlang distribution can be fitted as

described in Tijms (1994), which can then be used for the order-up-to level deter-

mination at the suppliers.

COP and DIP. Under the COP and DIP the probability that an order is placed

with the fast supplier in a period depends on the realizations in previous periods, i.e.

autocorrelation exists. Consequently, pf is not independent across and identical for

all periods. Thus, an exact computation is more complicated than in the SIP case
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and goes beyond the scope of this work. In order to keep the calculations simple, an

idea would be to use the above-described approach for the SIP as an approximation

for the COP and DIP. It needs to be tested in future research, however, how well

this approximation works.

For the COP, the upstream demand distributions can be derived based on the slow

and fast order expressions

Qs = Q (4.159)

Qf = (D − (O(Q) + Q))+ (4.160)

as

Pr {UDs
COP = Q} = 1 (4.161)

Pr
{

UDf
COP = x

}
=






∑∞
i=0 Pr {D ≤ i + Q} · Pr {O(Q) = i} x = 0

∑∞
i=0 Pr {D = x + i + Q} · Pr {O(Q) = i} x > 0

(4.162)

given the overshoot distribution O(Q) for a predefined Q. The slow supplier faces

a constant demand of Q units each period. Since there is no variability attached,

the supplier does not need to hold any safety stock and can operate in a just-in-

time fashion. On the other hand, the demand for the fast supplier fluctuates with

a potentially large probability mass at zero depending on Q (see (4.162)). The

approximated probability for a positive demand at the fast supplier is

pf
COP = 1 − Pr

{
UDf

COP = 0
}

. (4.163)

Under the DIP, the upstream demand distributions need to be computed via a multi-

dimensional Markov Chain (similar to the one for the determination of the overshoot

distribution) or simply approximated by means of simulation.

Optimization of service times

In the analysis of the order processes, it has been implicitly assumed that the service

times, which determine the replenishment lead times at the suppliers as well as the
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dual-sourced stockpoint, are fixed. However, in the GS optimization model, these

service times represent decision variables, as well. That means, under any of the

three discussed dual-sourcing policies, the entire optimization problem consists of

two intertwined optimization problems. On the one hand, for the optimization of

the service times in the entire supply network, the sourcing fractions or other policy

parameters at all dual-sourced stockpoints need to be known, because they influence

the upstream demand processes. On the other hand, the optimization of the policy

parameters at a dual-sourced stockpoint requires knowledge about the surrounding

service times, since they influence the replenishment lead times and thus coverage

decision. Moreover, the sourcing decision at a dual-sourced stockpoint also affects

the holding cost parameter computation for the pipeline inventory and safety stock

held at downstream stockpoints.

This difficulty also occurred in Section 4.5.4.2, where the sourcing fractions for the

OSP have been optimized. Due to the relatively simple ordering structure of this pol-

icy, the upstream demand processes could be easily derived, however. Furthermore,

some substitutions finally allowed for a similar solution procedure of the problem as

the one for predefined sourcing fractions starting at the most upstream stockpoints.

In case of the SIP, COP, or DIP the upstream demand processes are more difficult

to derive as previously described. The solution procedure of the OSP case cannot be

simply adjusted. The interdependencies between the dual-sourcing policy parame-

ters and the service times call for the development of a more sophisticated solution

algorithm, which goes beyond the scope of this work, however.

4.5.5 Summary and implications

In this section it has been shown how to integrate dual sourcing in the guaranteed-

service framework. In the literature, this framework is reported to be widely used in

practice emphasizing its relevance. The newly developed approach enables the opti-

mization of the safety stock allocation and sizing even for large serial and convergent

systems with dual sourcing. Although a rather simple dual-sourcing replenishment

policy has been studied, i.e. an order-splitting policy, the model represents an im-

provement to the existing contributions in the literature. These either provide only

an approximate approach for this problem or consider much smaller supply networks,
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mainly two-echelon systems.

Moreover, the presented approach has been shown to be easily extendable to more

than two suppliers. Even the simultaneous optimization of the demand allocation

to the suppliers and the safety stock allocation has been outlined for the dual-

sourcing case. Preliminary results have indicated, however, that the benefit of such

a simultaneous optimization is rather limited. The model has often prescribed single

sourcing as an optimal strategy. Nevertheless, for companies, which intentionally

decide to use two or more suppliers, the approach for a fixed demand allocation

can be of considerable help for the appropriate sizing of the safety stocks in their

supply networks. Finally, the incorporation of other dual-sourcing policies such

as the single-index, constant-order, or dual-index policy has been discussed and

the main difficulties of their integration have been identified, which deserve further

investigation in future research.



5 Conclusions and outlook

This chapter summarizes the major findings of this thesis and discusses possible

future research.

5.1 Conclusions

This thesis has contributed to the field of literature on dual-sourcing inventory

models in a single- and multi-echelon setting. Since the integration of dual sourcing

into a multi-echelon inventory model requires a thorough understanding of multi-

echelon inventory models with single sourcing as a starting point, it has also provided

a major contribution to this body of literature. The thesis has centered around

two major research topics: (i) the detection of effective dual-sourcing inventory

control policies in a single-echelon model (Chapter 3) and (ii) the integration of

dual-sourcing into a multi-echelon inventory model (Chapter 4).

Chapter 3 has focused on a single-echelon periodic-review inventory model with two

suppliers. Several dual-sourcing policies have been presented in Section 3.3. First,

it has been shown how to compute the optimal policy in Section 3.3.2. For the

special case of a lead-time difference of one period between the two suppliers (i.e.

consecutive lead times), the optimal policy is known to be the single-index policy.

For larger lead-time differences it has to be found via a Markov Decision Process

(MDP) formulation, which has been outlined in this section.

From the MDP model it is apparent that the optimal policy can only be computed

in a reasonable amount of time for limited problem sizes. The state and decision

space increase considerably as the lead-time difference between the two suppliers

grows or the mean demand and demand variability become larger.

225
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That is why in Section 3.3.3 several simpler and, in general, non-optimal policies

have been outlined. These include the single-index (SIP), constant-order (COP),

dual-index (DIP), and the order-splitting policy (OSP).

In order to provide the reader with a thorough understanding of these policies, as a

valuable basis for the policy comparison in Section 3.4, major results from the liter-

ature have been reiterated using a unified notational framework. At certain point,

new aspects have been added. For each policy, the backorder-cost model as well as

the service-level model has been addressed. Furthermore, it has been outlined how

to compute the optimal policy parameters. In all four cases, the optimization can be

performed by a one-dimensional search procedure over the relevant policy parameter

region. Only in special cases are there easier ways for the optimization. In the case

of consecutive lead times, one of the optimal parameters of the SIP, which is also

the truly optimal policy in this setting, can be derived directly via a critical fractile

(in)equality. For the other parameter, an analytical expression can be derived, from

which the optimal value can be computed numerically. In case of the COP and DIP,

it has been pointed out that the major difficulty in the parameter optimization lies

in the derivation of the stationary overshoot distribution. An overshoot denotes the

quantity by which the fast inventory position might exceed the order-up-to level that

is used for determining replenishments with the fast supplier. Such an overshoot

can occur, because the fast inventory position, which both policies use, only includes

outstanding orders that arrive within the fast replenishment lead time, but not any

other slow outstanding orders that have already been determined. Several ways (ex-

act and approximate) of how this overshoot distribution can be derived have been

summarized. For the special case of geometric demand a new recursive computation

of the stationary overshoot distribution has been presented in case of the COP and

a direct closed-form computation in case of the DIP. If period demand follows a

normal distribution, a closed-form expression for the optimal sourcing fraction of

the OSP has been derived. The other policy parameter can be computed as the

solution to an (in)equality.

Section 3.4 has dealt with the comparison of the dual-sourcing policies. Since the SIP

and DIP have already been compared in Scheller-Wolf et al. (2007) and the OSP is

arguably inferior to the other policies in the studied deterministic lead-time setting,

the section has focused on the remaining two policies, for which a comparison has
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not yet been available in the literature, the COP and DIP.

The main finding based on the theoretical considerations with respect to the ex-

treme strategies of both policies has been that the cost gap between both policies

closes as the lead-time difference increases. It suggests that at some point the COP

might even outperform the DIP (Section 3.4.2). This presumption has been backed

by the numerical study in Section 3.4.3. Whereas the generally good performance of

the DIP has been confirmed, which has already been shown by Veeraraghavan and

Scheller-Wolf (2008), the COP has been identified as an effective policy alternative

in settings with significant lead-time differences and small expediting premiums.

This finding is interesting for two reasons. First, the COP is the more easily imple-

mentable and controllable policy in practice. Second, the constant-order guarantee

can be of particular importance in supply negotiations. This supplier does not face

any demand fluctuations, which facilitates his production planning considerably. In

situations with a small lead-time difference and large expediting premium, single

sourcing has often been found to be a reasonable alternative to the more complex

DIP.

The major contribution of Chapter 4 has been two-fold. First, the existing two main

multi-echelon inventory modeling frameworks without lot-sizing, i.e. the stochastic-

service (SS) and guaranteed-service (GS) approach, have been outlined (Section 4.2),

compared (Section 4.3), and combined in the so-called hybrid-service (HS) approach

(Section 4.4). Second, an extension of one of the three multi-echelon frameworks,

namely the GS model, to accommodate dual sourcing has been presented (Section

4.5).

In Section 4.2, apart from summarizing the existing models and results, the problem

of setting an appropriate internal service level at each stage of the supply network

in the GS approach has been addressed. This level specifies the maximum reason-

able demand, up to which all variability is to be covered by safety stock. Demand

variability exceeding this threshold is assumed to be handled by other countermea-

sures, which are summarized by the term ‘operating flexibility’. Operating flexibility

measures have not been modeled explicitly in most of the GS contributions, but the

analysis has focused exclusively on the ‘normal’ part of the demand variability (stan-

dard GS approach). This has caused a lot of criticism of this approach in the past.

In Section 4.2.3.2, this criticism has been counteracted by taking into account the
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effect that operating flexibility has on the material flow in the system (extended

GS approach). Although various ways of how operating flexibility can work have

been described, only the most relevant one for the context of this thesis has been

analyzed in detail, i.e. missing items are speeded up from the pipeline inventory

of a stage. Interestingly, this new modeling has led to a change in the objective

function of the GS model. Whereas in the standard GS approach the safety stock

cost across the entire supply chain is minimized, it is the on-hand stock cost that is

minimized in the extended GS approach. Furthermore, the explicit modeling of the

operating flexibility has allowed for the derivation of a closed-form expression for

the determination of the internal service level, provided that a cost parameter for

the operating flexibility usage can be specified per unit. In many situations, this is

probably easier to do for management than specifying a service level directly.

In Section 4.3 the SS and GS approaches have been compared. The main contri-

bution here has been the identification of an individual benefit of each of the two

approaches: the allocation benefit of the SS approach and the decoupling benefit

of the GS approach. The SS approach is not restricted in any respect with regard

to the stock allocation across the various stages of the supply network (apart from

the final-stage service-level target). It can base its allocation decision completely on

the holding-cost relationships between the stages. The GS approach does not have

this kind of flexibility. It has to comply with the internal or external service-level

requirement at each stage. However, it benefits from the operating flexibility, which

allows for a decoupling of the stages, i.e. there are no stochastic delays that need to

be taken into account at downstream stages in case of supply shortages.

A numerical study, which has been conducted for serial and divergent systems, has

revealed the following three important drivers of the advantage of one approach

over the other: processing-time pattern, final-stage service level(s), and internal

service level (or operating flexibility cost). Due to the individual benefits, the GS

approach has shown a superior performance for a degressive processing-time pattern,

high final-stage service level(s), and a low internal service level, while the opposite

has been true for the SS model. From the three drivers, the internal service-level

parameter has been identified as the most important one. The major finding from

the numerical comparison has been, however, that none of the approaches is superior

to the other, in general. Both approaches have been found to have their advantages
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and disadvantages in certain settings.

In Section 4.4 both approaches have been combined in order to benefit from both

individual advantages, before the dual-sourcing extension of the GS approach has

been addressed in Section 4.5. The integrated approach has been called the hybrid-

service (HS) approach. The HS approach allows the entire supply network to consist

of subnetworks of both types. The interface modeling between the subnetworks

has been outlined and a pseudo-polynomial time dynamic programming algorithm

for the determination of the optimal network partitioning and stock sizing in serial

systems has been developed. Furthermore, the extension to divergent and convergent

systems has been discussed.

The main contribution and finding has been that the HS approach solves the prac-

titioner’s dilemma of having to choose one of the two multi-echelon inventory opti-

mization approaches exclusively for the entire supply network. It enables a stage-

wise choice. Moreover, the numerical study for serial systems with up to five stages

has revealed that the cost difference between the two pure approaches can be quite

significant. The HS approach prevents an erroneous choice and, in addition, has

been shown to even achieve further cost-savings of up to 10.5% at most and 1.9% on

average in the analyzed experimental design. It has performed best in settings with

relatively low internal service levels, a broad internal service-level range, degressive

processing-time structure, and progressive holding-cost pattern.

In Section 4.5, out of the three previously described and developed (single-sourcing)

multi-echelon approaches (SS, GS, and HS), the standard GS approach has been

chosen and extended to incorporate dual sourcing. Due to the already increased

model complexity resulting from the shift from a single-echelon inventory model to

a multi-echelon one (even under the GS framework), a rather simple dual-sourcing

inventory control policy has been selected, i.e. the order-splitting policy. Moreover,

it has been assumed that the determination of the sourcing fractions, which define

the demand allocation to the suppliers, is exogenous to the model. Thus, the main

focus has been put on the computation of the optimal safety stock allocation and

sizing. Extensions to more than two suppliers, the simultaneous optimization of the

sourcing fractions and safety stocks, as well as the integration of other inventory

control policies have been briefly addressed in the ‘Extensions’ section.
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It has been shown that in order to accurately incorporate dual sourcing into the GS

model, a stockpoint and its preceding process can no longer be aggregated into a

stage with a single processing time. In case of dual sourcing, a stockpoint is preceded

by two processes of different length. A stage with a single processing time cannot

capture the processing-time difference correctly. Consequently, a safety stock com-

putation based on such an aggregation would only lead to an approximate quantity

and cost. Therefore, instead of the stockpoint (and its index), the processing time

needs to be assigned to the arc connecting two stockpoints.

For serial and convergent systems, a dynamic programming algorithm has been

developed that optimally determines the safety stock allocation in the system as well

as the exact stock size at each stockpoint. The approach represents an improvement

of the only approximate modeling idea outlined in the final section of Graves and

Willems (2005), which is one of very few contributions available in the literature that

address a similar problem. Most of the other works only consider supply networks

of smaller sizes.

5.2 Outlook

Within both bodies of literature, the single-echelon inventory models with dual

sourcing as well as the multi-echelon inventory models with (and without) dual

sourcing, various challenges remain.

Although procedures for the policy parameter optimization of the different dual-

sourcing inventory control policies in a single-echelon setting have been presented in

this thesis, the optimization of the COP and DIP parameters still requires knowledge

about Markov Chain models or the development of a simulation tool, which might

hamper their application in practice. Here, the development of heuristics that enable

an approximate, but simple parameter computation in a spreadsheet model, for

instance, would be of interest.

Once lead times become stochastic, the analysis gets more complicated, but the

model is also brought closer to reality. Arts et al. (2009) consider a special type

of stochastic integer lead times in the DIP. Only the slow lead time is stochastic

with a lower bound of the support of this random variable that is larger than the
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fast lead time. A relaxation of this restriction might be an interesting extension.

Moreover, the relative performance of the SIP, COP, DIP, and OSP might change in

the presence of stochastic lead times. A comparison would now have to include all

four dual-sourcing policies, because in such a setting the OSP cannot be excluded

upfront.

With respect to the multi-echelon inventory models with single sourcing, the hybrid-

service (HS) approach has been developed in this thesis. While the HS model idea

directly extends to divergent and convergent systems (see Sections 4.4.3 and 4.4.4),

the increase in the computational complexity calls for the development of good

heuristics for networks of larger sizes. Furthermore, an extension of the HS approach

to include stochastic processing times and lot-sizes are promising and relevant areas

for future research.

The dual-sourcing integration into a multi-echelon model has been done for the

guaranteed-service approach only. The integration into the stochastic-service or

even hybrid-service framework also represents an interesting area for future research.

Moreover, the developed dynamic programming algorithm can solely handle serial

and convergent network structures. In the presence of divergent (sub)structures,

the computational complexity of the current solution method increases considerably

(see Section 4.5.3). Therefore, the development of other methods or heuristics for

the extension to divergent systems might be worthwhile pursuing.

Furthermore, the integration of other ordering policies like the SIP, COP, or DIP in

a multi-echelon setting requires further investigation. Whereas the major difficulties

connected with these policies have been identified and discussed in this thesis in Sec-

tion 4.5.4.3, the ultimate integration and development of an optimization procedure

for the policy parameters has gone beyond the scope of this work.

Similar to the single-echelon case, the consideration of stochastic processing times

might also represent a valuable extension in the multi-echelon dual-sourcing model.

In such a setting the value of the OSP is presumably larger than in the deterministic

processing-time setting as is known from single-echelon models.

For both the single- and multi-echelon model with dual sourcing, the inventory

valuation problem might be an issue that deserves more investigation of its own. One

approach to tackle this problem has been presented in this thesis. However, there are
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other ways to address or circumvent this problem, e.g., by using a discounted cash

flow approach. It remains that the assumption of a single holding cost parameter

that most dual-sourcing models make, which does not take into account the different

procurement costs, is a simplification that is not justifiable in all situations.
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A Additional figures and tables

A.1 Comparison of the constant-order and

dual-index policy for µ = 10

TRCBS ≥ TRCDIP TRCBS > TRCCOP TRCBS < TRCCOP

No. TRCBS−TRCDIP

TRCDIP
No. TRCBS−TRCCOP

TRCCOP
No. TRCCOP−TRCBS

TRCCOP
n/s

h = 0.1 Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max Inst.

L∆ = 2
(1; 3) 24 1.40% 0.01% 6.22% 0 – – – 24 49.35% 20.50% 84.38% 0
(3; 5) 24 0.45% 0.00% 2.59% 0 – – – 24 46.64% 20.76% 81.88% 0

L∆ = 5
(1; 6) 30 4.93% 0.02% 15.94% 0 – – – 30 39.56% 3.89% 79.68% 0
(3; 8) 30 2.36% 0.01% 8.85% 0 – – – 30 39.58% 8.52% 77.95% 0

L∆ = 10
(1; 11) 36 10.76% 0.01% 29.68% 6 8.34% 2.56% 16.94% 30 37.50% 1.56% 79.18% 0
(3; 13) 36 6.51% 0.01% 18.51% 3 4.04% 1.82% 7.43% 32 36.69% 3.14% 78.28% 1

h = 0.5 Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max Inst.

L∆ = 2
(1; 3) 36 5.07% 0.01% 13.15% 4 2.49% 0.86% 5.57% 32 24.12% 3.92% 56.92% 0
(3; 5) 36 2.09% 0.00% 6.50% 0 – – – 35 21.88% 2.29% 52.91% 1

L∆ = 5
(1; 6) 36 16.24% 2.48% 29.60% 18 15.43% 1.58% 26.40% 18 16.77% 1.22% 43.52% 0
(3; 8) 36 9.10% 0.91% 17.81% 13 9.93% 3.02% 14.86% 21 17.08% 3.31% 42.67% 2

L∆ = 10
(1; 11) 36 31.15% 11.25% 56.18% 30 28.84% 2.56% 61.04% 6 10.58% 1.56% 26.51% 0
(3; 13) 36 20.86% 6.70% 36.31% 26 20.56% 1.82% 38.52% 9 10.81% 0.79% 28.95% 1

h = 1.0 Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max Inst.

L∆ = 2
(1; 3) 36 8.28% 0.79% 16.28% 12 7.32% 2.54% 11.41% 23 15.42% 1.49% 37.00% 1
(3; 5) 36 3.82% 0.13% 8.49% 8 3.25% 1.32% 5.86% 27 14.10% 1.59% 34.25% 1

L∆ = 5
(1; 6) 36 21.27% 7.87% 38.24% 30 17.91% 1.58% 38.16% 6 7.03% 1.22% 17.42% 0
(3; 8) 36 12.81% 3.84% 22.35% 24 12.04% 1.44% 22.02% 9 8.74% 3.31% 19.94% 3

L∆ = 10
(1; 11) 36 36.61% 6.78% 74.45% 36 35.79% 7.45% 80.10% 0 – – – 0
(3; 13) 36 25.36% 6.03% 47.70% 35 24.46% 6.91% 51.29% 1 0.79% 0.79% 0.79% 0

Table A.1: Single- vs. dual-sourcing cost for µ = 10

234
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Best single (BS) vs. DIP Best single (BS) vs. COP COP vs. DIP

No. TRCBS−TRCDIP

TRCDIP
No. TRCBS−TRCCOP

TRCCOP
No. TRCCOP−TRCDIP

TRCDIP

Poisson Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 6) 12 17.80% 2.48% 38.24% 12 0.65% -43.52% 38.16% 11 24.71% 0.44% 81.46%
(3; 8) 12 9.64% 0.91% 22.07% 11 -6.92% -42.67% 21.65% 12 21.52% 0.35% 76.00%

h
0.5 12 10.20% 0.91% 27.27% 12 -12.77% -43.52% 23.54% 12 32.96% 3.02% 81.46%
1.0 12 17.24% 3.84% 38.24% 11 7.73% -19.94% 38.16% 11 12.23% 0.35% 30.63%

b
b+h

0.95 12 11.11% 0.91% 31.61% 11 -7.81% -43.52% 31.04% 12 25.65% 0.44% 81.46%
0.99 12 16.32% 3.63% 38.24% 12 1.47% -33.52% 38.16% 11 20.20% 0.35% 61.42%

cf

102 8 22.94% 11.04% 38.24% 8 20.29% 5.05% 38.16% 7 2.66% 0.35% 5.70%
105 8 12.07% 3.84% 23.82% 7 -3.30% -19.94% 17.33% 8 16.60% 5.53% 30.63%
110 8 6.14% 0.91% 14.94% 8 -25.94% -43.52% -6.23% 8 47.32% 20.90% 81.46%

nbin Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 6) 24 18.58% 3.18% 37.03% 24 6.75% -30.50% 37.80% 21 14.86% -0.56% 48.47%
(3, 8) 24 10.83% 1.30% 21.79% 22 -0.04% -30.90% 21.61% 21 14.14% 0.69% 46.60%

CV
0.49 24 14.27% 1.30% 37.03% 24 1.82% -30.90% 37.80% 22 15.73% -0.56% 48.47%
1.05 24 15.14% 2.95% 29.26% 22 5.34% -23.70% 25.82% 20 13.15% 2.73% 37.75%

h
0.5 24 12.37% 1.30% 29.26% 23 -3.48% -30.90% 25.82% 24 18.47% 2.73% 48.47%
1.0 24 17.04% 4.36% 37.03% 23 10.48% -12.25% 37.80% 18 9.21% -0.56% 19.22%

b
b+h

0.95 24 12.83% 1.30% 32.31% 24 0.16% -30.90% 32.47% 21 16.90% 0.69% 48.47%
0.99 24 16.58% 4.57% 37.03% 22 7.15% -21.62% 37.80% 21 12.10% -0.56% 35.90%

cf

102 16 21.32% 11.52% 37.03% 16 18.60% 4.71% 37.80% 10 3.70% -0.56% 7.22%
105 16 14.39% 4.36% 26.78% 15 4.25% -12.25% 21.08% 16 10.35% 4.25% 19.22%
110 16 8.41% 1.30% 19.19% 15 -13.36% -30.90% 7.23% 16 25.41% 10.25% 48.47%

Gamma Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 6) 36 19.20% 3.75% 37.61% 36 8.36% -29.05% 37.79% 31 13.30% 0.54% 46.22%
(3, 8) 36 11.47% 1.56% 22.35% 34 1.69% -29.68% 22.02% 33 11.87% 0.37% 44.42%

CV
0.5 24 14.96% 1.56% 37.61% 24 2.78% -29.68% 37.79% 21 15.83% 0.85% 46.22%
1.0 24 15.59% 3.06% 29.60% 22 6.13% -23.01% 26.40% 21 12.14% 0.37% 36.58%
1.5 24 15.44% 4.87% 29.17% 24 6.54% -17.37% 24.75% 22 9.85% 0.54% 27.89%

h
0.5 36 13.70% 1.56% 29.60% 35 -0.58% -29.68% 26.40% 36 16.11% 2.08% 46.22%
1.0 36 16.97% 4.90% 37.61% 35 10.83% -11.15% 37.79% 28 8.01% 0.37% 18.45%

b
b+h

0.95 36 14.01% 1.56% 33.39% 36 2.35% -29.68% 33.38% 34 13.88% 0.37% 46.22%
0.99 36 16.65% 4.89% 37.61% 34 8.06% -20.32% 37.79% 30 11.08% 2.08% 34.07%

cf

102 24 19.80% 7.14% 37.61% 24 17.36% 5.53% 37.79% 16 3.14% 0.37% 7.08%
105 24 16.09% 4.90% 27.22% 23 6.87% -11.15% 22.44% 24 9.24% 3.01% 18.45%
110 24 10.10% 1.56% 21.89% 23 -9.39% -29.68% 10.74% 24 22.17% 9.27% 46.22%

Table A.2: Single- vs. dual-sourcing cost for L∆ = 5, h = 0.5 and 1.0, µ = 10
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Best single (BS) vs. DIP Best single (BS) vs. COP COP vs. DIP

No. TRCBS−TRCDIP

TRCDIP
No. TRCBS−TRCCOP

TRCCOP
No. TRCCOP−TRCDIP

TRCDIP

Poisson Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 11) 12 39.71% 11.25% 74.45% 12 31.09% -26.51% 80.10% 12 10.42% -3.70% 51.40%
(3, 13) 12 25.53% 6.70% 47.70% 12 16.26% -28.95% 51.29% 11 12.15% -2.94% 50.19%

h
0.5 12 26.19% 6.70% 56.18% 12 11.02% -28.95% 61.04% 12 18.47% -3.02% 51.40%
1.0 12 39.05% 14.41% 74.45% 12 36.33% -0.79% 80.10% 11 3.37% -3.70% 15.32%

b
b+h

0.95 12 27.87% 6.70% 64.19% 12 18.00% -28.95% 70.51% 12 12.53% -3.70% 51.40%
0.99 12 37.37% 14.04% 74.45% 12 29.35% -17.32% 80.10% 11 9.85% -3.14% 39.94%

cf

102 8 49.15% 28.74% 74.45% 8 53.20% 30.18% 80.10% 8 -2.58% -3.70% -1.11%
105 8 30.16% 14.41% 50.42% 8 23.60% -0.79% 52.95% 7 7.03% -1.65% 15.32%
110 8 18.56% 6.70% 34.66% 8 -5.77% -28.95% 22.23% 8 28.77% 10.17% 51.40%

nbin Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 11) 24 33.82% 12.07% 60.43% 24 29.65% -10.77% 66.89% 18 5.55% -3.87% 25.60%
(3, 13) 24 23.31% 7.32% 41.20% 24 18.77% -15.04% 44.82% 17 6.58% -2.50% 26.32%

CV
0.49 24 30.95% 7.32% 60.43% 24 26.24% -15.04% 66.89% 17 7.05% -3.87% 26.32%
1.05 24 26.18% 10.25% 45.13% 24 22.18% -7.70% 45.09% 18 5.10% -2.35% 19.88%

h
0.5 24 26.10% 7.32% 53.91% 24 18.14% -15.04% 54.22% 18 10.75% -1.41% 26.32%
1.0 24 31.03% 11.34% 60.43% 24 30.28% 7.89% 66.89% 17 1.07% -3.87% 6.78%

b
b+h

0.95 24 26.93% 7.32% 60.43% 24 22.02% -15.04% 66.89% 18 6.90% -3.87% 26.32%
0.99 24 30.20% 11.34% 53.91% 24 26.40% -4.12% 54.22% 17 5.14% -3.35% 19.34%

cf

102 16 33.88% 11.34% 60.43% 16 35.83% 12.92% 66.89% 10 -2.17% -3.87% -1.13%
105 16 31.17% 15.21% 48.80% 16 28.37% 7.89% 49.22% 9 4.16% 0.68% 6.78%
110 16 20.65% 7.32% 37.17% 16 8.44% -15.04% 32.82% 16 12.25% 3.27% 26.32%

Gamma Inst. Avg. Min Max Inst. Avg. Min Max Inst. Avg. Min Max

(Lf , Ls)
(1, 11) 36 31.97% 6.78% 59.60% 36 27.92% -9.10% 65.47% 28 4.85% -3.55% 24.31%
(3, 13) 36 22.17% 6.03% 41.93% 35 18.48% -13.76% 45.15% 25 5.95% -2.22% 24.96%

CV
0.5 24 31.40% 7.77% 59.60% 24 26.76% -13.76% 65.47% 17 6.70% -3.55% 24.96%
1.0 24 27.26% 10.84% 46.23% 24 23.45% -6.51% 46.92% 19 4.65% -2.46% 19.20%
1.5 24 22.55% 6.03% 40.10% 23 19.44% 6.83% 34.74% 17 4.85% -1.40% 14.41%

h
0.5 36 25.88% 7.77% 54.32% 35 19.18% -13.76% 54.36% 27 9.35% -1.10% 24.96%
1.0 36 28.26% 6.03% 59.60% 36 27.25% 6.91% 65.47% 26 1.23% -3.55% 6.46%

b
b+h

0.95 36 26.27% 7.77% 59.60% 35 22.18% -13.76% 65.47% 28 5.98% -3.55% 24.96%
0.99 36 27.87% 6.03% 54.32% 36 24.32% -3.14% 54.36% 25 4.68% -2.93% 18.24%

cf

102 24 27.64% 6.03% 59.60% 24 29.06% 6.91% 65.47% 15 -1.69% -3.55% -0.49%
105 24 30.75% 16.00% 49.28% 24 27.97% 8.96% 49.44% 14 3.92% -0.47% 6.46%
110 24 22.82% 7.77% 40.10% 23 12.32% -13.76% 34.74% 24 10.63% 3.00% 24.96%

Table A.3: Single- vs. dual-sourcing cost for L∆ = 10, h = 0.5 and 1.0, µ = 10
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A.2 Combination of the stochastic- and

guaranteed-service approach

Four stages
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Figure A.1: Optimality share and additional average HS benefit with respect to the
internal service-level ranges
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Figure A.3: Optimality share and additional average HS benefit with respect to
processing-time pattern
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Figure A.4: Optimality share and additional average HS benefit with respect to
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Figure A.5: Optimality share and additional average HS benefit with respect to co-
efficient of variation of demand
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Figure A.6: Optimality share and additional average HS benefit with respect to the
internal service-level ranges
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Figure A.7: Optimality share and additional average HS benefit with respect to final-
stage service level
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Figure A.8: Optimality share and additional average HS benefit with respect to
processing-time pattern
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Figure A.9: Optimality share and additional average HS benefit with respect to
holding-cost pattern
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Figure A.10: Optimality share and additional average HS benefit with respect to
coefficient of variation of demand



B Proofs

B.1 Lemma 3.3.3.2

Proof:

Given the stationary distribution of D̂(∆), (3.33) resembles the net stock calcula-

tion in a single-sourcing order-up-to level system with lead-time demand D̂(∆) (see

(2.44) and (2.45)). Consequently, the optimal Bs is found by (3.35) accordingly.

Since the expected fast order quantity is independent of Bs (Lemma 3.3.3.1), this

is also the optimal Bs for the SIP for this given ∆. �

B.2 Lemma 3.3.3.3

Proof:

Both parts follow from the definition of D̂(∆) and the fact that probabilities are

non-negative (and using finite differences). �

B.3 Lemma 3.3.3.4

Proof:

The inventory position recursion is

IP f
t+1 = IP f

t + Qf
t + Qs

t−L∆+1 − Dt = Bf + Ot + Q − dt . (B.1)

242
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Assume that in some period, say t = 0, O0 = 0. This occurs, e.g., if the inventory

process starts with fast orders of size Bf/Lf arriving in periods 1, ..., Lf and no

slow orders for that timespan. In periods Lf + 1, ..., Ls slow orders of size Q arrive.

Hence, IP f
1 = Bf + Q − d0

(B.1)
==⇒ O0 = 0. From (3.69) and (B.1) it follows that

Ot+1 = (Ot + Q − dt)
+ . (B.2)

In period t = 1, O1 = (Q − d0)
+, which is independent of Bf . Assuming that

Ot, ∀t = 2, ..., n − 1 is independent of Bf , it follows from (3.79) that On is indepen-

dent of Bf , and only dependent on Q. �

B.4 Lemma 3.3.3.5

Proof:

From (3.80) and (3.81) it follows that the equations for the stationary overshoot

distribution are

o0 =
∞∑

j=0

Pr{D ≥ j + Q} · oj (B.3)

oi =

∞∑

i=0

Pr{D = j + Q − i} · oj i > 0 . (B.4)

A recursive representation of the above equations is

oi =
oi−1

1 − p
i = 2, ..., Q , (B.5)

oi =
oi−1 − oi−Q−1Pr{D = 0}

1 − p
i = Q + 1, ... . (B.6)

(B.5) can be rewritten as

oi = o1(1 − p)1−i i = 1, ..., Q . (B.7)
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Insertion yields

o0 =
∞∑

i=1

oi

Pr{D ≥ Q + i}
Pr{D < Q} , (B.8)

o1 =

∞∑

i=0

oiPr{D = Q + i − 1} . (B.9)

All state probabilities oi, i > 2 can be expressed in terms of o0 and o1 by recursively

applying (B.7) and (B.6). For the derivation of these recursive expressions it is

important to note that a Q-cycle runs from xQ+x to (x+1)Q+x with x = 1, 2, ... .

By analyzing several of these recursive expressions for different Q-cycles the following

general expression in terms of o0 and o1 is found:

oxQ+x−1+j =

o1

(
1

(1 − p)xQ+x−2+j
+

x−1∑

n=1

(−1)npn X n
x (j)

(1 − p)xQ+x+j−2−nQ
+ (−1)xpx X x

x (j)

(1 − p)x+j−2

)

−o0

(
p

(1 − p)(x−1)Q+x−1+j
+

x−1∑

n=2

(−1)n−1pn Yn
x (j)

(1 − p)xQ+x+j−1−nQ

+ (−1)x−1px Yx
x(j)

(1 − p)x+j−1

)

for x ≥ 1 and 1 ≤ j ≤ Q + 1

(B.10)

where the functions X n
x (j) and Yn

x (j) are defined as follows for x ≥ 1

X n
x (j) =






∑j−1
k=1 X n−1

x−1 (k + 1) x = n

X n
x−1(Q + 1) +

∑j
k=1 X n−1

x−1 (k) x > n
n ≥ 1 (B.11)

X 0
x = 1 (B.12)

Yn
x (j) =






∑j
k=1 Yn−1

x−1 (k) x = n, n ≥ 2

Yn
x−1(Q + 1) +

∑j

k=1 Yn−1
x−1 (k) x > n, n ≥ 1

(B.13)

Y1
1 =





0 if x from (B.16) for the first/largest Q-cycle is equal to 1

1 otherwise
(B.14)

Y0
x = 0 (B.15)
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In order to apply the general expression (B.10), oi needs to be translated into

oxQ+x−1+j, i.e. x and j need to be determined from i. This can be done as follows.

Since 1 ≤ j ≤ Q + 1 (see above),

i − Q

Q + 1
≤ x ≤ i

Q + 1
⇒ x(i) =

⌊
i

Q + 1

⌋
(B.16)

where x(i) indicates that x depends on i. Given i and x, j can be computed as

j(i, x) = i − x(Q + 1) + 1 . (B.17)

For ease of presentation, (B.10) is rewritten as

oi = o1G(i) − o0H(i) i ≥ Q + 1 (B.18)

with

G(i) =
1

(1 − p)x(i)Q+x(i)−2+j(i,x)
+

x(i)−1∑

n=1

(−1)npn
X n

x(i)(j(i, x))

(1 − p)x(i)Q+x(i)+j(i,x)−2−nQ

+ (−1)x(i)px(i)
X x(i)

x(i) (j(i, x))

(1 − p)x(i)+j(i,x)−2
(B.19)

H(i) =
p

(1 − p)(x(i)−1)Q+x(i)−1+j(i,x)
+

x(i)−1∑

n=2

(−1)n−1pn
Yn

x(i)(j(i, x))

(1 − p)x(i)Q+x(i)+j(i,x)−1−nQ

+ (−1)x(i)−1px(i)
Yx(i)

x(i) (j(i, x))

(1 − p)x(i)+j(i,x)−1
(B.20)

and x(i) and j(i, x) from (B.16) and (B.17), respectively. By using (B.18), (B.9)

can be rewritten as

o1 =
∞∑

j=0

ojPr{D = Q + j − 1}

= o0Pr{D = Q − 1} + o1

Q∑

j=1

(1 − p)1−jPr{D = Q + j − 1}
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+
∞∑

j=Q+1

[vS+1G(j) − vSH(j)] Pr{D = Q + j − 1}

Solving for o1 gives

o1 = o0

[
Pr{D = Q − 1} −∑∞

j=Q+1 H(j)Pr{D = Q + j − 1}
]

1 −
[∑Q

j=1(1 − p)1−jPr{D = Q + j − 1} +
∑∞

j=Q+1 G(j)Pr{D = Q + j − 1}
] .

(B.21)

Furthermore,

∞∑

j=0

oj = 1

o0 + o1

Q∑

j=1

(1 − p)1−j +
∞∑

j=Q+1

[o1G(j) − o0H(j)] = 1

⇒ o0 =
1 − o1

(∑Q
j=1(1 − p)1−j +

∑∞
j=Q+1 G(j)

)

1 −∑∞
j=Q+1 H(j)

. (B.22)

Inserting (B.22) into (B.21) yields

o1 =

(
1

1 −∑∞
j=Q+1 H(j)

− o1

∑Q
j=1(1 − p)1−j +

∑∞
j=Q+1 G(j)

1 −∑∞
j=Q+1 H(j)

)

·

[
Pr{D = Q − 1} −∑∞

j=Q+1 H(j)Pr{D = Q + j − 1}
]

1 −
[∑Q

j=1(1 − p)1−jPr{D = Q + j − 1} +
∑∞

j=Q+1 G(j)Pr{D = Q + j − 1}
]

(B.23)

⇒o1 =

1

1 −∑∞
j=Q+1 H(j)
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·

[
Pr{D = Q − 1} −∑∞

j=Q+1 H(j)Pr{D = Q + j − 1}
]

1 −
[∑Q

j=1(1 − p)1−jPr{D = Q + j − 1} +
∑∞

j=Q+1 G(j)Pr{D = Q + j − 1}
]

· 1

1 +
PQ

j=1(1−p)1−j+
P∞

j=Q+1 G(j)

1−
P∞

j=Q+1 H(j)

[Pr{D=Q−1}−
P∞

j=Q+1 H(j)Pr{D=Q+j−1}]
1−[

PQ
j=1(1−p)1−jPr{D=Q+j−1}+

P∞
j=Q+1 G(j)Pr{D=Q+j−1}]

.

(B.24)

Given o1, o0 can be determined via (B.22) and all other state probabilities via (B.7)

and (B.18).

�

B.5 Lemma 3.3.3.6

Proof:

If the critical fractile, b
b+h

(α-target service level), is such that Bs∗(δs) ≥ E
[
Ď(δs)

]
=(

(Lf + 1) + δsL∆
)
µ (see (3.145)), this is called a situation with positive safety

stock. For this case, the following properties can be established:

1. The expected on-hand stock (3.147) is strictly increasing in δs, which follows

from Lemmata B.5.0.1 and B.5.0.2.

2. The expected backorders (3.148) are strictly increasing in δs, which follows

from Lemma B.5.0.3.

3. The procurement cost term in TRCOSP is strictly decreasing in δs, which is

obvious.

Given these properties, it follows immediately that the TRCOSP function is unimodal

in δs. The lemmata can be derived as follows. (3.147) can be rewritten as

E
[
OH(Bs∗(δs))

]
= Bs∗(δs) − E

[
min

{
Ď(δs), Bs∗(δs)

}]
. (B.25)
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(In the following, the expressions refer to a continuous demand distribution. In case

of a discrete demand distribution the integral has to be replaced by a sum.)

It is assumed that the demand random variable is from a non-negative strongly

unimodal distribution, i.e. a distribution that is still unimodal after convolution.

This holds for all distributions studied in this thesis. In order to prove the positive

increase of the expected on-hand stock as δs increases, first the behavior in δs of

the two terms in equation (B.25) is considered separately and afterwards it is shown

that the difference between these two terms is always positive as δs increases. To

this end, define for δs
2 > δs

1

Bs∗

∆ = Bs∗(δs
2) − Bs∗(δs

1) (B.26)

E∆

[
min

{
Ď, Bs∗

}]
= E

[
min

{
Ď(δs

2), B
s∗(δs

2)
}]

− E
[
min

{
Ď(δs

1), B
s∗(δs

1)
}]

(B.27)

δs
∆ = δs

2 − δs
1 (B.28)

i.e. Bs∗

∆ denotes the change in the optimal order-up-to level (the first term in equation

(B.25)), whereas E∆[min{Ď, Bs∗}] denotes the change in the second term in equation

(B.25) as δs increases from δs
1 to δs

2.

Lemma B.5.0.1 If the critical fractile assumes a value such that a positive safety

stock is required, the change in the optimal order-up-to level Bs∗

∆ due to an increase

in δs of δs
∆ is larger than δs

∆L∆µ, but approaches δs
∆L∆µ from above.

Proof:

From (3.145) and (3.146) it follows that

CV (δs) =

√
VAR

[
Ď(δs)

]

E
[
Ď(δs)

] =
σ ·
√

(Lf + 1) + [δs]2L∆

((Lf + 1) + δsL∆)µ
. (B.29)

Therefore,

lim
δs→∞

CV (δs) = 0 . (B.30)

This means that as δs increases, the coefficient of variation decreases. The order-

up-to level is the sum of the pipeline inventory and the safety stock. The pipeline
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inventory is a linear function of δs, δsL∆µ. The safety stock is sized to cover against

the variability of lead-time demand, i.e. it depends on σ ·
√

(Lf + 1) + [δs]2L∆. Due

to the square root effect, the additional amount of (positive) safety stock required

becomes smaller as δs gets larger, i.e. the safety stock and thus optimal order-up-to

level is concave in δs. Ultimately (i.e. δs → ∞), for a δs-increase of δs
∆ only an

amount of δs
∆L∆µ, i.e. no additional safety stock at all needs to be added to the

previously optimal order-up-to level, Bs∗(δs
1), in order to arrive at the new optimal

one, Bs∗(δs
2), and still comply with the critical fractile, i.e.

lim
δs→∞

Bs∗

∆ = δs
∆L∆µ . (B.31)

�

Lemma B.5.0.2 If the critical fractile assumes a value such that a positive safety

stock is required, the change of E
[
min

{
Ď(δs), Bs∗(δs)

}]
due to an increase in δs of

δs
∆ is smaller than δs

∆L∆µ.

Proof:

Define

Ď∆(δs
∆) = δs

∆D(L∆) . (B.32)

Then, E∆

[
min

{
Ď, Bs∗

}]
< δs

∆L∆µ can be rewritten as

E
[
min

{
Ď(δs

1) + Ď(δs
∆), Bs∗(δs

1) + Bs∗

∆

}]
− E

[
min

{
Ď(δs

1), B
s∗( δs

1)
}]

< δs
∆L∆µ

Bs∗

∆ + E
[
min

{
Ď(δs

1) + Ď∆(δs
∆) − Bs∗

∆ , Bs∗(δs
1)
}]

− E
[
min

{
Ď(δs

1), B
s∗( δs

1)
}]

< δs
∆L∆µ.

(B.33)

Rearranging terms, yields

E
[
min

{
Ď(δs

1), B
s∗(δs

1)
}]

− E
[
min

{
Ď(δs

1) + Ď∆(δs
∆)− Bs∗

∆ , Bs∗(δs
1)
}]

> Bs∗

∆ − δs
∆L∆µ. (B.34)
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Define Y := Ď(δs
1), i.e. the random variable of the first (partial) expectation expres-

sion on the left-hand side. Also, let Z := Ď(δs
1) + Ď∆(δs

∆)−Bs∗

∆ denote the random

variable expression of the second (partial) expectation expression. Then,

µY =
(
(Lf + 1) + δs

1L
∆
)
µ (B.35)

σY = σ ·
√

(Lf + 1) + [δs
1]

2L∆ (B.36)

and

µZ =
(
(Lf + 1) + δs

1L
∆
)
µ + δs

∆L∆µ − Bs∗

∆ =
(
(Lf + 1) + δs

1L
∆
)
µ −

(
Bs∗

∆ − δs
∆L∆µ

)

(B.37)

σZ = σ ·
√

(Lf + 1) + [δs
2]

2L∆ . (B.38)

If there was no bound in the calculation of the expectations (due to the min-

expression), the left-hand side in inequality (B.34) would equal the right-hand side,

because

(
(Lf + 1) + δs

1L
∆
)
µ −

[(
(Lf + 1) + δs

1L
∆
)
µ −

(
Bs∗

∆ − δs
∆L∆µ

)]
= Bs∗

∆ − δs
∆L∆µ ,

(B.39)

i.e. E∆

[
min

{
Ď, Bs∗

}]
= δs

∆L∆µ. However, due to the bound, the left-hand side in

inequality (B.34) is larger than the right-hand side for the following reason. The

bound in the min-expression leads to a lowering of the value of these expressions, i.e.

E
[
min

{
Ď(δs

1), B
s∗(δs

1)
}]

< µY and E
[
min

{
Ď(δs

1) + Ď∆(δs
∆) − Bs∗

∆ , Bs∗(δs
1)
}]

<

µZ . For inequality (B.34) to be true, it must hold that the lowering of the sec-

ond min-expression is larger than the first one. Formally, this can be stated as

follows.

Let X denote a random variable. Further, note that the bound in both min-

expressions is identical, namely Bs∗(δs
1). Recall that the expectation of any non-

negative random variable can be calculated as

E[X] =

∫ ∞

0

[1 − F (x)] dx . (B.40)
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Then,

E
[
min

{
X, Bs∗(δs

1)
}]

=

∫ Bs∗(δs
1)

0

[1 − F (x)] dx (B.41)

=

∫ ∞

0

[1 − F (x)] dx −
∫ ∞

Bs∗ (δs
1)

[1 − F (x)] dx (B.42)

= E[X] −
∫ ∞

Bs∗(δs
1)

[1 − F (x)] dx . (B.43)

That means, the lowering is given by

∫ ∞

Bs∗ (δs
1)

[1 − F (x)] dx (B.44)

and it remains to be shown that
∫ ∞

Bs∗ (δs
1)

[1 − FµY ,σY
(x)] dx <

∫ ∞

Bs∗ (δs
1)

[1 − FµZ ,σZ
(x)] dx . (B.45)

If the distributions of both Y and Z had the same standard deviation, their probabil-

ity density and cumulative distribution functions would look the same only shifted

by the difference between their means. However, since Z has a higher standard

deviation than Y , its density function is flatter. Consequently, the slope of the

distribution function of Z is larger than that of Y for small values, but decreases

for larger ones. From the fact that both distribution functions return the same

cumulative probability mass for Bs∗(δs
1) it follows that they intersect at this point.

Consequently, for lower values than Bs∗(δs
1), the function FµY ,σY

is below FµZ ,σZ
and

therefore returns lower distribution function values and vice versa (see Figure B.1),

i.e.

FµY ,σY
(x)






< FµZ ,σZ
(x) for x < Bs∗(δs

1)

= FµZ ,σZ
(x) for x = Bs∗(δs

1)

> FµZ ,σZ
(x) for x > Bs∗(δs

1)

. (B.46)
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Figure B.1: Distribution function FµY ,σY
(solid) and FµZ ,σZ

(dashed)

Hence, it follows that

∫ ∞

Bs∗ (δs
1)

[1 − FµY ,σY
(x)] dx <

∫ ∞

Bs∗ (δs
1)

[1 − FµZ ,σZ
(x)] dx . (B.47)

Consequently, the deviation of the partial expectation from the expectation is larger

in case of FµZ ,σZ
than it is in case of FµY ,σY

. Since the difference between the (un-

bounded) expectations µY and µZ is already equal to Bs∗

∆ − δs
∆L∆µ and thus only

gets larger through the lowering, inequality (B.34) is true. �

Lemma B.5.0.3 If the critical fractile assumes a value such that a positive safety

stock is required, the change in the expected backorders, E∆ [BO], due to an increase

in δs of δs
∆ is positive.

Proof:

From relation (2.27) it follows that

E [BO] = E [OH ] − E [NS]

= E [OH ] − SST

= Bs∗(δs) − E
[
min

{
Ď(δs), Bs∗(δs)

}]
− Bs∗(δs) + E

[
Ď(δs)

]

= E
[
Ď(δs)

]
− E

[
min

{
Ď(δs), Bs∗(δs)

}]
. (B.48)
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In terms of change as δs increases, the following relation results

E∆ [BO] = δs
∆L∆µ − E∆

[
min

{
Ď, Bs∗

}]
. (B.49)

From Lemma B.5.0.2 it follows that E
[
min

{
Ď(δs), Bs∗(δs)

}]
< δs

∆L∆µ. Conse-

quently, E∆ [BO] ≥ 0. �

This completes the entire proof.

�

B.6 Lemma 3.3.3.7

TRCnorm
OSP (δs) is convex in δs, if ∂2TRCnorm

OSP

∂[δs]2
≥ 0.

Proof:

For ease of presentation, define

rOH = h · σ (kΦ(k) + φ(k)) (B.50)

rBO = b · σ (φ(k) − k(1 − Φ(x))) , (B.51)

which are both non-negative for all feasible values of k. Then,

∂TRCnorm
OSP

∂δs
= rOH ·

(
(Lf + 1) + [δs]2L∆

)− 1
2 δsL∆

+ rBO ·
(
(Lf + 1) + [δs]2L∆

)− 1
2 δsL∆ − c · µ (B.52)

∂2TRCnorm
OSP

∂[δs]2
= − rOH

(
(Lf + 1) + [δs]2L∆

)− 3
2 [δs]2[L∆]2

+ rOH

(
(Lf + 1) + [δs]2L∆

)− 1
2 L∆

− rBO

(
(Lf + 1) + [δs]2L∆

)− 3
2 [δs]2[L∆]2

+ rBO

(
(Lf + 1) + [δs]2L∆

)− 1
2 L∆
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= rOH

(
(Lf + 1) + [δs]2L∆

)− 1
2 L∆ ·

[
1 − [δs]2L∆

(Lf + 1) + [δs]2L∆

]

+ rBO

(
(Lf + 1) + [δs]2L∆

)− 1
2 L∆ ·

[
1 − [δs]2L∆

(Lf + 1) + [δs]2L∆

]

(B.53)

The first factor of both summands is obviously non-negative. For the whole expres-

sion to be non-negative, the second factor in parenthesis needs to be non-negative,

too. This is true, if the denominator is larger than the nominator.

[δs]2L∆
!
≤ (Lf + 1) + [δs]2L∆ (B.54)

⇔ 0 ≤ (Lf + 1) (B.55)

This condition is always met, because the lead times are assumed to be non-negative.

�

B.7 Derivation of optimal δs

In case of ω1 = ω2 = 0, (3.164) can be rewritten as

c · µ ·
(
(Lf + 1) + [δs]2L∆

) 1
2 = δsL∆(rOH + rBO) | ()2 (B.56)

(c · µ)2
(
(Lf + 1) + [δs]2L∆

)
= [δs]2

(
L∆(rOH + rBO)

)2
. (B.57)

⇒ [δs]2 =
Lf + 1

(
L∆(rOH+rBO)

c·µ

)2

− L∆

(B.58)

⇒ δs =

√√√√
Lf + 1

(
L∆(rOH+rBO)

c·µ

)2

− L∆

(B.59)

The feasible region for δs has not been taken into account so far. This is done by the

conditions specified in (3.167). In case the unconstraint global optimum is negative,

(in which case (B.59) would not produce any solution) the best feasible value is

δs = 0. If the unconstraint global optimum is larger than 1, the best feasible value

is δs = 1.
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B.8 Lemma 4.2.3.3

Proof:

(4.26) can be rewritten as

Ci = hiTiµ + hiE [OHi] + cOF
i E [BOi] − hiE [BOi]

= hiTiµ + hiE [SSTi] + cOF
i E [BOi]

(4.17)
= hiTiµ + hi (Bi(τi) − τiµ) + cOF

i E [BOi]

= hiµ (Ti − τi) + hiBi(τi) + cOF
i E [BOi]

= hiµ (Ti − τi) + hiBi(τi) + cOF
i

∫ ∞

Bi(τi)

(x − Bi(τi)) fτi
(x) dx . (B.60)

For ease of presentation, the dependency of Bi on τi is not explicitly indicated in

the further analysis.

∂Ci

∂Bi

= hi − cOF
i (1 − Fτi

(Bi)) (B.61)

∂2Ci

∂B2
i

= cOF
i fτi

(Bi) ≥ 0 (B.62)

The optimal Bi can be determined by setting the first derivative equal to 0.

∂Ci

∂Bi

= 0 ⇔ B∗
i (τi) = F−1

τi

(
1 − hi

cOF
i

)
(B.63)

which is feasible since cOF
i ≥ hi. �

B.9 Lemma 4.2.3.4

Proof:

From (2.50) and (2.52) it is known that for an α-service level constraint it holds

that

B∗
i (τi) = F−1

τi

(
αtarget

i

)
. (B.64)
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From (4.28) and (B.64), (4.29) follows immediately. �

B.10 Lemma 4.2.3.6

Proof:

∂Ci

∂τi

= hiµ + hi

kiσ

2
√

τi

+ cOF
i (φ(ki) − ki(1 − Φ(ki)))

σ

2
√

τi

= hiµ︸︷︷︸
≥0

+
σ

2
√

τi︸ ︷︷ ︸
≥0

(
hiki + cOF

i (φ(ki) − ki(1 − Φ(ki)))
)

︸ ︷︷ ︸
x

(B.65)

which is positive, if x is positive, i.e.

(
hiki + cOF

i (φ(ki) − ki(1 − Φ(ki)))
)

> 0

hi

cOF
i

ki + φ(ki) − ki(1 − Φ(ki)) > 0

ki

(
hi

cOF
i

− (1 − Φ(ki))

)
> −φ(ki) . (B.66)

With ki = Φ−1(1 − hi/c
OF
i ) from (4.30) it follows that

Φ−1

(
1 − hi

cOF
i

)(
hi

cOF
i

−
(

1 − Φ

(
Φ−1

(
1 − hi

cOF
i

))))
> −φ

(
Φ−1

(
1 − hi

cOF
i

))

Φ−1

(
1 − hi

cOF
i

)

︸ ︷︷ ︸
>0

(
hi

cOF
i

−
(

1 − 1 +
hi

cOF
i

))

︸ ︷︷ ︸
>0

> −φ

(
Φ−1

(
1 − hi

cOF
i

))

︸ ︷︷ ︸
<0

,

(B.67)

which is true.
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∂2Ci

∂τ 2
i

= hi

(
− kiσ

4τi

√
τi

)
+ cOF

i

(
− σ

4τi

√
τi

)
(φ(ki) − ki(1 − Φ(ki)))

= − σ

4τi

√
τi︸ ︷︷ ︸

<0

(
hiki + cOF

i (φ(ki) − ki(1 − Φ(ki)))
)

︸ ︷︷ ︸
>0 (see above)

≤ 0 (B.68)

�

B.11 Property 4.4.2.1

Proof:

If it is optimal for the final stage of the GS subnetwork not to hold any stock, i.e.

τi−1 = 0, this stock allocation will also be achieved in a different partitioning pattern

consisting of a GS subnetwork that runs until stage i−2 and an SS subnetwork that

comprises of stages i− 1 to j. In the new partitioning pattern the SS approach can

also choose not to place any stock at stage i − 1, if this is cost-optimal. �

B.12 Property 4.4.2.3

Proof:

τi = 0 means that the first GS stage does not hold any stock. If this stock al-

location pattern is cost-optimal, it will also be found by optimizing an HS system

that consists of an SS subnetwork from l to i and a GS subnetwork from i+1 to j. �

B.13 Lemma 4.4.2.5

Proof:

Part (1) is obvious. In order to prove part (2) first note that in the SS approach, the
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relevant timespan, with regard to which the order-up-to level at a stage is sized, is

the processing time. Since it is assumed that the external customer demand needs to

be satisfied immediately, the outgoing service time of the HS stage is 0, i.e. the net

replenishment time of the comprised GS stage corresponds to its processing time.

Further, recall from Section 4.4.2.1 that the order-up-to levels within the HS stage

are determined as if all comprised stages belonged to a pure SS subnetwork and the

relevant timespan of the final stage is its net replenishment time, which in this case

is equal to its processing time. Proof of part (3): From part (1) it follows that the

supply chain must consist of at least two stages in order to allow for an HS stage

that differs from a GS stage. Part (2) postulates that there must be at least one

additional GS stage that either precedes or succeeds an HS stage (consisting of at

least two stages) in order to differentiate the solution from a pure SS network. In

such a three-stage HS serial supply chain, the allocation benefit can be exploited

within the HS stage. Furthermore, the decoupling benefit of the comprised GS stage

(within the HS stage) can be exploited towards a succeeding GS stage or the de-

coupling benefit of a preceding GS stage can be exploited towards a succeeding HS

stage. Hence, an HS solution can be superior to the pure approaches. �

B.14 Lemma 4.5.2.1

Proof:

It is sufficient to consider the terms of the cost function that refer to a stockpoint i

and its two suppliers, s and f . For ease of presentation and w.l.o.g., it is assumed

that the suppliers have only a single supplier themselves and therefore a single

incoming service time SIs and SIf . Then, the total cost function for case 2 is given

as

CP2

= hs · SST 2
s (SIs, ST s

i , δs
i , α

target
s ) + hf · SST 2

f (SIf , ST f
i , 1 − δs

i , α
target
f )

+ hi · SST 2
i (ST f

i , ST s
i , STi, δ

s
i , α

target
i ) . (B.69)
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From (4.83) it is obvious that the safety stock quantity depends on the variability

of the random variable Ď2 defined in (4.81). Since ST f
i does not impact the safety

stock quantity at the slow supplier, this safety stock expression can be excluded

from further analysis. For stockpoint f , we get

VAR
[
Ď2

f (SIf , ST f
i , 1 − δs

i )
]

= (1 − δs
i )

2
(
SIf + Tf − ST f

i

)
σ2

i , (B.70)

which becomes smaller as ST f
i increases. Similarly, for stockpoint i,

VAR
[
Ď2

i (ST f
i , ST s

i , STi, δ
s
i )
]

=
(
[δs

i ]
2 (ST s

i + T s
i − STi) + (1 − δs

i )
2
(
STi − ST f

i − T f
i

))
σ2

i =
(
[δs

i ]
2 (ST s

i + T s
i − STi) + (1 − δs

i )
2 STi − (1 − δs

i )
2
(
ST f

i + T f
i

))
σ2

i , (B.71)

which also becomes smaller as ST f
i increases. Consequently, the entire safety stock

quantity and thus total cost decrease as ST f
i increases.

For normally distributed demand, this effect can be shown be computing the first

derivative with respect to ST f
i . For simplicity reasons, define rm = hmkmσm for

m = s, f, i with σs = δsσi and σf = (1 − δs)σi. Then,

CP2

norm = rs

√
SIs + Ts − ST s

i + rf

√
SIf + Tf − ST f

i

+ ri

√
[δs

i ]
2 (ST s

i + T s
i − STi) + (1 − δs

i )
2
(
STi − ST f

i − T f
i

)
(B.72)

and

∂CP2

norm

∂ST f
i

= −1

2
rf

(
SIf + Tf − ST f

i

)− 1
2

− (1 − δs
i )

2 ri

(
[δs

i ]
2 (ST s

i + T s
i − STi) + (1 − δs

i )
2
(
STi − ST f

i − T f
i

))− 1
2

(B.73)

≤ 0 ,

which completes the proof. �
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