
Selected Cryptographic Metho ds

for Securing Low-End Devices

Inauguraldissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl. Wirtsch.-Inf. Dirk Stegemann

aus Co esfeld (Westf.)

Mannheim, 2010

ii

Dekan: Prof. Dr. Wolfgang E�elsb erg, Universität Mannheim

Referent: Prof. Dr. Matthias Krause, Universität Mannheim

Korreferent: Prof. Dr. Stefan Lucks, Bauhaus-Universität Weimar

Tag der mündlichen Prüfung: 16. Dezemb er 2010

Abstract

We consider in this thesis the security goals con�dentiality of messages and

authenticity of entities in electronic communication with sp ecial fo cus on appli-

cations in environments with restricted computational p ower, e.g., RFID-tags

or mobile phones. We intro duce the concept of stream ciphers, describ e and

analyze their most imp ortant building blo cks, analyze their security features,

and indicate ways to improve their resistance against certain typ es of attacks.

In the context of entity authentication, we describ e sp ecial proto cols based on

randomly cho osing elements from a secret set of linear vector spaces and relate

the security of these proto cols to the hardness of a certain learning problem.

iv

Zusammenfassung

Wir b etrachten in dieser Arb eit die Sicherheitsziele Vertraulichkeit von Nach-

richten und Authentizität von Kommunikationspartnern im Umfeld elektro-

nischer Kommunikation mit b esonderem Schwerpunkt auf Anwendungen auf

ressourcenb eschränkten Endgeräten wie RFID-Tags o der Mobiltelefonen. Wir

b etrachten insb esondere Stromchi�ren, b eschreib en und analysieren ihre wich-

tigsten Bestandteile, untersuchen ihre Sicherheitseigenschaften und zeigen Mög-

lichkeiten auf, wie sich ihre Resistenz gegenüb er b estimmten Angri�stechniken

verb essern lässt. Im Zusammenhang mit der Authenti�kation von Kommuni-

kationspartnern b eschreib en wir sp ezielle Authenti�kationsprotokolle, die auf

der zufälligen Auswahl von Elementen aus einer geheimen Menge von linea-

ren Vektorräumen b eruhen, und führen die Sicherheit dieser Protokolle auf die

Komplexität eines b estimmten Lernproblems zurück.

vi

Acknowledgment

After all the typing has b een done, there is one page left to write � the page that

ends up b eing one of the �rst in the thesis but might as well b e the last, since

it b ears the opp ortunity to lo ok back on the pro cess of creating the do cument

that is ab out to b e �nalized.

In this pro cess, my sup ervisor Matthias Krause has b een a most valuable

source of supp ort and inspiration. I have known few p eople with such a deep

understanding of the theoretical foundations of cryptography and computer sci-

ence and with such great reliability in telling apart promising ideas from dead

end streets. Having b een a teacher myself, it will always remain a secret to

me how he manages to hold p erfectly consistent 90-minute blackb oard lectures

right o� the top of his head.

Together with the deputy head of the theoretical computer science and data

security group, our secretary Karin Teynor, Matthias has additionally provided

an e�cient work environment with a pro ductive combination of resp onsibilities

and degrees of freedom that will b e hard to duplicate.

My co-sup ervisor Stefan Lucks has always b een my prime example of a

natural-b orn cryptographer. He would talk ab out his work and share his ideas

and exp erience with a sweeping passion that literally drags his students and

colleagues into the world of cryptography. At the same time, he is one of the

few living e�ciently accessible cryptographic oracles (in the true sense) that

have an answer to virtually any crypto-related question � either the solution

right away or a "Oh yes, there was a pap er at EUROCRYPT 2005 ab out that"

typ e of p ointer that reliably leads you in the right direction.

Matthias and Stefan have connected me to the international cryptographic

community with many bright researchers and amazing talents. In the spirit of

these p eople, who resp ect each other for the outcome of their work rather than

for the titles they hold, and who obstinately organize the author lists of their

pap ers in alphab etical order, I would like to express my gratitude for many

fruitful and inspiring crypto-related as well as less-crypto-related discussions to

a few colleagues, co-authors and community memb ers that I had the pleasure

to interact with over the years: Frederik Armknecht, Tobias Eibach, Simon

Fischer, Andreas Kemp er, Willi Meier, Emin Islam Tatl�, and Siavash Vahdati.

After all, there is more to the world than cryptography and IT-security, and

I am grateful to have my family a handful of long-time friends taking great care

in reminding me of the di�erence b etween important and real ly important . You

all have contributed to the forthcoming pages more than you may know.

And �nally, my life would b e so much di�erent without the love, understand-

ing and unswerving supp ort of my wife Olha, so this thesis is most naturally

dedicated to her.

viii

Contents

1 Intro duction 1

1.1 What this Thesis is ab out . 1

1.2 Publications . 2

I Con�dential Communication with Stream Ciphers 5

2 Algorithms for Con�dential Communication 7

2.1 Security De�nitions and Attacker Mo dels 7

2.2 Blo ck Ciphers . 9

2.3 Dedicated Stream Ciphers . 10

2.4 Asymmetric Ciphers . 13

3 Stream Cipher Building Blo cks 15

3.1 Bo olean Functions . 15

3.2 Feedback Shift Registers . 16

3.2.1 Linear Feedback Shift Registers (LFSRs) 16

3.2.2 Feedback Shift Registers With Carry (FCSRs) 21

4 Stream Ciphers based on Feedback Shift Registers 33

4.1 Generic Constructions . 33

4.1.1 Combination Generators and Filter Generators 33

4.1.2 Additional Memory . 34

4.1.3 Irregular Clo cking . 35

4.2 Example Ciphers . 35

4.2.1 Self-Shrinking Generator 36

4.2.2 E0 Generator . 36

4.2.3 A5/1 Generator . 38

4.2.4 Trivium . 39

4.2.5 Grain-128 . 40

4.2.6 Filtered FCSRs . 40

4.3 Abstraction: Internal Bitstream Generators 44

5 The BDD-Attack 47

5.1 Intro duction and Overview . 47

5.2 Representing Bo olean Functions with Binary Decision Diagrams 48

5.2.1 Free Binary Decision Diagrams (FBDDs) 48

5.2.2 Ordered Binary Decision Diagrams (OBDDs) 50

x CONTENTS

5.3 BDD-based Initial State Recovery 52

5.4 Generic BDD Constructions . 54

5.4.1 Keystream Consistency Check Qm 54

5.4.2 FSR Consistency Check Rm 56

5.5 Applications . 59

5.5.1 Self-Shrinking Generator 59

5.5.2 Blueto oth Keystream Generator E0 60

5.5.3 GSM Keystream Generator A5/1 61

5.5.4 Trivium . 65

5.5.5 Grain-128 . 68

5.5.6 The F-FCSR Stream Cipher Family 69

5.6 Divide-and-Conquer Strategies (DCS) 70

5.6.1 DCS for regularly clo cked (k; l) -Combiners 71

5.6.2 DCS for the A5/1 Generator 73

5.7 Simulations and Exp erimental Results 76

5.8 Discussion of the BDD-Attack . 77

6 Other Generic Attacks on Stream Ciphers 79

6.1 Correlation Attacks . 79

6.1.1 The Basic Idea . 79

6.1.2 Analysis of the Sp ecial Case C(x t ; qt) = � (x t) � � (qt) . . 82

6.2 Algebraic Attacks . 84

6.2.1 The Basic Idea . 84

6.2.2 Analysis of a restricted Scenario 85

6.3 Countermeasures and Design Principles 87

6.3.1 Increasing the Resistance against Correlation Attacks . . 87

6.3.2 Increasing the Resistance against Algebraic Attacks . . . 89

6.4 Application to E0 . 90

I I Authenticity with Linear Proto cols 95

7 Algorithms for Entity and Message Authentication 97

7.1 Security De�nitions and Attacker Mo dels 97

7.1.1 Entity Authentication . 98

7.1.2 Entity Recognition . 98

7.1.3 Message Authentication 99

7.1.4 Message Recognition . 99

7.1.5 Attacker Mo dels . 100

7.2 Message Authentication Co des 101

7.2.1 Message Authentication Co des based on Blo ck Ciphers . . 102

7.2.2 Message Authentication Co des based on Cryptographic

Hash Functions . 102

7.3 Message Authentication with Digital Signatures 103

7.4 Challenge-Resp onse based Entity Authentication 104

7.5 Authentication Schemes based on Hash Chains 105

7.6 Authentication based on the Hardness of Learning Problems . . . 106

CONTENTS xi

8 The HB Family of Authentication Proto cols 107

8.1 The HB Proto col . 107

8.2 The HB+
Proto col . 108

8.3 Variants of the HB+
Proto col . 109

8.3.1 The HB++
Proto col . 110

8.3.2 The HB�
Proto col . 111

8.3.3 The HB- MP Proto cols . 112

8.3.4 The HB#
Proto col . 113

8.3.5 The Trusted- HB Proto col 114

9 The (n; k; L) Family of Authentication Proto cols 117

9.1 Intro duction and Overview . 117

9.2 The Linear (n; k; L) Proto col . 117

9.3 The Linear (n; k; L)+
Proto col 119

9.4 The Linear (n; k; L)++
Proto col 119

9.5 Sp ecial Cases of Linear (n; k; L) Proto cols 121

9.6 Security of Linear (n; k; L) -typ e Proto cols and the LULS Problem 122

9.6.1 The Search-for-a-Basis Heuristic 122

9.6.2 The LULS Problem . 123

9.6.3 On Solving the LULS Problem 124

9.7 Discussion . 126

10 Conclusion 129

Bibliography 131

List of Tables 143

List of Figures 145

List of Algorithms 147

Index 147

xii CONTENTS

Chapter 1

Intro duction

1.1 What this Thesis is ab out

In this thesis, we consider two imp ortant security goals in electronic communi-

cation: con�dentiality of messages and authenticity of entities.

While many algorithms and systems have b een prop osed for a variety of

application scenarios, we fo cus our attention on metho ds that are particularly

useful for devices with rather little computational p ower. This characterization

is not entirely sharp � for example, it is arguable whether a mo dern smartphone

is rather a particularly complex mobile phone or a small computer equipp ed

with a telephone function � but will serve as a guideline to distinguish RFID

tags and Blueto oth devices from p ersonal computers and grids.

By con�dentiality of messages, we mean that messages which are exchanged

over a publicly observable channel should only b e meaningful to legitimate com-

munication partners. This is probably the most prominent service that cryp-

tographic systems are exp ected to provide, commonly by encrypting (or enci-

phering) messages. In the �rst part of this thesis, we therefore intro duce the

concepts of blo ck ciphers and stream ciphers and devote our main attention to

hardware-oriented stream cipher constructions. We describ e and analyze their

most imp ortant building blo cks, consider generic attack strategies � particularly

the BDD-based attack correlation attacks and algebraic attacks � and indicate

design principles that provide a certain resistance against these attacks. Further-

more, we review the design and security features of practically used algorithms

such as the A5/1 algorithm used in the GSM standard and the E0 cipher used

in Blueto oth. In the case of E0 , we indicate p ossible design improvements in

the light of the presented attacks.

In human face-to-face communication, authentication is implicitly and with-

out further ado p erformed through face (and sometimes additionally voice)

recognition. In electronic communication, e.g. on the internet, it is often not

so easy to verify that a communication partner is in fact who she claims to

b e. Authentication of entities is therefore another imp ortant task of mo dern

cryptographic systems. We address this security goal in the second part of this

thesis by investigating lightweight authentication proto cols that are based on

randomly cho osing elements from a set of L linear subspaces of GF (2)n + k
, re-

late their security to the hardness of a certain learning problem and indicate

2 1.2 Publications

p ossible improvements and further research directions.

1.2 Publications

This thesis is based on the following publications.

Fully reviewed Publications

1. Design Principles for Combiners with Memory , Pro ceedings of the 6th In-

ternational Conference on Cryptology in India (INDOCRYPT 2005), vol-

ume 3739 of LNCS, pages 104�117, Springer, 2005, with Frederik Armknecht

and Matthias Krause

Lower b ounds on the complexities of algebraic attacks and correlation

attacks, application to E0 and prop osal of a more secure E0 variant

2. Reducing The Space Complexity of BDD-based Attacks on Keystream Gen-

erators , Pro ceedings of Fast Software Encrpytion, 13th International Work-

shop (FSE 2006), volume 4047 of LNCS, pages 163�178, Springer, 2006,

with Matthias Krause

Divide-and-conquer strategies for reducing the memory requirements of

BDD-attacks, application to E0 , A5/1 and the Self Shrinking Generator

3. Extended BDD-based Cryptanalysis of Keystream Generators , Pro ceedings

of the 14th International Workshop on Selected Areas in Cryptography

(SAC 2007), volume 4876 of LNCS, pages 17�35, Springer, 2007

Extension of the BDD-attack to NFSRs and arbitrary compression func-

tions, application to Trivium, Grain and F-FCSR

4. More on the Security of Linear RFID Authentication Protocols , Pro ceed-

ings of the 16th International Workshop on Selected Areas in Cryptogra-

phy (SAC 2009), volume 5867 of LNCS, pages 182�196, Springer, 2009,

with Matthias Krause

Generalization of the CKK-proto col, security analysis in the active attack

scenario, de�nition of linear (n; k; L) proto cols and the LULS problem

5. Some Remarks on FCSRs and Implications for FCSR-based Stream Ci-

phers , Journal of Mathematical Cryptology, volume 3, pages 227�236,

2009, with Simon Fischer and Willi Meier

Simpli�ed description of the sequences pro duced by a single cell of a Galois

FCSR given that the register's initial state is p erio dic, mappings b etween

p erio dic states of the Fib onacci and the Galois representation of an FCSR,

explicit determination of the auto correlation of an l -sequence

Workshop Records and Technical Rep orts

1. Equivalent Representations of the F-FCSR Keystream Generator , Work-

shop Record of the State of the Art of Stream Ciphers (SASC 2008), with

Simon Fischer and Willi Meier

2. Building Stream Ciphers from FCSRs , Workshop Record of the 2nd GI-

Kryptowo chenende, 2008

1.2 Publications 3

3. Some Remarks on FCSRs and Implications for FCSR-based Stream Ci-

phers , Workshop Record of the Second Workshop on Mathematical Cryp-

tology (WMC '08), 2008, with Simon Fischer and Willi Meier

4. Algebraic Attacks against Linear RFID Authentication Protocols , Dagstuhl

Seminar on Symmetric Cryptography, Workshop Record, 2009, with Matt-

hias Krause

During my time as PhD student, I also contributed to a few other publications

that are not mentioned in this thesis.

� Security Challenges of Lo cation-aware Mobile Business, Pro ceedings of

the 2nd IEEE International Workshop on Mobile Commerce and Services,

pages 84�93, IEEE Computer So ciety, with Emin Islam Tatl� and Stefan

Lucks

� Dynamic Anonymity, The 4th World Enformatika Conferences, Interna-

tional Conference on Information Security (ICIS '05), 2005, with Emin

Islam Tatl� and Stefan Lucks

� Dynamic Mobile Anonymity with Mixing, Technical Rep ort, University of

Mannheim, 2006, with Emin Islam Tatl� and Stefan Lucks

� Workshop Record of the 2nd GI-Kryptowo chenende (editor), 2006, with

Frederik Armknecht

4 1.2 Publications

Part I

Con�dential Communication

with Stream Ciphers

Chapter 2

Algorithms for Con�dential

Communication

2.1 Security De�nitions and Attacker Mo dels

Often p eople want systems to b e secure without having a precise idea of what

they mean by security.

In a communication scenario in which two parties (usually called Alice and

Bob), communicate over an insecure channel (e.g., a telephone land line or

a TCP/IP connection), most p eople would agree that security means (p ossi-

bly among other things) that an eavesdropp er on the communication channel

(wiretapping the telephone line or observing the messages when passing a router)

should not b e able to understand what Alice and Bob are talking ab out, or more

formally, that the exchanged messages should remain con�dential.

Many p eople have come across this problem already at some p oint in their

childho o d and most probably tried to solve it by enciphering the messages in

one way or another, i.e., by transforming the plaintext messages into some

meaningless-lo oking strings and having the receiver reverse the transformation

in order to recover the plaintext.

This idea is probably almost as old as mankind, and the �rst do cumented

ideas for enciphering metho ds date back to ancient times. Since then, cipher

systems have b een built and used for critical governmental and military appli-

cations with varying success, thereby in�uencing the course of history at quite

a few p oints (Kahn, 1996).

Surprisingly enough, it was not until World War Two that a formal mo del

and analysis of cipher systems was develop ed in a famous seminal pap er by

Shannon (1949), which is now considered one of the foundations of mo dern

cryptography.

Since then, we typically assume a communication mo del consisting of a reli-

able but publicly observable communication channel, a sender who is equipp ed

with an encryption algorithm E , a receiver running a decryption algorithm D ,

and a key source that provides encryption keys ke and decryption keys kd (see

Fig. 2.1).

A cipher system is called symmetric if ke = kd and asymmetric if ke 6= kd .

We usually relate the security of a communication system to an attacker

8 2.1 Security De�nitions and Attacker Mo dels

E D
p p

Public Channel
c c

Key Source

Sender Receiver

ke kd

Figure 2.1: The Shannon communication mo del

that is de�ned by

� his goal

� his computational p ower

� the information available to him

and characterize the attacker by his success probability and his resource con-

sumption in terms of time, memory and amount of utilized information. The

most common goal is to obtain the secret key (leading to key recovery attacks),

but also weaker goals such as deducing partial information ab out the exchanged

information are often considered.

Dep ending on whether the attacker has unlimited or limited computational

p ower (i.e., time and memory resources at his disp osal), we talk ab out an in-

formation theoretic or a complexity theoretic security setting.

Concerning the amount of available information, we typically distinguish the

following classes.

� ciphertext-only : The attacker has only access to the public channel.

� known plaintext : The attacker additionally knows a numb er of plaintexts

and their encryptions under the unknown key.

� chosen plaintext : The attacker may have a numb er of plaintexts of his

choice encrypted under the unknown key and obtain the corresp onding

ciphertexts.

� chosen ciphertext : The attacker may have a numb er of ciphertexts de-

crypted under the unknown key and obtain the corresp onding plaintexts.

Note that we always assume the attacker to b e able to eavesdrop on the

public channel and, following Kerckho�s' principle (Kerckho�s, 1883), to know

the complete sp eci�cation of the cipher system. The only information ab out the

system that he do es not have is the secret key in use.

Performing a security analysis in this setting means to investigate how much

e�ort it takes the attacker to reach his goal. Consequently, the more e�ort is

required, the more secure we consider the system. Or put another way, the more

p owerful the attackers that a system is able to resist (i.e., whom the system is

able to prevent from reaching their goal), the b etter.

2.2 Blo ck Ciphers 9

One of Shannon's most imp ortant observations is the fact that the one-time

pad (encrypting by XOR-synthesis of a binary message with an equally long

random bit string) is information-theoretically secure, i.e., an attacker cannot

recover the plaintext from the ciphertext even with unlimited computational

p ower.

While this system is used to the present day by intelligence agencies for

highly critical information, the requirement that the secret information (that

has to b e exchanged con�dentially b etween sender and receiver in advance)

has to b e as long as the message makes it impractical for many imp ortant

applications.

The way out is to trade o� security and usability (in fact, a very common

strategy in practical IT security), i.e., to relax the requirements of the system

while hoping not to lose to o many of its security prop erties.

In the case of cipher systems, the relaxation consists in limiting the secret

information (most commonly called the key) to a size that is small enough to b e

e�ciently exchanged b etween sender and receiver, and at the same time large

enough for the system to resist attackers equipp ed with a realistic amount of

resources.

Symmetric-key cipher implementations that are based on this idea can b e

classi�ed into two categories, blo ck ciphers and stream ciphers, which we de-

scrib e in more detail in the following.

2.2 Blo ck Ciphers

Supp ose for the moment that we want to encrypt a plaintext blo ck-wise (or

word-wise) with a �xed blo ck length l . In order to b e able to decrypt, we use a

bijective mapping (i.e., a p ermutation) E : f 0; 1gl ! f 0; 1gl
for encryption and

its inverse D = E � 1
for decryption.

Ideally, we would like to cho ose E from all 2l ! p ossible p ermutations for a

�xed blo ck length l prior to the communication. However, only with very low

probability, our choice will have a representation that is more e�cient than a

list of input-output pairs with 2l
entries, which is clearly to o ine�cient to b e

exchanged b etween sender and receiver for reasonable blo ck sizes.

The compromise b etween security and usability in this case is to pick a set

of 2n
p ermutations that can b e e�ciently implemented using a device that is

parametrized with an n -bit string (the key) to determine which p ermutation it

actually realizes. Such a device is commonly called a block cipher .

De�nition 2.1. A blo ck cipher consists of two mappings

E : f 0; 1gl � f 0; 1gn ! f 0; 1gl

(x; k) 7! y

and

D : f 0; 1gl � f 0; 1gn ! f 0; 1gl

(y; k) 7! x

that satisfy D(E(x; k); k) = x for al l x 2 f 0; 1gl
and al l k 2 f 0; 1gn

. We cal l

E the encryption function, D the decryption function, l the block length, and n
the key length of the block cipher.

10 2.3 Dedicated Stream Ciphers

Note that for a �xed k 2 f 0; 1gn
, E(�; k) and D(�; k) are p ermutations (i.e.,

bijective mappings) and inverse to each other, and we may view the key as an

identi�er of a particular p ermutation. In this sense, picking a key means to �x

a particular p ermutation, and cho osing a particular blo ck cipher of blo ck length

l means cho osing 2n
out of the 2l ! p ossible p ermutations of f 0; 1gl

.

On the security side, we demand that an attacker cannot distinguish the

blo ck cipher setting from the ideal case, more precisely that the p ermutations

provided by the blo ck cipher b e indistinguishable from a p ermutation that was

randomly chosen from all p ossible p ermutations.

We note that an attacker who can distinguish a blo ck cipher based p ermuta-

tion from a randomly chosen p ermutation may not necessarily b e able to deduce

information ab out the encrypted messages nor the key. But conversely, we can

b e sure that an attacker who cannot tell whether a random p ermutation or a

blo ck cipher is used cannot deduce any nontrivial information.

Blo ck ciphers are among the most widely used cryptographic primitives, with

the Data Encryption Standard (DES) and the Advanced Encryption Standard

(AES) b eing particularly prominent examples (see Menezes et al. (2001) for

detailed descriptions and security considerations).

Care has to b e taken when a sequence of blo cks b1; b2; : : : ; bm 2 f 0; 1gl
has

to b e encrypted. For common blo ck lenghts of 128 bits or more, this is the

case in virtually any practical application. The most straightforward pro ce-

dure, the Electronic Codebook (ECB) mo de, which computes the ciphertexts

as ci := E(bi ; k) , implies that coinciding plaintext blo cks will have coinciding

corresp onding ciphertext blo cks and is therefore not recommended.

A more suitable mo de is the Cipher Block Chaining (CBC) mo de (Ehrsam

et al., 1976), which is de�ned by E CBC ((b1; : : : ; bm); k; IV) := (c1; : : : ; cm) with

ci :=
�

E (IV � b1; k) for i = 1
E(ci � 1 � bi ; k) for 1 < i � m

: (2.1)

and a (usually publicly known) initialization vector IV 2 f 0; 1gl
.

Many more blo ck cipher mo des of op eration for di�erent purp oses exist, see

Menezes et al. (2001) for an intro duction and overview.

2.3 Dedicated Stream Ciphers

Besides blo ck ciphers, dedicated constructions exist for (immediately, i.e., not

waiting for the next blo ck to b e �lled) encrypting data streams. These con-

structions are typically called stream ciphers.

In this thesis, we want to fo cus on constructions that try to approximate the

one-time pad by pro ducing from a short, �xed-length secret information a long

random-lo oking sequence that is XOR-combined with the plaintext in order to

obtain the ciphertext.

Consequently, the heart of most such stream ciphers is a keystream genera-

tor, which is initialized at the b eginning of the conversation with a secret key K .

Many mo dern constructions accept an additional initialization vector IV that

can b e seen as a p ointer into the keystream pro duced for K . Cipher designs nor-

mally assume the IV to b e public, such that it can b e easily exchanged b etween

sender and receiver.

2.3 Dedicated Stream Ciphers 11

Hence, the keystream generator pro duces keystream bits (zt)t � 0 that are

added to the plaintext stream (pt)t � 0 on the sender's side in order to obtain

the ciphertext stream (ct)t � 0 as ct := pt � zt for all t � 0. The receiver uses

the same cipher and the same initialization data K and IV as the sender in

order to compute the keystream (zt)t � 0 himself and to recover the plaintext as

pt = ct � zt for all t � 0 (see Fig. 2.2).

Keystream Generator

key

�
z0 ; z1 ; z2 ;

IV

z3 ; z4 ; : : :

(pi) p3 ; p4 ; : : :

stream cipher

p0 ; p1 ; p2 ;
=
c3 ; c4 ; : : :c0 ; c1 ; c2 ;

(ci)

Keystream Generator

key

�
z0 ; z1 ; z2 ;

IV

z3 ; z4 ; : : :

c3 ; c4 ; : : :

stream cipher

c0 ; c1 ; c2 ;
=
p3 ; p4 ; : : :p0 ; p1 ; p2 ;

(pi)

Sender Receiver

Figure 2.2: Stream cipher communication scenario

The keystream generator itself is often split into two comp onents, a key/ IV
setup pro cedure and a �nite state machine (FSM). The key/ IV setup (or rather

initial state setup) transforms the key and the IV into the initial state of the

FSM. The FSM usually op erates in a clo cking-based manner, outputting a piece

of keystream and up dating its state in each clo ck cycle, hence pro ducing the

keystream sequence (zt)t � 0 (cf. Fig. 2.3).

More formally, the FSM is de�ned by a state up date function � : f 0; 1gn !
f 0; 1gn

and a keystream function g : f 0; 1gn ! f 0; 1g�
. In each clo ck t ,

keystream bits are pro duced according to g(! (t)) from the current state ! (t) ,

and the internal state is up dated to ! (t + 1) = � (! (t)) . Hence, the output of

the generator is completely determined by the starting state ! (0) .

key/IV setup
key
IV

initial state
FSM z0; z1; z2; : : :

Keystream Generator

Figure 2.3: Common construction of the keystream generator

De�nition 2.2. We cal l an FSM-state p erio dic if, when running, the FSM wil l

return to the same state after a �nite number of steps.

12 2.3 Dedicated Stream Ciphers

We will later need the notion of equivalent FSMs, which we de�ne as follows.

De�nition 2.3. The FSMs M 1 and M 2 are cal led equivalent if for each possible

starting state of M 1 there exists a corresponding starting state of M 2 and vice

versa such that, when running, M 1 and M 2 produce the same output.

De�nition 2.4. We cal l a sequence u = (ui) i � 0 strictly p erio dic (or simply

p erio dic) with period T if ui + T = ui for al l i � 0. We cal l a sequence u
eventually p erio dic if there exists a t � 0 such that u0 = (ui) i � t is periodic.

De�nition 2.5. For a (deterministic) �nite state machine we can de�ne a (di-

rected) state transition graph as fol lows. The vertex set consists of the set of

possible states, and there exists an edge from state u to state v if and only if v
is the image of u under the state transition function.

In order to approximate the one-time pad and its security features, the

output of the keystream generator should lo ok random, or more formally, the

output should not b e e�ciently distinguishable from a truely random sequence.

Therefore, the sequence should share as many prop erties with truely random

sequences as p ossible.

The National Institute of Standards and Technology (NIST) maintains a

collection of such prop erties and provides infrastructure for checking pseudo-

random numb er generators against these prop erties (Rukhin et al., 2010).

We will exemplarily consider as prop erties the p erio d length of the sequence,

the numb er of o ccurrences of a particular blo ck in one p erio d of the sequence,

and its auto correlation.

De�nition 2.6. The auto correlation � � (u) of a binary sequence u = (ui) i � 0

with shift � is the correlation of the sequences (ui) i � 0 and (ui + �) i � 0 , i.e.,

� � (u) :=
X

i � 0

(� 1)u i � u i + �

= jf i : ui � ui + � = 0 gj � jf i : ui � ui + � = 1 gj

= jf i : ui = ui + � gj � jf i : ui 6= ui + � gj :

(2.2)

Observation 2.7. A truely random sequence is aperiodic, the probability of a � -

bit block's occurrence at position i in the sequence is 2� �
, and its autocorrelation

is zero-valued for al l shifts � .

Consequently, we require that a keystream generator's output bitstream u
satisfy the following p ostulates.

Pseudorandomness Postulate 1. A keystream sequence should have a large

period T (for many applications at least T � 250
).

Pseudorandomness Postulate 2. A keystream seqeunce should contain a given

� -bit block around T � 2� �
times.

Pseudorandomness Postulate 3. For a keystream sequence u,

j � � (u) j
T should

be smal l for any shift � < T .

2.4 Asymmetric Ciphers 13

2.4 Asymmetric Ciphers

It was assumed for a long time that a reasonable cipher system could only b e

symmetric, i.e., the encryption key ke and the decreption key kd had to b e

equal. Only in the 1970s, the �rst practical asymmetric cipher systems based

on di�erent keys for encryption and decryption were prop osed, with the RSA

cryptosystem b eing one of the most prominent examples (see, e.g., Vaudenay

(2006) for an intro duction).

In systems in which deducing the decryption key from the encryption key is

infeasible (which is the case for practical asymmetric ciphers), there no need to

keep the encryption key secret any more. Therefore, the encryption key ke is

often called the public key and the decryption key kd is called the private key ,

and cipher systems that allow for publishing the encryption key are also called

public key (cipher) systems . The receiver can publish his public key, and any

p otential sender can encrypt messages using this public key without the need

for establishing a common key as in symmetric cipher systems.

However, asymmetric cipher systems usually require much more computa-

tional e�ort for encryption and decryption than symmetric cipher systems for

comparable security levels, which limits their suitability for low-end devices.

14 2.4 Asymmetric Ciphers

Chapter 3

Stream Cipher Building

Blo cks

We now present the most imp ortant building blo cks for stream ciphers, with a

sp ecial fo cus on comp onents that are particularly useful for hardware-oriented

ciphers.

3.1 Bo olean Functions

De�nition 3.1. We cal l a function

f : f 0; 1gn ! f 0; 1gm

(x1; : : : ; xn) 7! (y1; : : : ; ym)

an m -output Bo olean function in n variables. We say that f dep ends on the

input x i if

f (x1; : : : ; x i � 1; x i ; x i +1 ; : : : ; xn) 6= f (x1; : : : ; x i � 1; x i � 1; x i +1 ; : : : ; xn) :

De�nition 3.2. We cal l a Boolean function f : f 0; 1gn ! f 0; 1g balanced if

jf � 1(0)j = jf � 1(1)j .

Observation 3.3. Each Boolean function f : f 0; 1gn ! f 0; 1g can be equiva-

lently represented in algebraic normal form , i.e., as a polynomial

F (w1; : : : ; wn) =
M

j 2 M

mj with monomials mj =
^

l 2 M j

wl and M j (f) � f 1; : : : ; ng :

jM j (f)j is cal led the degree of the monomial mj . The degree of the polynomial

F (abbreviated by deg(F)) is de�ned to be the maximum over the degrees of the

monomials occuring in F .

We call a Bo olean function F with deg(F) = 1 a linear function .

De�nition 3.4. For a binary vector x = (x1; : : : ; xn) 2 f 0; 1gn
, we denote

by the Hamming weight of x (abbreviated by wt(x)) the number of non-zero

components in x , i.e.,

wt(x) := jf i 2 f 1; : : : ; ngjx i 6= 0 gj :

16 3.2 Feedback Shift Registers

For ease of notation, we will often implicitly identify a vector (u0; : : : ; uk � 1) 2
f 0; 1gk

with the integer u =
P k � 1

i =0 ui 2i
.

3.2 Feedback Shift Registers

Feedback shift registers have turned out to b e particularly useful devices for

pro ducing bitstreams with go o d pseudorandomness prop erties.

De�nition 3.5. A Feedback Shift Register (FSR) in Fibonacci architecture

consists of an n -bit register a = (a0; : : : ; an � 1) and a state update function

f : f 0; 1gn ! f 0; 1g. Starting from an initial con�guration a0
, in each clock a0 is

produced as output and the register is updated according to a := (a1; : : : ; an � 2; f (a0; : : : ; an � 1)) .

Depending on whether f is a linear function, we cal l the register a Linear Feed-

back Shift Register (LFSR) or a Nonlinear Feedback Shift Register (NFSR) .

The FSR-construction is illustrated in Fig. 3.1.

The de�nition implies that the output bitstream (wt)t � 0 pro duced from an

initial con�guration a0 = (a0
0; : : : ; a0

n � 1) can b e expressed as

wt =
�

a0
t for t 2 f 0; : : : ; n � 1g

f (wt � n ; : : : ; wt � 1) for t � n
;

while the state of the FSR after t clo ckings corresp onds to (wt ; : : : ; wt + n � 1) .

Surprisingly, even after many decades of research, the prop erties of general

FSRs and the sequences they pro duce are hardly understo o d. We therefore fo cus

on two sp ecial cases, linear feedback shift registers and feeback shift registers

with carry, which are much less resistant to analysis and have found their way

into practical applications.

3.2.1 Linear Feedback Shift Registers (LFSRs)

Fib onacci and Galois representations of LFSRs

De�nition 3.6. An n -stage Linear Feedback Shift Register (LFSR) in Fibonacci

architecture (see Fig. 3.2) contains a main register with n binary cel ls (y0; : : : ; yn � 1)
and �xed binary feedback taps (d0; : : : ; dn � 1) . From an initial state y , the LFSR

outputs in each clock t the value y0 , computes the sum � =
P n � 1

i =0 yi dn � i � 1 over

the integers and updates the register according to y = (y1; y2; : : : ; yn � 1; � mod 2).

an� 1 a0� � �

F

a1

Figure 3.1: Feedback shift register (FSR) of length n

3.2 Feedback Shift Registers 17

�

mod 2 yn� 1 yn� 2 � � � y0

dn� 1d0 � � �d1

Figure 3.2: LFSR in Fib onacci architecture

Based on an initial con�guration y0
, we can describ e the output bitstream

(wt)t � 0 of a Fib onacci LFSR by

wt =
�

y0
t for t 2 f 0; : : : ; n � 1g

� t mo d 2 for t � n
;

where � t =
P n

i =1 wt � i di � 1 for t � n .

Note that for p erformance reasons, the feedback bit (� mo d 2) is usually

computed as

� mo d 2 =
n � 1M

i =0

yi dn � i � 1 :

Additionally to the (most commonly used) Fib onacci architecture, there ex-

ists a Galois architecture for LFSRs.

De�nition 3.7. An n -stage LFSR in Galois architecture (see Fig. 3.3) con-

tains n binary main register cel ls (x0; : : : ; xn � 1) with �xed binary feedback taps

(d0; : : : ; dn � 1) , dn � 1 6= 0 . Starting from an initial state x , the Galois LFSR

outputs in each clock the value x0 , computes the sums � i = x i +1 + x0di for

0 � i < n (with xn = 0) and updates x i to � i mod 2 for al l 0 � i < n � 1.

xn� 1 �

dn� 2

� � � �

d1

x1 �

d0

x0

dn� 1

Figure 3.3: LFSR in Galois architecture

Again, we may equivalently compute the up date value for x i as x i +1 � x0di .

Algebraic mo del: Formal Power Series and F2n

We denote the ring of formal p ower series � (X) =
P 1

i =0 ui X i
with ui 2 f 0; 1g

(i.e., with co e�cients in the integers mo dulo 2) by F2[[X]], and the Galois �eld

with 2n
elements by F2n

.

Theorem 3.8 (Golomb (1981)). There is a one-to-one correspondence be-

tween quotients of polynomials � (X) = h(X)
q(X) 2 F2[[X]] and eventual ly peri-

odic binary sequences u which associates to each such quotient its coe�cient

sequence u = (u0; u1; : : :) . The sequence u is strictly periodic if and only if

deg(h(X)) < deg(q(X)) .

18 3.2 Feedback Shift Registers

For b oth the Fib onacci and the Galois architecture, we de�ne the connection

polynomial q(X) by

q(X) := dn � 1X n + dn � 2X n � 1 + : : : + d0X � 1

and asso ciate a Fib onacci state (y0; : : : ; yn � 1) with the p olynomial

h(X) =
n � 1X

k=0

kX

i =0

di � 1yk � i X k
, where d� 1 = 1 ; (3.1)

and a Galois state (x0; : : : ; xn � 1) with the p olynomial

h(X) = �
�
x0 + x1X + : : : + xn � 1X n � 1�

: (3.2)

Theorem 3.9 (Golomb (1981)). The output sequence of an LFSR with feed-

back tap vector corresponding to the connection polynomial q(X) and an initial

state corresponding to h(X) is the coe�cient sequence of � (X) = h(X)
q(X) .

Corollary 3.10. The LFSR's output sequence is strictly periodic for any initial

state.

Pro of. Since by the de�nition of h(X) , deg(h(X)) � n � 1 < n = deg(q(X)) ,

the claim follows from Theorem 3.8. 2

The Fib onacci and Galois architectures can b e related in the following way.

Supp ose that deg(q) = n and q is irreducible, let � denote a ro ot of q(X) in F2n
,

express a p 2 F2n
as linear combination of the elements in f 1; �; � 2; : : : ; � n � 1g,

and de�ne

T : F2n ! f 0; 1g
p0 + p1� + : : : + pn � 1� n � 1 7! p0 :

(3.3)

For p erio dic Galois states x , we de�ne a mapping E by

E : f p erio dic Galois states g ! F2n

(x0; : : : ; xn � 1) 7! x0 + x1� + x2� 2 + : : : + xn � 1� n � 1 ;
(3.4)

For an element p 2 F2n
, we de�ne a mapping S by

S : F2n ! f p erio dic Fib onacci states g
p 7!

�
T (� 1� n p); T (� 2� n p); : : : ; T (� � 1p); T (p)

�
;

(3.5)

i.e., yi = T(� � i p) .

Theorem 3.11 (Goresky and Klapp er (2002)). The mappings E and S are

one-to-one, i.e., there exist inverse functions E � 1
and S� 1

that map elements

of F2n
to the set of periodic Galois states and periodic Fibonacci states to F2n

,

respectively.

We note that since f 1; � � 1; : : : ; � 1� n g is a basis for F2n
over F2 , E � 1

and

S� 1
may b e e�ciently computed by solving systems of linear equations in

f x0; : : : ; xn � 1g and p, resp ectively.

We can now describ e the evolution of the LFSR states (resp. their F2n
-

representations) in the following way.

3.2 Feedback Shift Registers 19

Theorem 3.12 (Golomb (1981), Goresky and Klapp er (2002)). For an

initial LFSR state corresponding to p 2 F2n
, the sequence (pt)t � 0 of F2n

-

representations of the register state at time t is given by pt = � � t p 2 F2n
,

and the t -th output bit of the register can be computed as zt = T(� � t p) 2 f 0; 1g.

The period of the sequence (pt)t � 0 equals the order of � in F2n
.

Corollary 3.13 (Golomb (1981), Goresky and Klapp er (2002)). If q(X)
is not only an irreducible but also a primitive polynomial, � has the maximum

possible order 2n � 1 and hence the period, too, reaches its maximum 2n � 1.

Consequently, we call LFSRs with primitive connection p olynomials maximum-

lengh LFSRs and the sequences they pro duce m -sequences .

Remark 3.14. There are

' (2 n � 1)
n primitive polynomials of degree n � 1 over

F2 , where for m 2 N, ' (m) = f i 2 f 1; : : : ; mgjgcd(i; m) = 1 g.

Sequences pro duced by individual Register Cells

We now want to describ e the sequences of values taken by a particular LFSR reg-

ister cell. In the case of Fib onacci LFSRs, the following observation is straight-

forward to make.

Theorem 3.15. For an n -stage Fibonacci LFSR with connection polynomial

q(X) and initial state y0
, the sequence of values (yt

i)t � 0 taken by the i -th register

cel l yi is the original sequence shifted by i positions, i.e., given by the Fibonacci

LFSR-sequence with connection polynomial q(X) produced from the initial state

S(� � i S� 1(x)) with � a root of q(X) .

A similar corresp ondence holds for Galois LFSRs.

Theorem 3.16. For an n -stage Galois LFSR with connection polynomial q(X)
and initial state polynomial h(X) , the sequence of values taken by the i -th regis-

ter cel l x i is the sequence produced by a Galois LFSR with connection polynomial

q(X) and initial state polynomial

hi (X) = x i (0) � q(X) + X � (hi +1 (X) + di h0(X)) with hn (X) � 0:

Pro of. Obviously, h0(X) = h(X) . Since deg(q) = n , we have dn � 1 = 1 , which

implies xn � 1(t + 1) = x0(t) . We obtain for i = n � 1

hn � 1(X)
q(X)

=
1X

t =0

xn � 1(t) � X t = xn � 1(0) + X �
1X

t =0

xn � 1(t + 1) X t

= xn � 1(0) + X �
1X

t =0

x0(t) � X t

= xn � 1(0) + X �
h0(X)
q(X)

;

and therefore

hn � 1(X) = xn � 1(0) � q(X) + X � h0(X) :

20 3.2 Feedback Shift Registers

For 0 � i < n � 1, we have

hi (X)
q(X)

=
1X

t =0

x i (t) � X t = x i (0) + X �
1X

t =0

x i (t + 1) � X t

= x i (0) + X �
1X

t =0

(x i +1 (t) + di x0(t)) � X t

= x i (0) + X �
�

hi +1 (X)
q(X)

+ di
h0(X)
q(X)

�
;

which implies

hi (X) = x i (0) � q(X) + X � (hi +1 (X) + di h0(X)) : 2

We can write the relation for hi (X) in closed form as follows.

Lemma 3.17. The recurrence relation

hi (X) = x i (0) � q(X) + X � (hi +1 (X) + di h0(X)) with hn (X) � 0

can be expressed as hi (X) = Fi (x) � q(X) + M i � h0(X) with

M i = X �
n � 1X

j = i

dj X j � i
and Fi (x) =

n � 1X

j = i

x j (0)X j � i :

Pro of. The claimed formula is straightforwardly obtained by induction. 2

Mappings b etween p erio dic Galois and Fib onacci states

Prop osition 3.18. There exists a bijective mapping between periodic initial

Galois LFSR states and periodic initial Fibonacci LFSR states such that the

registers produce the same output (see Fig. 3.4).

Pro of. According to Theorem 3.11, the mapping

� : f p erio dic Galois states g ! f p erio dic Fib onacci states g
x 7! S(E(x))

with E and S de�ned as in Eqs. (3.4) and (3.5) is one-to-one. 2

periodic
Galois

x
F2n

periodic
Fibonacci

y
P n � 1

i =0 x i � i

S� 1

�
T(� 1� n p); T (� 2� n p); : : : ; T (� � 1p); T (p)

�

E � 1

Figure 3.4: Mapping b etween p erio dic Galois and Fib onacci LFSR states

Lemma 3.19. The value x i of the i -th cel l in the main register of a Galois

LFSR can be computed in polynomial time from the state y of the corresponding

Fibonacci LFSR as the i -th component of the vector E � 1(S� 1(x)) .

Pro of. The claim follows immediately from Theorem 3.11. 2

3.2 Feedback Shift Registers 21

Statistical Prop erties of m -Sequences

m -sequences are statistically very similar to truely random sequences. Concern-

ing the three prop erties that we selected in Section 2.3, their b ehaviour can b e

characterized as follows.

Observation 3.20 (Golomb (1981)). Consider an m -sequence u produced by

an n -stage LFSR.

� The period of u is T = 2 n � 1.

� Any � -bit block B occurs in one period of u exactly 2n � �
times if B 6= 0

and 2n � � � 1 times if B = 0 .

� The autocorrelation � � (u) satis�es

j � � (u) j
T = 1

2n � 1 .

The de�nition of LFSRs suggests another pseudorandomness critereon, the

linear complexity.

De�nition 3.21. The linear complexity of a binary sequence u = (ui) i � 0 (ab-

breviated by lc(u)) is the length of the shortest LFSR that generates the sequence.

Lemma 3.22. A sequence u = (ui) i � 0 with period T satis�es lc(u) � T .

Pro of. The T -stage Fib onacci LFSR with feedback taps (0; : : : ; 0; 1) 2 f 0; 1gT

will obivously generate u from the initial state y = (u0; : : : ; uT � 1) . 2

Remark 3.23. There exists an algorithm that computes for a given sequence

u with l = lc(u) in time O(l3) and from the �rst 2l bits of u the value l and

the feedback tap vector of an l -stage LFSR that generates u. This algorithm

is known as the Berlekamp-Massey algorithm for register synthesis (see, e.g.,

Menezes et al. (2001) for a description).

We conclude that the linear complexity of a keystream sequence should b e

large enough such that a generating LFSR cannot b e determined with realistic

resources.

Pseudorandomness Postulate 4. The linear complexity lc(u) of a keystream

sequence u should be reasonably large.

We note that although the p erio d of an m -sequence is T = 2 n � 1, its linear

complexity is only n , i.e. logarithmic in T , and therefore much lower than the

upp er b ound given by Lemma 3.22. Conversely, if an LFSR is to pro duce a

sequence with linear complexity l �
, its required minimum size is exp onential in

l �
, which is impractical for most applications. In fact, this is the main reason

why LFSRs � despite their many other desirable statistical prop erties � are not

suitable for direct use as keystream generators.

3.2.2 Feedback Shift Registers With Carry (FCSRs)

Feedback with carry shift registers (FCSRs) have b een discussed since the mid-

1990s in the context of e�cient pseudorandom numb er generation, particularly

as an alternative to LFSRs (Couture and L'Ecuyer, 1994, Klapp er and Goresky,

1997, Marsaglia and Zaman, 1992).

22 3.2 Feedback Shift Registers

Analogously to Section 3.2.1, we describ e the structure of FCSRs and make

some observations on the prop erties of their output sequences. All our results

have b een exp erimentally con�rmed with the computer algebra system Magma

(Bosma et al., 1997).

Fib onacci and Galois representations of FCSRs

De�nition 3.24. An n -stage FCSR in Fibonacci architecture (see Fig. 3.5)

contains a main register with n binary cel ls (y0; : : : ; yn � 1) and �xed binary feed-

back taps (d0; : : : ; dn � 1) as wel l as an additional memory b. From an initial

state (y; b) , the FCSR outputs in each clock t the value y0 , computes the sum

� = b+
P n � 1

i =0 yi dn � i � 1 over the integers and updates the register and memory

according to b = � div 2 and y = (y1; y2; : : : ; yn � 1; � mod 2).

b

�

div 2 mod 2 yn� 1 yn� 2 � � � y0

dn� 1d0 � � �d1

Figure 3.5: FCSR in Fib onacci architecture

Based on an initial con�guration (y0; b0) , we can describ e the output bit-

stream (wt)t � 0 of a Fib onacci FCSR by

wt =
�

y0
t for t 2 f 0; : : : ; n � 1g

� t mo d 2 for t � n
;

where � t = bt � n +
P n

i =1 wt � i di � 1 and bt � n +1 = � t div 2 for t � n , which implies

� t = (� t � 1 div 2) +
nX

i =1

wt � i di � 1 with � n � 1 = 2 b0 : (3.6)

We note that in general, b may b e an arbitrarily large value. However, if the

register's state is p erio dic, b may b e b ounded as follows.

Prop osition 3.25 (Klapp er and Goresky (1997)). If the Fibonacci FCSR

is in a periodic state, the value of the memory b satis�es 0 � b < wt(d + 1) .

Corollary 3.26. A Fibonacci FCSR with a periodic initial state wil l not require

more than blog2(wt(d + 1) � 1)c + 1 bits to store the value b at any time.

Similarly to the Galois architecture for LFSRs, there exists a Galois architec-

ture for FCSRs, which was �rst observed by Noras (1997) and further analyzed

by Goresky and Klapp er (2002).

De�nition 3.27. An n -stage FCSR in Galois architecture (see Fig. 3.6) con-

tains n binary main register cel ls (x0; : : : ; xn � 1) with �xed binary feedback taps

(d0; : : : ; dn � 1) , dn � 1 6= 0 , and n � 1 memory cel ls (a0; : : : ; an � 2) . Starting from

an initial state (x; a) , the Galois FCSR outputs in each clock the value x0 , com-

putes the sums � i = x i +1 + ai di + x0di for 0 � i < n (with xn = 0 and an � 1 = 0)

and updates x i to � i mod 2 and ai to � i div 2 for al l 0 � i < n � 1.

3.2 Feedback Shift Registers 23

We will assume that memory cells are only present at those p ositions with

feedback taps, i.e., ai = 0 if di = 0 for all 0 � i < n � 1, since ai = 0 for all i
with di = 0 is a necessary condition for p erio dic states (x; a) .

xn� 1 �

dn� 2

an� 2

� � � �

d1

a1

x1 �

d0

a0

x0

dn� 1

Figure 3.6: FCSR in Galois architecture

Implementors will often prefer the Galois architecture to the Fib onacci ar-

chitecture since the size of the memory is intrinsically limited and the memory

bits can b e up dated in parallel, with each addition involving at most three bits.

Algebraic mo del: 2-adic Numb ers and Z2

The algebraic structure that is asso ciated with FCSRs is the ring of 2-adic

numb ers. A 2-adic integer is a formal p ower series � =
P 1

i =0 ui 2i
with ui 2

f 0; 1g. The collection of all such formal p ower series forms the ring of 2-adic

numb ers. This ring esp ecially contains rational numb ers p=q, where p and q
are integers and q is o dd. 2-adic numb ers and eventually p erio dic sequences are

linked by the following Theorem.

Theorem 3.28 (Klapp er and Goresky (1997)). There is a one-to-one cor-

respondence between rational numbers � = p=q (with odd q) and eventual ly pe-

riodic binary sequences u which associates to each such rational number � the

bit sequence u = (u0; u1; : : :) of its 2-adic expansion. The sequence u is strictly

periodic if and only if � � 0 and j� j � 1.

For b oth FCSR architectures, we de�ne the connection integer q as q =
1 � 2d. We identify a Galois state (x; a) with the integer

p = x + 2 a (3.7)

and a Fib onacci state (y; b) with the integer

p = b2n �
n � 1X

k=0

kX

i =0

qi yk � i 2k : (3.8)

Theorem 3.29 (Klapp er and Goresky (1997)). The output sequence of an

FCSR with feedback tap vector corresponding to the connection integer q and an

initial state corresponding to p is the 2-adic expansion of � = p
q .

Corollary 3.30. The output sequence of an FCSR with feedback tap vector cor-

responding to q wil l be strictly periodic if and only if the integer p that corre-

sponds to the initial state satis�es 0 � p � j qj .

24 3.2 Feedback Shift Registers

Pro of. The claim is an immediate consequence of Theorem 3.28. 2

Theorem 3.29 justi�es the following de�nition.

De�nition 3.31. We cal l two Galois states (x; a) and (x0; a0) equivalent if

x + 2 a = x0 + 2 a0 :

Similarly, we cal l two Fibonacci states (y; b) , (y0; b0) equivalent if

b2n �
n � 1X

k=0

kX

i =0

qi yk � i 2k = b02n �
n � 1X

k=0

kX

i =0

qi y0
k � i 2

k :

Note that although equivalent states pro duce the same output, the sequence

of states ((x(t); a(t)) t � 0 in the Fib onacci case and (y(t); b(t)) t � 0 in the Galois

case) obtained by running the FCSR from equivalent starting states may b e

di�erent.

Similarly to the LFSR-case, we can now describ e the evolution of the FCSR

states based on their representations in the set Z=(qZ) of integers mo dulo q,

which we denote for simplicity by Zq .

Theorem 3.32 (Klapp er and Goresky (1997)). For an initial state cor-

responding to p 2 Z j qj , the sequence of integer representations of the states

(pt)t � 0 is given by pt = 2 � t p mod q and the t -th output bit can be computed as

zt = pt
mod 2 = (2 � t p mod q) mod 2. If 0 < p < jqj , q odd, and p and q are

coprime, then the period of the sequence (pt)t � 0 equals the order of 2 modulo q .

For p = 0 and p = jqj , the FCSR produces the 2-adic expansions of 0=q= 0 and

jqj=q= � 1, respectively, which both have period one. If 0 < p < jqj , q odd, and

p and q are coprime, then the period of the sequence (pt)t � 0 equals the order of

2 modulo q.

Corollary 3.33. If q is a (negative) prime for which 2 is a primitive root, the

period reaches its maximum jqj � 1.

Consequently, we call FCSRs with prime connection integers for which w
is a primitive ro ot maximum-length FCSRs and the sequences they pro duce

l -sequences .

In contrast to the numb er of primitive p olynomals in the LFSR-case, the

numb er of connection integers q pro ducing l -sequences is not known with cer-

tainty. However, there exists the following conjecture.

Conjecture 3.34 (Ho oley (1967), Klapp er (2004)). The number of primes

q of bitlength n for which the order of 2 modulo q is q� 1 is asymptotical ly

cn
log(n) ,

where c � 0:37 is a constant.

For a maximum-length Galois FCSR with connection integer q, the state

transition graph (see De�nition 2.5) has exactly three connected comp onents,

i.e., the two �xed p oints (0; 0) and (2n � 1; d� 2n � 1) (corresp onding to p = 0 and

p = jqj) and a comp onent containing all the remaining states. This comp onent

consists of a main cycle of length jqj � 1 and paths of lengths at most n + 4
leading to it (Arnault et al., 2008). In other words:

Observation 3.35. An n -stage maximum-length Galois FCSR wil l be in a pe-

riodic state after at most n + 4 clockings.

3.2 Feedback Shift Registers 25

Sequences pro duced by individual Register Cells

As for LFSRs, the sequences pro duced by individual main register cells of an

FCSR are again FCSR-sequences.

Theorem 3.36. For a Fibonacci FCSR with connection integer q and an initial

state corresponding to the integer p, the sequence (yt
i)t � 0 of values taken by the

main register cel l yi is the FCSR sequence given by the 2-adic expansion of pi =q
with pi = 2 � i p.

Theorem 3.37 (Arnault and Berger (2005a), Theorem 4). For a Galois

FCSR with initial state (x; a) and p = x+2 a, the sequence (x t
i)t � 0 of values taken

by the main register cel l i is again an FCSR-sequence, more precisely the 2-adic

expansion of pi =q with pi = Fi (x; a) � q+ M i � p, Fi (x; a) =
P n � 1

j = i (x j + 2 aj)2j � i
,

and with constants M i = 2
P n � 1

j = i dj 2j � i
.

It is interesting to note (and will prove useful in Section 3.2.2) that if the

initial state (x; a) is p erio dic, this expression can b e further simpli�ed as follows.

Prop osition 3.38. For a maximum-length Galois FCSR with connection inte-

ger q, a periodic initial state (x0; a0) , and pt = x t + 2 at
, the sequence (x t

i)t � 0 of

values taken by a �xed main register cel l i corresponds to (pt + si
mod 2)t � 0 with

si = � log2(M i) mod q and M i = 2
P n � 1

j = i dj 2j � i
.

Pro of. If (x0; a0) is p erio dic, the 2-adic expansions of pi =q have to b e strictly

p erio dic for all i . Theorem 3.28 implies that 0 � pi < jqj , hence pi = pi mo d q =
M i � p0

mo d q. In a maximum-length Galois FCSR, each p ossible value of

pi mo d q is passed after si iterations, hence pi = 2 � si p0
mo d q, and we have

M i = 2 � si
mo d q. 2

Prop osition 3.38 implies that the sequence (x t
i)t � 0 corresp onds to the se-

quence pro duced by the whole FCSR (i.e., (x t
0)t � 0) shifted by si p ositions.

Note that the phase shifts si are indep endent of the initial state p and dep end

on i (and q) only.

Example 3.39. Consider the toy example of Arnault and Berger (2005a) with

q = � 347, hence n = 8 and d = 174 . The output of the FCSR is strictly periodic

with period � q � 1 = 346. We �nd M 0 = 1 , M 1 = 174 , M 2 = 86 , M 3 = 42 ,

M 4 = 20 , M 5 = 10 , M 6 = 4 , M 7 = 2 . The phase shifts are s0 = 0 , s1 = 1 ,

s2 = 23 , s3 = 250 , s4 = 67 , s5 = 68 , s6 = 344 , s7 = 345 .

Mappings b etween p erio dic Galois and Fib onacci States

There is an onto function

E : f p erio dic Galois states gnf (1; : : : ; 1;a0; : : : ; an � 2)g ! Z j qj

(x; y) 7! x + 2 a mo d q
(3.9)

that assigns to a Galois state an element of Z j qj .

Moreover, there exists a one to one mapping S from Z j qj onto the set of

strictly p erio dic states of the Fib onacci FCSR with connection integer q except

26 3.2 Feedback Shift Registers

for the state (1; : : : ; 1; wt(q + 1) � 1), namely

S : Z j qj ! f p erio dic Fib onacci states gnf (1; : : : ; 1; wt(q + 1) � 1)g
p 7! (y; b)

(3.10)

with

yi = ((2 � i p mo d q) mo d 2) for 0 � i � n � 1

and

b =
1
2n

0

@p +
n � 1X

k=0

kX

j =0

dj � 1yk � j 2k

1

A :

Conversely, for a given p erio dic Fib onacci state (y; b) the corresp onding integer

p will satisfy 0 � p < jqj .

Hence, for an arbitrary initial state of a Galois FCSR with connection integer

q, we can compute a p erio dic initial state of a Fib onacci FCSR with connection

integer q and vice versa such that the two registers will pro duce the same output

(Goresky and Klapp er, 2002).

Obviously, the mapping E from the Galois states to Z j qj is not one to one,

i.e., generally more than one state is mapp ed to the same p 2 Z j qj . However,

the following Prop osition shows how to compute for given p 2 Z j qj the uniquely

determined corresp onding p erio dic state (x; a) .

Prop osition 3.40. For al l p 2 Z j qj , the only strictly periodic state (x; a) with

x + 2 a = p of a maximum-length Galois FCSR of size n with connection integer

q is given by x i = M i � p mod q mod 2 and a = (p � x)=2 with M i de�ned as in

Proposition 3.38.

Pro of. We �rst observe that x + 2 a = x + 2 p� x
2 = p, hence (x; a) corresp onds

to p. If p = 0 , we have (x; a) = (0 ; 0) at all times, so (x; a) is p erio dic. Similarly

for p = jqj , the only p ossible state (x; a) is (2n � 1; d � 2n � 1) , and this state

is p erio dic (see Section 3.2.2). If p 6= 0 , the state transition graph representing

the evolution of the states consists of a main cycle of length jqj � 1 and paths

converging to it. Hence, for each initial state (x0; a0) with x0 + 2 a0 = p, there

exists exactly one state (~x; ~a) with ~x + 2~a = p that lies on the main cycle.

For this state (~x; ~a) , the sequences (~x t
i)t � 0 have to b e strictly p erio dic. Due to

Prop osition 3.38, the �rst bit of the 2-adic expansion of pi =q and hence ~x i is

equal to pi mo d 2 with pi = M i � p mo d q. Moreover, ~a is uniquely determined

by ~x and p, which implies (~x; ~a) = (x; a) . 2

Prop osition 3.40 provides a p ossible answer to the op en question raised by

Goresky and Klapp er (2002) how to intrinsically characterize the p erio dic states

corresp onding to a particular p 2 Z j qj and allows us to link p erio dic Fib onacci

and p erio dic Galois states similarly to the LFSR-case.

Corollary 3.41. There exists a bijective mapping between periodic initial Ga-

lois FCSR states and periodic initial Fibonacci FCSR states such that registers

produce the same output (see Fig. 3.7).

Pro of. Prop osition 3.40 implies a mapping

~E of p erio dic Galois states onto

Z j qj . With E and S de�ned by Eqs. (3.9) and (3.10), the claim follows. 2

3.2 Feedback Shift Registers 27

periodic
Galois
(x; a)

Z jqj
periodic

Fibonacci
(y; b)p = x + 2 a

p = b2n �
P n � 1

k =0

P k
j =0 qj yk � j 2k

yi = ((2 � i p mod q) mod 2)

b = 1
2n

�
p +

P n � 1
k =0

P k
j =0 qj yk � j 2k

�

~E � 1

Figure 3.7: Mapping b etween p erio dic Galois and Fib onacci FCSR states

Example 3.42. Continuing Example 3.39, let q = � 347. For p = 100 , we

compute x i = M i � p mod q mod 2, which yields x = (01010000)2 = 64 + 16 =
80, and obtain a = (p � x)=2 = 10 . Hence, the strictly periodic initial state

corresponding to p = 100 is (x; a) = (80 ; 10). Plugging the values of p and q
into Eq. (3.10) yields the corresponding periodic Fibonacci state (y; b) = (148 ; 2).

Finally, we may obtain the sequence pro duced by a Galois main register cell

from a Fib onacci FCSR as follows.

Lemma 3.43. The value x i of the i -th cel l in the main register of a Galois

FCSR can be computed from the strictly periodic state (y; b) of the corresponding

Fibonacci FCSR by

x i = M i

0

@b2n �
n � 1X

k=0

kX

j =0

dj � 1yk � j 2k

1

A
mod q mod 2 :

Pro of. The claimed formula is an immediate consequence of Eq. (3.8) and Prop o-

sitions 3.38 and 3.40. 2

Statistical prop erties of l -sequences

The p erio d T of an l -sequence pro duced by an n -stage FCSR with connection

integer q is jqj � 1 (Klapp er and Goresky, 1997), i.e., 2n � 1 � 1 < T < 2n � 1.

The linear complexity of l -sequences is close to

j qj� 1
2 (Tian and Qi, 2009).

Theorem 3.44 (Blum et al. (1986), Goresky and Klapp er (2006)). Let

u be an l -sequence with connection integer q. The number of occurrences of any

block e = (e0; e1; : : : ; e� � 1) of size � in u varies at most by 1 as the block varies

over al l 2�
possibilities. That is, there is an integer w0

so that every block of

length � occurs either w0
times or w0 + 1 times in u. The number of blocks of

length � that occur w0 + 1 times is (q � 1)mod 2�
, and the number of blocks of

length � that occur w0
times is 2� � ((q � 1)mod 2�) .

We are esp ecially interested in the o ccurrences of a particular blo ck B =
(b0; : : : ; b� � 1) in one p erio d of a sequence u with p erio d length m , i.e., in the

indices i , 0 � i < m , such that

ui mo d m = b0; u(i +1) mo d m = b1; : : : ; u(i + � � 1) mo d m = b� � 1 :

Theorem 3.45. Let u be an l -sequence with connection integer q. Then for

al l 0 < � < q , the number of occurences of any block B = (b0; : : : ; b� � 1) in a

period of u is b(q � 1 � v)=2� c + 1 if v 6= 0 and b(q � 1 � v)=2� c if v = 0 , where

v = (� q �
P � � 1

i =0 bi 2i) mod 2�
.

28 3.2 Feedback Shift Registers

This result was essentially observed by Klapp er (2004). We provide an al-

ternative pro of illustrating some metho ds that will b e useful in the remainder

of this section.

Pro of (Theorem 3.45). Identify the blo ck B with the integer � :=
P � � 1

i =0 bi 2i
,

0 � � < 2�
. The numb er of o ccurrences of B in a p erio d of u equals the numb er

of shifts of u starting with B , which in turn equals the numb er of integers u
with � u=q � � mo d 2�

and 0 < u < q . Since q is invertible mo d 2�
, we have

u � � q� mo d 2�
. Set v = � q� mo d 2� 2 f 0; : : : ; 2� � 1g. If v � q � 1, the set

of integers u ful�lling this condition can b e written as

f v; v + 2 � ; : : : ; v + bq� 1� v
2� c � 2� g for v 6= 0

f v + 2 � ; : : : ; v + bq� 1� v
2� c � 2� g for v = 0

:

The size of this set is b(q� 1� v)=2� c+ 1 if v 6= 0 and b(q� 1� v)=2� c if v = 0 .

If v > q � 1, the blo ck B will not app ear in u. In this case, we have

� 2� � q � 1 � v < 0, which means b(q � 1 � v)=2� c = � 1 and therefore

b(q � 1 � v)=2� c + 1 = 0 . 2

The exp ected auto correlation of l -sequences can b e shown to b e zero (Xu

and Qi, 2006). For any given shift � , the auto correlation is in O(ln 2 q) (Xu et al.,

2009), but how to compute its exact value is b elieved to b e di�cult (Goresky

and Klapp er, 1997) and is only known for q = pe
, where p is prime and e � 2,

and � of a sp ecial form (Xu and Qi, 2006).

We now describ e a metho d for computing the exact value of the auto cor-

relation which is based on counting the numb er of o ccurrences of particular

(� + 1) -bit blo cks B = (b� ; b� � 1; : : : ; b0) in the sequence. The main idea is to

�x the �rst and the last bit in B and to compute the correlation based on how

often these restricted blo cks o ccur in the sequence. Hence, we de�ne

B

ij := numb er of blo cks B = (i; b� � 1; b� � 2; : : : ; b1; j) that o ccur
 times

for (i; j) 2 f 0; 1g2
and compute the correlation as

� � =

X

 � B

00 +

X

 � B

11

!

�

X

 � B

10 +

X

 � B

01

!

: (3.11)

Theorem 3.45 implies that a given (� +1) -bit blo ck B

ij o ccurs either w times

or w + 1 times in a p erio d of u, which means that
 2 f w; w + 1 g in Eq. (3.11).

We now want to characterize more precisely the sets of � -bit blo cks that

o ccur equally often.

Lemma 3.46. The block B = (b0; b1; : : : ; b� � 1) occurs w + 1 times in a period

of u if � =
P � � 1

i =0 bi 2i
ful�l ls 0 < � q� mod 2� � q � 1 mod 2�

, and w times

otherwise, where w = b2k � � c + ((q mod 2k) div 2�) and k = blog2(q)c

Pro of. Let v = � q� mo d 2�
, hence 0 � v < 2�

. We �rst consider the case

� � k and de�ne e = q mo d 2k
, x = e div 2�

and y = e mo d 2�
. Since q is o dd,

we have y > 0 and (y � 1) mo d 2� = (y mo d 2�) � 1 and therefore

q � 1 � v = 2 k + x � 2� + y � 1 � v
| {z }

S

:

3.2 Feedback Shift Registers 29

Since 0 � y � 1 < 2�
, we have � 2� < S < 2�

, and S � 0 if and only if

y � 1 � v . Hence,

�
q � 1 � v

2�

�
=

�
2k � � + x for S � 0
2k � � + x � 1 for S < 0

:

We have v = 0 if and only if � = 0 , and v = 0 implies S � 0. We obtain the

result by applying Theorem 3.45.

In case � > k , we have 0 � q� 1 < 2k+1 � 2�
and therefore � 2� < q � v� 1 <

2�
, which implies b(q � 1 � v)=2� c 2 f� 1; 0g, i.e., the blo ck corresp onding to v

o ccurs either 0 = w or 1 = w + 1 times in u. It is q � 1 = q � 1 mo d 2�
since

� > k , and we have b(q � 1 � v)=2� c = 0 if and only if v � q � 1. Hence, by

Theorem 3.45, the blo ck corresp onding to v o ccurs w + 1 = 1 times in u if and

only if 0 < v � q � 1 mo d 2�
. 2

Note that since there are q� 1 mo d 2�
elements � 2 Z2�

ful�lling 0 < � q� �
q � 1 mo d 2�

, Lemma 3.46 implies similarly to Theorem 3.44 that the numb er

of � -bit blo cks o ccuring w + 1 times in a p erio d of u is q � 1 mo d 2�
and the

numb er of blo cks o ccuring w times is 2� � ((q � 1) mo d 2�) .

Based on our observations, we can reformulate Eq. (3.11) as

� � = (B00 + B11) � (B01 + B10) with B ij = w � B w
ij + (w + 1) � B w+1

ij :

Before we derive an explicit formula for � � , we state a preliminary Lemma

that is useful for sp eeding up the computation.

Lemma 3.47. For a block B of length � corresponding to � =
P � � 1

i =0 bi 2i 2 Z2�

and v = � q� mod 2�
, we have � � v mod 2.

Pro of. We have

� mo d 2 =
�
v � (� q)� 1

mo d 2� �
mo d 2 = v � (� q)� 1

mo d 2

=
�

0 v � 0 mo d 2

1 v � 1 mo d 2

;

since q� 1
mo d 2�

is o dd if and only if q is o dd. 2

Hence, in order to compute B w+1
00 , it su�ces to compute the numb er of blo cks

corresp onding to even � 2 Z2�
that o ccur w + 1 times, which, by Lemmas 3.46

and 3.47, is equal to the numb er of � 2 Z2� � 1
such that 0 < 2� (� q) mo d 2� +1 �

q � 1 mo d 2� +1
, which is equivalent to

2�q mo d 2� +1 � � q mo d 2� +1 :

The blo cks corresp onding to the remaining � will o ccur w times. By similar

arguments, we obtain B w
ij + B w+1

ij = 2 � � 1
for all pairs (i; j) 2 f 0; 1g2

.

From the complement prop erty of l -sequences we know that B w+1
00 = B w+1

11
and B w+1

01 = B w+1
10 . Moreover, we have B w+1

00 + B w+1
01 + B w+1

10 + B w+1
11 =

q � 1 mo d 2� +1
due to Theorem 3.44. Hence,

B01 = w(2� � 1 � B w+1
01) + (w + 1) B w+1

01

= w2� � 1 + B w+1
01

= w2� � 1 +
q � 1 mo d 2� +1

2
� B w+1

00 ;

30 3.2 Feedback Shift Registers

and therefore

� � = (B00 + B11) � (B01 + B10)

= 2(B00 � B01)

= 2
�

wB w
00 + wB w+1

00 � w2� � 1 �
q � 1 mo d 2� +1

2
+ 2 B w+1

00

�

= 2 w(B w
00 + B w+1

00 � 2� � 1) � (q � 1 mo d 2�) + 4 B w+1
00

= 4 B w+1
00 � (q � 1 mo d 2� +1) :

Altogether, we obtain the following result.

Prop osition 3.48. Let u denote an l -sequence with connection integer q. Then

for a given shift � > 0 the autocorrelation � � (u) is equal to 4B (�; q) � (q �
1 mod 2� +1) , where B (�; q) denotes the number of � 2 Z2� � 1

such that

2�q mod 2� +1 > � q mod 2� +1 :

The e�ort required for computing � � (u) is dominated by the computation of

B (�; q) . The straightforward approach to test all � 2 f 0; : : : ; 2r � 1 � 1g can b e

p erformed by evaluating the function

f (�) = 2 q� mo d 2� +1 =
�

f (� � 1) + 2 q mo d 2� +1
for � > 0

0 for � = 0

for � 2 f 0; : : : ; 2r � 1� 1g, which needs little memory, but O
��

2� � 1 � 1
�

log2 2�
�

=
O (� � 2�) op erations. Hence, our metho d is only practical for small shifts � .

Example 3.49. For q = � 347 and the corresponding l -sequence u, we compute

for the shift � = 6 the values B (�; q) = 8 and q � 1 mod 2� +1 = 26 , which

implies � � (u) = 4 � 8 � 26 = 6 . Similarly for � = 8 , we obtain B (�; q) = 24 and

q � 1 mod 2� +1 = 90 , hence � � (u) = 6 .

Analogously to the de�nition of linear complexity (De�nition 3.21), Klapp er

and Goresky (1997) have established the notion of 2-adic span.

De�nition 3.50. The 2-adic span � 2(u) of a binary sequence u is the size (in

terms of number of cel ls) of the smal lest FCSR that generates u.

Lemma 3.51 (Klapp er and Goresky (1997)). For a sequence u let � =P 1
i =0 ai 2i = p

q be the fraction in lowest terms whose 2-adic expansion agrees

with u. Then

j(� 2(u) � 2) � ' 2(u)j � log2(' 2(u)) ;

where ' 2(u) = log 2(max (jpj; jqj)) .

Remark 3.52. Let u be an eventual ly periodic sequence with 2-adic span � 2 .

Then it is possible to compute integers p; q such that the 2-adic expansion of p=q
is u in time O((� 2)2) while using only the �rst 2� 2 + 1 bits of u. This algorihm

resembles the Berlekamp-Massey algorithm for LFSR synthesis and is described

by Arnault et al. (2004), Klapper and Xu (2004).

This suggests to add the 2-adic span to our list of pseudorandomness p ostu-

lates.

3.2 Feedback Shift Registers 31

Pseudorandomness Postulate 5. The 2-adic span � 2(u) of a keystream se-

quence u should be reasonably large.

We conclude that similarly to the LFSR-case, the output of maximum-length

FCSRs is not directly suitable as keystream due to its low 2-adic span. How-

ever, their otherwise desirable statistical prop erties recommend b oth LFSRs

and FCSRs, when combined with other devices, as building blo cks for stream

ciphers.

32 3.2 Feedback Shift Registers

Chapter 4

Stream Ciphers based on

Feedback Shift Registers

4.1 Generic Constructions

We have seen in the previous chapter that b oth LFSRs and FCSRs may provide

sequences with go o d pseudorandomness prop erties, but the LFSRs' low linear

complexity and the FCSRs' small 2-adic span prevent b oth devices from b eing

directly used as keystream generators. Nevertheless, many stream ciphers try

to b ene�t from the desirable prop erties of FSR-sequences and combine one or

more FSRs with other comp onents in order to comp ensate their weaknesses.

We consider in this chapter several generic strategies, namely running FSR

sequences through additional Bo olean functions b efore outputting keystream

(combination generators and �lter generators), adding a small numb er of mem-

ory bits that are up dated in a nonlinear way, and state-dep endent clo cking of

the FSRs.

4.1.1 Combination Generators and Filter Generators

A combination generator (more precisely, the FSM of a combination genera-

tor) consists of a small numb er of feedback shift registers R0; : : : ; Rk � 1
and a

Bo olean function C : f 0; 1gk ! f 0; 1g that combines the output sequences of the

internal registers in order to pro duce the output keystream (Ruepp el (1992), see

Fig. 4.1). More precisely, in each clo ck cycle t , each FSR R j
provides a bit x j

t and

the generator pro duces a keystream bit zt = C(x t) , where x t = (x0
t ; : : : ; xk � 1

t) .

A �lter generator (again, the FSM of a �lter generator to b e precise) contains

only one feedback shift register R of length n and a Bo olean �lter function

C : f 0; 1gn ! f 0; 1g that pro duces the output keystream from the current

contents of certain register cells (Ruepp el (1992), see Fig. 4.2).

Some combination or �lter generators (e.g., the F-FCSR stream cipher family

to b e discussed in Section 4.2.6) pro duce more than one output bit p er clo ck

cycle, i.e., the keystream function C maps into f 0; 1g�
instead of f 0; 1g.

Theorem 3.11 and Corollary 3.41 have shown that for b oth LFSRs and FC-

SRs, there exist one-to-one mappings b etween p erio dic Fib onacci states and p e-

rio dic Galois states such that the output sequences pro duced from these states

34 4.1 Generic Constructions

FSR R1

C

FSR Rk

w0
0; w1

0; : : :
FSR R0

w0
1 ; w1

1 ; : : :
z0 ; z1 ; : : :

...

FSM

w0
k ; w1

k ; : : :

Figure 4.1: FSR-based combination generator

C

FSR R

z0 , z1 , . . .
FSM

Figure 4.2: FSR-based �lter generator

coincide. Moreover, the sequences pro duced by individual main register cells

are again LFSR/FCSR-sequences (Theorem 3.16 and Prop osition 3.38).

These observations imply that we can transform a Galois LFSR/FCSR-based

�lter generator into a Galois LFSR/FCSR-based combination generator that

contains as many registers (with appropriate starting states) as the �lter func-

tion has inputs. Furthermore, Galois registers in the combination generator may

b e arbitrarily replaced by Fib onacci registers with equivalent starting states.

Finally, we may even build an equivalent �lter generator based on a Fib onacci

LFSR/FCSR (with mo di�ed �lter) based on Lemmas 3.19 and 3.43. Figure 4.3

summarizes these equivalences.

Note that if all op erations of the generator's FSM are linear, its initial state

can b e e�ciently determined from a numb er of keystream bits by solving a

system of linear equations. Therefore, esp ecially in the case that all FSRs are

LFSRs, a non-linear function should b e chosen as keystream function C .

4.1.2 Additional Memory

In order to improve resistance against correlation attacks and algebraic attacks

(to b e discussed in Sections 6.1 and 6.2), the keystream generation comp onent

of a combination generator is sometimes equipp ed with a few bits of additional

memory, thereby b ecoming a keystream-FSM. The keystream-FSM takes k bits

as input from the FSRs and consists of l memory bits, a keystream function

C : f 0; 1gk � f 0; 1gl ! f 0; 1g� ;

4.2 Example Ciphers 35

C

Galois LFSR/FCSR

C

Galois LFSR/FCSR

Galois LFSR/FCSR

Galois LFSR/FCSR

...

C

Fibon. LFSR/FCSR

...

Fibon. LFSR/FCSR

Fibon. LFSR/FCSR

~C

Fibonacci LFSR/FCSR

Figure 4.3: Equivalent representations of combination and �lter generators

and a memory up date function

� : f 0; 1gk � f 0; 1gl ! f 0; 1gl :

In each clo ck t , it pro duces from the current input x t = (x0
t ; : : : ; xk � 1

t) and

the current memory state qt = (q0
t ; : : : ; ql � 1

t) the keystream output C(x t ; qt) and

up dates the memory to qt +1 := � (x t ; qt) .

A regularly clo cked keystream generator with a keystream-FSM of the de-

scrib ed form is commonly called regularly clocked (k; l) -combiner (with memory) .

Observe that in this notation, the memoryless combination generator describ ed

in Section 4.1.1 corresp onds to a (k; 0)-combiner.

LFSR-based combiners with memory were originally intro duced by Ruepp el

(1986). Since then, they have b een widely examined in cryptography and have

found their way into practical applications. The p erhaps b est known example

used in practice is the E0 keystream generator, which is in the set of example

ciphers that we are going to examine more closely in the remainder of this thesis.

4.1.3 Irregular Clo cking

Another way to intro duce nonlinearity into a keystream generator is to clo ck

the FSRs in an irregular manner. This is often accomplished by a clo ck control

mechanism which determines based on the current FSM state how often each

register's up date function is applied b efore the next keystream bits are pro duced.

Examples for this desgin include the A5/1 generator (to b e describ ed in

Section 4.2.3) and the shrinking generator (Copp ersmith et al., 1994).

4.2 Example Ciphers

In the ECRYPT stream cipher pro ject eStream (eStream), a numb er of new

ciphers have b een prop osed and analyzed in the past few years. Many of these

recent designs partly replace LFSRs by other feedback shift registers such as

nonlinear feedback shift registers (NFSRs) and feedback shift registers with

carry (FCSRs) in order to prevent standard cryptanalysis techniques like alge-

braic attacks and correlation attacks. Moreover, combinations of di�erent typ es

of feedback shift registers p ermit alternative compression functions.

36 4.2 Example Ciphers

As examples for these recent prop osals, we consider the ciphers Trivium ,

Grain and the F-FCSR family along with the more aged self-shrinking generator,

the E0 generator, and the A5/1 generator.

4.2.1 Self-Shrinking Generator

The self-shrinking generator was prop osed by Meier and Sta�elbach (1994) and

consists of only one LFSR and no memory. Every two clo ck cycles of the LFSR,

the generator pro duces a keystream bit according to the function

shrink : f 0; 1g2 ! f 0; 1; � g

(a; b) 7!
�

b if a = 1
� otherwise

;

where � denotes the empty word. For an internal bitstream w = (w0; : : : ; w2m � 1) ,

the self-shrinking generator pro duces the keystream z = (z0; : : : ; zm � 1) accord-

ing to

shrinkstream : f 0; 1g2m ! f 0; 1; � gm

(w0; : : : ; w2m � 1) 7! (shrink(w0; w1); : : : ; shrink(w2m � 2; w2m � 1)) ;

i.e., zt = shrink(w2t ; w2t +1) for t 2 f 0; : : : ; m � 1g.

The designers prop osed a short-keystream attack requiring ab out 20:75n
op-

erations, which was improved to 20:694n
by Zenner et al. (2001). The currently

b est short-keystream attack is a guess-and-determine attack due to Hell and

Johansson (2006) requiring around 20:65n
op erations and an amount of mem-

ory that is p olynomial in n . The BDD-Attack on the self-shrinking generator,

which we will describ e in Section 5.5.1, needs roughly as many op erations, but

exp onentially more memory.

The long-keystream attack by Mihaljevi¢ (1996) needs at least 20:3n
keystream

bits in order to compute the initial state in less than 20:6563n
p olynomial-time

op erations. Its asymptotic runtime was improved by Hell and Johansson (2006),

Zhang and Feng (2006) for the case that up to 20:5n
keystream bits are available,

while even an improved tradeo� is p ossible if the weight of the LFSR feedback

p olynomial is at most 5 (Debraize and Goubin, 2008).

4.2.2 E0 Generator

The Blueto oth stream cipher has key length 128 bits and IV-length 128 bits.

It consists of a key/IV setup pro cedure and the keystream generator E0 (The

Blueto oth SIG, 2001).

E0 is a regularly clo cked (k; l) = (4 ; 4) combiner. It consists of four LFSRs

R0; : : : ; R3
of lenghts (n0; : : : ; n3) = (25 ; 31; 33; 39) and a four-bit memory unit.

We denote by x t = (x0
t ; : : : ; x3

t) 2 f 0; 1g4
the bits read from the LFSRs and by

qt = (q0
t ; : : : ; q3

t) 2 f 0; 1g4
the memory state at time t .

The keystream function g : f 0; 1g4 � f 0; 1g4 ! f 0; 1g is de�ned as

g(x t ; qt) :=
3M

i =0

x i
t

3M

i =0

ci qi
t ;

where (c3; : : : ; c0) = (0 ; 1; 0; 0).

4.2 Example Ciphers 37

The memory up date function � : f 0; 1g4 � f 0; 1g4 ! f 0; 1g4
is given by

� (x t ; qt) := (q3
t +1 ; q2

t +1 ; q1
t +1 ; q0

t +1)

where

(q1
t +1 ; q0

t +1) := (q3
t ; q2

t)

(q3
t +1 ; q2

t +1) := st � T1(q3
t ; q2

t) � T2(q1
t ; q0

t)

st :=
� x3

t + x2
t + x1

t + x0
t + 2 � q3

t + q2
t

2

�
2 f 0; 1g2

T1(q3
t ; q2

t) := (q3
t ; q2

t)

T2(q3
t ; q2

t) := (q2
t ; q3

t � q2
t) :

Figure 4.4 illustrates the design of E0 .

zt

R1

R2

w0
24 w0

1 w0
0

R0

� � �

w1
30 w1

1 w1
0� � �

w2
32 w2

1 w2
0� � �

R3

w3
38

δ(xt , qt)

w3
0� � �

+

+

+

q1
t q2

t q3
tq0

t
qt +1

w3
1

Figure 4.4: The E0 keystream generator

Note that we may write st as

st = b
s0

t + 2 � q3
t + q2

t

2
c with s0

t :=
3X

i =0

x i
t : (4.1)

Hence, the memory up date function dep ends only on the sum s0
t . Similarly, the

keystream function g dep ends only on the value

L 3
i =0 x i

t = s0
t mo d 2, which

implies

g(x t ; qt) = (s0
t mo d 2) �

3M

i =0

ci qi
t : (4.2)

Since the Blueto oth technology so far is most often applied in wireless voice

transmission and data exchange b etween p ersonal information managers and

other mobile devices, con�dentiality of the communication is one of the most

imp ortant security requirements.

38 4.2 Example Ciphers

Consequently, the security of the Blueto oth encryption has b een analyzed

in several pap ers (Armknecht and Krause, 2003, Courtois, 2003, Ekdahl, 2003,

Fluhrer and Lucks, 2001, Goli¢ et al., 2002, Hermelin and Nyb erg, 1999, Jakob-

sson and Wetzel, 2001, Krause, 2002, Lu and Vaudenay, 2005, 2004, Saarinen,

2000). Armknecht et al. (2004) showed that an e�cient attack on E0 implies

an e�cient attack on the whole cipher. Therefore, improving the security of E0

is a natural demand.

The b est currently known long-keystream attacks against E0 are algebraic

attacks (Armknecht and Krause, 2003) and correlation attacks (Lu and Vau-

denay, 2004, Lu et al., 2005). However, all these attacks need a large amount

of keystream (228
to 239

in the case of correlation attacks), and even in terms

of time and memory requirements, the attack by Lu et al. (2005) is the only

feasible one among them.

We note that, when applied to the Blueto oth setting, the correlation attacks

by Lu and Vaudenay (2004), Lu et al. (2005) dep end on the linearity of the

key-schedule and other sp eci�c prop erties of the Blueto oth encryption system.

4.2.3 A5/1 Generator

The A5/1 keystream generator is used in the GSM standard for mobile tele-

phones. The initialization pro cedure transforms a 64-bit secret key and a 22-bit

public frame numb er into the 64-bit initial state of the generator. Accord-

ing to Briceno et al. (1999), who obtained the A5/1 design by reverse en-

gineering, the generator consists of 3 LFSRs R0
, R1

, R2
of lengths n0 , n1 ,

n2 , resp ectively, and a clo ck control ensuring that the keybits do not lin-

early dep end on the initial states of the LFSRs. For each r 2 f 0; 1; 2g, a

register cell qN r
, N r 2 fd n r

2 e � 1; dn r
2 eg, is selected in LFSR Rr

as input

for the clo ck control. The GSM standard uses the parameters (n0; n1; n2) =
(19; 22; 23) and (N 0; N 1; N 2) = (11 ; 12; 13).

Let vi and v0
i denote the bits at the control and at the output p ositions in

register R i
for i 2 f 0; 1; 2g. In each master clo ck of the generator, the keystream

bit zi = f (v0
0; v0

1; v0
2) := v0

0 � v0
1 � v0

2 is pro duced, and register R i
is clo cked if

and only if vi = ma j 3(v0; v1; v2) , where

ma j 3 : f 0; 1g3 ! f 0; 1g

(a; b; c) 7!
�

1 if a + b+ c � 2
0 otherwise

The A5/1 construction is illustrated in Fig. 4.5.

The �rst short-keystream attack on A5/1 was given by Goli¢ (1997) and

needs 242
p olynomial time op erations. Afterwards, several long-keystream at-

tacks on A5/1 were prop osed. Biryukov et al. (2000) present an attack that

breaks A5/1 from 215
known keystream bits within minutes after a prepro cess-

ing step of 248
op erations. Ekdahl and Johansson (2001), Maximov et al. (2005)

exploit the linearity of the initialization pro cedure and manage to break the ci-

pher within minutes, requiring only a few seconds of conversation and little

computational resources. A recent e�ort by a research group around Nohl and

Kriÿler (2010) has received much attention for implementing a distributed, time-

memory tradeo�-based brute-force attack that pro duced a 2-terabyte rainb ow

4.2 Example Ciphers 39

clock
control

zt
R1

R2

w0
18 w0

11 w0
0

R0

� � � � � �

w1
21 w1

12 w1
0� � � � � �

w2
22 w2

13 w2
0� � � � � �

Figure 4.5: The A5/1 keystream generator

table for A5/1, such that the session key of any conversation can b e easily de-

rived. A5/1 is supp osed to b e replaced by A5/3, but only recently, Dunkelman

et al. (2010) have published a practical attack on its underlying blo ck cipher.

4.2.4 Trivium

Trivium (de Cannière and Preneel, 2005) is a regularly clo cked combination

generator that consists of three interconnected NFSRs R0
, R1

, R2
of lenghts

93,84,111, resp ectively. The 288-bit initial state of the generator is derived from

an 80-bit key and an 80-bit IV by 1152 initialization rounds. The keystream

function computes a keystream bit zt by linearly combining six bits taken from

the registers, with each NFSR contributing two bits.

More precisely, from an initial state (s1; : : : ; s288) the algorithm pro duces

keystream bits zt as follows.

for t = 0 to N � 1 do

t1 s1 � s28

t2 s94 � s109

t3 s178 � s223

zt t1 � t2 � t3

u1 t1 � s2s3 � s100

u2 t2 � s95s96 � s202

u3 t3 � s179s180 � s25

(s1; : : : ; s93) (s2; : : : ; s93; u3)
(s94; : : : ; s177) (s95; : : : ; s177 ; u1)
(s178 ; : : : ; s288) (s179 ; : : : ; s288; u2)

end for

Due to its simplicity, esp ecially its low non-linearity, Trivium has received

much cryptanalytic attention (see, e.g., Aumasson et al. (2009), Eibach (2008),

eSTREAM Discussion Forum (2005), Maximov and Biryukov (2007)). While

the b est key recovery attack, which is due to Dinur and Shamir (2009), is able

to tackle 767 out of 1152 initialization rounds with 245
to 236

op erations, the

full cipher still remains unbroken.

40 4.2 Example Ciphers

4.2.5 Grain-128

The regularly clo cked combination generator Grain-128 (Hell et al., 2005) sup-

p orts keys of size 128 bits and IVs of size 96 bits. The design is based on two

interconnected FSRs, an LFSR R0
and an NFSR R1

, b oth of lenghts 128 bits,

and a non-linear keystream function. We denote the content of the LFSR by

(st ; st +1 ; : : : ; st +127) and the content of the NFSR by (bt ; bt +1 ; : : : ; bt +127) .

In each clo ck cycle, the registers are up dated according to

st +128 = st � st +7 � st +38 � st +70 � st +81 � st +96

bt +128 = st � bt � bt +26 � bt +56 � bt +91 � bt +96 � bt +3 bt +67 � bt +11 bt +13

� bt +17 bt +18 � bt +27 bt +59 � bt +40 bt +48 � bt +61 bt +65 � bt +68 bt +84 ;

and a keystream bit zt is derived as

zt =

0

@
M

j 2 A

bt + j

1

A � bt +12 st +8 � st +13 st +20 � bt +95 st +42

� st +60 st +79 � bt +12 bt +95 st +95

with A = f 2; 15; 36; 45; 64; 73; 89g.

Besides a generic time-memory-data-tradeo� attack (Biryukov and Shamir,

2000) that recovers the key with time and keystream around 2128
, the related-

key chosen-IV attack due to Lee et al. (2008) is able to recover the key with

226:59
chosen IVs, 231:39

keystream bits and 227
op erations.

4.2.6 Filtered FCSRs

In order for the initial state not to b e recoverable from a numb er of observed

keystream bits by solving a system of linear equations, we have to demand that

keystream generators contain nonlinear op erations to a certain extent. Since all

LFSR-op erations are linear by de�nition, nonlinearity must b e intro duced into

an LFSR-based combination or �lter generator by a carefully chosen keystream

function C .

FCSRs, on the other hand, have a nonlinear up date function, which suggests

cho osing a simple XOR op eration (which is F2 -linear) as keystream function.

This has b een done in the case of the F-FCSR stream cipher family.

The F-FCSR Stream Cipher Family

F-FCSR-H is an FCSR-based �lter generator that consists of a single Galois

FCSR of length n = 160 with carry cells present at l = 82 p ositions. The

connection integer is chosen as

q = � 1993524591318275015328041611344215036460140087963;

which implies

d =
�

1 � q
2

�
= (ae985d� 26619fc5 8623dc8a af46d590 3dd4254e)16 :

4.2 Example Ciphers 41

At each clo ck, the generator uses the static �lter d = F to extract a pseu-

dorandom byte. The �lter splits into 8 sub�lters (sub�lter j is obtained by

selecting the bit j in each byte of F)

F0 = (0011 0111 0100 1010 1010)2; F4 = (0111 0010 0010 0011 1100)2

F1 = (1001 1010 1101 1100 0001)2; F5 = (1001 1100 0100 1000 1010)2

F2 = (1011 1011 1010 1110 1111)2; F6 = (0011 0101 0010 0110 0101)2

F3 = (1111 0010 0011 1000 1001)2; F7 = (1101 0011 1011 1011 0100)2 :

The bit bi (with 0 � i � 7) of each extracted byte is expressed by

bi =
19M

j =0

f (j)
i x8j + i where Fi =

19X

j =0

f (j)
i 2j ;

and where the xk are the bits contained in the main register.

The cipher is initialized with an 80-bit key K and an IV of length 0 � v � 80
according to Algorithm 1. After the setup phase, the output stream is pro duced

by Algorithm 2.

Algorithm 1 F-FCSR-H-KeyIVSetup(K , IV)

x := K + 2 80 � IV = (0 80� v jj IV jjK)
a := 0 = (0 82)
for i = 0 to 19 do

Clo ck the FCSR automaton

Extract a pseudorandom byte Si using the �lter F
end for

x :=
P 19

i =0 Si � 8i = (S15 jj : : : jjS0)
Clo ck the FCSR automaton 162 times (discard output in this step)

Algorithm 2 F-FCSR-H-KeystreamGeneration

while true do

Clo ck the FCSR

Extract a pseudorandom byte S using the �lter F
Output the value S as keystream byte

end while

F-FCSR-16 works analogously to F-FCSR-H, only with larger parameters.

It consists of a Galois FCSR of length n = 256 with carry cells present at l = 130
p ositions. The connection integer is chosen as

q = (1839714408456194711298691618093441316582
98317655923135753017128462155618715019)10 ;

which implies

d =
� 1� q

2

�
= (cb5e129f ad4f7e66 780caa2e c8c9cedb

2102f996 baf08f39 efb55a6e 390002c6)16 :

42 4.2 Example Ciphers

To extract two pseudorandom bytes, the static �lter F = d is used. The

�lter F is split into 16 sub�lters (sub�lter j is obtained by selecting the bit j in

each 16-bit word of F)

F0 = (0110 0011 0001 1000)2; F8 = (1010 0000 1101 1010)2
F1 = (1111 0101 1100 0101)2; F9 = (1101 0101 0011 1101)2
F2 = (1111 1100 0100 1101)2; F10 = (0011 0001 0001 1000)2
F3 = (1110 1111 0001 0100)2; F11 = (1011 1111 0111 1110)2
F4 = (1100 0001 0111 1000)2; F12 = (0101 1000 0110 0110)2
F5 = (0001 0100 0011 1100)2; F13 = (0011 1100 1110 1010)2
F6 = (1011 0011 0010 0101)2; F14 = (1001 1011 0100 1100)2
F7 = (0100 0011 0110 1001)2; F15 = (1010 0111 0111 1000)2

The bit bi (with 0 � i � 15) of each extracted word is expressed by

bi =
15M

j =0

f (j)
i x16j + i where Fi =

15X

j =0

f (j)
i 2j ;

and where the xk are the bits contained in the main register.

The cipher is initialized with a 128-bit key K and an IV of length 0 � v � 128
according to Algorithm 3. After the setup phase, the output stream is pro duced

by Algorithm 4.

Algorithm 3 F-FCSR-16-KeyIVSetup(K , IV)

x := K + 2 128 � IV = (0 128� v jj IV jjK)
a := 0 = (0 130)
for i = 0 to 15 do

Clo ck the FCSR automaton

Extract a pseudorandom word Si using the �lter F .

end for

x :=
P 15

i =0 Si � 216i = (S15jj : : : jjS0)
a := 0 = (0 130)
Clo ck the FCSR automaton 258 times (discard output in this step)

Algorithm 4 F-FCSR-16-KeystreamGeneration

while true do

Clo ck the FCSR

S = x ^ F
Split S into 16 words of length 16 bits each, such that S =

P 15
i =0 Si 216i

Output the value

L 15
i =0 Si as keystream word

end while

Security Considerations

Using FCSRs as building blo cks for stream ciphers had initially b een suggested

by Klapp er and Goresky (1997, 1994). A few years later Arnault and Berger

4.2 Example Ciphers 43

(2005a) revisited the idea by prop osing and analyzing a generic �lter genera-

tor based on a Galois FCSR and the XOR op eration as keystream function.

Several concrete instantiations of this idea were prop osed (Arnault and Berger,

2005b) and improved in the light of cryptanalysis results (Jaulmes and Muller,

2006, 2005), b efore the the two ciphers F-FCSR-H and F-FCSR-16 in the form

describ ed ab ove were sp eci�ed by Arnault et al. (2006).

In the absence of any apparent weaknesses in these versions, the ECRYPT

stream cipher pro ject eStream suggested F-FCSR-H and F-FCSR-16 for prac-

tical applications (Babbage et al., 2008).

Various analyses suggest that the pro duced keystream has go o d pseudoran-

domness prop erties (Arnault and Berger, 2005a, Arnault et al., 2008). The �lter

function computes the binary XOR of its inputs, and its initialization pro cedure

ensures that the initial state of the generator is p erio dic. Hence, by Prop osi-

tion 3.38, the keystream generation pro cedure is equivalent to taking the bitwise

XOR-sum of di�erent parts of the same l -sequence, while the starting p osition

is given by the initial state and the distances b etween the parts are constant.

This design was motivated by the conjecture that linear and 2-adic op erations

are unrelated and that the correlation b etween two distant parts of the same

l -sequence is low (Arnault and Berger, 2005a). Our explicit computation of the

distances for F-FCSR-H based on Prop osition 3.38 shows that the parts of the

sequence are indeed almost evenly distributed over the p erio d (see Fischer et al.

(2008), App endix A).

However, while Arnault et al. (2008) had shown that the cells of the carry

and the main register will not b e zero for several consecutive clo ck cycles, Hell

and Johansson (2008, 2009) observed that the sequence of main register states

(x t)t � 0 that are passed during the op eration of the cipher are likely to contain

su�ciently long runs of the form (0; : : : ; 0; 1; 0), which turns the state up date

function into a linear function and allows for setting up a system of linear

equations in order to recover the register state. With a few optimizations, Hell

and Johansson show how to recover the state of the register in F-FCSR-H from

around 223:7
bytes of keystream in 10 seconds on average with standard PC

hardware. The same idea yields e�cient attacks on F-FCSR-16 and X-FCSR

(Stankovski et al., 2009), a software-oriented stream cipher based on FCSRs

(Arnault et al., 2007). Hence, it turns out that the up date function of FCSRs

do es not intro duce as much nonlinearity as originally exp ected. In the light of

these attacks, F-FCSR-H and F-FCSR-16 were removed from the eStream list

of recommended ciphers.

Finally, we want to note that replacing the Galois FCSR in an F-FCSR-H-

like construction by a Fib onacci FCSR while keeping the XOR �lter function

yields an insecure keystream generator. This can b e seen as follows.

Consider the F-FCSR-H parameters, i.e., n = 160 , l = 82 and with k = 8
linear �lters, but applied to a Fib onacci FCSR. Initially, there are 160 binary

variables (ignoring the memory), and each up dated bit is represented by a new

variable (ignoring the details of the construction and assuming indep endence).

Each iteration gives another 8 linear equations in these (initial and newly intro-

duced) state variables. The main register can b e recovered by solving the system

of linear equations if the numb er of equations is at least as large as the numb er

of variables. This requires r iterations, where 8r � 160 + r . Consequently,

r = 23 iterations are su�cient, or 184 bits of keystream. Gaussian elimination

of this system requires a computational e�ort of ab out 1843
, which is ab out 223

.

44 4.3 Abstraction: Internal Bitstream Generators

After recovering the main register, one can recover the contents of the memory

cells. If the FCSR is in a p erio dic state (which can b e exp ected already after

the initialization phase), then the e�ective size of the memory reduces to 7 bits.

Consequently, the memory can b e guessed or recovered by FCSR-synthesis, and

the whole state can b e recovered in ab out 230
steps and with less than 200 bits

of keystream. A similar attack is p ossible for any other construction of this typ e

with k > 1.

4.3 Abstraction: Internal Bitstream Generators

The keystream generators that we analyze in this thesis are FSR-based in the

sense that their internal state is distributed over a small numb er of feedback

shift registers R0; : : : ; Rk � 1
that provide input for the keystream function C .

For our subsequent analysis, it is convenient to think of these FSRs as a single

entity, the internal bitstream generator, that pro duces an internal bitstream

(wt)t � 0 de�ned by

wt := wr (t)
s(t) with r (t) = t mo d k and s(t) = s div k ;

i.e., the t -th internal bit corresp onds to the s(t) -th bit in the bitstream pro-

duced by Rr (t)
(see Fig. 4.6). Again, the internal bitstream (and hence the

C

w0
0 w1

0 wk
0 w0

1 w1
1 wk

1

z0; z1 : : :

R1

w1
0 w1

1 w1
i w1

n 1
: : :

Rk

w0
k w1

k wk
i wk

n k
: : :

R0

w0
0 w0

1 w0
i w0

n 0
: : :

::: :::

...

::::::

: : :

: : :

: : :

w0
i w1

i
::: wk

i

Figure 4.6: Derivation of the keystream from the internal bitstream

output of the keystream generator) are entirely determined by the generator's

starting state ! (0) , and the �rst m bits can b e computed as (w0; : : : ; wm � 1) =
H � m (! (0)) , where

H � m : f 0; 1gn ! f 0; 1gm :

De�nition 4.1. We cal l an integer i an initial p osition in w , if wi corresponds

to a bit from the initial state of some FSR, and a combined p osition otherwise.

Correspondingly, we denote by IP(i) the set of initial positions and by CP(i)
the set of combined positions in f 0; : : : ; i � 1g. We let IB(w) denote the bits at

the initial positions in w , nmin the maximum i for which al l i 0 � i are initial

positions, and nmax the minimum i for which al l i 0 > i are combined positions.

4.3 Abstraction: Internal Bitstream Generators 45

In an FSR-based bitstream generator, the FSRs may b e interconnected in

the sense that the up date function F i
of R i

may also dep end on the current

content of the other registers such that F i : f 0; 1gn i ! f 0; 1g, ni � n , for all

i 2 f 0; : : : ; k � 1g.

The keystream function C : f 0; 1gn ! f 0; 1g�
, which derives keystream bits

from the current state, usually dep ends on one or more state bits from each

FSR. For jwj = m we denote the keystream pre�x that is pro duced from w by

Cm (w) , where Cm : f 0; 1gm ! f 0; 1g�
.

Generally, we call a keystream generator regularly clo cked, if for all j 2
f 0; : : : ; k � 1g, the register R j

is clo cked equally often in each clo cking of the

whole generator. This de�nition translates into our notion of FSR-based internal

bitstream generators as follows.

De�nition 4.2. Let D(w; t) := f wi jzt depends on wi g. We cal l an FSR-based

keystream generator regularly clo cked if jD (w; t)nD(w; t0)j is constant for al l

internal bitstreams w and al l 0 � t0 < t .

Note that this de�nition corresp onds to the notion of an oblivious keystream

generator that was established by Krause (2007).

Two imp ortant parameters of FSR-based keystream generators are the best-

case compression ratio and the information rate , which we de�ne as follows.

De�nition 4.3. If
m is the maximum number of keybits that the generator

produces from internal bitstreams of length m , we cal l
 2 (0; 1] the b est-case

compression ratio of the generator. Moreover, for a randomly chosen and uni-

formly distributed internal bitstream W (m) 2 f 0; 1gm
and a random keystream

Z , we de�ne as information rate � the average information that Z reveals about

W (m)
, i.e., � := 1

m I
�
W (m) ; Z

�
2 (0; 1].

1

For a randomly chosen and uniformly distributed internal bitstream w 2
f 0; 1gm

, the probability of the keybits' Cm (w) b eing a pre�x of a given keystream

z 2 f 0; 1g�
can b e expressed as

Pr
w2f 0;1gm

[Cm (w) is pre�x of z] =

d
m eX

i =0

Pr
w2f 0;1gm

[jCm (w)j = i] � Pr
w 2 f 0 ; 1g m

j C m (w) j = i

[Cm (w) = (z0; : : : ; zi � 1)] :
(4.3)

Concerning this probability, we make the following assumption.

Assumption 4.4 (Indep endence Assumption). For al l m � 1, a randomly

chosen, uniformly distributed internal bitstream w 2 f 0; 1gm
, and al l keystreams

z 2 f 0; 1g�
, we have Prw [Cm (w) is pre�x of z] = pC (m); i.e., the probability of

Cm (w) being a pre�x of z is independent of z .

As shown by Krause (2002), the computation of � can b e simpli�ed as follows

if the generator ful�lls the Indep endence Assumption.

Lemma 4.5. If a keystream generator satis�es the Independence Assumption,

we have � = � 1
m log2(pC (m)) .

1

Recall that for two random variables A and B , the value I (A; B) = H (A) � H (A jB)
de�nes the information that B reveals ab out A .

46 4.3 Abstraction: Internal Bitstream Generators

Pro of. The de�nitions of information and entropy imply

� =
1
m

I
�

W (m) ; Z
�

=
1
m

�
H

�
W (m)

�
� H

�
W (m) jZ

��
=

1
m

�
m � H

�
W (m) jZ

��

and

H
�

W (m) jZ
�

=

X

z2f 0;1g�

Pr [Z = z]

0

@�
X

w2f 0;1gm

Pr
h
W (m) = wjZ = z

i
� log2 Pr

h
W (m) = wjZ = z

i
1

A :

Under the Indep endence Assumption (Assumption 4.4), all w 2 f 0; 1gm
and

z 2 f 0; 1g�
satisfy

Pr[W (m) = wjZ = z] =
� 1

pC (m) �2m if C(w) is pre�x of z
0 otherwise

:

With

~W := f w 2 f 0; 1gm jCm (w) is pre�x of zg, we obatin

H
�

W (m) jZ
�

=
X

z2f 0;1g�

Pr [Z = z]

0

@�
X

w2 ~W

(pC (m)2m)� 1 � log2((pC (m)2m)� 1)

1

A

| {z }
log 2 (pC (m)2 m)

= log 2(pC (m)2m) ;

and �nally

� = �
1
m

(m� log2 (pC (m)2m)) =
1
m

(m� log2 pC (m)� m) = �
1
m

log2 pC (m) 2

Corollary 4.6. The information rate � of a regularly clocked FSR-based key-

stream generator ful�l ling the Independence Assumption is given by � = � (m)
m .

Pro of. The Indep endence Assumption and De�nition 4.2 imply that the 2� (m)

p ossible keystream blo cks of length � (m) that can b e pro duced from the m -

bit internal bitstream all have probability pC (m) . Hence pC (m) = 2 � � (m)
and

therefore � = � 1
m log2(2� � (m)) = � (m)

m . 2

Observation 4.7. For a regularly clocked FSR-based keystream generator with

k FSRs that uses exactly one bit from each register for computing a keystream

bit zt , we have � = 1
k .

Finally, we assume the internal bitstream to b ehave pseudorandomly, which

we formalize as follows.

Assumption 4.8 (Pseudorandomness Assumption). For m � d � � 1ne, let

w and ! (0) denote randomly chosen, uniformly distributed elements of f 0; 1gm

and f 0; 1gj IP(m) j
, respectively. Then, al l keystreams z satisfy

Prw [Cm (w) is pre�x of z] � Pr ! (0) [Cm (H � m (! (0))) is pre�x of z].

We exp ect the Pseudorandomness Assumption to hold since a signi�cant

violation would imply the vulnerability of the generator to a correlation attack.

Chapter 5

The BDD-Attack

5.1 Intro duction and Overview

Krause (2002, 2007) prop osed a Binary Decision Diagram (BDD) attack on

LFSR-based combination generators. The BDD-attack is a generic attack in

the sense that it do es not dep end on sp eci�c design prop erties of the resp ective

cipher. It only relies on the assumptions that the generator's internal bitstream

b ehaves pseudorandomly and that the test whether a given internal bitstream

w pro duces a sample keystream can b e represented in a Free Binary Decision

Diagram (FBDD) of size p olynomial in the length of w .

The attack reconstructs the secret initial state from the shortest informa-

tion-theoretically p ossible pre�x of the keystream (usually a small multiple of

the state size), whereas other generic attack techniques in many cases require

amounts of known keystream that are unlikely to b e available in practice. Par-

ticularly in the case of E0 and A5/1, the �rst keystream frame already su�ces

to obtain all the information that is needed to compute the initial state.

As an extension of the original attack by Krause (2002), we show that the

BDD-based approach remains applicable in the presence of (p ossibly interde-

p endent) NFSRs and FCSRs combined with arbitrary keystream functions, as

long as not to o many new internal bits are pro duced in each clo ck cycle of the

cipher. Consequently, we apply the attack to the NFSR-based prop osals Triv-

ium , Grain, and the F-FCSR family, which were describ ed in Section 4.2. In

order to avoid redundancies, we directly outline this more general technique and

treat the original attack by Krause as a sp ecial case.

One drawback of the BDD-attack is its high memory consumption. We

approach this problem by presenting various e�ciently parallelizable divide-

and-conquer strategies (DCS) for E0 and A5/1 that substantially reduce the

memory requirements and allow us to tackle much larger key lengths with �xed

computational resources. In the case of E0 , our DCS lowers the attack's memory

requirements by a factor of 225
and additionally yields a slight improvement of

the theoretical runtime.

Finally, we present comprehensive exp erimental results for the BDD-attack

on reduced versions of the E0 , A5/1 and the self-shrinking generator, which

show that the attack p erformance in practice do es not seem to substantially

deviate from the theoretical �gures.

48 5.2 Representing Bo olean Functions with Binary Decision Diagrams

5.2 Representing Bo olean Functions with Binary

Decision Diagrams

Bo olean functions can b e represented in many ways, e.g., in truth tables or

symb olically as a formula in algebraic normal form (ANF). For our attack, yet

another representation will turn out to b e particularly useful, namely the graph-

based representation in a Binary Decision Diagram (BDD).

BDDs and their variants have received much attention since the publication

of the fundamental pap er by Bryant (1986). We brie�y review the de�nition

of BDDs and their most imp ortant algorithmic prop erties and kindly refer the

reader to Wegener (2000) for a more comprehensive overview.

De�nition 5.1. A Binary Decision Diagram (BDD) G over a set of vari-

ables X n = f x1; : : : ; xn g is a directed, acyclic graph G = (V; E) with E �
V � V � f 0; 1g. Each inner node v has exactly two outgoing edges, a 0-edge

(v; v0; 0) and a 1-edge (v; v1; 1) leading to the 0-successor v0 and the 1-successor

v1 , respectively. G contains exactly two nodes with outdegree 0, the sinks s0 and

s1 . Each inner node v is assigned a label v:label 2 xn , whereas the two sinks

are labeled s0:label = 0 and s1:label = 1 . There is exacly one node with indegree

0, the root of G . We de�ne the size of G (denoted by jGj) to be the number

of nodes it contains, i.e., jGj := jV j . Each node v 2 V represents a Boolean

Function f v 2 Bn = f f jf : f 0; 1gn ! f 0; 1gg in the fol lowing manner. For an

input a = (a1; : : : ; an) 2 f 0; 1gn
, the computation of f v (a) starts in v . In a node

with label x i , the outgoing edge with label ai is chosen, until one of the sinks is

reached. The value f v (a) is then given by the label of this sink.

De�nition 5.2. For a BDD G over xn , let G� 1(1) � f 0; 1gn
denote the set of

inputs accepted by G , i.e., al l inputs a 2 f 0; 1gn
such that f root (a) = 1 .

Note that we may delete all v 2 V in G that are not reachable from the ro ot

without changing the function f root that G computes.

We can straightforwardly use BDDs as a data structure for subsets of f 0; 1gn
.

In order to represent S � f 0; 1gn
, we construct a BDD GS that computes the

characteristic function f S of S given by f S (x) = 1 if x 2 S and f S(x) = 0
otherwise. Hence, GS will accept exactly the elements of S . Moreover, we can

compute a BDD representing the intersection S \ T of two sets S and T from

their BDD-representations GS and GT by an AND-synthesis of GS and GT .

Remark 5.3. Since general BDDs have many degrees of freedom for represent-

ing a particular Boolean function, many important operations and especial ly

those that are needed in our context are NP-hard (cf. Wegener (2000) for de-

tails).

We therefore concentrate on the more restricted mo dels of Free Binary De-

cision Diagrams (FBDDs) and Ordered Binary Decision Diagrams (OBDDs).

5.2.1 Free Binary Decision Diagrams (FBDDs)

De�nition 5.4. An oracle graph G0 = (V; E) over a set of variables X n =
f x1; : : : ; xn g is a modi�ed BDD that contains only one sink s, labeled � , and for

al l x i 2 X n and al l paths P from the root in G to the sink, there exists at most

one node in P that is labeled x i .

5.2 Representing Bo olean Functions with Binary Decision Diagrams 49

De�nition 5.5. A Free Binary Decision Diagram G with respect to an oracle

graph G0
(abbreviated by G0

-FBDD) over a set of variables X n = f x1; : : : ; xn g
is a BDD in which al l inputs a 2 f 0; 1gn

satisfy the fol lowing condition. Let the

list G0(a) contain the variables from X n in the order in which they occur on the

path de�ned by a in G0
. Similarly, let the list G(a) contain the variables from

X n in the order in which the components of a are read in G . If x i and x j are

both contained in G(a) , then they occur in G(a) in the same order as in G0(a) .

We cal l a BDD G an FBDD, if there exists an oracle graph G0
such that G

is a G0
-FBDD.

Figure 5.1 shows examples for an oracle graph G0
and a G0

-FBDD.

The de�nition of FBDDs implies their imp ortant read-once property , i.e., on

each path in an FBDD G , each variable in X n is tested at most once.

Figure 5.1: An oracle graph G0
over f z0; : : : ; z3g and a G0

-FBDD

FBDDs p ossess several algorithmic prop erties that will prove useful in our

context. Let G0
denote an oracle graph over X n = f x1; : : : ; xn g and let the G0

-

FBDDs Gf , Gg and Gh represent Bo olean functions f; g; h : f 0; 1gn ! f 0; 1g.

FBDD Prop erty 1. There exists an algorithm MIN that computes for Gf in

time O(jGf j) the (uniquely determined) minimal G0
-FBDD G that represents

f . Every minimal G0
-FBDD G over X n satis�es jGj � n � jG� 1

f (1)j .

FBDD Prop erty 2. There exists an algorithm SYNTH that computes for Gf ,

Gg and Gh in time O(jG0 j � jGf j � jGg j � jGh j) a G0
-FBDD G of size jGj �

jG0 j � jGf j � jGg j � jGh j which represents the function f ^ g ^ h .

FBDD Prop erty 3. There exists an algorithm SAT-ENUM that enumerates

for a G0
-FBDD Gf al l elements in G� 1

f (1) in time O(n � jG� 1
f (1)j) .

De�nition 5.6. We cal l an algorithm A over the input space f 0; 1gn
read-once

algorithm , if it reads each input bit at most once.

De�nition 5.7. Fix a read-once algorithm A over f 0; 1gn
, an input x 2 f 0; 1gn

and an oracle graph G0
over X n . Let the list � (A; x) contain the variables from

X n in the order in which they are read by A when procesing x , and let the

list � (G0; x) contain the variables from X n in the order in which they occur on

the path de�ned by x in G0
. We say that the read-once algorithm A resp ects

the oracle graph G0
(A is G0

-respecting) if for al l inputs x 2 f 0; 1gn
, any two

variables x i ; x j from � (A; x) occur in the same order in � (G0; x) as in � (A; x) .

50 5.2 Representing Bo olean Functions with Binary Decision Diagrams

Read-once algorithms corresp ond to Eraser Turing Machines (Eraser-TMs),

which only di�er from general Turing machines in the prop erty that each input

bit is deleted immediately after b eing read (Ajtai et al., 1986, Krause et al.,

1988). We consider Eraser-TMs that have an asso ciated oracle graph which

determines the reading order of the input bits. During the computation, the

machine follows the path that the input de�nes in the oracle graph in order to

determine the next bit to read.

The following observation links read-once algorithms to FBDDs and is an

immediate consequence of the observations by Meinel (1989).

Observation 5.8. Fix a subset F � f 0; 1gn
and an oracle graph G0

over X n =
f x1; : : : ; xn g. Each G0

-respecting read-once algorithm A that decides for an

input x = (x1; : : : ; xn) 2 f 0; 1gn
whether x 2 F while using at most p bits of

additional memory can be e�ciently transformed into a G0
-FBDD of size at

most jG0 j � 2p
.

Pro of. Consider the Eraser-TM with p memory cells that corresp onds to A .

A con�guration of A is given by the tuple (vi ; y1; : : : ; yp) , where vi denotes

the current vertex in G0
and (y1; : : : ; yp) represents the current content of the

additional memory cells.

We transform A into a G0
-FBDD GA as follows. The vertices in GA have

the form [vi ; y] 2 V (G0) � f 0; 1gp
, and a vertex [vi ; y] is labled with vi :label.

If (vi 0 ; y0) denotes the initial con�guration of A , we de�ne as ro ot of GA the

vertex [vi 0 ; y0]. For each transition � (vi ; y; xv i :label) = (v0
i ; y0) of A , we add to

GA a directed (xv i :label) -edge from vertex [vi ; y] to vertex [v0
i ; y0]. For a stop

con�guration � (vi ; y; xv i :label) = (vi ; y) of A with output b 2 f 0; 1g, we add a

directed (xv i :label) -edge from vertex [vi ; y] to the b-sink.

We observe that since A is G0
-resp ecting, the reading order on each path

from the ro ot to a sink in GA is consistent with G0
, which makes GA a G0

-

FBDD.

For a �xed vi 2 V (G0) , A has at most 2p
con�gurations (vi ; y) . Therefore,

the maximum size of GA is jG0 j � 2p
. 2

Many imp ortant Bo olean functions can even b e e�ciently represented in

a more restricted BDD variant, so-called Ordered Binary Decision Diagrams

(OBDDs), which we are going to describ e next.

5.2.2 Ordered Binary Decision Diagrams (OBDDs)

Ordered Binary Decision Diagrams were �rst describ ed by Bryant (1986) and

have b ecome an imp ortant to ol for circuit veri�cation, VLSI-design and many

other applications.

De�nition 5.9. A variable ordering � for a set of variables X n = f x1; : : : ; xn g
is a permutation of the index set I = f 1; : : : ; ng, where � (i) denotes the position

of x i in the � -ordered variable list x � � 1 (1) ; x � � 1 (2) ; : : : ; x � � 1 (n) .

De�nition 5.10. A � -Ordered Binary Decision Diagram (� -OBDD) with re-

spect to a variable ordering � is a BDD in which the sequence of tests on a path

from the root to a sink is restricted by � , i.e., whenever an edge leads from an

x i -node to an x j -node, then � (i) < � (j) . A BDD G is cal led OBDD, if there

exists a variable ordering � such that G is a � -OBDD.

5.2 Representing Bo olean Functions with Binary Decision Diagrams 51

For an OBDD G we de�ne its width as

w(G) := max
i

fjf v 2 Gjv:label = x i gjg :

Note that we may view any � -OBDD as a degenerated G0
-FBDD in which

the reading order on each path from the ro ot to one of the sinks is consistent

with � , i.e., G0
is degenerated into a linear list that corresp onds to � .

Conversely, a � -OBDD may at the same time b e a G0
-FBDD in the following

sense.

De�nition 5.11. A variable ordering � for X n is said to be consistent with

an oracle graph G0
over X n if for any (i; j) 2 f 1; : : : ; ng2

with � (i) < � (j) , x i

occurs before x j on al l paths in G0
.

Observation 5.12. If a variable ordering � is consistent with an oracle graph

G0
, then any � -OBDD is a G0

-FBDD.

Figure 5.2 shows a � -OBDD that computes the function

f (z0; : : : ; z3) = z0z2 _ z0 �z2z3 _ �z0z1z3 :

Similarly to FBDDs, OBDDs allow for e�cient implementations of the op-

erations that we will b e interested in. Let � denote a variable ordering for

X n = f x1; : : : ; xn g and let the � -OBDDs Gf , Gg and Gh represent Bo olean

functions f; g; h : f 0; 1gn ! f 0; 1g.

OBDD Prop erty 1. The size of Gf is bounded by jGf j � m � w(Gf) .

OBDD Prop erty 2. There exists an algorithm MIN that computes in time

O(jGf j) the uniquely determined minimal � -OBDD G with w(G) � j G� 1
f (1)j

that represents f .

OBDD Prop erty 3. There exists an algorithm SYNTH that computes in time

O(jGf j � jGg j � jGh j) a minimal � -OBDD G with w(G) � w(Gf) � w(Gg) � w(Gh) .

OBDD Prop erty 4. There exists an algorithm SAT-ENUM that enumerates

al l elements of G� 1
f (1) in time O

�
n � jG� 1

f (1)j
�

.

Figure 5.2: A � -OBDD over f z0; : : : ; z3g with � (0) = 0 , � (1) = 2 , � (2) = 1 and

� (3) = 3 .

52 5.3 BDD-based Initial State Recovery

De�nition 5.13. We say that a read-once algorithm A resp ects a variable or-

dering � (A is � -resp ecting) if A does not read x i after x j in case � (i) < � (j)
for al l i; j 2 f 1; : : : :ng.

Similarly to the corresp ondence of read-once algorithms and FBDDs de-

scrib ed by Observation 5.8, we can transform a � -resp ecting read-once algorithm

into a � -OBDD.

Observation 5.14. Fix a subset F � f 0; 1gn
and a variable ordering � for

X n = f x1; : : : ; xn g. Each � -respecting read-once algorithm A that decides for

an input x = (x1; : : : ; xn) 2 f 0; 1gn
whether x 2 F while using at most p bits

of additional memory can be e�ciently transformed into a � -OBDD of width at

most 2p
.

Pro of. The pro of is largely analogous to the pro of of Observation 5.8, but we

include it for completeness.

Consider the eraser Turing machine with p memory cells that corresp onds

to A . We can assume w.l.o.g. that the input is � -ordered, i.e., it is given as

x � (1) ; x � (2) ; : : : ; x � (n) . A con�guration of A is given by the tuple (i; y1; : : : ; yp) ,

where i denotes the current read p osition in the input and (y1; : : : ; yp) represents

the content of the p additional memory cells.

We transform A into a � -OBDD GA as follows. The vertices in GA have the

form [i; y] 2 f 1; : : : ; ng � f 0; 1gp
, and a vertex [i; y] is labled with x i . If (i 0; y0)

denotes the initial con�guration of A , we de�ne as ro ot of GA the vertex [i 0; y0].

For each transition � (i; y; x i) = (i 0; y0) of A , we add to GA a directed x i -edge

from vertex [i; y] to vertex [i 0; y0]. For a stop con�guration � (i; y; x i) = (i; y) of

A with output b 2 f 0; 1g, we add a directed x i -edge from vertex [i; y] to the

b-sink.

We observe that since A is � -resp ecting, the reading order on each path from

the ro ot to a sink in GA is consistent with � , which makes GA a � -OBDD.

For a �xed i 2 f 1; : : : ; ng, A has at most 2p
con�gurations (i; y) . Therefore,

the maximum width of GA is 2p
. 2

5.3 BDD-based Initial State Recovery

The BDD-based attack on keystream generators is a known-plaintext initial

state recovery attack, i.e., the attacker tries to reconstruct the unknown initial

state ! (0) of the keystream generator from a few known plaintext bits p0; p1; : : :
and their encryptions c1; c2; : : :. In our scenario in which a ciphertext bit ci is

computed from a plaintext bit pi and a keystream bit zi via ci = pi � zi , the

keystream bit zi can b e reconstructed from (pi ; ci) by computing pi � ci = zi .

We �rst observe that for any internal bitstream w 2 f 0; 1gm
that yields a

pre�x of the observed keystream, the following two conditions must hold.

Condition 1. w is an m -extension of the initial state bits in w , i.e., we have

H � m (IB(w)) = w .

Condition 2. Cm (w) is a pre�x of the observed keystream z .

We call any w 2 f 0; 1gm
that satis�es these conditions an m -candidate . Our

strategy is now to start with m = nmin and to dynamically compute the m -

candidates for m > n min until only one m -candidate is left. The �rst bits of

5.3 BDD-based Initial State Recovery 53

this m -candidate will contain the initial state ! (0) that we are lo oking for. We

can exp ect to b e left with only one m -candidate for m � d � � 1ne, which follows

directly from the following Lemma.

Lemma 5.15 (Krause (2002)). Under Assumption 4.8, al l keystreams z and

al l m � d � � 1ne satisfy jf ! (0) 2 f 0; 1gn : Cm (H � m (! (0))) is pre�x of ygj �
2j IP(m) j� �m � 2n � �m

. Hence, there exist approximately 2n � �m m -candidates.

The key problem that we have to solve is to compute and represent the

m -candidates e�ciently. Our solution is based on the following BDD-based

approach. Let G0
m denote the oracle graph over f w0; : : : ; wm � 1g that represents

the order in which the keystream function Cm reads the bits from the internal

bitstream. We represent the bitstreams w ful�lling conditions 1 and 2 in the

minimal G0
m -FBDDs Rm and Qm , resp ectively. Starting from Pn min := Qn min ,

we compute for nmin < m � d � � 1ne the G0
m -FBDDs Pm := MIN(Pm � 1 ^

Qm ^ Sm) , where the minimum G0
m -FBDD Sm tests whether wm � 1 is in the m -

extension of IB(w) . Note that we have Pm = MIN (Qm ^ Rm) with Rm =
V m

i =1 Si

for all m , and Pm accepts exactly the m -candidates. This strategy is summarized

in Algorithm 5.

Algorithm 5 RecoverInitialState

P = Qn min

for m = nmin + 1 to d� � 1ne do

P = MIN(P ^ Qm ^ Sm)
end for

return the initial state bits contained in one of the w 2 P � 1(1)

The e�ciency of Algorithm 5 essentially dep ends on the sizes of the inter-

mediate results Pm , which we are going to estimate in the following.

Assumption 5.16 (BDD Assumption). For al l m � nmin we assume that

jG0
m j; jSm j; jQm j 2 mO (1)

and that there exists an integer p � 1 such that jRm j �
jG0

m j � 2p�j CP(m) j
.

Lemma 5.17. Let K denote an FSR-based keystream generator with k FSRs

R0; : : : ; Rk � 1
of lengths n(0) ; : : : ; n(k � 1)

, and let n =
P k � 1

i =0 n(i)
. If K ful�l ls

the BDD Assumption and the Pseudorandomness Assumption, we have for al l

nmin < m � d � � 1ne

jPm j � max
1� m �d � � 1 n e

n
min

n
� (m)jQm j � 2m �j IP(m) j ; m � 2j IP(m) j� �m

oo

� � (m)jQm j � 2
p (1 � �)

p + � n � nO (1) 2
p (1 � �)

p + � n

with � (m) = jG0
m j2 . If there exists a variable ordering � m such that al l G0

m -

FBDDs are � m -OBDDs, � (m) reduces to the constant 1.

The pro of b orrows from the ideas presented by Krause (2002, 2007) and

works as follows.

Pro of. The de�nitions of Qm and Rm imply that Pm = Qm ^ Rm for nmin <
m � d � � 1ne, and therefore jPm j � j G0

m j � jQm j � jRm j (FBDD Prop erty 2) in

54 5.4 Generic BDD Constructions

the FBDD-case and jPm j � j Qm j � jRm j (OBDD Prop erty 3) in the OBDD-case.

Under Assumption 5.16 we obtain

jPm j � � (m)jQm j � 2p�j CP(m) j : (5.1)

On the other hand, Lemma 5.15 implies that jPm j � m � jP � 1
m (1)j � m �

2m � � �m
for m� = jIP(m) j and nmin < m � d � � 1ne, which means

jPm j � m � 2m � � �m = m � 2(1 � �)m � � � �j CP(m) j : (5.2)

Combining Eqs. (5.1) and (5.2), we obtain for nmin < m � d � � 1en

jPm j � minf � (m)jQm j � 2p�j CP(m) j ; m � 2(1 � �)m � � � �j CP(m) j g

� � (m)jQm j � minf 2p�j CP(m) j ; 2(1 � �)m � � � �j CP(m) j g

= � (m)jQm j � minf 2p�r (m �) ; 2(1 � �)m � � �r (m �) g with r (m�) = jCP(m)j

� � (m)jQm j � 2p�r � (m �) ;

where r � (m�) denotes the solution of p � r (m�) = (1 � �)m� � �r (m�) . We

obtain r � (m�) = 1� �
p+ � m�

and hence jPm j � � (m)jQm j � 2
p (1 � �)

p + � m �

. With nmin <

m � d � � 1ne and therefore � (m)jQm j 2 mO (1) � nO (1)
and m� = jIP(m)j � n ,

we obtain

jPm j � � (m)jQm j � 2
p (1 � �)

p + � n � nO (1) 2
p (1 � �)

p + � n
for all nmin < m � d � � 1ne : 2

From this b ound on jPm j , we can straightforwardly derive the time, memory

and data requirements of the BDD-based attack.

Theorem 5.18. Let K denote a regularly clocked FSR-based keystream gen-

erator with an unknown initial state ! (0) 2 f 0; 1gn
, information rate � and

best-case compression ratio
 . If K ful�l ls the Independence Assumption, the

Pseudorandomness Assumption and the BDD Assumption, an initial state ~s0

that yields the same keystream as ! (0) can be computed with time and mem-

ory requirements in O
�

� (n)jQn j2
p (1 � �)

p + � n
�

from the �rst d
� � 1ne consecutive

keystream bits of K under ! (0) .

Note that by setting p = 1 in Theorem 5.18, we obtain the main Theorem

of Krause (2002).

5.4 Generic BDD Constructions

5.4.1 Keystream Consistency Check Qm

In most cases, a BDD Qm that checks Condition 2 can b e straightforwardly

derived from the de�nition of the keystream function C . If the computation of

a keystream bit zt dep ends on u(j) > 1 bits from an FSR R j
, a �xed bit in

the bitstream pro duced by R j
will generally app ear and have to b e read in the

computation of up to u(j) keystream bits. In this case, we compute a keystream

bit zt from a numb er of new bits which are b eing considered for the �rst time,

5.4 Generic BDD Constructions 55

and several old bits that were already involved in the computation of previous

keystream bits. This would imply (at least in a straightforward implementation)

reading a �xed variable more than once on the same path in Qm , which is

prohibited by the FBDD-de�nition. The less restrictive general BDDs would

p ermit this construction, but could no longer guarantee the e�ciency of the

op erations that our attack dep ends on (cf. Remark 5.3).

A similar problem has b een considered by Krause (2002) in the context of the

irregularly clo cked A5/1 generator (cf. Section 4.2.3), which uses the bits of the

internal bitstream b oth for computing keystream bits and as input for the clo ck

control mechanism. His solution was to increase the numb er of unknowns by

working with u(j) synchronized duplicates of the R j
-bitstream at the exp ense

of a reduced information rate � .

We now consider the more general situation that the keystream function

dep ends on new bits and some function(s) g1; : : : ; gr in the old bits. In order to

preserve the read-once prop erty, we intro duce auxiliary variables for the values

of these functions such that zt is computed only from new bits. This construction

is illustrated in the following example.

Example 5.19. Consider the keystream function zt = Cm (wt +5 ; wt +7 ; wt +9) ,

where Cm is de�ned by Cm (x1; x2; x3) = x1 � x2 � x3 . Assuming canonical

reading order, wt +9 would be the new bit and wt +5 and wt +7 the old bits. With

the auxiliary variable ~wt := g1(wt +5 ; wt +7) and g1(x1; x2) := x1 � x2 , we can

express zt as zt = ~wt � wt +9 .

In general, if we add for each of the r auxiliary variables an FSR to the gen-

erator that outputs at clo ck t the corresp onding value of gj , we can equivalently

compute zt without considering the bits from the internal bitstream more than

once. Obviously, we obtain a generator with a lowered information rate, since

more bits of the internal bitstream have to b e read in order to compute the

same numb er of keystream bits.

In the case of regularly clo cked keystream generators, we de�ne the set of

variable indices that the keystream function dep ends on as

I := f i jzt dep ends on wt + i g � f 0; : : : ; n � 1g :

The bits contributed by register R j
, j 2 f 1; : : : ; kg, can b e expressed as

I j := f i 2 I ji � j mo d kg :

Then, the set of new bits is given as

I � := f i �
1; : : : ; i �

k g with i �
j = argmax i 2 I j

f � m (i)g for j 2 f 1; : : : ; kg ;

and the old bits are those in the set I 0 := I nI �
.

Concerning the information rate of the mo di�ed generator, Observation 4.7

implies:

Observation 5.20. Fix a regularly clocked keystream generator and denote by

I the set of positions in the internal bitstream that its keystream function depends

on. If the keystream function can be expressed as a function depending on the

k variables in f wt + i ji 2 I � g and the values of r subfunctions depending on

the variables in f wt + i ji 2 I 0g, the keystream function can be transformed into

an equivalent read-once keystream generation algorithm such that the resulting

generator's information rate is � = 1
k+ r .

56 5.4 Generic BDD Constructions

5.4.2 FSR Consistency Check Rm

Recall that each bit wt of an internal bitstream w is either an initial state bit of

some FSR or a combination of other internal bits. In order to decide for a given

internal bitstream whether it satis�es Condition 1, we need to check whether

the up date relations imp osed on the bits at the combined p ositions are ful�lled.

Hence, if a combined bit wt is pro duced by an up date relation f (s0; : : : ; sn � 1) ,

we need to check whether f (wi 1 ; : : : ; wi p) = wt , which is equivalent to testing

whether

~f (wi 1 ; : : : ; wi p ; wt) := f (wi 1 ; : : : ; wi p) � wt = 0 :

The OBDD Sm implements this test for the single combined bit wm � 1 and

represents the constant-one function if wm � 1 is an initial bit. The OBDD Rm =V m
i =1 Si p erforms the consistency tests for the whole internal bitstream.

We �rst consider the case of FSRs (without additional memory), for which

we need the following de�nition.

De�nition 5.21. For a polynomial f : f 0; 1gn ! f 0; 1g with

f (w1; : : : ; wn) =
M

j 2 M

mj with monomials mj =
^

l 2 M j

wl and M j (f) � f 1; : : : ; ng

and a reading order � 2 � n , we de�ne the set of active monomials at time t as

AM � (f; t) := f mj : 0 < jf � � 1(1); : : : ; � � 1(t)g \ M j (f)j < jM j (f)jg :

Hence, AM(f; t) contains all monomials in f for which at least one, but not all

factors are known after the �rst t inputs have b een read.

Lemma 5.22. For a polynomial f : f 0; 1gn ! f 0; 1g with n > 1 and a reading

order � for the inputs, the set of inputs satisfying f (w1; : : : ; wn) = 0 can be

represented in a � -OBDD of width 2max 1� t � n fj AM � (f;t) jg +1
.

Pro of. Let p := max 1� t � n fj AM � (f; t)jg . In order to compute f (w1; : : : ; wn) ,

we may pro ceed in the following way. We de�ne p auxiliary variables b1; : : : ; bp ,

which will store the intermediate values of partly evaluated monomials, and

an additional variable b0 for the sum of evaluated monomials. We initialize

b0 := 0 , bt := 1 for t > 0, and read the variables w1; : : : ; wn in the order given

by � . For each variable wt , we up date all auxiliary variables that are asso ciated

with monomials containing wt . If a monomial b ecomes active by reading wt ,

we allo cate an auxiliary variable bj and de�ne bj := wt . If a monomial is

entirely evaluated after reading wt , we add its value to b0 and free the asso ciated

auxiliary variable. Since there are at most p active monomials at any time, no

more than p + 1 auxiliary variables will b e needed simultaneously.

Observation 5.14 implies that this strategy can b e transformed into a � -

OBDD of width 2p+1
, which imples the claim. 2

From Lemma 5.22, we can directly derive an upp er b ound for the width of

the � m -OBDD Sm for an FSR.

Corollary 5.23. For a given reading order � m , an integer m > 0, an FSR R
with update relation f , and p := max 0� t<m fj AM � m (~f ; t)jg+1 , we can construct

a � m -OBDD Sm of width at most 2p
that tests for an internal bitstream w 2

f 0; 1gm
if w ful�l ls the update relation imposed on wm � 1 .

5.4 Generic BDD Constructions 57

Remark 5.24. For the special case p = 1 , we obtain the LFSR-bound that was

proved by Krause (2002).

We now turn to the case of Fib onacci FCSRs. Eq. (3.6) implies that we

need access to � t � 1 in order to check whether the up date relation holds for

wt . Therefore, we work with a mo di�ed FCSR that essentially outputs the

sum � t instead of the bit wt = � t mo d 2 in each clo ck. For a Fib onacci FCSR

with p bits of additional memory, we let the mo di�ed FCSR output for an

initial memory state (b0
p� 1; : : : ; b0

0) with b0 =
P p� 1

i =0 b0
i 2i

the values y0
t =: � 0

t for

t < n � 1, (bp� 1
0 ; : : : ; b0

0; y0
n � 1) for t = n � 1, and (� p

t ; � p� 1
t ; : : : ; � 0

t) for t � n
with � t =

P p
i =0 � i

t 2
i

and wt = � 0
t .

Note that a bit wm in the output of the mo di�ed FCSR, m � 0, then

corresp onds to the i -th comp onent bit of some intermediate sum � t with

(i; t) = � (m) :=

8
<

:

(0; m) if m < n � 1
(m � (n � 1) mo d (p + 1) ; otherwise

(m � (n � 1) div (p + 1)) + (n � 1))
:

Lemma 5.25. For a Fibonacci FCSR R with p bits of additional memory, an

integer m > 0, and a reading order � m , we can construct a � m -OBDD Sm

of width at most 2p+1
that tests for the internal bitstream w 2 f 0; 1gm

of the

modi�ed FCSR with m = n � 1 + t(p + 1) whether the last p + 1 bits ful�l l the

update relation.

Pro of. In order to check whether � t = (� t � 1 div 2) +
P n

i =1 wt � i � di � 1 , we can

equivalently test if

� t =
pX

i =1

� i
t � 1 � 2i +

nX

i =1

� 0
t � i � di � 1 ;

since wt = � t mo d 2 = � 0
t .

Algorithm 6 describ es a read-once algorithm that checks whether the last

p + 1 bits of a bitstream w 2 f 0; 1gm
are consistent with the values of the

remaining bits in w . Since the algorithm uses exactly p + 1 bits of additional

memory, Observation 5.14 implies that it can b e transformed into an OBDD of

width at most 2p+1
, which implies the claim. 2

Note that according to Corollary 3.26, we have p � log(d) for a p erio dic

initial FCSR-state, where d denotes the FCSR's feedback tap vector.

In the case of Galois FCSRs with ai � di at all times, we denote by x i (t)
and ai (t) the value of the register cells x i and ai at time t . We think of the

main register of the Galois FCSR as pro ducing the bitstream

x0(0); x1(0); : : : ; xn � 1(0); : : : ; x i 1 (t); : : : ; x i l (t); : : : ;

where i j 2 f 1 � i < n jdi = 1 g, l = wt(d) � 1, i j < i j 0
for j < j 0

, and

t > 0. Similarly, we view the bitstream pro duced by the carry register as

ai 1 (t); : : : ; ai l (t); : : : for t � 0.

Lemma 5.26. For a Galois FCSR R with ai � 1 � di � 1 for al l i 2 f 1; : : : ; n � 1g,

an integer m > 0, and a reading order � m , we can construct a � m -OBDD Sm

58 5.4 Generic BDD Constructions

Algorithm 6 Fib onacciFCSR- Sm (� m ; w)

Let (i; t) := � (m)
if t < n � 1 then

return true // Nothing to check for initial bits

end if

~� := 0 // Initialize the (p + 1) -bit auxiliary variable

for j = 0 to m � 1 do

(i 0; t0) := � ((� m)� 1(j)) // Determine the � i 0

t 0 that corresp onds to the cur-

rently read variable wj

if t0 2 f t � n; : : : ; t � 1g and i 0 = 0 then

~� := ~� + wj � dt � t 0� 1

end if

if t0 = t � 1 and i 0 2 f 1; : : : pg then

~� := ~� + wj � 2i 0

end if

if t0 = t then

if ~� i 0
6= � i 0

t 0 then

return false

end if

end if

end for

return true

of width at most 2 that tests whether a bit in the bitstream produced by the main

register ful�l ls the corresponding update relations. For a bit in the bitstream

of the carry register, we can perform this consistency test in a � m -OBDD of

maximum width 8.

Pro of. The de�nition of Galois FCSRs implies xn � 1(t) = x0(t � 1) and for

i 2 f n � 2; : : : ; 0g that x i (t) = x i +1 (t � 1) if di = 0 and x i (t) = x i +1 (t � 1) �
ai (t � 1)� x0(t � 1) if di = 1 . Note that we have x i j +1 (t � 1) = x i j +1 (t � (i j +1 � i j))
and therefore

x i j (t) = x i j +1 (t � 1) � ai j (t � 1) � x0(t � 1)

= x i j +1 (t � (i j +1 � i j)) � ai j (t � 1) � x0(t � 1) :

According to Corollary 5.23, we can test these linear conditions in a � m -OBDD

of width at most 2.

Similarly, Corollary 5.23 yields a maximum width of 23 = 8 in the case of

the carry register, since bi j (t) can b e computed as

ai j (t) = x i j +1 (t � 1)ai j (t � 1) � ai j (t � 1)x0(t � 1) � x0(t � 1)x i j (t � 1)

= x i j +1 (t � (i j +1 � i j))ai j (t � 1) � ai j (t � 1)x0(t � 1)

� x0(t � 1)x i j +1 (t � (i j +1 � i j)) ;

which implies the claim. 2

From the b ounds on w(Sm) for the di�erent typ es of FSRs, we can now

straightforwardly derive a b ound for w(Rm) for an FSR-based keystream gener-

ator. Let K denote an FSR-based keystream generator consisting of k FSRs

5.5 Applications 59

R0; : : : ; Rk � 1
with � m -OBDDs S0

m ; : : : ; Sk � 1
m and w(Si

m) � 2pi
for all i 2

f 0; : : : ; k � 1g. Moreover, let si denote the fraction of combined bits that R i

contributes to the internal bitstream.

Corollary 5.27. There exists a � m -OBDD Rm of width at most 2jCP(m) j
P k � 1

i =0 pi si

that tests for a potential internal bitstream w 2 f 0; 1gm
of an FSR-based keystream

generator whether it is an m -extension of the initial bits.

Pro of. The claim follows directly from Rm =
V m

i =1 Si and the OBDD-prop erties

describ ed in Section 5.2. 2

5.5 Applications

5.5.1 Self-Shrinking Generator

As discussed in Section 4.2.1, the self-shrinking generator consists of only one

LFSR and no memory. It pro duces at most m keybits from an internal bitstream

w2m , i.e.,
 � 2m = m and
 = 0 :5.

Lemma 5.28. For al l keystreams z 2 f 0; 1g�
, there exist at most

� m= 2
jzj

�
2m= 2�j zj

internal bitstreams w 2 f 0; 1gm
such that Cm (w) = z .

Pro of. We �rst observe that due to
 = 0 :5, we have jCm (w)j � 0:5m , i.e., no

internal bitstream of length m can pro duce more than

m
2 keystreams bits. We

�x a keystream z of length at most

m
2 and let Zz = f w 2 f 0; 1gm : Cm (w) = zg.

For each w 2 Zz , there exists a set I = f i 1; : : : ; i j zj g � f 0; : : : ; m
2 g such that

(w2i j ; w2i j +1) = (1 ; zj) for j 2 f 1; : : : ; jzjg .

Moreover, w must satisfy w2i j = 0 for all i j 2 f 0; : : : ; m
2 gnI . There are

� m= 2
jzj

�
p ossible choices for I and 2m= 2�j zj

p ossible assignments to the unrestricted

variables. Hence,

jZz j =
�

m=2
jzj

�
2m= 2�j zj :

2

Corollary 5.29 (Krause (2002)). The information rate of the self-shrinking

generator is � = 1 � log(3)
2 � 0:2075.

Pro of. Lemma 5.28 implies that for a z 2 f 0; 1g�
,

jf w 2 f 0; 1gm : Cm (w) is pre�x of zgj =
m= 2X

j zj=0

�
m=2
jzj

�
2m= 2�j zj

=
m= 2X

j zj=0

�
m=2
jzj

�
1j zj 2m= 2�j zj

=(1 + 2) m= 2 = 3 m= 2 :

Hence,

� = �
1
m

Pr
w

[Cm (w) is Pre�x of z]

= �
1
m

jf w 2 f 0; 1gm : Cm (w) is pre�x of zgj
2m

= 1 �
log(3)

2
� 0:2075 ;

60 5.5 Applications

which concludes the pro of. 2

Algorithm 7 tests whether a given internal bitstream w is consistent with a

keystream pre�x z . Since the algorithm is read-once and uses at most blog(m)c+
1 bits of additional memory, Observation 5.14 implies that it can b e transformed

into a � m -OBDD Qm with w(Qm) � m and jQm j � m2
, where � m denotes the

canonical reading order.

Algorithm 7 SelfShrinkingGenerator- Qm (w; z)
t := 0
u := 0 // auxiliary variable u , u � b m

2 c
while t < m � 1 do

if wt = 1 then

if zu 6= wt +1 then

return false

end if

u := u + 1
end if

t := t + 2
end while

return true

Altogether, we obtain from Theorem 5.18, Corollary 5.23, and Remark 5.24:

Corollary 5.30 (Krause (2002)). From a pre�x of length d2:41ne of a keystream

z = Cm (L (x)) produced by a self-shrinking generator of key length n , an ini-

tial state ~x with Cm (L (~x)) = z can be computed in time and with space in

O(n2 � 20:6563n) .

Compared with the attacks mentioned in Section 4.2.1, the BDD-Attack is

almost as fast as the currently b est short-keystream attack due to Hell and

Johansson (2006), but consumes exp onentially more memory.

5.5.2 Blueto oth Keystream Generator E0

Recall from Section 4.2.2 that the E0 keystream generator is a regularly clo cked

(4; 4)-combiner with 4 LFSRs, a 4-bit memory unit and an internal state size of

128 bits. Therefore, we have � =
 = 1
4 .

Algorithm 8 tests whether a given internal bitstream w is consistent with an

observed E0 -keystream z , given that the initial memory state is q0 . Exploiting

Eqs. (4.1) and (4.2), the algorithm relies on a lo okup-table � 0 : f 0; : : : ; 4g�f 0; 1g4

that maps the sum s0
t =

P 3
i =0 wi

t and the current memory state qt to the next

memory state qt +1 = � 0(s0
t ; qt) . Since the algorithm uses a constant amount

of additional memory, it can b e transformed into a � m -OBDD Qm of constant

maximum width, as indicated by Observation 5.14. Similarly to the case of the

Self-Shrinking Generator, � m denotes the canonical reading order.

In summary, Theorem 5.18, Corollary 5.23, and Remark 5.24 imply the

following p erformance �gures for the BDD-based attack on E0 .

Corollary 5.31 (Krause (2002)). From a pre�x of length n of a keystream

z = Cm (L (x)) produced by an E0 keystream generator of key length n , an initial

5.5 Applications 61

Algorithm 8 E0 - Qm (q0 , w , z)

// w is interpreted as w = w0
0 ; : : : ; w3

0 ; : : : ; w0
j ; : : : ; w3

j ; : : : ; wm � 1 mo d 4
m � 1 div 4

t := 0
s := 0 // auxiliary variable for the integer sum, s 2 f 0; : : : ; 4g
q := q0 // auxiliary variable for the memory state

for t = 0 to bm
4 c � 1 do

s := w0
t + w1

t + w2
t + w3

t

if (s mo d 2) �
L 3

i =0 ci q 6= zt then

return false

end if

q := � 0(s; q)
end for

return true

state ~x with Cm (L (~x)) = z can be computed in time and with space in O(n�20:6n) ,

i.e., with 276:8
polynomial-time operations for n = 128 .

The BDD-Attack slightly improves the attack by Fluhrer and Lucks (2001),

which trades o� time and the numb er of required keystream bits. For the min-

imum numb er of 132 available keystream bits the attack needs 284
p olynomial

time op erations.

5.5.3 GSM Keystream Generator A5/1

We note that a bit that serves as input for the keystream function f at a par-

ticular time has b een considered a few clo ckings earlier by the clo ck control

mechanism. Based on our observations in Section 5.4.1, we therefore duplicate

the three registers of A5/1 such that the keystream bits are computed from the

�rst three registers and the clo ck control op erates on the remaining registers.

However, the keystream generation algorithm of the resulting generator is still

not read-once, since the bits of unclo cked registers are reconsidered in subse-

quent iterations. The read-once Algorithm 9 �xes this problem by intro duc-

ing auxiliary variables for these unchanged values. It can b e straightforwardly

checked that this algorithm is equivalent to the original A5/1 algorithm.

Due to the irregular clo cking of the A5/1 algorithm, the information rate �
is a little less straightforward to compute, but can b e determined as follows.

Lemma 5.32 (Krause (2002), Stegemann (2004)). The information rate

of the modi�ed A5/1 keystream generator is given by

� =
1
2

logu1 � 0:2193 ;

where u1 denotes the positive real root of the polynomial p(u) = u3 � 3u2 + 8 .

Pro of. The Indep endence Assumption has b een shown to hold for A5/1 by

Krause (2002) and Stegemann (2004). For an arbitrary keystream z , m � 1,

and a randomly chosen internal bitstream w , jwj = m , let

p(m) := Pr
w

[Cm (w) is pre�x of z] :

62 5.5 Applications

Algorithm 9 read-once-A5/1(w)

// w is interpreted as w = w0
0 ; : : : ; w5

0 ; : : : ; w0
j ; : : : ; w5

j ; : : : ; wm � 1 mo d 6
m � 1 div 6

i := [0 ; 0; 0] // current read p ositions

u := NIL // unchanged index 2 f 0; 1; 2; NIL g
v := NIL // unchanged control value 2 f 0; 1; NIL g
v0 := NIL // unchanged output value 2 f 0; 1; NIL g
t := 0
while (true) do

if 9r 2 f 0; 1; 2gnfug : 6 � i [r] + r � m then

stop

end if

Read := f 0; 1; 2gnfug
Let r0; : : : ; r jRead j� 1 the elements of Read in ascending order, i.e. rm < r n

for m < n
out[r0] := wr 0

i [r 0]

out[r1] := wr 1
i [r 1]

if u 6= NIL then // 9 an unchanged index

out[u] := v0
// copy the unchanged output value

else // all read p ositions incremented

out[r2] := wr 2
i [r 2] // read the third output value

end if

output zt = out[0] � out[1] � out[2]
if 9r 2 f 0; 1; 2gnfug : 6 � i [r] + 3 + r � m then

stop

end if

c[r0] := w3+ r 0
i [r 0]

c[r1] := w3+ r 1
i [r 1]

if u 6= NIL then // 9 an unchanged index

c[u] := v // copy the unchanged control value

else // all read p ositions incremented

c[r2] := w3+ r 2
i [r 2] // read the third control value

end if

controlbit := maj 3(c[0]; c[1]; c[2])
if 9r 2 f 0; 1; 2g : c[r] 6= controlbit then

// By de�nition of maj 3 , 9 at most one such r
u := r // set unchanged index

v := controlbit � 1 // set unchanged control value

v0 := out[r] // set unchanged output value

else // all read p ositions incremented

u := v := v0 := NIL
end if

for l 2 f 0; 1; 2gnfug do

i [l] := i [l] + 1 // increment read p ositions

end for

t := t + 1
end while

5.5 Applications 63

Moreover, de�ne for m � 0 and k � m

p(m; k) := Pr
w2 u f 0;1gm

[jCm (w)j = k] :

Since a keystream bit is computed either from 4 or 6 internal bits, we have

m
6 � j Cm (w)j � m

4 . Based on Equation (4.3) we can express p(m) as

p(m) = Pr
w

[Cm (w) is pre�x of z]

=
d
m eX

i =0

Pr
w

[jCm (w)j = i] � Pr
jCm (w) j= i

[Cm (w) = z0; : : : ; zi � 1]

=

m
4X

k= m
6

p(m; k) � 2� k :

Furthermore, Lemma 4.5 implies � = � 1
m log2(p(m)) . Therefore, we now

derive a suitable recurrence relation for p(m) and use this expression to compute

� .

Let W denote the random variable that stores the numb er of internal bits

that were used for the computation of the �rst

m
6 keystream bits. Moreover,

let W 0
store the numb er of keystream bits that were computed from 6 internal

bits. These de�nitions imply

W = 6 � W 0+ 4 � (
m
6

� W 0) :

The numb er of internal bits that have not b een read after the

m
6 keystream bits

have b een pro duced is given by

m � W = m � (6 � W 0+ 4 � (
m
6

� W 0)) =
1
3

m � 2W 0 :

We obtain the following recurrence relation for p(m) .

p(m) =

m
6X

i =0

0

@2� m
6 Pr[W 0 = i] �

(1
3 m � 2i)=6X

j =(1
3 m � 2i)=6

2� j p
�

1
3

m � 2i; j
�

1

A

=

m
6X

i =0

2� m
6 Pr[W 0 = i] � p

�
1
3

m � 2i
�

Since W 0
is

�
m
6 ; 1

4

�
-binomially distributed (cf. Stegemann (2004) for a

pro of), we can write Pr[W 0 = i] as

Pr[W 0 = i] =
� m

6

i

� �
1
4

� i �
3
4

� m
6 � i

;

which implies

p(m) =

m
6X

i =0

2� m
6

� m
6

i

� �
1
4

� i �
3
4

� m
6 � i

� p
�

1
3

m � 2i
�

64 5.5 Applications

With p(m) = 2 � �m
, we obtain a recurrence relation for � :

2� �m =

m
6X

i =0

2� m
6

� m
6

i

� �
1
4

� i �
3
4

� m
6 � i

� 2� � (1
3 m � 2i)

= 2 � (1
6 + �

3)m

m
6X

i =0

� m
6

i

� �
1
4

� i �
3
4

� m
6 � i

� 22�i

Lemma 5.45 implies that this equation is equivalent to

2� �m = 2 � (1
6 + �

3)m
�

1
4

� m
6

(3 + 2 2�)
m
6

() 2� 6� = 2 � (1+2 �) 1
4

(3 + 2 2�)

() 21� 4� =
1
4

(3 + 2 2�)

() 2(22�)� 2 �
1
4

(22�) �
3
4

= 0

By substituting u := 2 2�
, i.e., � = 1

2 logu , we �nally obtain

u3 + 3 u2 � 8 = 0 : 2

The read-once Algorithm 10 tests for a given internal bitstream w and an

observed keystream z whether z could have b een pro duced by w . In order to

transform Algorithm 10 into an FBDD, we pro ceed as follows. We �rst convert

the function output-test into an output � FBDD(i; u; v; v 0; t) . Let out[r j] denote

the value of the variable wr j

i [r j] for j 2 f 0; 1; 2g and let

v̂0 :=
�

out[r0] � out[r1] � out[r2] u = NIL
out[r0] � out[r1] � v0 u 6= NIL

:

Then, output � FBDD(i; u; v; v 0; t) is a complete binary tree of depth 2 if u 6=
NIL and a complete binary tree of depth 1 if u = NIL with

qj =
�

control � FBDD(i; u; v; v̂0; out; t) if v̂0 = wt

0 � sink otherwise

:

If there exists an r 2 f 0; 1; 2gnfug such that 6 � i [r] + r � m , then

output � FBDD(i; u; v; v 0; t)

is identical to the 1-sink. Similarly, in order to convert the function control � test
into a

control � FBDD(i; u; v; v 0; out; t) ;

let c[r j] denote the value of w3+ r j

i [r j] , set

controlbit :=
�

maj3(c[r0]; c[r1]; c[r2]) if u = NIL
maj3(c[r0]; c[r1]; v) if u 6= NIL

;

and de�ne î , û , v̂ , and v̂0
as in the function control � test .

5.5 Applications 65

control � FBDD(i; u; v; v 0; t) is then a complete binary tree of depth 2 if

u 6= NIL and a complete binary tree of depth 1 if u = NIL with

qj = output � FBDD(î; û; v̂; v̂0; t + 1) :

As ab ove, if there exists an r 2 f 0; 1; 2gnfug such that 6 � i [r] + 3 + r � m ,

then control � FBDD(i; u; v; v 0; t) is identical to the 1-sink.

Altogether, the FBDD Qm is given by

output � FBDD([0 ; 0; 0]; NIL ; NIL ; NIL ; 0) :

Since the sub-FBDDs output � FBDD and control � FBDD have constant

sizes and there are at most O(m4) di�erent sub-FBDDs, the size of Qm satis�es

jQm j 2 O (m4) .

Ignoring the current p osition t in the keystream and omitting the test whether

zt = v̂0
in the function output � test , we can straightforwardly derive from Qm

the oracle graph G0
m that de�nes the order in which the bits of the wj are read

in Qm . It is easy to see that jG0
m j 2 O (m3) .

Algorithm 10 A5/1- Qm (w; z)

// w is interpreted as w = w0
0 ; : : : ; w5

0 ; : : : ; w0
j ; : : : ; w5

j ; : : : ; wm � 1 mo d 6
m � 1 div 6

exp ort w; m; z // global variables

return output-test([0,0,0],NIL,NIL,NIL,0)

The de�nition of A5/1 implies that the keystream function reads the bits

pro duced by a �xed LFSR R j
, j 2 f 0; : : : 5g, in canonical order. Hence, the

reading order � j
m de�ned by � j

m (i) := i div k for i � j mo d 6 is consistent with

G0
m in the sense of De�nition 5.11. Observation 5.12 then implies that the � j

m -

OBDD Sm with j = (m � 1) mo d 6 constructed according to Corollary 5.23

and Remark 5.24 is a G0
m -FBDD.

Obviously, at most

m
4 keybits are pro duced from an internal bitstream of

length m , which implies
 = 1
4 .

In summary, we obtain by plugging the computed values into the statements

of Theorem 5.18:

Corollary 5.33 (Krause (2002)). From a pre�x of length d1:14ne of a keystream

y = Cm (L (x)) produced by an A5/1 keystream generator of key length n , an ini-

tial state ~x with Cm (L (~x)) = y can be computed in time and with space in

O(n10 � 20:6403n) , i.e, with 20:6403n = 2 41
polynomial-time operations for n = 64 .

We note that since d1:14ne = 73 and the framelength in GSM is 114 Bits for

each direction , we only need the �rst frame, i.e., the �rst around 4:6 millisec-

onds, of a conversation in order to reconstruct the initial state of the keystream

generator.

5.5.4 Trivium

Trivium (see Section 4.2.4) is a regularly clo cked keystream generator consisting

of three interconnected NFSRs R0
, R1

, R2
of lengths n(0) = 93 , n(1) = 84 , and

n(2) = 111 . The 288-bit initial state of the generator is derived from an 80 bit

66 5.5 Applications

function output-test(i; u; v; v 0; t)

// i =current read p ositions

// u =unchanged index 2 f 0; 1; 2; NIL g
// v =unchanged control value 2 f 0; 1; NIL g
// v0

=unchanged output value 2 f 0; 1; NIL g
// t =current p osition in the keystream

if 9r 2 f 0; 1; 2gnfug : 6 � i [r] + r � m then

return true

end if

Read := f 0; 1; 2gnfug
Let r0; : : : ; r jRead j� 1 the elements of Read in ascending order, i.e. rm < r n

for m < n
out[r0] := wr 0

i [r 0]

out[r1] := wr 1
i [r 1]

if u 6= NIL then // 9 an unchanged index

out[u] := v0
// copy the unchanged output value

else // all read p ositions incremented

out[r2] := wr 2
i [r 2] // read the third output value

end if

v̂0 := out[0] � out[1] � out[2]
if zt 6= v̂0

then

return false // keystream inconsistent

end if

return control-test(i; u; v; v̂0; out; t)

key and an 80 bit IV. The keystream function computes a keystream bit zt by

linearly combining six bits of the internal state, with each NFSR contributing

two bits (cf. Section 4.2.4 for details). In order to mount the BDD-attack on

Trivium , we write the keystream function as

zt = g1(s1; s94; s178) � s28 � s109 � s223

and pro ceed as describ ed in Section 5.4.1 by adding an LFSR R3
which computes

g1 to the generator. For � m equal to the canonical reading order, we have pi =
max1� t � 288 fj AM � m (~f i ; t)jg + 1 = 2 and si = 1

4 for i 2 f 0; 1; 2g as well as p3 = 1
and s3 = 1

4 , which implies p =
P 3

i =0 pi si = 7
4 . Since the mo di�ed generator

computes one keystream bit from four internal bits, we have � (m) = 1
4 m and

� =
 = 1
4 . Based on Lemma 5.22, we can obviously construct a � m -OBDD Qm

with w(Qm) � 2 that p erforms the consistency test for the observed keystream

z .

Observation 5.34. For Trivium we have Prw [Cm (w) is pre�x of z] = pC (m) =
2�j Cm (w) j

, i.e., the Independence Assumption holds.

Pro of. Let ~z = (~z1; : : : ; ~zj ~zj) denote an arbitrary j~zj -bit keystream. Since w(m)

is randomly chosen and uniformly distributed, we have

Pr
w

[z1 = w1 + w28 + w94 + w109 + w178 + w223 = ~z1] =
1
2

:

5.5 Applications 67

function control-test(i; u; v; v 0; out; t)
if 9r 2 f 0; 1; 2gnfug : 6 � i [r] + 3 + r � m then

return true

end if

Read := f 0; 1; 2gnfug
Let r0; : : : ; r jRead j� 1 the elements of Read in ascending order, i.e. rm < r n

for m < n
c[r0] := w3+ r 0

i [r 0]

c[r1] := w3+ r 1
i [r 1]

if u 6= NIL then // 9 an unchanged index

c[u] := v // copy the unchanged control value

else // all read p ositions incremented

c[r2] := w3+ r 2
i [r 2] // read the third control value

end if

controlbit := maj 3(c[0]; c[1]; c[2])
if 9r 2 f 0; 1; 2g : c[r] 6= controlbit then

// By de�nition of maj 3 , 9 at most one such r
û := r // set unchanged index

v̂ := controlbit � 1 // set unchanged control value

v̂0 := out[r] // set unchanged output value

else // all read p ositions incremented

û := v̂ := v̂0 := NIL
end if

for l 2 f 0; 1; 2g do

î [l] := i [l] +
�

1 l 6= u
0 l = u

end for

return output-test(î; û; v̂; v̂0; t + 1)

68 5.5 Applications

Three of the six internal bits utilized in the computation of a particular key-

bit will b e reused in later steps, but each step also involves three previously

unconsidered bits. Hence, the claim follows by induction. 2

By plugging � ,
 and p into the statement of Theorem 5.18, we obtain:

Theorem 5.35. The secret initial state of the Trivium automaton can be re-

covered from the �rst n keystream bits in time and with space in O
�
n � 20:65625n

�
�

2189
for n = 288 .

Theorem 5.35 shows that the BDD-attack is applicable to Trivium , but its

p erformance is not comp etitive with recently published attacks requiring only

245
op erations as describ ed in Section 4.2.4.

5.5.5 Grain-128

The regularly clo cked stream cipher Grain-128 (see Section 4.2.5) has a key size

of 128 bits and an IV size of 96 bits. The design is based on two interconnected

shift registers, an LFSR R0
and an NFSR R1

, b oth of lengths n(0) = n(1) = 128
and a nonlinear keystream function. We denote the content of the LFSR by

st ; st +1 ; : : : ; st +127 and the content of the NFSR by bt ; bt +1 ; : : : ; bt +127 . The

corresp onding up date functions and the keystream function are given in Sec-

tion 4.2.5.

We add to the keystream generator an NFSR R2
which computes the keystream

bits zt and have the generator output the values pro duced by R2
in each clo ck.

More precisely, we can compute zt as

zt = g1(bt +2 ; bt +15 ; bt +36 ; bt +45 ; bt +64 ; bt +73 ; bt +89 ; bt +12 ; st +8 ; st +13 ; st +20 ;

st +60 ; st +79) � bt +95 g2(st +42) � g3(bt +12)bt +95 st +95 ;

where g2(st +42) = st +42 and g3(bt +12) = bt +12 and g1 contains 3 monomials of

degree 2.

Hence, we can compute one keystream bit from 3 internal bits, which implies

� (m) = 1
3 m and � =
 = 1

3 . For � m equal to the canonical reading order, it

is p0 = 1 , and we have p1 = max 0� i � 117fj AM � m (~f 1; t + i)jg + 1 = 4 , and

p2 = max 0� i � 95fj AM � m (~f 2; t + i)jg + 1 = 4 . Hence, p = 1
3 + 4

3 + 4
3 = 3 .

Obviously, the consistency test for an observed keystream can b e p erformed by

a � m -OBDD Qm with w(Qm) � 23 = 8 according to Lemma 5.22. Since new bits

are utilized in the computation of each keybit, we can exp ect the Indep endence

Assumption to hold.

Hence, the application of Theorem 5.18 yields

Theorem 5.36. The secret initial state of the Grain automaton can be recov-

ered from the �rst n keystream bits in time and with space in O
�
n � 20:6n

�
� 2154

for n = 256 .

Compared to the attacks listed in Section 4.2.5, although far from the e�ort

required by exhaustive key search, Theorem 5.36 is to the b est of our knowl-

edge the �rst exploitable cryptanalytic result under realistic assumptions b e-

sides generic time-memory-data-tradeo� attacks as presented by Biryukov and

Shamir (2000).

5.5 Applications 69

5.5.6 The F-FCSR Stream Cipher Family

The F-FCSR stream cipher family in its current version consists of the variants

F-FCSR-H and F-FCSR-16 (see Section 4.2.6).

F-FCSR-H has key length 80 bits and consists of a single Galois FCSR M
of length n = 160 and a feedback tap vector d of Hamming weight 83. Memory

cells are only present at those 82 p ositions i 2 f 1; : : : ; n � 1g, for which di = 1 .

At each clo ck, eight keystream bits bi are created by taking the XOR-sum of up

to 15 variables of the current internal state (cf. Section 4.2.6 for details).

In order to mount the BDD-attack, we split the FCSR into the main register

R0
and the carry register R1

. Since each keystream bit is computed as the

sum of up to 15 internal bits, we are in a similar situation as describ ed in

Example 5.19 and need additional LFSRs R2; : : : ; R9
to compute the keystream

bits zi , 0 � i < 8. The mo di�ed keystream function simply returns these

bits in each clo ck. With l := wt(d) � 1 we obtain eight keystream bits from

2l + 8 internal bits, hence � (m) = 8
2l +1 m and � =
 = 8

2l +8 = 2
43 . We have

p0 = p1 = l , pi = 1 for i 2 f 2; : : : ; 9g, s0 = s1 = l
2l +8 , and si = 1

2l +8 for

2 � i � 9, which implies p = 2l 2 +1
2l +1 .

Obviously, the consistency test for the observed keystream z can b e p er-

formed by an OBDD Qm with w(Qm) � 2. Since the computation of the

keybits involves new internal bits in every clo ck, we can exp ect the Indep en-

dence Assumption to hold. Note that we have l additional unknowns from the

initial value of the carry register.

Plugging the computed values into the statement of Lemma 5.17 implies the

following theorem.

Theorem 5.37. The secret initial state of the F-FCSR-H automaton can be re-

covered from the �rst n+ l keystream bits in time and with space in O
�
n � 20:9925(n + l)

�
�

2241
for n = 160 and l = 82 .

The F-FCSR-16 generator has the same structure as F-FCSR-H, but larger

parameters. More precisely, we have key length 128 bits, n = 256 and the

feedback tap vector has Hamming weight 131 (i.e., l = 130), where memory cells

are only present at nonzero tap p ositions as b efore. Since F-FCSR-16 pro duces

16 keystream bits p er clo ck, we construct 16 additional LFSRs that pro duce

these bits. Hence, we can compute 16 keystream bits from 2l + 16 internal bits,

which implies � (m) = 16
2l +16 m and � =
 = 16

2l +16 = 4
69 . Analogously to the

case of F-FCSR-H, we obtain p = 2l 2 +16
2l +16 . The mo di�ed generator satis�es the

Indep endence Assumption as b efore, and we have l = 130 additional unknowns.

We obtain by applying Lemma 5.17:

Theorem 5.38. The secret initial state of the F-FCSR-16 automaton can be re-

covered from the �rst n+ l keystream bits in time and with space in O
�
n � 20:94(n + l)

�
�

2363
for n = 256 and q0 = 8 .

Our analysis supp orts the security requirement that the Hamming weight of

c should not b e to o small, which Arnault et al. (2006) motivated by completely

di�erent arguments. Although the BDD-attack is to the b est of our knowledge

the �rst nontrivial attack on the current version of the F-FCSR family, its

e�ciency is by no means close to exhaustive key search.

70 5.6 Divide-and-Conquer Strategies (DCS)

5.6 Divide-and-Conquer Strategies (DCS)

One obvious disadvantage of BDD-based attacks is their high memory consump-

tion, which is essentially determined by the size of the intermediate BDDs Pm .

One p ossible approach are divide-and-conquer strategies (DCS) that divide the

search space, i.e., the set f 0; 1gm
of internal bitstreams of length m , into seg-

ments and to apply BDD-based attacks to the segments individually.

We represent a segmentation of f 0; 1gm
by a function � m : f 0; 1gm ! f 0; 1g�

assigning a segment to each internal bitstream. The numb er of di�erent seg-

ments is then given by jim(� m)j . We denote by � &
m the characteristic function

of segment &2 im(� m) , i.e.,

� &
m : f 0; 1gm ! f 0; 1g

w 7!
�

1 if � m (w) = &
0 otherwise

:

Consequently, we denote by � &
m the G0

m -FBDD representing � &
m , i.e., the G0

m -

FBDD that accepts exactly those w 2 f 0; 1gm
that satisfy � &

m (w) = 1 . Based

on a segmentation � m , we can p erform the BDD-based attack as outlined in

Algorithm 11.

Algorithm 11 RecoverInitialState-DCS

for all &2 im(� m) do

P& = Qn min ^ � &
n min

for m = nmin + 1 to d� � 1ne do

P& = MIN (P& ^ Qm ^ Sm ^ � &
m)

end for

if (P&)� 1 (1) 6= fg then

return the initial state bits contained in one of the w 2 (P&) � 1 (1)
end if

end for

In the same way as the original attack describ ed in Algorithm 5, the p er-

formance of the DCS-based attack fundamentally dep ends on the size of the

intermediate FBDDs P&
m . Compared to the FBDDs Pm in the original attack,

P&
m satis�es j(P&

m)� 1(1)j � j (Pm)� 1 (1)j due to its construction. Hence,

m � j (P&
m)� 1 (1)j � m � j (Pm) � 1 (1)j :

On the other hand, the construction of P&
m implies

jG0
m j � jQm j � jRm j � j � &

m j � j G0
m j � jQm j � jRm j ;

i.e., one of the two b ounds that we have used to estimate jPm j in the pro of

of Lemma 5.17 decreases and the other one increases. We conclude that in

general, we will only b ene�t from a divide-and-conquer strategy if j� &
m j is small

(preferrably p olynomial in m) and jim(� m)j , the numb er of segments, is not

to o large, as we have to apply the attack to each segment instead of only once.

However, since a particular internal bitstream b elongs to exactly one segment,

the sets of internal bitstreams mapp ed to the same segment are disjoint, and

the attacks on the individual segments can b e e�ciently parallelized.

5.6 Divide-and-Conquer Strategies (DCS) 71

We now consider the sp ecial case of setting constant the bits at certain initial

p ositions in the internal bitstream. If V � IP(m) , jV j � n , denotes the set of

initial p ositions to b e set constant, we de�ne the restriction of w 2 f 0; 1gm
to

the bits at the p ositions in V as wjV := (wi 1 ; : : : ; wi j V j) with i j 2 V , i j < i k for

j < k , and the corresp onding segmentation function as

� m;V : f 0; 1gm ! f 0; 1gjV j

w 7! wjV
:

We call a p osition j � 1 a V- determined p osition in w = (w0; : : : ; wm � 1) if

j 2 V [f 0; : : : ; m � 1g or if the value of wj is determined by the bits wl , l 2 V .

We note that jim(� m;V)j = 2 jV j
and that the construction of the G0

m -FBDD

� &
m;V is trivial, while its size is b ounded by j� &

m;V j 2 O (jV j) . The attack on

an individual segment &2 f 0; 1gjV j
only needs to regard the bits at the n � j V j

non-constant initial p ositions as unknowns, and in the worst case, there are

no V -determined p ositions except for those in V . The DCS-based attack on a

single segment therefore corresp onds (in the worst case) to the original attack

with reduced key length. Following the lines of the pro of of Lemma 5.17 we

straightforwardly obtain

Theorem 5.39. For an FSR-based keystream generator ful�l ling the require-

ments of Lemma 5.17 and a divide-and-conquer strategy based on setting con-

stant the bits at initial positions j 2 V , jV j � n , the divide-and-conquer algo-

rithm (Algorithm 11) wil l consume time in the order of O
�
2jV j � (n)jQn jjV j2r � �

and memory in the order of O
�
� (n)jQn jjV j2r � �

, with r � := p(1 � �)
p+ � (n � j V j) .

5.6.1 DCS for regularly clo cked (k, l) -Combiners

Based on Theorem 5.39, we analyze two particular choices for V that are appli-

cable to regularly clo cked (k; l) -combiners, e.g., the E0 keystream generator.

First, we de�ne V to contain exactly the p ositions of the �rst s initial bits

of each FSR. In the worst case, there are no V -determined p ositions b esides the

p ositions in V .

For a segment & 2 im(� m;V) , a BDD-based search of the corresp onding

segment requires as much e�ort as the original BDD-attack on a (k; l) -combiner

of key length (n� ks) . We therefore obtain r � = k � 1
k+1 (n� ks) and the exp onential

part of the overall runtime b ecomes

2ks + k � 1
k +1 (n � ks) = 2

k � 1
k +1 n + 2k

k +1 s ;

which is by a factor of 2
2k

k +1 s
worse than in the original attack. On the other

hand, the required memory is reduced by a factor of 2
k � 1
k +1 ks

.

We note that we only need to consider the assignments to the p ositions

in V that are consistent with z . If the combination of the �rst s initial bits

in each register determines the values of the �rst s keystream bits (E0 has

this prop erty, for instance), Lemma 5.15 implies that it is su�cient to consider

around jf 0; 1g(1 � �)ks j = 2 (k � 1)s
of the jim(� m;V)j = 2 ks

p ossible segments,

which makes the runtime decrease by a factor of 2s
to

2
k � 1
k +1 n + k � 1

k +1 s :

72 5.6 Divide-and-Conquer Strategies (DCS)

Lemma 5.40. For a regularly clocked (k; l) -combiner ful�l ling the requirements

of Lemma 5.17 and the divide-and-conquer strategy of setting constant the �rst

s bits produced by each FSR, the divide-and-conquer algorithm (Algorithm 11)

wil l consume time in the order of O
�

� (n)jQn j � ks � 2
k � 1
k +1 (n + s)+ s

�
and memory

in the order of O
�

� (n)jQn j � ks � 2
k � 1
k +1 (n � ks)

�
. If the combiner always produces

s keystream bits from the registers' �rst s initial bits, the runtime decreases by

a factor of 2s
.

The E0 keystream generator is a regularly clo cked (4; 4)-combiner, which

implies

Corollary 5.41. For the E0 keystream generator with key length n = 128 ,

choosing V to contain the positions of the �rst s initial bits of each LFSR yields

a runtime of the DCS-based attack of 20:6(128+ s)
polynomial time operations and

a memory consumption in the order of 20:6(128 � 4s)
.

As a second example, we cho ose as V the set of all initial p ositions that

b elong to the shortest FSR, w.l.o.g. the FSR R0
. If we denote by n0 � n

k
the length of R0

, f 0; 1gn 0
is the set of all p ossible initial states of R0

. Since

every k -th p osition of an internal bitstream w is V -determined, the attack on a

particular segment corresp onds to the p erformance of the original BDD-attack

on a (k � 1; l) -combiner of key length n � n0 , hence r � = k � 2
k (n � n0) . It is easy

to see that for n0 � n
k+1 , we have

jV j + r � = n0 +
k � 2

k
(n � n0) �

k � 1
k + 1

n ;

which means that for su�ciently small n0 , we even obtain a runtime improve-

ment in addition to the signi�cantly reduced space consumption.

Lemma 5.42. For a regularly clocked (k; l) -combiner ful�l ling the requirements

of Lemma 5.17, n0 the length of the shortest FSR, and the divide-and-conquer

strategy of setting constant the shortest FSR, the divide-and-conquer algorithm

(Algorithm 11) wil l consume time in the order of O
�

� (n)jQn j � n0 � 2n 0 + k � 2
k (n � n 0)

�

and memory in the order of O
�

� (n)jQn j � n0 � 2
k � 2

k (n � n 0)
�

.

In the case of the E0 keystream generator, we have n0 = 25 � 25:6 = 128
4+1

and obtain

Corollary 5.43. For the E0 keystream generator with key length n = 128 ,

choosing V to be the set of al l initial positions that belong to the LFSR of

length n0 = 25 (the shortest LFSR) yields a runtime of the DCS-based attack of

225+ 1
2 103 = 2 76:5

polynomial-time operations and a memory consumption in the

order of 251:5
.

Compared to the original BDD-attack, we have improved the memory con-

sumption by a factor of ab out 225
and the runtime by a factor of 20:3

.

Shaked and Wo ol (2006) set constant the last parts of the LFSRs in E0

(60 bits in total) and thereby lowered the memory requirements to 223
while

increasing the runtime to the order of 283
.

5.6 Divide-and-Conquer Strategies (DCS) 73

5.6.2 DCS for the A5/1 Generator

In the following, we compute the information rate of the A5/1 generator with

resp ect to a family of choices for the set V , particularly those de�ned by setting

constant the initial states of one or more LFSRs. As stated in Section 5.5.3,

in the unmo di�ed de�nition of the A5/1 generator, each of the three LFSRs

is divided into two, approximately equally long halfs, a value-half consisting of

the output cell and the cells b etween output and clo ck-control cell and a control

half consisting of the clo ck-control cell and the rest of the register. Since the

value-LFSRs and the control-LFSRs in the mo di�ed setting corresp ond to the

value-halfs and the control-halfs in the unmo di�ed case, setting constant the

initial states of LFSRs or half-LFSRs in the original de�nition is equivalent to

�xing the corresp onding LFSRs in the mo di�ed case.

For all natural numb ers i � 1, we denote by Z i and Wi the random vari-

ables corresp onding to the i -th keystream bit and the numb er of internal bits

pro cessed for the pro duction of the i -th keystream bit, resp ectively, taken over

the probability space of all random internal bitstreams. In all cases, Z i and Wi

will ful�ll the following conditions.

� For all i > 1, Wi is indep endent of W1; : : : ; Wi � 1 , and Z i is indep endent

of Z1; : : : ; Z i � 1 .

� P r [Z i = 0] = P r [Z i = 1] = 1
2 .

� There are natural numb ers a > b > c and probabilities p, q and r = 1 � p� q
such that P r[Wi = a] = p, P r[Wi = b] = q, and P r[Wi = c] = r .

We denote the situation that Z i and Wi ful�ll the ab ove conditions as case

[(p; a); (q; b); (r; c)] . It can b e easily checked that the unrestricted A5/1 gen-

erator corresp onds to case [(1=4; 6); (3=4; 4); (0; 0)]. We will see b elow that all

generators derived from the A5/1 generator by setting constant one or more of

the six LFSRs corresp ond to [(p; a); (q; b); (r; c)] for some p; q; r; a; b; c. We may

then compute the information rate � with the help of the following Theorem.

Theorem 5.44. In the case [(p; a); (q; b); (r; c)] , the information rate equals � ,

where t = 2 �
is the unique positive real solution of pta + qtb + rt c � 2 = 0 .

Note that for the sp ecial case [(1; k); 0; 0] the information rate is 1=k.

In order to prove Theorem 5.44, we need the following technical result.

Lemma 5.45 (Krause (2002)). Al l natural numbers N � 1, probabilities p 2
(0; 1) and real numbers � > 0 satisfy

P N
i =0

� N
i

�
pi (1� p)N � i 2�i =

�
1 � p + p2�

� N
:

Pro of (Theorem 5.44). Since we can obtain the information rate � from

� = � 1
m log2 pC (m) following Assumption 4.4, we now compute the proba-

bility pC (m) = Pr w [Cm (w) is pre�x of z] for the cases that parts of the LFSRs

are set constant.

Case [(p; a); (q; b); (r; c)] implies that from all random internal bitstreams of

length m , m divisible by a, at least m=a keystream bits are pro duced. The

numb er of internal bits remaining from m internal bits after the pro duction of

m=a keystream bits can b e computed as

m � aU � bV � c
� m

a
� U � V

�
=

a � c
a

m � (a � c)U � (b� c)V ;

74 5.6 Divide-and-Conquer Strategies (DCS)

where U and V denote the numb er of keystream bits among the �rst m=a
keystream bits for which a and b internal bits are pro cessed, resp ectively. Note

that U is (p; m=a) -binomially distributed and that V , under the condition that

U = i , is (q=(q + r); m=a � i) -binomially distributed. We obtain the following

relation for pC (m) .

pC (m) = 2 � m
a

m
aX

i =0

m
a � iX

j =0

P r[U = i; V = j]p
�

a � c
a

m � (a � c)i � (b � c)j
�

, i.e.,

2� �m = 2 � m
a

m
aX

i =0

� m
a

i

�
pi (1 � p)

m
a � i

�

m
a � iX

j =0

� m
a � i

j

� �
q

q + r

� j �
r

q + r

� m
a � i � j

� 2� � (a � c
a m � (a� c) i � (b� c) j) ;

which is equivalent to

2(1 � a� +(a� c) �) m
a =

m
aX

i =0

� m
a

i

�
pi (1 � p)

m
a � i � 2(a� c) �i

�

m
a � iX

j =0

� m
a � i

j

� �
q

1 � p

� j �
r

1 � p

� m
a � i � j

� 2(b� c) �j :

Now, we apply Lemma 5.45 to the inner sum and obtain

2(1 � n�) m
a =

m
aX

i =0

� m
a

i

�
pi (1 � p)

m
a � i � 2(a� c) �i �

�
r

1 � p
+

q
1 � p

2(b� c) �
� m

a � i

:

Setting s := r
1� p + q

1� p 2(b� c) �
, we get

�
2

s2c�

� m
a

=

m
aX

i =0

� m
a

i

�
pi (1 � p)

m
a � i � 2((a� c) � � log(s)) i

=
�

1 � p + p2(a� c) � � log(s)
� m

a
:

Consequently, we obtain by setting t := 2 �

2
stc = 1 � p + p

ta� c

s
, 2 = (1 � p)stc + pta :

s = r
1� p + q

1� p tb� c
implies 2 = rt c + qtb + pta , which in turn implies the claim. 2

We now compute the information rates for restrictions of typ e (v1v2v3jc1c2c3) 2
f 0; 1g6

, which means that those output LFSRs i in the mo di�ed version of the

generator for which vi = 1 and the control LFSRs j for which cj = 1 are set

constant. Note that the unrestricted case corresp onds to (000j000). We do not

5.6 Divide-and-Conquer Strategies (DCS) 75

consider the case of 5 constant LFSRs, since the initial state of the remaining

unknown LFSR from a given keystream can b e computed in linear time.

For symmetry reasons, certain choices for (v1v2v3 jc1c2c3) are equivalent.

First, it is easy to see that for all p ermutations � m of f 1; 2; 3g, restriction

(v1v2v3jc1c2c3) is equivalent to restiction (v� m (1) ; v� m (2) v� m (3) jc� m (1) c� m (2) c� m (3)) .

Furthermore, we observe that with resp ect to restriction (vjc) , v; c 2 f 0; 1g3
,

the numb er of internal bits W (u; V; C) pro cessed for the pro duction of the next

keystream bit assuming the current values in the control LFSRs are u 2 f 0; 1g3

equals

W (u; v; c) =
X

i;c i =0

f i (u) +
X

i;v i =0

f i (u) ; (5.3)

where for i 2 f 1; 2; 3g the Bo olean function f i : f 0; 1g3 ! f 0; 1g is de�ned to

output 1 on u i� the i -th LFSR will b e clo cked w.r.t. u , more precisely

f i (u) = (ui � u((i +1) mo d 3) � 1) _ (ui � u((i +2) mo d 3) � 1) :

Equation (5.3) implies that for all v; c; u 2 f 0; 1g3
and i 2 f 1; 2; 3g, W (u; v; c) =

W (u; v0; c0) , where v0; c0
are obtained from v; c by exchanging the i -th comp o-

nent. Hence, restriction (vjc) is equivalent to restriction (v0jc0) . It is therefore

su�cient to analyze the restrictions (000j100), (100j100), (100j010), (100j110),

(000j111), (100j111), and (110j110).

We �rst consider the restriction (100j100). If the actual content of the output

cells of the two non-constant control LFSRs is 00 or 11, then four internal bits

will b e pro cessed, otherwise two internal bits will b e pro cessed. Hence, the

corresp onding case is [(1=2; 4); (1=2; 2); 0] and therefore � � 0:3215.

Under restriction (100j010), four internal bits will b e pro cessed if the actual

content of the output cell of the constant control LFSR is b 2 f 0; 1g and the

actual content of the two non-constant control LFSR is bb. If we have b�b then

two, and in all remaining cases 3 internal bits will b e pro cessed. Therefore, we

are in the case [(1=4; 4); (1=2; 3); (1=4; 2)] and obtain � � 0:3271.

Under restriction (110j110), two internal bits will b e pro cessed if the assign-

ment to the output cells of the constant control LFSRs is 01 or 10 or if all three

output cells of the control LFSRs coincide. If the assignment to the output cells

of the constant control LFSRs is bb for some b 2 f 0; 1g and the random assign-

ment to the remaining control cell is

�b, then the next keystream bit dep ends

only on the constant assignments, and no internal bit will b e pro cessed. Hence,

in contrast to the ab ove cases, pC (m) and � are not indep endent of the constant

LFSRs and the given keystream. Therefore, we compute only the average in-

formation rate over all p ossible assignments to the constant control and output

LFSRs. According to the ab ove observation, the probability that two internal

bits are pro cessed for the next keystream bit is 3=4, and the probability that

0 internal bits are pro cessed for the next ouput bit is 1=4. In total, we obtain

[(3=4; 4); (1=4; 0); 0] and therefore � � 0:6113.

We can handle the remaining cases with similar arguments.

The information rates for the discussed cases are summarized in Table 5.1.

Lemma 5.46. For the A5/1 keystream generator and the devide-and-conquer

strategy of setting constant particular sub-LFSRs as indicated in Table 5.1, the

divide-and-conquer algorithm (Algorithm 11) wil l consume time in the order of

O
�
2jV j � n11 � 2r � �

and memory in the order of O
�
n11 � 2r � �

with r � = 1� �
1+ � n .

76 5.7 Simulations and Exp erimental Results

Table 5.1: Information rates � for the restricted A5/1

jV j restriction � r � jV j + r �

2
3 n (100j111) 0:6430 0:2173n 0:8840n

(110j110) 0:6113 0:2412n 0:9079n
1
2 n (000j111) 0:4386 0:3902n 0:8902n

(100j110) 0:4261 0:4024n 0:9024n
1
3 n (000j110) 0:3271 0:5070n 0:8403n

(100j100) 0:3215 0:5134n 0:8467n
1
6 n (000j100) 0:2622 0:5840n 0:7507n

0 (000j000) 0:2193 0:6403n 0:6403n

5.7 Simulations and Exp erimental Results

In order to provide a fast implementation of the FBDD algorithms, the FBDD-

library develop ed by Stegemann (2004) based on the publicly available OBDD

package CUDD (Somenzi, 2001) was extended to supp ort divide-and-conquer

strategies. We used this library for our exp eriments on a standard Linux PC

with a 2.7 GHz Intel Xeon pro cessor and 4 GB of RAM. All implementations

were done in C using the gcc-compiler.

Since the runtime of the cryptanalysis fundamentally dep ends on the maxi-

mum size of the intermediate FBDDs Pm , we investigate how much exp erimen-

tally obtained values of jPm j deviate from the theoretical �gures.

We �rst consider the basic BDD-based attack. For the self-shrinking gener-

ator, the E0 generator and the A5/1 generator, we analyzed several thousands

of reduced instances with random primitive feedback p olynomials and random

initial states for various key lengths. For each considered random generator, we

computed the actual maximum BDD-size of the intermediate results

Pmax (n) = max
1� m �d � � 1 n e

fj Pm jg ;

the theoretical upp er b ound

P t
max (n) = max

1� m �d � � 1 n e

n
� (m) � jQm j � 2

p (1 � �)
p + � n

o

that was obtained in Lemma 5.17, as well as the quotient q(n) = log(Pmax (n))
log(P t

max (n)) .

Similarly, we tested for E0 and A5/1 the divide-and-conquer strategy of

setting constant the shortest LFSR (denoted by strategy s1), and we considered

�xing the �rst s = bn 0
2 c � n

8 bits of each of the four LFSRs in E0 (denoted by

strategy s2), with n0 the length of the shortest LFSR. Note that (s1) corresp onds

to the case (100j100) for the A5/1 generator. Since the q(n) -values did not

noticeably decrease with increasing n in all our simulations, we estimate the

attack's p erformance in dep endence of n by multiplying the theoretical �gures

by 2q(n)
. Particularly, we can obtain conjectures ab out the attack's p erformance

on real-life instances of E0 and A5/1 by replacing n with the actual key lengths.

Tables 5.2 and 5.3 shows the results of these computations along with details

ab out our exp eriments. We observe that our results are consistent with an

5.8 Discussion of the BDD-Attack 77

earlier analysis of the basic BDD-based attack on E0 and the self-shrinking

generator which was conducted by Schleer (2002).

On average, the attack based on DCS (s1) to ok 87 minutes for E0 with

n = 37 and 54 minutes for A5/1 with n = 30 . The longest key lengths that we

were able to tackle with the resources describ ed at the b eginning of this section

were n = 46 for E0 and n = 37 for A5/1. These attacks used up almost all of

the available memory and to ok 60:5 and 25:1 hours to complete on average.

5.8 Discussion of the BDD-Attack

We observe that when considering only the keystream generator (without the

key/IV setup pro cedure), the BDD-Attack is an e�cient generic initial state

recovery attack that is faster than exhaustive search for a broad class of stream

ciphers. This leads straightforwardly to an e�cient attack for older designs like

E0 and A5/1, whose key length is roughly equal to the internal state size.

From the extended BDD-Attack, e.g. on Trivium , we observe that the BDD

approach may still b e applied to recover the initial internal state of a keystream

generator under the following generalizations.

1. Instead of LFSRs, feedback shift registers with nonlinear up date functions

are used. This is in contrast to algebraic attacks (to b e discussed in the

next chapter), which fundamentally dep end on the linearity of the up date

function. The only requirement that we have is that the up date relation

b e balanced.

2. The shift registers in�uence each other via exchanging up date bits.

However, since the adaption of time/memory/data tradeo�s to stream ci-

phers by Biryukov and Shamir (2000), mo dern designs incorp orate keystream

generators whose size is at least twice the key length. Hence, for the BDD-Attack

in its current form to yield an actual attack on the whole cipher (including the

key/IV setup), we would need

p(1 � �)
p+ � < 1

2 , which means � > 1
3 for p = 1 . This

will rarely b e the case for practical designs.

Hence, the generic nature of the BDD-Attack is at the same time its draw-

back: Currently, we cannot make use of any IV-knowledge and we see no way

to e�ciently tacke the key/IV setup (usually p erforming many op erations with-

out pro ducing observable output) with our metho d. Similarly, it seems hard to

Table 5.2: Simulation parameters of the BDD-based attack

generator DCS key length avg no. of

interval q(n) samples

E0 � [19; 37] 0:85 2000
E0 s1 [19; 37] 0:95 2700
E0 s2 [19; 37] 0:9 2700

A5/1 � [15; 30] 0:9 3000
A5/1 s1 [19; 37] 0:77 2400

SSG � [10; 35] 0:8 3300

78 5.8 Discussion of the BDD-Attack

Table 5.3: Performance of the BDD-based attack in practice

generator DCS estimated practical p erformance

Time Space

E0 � 20:51n 265:28 20:51n 265:28

E0 s1 20:475(n + n 0) 272:68 20:475(n � n 0) 248:93

E0 s2 20:54n +0 :27n 0 275:87 20:54n � 1:08n 0 242:12

A5/1 � 20:5763n 236:88 20:5763n 236:88

A5/1 s1 20:3953n +0 :77n 0 239:93 20:3953n 225:30

SSG � 20:525n 20:525n

incorp orate the sp ecialities in the cipher op erations that are heavily exploited

by other, more sp eci�c attacks.

It therefore remains as an op en question whether the BDD-Approach can b e

combined with other strategies (e.g., correlation attacks and algebraic attacks

which are to b e considered in the next chapter) in order to obtain attacks on

mo dern designs whose internal state is much larger than the secret key.

Chapter 6

Other Generic Attacks on

Stream Ciphers

In this section, we consider two other prominent generic attacks on stream

ciphers � correlation attacks and algebraic attacks.

A correlation attack consists of �nding and exploiting linear functions

L(X t ; : : : ; X t + r � 1; zt ; : : : ; zt + r � 1)

which are biased, i.e., equal to zero with some probability 6= 1 =2. Algebraic

attacks, in a way, mark the opp osite. Here, non-linear equations of preferably

low degree that are true with probability one are used to describ e the secret

information by a system of equations.

The basic ideas of these attacks have b een known for quite a few years.

The �rst app earance of correlation attacks dates back to the mid-80s (Siegen-

thaler, 1985), while algebraic attacks have b een discovered around the year 2003

(Armknecht and Krause, 2003, Courtois, 2003, Courtois and Meier, 2003).

In this thesis, we fo cus on particular variants of correlation attacks and al-

gebraic attacks on LFSR-based combiners with memory, which we describ e in

Sections 6.1 and 6.2, resp ectively. We indicate ways to reduce the e�ciency of

these attacks in Section 6.3 and apply our �ndings in Section 6.4 to improve the

security of the Blueto oth keystream generator E0 by relatively small mo di�ca-

tions of the original design.

6.1 Correlation Attacks

6.1.1 The Basic Idea

Inspired by Zenner (2004), we �rst describ e the basic ideas b ehind correlation

attacks.

De�nition 6.1. We de�ne the bias � (X) of a binary random variable X as

� (X) := Pr[X = 0] � Pr[X = 1] = E[(� 1)X]

and the correlation between two random variables X and Y as � (X � Y) . We cal l

X unbiased if � (X) = 0 , and we say that X and Y uncorrelated if � (X � Y) = 0 .

80 6.1 Correlation Attacks

For pe(X; Y) de�ned as

pe(X; Y) := Pr[X � Y = 0] = Pr[X = Y] ;

we have � (X � Y) = 2 pe(X; Y) � 1, or equivalently pe(X; Y) = 1
2 + � (X � Y)

2 .

Note that X and Y are uncorrelated if and only if pe(X; Y) = 1
2 .

We �rst consider the case of combination generators without memory con-

sisting of k FSRs R1; : : : ; Rk � 1
and a keystream function C : f 0; 1gk ! f 0; 1g

(see Section 4.1.1).

The fundamental prop erty that correlation attacks are based on is that

the keystream (zt)t � 0 and the bitstream (wj
t)t � 0 pro duced by FSR R j

, j 2
f 0; : : : ; k � 1g are correlated, more precisely

Pr[zt � wj
t = 0] = Pr[zt = wj

t] = pe(zt ; wj
t) = � 0 6=

1
2

for all t : (6.1)

The original correlation attack prop osed by Siegenthaler (1985) then pro-

ceeds as follows.

1. Make a guess ~! j (0) for the initial state ! j (0) of R j
and compute from

~! j (0) the sequence (~wj
t)t � 0 .

2. For a suitably chosen n , compute the sum

~D :=
n � 1X

i =0

(~wj
i � zi)

over the integers.

We now distinguish two cases. If the guess in step (1) was correct,

~D is (n; � 0) -

binomially distributed with exp ected value � = � 0n and variance � 2 = n� 0(1 �
� 0) . On the other hand, if the guess was wrong, (zt � ~wj

t)t � 0 b ehaves like

a random sequence, i.e.,

~D is (n; 1
2) -binomially distributed with � = n

2 and

� 2 = n
4 .

Hence, if we can tell which distribution

~D was drawn from, we can deduce

if our guess ~! j (0) was correct. A straightforward approach is to set a threshold

D 0
and to accept ~! j (0) if

~D > D 0
. Otherwise, we assume the guessed initial

state was wrong and we try the next one.

With jR j j denoting the numb er of cells in register R j
, this metho d will

require a numb er of steps in the order of 2jR j j
for recovering ! j (0) , and ab out

2
P

i 6= j jR i j
op erations for computing the remaining k � 1 initial states, which adds

up to an overall e�ort of 2jR j j + 2
P

i 6= j jR i j
, whereas exhaustive search on the

whole initial state of the generator would require 2
P k � 1

i =0 jR i j = 2 jR j j � 2
P

i 6= j jR i j

op erations. The numb er n of required keystream bits to tell apart the two

distributions (with a �xed error probability) dep ends on the value j 1
2 � � 0j ,

i.e., the absolute distance b etween � 0
and

1
2 , and will shrink as this distance

increases.

This strategy can b e straightforwardly extended to correlations of linear

combinations of FSR output bits and the keystream implied by

Pr[zt = � k � 1
j =0
 j wj

t] 6=
1
2

with
 j 2 f 0; 1g : (6.2)

6.1 Correlation Attacks 81

However, we now have to guess the initial states of all R j
with
 j = 1 simulta-

neously, which leads to an overall e�ort in the order of

2
P k � 1

j =0
 j jR j j + 2
P k � 1

j =0 (
 j � 1) jR j j :

It is interesting to note that if indeed zt = � k � 1
j =0
 j wj

t for a clo ck cycle t ,

then the up date relations of the FSRs (and sums thereof) continue to hold if we

replace the term � k � 1
j =0
 j wj

t by zt . Conversely, if a keystream bit zt satis�es a

large numb er of such relations, it is reasonable to assume that � k � 1
j =0
 j wj

t = zt

and to assume � k � 1
j =0
 j wj

t 6= zt if zt satis�es only few. In this way, we can obtain

a candidate guess for the registers R j
with
 j 6= 0 , which can b e incrementally

improved in order to obtain the true values. This idea was prop osed and for-

malized by Meier and Sta�elbach as Fast Correlation Attack and has constantly

b een extended and improved since its original publication in 1988 (see, e.g., Hell

(2007) as a recent example).

As natural countermeasure against correlation attacks, we would try to use

combination functions that induce the lowest p ossible correlations b etween the

keystream and the FSR bitstreams.

De�nition 6.2. A Boolean function g : f 0; 1gk ! f 0; 1g is said to be r -th

order correlation immune if no linear function L depending on up to r < k
input variables exists such that Pr[L (x) = g(x)] 6= 1

2 .

However, there exist at least two tradeo�s that limit the e�ect of a correlation

immune combination function on the overall security of the generator.

Firstly, Siegenthaler (1984), Xiao and Massey (1988) showed that an increase

in correlation immunity leads to a lower linear complexity and vice versa. Hence,

the output keystream of a highly correlation immune generator will b e e�ciently

repro ducible by an LFSR.

For the second tradeo�, we need the following de�nition.

De�nition 6.3. Let f L i j1 � i � 2k g denote the set of linear functions in up to

k variables. The correlation co e�cient between a Boolean function g : f 0; 1gk !
f 0; 1g and L i is de�ned as ci = 2 � pi � 1 with pi = Pr[L i (x) = g(x)] .

Meier and Sta�elbach (1989) observed that

2k
X

i =1

c2
i = 1 ; (6.3)

i.e., if g is not correlated to any low-weight linear function, it is at the same

time even stronger correlated to linear functions with larger weight. Hence,

correlations itself can never b e prevented.

Ruepp el (1986) showed that LFSR-based combiners with memory are able

to overcome the tradeo� b etween correlation immunity and linear complexity,

but it turns out that a tradeo� similar to Eq. (6.3) is still p ossible as so on

as correlations are regarded that span several consecutive clo ck cycles (Goli¢,

1993, 1996, Lu and Vaudenay, 2005, 2004, Salmasizadeh et al., 1997). This is

the setting that we are going to consider in the following.

82 6.1 Correlation Attacks

6.1.2 Analysis of the Sp ecial Case C(xt , qt) = α(xt) � β(qt)

We fo cus on the sp ecial case of LFSR-based (k; l) -combiners with memory whose

keystream function C can b e written as the sum of two functions � : f 0; 1gk !
f 0; 1g and � : f 0; 1gl ! f 0; 1g, i.e.,

C(x t ; qt) = � (x t) � � (qt) (6.4)

in the LFSR output bits x t = (x0
t ; : : : ; xk � 1

t) and the memory state qt =
(q0

t ; : : : ; ql � 1
t) at time t . Moreover, we are going to consider only biased lin-

ear combinations of � (qt) .

Therefore, we lo ok for co e�cients
 = (
 0; : : : ;
 r � 1) such that

� (
) :=

P r

"
r � 1M

i =0

 i � � (qt + i) = 0

#

� P r

"
r � 1M

i =0

 i � � (qt + i) = 1

#!

6= 0 : (6.5)

Lu and Vaudenay (2005, 2008) showed that the bias � (
) is related to the

correlation of the keystream (zt)t � 0 and the sequence (x0
t)t � 0 pro duced by the

shortest LFSR (assume R0
for simplicity) by

Pr

"
wM

i =1

�

 0(x0

t + v i
� zt + v i) � : : : �
 r � 1(x0

t + v i + r � 1 � zt + v i + r � 1)
�
#

=
1
2

+
(� (
))w

2
;

with w and v1; : : : ; vw dep ending on the initial state p olynomials of the LFSRs.

Hence, biased linear combinations of � (qt) imply a vulnerability to a correlation

attack, and for the attack to b e as e�cient as p ossible, we are interested in

co e�cient vectors
 yielding

�
max

:= max fj � (
)jg :

General metho ds to systematically compute �
max

and the corresp onding

equations exist (e.g., see Goli¢ (1993)), but since their resource consumption is

exp onential in k , l and r , these metho ds are only feasible for small parameters.

However, our sp ecial case allows for a closed formula for the bias � (
) , which

we are going to derive in the following.

We assume that for each time t � 1, there is a separate Bo olean function

� t : f 0; 1gl � f 0; 1gk ! f 0; 1g revealing information ab out qt and x t and de�ne

F r : f 0; 1gl � (f 0; 1gk)r ! f 0; 1g
(q1; x1; : : : ; xr) 7! � 1(q1; x1) � : : : � � r (qr ; xr) ;

where qt +1 := � (qt ; x t) .

De�nition 6.4. We de�ne the bias of a Boolean function f : f 0; 1gn ! f 0; 1g
as

� (f) := Pr[f (x) = 0] � Pr[f (x) = 1] :

We cal l f unbiased if � (f) = 0 .

Note that if all inputs x are equally likely, we have � (f) = 2 � n
�
jf � 1(0)j � j f � 1(1)j

�
.

The value � (F r) , for which we now derive a matrix-based expression, cor-

resp onds to Eq. (6.5) after setting � t (qt ; x t) := � (qt) if
 t = 1 and � t :� 0
otherwise.

6.1 Correlation Attacks 83

De�nition 6.5. For al l states q; q0 2 f 0; 1gl
, let p(q; q0) denote the probability

that state q wil l change into q0
, i.e., p(q; q0) = 2 � k jf xj� (q; x) = q0gj : Addition-

al ly, de�ne

bt (q; q0) :=
1
2k (jf xj� t (q; x) = 0 ^ � (q; x) = q0gj

� jf xj� t (q; x) = 1 ^ � (q; x) = q0gj) :

We cal l the matrix P = (p(q; q0))q;q02f 0;1gl the transition matrix of the memory

update function � and the matrix B t = (bt (q; q0))q;q02f 0;1gl the bias matrix of �
and � t w.r.t. to time t .

Theorem 6.6. For al l r � 1,

� (F r) = 2 � l �
eT �

� B1 � � � � � B r � e ;

where e denotes the constant-1 vector of length 2l
and M T

denotes the transpose

of matrix M .

In order to prove Theorem 6.6, we �rst collect some observations on com-

puting biases.

� For a given �nite set S and functions f; g : S ! R we denote by (f; g) =
1

jSj

P
s2 S f (s)g(s) a p ositive de�nite scalar pro duct on RS

. Note that each

Bo olean function f : f 0; 1gn ! f 0; 1g satis�es � (f) =
�
(� 1)f ; 1

�
.

� Consider two disjoint �nite sets S and S0
, functions f : S ! R and

g : S0 ! R, and let h : S � S0 ! R b e de�ned by h(s; s0) = f (s)g(s0) .

Then

(h; 1) =
1

jSjjS0j

X

s2 S;s 02 S0

f (s)g(s0)

=
1

jSj

X

s2 S

f (s)
1

jS0j

X

s02 S0

g(s0)

= (f; 1)(g;1) :

This implies that for Bo olean functions f : f 0; 1gn ! f 0; 1g, g : f 0; 1gm !
f 0; 1g, and h : f 0; 1gn �f 0; 1gm ! f 0; 1g, de�ned by h(s; s0) = f (s) � g(s0) ,

we have � (h) = � (f) � � (g):

Now let us denote by f r : f 0; 1gl �
�
f 0; 1gk

� r
! R the function (� 1)F r

.

For all r � 1 and q 2 f 0; 1gl
, we de�ne an additional function

f r
q : f 0; 1gl �

�
f 0; 1gk

� r
! f� 1; 0; 1g � R

(q1; x1; : : : ; xr) 7!
�

f r (q1; x1; � � � ; xr) if � (qr ; xr) = q
0 otherwise

;

with qt +1 = � (qt ; x t) for i 2 f 1; : : : ; r � 1g, and let � r
q = (f r

q ; 1) and � r =
(� r

q)q2f 0;1gl . Then f r =
P

q2f 0;1gl f r
q and � (F r) =

P
q2f 0;1gl � r

q .

Theorem 6.6 is now a straightforward consequence of the following Lemma.

84 6.2 Algebraic Attacks

Lemma 6.7. For q 2 f 0; 1gl
and r � 1, the bias matrices B t from De�ni-

tion 6.5 satisfy

(� r)T = 2 � l (eT) � B1 � � � � � B r :

Pro of. For all q; q0 2 f 0; 1gl
we de�ne

gq;q0 : f 0; 1gk ! f 0; 1g

x 7!
�

1 if � (q; x) = q0

0 otherwise

:

Observe that for each t � 1,

((� 1)� t (q;�) gq;q0; 1) = bt (q; q0) : (6.6)

We prove the claim by induction on r . Note that, due to Eq. (6.6), for all

q 2 f 0; 1gl

� 1
q = 2 � (k+ l)

X

q1 ;x 1

(� 1)� 1 (q1 ;x 1) gq1 ;q(x1) = 2 � l
X

q1

bt (q1; q) :

Consequently, � 1 = 2 � l (eT) � B1: For r > 1, the function f r
q can b e written as

f r
q (q1; x1; � � � ; xr) =

X

q02f 0;1gl

f r � 1
q0 (q1; x1; � � � ; xr � 1)(� 1)� r (q0;x r) gq0;q(xr) :

Hence, by Eq. (6.6), we obtain

� r
q =

X

q02f 0;1gl

� r � 1
q0 br (q0; q) and (� r)T = (� r � 1)T � B r : 2

Note that the formula given by Theorem 6.6 can b e e�ciently evaluated and

therefore p ermits an exhaustive search for the b est correlations even for large

values of r up to the length of the shortest LFSR.

6.2 Algebraic Attacks

6.2.1 The Basic Idea

Algebraic attacks (Armknecht and Krause, 2003, Courtois, 2003, Courtois and

Meier, 2003) are based on solving systems of equations and were, just like

correlation attacks, targeted at LFSR-based combination generators without

memory, in our notation consisting of k LFSRs R0; : : : ; Rk � 1
and a nonlinear

keystream function C that pro duces from the LFSR output x t = (x0
t ; : : : ; xk � 1

t)
a keystream bit zt = C(x t) in each clo ck cycle t . At this p oint, we only de-

scrib e the basic ideas b ehind algebraic attacks and refer the interested reader

to Armknecht (2006) for a thorough treatment of the sub ject.

The core of algebraic attacks is to �nd Bo olean functions F : f 0; 1gk �r !
f 0; 1g of low preferably degree such that for all clo cks t ,

F (x t ; : : : ; x t + r � 1; zt ; : : : ; zt + r � 1) = 0 : (6.7)

Since the combiner's FSRs are LFSRs by assumption, we can express the

bit x j
t that LFSR R j

pro duces at time t by a linear function L j
t in the initial

6.2 Algebraic Attacks 85

state ! j (0) of R j
as x j

t = L j
t (! j (0)) . Hence, collecting equations of the typ e of

Eq. (6.7) yields a system of equations in the secret initial states of the LFSRs.

However, since the keystream function is non-linear, solving the system and

thereby recovering the secret initial state is NP -hard in general, so we should

not hop e for an e�cent generally applicable key recovery algorithm based on

this strategy, but we may still b e fortunate enough to encounter sp ecial cases

that are su�ciently easy to solve.

This might esp ecially b e the case if the numb er of known keystream bits

and therefore the numb er of equations increases. Let R denote the numb er of

accessible equations and � the numb er of o ccurring monomials. If R � � , a

promising metho d is to compute Gro ebner bases.

Unfortunately, it seems hard to predict the required time e�ort, alb eit simu-

lations indicate that the neccessary amount of time drops with increasing num-

b er of equations (Armknecht and Ars, 2009, Faugère and Ars, 2003).

In the case of R � � , linearization (Courtois et al., 2000) seems to b e the

�rst choice. The idea of linearization is to substitute each o ccurring monomial

by a new variable and to treat the whole system as a system of linear equations,

making it easily solvable by Gaussian elimination.

For the case that the numb er of equations exceeds the numb er of monomi-

als, one might reduce the degree of the equations in a precomputation step.

This idea is known as fast algebraic attacks , which have b een intro duced by

Courtois (2003) and further improved by, e.g., Armknecht (2004a), Hawkes and

Rose (2004). However, the attack scenario is more restrictive as it requires the

attacker to know many successive keystream bits and Eq. (6.7) to have a sp ecial

structure.

All theses approaches have in common that their runtime strongly dep ends

on the degree d of the incorp orated equations. The lower the degree, the faster

the attacks. Hence, a natural countermeasure against such attacks is to prevent

the existence of low-degree equations.

6.2.2 Analysis of a restricted Scenario

For our analysis, we will concentrate on algebraic attacks where R � � and � is

approximately

� n
d

�
. If ' denotes the numb er of functions F of degree d ful�lling

Eq. (6.7) and n denotes the total length of the LFSRs, then the amount of

data is �
� n

d

�
=' , and the required memory and runtime are in O

� � n
d

� 2
�

and

O
� � n

d

� 3
�

, resp ectively. Moreover, we now consider the case of (k; l) -combiners

with memory, i.e., we have an additional l -bit memory, the keystream bits zt

are computed from the LFSR state x t = (x0
t ; : : : ; xk � 1

t) and the memory state

qt = (q0
t ; : : : ; ql � 1

t) as zt = C(x t ; qt) , while the memory is up dated in each clo ck

cycle according to qt +1 = � (x t ; qt) .

In order to formalize that an LFSR output vector (x t ; : : : ; xr + r � 1) 2 (f 0; 1gk)r

may (in conjunction with a suitable memory state qt) yield a given keystream

piece (zt ; : : : ; zt + r � 1) , we use the notion of an extended output function in-

tro duced by Armknecht (2006) (only that we call it the extended keystream

function in order to b e more consistent with the rest of our notation).

De�nition 6.8. For the keystream function C : f 0; 1gk � f 0; 1gl ! f 0; 1g of

a (k; l) -combiner with memory and an integer r > 0, we de�ne the extended

86 6.2 Algebraic Attacks

keystream function C	 by

C	 : f 0; 1gl � (f 0; 1gk)r ! f 0; 1gr

(q; x1; : : : ; xr) 7! (z1; : : : ; zr)

with qi +1 = � (x i ; qi) for 0 � i < r and zi = C(x i ; qi) for 1 � i � r .

With this notion, Armknecht and Krause (2003) adapted the structure of

Eq. (6.7) to the setting of combiners with memory.

De�nition 6.9. For a Z = (z1; : : : ; zr) 2 f 0; 1gr
, we cal l a Boolean function

FZ : (f 0; 1gk)r ! f 0; 1g a Z -function (with respect to C) if it is not constant

zero and satis�es

C	 (q; x1; : : : ; xr) = Z) FZ (x1; : : : ; xr) = 0 (6.8)

for al l q 2 f 0; 1gl
and al l (x1; : : : ; xr) 2 (f 0; 1gk)r

.

Note that this de�nition implies that FZ vanishes on all combinations of LFSR-

inputs over r clo ck cycles and starting states q that yield the keystream piece

Z .

The algebraic attack of Armknecht and Krause (2003) now consists in com-

puting for each Z 2 f 0; 1gr
a Z -function FZ of the lowest p ossible degree and

to set up the system of equations

F(zt ;:::;z t + r � 1) (x t ; : : : ; x t + r � 1) = 0 ; t = 0 ; 1; : : : ;

express the x t in terms of the initial LFSR states and solve the system.

As mentioned earlier, the e�ciency of the attack fundamentally dep ends on

the degree of the Z -functions. Therefore, we want to b ound the lowest p ossible

Z -function degree that can o ccur for a given (k; l) -combiner.

De�nition 6.10. For a Z 2 f 0; 1gr
, we de�ne

X Z;Q :=
n

x 2
�
f 0; 1gk � r

jC	 (Q; x1; : : : ; xr) = Z
o

X Z :=
n

x 2
�
f 0; 1gk � r

j9q 2 f 0; 1gl : C	 (q; x1; : : : ; xr) = Z
o

=
[

Q2f 0;1gl

X Z;Q

From Eq. (6.8) we deduce that FZ is a Z -function if and only if F (x) = 0
for all x 2 X Z . This leads directly to the notion of annihilators.

De�nition 6.11. We say that a Boolean function p : f 0; 1gn ! f 0; 1g, p 6� 0,

is an annihilator of a subset A � f 0; 1gn
if p(x) = 0 for al l x 2 A . We denote

the set of annihilators of A by Ann(A) . Furthermore, we de�ne for A � f 0; 1gn

mindeg(A) := min f deg(f)jf 2 Ann(A)g :

If A = f 0; 1gn
, we set mindeg(A) := 1 .

We observe that if we can prove a lower b ound for mindeg(X Z) for all Z ,

this gives a lower b ound for Z -function degrees and hence the e�ort required

by an algebraic attack. In the following, we will prop ose a construction which

enables us to derive such a lower b ound.

We �rst show that under certain conditions, each sp ecial lower b ound for

mindeg(X zr ;Q) is also a general lower b ound for mindeg(X (z1 ;:::;z r)) .

6.3 Countermeasures and Design Principles 87

Theorem 6.12. If the keystream function C can be expressed as

C(x; q) = � (x) � � (q) ; (6.9)

with � : f 0; 1gk ! f 0; 1g satisfying mindeg
�
� � 1(0)

�
= mindeg

�
� � 1(1)

�
= d

and � : f 0; 1gl ! f 0; 1g then

mindeg(X Z) � mindeg(X Z;Q) = d

for al l r � 1, Z = (z1; : : : ; zr) 2 f 0; 1gr
, and Q 2 f 0; 1gl

.

Pro of. Because of X Z;Q � X Z , each annihilator of X Z is also an annihilator

of X Z;Q . This shows the �rst inequality.

Moreover, all choices z 2 f 0; 1g and Q 2 f 0; 1gl
satisfy X z;Q = � � 1(� (Q)� z)

and therefore mindeg(X z;Q) = d.

Let r � 1, Z = (z1; : : : ; zr) 2 f 0; 1gr
, q1 2 f 0; 1gl

and f (Y1) 2 F2[Y1] b e an

annihilator of X z1 ;q1 . Then f can b e seen as an element in F2[Y1; : : : ; Yr] which

annihilates X Z;q 1 , to o. This shows that mindeg (xZ;q 1) � mindeg (xz1 q1) = d.

We prove now by induction over r that mindeg(X Z;q 1) � d for all choices

of q1 and Z . For r = 1 , the claim is certainly true. Now let r > 1 and the

claim b e true for all r 0 < r . Fix Z = (z1; : : : ; zr) and q1 and f (Y1; : : : ; Yr) 2
Ann(X Z;Q) having the minimal degree mindeg(X Q;Z) . Cho ose an arbitrary

value (x1; : : : ; xr) 2 (f 0; 1gk)r
and set q2 := � (x1; q1) . Then

f � (Y2 : : : ; Yr) := f (x1; Y2; : : : ; Yr)

annihilates X (z2 ;:::;z r) ;q2 . Hence,

mindeg (xZ;q 1) = deg(f) � deg(f �) � mindeg
�
x(z2 ;:::;z r) ;q2

�
� d ;

where the last inequality is true by assumption. 2

6.3 Countermeasures and Design Principles

6.3.1 Increasing the Resistance against Correlation At-

tacks

Theorem 6.6 allows to compute the biases which are relevant for correlation

attacks against combiners with memory with a keystream function as in Eq. (6.4)

and to derive corresp onding design criteria to immunize them against attacks

that exploit these biases. In particular, Theorem 6.6 yields two di�erent criteria

for � and � t in order to achieve that � (F r) = 0 for all r � 1.

The �rst one assumes the situation that � t is indep endent of x 2 f 0; 1gk
,

i.e., � t (q; x) = � t (q) for all x , which holds, e.g., for E0 .

De�nition 6.13. We say that � is balanced if k = l and jf xj� (q; x) = q0gj = 1
for al l q; q0

.

Note that for a balanced � , p(q; q0) = 2 � k
for all q; q0

.

Theorem 6.14. Let � t either be constant zero or, at least at one time t , depend

only on q and be balanced. If � is also balanced, then � (F r) = 0 .

88 6.3 Countermeasures and Design Principles

Pro of. If � t � 0, then B t equals P , the transition matrix of � . Due to (eT) �P =
eT

, we can assume w.l.o.g. that � 1 6� 0. Observe that the prop erty of � t b eing

balanced implies that

P
q(� 1)� 1 (q) = 0 . Let x(q;q0) := f xj� (q; x) = q0g. If � t

dep ends only on q, then bt (q; q0) can b e rewritten to

bt (q; q0) =

8
<

:

0 if x(q;q0) = ;
jx(q;q0) j=2k

if x(q;q0) 6= ; ^ � (q) = 0
�j x(q;q0) j=2k

if x(q;q0) 6= ; ^ � (q) = 1

9
=

;

= (� 1)� t (q) � p(q; q0) :

Let vT := (eT) � B1 . We show that v is already the all-zero vector, which

concludes the pro of. Let (vT)q denote the q-th entry of vT
. We have

(vT)q =
X

q

(� 1)� 1 (q) p(q; q0) = 2 � k �
X

q

(� 1)� 1 (q)

| {z }
=0

= 0 : 2

In the case that the functions � t are not indep endent of x , it is also p ossible

to entirely avoid correlations if we put some additional restrictions on � t .

De�nition 6.15. The function � : f 0; 1gl �f 0; 1gk ! f 0; 1g is cal led q-balanced

if al l states q 2 f 0; 1gl
satisfy

�
� � x 2 f 0; 1gk j � (q; x) = 0

	 �
� =

�
�� x 2 f 0; 1gk j � (q; x) = 1

	 �
� :

Lemma 6.16. Let B denote the bias matrix of the state transition function

� : f 0; 1gl � f 0; 1gk ! f 0; 1gl
and a q-balanced function � : f 0; 1gl � f 0; 1gk !

f 0; 1g. Then B � e = ~0.

Pro of. It can b e easily checked that for all q 2 f 0; 1gl
,

(B � e)q =

�
�� x 2 f 0; 1gk ; � (q; x) = 0

	 �
� �

�
�� x 2 f 0; 1gk ; � (q; x) = 1

	 �
�

2k ;

which, by de�nition, vanishes if � is q-balanced. 2

Theorem 6.17. Let r � 1 and � t be either q-balanced or constant zero for al l

t , 1 � t � r . Then � (F r) = 0 .

Pro of. Note that for � t � 0, the bias matrix B t equals the transition matrix

P . As each row of P corresp onds to a probability distribution over f 0; 1gl
, we

obtain P � e = e. The rest follows straightforwardly from Theorem 6.6. 2

We want to p oint out that the previous statements are only true as long

as the corresp onding input words x t are indep endent values in f 0; 1gk
. In the

case that LFSRs are used as driving devices, this is only the case as long as

r is at most the length of the shortest LFSR. This imp oses no serious draw-

back, b ecause so far, no feasible metho ds are known to compute the bias while

considering the LFSR-structure.

As we have seen, our results immediately imply two di�erent design criteria

to avoid any biased linear combinations in the expressions � (qt) . Actually, they

have even wider applications. For example, the keystream function

f
��

c1; c2; c3; c4�
;
�
x1; x2; x3; x4��

= c2 � x1 � x2 � x3 � x4

used in E0 is q-balanced. This guarantees that no biased linear combinations of

the keystream bits zt exist for r � 25, the length of the shortest LFSR.

6.3 Countermeasures and Design Principles 89

6.3.2 Increasing the Resistance against Algebraic Attacks

We have seen that the e�ciency of algebraic drops with increasing minimum

degree of the Z -functions. Theorem 6.12 then implies the following strategy.

Cho ose a keystream function C(x; q) = � (x) � � (q) such that mindeg
�
� � 1(0)

�

and mindeg
�
� � 1(1)

�
is the maximum p ossible value. This will guarantee the

same lower b ound for all Z -functions, as long the values x1; : : : ; xr are inde-

p endent elements in f 0; 1gk
. In the case that they are the outputs of LFSRs,

this condition holds if r is no larger than the length of the shortest LFSR (e.g.,

25 in the case of E0). This restriction is not critical, since currently known

metho ds (e.g., Armknecht et al. (2006), Didier and Tillich (2006)) are only able

to practically derive Z -functions if r is not much larger than 20.

The value d is equivalently known under the term algebraic immunity , which

was intro duced by Meier et al. (2004) in the context of memoryless combiners,

extended to combiners with memory by Armknecht (2004b), and examined in

several pap ers since then.

Observation 6.18 (Courtois and Meier (2003)). Any Boolean function in

n variables has an algebraic immunity of at most dn
2 e.

This means that any prop osal for a function with optimum algebraic immu-

nity dn
2 e can b e incorp orated in our design.

Prop osals on how to construct functions with maximum (or at least high)

algebraic immunity have b een made, e.g., by Armknecht and Krause (2006),

Carlet (2008), Dalai et al. (2005). A rather straightforward candidate is the

(generalized) ma jority-function.

Corollary 6.19. Let k � 1. The majority function maj : f 0; 1gk ! f 0; 1g
de�ned by

maj (x) =
�

0 if wt(x) < k=2 or wt(x) = k=2 and x1 = 0
1 otherwise

;

satis�es mindeg(maj � 1(0)) = mindeg(maj � 1(1)) = k=2.

A pro of can b e found in (Braeken and Lano, 2005). The authors p ointed out

that maj has a very low nonlinearity, making it a bad choice for memoryless

combiners. However, this is no problem in our setting, as long as high biases �
are avoided (e.g., using the principles describ ed in Section 6.3.1).

Using our design principle and a Bo olean function with optimum algebraic

immunity, it is p ossible to exclude the existence of Z -functions having a degree

less than dk=2e. In fact, exp eriments have shown by exhaustive search that the

actual values of mindeg are often higher, showing that dk=2e seems to b e a rather

coarse estimation. Moreover, one can easily increase this b ound, even without

increasing the numb er of LFSRs by using several di�erent bits p er LFSR and

clo ck cycle. For example, in the case of E0 , one could use the mo di�ed output

and up date functions zt := maj (x2t � 1; x2t) and qt +1 := � (� (qt ; x2t � 1); x2t) . The

bitrate is halfed, but the existence of Z -functions of degree less than 4 can b e

excluded.

90 6.4 Application to E0

6.4 Application to E0

In this section, we apply the results from the previous sections to improve the

security of the E0 keystream generator. Consequently, we assume that k = l = 4
and that the keystream bit zt is computed by zt = f (qt ; x t) = � (x t) � � (qt) ,

with � (x t) = x0
t � x1

t � x2
t � x3

t and � (qt) = q1
t : Recall from Section 4.2.2 that

the state transition function of E0 is de�ned as

� 0(qt ; x t) =
�
S1

t +1 � q0
t � q3

t ; S0
t +1 � q1

t � q2
t � q3

t ; q0
t ; q1

t

�
;

where St +1 = (S1
t +1 ; S0

t +1) =
j

x 0
t + x 1

t + x 2
t + x 3

t +2 �q0
t + q1

t
2

k
.

Lu and Vaudenay (2005, 2008) proved that �
max

= 25=256 for r � 25, where

25 is the length of the shortest LFSR. This observation and the exploit of a

synchronization �aw led to the currently b est attack on the Blueto oth cipher

(Lu and Vaudenay, 2004). Table 6.1 shows the resource requirements of this

attack.

The currently b est algebraic attack on E0 in this scenario uses Z -functions

of degree 4 over 4 clo cks (Armknecht and Krause, 2003). The corresp onding

p erformance data are given in Table 6.2. Courtois (2003) prop osed a metho d to

obtain equations of degree 3, however with the enormous value r � 8:822:188.

It is still an op en question whether Z -functions exist of degree < 4 and r �
8:822:188 for E0 .

We now try to improve the resistance of E0 to correlation attacks and alge-

braic attacks of the describ ed typ es by carefully mo difying its comp onents.

First, using our C-implementation of Theorem 6.6 based on the ATLAS

linear algebra library (Whaley and Petitet, 2005), we computed the maximum

absolute biases over 25 clo ck cycles (the length of E0 's shortest LFSR) for all

16 E0 -variants in which � is de�ned as � (a1 ;a 2 ;a 3 ;a 4) (qt) = a1 � q0
t � a2 � q1

t �
a3 � q2

t � a4 � q3
t for a = (a1; a2; a3; a4) 2 f 0; 1g4

. Note that the original �
corresp onds to � (0 ;1;0;0) . As Table 6.3 shows, the minimum absolute bias � =
0:024414is obtained for a = (0 ; 1; 1; 1). We denote the corresp onding generator

by E 1
0 . However, with the help of a to olkit develop ed by Brandeis (2004) that

determines Z -functions by exhaustive search, we have computed Z -functions

of degree 3 for E 1
0 , which makes it weaker against algebraic attacks than the

original E0 . However, cho osing a = (1 ; 0; 1; 1), i.e., the a-value with the second

b est minimum absolute bias, yields mindeg = 6 . We call the corresp onding

generator E 2
0 .

In the next step, we exploit our theory to completely avoid biases. Starting

from the original de�nition of E0 , we obtain the generator E 3
0 by replacing the

state transition function by � 1 , which we de�ne as the integer addition mo dulo

Table 6.1: The resource consumption of the fastest correlation attack

on E0 as presented by Lu and Vaudenay (2004)

�
max

Frames Data Time Space

� m = max(1
� 10 ; 236:59

� 8) 24m 36m + 3 � 218 � min(m; 218) m
25
256 234:74 239:32 240:17 234:74

6.4 Application to E0 91

Table 6.2: The resource consumption of an algebraic attack on

E0 with key size n and an equation of degree d
F Data Time Space

General ' O
�� n

d

�
='

�
O

� � n
d

� 3
�

O
� � n

d

� 2
�

E0 : n = 128 , d = 4 1 223:35 270:04 246:69

24
, i.e.,

� 1
�
q0

t ; : : : ; q3
t ; x0

t ; : : : ; x3
t

�
=

0

@
3X

i =0

q3� i
t 2i +

3X

j =0

x3� j
t 2j

1

A
mo d 16 :

Since � 1 is balanced, Theorem 6.14 implies � = 0 . However, we computed

Z -functions of degree 3 for E 3
0 .

We therefore replace the function � of E 3
0 by the ma jority function describ ed

in Corollary 6.19. For the resulting generator E 4
0 , we obtain mindeg = 5 .

If we additionally replace the function � by the ma jority function, mindeg
even increases to 6. Note that the � = 0 prop erty is still preserved by these

mo di�cations. Thus, we obtain a keystream generator E 5
0 with �

max

= 0 whose

resistance against algebraic attacks is signi�cantly increased compared to the

original E0 .

For all our variants of E0 , Table 6.4 lists the minimum degree and the re-

sp ective numb er of Z -functions over r clo ck cycles. For Example, for E 4
0 , the

minimum degree of Z -functions over up to 5 clo ck cycles is 5, and there are 40,

264, 896, and 2528Z -functions over 2; 3; 4 and 5 clo ck cycles, resp ectively.

The computation of the numb er of Z -functions over 6 clo cks for E 5
0 could not

b e completed with the resources at our disp osal. Since in all our exp eriments,

the minimum degree of the Z -functions never decreased with increasing r , we

susp ect that mindeg = 6 will also hold for E 5
0 and r = 6 .

Note that in all cases, the values of mindeg were actually higher than the

theoretical lower b ound dk=2e = 2 .

The constructions of the considered generators and the resp ective p erfor-

mances of algebraic and correlation attacks are summarized in Table 6.6 and

illustrated in Figure 6.1.

We note that the generator E 2
0 , which is just a slight mo di�cation of E0 (we

only made � dep end on two more state bits), already yields a similar resistance

against algebraic attacks as E 5
0 and signi�cantly decreases the vulnerability

against correlation attacks.

92 6.4 Application to E0

Table 6.3: Maximum absolute biases and p erformance

of correlation attacks for � a -generators

a max (�) Frames Data Time Space

(0; 0; 0; 1) 0:097656 234:74 239:32 240:17 234:74

(0; 0; 1; 0) 0:244141 224:16 228:74 237:59 224:16

(0; 0; 1; 1) 0:156250 229:31 233:90 237:74 229:31

(0; 1; 0; 0) 0:097656 234 :74 239 :32 240 :17 234 :74

(0; 1; 0; 1) 0:097656 234:74 239:32 240:17 234:74

(0; 1; 1; 0) 0:156250 229:31 233:90 237:74 229:31

(0; 1; 1; 1) 0:024414 253 :56 258 :15 258 :73 253 :56

(1; 0; 0; 0) 0:244141 224:16 228:74 237:59 224:16

(1; 0; 0; 1) 0:250000 223:89 228:47 237:59 223:89

(1; 0; 1; 0) 0:097656 234:74 239:32 240:17 234:74

(1; 0; 1; 1) 0:038528 246 :98 251 :56 252 :15 246 :98

(1; 1; 0; 0) 0:156250 229:31 233:90 237:74 229:31

(1; 1; 0; 1) 0:156250 229:31 233:90 237:74 229:31

(1; 1; 1; 0) 0:152588 229:58 234:17 237:77 229:58

(1; 1; 1; 1) 0:097656 234:74 239:32 240:17 234:74

Table 6.4: mindeg and numb er of Z -functions

for the candidate generators

Cipher E0 E 1
0 E 2

0 E 3
0 E 4

0 E 5
0

mindeg 4 3 6 3 5 6

Clo cks Numb er of equations

r = 2 0 12 0 4 40 12

r = 3 0 48 24 40 264 318

r = 4 16 144 160 144 896 1416

r = 5 64 384 544 416 2528 > 0
r = 6 192 ? > 0 ? ? ?

Table 6.5: De�nitions of the candidate generators

� �
�
x1

t ; x2
t ; x3

t ; x4
t

�
�

�
c1

t ; c2
t ; c3

t ; c4
t

�

E0 � 0 x1
t � x2

t � x3
t � x4

t c2
t

E 1
0 � 0 x1

t � x2
t � x3

t � x4
t c2

t � c3
t � c4

t
E 2

0 � 0 x1
t � x2

t � x3
t � x4

t c1
t � c3

t � c4
t

E 3
0 � 1 x1

t � x2
t � x3

t � x4
t c2

t
E 4

0 � 1 maj(x1
t ; x2

t ; x3
t ; x4

t) c2
t

E 5
0 � 1 maj(x1

t ; x2
t ; x3

t ; x4
t) maj(c1

t ; c2
t ; c3

t ; c4
t)

6.4 Application to E0 93

Table 6.6: Performance of algebraic and corre-

lation attacks on the candidate generators

Algebraic Attack Correlation Attack

mindeg Time � Time

E0 4 270:18 0:097656 240:17

E 1
0 3 255:25 0:024414 258:73

E 2
0 6 297:22 0:038528 252:15

E 3
0 3 255:25 0 n/a

E 4
0 5 284:11 0 n/a

E 5
0 6 297:22 0 n/a

1 5

0:01

0:05

0:1 E0

E 3
0

E 4
0

E 1
0 E 2

0

� max

for r � 25

minf deg(FZ)g
for r � 5

E 4
0

E 2
0

Figure 6.1: Comparison of the candidate generators to E0

94 6.4 Application to E0

Part I I

Authenticity with Linear

Proto cols

Chapter 7

Algorithms for Entity and

Message Authentication

7.1 Security De�nitions and Attacker Mo dels

We have seen in the �rst part of this thesis that in order for p eople to call a

particular system secure , this system should allow for con�dential communica-

tion, which is usually achieved by encrypting the messages that are exchanged

b etween communication partners.

Let us revisit our two-party communication scenario from Section 2.1. Two

parties, Alice and Bob, communicate over a channel that is accessible to an

adversary. Besides the con�dentiality of exchanged messages, it may also b e

b ene�cial for Alice to ensure that she is really talking to Bob instead of an

adversary masquerading as Bob, and that a message that claims to come from

Bob was in fact sent by Bob and has not b een mo di�ed during the transmission.

These requirements may seem less obvious than message con�dentiality at

�rst glance, but turn out to b e equally, if not even more imp ortant in many

practical systems. Consider, for example, banking transactions. It is certainly

desirable to hinder an adversary observing how much money a customer with-

draws from his account or to whom he transfers how much money, but it seems

even more imp ortant to prevent an adversary from withdrawing or transferring

money from someb o dy else's account.

In the pro cess of ensuring these prop erties, Alice has to gain con�dence in

the identity of Bob as communication partner or as originator of a message. An

identity is a set of information that distinguishes a sp eci�c entity from every

other within a particular environment, e.g., a given and family name, an e-mail

address, or a URI (Adams, 2005). This implies that the mapping r : A ! I from

an entity set A to an identity space I should b e injective, i.e., no two entities

a1; a2 2 A are mapp ed to the same identity i 2 I . Note that the mapping

b etween entities and identities can also b e mo deled as a relation R � A � I
with (a; i) 2 R if and only if identity i is asso ciated to entitiy a. We say that a
has identity i , or that identity i is bound to entity a, and call the tuple (a; i) an

identity binding for a. An identity may also b e b ound to another identity from

a di�erent identity space, e.g., an international bank account numb er (IBAN,

see ISO/IEC (2007)) to an e-mail address.

98 7.1 Security De�nitions and Attacker Mo dels

7.1.1 Entity Authentication

Consider a bank customer who uses an automated teller machine (ATM) to

withdraw money from his account. In the course of the transaction, the customer

is usually required to plug his bank card into the machine and to enter his

p ersonal identi�cation numb er (PIN). If PIN and bank account numb er match

the information that is stored in the bank's database, the ATM is convinced

that the account numb er in fact b elongs to the p erson standing in front of the

machine.

In our more abstract communication setting, Bob (the claimant or the

prover) claims to have a certain identity, e.g., a bank account numb er. In order

for Alice (the veri�er) to b elieve that the presented identity really b elongs to

Bob, she will usually require some corrob orating evidence of his claim, e.g. a

PIN. The pro cess of obtaining and verifying this evidence is called entity au-

thentication (Adams, 2005), and a particular algorithm that implements entity

authentication is called an entity authentication scheme or entity authentica-

tion protocol . As describ ed by Zuccherato (2005), the corrob orating evidence

(sometimes also termed credentials) is usually computed based on

� someting knwon, e.g., a password or p ersonal identi�cation numb er (PIN),

� something p ossessed, e.g., physical devices such as mechanical keys or

smart cards,

� something inherent, e.g., biometric information such as a �ngerprint or

the structure of the iris.

If the veri�er is convinced by the corrob orating evidence, we say that the au-

thentication was successful. After a successful authentication, the prover is said

to b e authenticated . If the prover is in fact who he claims to b e, then we call

the prover authentic .

Identi�cation is often used as a synonym for entity authentication. However,

some authors de�ne identi�cation as the action of merely claiming an identity

without providing corrob orating evidence. We tend to favour the latter de�ni-

tion, but will avoid the term identi�cation altogether whenever p ossible.

7.1.2 Entity Recognition

Entitiy authentication usually assumes that the identities of the communication

partners are long-term identities that are b ound to the entities during a system

setup phase indep endently of actual communication sessions. This assumption is

reasonable in systems that are rather static, e.g., a corp orate IT infrastructure,

but less suitable for low-end sensor network scenarios in which no des join and

leave systems dynamically and are limited in their computing p ower and storage

capacities. In such scenarios, it is often su�cient to ensure that an entity

can recognize a communication partner that she has talked to b efore (entity

recognition , see Hammell et al. (2005)). Schemes that solve this problem usually

can make do with short-term identities that are established dynamically when

the entities start communicating for the �rst time, as we will see in Section 7.5.

7.1 Security De�nitions and Attacker Mo dels 99

7.1.3 Message Authentication

The way most ATMs work is based on the assumption that once the customer is

authenticated, he and not the adversary will b e the one talking to the ATM for

the remainder of the communication session. Therefore, a customer is usually

asked for corrob orating evidence only once p er session. On the other hand, in

order to prevent an attacker from taking over the session of a customer who has

left the ATM without logging out (thereby breaking the assumption), sessions

are usually ab orted after a relatively short p erio d of customer inactivity.

The ATM assumption translates into our abstract setting by requiring that

the adversary have no access to communication channels that have b een estab-

lished b etween legitimate communication partners. This may b e valid in the

ATM scenario, but is a lot less reasonable if we consider an online banking use

case, in which a customer issues a credit transfer order to his bank over the

internet. In general, we can make no reliable assumptions on the route an in-

ternet message takes to reach its destination, and the probabilities of a message

b eing read or even mo di�ed on the way have to b e considered non-negligible.

Hence, the banking server should require corrob orating evidence of each received

message in fact originating from the claimed sender.

In our abstract mo del, Bob (the prover) would attach corrob orating evi-

dence of his creatorship to each message he sends to Alice (the veri�er). As

with entity authentication, the pro cess of obtaining and verifying this corrob o-

rating evidence is called message authentication , an algorithm that implements

message authentication is called message authentication algorithm or message

authentication scheme , and a message for which the authenti�cation was suc-

cessful is called authenticated . If the message in fact originates from the claimed

sender and was not altered during transmission, we say that the message is

authentic .

In addition to message authenticity, many applications have additional unique-

ness and timeliness requirements that duplicate or lost messages as well as mes-

sages that are received in the wrong order b e detected and handled appropri-

ately. We note that the presence of these prop erties is implied by some authors'

de�nitions of authenticity (see, e.g., Menezes et al. (2001)). However, we cho ose

to separate uniqueness and timeliness from our authenticity de�nition since they

are sometimes covered by transp ort layers in communication stacks rather than

by authenticity schemes in the narrow sense. An example is the widely used

TLS proto col (see Dierks and Rescorla (2008)), which relies on TCP to ensure

these prop erties.

7.1.4 Message Recognition

Similarly to entity recognition (see Section 7.1.2), message recognition as a

weaker form of message authentication only requires to ensure that a message

originates from a particular sender that has b een talked to b efore, and (un-

like most message authentication schemes) not consider or check any long-term

sender identities. Instead, the communicating parties generate short-term iden-

tities just b efore starting the conversation.

100 7.1 Security De�nitions and Attacker Mo dels

7.1.5 Attacker Mo dels

As in the case of con�dential communication, we relate the security of an entity

authentication scheme to an attacker (or adversary) mo del. The most prominent

attacker goal in the entity authentication/recognition setting is to imp ersonate

an entity, i.e., to convincingly masquerade as someb o dy else. Attacks that are

targeted at this goal are usually called impersonation attacks . Another attacker

goal may b e to prevent the authentication of a legitimate prover or message

(denial of service) by disturbing the authentication.

The most p essimistic assumption is an active attacker who has full control

of the communication channel, as suggested in the Dolev-Yao security mo del

(Dolev and Yao, 1983). More precisely, an active attacker may

� read all exchanged messages,

� mo dify exchanged mesages, esp ecially delay or suppress their delivery or

alter their content,

� intro duce additional messages into the communication channel, esp ecially

replay previously recorded messages.

We note that this mo del particularly allows the attacker to

� present a previously recorded legitimate evidence to the veri�er (replay

attack),

� interleave several authentication sessions (running in parallel or sequen-

tially) by using information obtained from one session in the context of

another,

� disob ey the authentication scheme by sending messages which the receiver

do es not exp ect in the current proto col state.

� act as a man-in-the-middle (MITM), i.e., intecept messages from one com-

munication partner, p ossibly mo dify them, and pass them on to the re-

ceiver.

Of sp ecial interest in our analysis is a sp ecial class of active attackers, which

we call detection attackers .

De�nition 7.1. A detection attacker on an entity authentication protocol is an

active attacker who is restricted to the fol lowing disjoint attack stages.

1. Interact with a legitimate prover in any desired way.

2. Interact with a legitimate veri�er and try to impersonate the prover.

In the message authentication/recognition setting, we commonly assume

that the attacker has active control over the communication channel as ab ove,

and is additionally able to force Bob to send message payload data x i of his

choice (which will then b e accepted by Alice as authentic). Thereby, his choices

of the x i may b e adaptive, i.e., x i may dep end on the information that was

obtained for x i 0
for i 0 < i . We de�ne that he has reached his goal if he is able to

generate a message with payload x 6= x i for all i that is authenticated by Alice

(existential forgery in a chosen message scenario, see, e.g., Lucks et al. (2008)).

7.2 Message Authentication Co des 101

Sometimes security is evaluated also with resp ect to passive attackers who

are able to read exchanged messages, but cannot in�uence the communication

channel in any way.

In all cases, we follow Kerckho�s' principle (Kerckho�s, 1883) also in the

authentication setting and assume the attacker to know the entire sp eci�cation

of the authentication scheme and all information that the scheme pro cesses

except for the data that it explicitly requires to b e kept con�dential.

7.2 Message Authentication Co des

De�nition 7.2. A Message Authentication Co de (MAC) is a mapping

MAC : f 0; 1g� � f 0; 1gn ! f 0; 1gl

(x; k) 7! m
(7.1)

that computes for a message x an authentication code m under an n -bit key k .

A MAC is commonly used in our two-party communication scenario in the

following way (see Fig. 7.1). Alice and Bob agree on a symmetric key k prior to

the communication. Bob computes for a message x the value m = MAC(x; k)
and transmits (x; m) = (x; MAC(x; k)) to Alice. Alice computes for a received

message (x0; m0) the value MACverify(x0; m0; k) with

MACverify : f 0; 1g� � f 0; 1gl � f 0; 1gn ! f 0; 1g

(x; m; k) 7!
�

1 if MAC(x; k) = m
0 otherwise

;

and b elieves the message to come from Bob if MACverify(x0; m0; k) = 1 . Hence,

the value m = MAC(x; k) serves as corrob orating evidence of the authenticity

of x .

MAC
x

Public Channel
(x; m) (x0; m0)

Key Source

Bob (Sender) Alice (Receiver)

k k

MACverify

Figure 7.1: Message authentication with message authentication co des

A MAC is considered secure if it is infeasible to p erform an existential forgery

under an adaptive chosen message attack (see Section 7.1.5), i.e., an attacker

who may obtain MAC(x i ; k) under the secret key k for messages x i of his choice

is not able to pro duce with a realistic amount of resources a pair (x; m) with

x 6= x i for all i such that MACverify(x; m; k) = 1 . Obviously, recovering the

secert key k that is used to generate the authentication co de is su�cient for an

existential forgery.

Similarly to the cipher systems describ ed in Section 2.1, since Alice and

Bob b oth use the same key in the pro duction and veri�cation of m , message

102 7.2 Message Authentication Co des

authentication co des are said to b elong to the set of symmetric authentication

schemes.

We note that a MAC by itself do es not provide assurance of message time-

liness nor uniqueness.

7.2.1 Message Authentication Co des based on Blo ck Ci-

phers

The structure of Eq. (7.1) suggests to use blo ck ciphers as building blo cks for

message authentication co des. This idea is implemented, e.g., in the CBC-

MAC (ISO/IEC, 1999), which is based on the CBC mo de of a blo ck cipher

E : f 0; 1gl � f 0; 1gn ! f 0; 1gl
(see Section 2.2). If the CBC mo de encryption

of an m -blo ck message b = (b1; : : : ; bm) is given by E CBC ((b1; : : : ; bm); k; IV) :=
(c1; : : : ; cm) , the CBC-MAC value for this message is computed as

MAC CBC ((b1; : : : ; bm); k) := cm

with (c1; : : : ; cm) = E CBC ((b1; : : : ; bm); k; 0).

Note that the CBC-MAC is insecure if we allow the messages to have di�erent

lenghts, since we can forge an authentic message by app ending arbitrary blo cks

to observed authentic messages for which the CBC-MAC value is known. This

issue is addressed by variants of the CBC-MAC construction such as CMAC

(see, e.g., Preneel (2005) for a discussion).

If a message authentication co de is built from a blo ck cipher, this cipher will

dominate the resource requirements of the MAC. The AES blo ck cipher (see

Menezes et al. (2001)) is widely used for building message authentication co des,

and e�cient implementations, particularly for resource-constraint environments

are continously b eing develop ed and optimized (Moradi et al., 2011). In addition

to general purp ose blo ck ciphers, lightweight blo ck ciphers such as PRESENT

(Bogdanov et al., 2007) and KATAN/KTANTAN (De Cannière et al., 2009) are

sp eci�cally targeted at low-end devices.

7.2.2 Message Authentication Co des based on Crypto-

graphic Hash Functions

De�nition 7.3. A cryptographic hash function is a mapping H : f 0; 1g� !
f 0; 1gl

which maps an input of arbitrary length to a �xed-length output.

Cryptographic hash functions are usually required to b e

� collision resistant, i.e., it is infeasible for an adversary to �nd two inputs

x 6= x0
such that h(x) = h(x0) ,

� preimage resistant, i.e., it is infeasible for an adversary to �nd for a given

output y 2 f 0; 1gl
an input x such that h(x) = y , and

� 2nd preimage resistant, i.e., it is infeasible for an adversary to �nd for a

given input x another input x0
such that h(x) = h(x0) .

We note that collision resistance implies 2nd preimage resistance. However,

preimage resistance do es not imply 2nd preimage resistance, nor do es 2nd preim-

age resistance imply preimage resistance. A cryptographic hash function that

is b oth preimage resistant and 2nd preimage resistant is said to b e one-way .

7.3 Message Authentication with Digital Signatures 103

A collision resistant cryptographic hash function H for arbitraty inputs x 2
f 0; 1g�

may b e constructed from a collision resistant compression function h :
f 0; 1gc � f 0; 1gd ! f 0; 1gc

with c < d by expanding x to L blo cks of length d
(with the last blo ck only containing the bitlength of x), i.e., x = (M 1; : : : ; M L) ,

and computing the output as H (x) := HL with

H i :=
�

C for i = 0
h(H i � 1; M i) for 0 < i � L

with C 2 f 0; 1gc
constant.

This construction is attributed to Merkle and Damgård (Damgård, 1990,

Merkle, 1979, 1990). In particular, blo ck ciphers may b e used as compression

functions, e.g., as in the Davies-Meyer scheme (Davies and Price, 1984) by

computing the values H i based on a blo ck cipher E : f 0; 1gl � f 0; 1gn ! f 0; 1gl

with l = c, n = d as

h(H i � 1; M i) := E(H i � 1; M i) � H i � 1 ;

see, e.g., Black et al. (2002), Preneel et al. (1994).

Constructing a cryptographic hash function from a blo ck cipher may b e

particularly b ene�cial on low-end devices with to o little capacity to implement

b oth a blo ck cipher and a dedicated cryptographic hash function.

Potentially the most prominent examples of cryptographic hash functions are

the MD5 hash function (Rivest, 1992) and the SHA hash function family (NIST,

2008).

1

Similarly to blo ck ciphers, also dedicated lightweight cryptographic hash

functions exist, see, e.g., Guo et al. (2011).

We omit further details and refer the interested reader to Preneel (1993)

for an intro duction to cryptographic hash functions and to Fleischmann et al.

(2008), Preneel (2009) for information on more recent hash function prop osals

and their prop erties.

Cryptographic hash functions can readily pro duce a �xed-length �ngerprint

(or digest) of an arbitrarily long message, but in order to turn a hash function

into a message authentication co de in the sense of Eq. (7.1), it has to b e sp eci�ed

how to handle the secret key that the authentication relies on. A common

approach is the HMAC construction (Krawczyk et al., 1997) that derives an l -bit

message authentication co de from a cryptogrpahic hash function H : f 0; 1g� !
f 0; 1gl

and a key k 2 f 0; 1gn
as

MAC H : f 0; 1g� � f 0; 1gn ! f 0; 1gl

(x; k) 7! H ((k � opad)jjH (k � ipadjjx))

with publicly known constants opad and ipad.

7.3 Message Authentication with Digital Signa-

tures

Corrob orating evidence of a message's authenticity can also b e computed with

asymmetric cipher systems as de�ned in Section 2.4. Therefore, we use the

1

Since the security of these algorithms is increasingly under question, at the time of writing

of this thesis, a comp etition is b eing held by the National Institute of Standards and Tech-

nology (NIST) to select a successor algorithm for the SHA hash function family (see NIST

(2010)), which is stimulating the development of many new designs and intensive research in

this �eld.

104 7.4 Challenge-Resp onse based Entity Authentication

decryption op eration, which employs the private key, to pro duce the evidence,

and the encryption op eration, which is based on the public key, to verify the

evidence. Since in contrast to message authentication co des the evidence is

publicy veri�able without the need to establish a common secret, an evidence

based on an asymmetric system is usually called digital signature (see, e.g.,

Vaudenay (2006) for an intro duction).

The security de�nition of digital signatures is similar to the de�nition for

message authentication co des. A digital signature is considered secure if it is

infeasible for an adversary who may obtain signatures for messages x i of his

choice under the secret signature key to pro duce a signature for a message

x 6= x i that will b e accepted by a legitimate veri�er. As in the MAC case,

recovering the signature key is su�cient for b eing able to forge signatures for

arbitrary messages.

In order to sp end less e�ort on rather costly asymmetric op erations, the

evidence is typically computed for a digest of the message (derived with a cryp-

tographic hash function) rather than for the message as a whole. But still, as

with cipher systems, message authentication based on asymmetric digital signa-

ture schemes usually requires substantially more e�ort than symmetric message

authentication co des, and this e�ort has to b e considered to o large in many

low-end device applications.

7.4 Challenge-Resp onse based Entity Authenti-

cation

Entity authentication is usually p erformed by proving the p osession of some

ob ject (often called key), either a piece of information like a password or a

PIN, or a physical ob ject such as a mechanical key (see also Section 7.1.1).

2

In our attacker mo del, presenting the key itself to the prover as corrob orating

evidence is not an option in most cases of electronic communication, since it

would disclose it also to the attacker and immediately allow for imp ersonation

attacks. Hence, the corrob orating evidence needs to b e some information that is

derived from the key, but not the key itself. However, if this derived information

do es not change from one authentication to another, it is as valuable as the key

that is was derived from b ecause the attacker could just replay it to imp ersonate

the prover.

We see that the corrob orating evidence should b e some information that is

derived from the ob ject and is valid only for a short p erio d of time, ideally only

for one authentication session, such that the veri�er can decide whether he is

presented a recent (or fresh) evidence or some outdated information, which he

would then assume to have b een replayed by an attacker.

The most common techniques to implement freshness veri�cation of a corrob-

orating evidence are timestamps and veri�er-supplied challenges. Timestamps

are included into the evidence in an agreed way to do cument its creation time.

While b eing rather straightforward to include, timestamps require a means for

prover and veri�er to agree on the current time (b e it UTC time or some abstract

2

Strictly sp eaking, we could also mo del physical ob jects as pieces of information by iden-

tifying them with their sp eci�cation. However, obtaining this sp eci�cation may not always

b e feasible, e.g., as in the case of physical uncloneable functions (PUFs) that are inherently

determined by electrical or mechanical prop erties of a device (see, e.g., Pappu (2001))

7.5 Authentication Schemes based on Hash Chains 105

counter-based time), which may not always b e feasible esp ecially in low-end de-

vice applications.

Veri�er-supplied challenges are indep endent of time synchronization, but

require the veri�er to provide a challenge (usually a binary string) that the

prover has to include in the computation of the evidence. If the veri�er keeps

track of the challenges he supplies to provers, he can reject evidences that

are based on out-dated challenges. Entity authentication schemes based on

veri�er-supplied challenges are usually called chal lenge-response authentication

schemes . Whether a challenge-resp onse scheme is suitable for a particular

resource-constraint application primarily dep ends on the severity of the com-

munication overhead for transmitting the challenge to the prover.

We note that we can rather straightforwardly build challenge-resp onse entity

authentication schemes from message authentication schemes by requiring the

prover to provide as corrob orating evidence of his identity a message with the

veri�er-supplied challenge as payload and corrob orating evidence of this mes-

sage's authenticity. Alternatively, an encryption of the challenge can b e used as

corrob orating evidence (ISO/IEC, 1993).

7.5 Authentication Schemes based on Hash Chains

A slightly di�erent �avour of entity authentication proto cols which has b een

prop osed by Lamp ort (1981) is based on a one-way function h : f 0; 1gl ! f 0; 1gl
.

Prover and veri�er agree on a value n , the prover cho oses an arbitrary value

x0 , computes the sequence (x i)1� i � n with x i = h(x i � 1) , and transmits the

value xn to the veri�er in a tamp er-pro of, but not necessarily con�dential way.

As corrob orating evidence in the i -th authentication session, 1 � i � n , the

prover presents the value xn � i (i.e., the preimage of xn � i +1 under h) and is

authenticated if and only if h(xn � i) = xn � i +1 .

Since the sequence (x i) is pro duced by rep eated (chained) application of h ,

and h is often implemented as a cryptographic hash function or its compression

function, this authentication technique is known as hash chain based authenti-

cation.

Due to the construction, the numb er of p ossible authentications is limited

to the length of the hash chain, which, in the absence of auxiliary techniques,

makes the construction slightly less suited for authenticating long-term identi-

ties. Therefore, hash chain based authentication is more often used for entity

recognition than for entity authentication. On the other hand, compared to

digital signatures, the scheme is computationally much more e�cient on typical

low-end devices, and since the transmission of the chain endp oint xn do es not

have to b e con�dential, it requires less e�ort than conventional key establish-

ment techniques in the initialization phase.

Message authentication schemes can b e built based on hash chains, e.g., as

in the Guy Fawkes proto col suggested by Anderson et al. (1998). The Jane Do e

proto col by Lucks et al. (2008) uses the elements of the hash chain as keys for a

message authentication co de, and the chain elements are successively disclosed

to the veri�er such that he can p erform the authentication. In order to prevent

forgery attacks, care has to b e taken not to disclose these values to o so on, which

is ensured by a second hash chain that is pro duced on the veri�er's side and

stepwise disclosed to the prover.

106 7.6 Authentication based on the Hardness of Learning Problems

7.6 Authentication based on the Hardness of Learn-

ing Problems

A sp ecial case of lightweight challenge-resp onse based entity authentication as

describ ed in Section 7.4 is the following generic strategy:

1. Construct from a lightweight function E a basic challenge-resp onse proto-

col and reduce the security of the basic proto col against passive attackers

to the hardness of a suitable learning problem.

2. De�ne a proto col P over E and try to reduce the security of P against

active attackers to the security of the basic proto col against passive at-

tackers.

For a function E : X � K ! Y with suitably chosen input space X , key

space K and output space Y , the basic proto col is de�ned as follows. The

veri�er (Alice) and the prover (Bob) share a secret key k 2 K . A basic round

consists of the following steps.

� Alice and Bob exchange challenge information. As a sp ecial case, this step

may only consist of Alice sending a publicly known constant value (a hel lo

message) that is just used as a trigger to initiate the communication.

� Based on the challenges, Bob cho oses a random element x 2 X which

is distributed according to a publicly known probability distribution PrB

and sends z = E(x; k) as corrob orating evidence of his knowledge of k to

Alice.

� Alice veri�es z based on the challenges and the common secret k .

After r such rounds and dep ending on the numb er of rounds with successful

veri�cations, Alice decides whether to authenticate Bob.

In the following, we consider two entity authentication proto col families of

this typ e, the HB family and the family of linear (n; k; L) proto cols.

Chapter 8

The HB Family of

Authentication Proto cols

8.1 The HB Proto col

The HB proto col was prop osed by Juels and Weis (2005) as an authentication

proto col that can b e executed by humans. The use case that they had in mind

was securely logging into a terminal in the presence of adversaries eavesdropping

on what the user typ es into the keyb oard.

The veri�er (Alice) and the prover (Bob) share a common secret k 2 f 0; 1gn

and a public noise parameter � 2
�
0; 1

2

�
. A basic round of the HB proto col works

as follows. Alice transmits a random challenge a 2 f 0; 1gn
to Bob, who cho oses

a value � 2 f 0; 1gn
with Pr[� = 1] = � and transmits the value z := (a � k) � �

as corrob orating evidence to Alice, where x � y 2 f 0; 1g for x; y 2 f 0; 1gn
denotes

the inner pro duct of x and y over GF(2) . She accepts z if and only if z is equal

to (a � k) . Fig. 8.1 illustrates the basic round of HB.

Note that in the terminology of Section 7.6, we have K = GF(2) n
, X = Y =

GF(2)n � GF(2) , y = GF(2) , and the basis op eration is de�ned by E((x; �); k) =
(x; y) , where y = x � k � � .

The entire proto col consists of r basic rounds, and Alice authenticates Bob

Verifier Prover
Alice Bob

RFID reader RFID tag

a 2R f 0; 1gn

z = (a � k) � �
Accept i�

choose
� 2 f 0; 1g,
Pr[� = 1] = �

z = (a � k)

key k key k

Figure 8.1: Basic round of the HB proto col

108 8.2 The HB+
Proto col

if and only if the numb er of rounds in which the received value z was rejected

is less than �r , or equivalently, for A denoting a random (r � n) matrix over

f 0; 1g and k written as (n � 1) matrix, Alice authenticates Bob if and only if

j(A � k) � zj < �r :

Hence, a passive attacker who observes the communication b etween Alice

and Bob and wants to imp ersonate Bob is faced with the problem of �nding a

k0 2 f 0; 1gn
such that

j(A � k0) � zj < �r :

This problem corresp onds to the Learning Parity in the Presence of Noise

(LPN) problem, which is de�ned as follows.

De�nition 8.1 (Learning Parity in the Presence of Noise). Let A be a

random (r � n) matrix , let k be a random n -bit vector, let � 2
�
0; 1

2

�
be a constant

noise parameter, and let � be a random r -bit vector such that j� j � �r . Given

A , � , and z = (A � k) � � , �nd an n -bit vector k0
such that j(A � k0) � z)j � �r .

The LPN problem is well-established in the literature (see, e.g., Hopp er and

Blum (2001), Juels and Weis (2005) for an overview). It has b een shown to b e

NP -hard, but its di�culty on random instances is still an op en question. The

b est known algorithm to date is due to Blum et al. (2003) and has a running time

of 2O(n
log n)

, with tighter analyses and implementation improvements prop osed

by Fossorier et al. (2006), Levieil and Fouque (2006).

Hopp er and Blum (2001), Juels and Weis (2005) showed that the security

of the HB proto col against passive attackers can b e reduced to the hardness of

the LPN problem in the sense that a passive attacker who can imp ersonate the

prover in the HB proto col can b e used to solve the LPN problem.

However, a detection attacker Eve (see De�nition 7.1) can break the HB
proto col and imp ersonate the prover as follows (Juels and Weis, 2005). Eve

rep eatedly sends the same challenge a to Bob in order to learn the error-free

value of a� k for the unknown secret k . She rep eats this pro cedure for n linearly

indep endent values a (e.g., the standard basis f e1; : : : ; en g of f 0; 1gn
) and can

then recover k by Gaussian elimination.

8.2 The HB+
Proto col

HB+
was prop osed by Juels and Weis (2005) to strenghen HB against active

attackers. It intro duces an additional message, a prover-supplied blinding factor,

and works as follows.

Veri�er (Alice) and prover (Bob) share two secret values k1; k2 2 f 0; 1gn

and a public noise paramter � 2
�
0; 1

2

�
. At the b eginning of a basic proto col

round, Bob sends a randomly chosen blinding factor b 2 f 0; 1gn
to Alice, and

she replies with a challenge a 2 f 0; 1gn
. Bob then computes his corrob orating

evidence as z = (a � k1) � (b� k2) � � with � 2 f 0; 1g such that Pr[� = 1] = � and

transmits z to Alice, who accepts z if and only if z is equal to (a � k1) � (b� k2) .

The basic proto col round of HB+
is illustrated in Fig. 8.2.

As in the HB proto col, the basic proto col round is rep eated r times, and

Alice authenticates Bob if and only if the numb er of basic rounds ending in

rejection of the evidence is less than �r .

8.3 Variants of the HB+
Proto col 109

Veri�er Prover
Alice Bob

RFID reader RFID tag

a 2R f 0; 1gn

z = (a � k1) � (b� k2) � �
Accept i�

choose
� 2 f 0; 1g;
Pr[� = 1] = �

z = (a � k1) � (b� k2)

key k1; k2 key k1; k2
b 2R f 0; 1gn

Figure 8.2: Basic round of the HB+
proto col

Juels and Weis (2005) were able to show that a detection attacker (see De�-

nition 7.1) on HB+
can b e used to attack the HB proto col in a passive attacker

scenario, and this attack can in turn b e used to solve the LPN problem. Hence,

the hardness of LPN implies the security of HB+
against the active adversary

that HB is not able to resist.

However, Gilb ert et al. (2005) observed that this reduction cannot b e ex-

tended to general active adversaries, who can also act as man-in-the-middle b e-

tween legitimate prover and legitimate veri�er. More precisely, an HB+
man-in-

the-middle attacker Eve could pro ceed as follows. She cho oses a value � 2 f 0; 1gn

and replaces a veri�er-supplied challenge a by a � � . Bob will then pro duce a

corrob orating evidence z0
as

z0 = (a � k1) � (� � k1) � (b� k2) � � ;

and Eve observes whether Alice accepts z0
. If this is the case, then (� �k1) � � = 0 ,

which implies � � k1 = 0 with probability 1 � � . Conversely, if Alice rejects z0
,

then � � k1 = 1 with probability 1 � � . Similarly to the attack on HB, Eve

can rep eat this pro cedure for n linearly indep endent values � and recover k1 .

With this knowledge, Eve can already imp ersonate Bob by cho osing b = 0 . If

she wants to recover also k2 , she can cho ose an arbitrary b and interact with

a legitimate veri�er, supply z0 = a � k1 as corrob orating evidence and deduce

b� k2 = 0 if and only if the veri�er accepts z0
. Again, rep eating these steps for

n linearly indep endent blinding factors b yields k2 .

In the following, we will refer to this attack on HB+
as Gilb ert/Robshaw/Sib ert

attack (GRS attack).

8.3 Variants of the HB+
Proto col

After its publication in 2005, HB+
has recieved considerable attention in the

cryptographic community. Esp ecially its simplicity, its e�ciency on the prover's

side, and its provable resistance against passive attacks (alb eit relying on the

hardness of LPN) while b eing vulnerable to the rather simple GRS attack,

motivated a numb er of follow-up prop osals that aim to avoid this shortcoming

while preserving as many of the advantages as p ossible.

However, it turns out that resisting GRS-style attacks � mo difying the ver-

i�er's challenge and learning from his reaction to the evidence that the prover

110 8.3 Variants of the HB+
Proto col

pro duces from the p erturb ed input � do es not seem to b e an easy task. Partic-

ularly Gilb ert et al. (2008b) showed that many of the follow-up prop osals end

up b eing less e�cient than HB+
while not providing considerably more security.

In the following, we describ e the most prominent ones of these prop osals and

discuss their security prop erties.

8.3.1 The HB++
Proto col

The HB++
proto col was prop osed by Bringer et al. (2006) and consists, just

as HB+
, of a numb er of rep etitions of a basic proto col round. However, at the

b eginning of an authentication session, four secrets k1; k0
1; k2; k0

2 are derived from

a shared secret master key K , a prover-supplied blinding factor B 2 f 0; 1g80
and

a veri�er's challenge A 2 f 0; 1g80
. This is done by applying a publicly known

hash function to K , A and B . Bringer et al. prop ose a particular function

h : f 0; 1g768 � f 0; 1g80 � f 0; 1g80 ! f 0; 1g320
, which implies a master secret size

of 768 bits and four session keys of size 80 bits each (see Fig. 8.3).

In a basic proto col round, veri�er (Alice) and prover (Bob) exchange a blind-

ing factor b and a challenge a as in HB+
. Then Bob cho oses two noise parameters

� and � 0
with �; � 0 2 f 0; 1g and Pr[� = 1] = Pr[� 0 = 1] = � . The corrob orating

evidence consists of two comp onents (z; z0) with

z = (a � k1) � (b� k2) � �

z0 = (ROTi (f (a)) � k0
1) � (ROTi (f (b)) � k0

2) � � 0 ;

where ROTi (x) denotes the rotation of x 2 f 0; 1g�
by i p ositions to the left, and

f denotes a p ermutation. Analogously to HB+
, Alice checks whether z and z0

satisfy

z = (a � k1) � (b� k2) ;

z0 = (ROTi (f (a)) � k0
1) � (ROTi (f (b)) � k0

2) :

Figure 8.4 illustrates a basic proto col round of HB++
.

The basic proto col is rep eated r times, and Alice authenticates Bob if b oth

the numb er of erroneous z evidences and the numb er of erroneous z0
evidences

do not exceed a threshold t .

Bringer et al. (2006) showed that the resistance of HB++
against passive

attacks can b e reduced to the hardness of LPN, and that the proto col is able to

resist the GRS attack if f is carefully chosen.

Veri�er Prover
Alice Bob

RFID reader RFID tag

A 2R f 0; 1gn

(k1; k0
1; k2; k0

2)

secretK secretK
B 2R f 0; 1gn

= h(K; A; B)(k1; k0
1; k2; k0

2)

= h(K; A; B)

Figure 8.3: Initialization of the HB++
proto col

8.3 Variants of the HB+
Proto col 111

Veri�er Prover
Alice Bob

RFID reader RFID tag

a 2R f 0; 1gn

z 0 = (ROTi (f (a)) � k 0
1)

Accept iff

choose
�; � 0 2 f 0; 1g
Pr[� = 1] = �

z = (a � k 1) � (b � k 2)

key k1; k0
1; k2; k0

2 key k1; k0
1; k2; k0

2b 2R f 0; 1gn

Pr[� 0 = 1] = �

z = a � k 1 � b � k 2 � �

� (ROTi (f (b)) � k 0
2) � � 0

z 0 = (ROTi (f (a)) � k 0
1)

� (ROTi (f (b)) � k 0
2) � � 0

Figure 8.4: Basic round of the HB++
proto col

But still, HB++
remains vulnerable to a sp ecial extension of the GRS attack.

Gilb ert et al. (2008b) discovered that by disturbing the challenge a in s out of r
rounds of an authentication session, exploiting the observed veri�cation result

on the veri�er's side and the sp ecial structure of h , an adversary can deduce

linear equations in a numb er of bits of k1 . The resulting system can b e expressed

as an LPN instance and solved with mo derate e�ort. From the recovered k1 ,

the session key k0
1 can b e derived in a similar manner. The knowledge of k1

and k0
1 is already su�cient for imp ersonating Bob since the adversay can reuse

blinding factors b from successful authentications of Bob along with k1 , k0
1 to

correct z and z0
appropriately.

8.3.2 The HB�
Proto col

Another variant of HB+
, the HB�

proto col, was prop osed by Duc and Kim

(2007). As in HB+
, veri�er (Alice) and prover (Bob) share two secret values k1

and k2 . Additionally, there is a shared secret s that is used to con�dentially

transmit an auxiliary value
 from Bob to Alice.

At the b eginning of a basic proto col round, Bob cho oses
 2 f 0; 1g with

Pr[
 = 1] = � 0
, and � 2 f 0; 1g with Pr[� = 1] = � , and transmits a randomly

chosen blinding factor b 2 f 0; 1gn
and the encrypted value of
 , which is com-

puted as w = (b � s) �
 , to Alice. As in HB+
, Alice replies with a challenge

a 2 f 0; 1gn
. Bob then computes his corrob orating evidence as

z =
�

(a � k1) � (b� k2) � � if
 = 0
(a � k2) � (b� k1) � � if
 = 1

;

and Alice checks whether (a � k1) � (b � k2) equals z if (b � s) = w (i.e.,
 = 0),

and whether (a � k2) � (b � k1) equals z if (b � s) 6= w (i.e.,
 = 1). Again, Bob

is authenticated if the veri�cation fails for less than a threshold t out of r basic

proto col rounds. The basic proto col round of HB�
is illustrated in Fig. 8.5.

Duc and Kim claim resistance against the GRS attack, but Gilb ert et al.

(2008b) observed that although in each basic round one of the two proto col

mo des is secretly selected by the value
 , a mo di�ed GRS attack remains appli-

cable. This attack is again based on adding a vector � to the veri�er's challenge

a and exploiting the information that the result of the veri�cation leaks ab out

112 8.3 Variants of the HB+
Proto col

Veri�er Prover
Alice Bob

RFID reader RFID tag

a 2R f 0; 1gn

z =

�
ak1 � bk2 � � if
 = 0
ak2 � bk1 � � if
 = 1

Accept iff

choose
� 2 f 0; 1g
Pr[� = 1] = �

key k1; k2; s key k1; k2; s

b; w = (b� s) �

choose

 2 f 0; 1g
Pr[
 = 1] = � 0

choose

b 2R f 0; 1gn

z =

�
ak1 � bk2 if bs = w
ak2 � bk1 if bs 6= w

Figure 8.5: Basic round of the HB�
proto col

the secrets k1 and k2 . A case distinction shows that the acceptance probabil-

ity of z varies dep ending on the values of � � k1 and � � k2 in such a way that

the attacker can discriminate b etween (sets of) the cases. Dep ending on the

choices of � and � 0
, the attacker may either recover k1 as in the GRS attack

and imp ersonate Bob by sending (b; w) = (0 ; 0) as �rst message, or learn the

two-dimensional vectorial space < k 1; k2 > , which can similarly b e exploited to

imp ersonate Bob.

8.3.3 The HB- MP Proto cols

Munilla and Peinado (2007) prop osed the HB- MP proto col as an HB+
-variant

that presumably resists the GRS attack. It uses a two-pass basic proto col as

follows. Both veri�er (Alice) and prover (Bob) share a secret (k1; k2) . In the i -

th execution of the basic proto col, Alice sends a challenge a 2R f 0; 1gm
to Bob,

who cho oses a � 2R f 0; 1gm
such that Pr[� i = 1] = � for all i 2 [1; m]. Then

he computes k1 := rotate (k1; (k2) i) , where (k2) i denotes the i -th bit of k2 and

rotate (x; y) the rotation of x by y p ositions. He computes z := (a � (bk1cm)) � �
with bk1cm denoting the m least signi�cant bits of k1 . Finally, he cho oses a

value b that satis�es (b � (bk1cm)) = z and transmits b to Alice. Alice accepts

the evidence if and only if b� (bk1cm) equals a � (bk1cm) which is equivalent to

(a � b) � (bk1cm) = 0 : (8.1)

Figure 8.6 illustrates the basic round of HB- MP .

As with HB+
, Bob is authenticated if the numb er of failed basic proto col

rounds is less than some threshold t .

Despite the claim in the original prop osal, HB- MP is vulnerable to a passive

attack as observed by Gilb ert et al. (2008b). Equation (8.1) implies that a basic

proto col round is always passed if a and b are equal. Munilla and Peinado rec-

ommend immediate rejection for this case, but nevertheless suitable evidences

can b e constructed from an observed r -round authentication session with ex-

changed messages (ai ; bi) , i 2 [1; r]. In order to imp ersonate the prover, we

8.3 Variants of the HB+
Proto col 113

Veri�er Prover
Alice Bob

RFID reader RFID tag

a 2R f 0; 1gm

Accept iff

choose
� 2 f 0; 1gm

Pr[� i = 1] = �

b� (bk1cm) = a � (bk1cm)

key k1; k2 key k1; k2

x = rotate(k1 ; (k2) i)
z = (a � (bk1cm)) � �

b with b � (bk1cm) = z
x = rotate(k1 ; (k2) i)

Figure 8.6: Basic round of the HB- MP proto col

compute for the veri�er's challenge a0
i an evidence b0

i as bi := a0
i � ai � bi . Then

we have b0
i 6= a0

i since ai 6= bi , and

(ai � bi) � (bk1cm) = (a0
i � b0

i) � (bk1cm) :

Hence, with this strategy we can successfully imp ersonate the prover if and only

if the observed authentication session was successful.

8.3.4 The HB#
Proto col

In the light of the little resistance of the ab ove describ ed HB+
variants against

GRS-typ e attacks, Gilb ert et al. (2008a) intro duced HB#
as an improvement

of HB+
that is provably resistant against the GRS attack. It can b e seen as a

compressed version of HB+
and works as follows.

Veri�er (Alice) and prover (Bob) share two secret matrices K 1 and K 2 . Bob

sends an l2 -bit blinding value b 2R f 0; 1gl 2
to Alice, who replies with an l1 -bit

challenge a 2R f 0; 1gl 1
. Bob then cho oses an m -bit vector � = (� 1; : : : ; � m)

such that Pr[� i = 1] = � for i 2 [1; m] and transmits to Alice as corrob orating

evidence the value z = aK 1 � bK2 � � . Alice accepts an evidence z if and only

if wt(a � K 1 � b� K 2 � z) � t for some threshold t (see Fig. 8.7).

In contrast to HB+
, an authentication session based on HB#

consists only

of a single round. Hence, the proto col is similar to m executions of HB+
with

individual secrets in each basic round.

Although provably resistant against the GRS attack and certain extensions,

HB#
has b een shown by Oua� et al. (2008) not to resist general man-in-the-

middle attacks. Particularly, Oua� et al. show how to deduce the Hamming

weight of the error vector � in a particular authentication session, which can

in turn b e used to set up a system of linear equations to recover K 1 and K 2 .

The attack has resonable success probabilities for practical parameter choices

of HB#
and is generally applicable also to other memb ers of the HB proto col

family.

114 8.3 Variants of the HB+
Proto col

Verifier Prover
Alice Bob

RFID reader RFID tag

a 2R f 0; 1gl 1

z = a � K 1 � b� K 2 � �
Accept i�

choose
� 2 f 0; 1gm

Pr[� i = 1] = �

wt((a � K 1) � (b� K 2) � z) � t

key K 1; K 2 key K 1; K 2
b 2R f 0; 1gl 2

Figure 8.7: One round of the HB#
proto col

8.3.5 The Trusted- HB Proto col

A generic way to prevent man-in-the-middle attacks on HB+
-like proto cols is to

have the prover send a signature of his view of the communication transcript at

the end of the authentication proto col. An adversary who is not able to forge

the signature will thereby b e prevented from imp ersonating the prover. Obvi-

ously, the choice of signature schemes is restricted by the resource contraints

of the HB+
target application environment, which rules out standard message

authentication schemes (that could by themselves b e used for entity authenti-

cation, see Section 7.4). The prop osal Trusted- HB by Bringer and Chabanne

(2008) tries to solve this trade-o� by using a family of universal hash functions

that are represented by To eplitz matrices, particularly by a subset of To eplitz

matrices that can b e generated by LFSRs.

De�nition 8.2. A �nite col lection H of hash functions h : f 0; 1gm ! f 0; 1gn
is

cal led family of universal hash functions if for each pair of values x; y 2 f 0; 1gm
,

the number of hash functions h 2 H for which h(x) = h(y) is precisely

jHj
m , i.e.,

for a randomly chosen h 2 H , Pr[h(x) = h(y)] = 1
m for al l x; y 2 f 0; 1gm

.

De�nition 8.3. An (n � m) Boolean To eplitz matrix U contains a �xed value

in each left-to-right diagonal, i.e., U is a Toeplitz matrix if Ui;j = Ui + k;j + k for

every 0 � i; i + k < n and 0 � j; j + k < m .

Mansour et al. (1990) showed that a family H of universal hash functions can

b e constructed by representing the h 2 H as To eplitz matrices U and computing

h(M) as h(M) := U � M with M written as (m � 1) matrix.

The idea of Krawczyk (1994), which is also used in Trusted- HB, was to re-

strict the family of To eplitz matrices to those whose consecutive columns can

b e represented as the consecutive states of an LFSR with irreducible connection

p olynomial. This restriction trades o� reduced security guarantees and com-

pact matrix representations, which are esp ecially useful in resource-constrained

environments. The signature for a message M 2 f 0; 1gm
is then computed as

MAC(M) := h(M) � e(i)
, where e(i) 2 f 0; 1gn

denotes the i -th unused one-time

pad, while h and e(i)
, i � 0, are the secret key shared by prover and veri�er.

Therefore Trusted- HB consists of two stages:

1. Prover and veri�er execute the standard HB+
proto col.

8.3 Variants of the HB+
Proto col 115

2. The prover computes a signature on the communication transcript of the

�rst stage based on LFSR-based To eplitz matrices and transmits it to the

veri�er for veri�cation.

However, the particular implementation of step (2) in Trusted- HB turned out

to b e �awed (Frumkin and Shamir, 2009), particularly b ecause it seems hard in

practice to keep h con�dential and provide values e(i)
that are su�ciently close

to the one-time pad assumption. How the signature can b e implemented in a

b oth a secure and e�cient way is therefore an op en problem to the present day.

116 8.3 Variants of the HB+
Proto col

Chapter 9

The (n, k, L) Family of

Authentication Proto cols

9.1 Intro duction and Overview

As a p ossible alternative to HB -typ e proto cols, another class of lightweight

authentication proto cols (so-called CKK proto cols) were intro duced by Cicho«

et al. (2008). These proto cols can b e generalized to linear (n; k; L) proto cols,

in which the secret key consists of the sp eci�cation of L n -dimensional linear

subspaces V1; : : : ; VL of GF(2)n + k
, while the identi�cation is p erformed by col-

lab oratively generating an element v 2 Vl for a random l 2 f 1; : : : ; Lg. Cicho«

et al. (2008) suggested the CKK

2
proto col, a sp ecial linear (n; k; 2) proto col, and

the CKK

�;L
proto col, a sp ecial linear (n; k; L) proto col, for practical application.

Compared to HB -typ e proto cols, the advantages of (n; k; L) proto cols and

esp ecially their improvements (n; k; L)+
and (n; k; L)++

are that fewer bits have

to b e communicated, computational e�ort and memory requirements are lower

on the prover's side (essentially, the prover has to generate random elements

from L di�erent n -dimensional subspaces of GF(2)n + k
), and that (n; k; L) -typ e

proto cols seem to b e more resistant against active attacks. The drawback is

that we cannot prove the security of (n; k; L) proto cols by reduction to a well-

established problem like the LPN-problem yet. However, we show that similarly

to HB -typ e proto cols, the security of (n; k; L) -typ e proto cols can b e related to

the hardness of a certain learning problem, the Learning Unions of L linear

subspaces (LULS) problem.

We have exp erimentally con�rmed the correctness and e�ciency of our at-

tacks and algorithms with the computer algebra system Magma (Bosma et al.,

1997).

9.2 The Linear (n, k, L) Proto col

In a linear (n; k; L) proto col, veri�er (Alice) and prover (Bob) share as common

secret the sp eci�cations of L injective linear functions F1; : : : ; FL : GF(2)n �!
GF(2)n + k

, i.e., each Fi corresp onds to an n -dimensional subspace Vi of GF(2)n + k
.

After receiving an arbitrary challenge from Alice, Bob computes as cor-

118 9.2 The Linear (n; k; L) Proto col

rob orating evidence an element w = Fl (u) for l 2R [L] and u 2R GF(2)n
.

Alice accepts an evidence w if there is an l 2 [L] such that w 2 Vl , where

[L] := f 1; : : : ; Lg (see Fig. 9.1).

Obviously, this proto col is vulnerable to a simple passive attack, since an

adversary can store a numb er of pro ofs and then imp ersonate Bob by presenting

these pro ofs to Alice.

Moreover, an active adversary can successfully recover the key as follows.

1. Collect a set of messages O = f v1; : : : ; vsg sent by Bob, with s large

enough for O to contain a basis for Vl for all l 2 [L] with high probability.

2. Construct an s � s-matrix M over f 0; 1g, where M i;j = 1 i� Alice accepts

vi � vj
.

Note that if vi
and vj

b elong to the same subspace Vl , Pr[M i;j = 1] = 1 . If

f vi ; vj g 6� Vl for all l 2 [L], then

Pr[M i;j = 1] = Pr

"

vi � vj 2
L[

l =1

Vl

#

� (L � 2)2� k :

The exp ected numb er of messages needed for constructing Or can b e estimated

based on the following exp eriment.

Set B := ; .

rep eat

Cho ose a random v 2 GF(2)n
(w.r.t. the uniform distribution).

V := V [f vg.

until V is a generating system of GF(2)n
.

Lemma 9.1 (Goªebi¦wski et al. (2008)). Consider the experiment of repeat-

ed ly choosing a random element v 2 GF(2)n
and adding v to an initial ly empty

set V until V contains a generating system of GF(2)n
. Let p(n) denote the

probability that the experiment stops after n iterations (i.e., V is a basis of

GF(2)n
), and E(n) denote the expected number of iterations of the experiment.

Then p(n) � 0:2887 and E(n) � n + 1 :6067.

Hence, s 2 �(L � E (n)) = �(Ln) , i.e., it is p ossible to e�ciently compute

sp eci�cations of V1; : : : ; VL and to imp ersonate Bob by replying with w 2 Vl for

arbitrary l 2 [L].

Veri�er Prover
Alice Bob

RFID reader RFID tag

challenge choosel 2R [L];

w = Fl (u)
accept if

9l 2 f 1; : : : ; Lg
with w 2 Vl

u 2R GF(2)n

key F1; : : : ; FL key F1; : : : ; FL

Figure 9.1: Basic round of the (n; k; L) proto col

9.3 The Linear (n; k; L)+
Proto col 119

9.3 The Linear (n, k, L)+
Proto col

In order to prevent the describ ed attacks on the linear (n; k; L) proto col, we

consider the following communication mo de, which, analogously to the HB

+

proto col (see Section 8.2), de�nes (n; k; L)+
proto cols.

Alice starts by sending an a 2R GF(2)n= 2
to Bob. Bob cho oses values

b 2R GF(2)n= 2
and l 2R [L] and sends w = Fl (a; b) to Alice. Alice accepts a

w 2 GF(2)n + k
if there is some l 2 [L] with w 2 Vl and the pre�x of length n=2

of F � 1
l (w) is equal to a (see Fig. 9.2).

However, (n; k; L)+
proto cols can b e broken by the man-in-the-middle at-

tack outlined in Algorithm 12. In this attack, s is chosen large enough for

f w1; : : : ; wsg to contain a basis of Vl with high probability (see Lemma 9.1).

The attack is rep eated until sp eci�cations of all V1; : : : ; VL have b een computed.

Algorithm 12 (n; k; L)+
_MITM-Attack (n; k; L)

Fix a1 6= ~0 in GF(2)n= 2
.

Send a1 to Bob and receive w1 2 Vl for some unknown l 2 [L].

for r = 2 ; : : : ; s do

rep eat

Intercept a from Alice.

Send a0 := a � a1 to Bob and receive w0
.

until Alice accepts w0� w1 (which happ ens with probability at least 1=L)

De�ne ar := a0
and wr := w0

.

end for

return f w1; : : : ; wsg (which allows to compute Vl)

9.4 The Linear (n, k, L)++
Proto col

The parameters n; k; L as well as Vl , Fl for l 2 [L] are de�ned as ab ove. Let

n = 2 N . The (n; k; L)++
proto col works similarly to the (n; k; L)+

proto col, but

uses an additional publicly known invertible function f : GF(2)n �! GF(2)n
,

which we call connection function.

In a basic proto col round, Alice cho oses a random a 2 GF(2)N
, a 6= ~0, moves

to inner state a, and sends a to Bob. Bob cho oses random values b 2 GF(2)N

Veri�er Prover
Alice Bob

RFID reader RFID tag

a 2R GF(2)n= 2
choosel 2R [L],

w = Fl (a; b)

b 2R GF(2)n= 2

let (~a;~b) = F � 1
l (w)

accept if ~a = a

if 9l 2 f 1; : : : ; Lg
with w 2 Vl

key F1; : : : ; FL key F1; : : : ; FL

Figure 9.2: Basic round of the (n; k; L)+
proto col

120 9.4 The Linear (n; k; L)++
Proto col

and l 2 [L] and sends w = Fl (f (a; b)) back to Alice. Alice accepts a message

w 2 GF(2)n
in inner state a if w 6= ~0, and 9l 2 [L] such that w 2 Vl , and

f � 1(F � 1
l (w)) has the form (a; b) for some b 2 GF(2)N

. The basic proto col

round of (n; k; L)++
is illustrated in Fig. 9.3. Note that cho osing f to b e the

identity yields the (n; k; L)+
proto col.

For the (n; k; L)++
proto col, we consider a sp ecial typ e of man-in-the-middle

attack which we call (x; y) -equality attack . The aim of an (x; y) -equality attacker

Eve is to generate two messages w 6= w0 2 GF(2)n + k
and to e�ciently test by

man-in-the-middle access to the proto col whether w and w � w0
b elong to the

same linear subspace Vl for some l 2 [L]. As describ ed ab ove, such an attack

can b e used to e�ciently compute sp eci�cations of the subspaces V1; : : : ; VL .

Eve works in three phases:

1. Send a message y 2 GF(2)N
to Bob and receive w0 = Fl (f (y; b0)) .

2. Observe a challenge a 2 GF(2)N
sent by Alice.

3. Compute a value x = x(y; w0; a) 2 GF(2)N
, send it to Bob, receive the

message w = Fr (f (x; b)) , and send w � w0
to Alice.

The success probability of the attack is equal to the probability that Alice

accepts w � w0
given that l = r . Note that if f is GF(2) -linear (as in the

(n; k; L)+
proto col), setting x = a � y yields an attack with success probability

one.

We now de�ne a connection function which yields provable security against

(x; y) -equality attacks. In the following we identify f 0; 1gN
with the �nite �eld

K = F2N and denote by + ; � the addition and multiplication in K . We de�ne a

connection function f by

f : K � K ! K � K
(a; b) 7! (ab; ab3)

: (9.1)

Hence, Alice accepts a message w with F � 1
l (w) = (u; v) 2 K 2

in inner state

a 2 K �
if (a� 1u)3 = a� 1v , which is equivalent to u3 = a2v .

Theorem 9.2. The success probability of an (x; y) -equality attacker against the

(n; k; L)++
protocol with connection function f de�ned in Eq. (9.1) is at most

3
2N � 1 .

Verifier Prover
Alice Bob

RFID reader RFID tag

a 2R GF(2)N
choosel 2R [L],

w = Fl (f (a; b))

b 2R GF(2)N

let (~a;~b) = f � 1(F � 1
l (w))

accept if ~a = a

if 9l 2 f 1; : : : ; Lg
with w 2 Vl

key F1; : : : ; FL key F1; : : : ; FL

Figure 9.3: Basic round of the (n; k; L)++
proto col

9.5 Sp ecial Cases of Linear (n; k; L) Proto cols 121

Pro of. For given y; a 2 K �
, Eve has to cho ose an element x 2 K �

such that

w + w0 = (u; v) 2 K � K will b e accepted by Alice in inner state a, where

w = Fl (x; b) and w0 = Fl (y; b0) for some l 2 [L], and b; b0 2 K �
. Note that Eve

has no information ab out b; b0, and that u = xb + yb0
and v = xb3 + yb03

.

Consequently, Eve's choice for the value x has to satisfy

(xb + yb0)3 = a2(xb3 + yb03)

, (x + yc)3 = a2(x + yc3) with c := b0(b� 1)

, P(x; c) = 0 ;

with P(x; d) for all d 2 K �
de�ned as

P(x; d) := x3 + (yd)x2 + (y2d2 + a2)x + d3(y3 + y2a2) :

Note that there are jK � j = 2 N � 1 di�erent p olynomials P(x; d) with resp ect to

the variable x . For all x 2 K �
let P(x) := f djP(x; d) = 0 g: Note that P(x; d) is

a p olynomial of degree 3 also in the unknown d. This implies that jP(x)j � 3
for all x 2 K �

.

Eve has to cho ose an x that satis�es c 2 P(x) . Since she do es not have any

information ab out c, her success probability is at most

3
2N � 1 . 2

9.5 Sp ecial Cases of Linear (n, k, L) Proto cols

The de�nition of the (n; k; L) proto col family was inspired by two earlier pro-

p osals, the CKK

2
proto col and the CKK

�;L
(Cicho« et al., 2008) proto col, which

can b e seen as restricted (n; k; L) proto cols.

In our notation, the proto col CKK

2
is an (n + k; k; 2) proto col with the

additional prop erties that F1(u; a) = (u; f (u); a) and F2(u; a) = (u; a; f (u))
for all u 2 GF(2)n

and a 2 GF(2)k
, where f denotes a secret linear function

f : GF(2)n �! GF(2)k
. The proto col CKK

�;L
is an (n; k; L) proto col with

the restriction Fl (u) = � l (ujj f (u)) for all l 2 [L], where � denotes a secret

p ermutation � 2 Sn + k and f a secret linear function f : GF(2)n �! GF(2)k
.

Hence, the secret keys have the form (f; �) . The parameters n = 128 and k = 30
were suggested by Cicho« et al. (2008) for practical applications of CKK

2
and

CKK

�;L
.

Goªebi¦wski et al. (2008) presented an attack against the CKK

2
proto col,

which cannot b e applied to general (n; k; L) proto cols. Its running time is

prop ortional to

P k � 1
s=0

� n
s

�
, i.e., of order n�(k)

. As an improvement of this result,

we now describ e a very fast attack against the CKK

2
proto col with parameters

(n; k) whose running time is dominated by the e�ort required for inverting k
(n � n) -matrices.

Let f : GF(2)n �! GF(2)k
denote the secret key and recall that

V1 = f (v; f (v); a); v 2 GF(2)n ; a 2 GF(2)k g ;

V2 = f (v; a; f (v)) ; v 2 GF(2)n ; a 2 GF(2)k g :

Let the functions f 1; : : : ; f k : GF(2)n �! GF(2) denote the comp onent func-

tions of the secret function f , i.e., f (v) = (f 1(v); : : : ; f k (v)) for all v 2 GF(2)n
.

The attack is based on the simple fact that if an observation (v; a; b) satis�es

122 9.6 Security of Linear (n; k; L) -typ e Proto cols and the LULS Problem

Algorithm 13 CKK

2
_Attack (n; k)

Let f e1; : : : ; en g denote the standard basis of GF(2)n
.

for r 2 [k] do

Consider a set of messages pro duced by Bob and extract from it a set

Or = f (vr; 1; ar; 1; br; 1); : : : ; (vr;n ; ar;n ; br;n)g such that vr; 1; : : : ; vr;n form a

basis of GF(2)n
and ar;i (r) = br;i (r) = f r (vr;i) for all i 2 [n].

Derive f r (e1); : : : ; f r (en) from Or .

return f 1; : : : ; f k

end for

ar = br for some r 2 [k], which is true with probability 1=2, then we know that

f r (v) = ar = br . The attack works as describ ed in Algorithm 13.

The correctness of the attack follows straightforwardly from the de�nitions.

Lemma 9.1 implies that the exp ected numb er of messages needed for construct-

ing Or is 2 � E(n) � 2n + 3 :2134. For the parameter choices prop osed for

practical applications, the attack is very e�cient already on standard PC hard-

ware (Magma V2.15-9 on a 3.4 GHz Intel Pentium IV with 4 GB RAM), see

Table 9.1.

9.6 Security of Linear (n, k, L) -typ e Proto cols and

the Learning Unions of L Linear Subspaces

Problem

9.6.1 The Search-for-a-Basis Heuristic

There are several exhaustive search strategies for computing sp eci�cations of

the secret subspaces V1; : : : ; VL .

As an example, we describ e the search-for-a-basis heuristic, which tries to

construct a set Q of examples which form a basis of Vl for some l 2 L . For all

linearly indep endent sets Q of n examples let p(Q) denote the probability that

an example coming from the oracle b elongs to the linear span hQi of Q . It is

quite obvious that p(Q) is maximal if Q is a basis of Vl for some l 2 L . If p(Q)
is not to o small, we can compute an approximation ~p(Q) of p(Q) by testing for

w 2 hQi for a su�ciently large numb er of examples w . For v 2 Q and w 62Q
we denote by Q(v; w) the set obtained by replacing v by w in Q .

The idea of the heuristic is to start with an arbitrary linearly indep endent

set Q of n examples and to try to improve this set by �nding v 2 Q and w 62Q
such that ~p(Q) < ~p(Q(v; w)) . Iterating this pro cedure at most n times yields a

basis for Vl for some l 2 [L].

Table 9.1: Performance of the passive attack on CKK

2

(n; k) approx. numb er of observations approx. attack time

(128; 30) 311 0:3 s

(1024; 256) 2197 179 s

9.6 Security of Linear (n; k; L) -typ e Proto cols and the LULS Problem 123

This kind of heuristic is infeasible if the following condition is ful�lled. For a

random linear indep endent set Q of n examples the probability p(Q) is negligibly

small with probability 1 � � , � negligibly small. The parameters n; k should b e

chosen such that this condition is guaranteed.

We estimate the probability p(Q) for the case L = 2 . For a linear indep en-

dent set Q of n examples let Q = Q1 [Q2 , where Q1 � V1 and Q2 � V2 n V1 .

Without loss of generality, let jQ1j = n=2 + s and jQ2j = n=2 � s. The event

w 2 hQi happ ens i� w 2 V1\ < Q 1 > or w 2 V2 and w 2 V2\ < Q 1 > , i.e.,

p(Q) �
1
2

�
2s� n= 2 + 2 � k

�
:

Note that dim(V1 \ V2) = n � k for random n -dimensional subspaces V1 , V2 . If

n; k are chosen such that 2� k
, 2� n= 4

and the probability that jvj 62[n=4; 3n=4]
are negligibly small, then the ab ove condition is ful�lled (note that the exp ected

value of s is 2� k n=2).

The parameters (n; k) should b e chosen such that these attacks b ecome

infeasible. Moreover, k should b e large enough such that the probability p of

a random v 2 GF(2)n + k
b elonging to

S L
l =1 Vl is negligibly small. Note that

p < L 2� k
.

The subspaces V1; : : : ; VL should have the prop erty Vi � Vj = GF(2) n + k
for

all i 6= j 2 [L], otherwise the e�ective key length would b e reduced. This implies

n � k .

9.6.2 The Learning Unions of L Linear Subspaces Problem

The Learning Unions of L Linear Subspaces (LULS) Problem refers to the fol-

lowing communication game b etween a learner and an oracle. The oracle holds

the sp eci�cations of L n -dimensionial linear subspaces V1; : : : ; VL of GF(2)n + k
.

The learner can send requests hel lo to the oracle. If the oracle receives hel lo , it

cho oses randomly and uniformly an l 2 [L] and v 2 Vl and sends the (p ositive)

example v to the learner. The aim of the learner is to compute sp eci�cations

of V1; : : : ; VL from a su�ciently large set v1; : : : ; vs
of examples pro duced by

the oracle. Note that this corresp onds to a passive key recovery attack against

(n; k; L) -typ e proto cols. A p ossible strategy is the search-for-a-basis heuristic

describ ed in Section 9.6.1.

An active adversary who is able to solve the LULS problem e�ciently can

break the (n; k; L)+
proto col. In particular, knowing sp eci�cations of the se-

cret subspaces V1; : : : ; VL , he can generate sp eci�cations of the subspaces Vl (a)
(i.e., the image of Fl (a; �)), for arbitrary a 2 GF(2)n= 2

and l 2 [L] by re-

p eatedly sending a to Bob. Then the adversary uses N = n=2 subspaces

Vl (ai); : : : ; Vl (aN) for f a1; : : : ; aN g linearly indep endent to forge a resp onse for

124 9.6 Security of Linear (n; k; L) -typ e Proto cols and the LULS Problem

a challenge a =
P N

i =1 � i ai by computing

w =
NX

i =1

� i vi with vi 2R Vl (ai)

=
NX

i =1

� i Fl (ai ; bi)

= Fl (a; b0) with b =
NX

i =1

bi :

In the case of the (n; k; L)++
proto col, the adversary cannot just return a

random w 2 Vl (a) , but has to make sure that the �rst half of f � 1(F � 1
l (w))

corresp onds to a. How such a w can b e found e�ciently (p ossibly based on the

sp eci�cations of the subspaces Vl (a)) is a matter of further research.

In the following, we present and discuss an algebraic learning algorithm for

LULS.

9.6.3 On Solving the LULS Problem

A Learning Algorithm for the LULS Problem

Recall that the LULS problem with parameters n; k; L consists in computing

sp eci�cations of L secret n -dimensional linear subspaces of GF(2)n + k
from p os-

itive examples v pro duced by an oracle which cho oses randomly and uniformly

l 2 [L] and v 2 Vl . In this thesis we treat the case L = 2 and consider the sp e-

cial case that Vl = f (v; f (v)) ; v 2 GF(2)n g, l 2 f 1; 2g, for secret linear functions

f 1; f 2 : GF(2)n �! GF(2)k
. Our algorithm computes for all i 2 [k] sp eci�ca-

tions of the i -th comp onent functions f i
1; f i

2 : GF(2)n �! GF(2) separately, i.e.,

it su�ces to consider the case k = 1 . The learning algorithm is based on the

following reasoning.

1. Take a set O = f (v1; w1); : : : ; (vn ; wn)g � GF(2)n +1
of examples such that

B = f v1; : : : ; vn g forms a basis of GF(2)n
. For all i 2 [n] let x i and yi

denote the variables corresp onding to f 1(vi) and f 2(vi) , resp ectively.

2. For b 2 f 0; 1g let I b = f i 2 [n]; wi = bg.

3. For all i 2 [n] let t i = x i � yi , and for all i < j 2 [n] let t i;j = x i yj � x j yi .

4. Observe that for all i 2 [n] the equality (wi � x i)(wi � yi) = 0 holds. This

implies

x i yi = 0 if i 2 I 0 and x i yi = 1 � t i if i 2 I 1 : (9.2)

5. Observe that each example (v; w) 2 GF(2)n +1
, v 62B satis�es the follow-

ing: If v =
L

i 2 I vi , (i.e., I � [n] de�nes the unique representation of v
w.r.t. B), then

w �
M

i 2 I

x i

!

w �
M

i 2 I

yi

!

= 0 : (9.3)

9.6 Security of Linear (n; k; L) -typ e Proto cols and the LULS Problem 125

Observe that Eq. (9.3) can b e rewritten as a relation TB (I; w) in the

variables t i and t i;j in the following way. If w = 0 then Eq. (9.3) is

equivalent to

L
i 2 I x i yi �

L
i<j 2 I t i;j = 0 : Together with Eq. (9.2) this

implies

L
i 2 I 1 \ I (t i � 1) �

L
i<j 2 I t i;j = 0 for w = 0 . Consequently, for

w = 0 we de�ne TB (I; w) as

M

i 2 I \ I 1

t i �
M

i<j 2 I

t i;j =
�

0 if jI \ I 1j is even

1 if jI \ I 1j is o dd

:

If w = 1 then Eq. (9.3) is equivalent to 1 �
L

i 2 I t i �
L

i 2 I \ I 1
(t i � 1) �L

i<j 2 I t i;j = 0 . Hence, for w = 1 we de�ne TB (I; w) as

M

i 2 I \ I 0

t i �
M

i<j 2 I

t i;j =
�

0 if jI \ I 1j is o dd

1 if jI \ I 1j is even

:

Note that a relation similar to Eq. (9.3) was also exhibited by Blass et al. (2008)

for designing an algebraic attack against Ff proto cols.

The learning algorithm now pro ceeds as describ ed in Algorithm 14.

Algorithm 14 LULS-solve(O)

Let initially the system LES of linear equations in the

1
2 (n2 + n) variables t i

(i 2 [n]) and t i;j (i < j 2 [n]) b e empty.

rep eat

Cho ose an observation (v; w) 2 O , v 62B [f ~0g, and compute the unique

subset I � [n] with v =
L

i 2 I vi
.

Enlarge the system LES by the linear equation TB (I; w) .

until the system LES has

1
2 (n2 + n) linearly indep endent equations.

Compute by Gaussian elimination the unique solution � of the system LES .

Compute from � the unique correct assignments to x i , yi for all i 2 [n].

The correct assignments to the x i and yi variables (the last step of Al-

gorithm 14) can b e computed from � = (� i) i 2 [n] (� i;j) i<j 2 [n] as follows. For

b = 0 ; 1 let K b denote the set K b = f i 2 [n]; � i = bg. We know that for all

i 2 K 0 , x i = yi = wi is satis�ed, and for all i 2 K 1 it holds that yi = x i � 1.

This implies that for all i < j in K 1 , � i;j satis�es

� i;j = x i (x j � 1) � x j (x i � 1) = x i � x j :

This yields a system LES �
of 1=2jK 1j(jK 1j � 1) linear equations in the variables

x i , i 2 K 1 , of rank jK 1j � 1. Since it do es not matter which of the two secret

linear subspaces we denote by V1 and which by V2 , we have the freedom to

set xk = 0 for some �xed k 2 K 1 . The system LES �
together with xk = 0

yields a system of full rank and allows to compute the correct assigment to the

x i -variables by Gaussian elimination.

Analysis and Exp erimental Results

The reason for the fact that the rep eat cycle of the algorithm is left after a

�nite numb er of rounds is that the following (2n � (n + 1)) � (n(n + 1) =2)-

matrix M (n) over GF(2) has full row rank (which is not hard to show). The

126 9.7 Discussion

row indices of M (n) are all subsets I � [n] with jI j � 2, the column indices are

[n] [f (i; j); 1 � i < j � ng. We have M (n)I;i = 1 i� i 2 I and M (n)I; (i;j) = 1
i� f i; j g � [n].

We do not give here a theoretical analysis of the exp ected numb er of rounds

of the rep eat cycle. Our exp eriments show that the algorithm needs only slightly

more than

1
2 (n2 + n) + n observations to compute the secret functions f 1 and

f 2 . Particularly for n = 128 , we need approx. 8390 examples and 4 minutes on

a 3.4 GHz Intel Pentium IV with 4 GB RAM and Magma V2.15-9.

How severe is the restriction that the secret subspaces have the sp ecial form

V = f (v; f (v)) ; v 2 GF(2)n g for some surjective linear mapping f : GF(2)n �!
GF(2)k

? Let us consider the general case V = f A � v; v 2 GF(2)n g for an

((n + k) � n) matrix A . V can b e written in the sp ecial form i� the �rst n
rows of A are linearly indep endent. For randomly chosen A this is true with

probability p(n) � 0:2887 (Lemma 9.1).

We have seen that we can solve the LULS problem with parameters (n; k; 2)
by solving k LULSproblems with parameters (n; 1; 2). For the sp ecial LULS

problem with parameters (n; 1; L) , L > 2, we can de�ne a similar system LES
consisting of degree- L equations in the variables x l

i , i 2 [n], l 2 [L], induced as

ab ove by equations of the form

w �
M

i 2 I

x1
i

!

: : :

w �
M

i 2 I

xL
i

!

= 0 : (9.4)

The problem is that for L > 2 the equations have several symmetries such

that the system can not b e solved uniquely. A p ossible way out is to

� cho ose an appropriate parameter s < k which divides k , let k = s � p,

� write vectors w 2 GF(2)k
as vectors w 2 GF(2s)p

, and

� solve the corresp onding p LULS problem with parameters (n; 1; L) over

GF(2s) .

Hamann (2010) has describ ed a learning algorihm based on this idea that

solves the describ ed sp ecial case of the LULS problem in average running time

in the order of knO (L)
. His analysis supp orts the conjecture that there is no

faster way to solve an (n; k; L) LULS problem, which suggests parameter choices

like (n; L) 2 f (128; 8); (256; 6)g for practical applications.

9.7 Discussion

We have seen that the secret key of CKK

2
proto cols can b e computed very

quickly from a su�ciently large set of messages sent by the prover. This kind

of proto col should not b e used in practice.

The parameters of (n; k; L)++
proto cols have to b e chosen in such that solv-

ing the LULS problem with parameters (n
2 ; k; L) is infeasible. We recommend

to use n = 256 , k = 64 and L = 5 .

Another interesting question is to search for simpler nonlinear connection

functions f for which a security pro of can b e found. In our prop osal, the prover

has to p erform three multiplications in the �nite �eld of order 2n= 2
in order to

compute f (a; b) .

9.7 Discussion 127

Yet another op en question is whether the very symmetrically structured

systems of degree- L equations arising in our LULS algorithm in Section 9.6.3

can b e solved more e�ciently by more advanced techniques like the F4- or F5-

algorithm or cub e attacks (Dinur and Shamir, 2008, 2009, Faugère, 1999, 2002).

If one could generate convincing evidence that such algorithms cannot b eat our

linearization attack, then (n; k; L)++
proto cols with the ab ove parameters could

b e seriously considered for practical use.

A problem of (n; k; L) proto cols is the large key length of L � n � n + k in the

case that random mappings F1; : : : ; FL are used. It is an imp ortant task to lo ok

for secure and e�cient ways to generate pseudorandom keys. In this context,

the (still unbroken) CKK

�;L
proto cols lo ok app ealing, but we conjecture that

CKK

�;L
proto cols can b e e�cently broken. However, promising suggestions for

key length reductions have b een made by Gilb ert et al. (2008a) and Bringer and

Chabanne (2008) in the context of Trusted- HB (see Section 8.3.5). Adapting

these ideas to (n; k; L) proto cols would mean

� to consider sp ecial forms of secret subspaces Vl = f (A l � v); v 2 GF(2)n g,

where A l denotes a secret (n + k) � n To eplitz matrix (Gilb ert et al.,

2008a), and

� to de�ne the To eplitz matrix A l to b e generated by a secret Linear Feed-

back Shift Register (Bringer and Chabanne, 2008).

Checking the feasibility and security of these constructions should b e a mat-

ter of further research.

128 9.7 Discussion

Chapter 10

Conclusion

In this thesis, we have analyzed two of the most prominent security requirements

in electronic communication, con�dentiality of messages and authenticity of

entities.

Concerning con�dentiality of messages, we have de�ned and analyzed hardware-

oriented stream ciphers and their most imp ortant building blo cks. We have

describ ed three generic attacks on stream ciphers, BDD-Attacks, correlation

attacks and algebraic attacks, and analyzed their impact on practically used

stream ciphers as well as newly prop osed designs. In the case of the E0 keystream

generator from the Blueto oth standard, we have indicated ways to improve its

security with resp ect to the considered attacks by careful lo cal mo di�cations of

the design.

In order to provide entity authentication for environments in which only little

computational resources are available, e.g. on RFID-tags or mobile telephones,

we de�ned and investigated lightweight authentication proto cols that are based

on randomly cho osing elements from a secret set of vector spaces. We related

the security of these proto cols to the hardness of a certain learning problem

and provided a �rst complexity analysis of this problem as a starting p oint for

further research.

130

Bibliography

Carlisle Adams. Identi�cation. In Henk Tilb org, editor, Encyclopedia of Cryp-

tography and Security , pages 272�273. Springer US, 2005.

Miklós Ajtai, László Babai, Péter Ha jnal, János Komlós, Pavel Pudlák, Vo jtech

Rö dl, Endre Szemerédi, and György Turán. Two lower b ounds for branching

programs. In Proc. of STOC '86 , pages 30�38. ACM, 1986.

Ross Anderson, Francesco Bergadano, Bruno Crisp o, Jong-Hyeon Lee, Char-

alamp os Manifavas, and Roger Needham. A new family of authentication

proto cols. SIGOPS Oper. Syst. Rev. , 32:9�20, 1998.

Frederik Armknecht. Improving fast algebraic attacks. In Proc. of FSE 2004 ,

volume 3017 of LNCS , pages 65�82. Springer, 2004a.

Frederik Armknecht. On the existence of low-degree equations for algebraic at-

tacks. Technical rep ort, Cryptology ePrint Archive, Rep ort 2004/185, 2004b.

Frederik Armknecht. Algebraic Attacks on Certain Stream Ciphers . PhD thesis,

University of Mannheim, Mannheim, Germany, 2006.

Frederik Armknecht and Gwenolé Ars. Algebraic attacks on stream ciphers with

Gröbner bases. In Gröbner Bases, Coding, and Cryptography , pages 329�348.

Springer, 2009.

Frederik Armknecht and Matthias Krause. Algebraic attacks on combiners with

memory. In Proc. of CYPTO 2003 , volume 2729 of LNCS , pages 162�176.

Springer, 2003.

Frederik Armknecht and Matthias Krause. Constructing single- and multi-

output b o olean functions with maximal algebraic immunity. In Proc. of

ICALP 2006 , volume 4052 of LNCS , pages 180�191. Springer, 2006.

Frederik Armknecht, Joseph Lano, and Bart Preneel. Extending the resynchro-

nization attack. In Proc. of SAC 2004 , volume 3357 of LNCS , pages 19�38.

Springer, 2004.

Frederik Armknecht, Claude Carlet, Philipp e Gab orit, Simon Künzli, Willi

Meier, and Olivier Ruatta. E�cient computation of algebraic immunity for

algebraic and fast algebraic attacks. In Proc. of EUROCRYPT 2006 , volume

4004 of LNCS , pages 147�164. Springer, 2006.

132 BIBLIOGRAPHY

François Arnault and Thierry P. Berger. Design and prop erties of a new pseudo-

random generator based on a �ltered FCSR automaton. IEEE Trans. Comp. ,

54(11):1374�1383, 2005a.

François Arnault, Thierry P. Berger, and Ab delkader Necer. Feedback with

carry shift register synthesis with the euclidean algorithm. IEEE Trans. In-

form. Theory , 50(5):910�917, 2004.

François Arnault, Thierry P. Berger, and Cédric Lauradoux. Up date on F-

FCSR stream cipher. eSTREAM, ECRYPT Stream Cipher Pro ject, Rep ort

2006/025, 2006. http://www.ecrypt.eu.org/stream .

François Arnault, Thierry P. Berger, and Marine Minier. Some results on FCSR

automata with applications to the security of FCSR-based pseudorandom

generators. IEEE Trans. Inform. Theory , 54(2):836�840, 2008.

François Arnault and Thierry P. Berger. F-FCSR: Design of a new class of

stream ciphers. In Proc. of FSE 2004 , volume 3557 of LNCS , pages 83�97.

Springer, 2005b.

François Arnault, Thierry P. Berger, Cédric Lauradoux, and Marine Minier. X-

FCSR � a new software oriented stream cipher based up on FCSRs. In Proc.

of INDOCRYPT 2007 , volume 4859 of LNCS , pages 341�350. Springer, 2007.

Jean-Philipp e Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cub e testers

and key recovery attacks on reduced-round MD6 and Trivium. In Proc. of

FSE 2008 , volume 5665 of LNCS , pages 1�22. Springer, 2009.

Steve Babbage, Christophe de Cannière, Anne Canteaut, Calos Cid,

Henri Gilb ert, Thomas Johansson, Matthew Parker, Bart Preneel, Vin-

cent Rijmen, and Matthew J.B. Robshaw. The eSTREAM p ort-

folio (rev. 1). eSTREAM, ECRYPT Stream Cipher Pro ject, 2008.

http://www.ecrypt.eu.org/stream .

Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeo�s for

stream ciphers. In Proc. of ASIACRYPT 2000 , volume 1976 of LNCS , pages

1�13. Springer, 2000.

Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1

on a PC. In Proc. of FSE 2000 , volume 1978 of LNCS , pages 1�13. Springer,

2000.

John Black, Phillip Rogaway, and Thomas Shrimpton. Black-b ox analysis of

the blo ck-cipher-based hash-function constructions from PGV. In Proc of

CRYPTO 2002 , volume 2442 of LNCS , pages 103�118. Springer, 2002.

Erik-Oliver Blass, Anil Kurmus, Re�k Molva, Guevara Noubir, and Ab dullatif

Shikfa. The Ff -family of proto cols for RFID-privacy and authentication.

http://eprint.iacr.org/2008/476 , 2008.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the

parity problem, and the statistical query mo del. J. ACM , 50(4):506�519,

2003.

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/2008/476

BIBLIOGRAPHY 133

Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo-

random numb er generator. SIAM J. Comput. , 15(1):364�383, 1986.

Andrey Bogdanov, Lars Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J.B. Robshaw, Yannick Seurin, and Charlotte Vikkel-

so e. PRESENT: An ultra-lightweight blo ck cipher. In Proc. of CHES 2007 ,

volume 4727 of LNCS , pages 450�466. Springer, 2007.

Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra

system. i. the user language. J. Symbolic Comput. , 24(3-4):235�265, 1997.

An Braeken and Joseph Lano. On the (im)p ossibiliy of practical and secure

nonlinear �lters and combiners. In Proc. of SAC 2005 , volume 3897 of LNCS ,

pages 159�174. Springer, 2005.

Jörg Brandeis. Implementierung eines algebraischen Angri�s auf den E0 -

Generator und verwandte Chi�ren. Master's thesis, University of Mannheim,

Mannheim, Germany, 2004. (in german).

Marc Briceno, Ian Goldb erg, and David Wagner. A pedagogical implementation

of A5/1 , May 1999. http://jya.com/a51- pi.htm .

Julien Bringer and Hervé Chabanne. Trusted-HB: A low cost version of HB

+

secure against a man-in-the-middle attack. IEEE Trans. Inform. Theor. , 54:

4339�4342, 2008.

Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB++
: A lightweight

authentication proto col secure against some attacks. In Proc. of SecPerU ,

pages 28�33. IEEE Computer So ciety Press, 2006.

Randal E. Bryant. Graph-based algorithms for Bo olean function manipulation.

IEEE Trans. Comp. , 35(8):677�691, 1986.

Claude Carlet. A metho d of construction of balanced functions with optimum

algebraic immunity. In Proc. of International Workshop on Coding and Cryp-

tology , Co ding and Cryptology, pages 25�43. World Scienti�c, 2008.

Jacek Cicho«, Marek Klonowski, and Mirosªaw Kutyª owski. Privacy protection

for RFID with hidden subset identi�ers. In Proc. of Pervasive 2008 , volume

5013 of LNCS , pages 298�314. Springer, 2008.

Don Copp ersmith, Hugo Krawczyk, and Yishay Mansour. The shrinking gener-

ator. In Proc. of CRYPTO 1993 , volume 773 of LNCS , pages 22�39. Springer,

1994.

Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback.

In Proc. of CRYPTO 2003 , volume 2729 of LNCS , pages 177�194. Springer,

2003.

Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with

linear feedback. In Proc. of EUROCRYPT 2003 , volume 2656 of LNCS ,

pages 345�359. Springer, 2003.

http://jya.com/a51-pi.htm

134 BIBLIOGRAPHY

Nicolas Courtois, Alexander Klimov, Jaques Patarin, and Adi Shamir. E�cient

algoprithms for solving overde�ned systems of multivariate p olynomial equa-

tions. In Proc. of EUROCRYPT 2000 , volume 1807 of LNCS , pages 392�407.

Springer, 2000.

Raymond Couture and Pierre L'Ecuyer. On the lattice structure of certain linear

congruential sequences related to AWC/SWB generators. Math. Comput. , 62

(206):799�808, 1994.

Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Crypto-

graphically signi�cant b o olean functions: Construction and analysis in terms

of algebraic immunity. In Proc. of FSE 2005 , volume 3557 of LNCS , pages

98�111. Springer, 2005.

Ivan Damgård. A design principle for hash functions. In Proc of CRYPTO '89 ,

volume 435 of LNCS , pages 416�427. Springer, 1990.

Donald Davies and Wyn L. Price. Digital signatures, an up date. In Proc. 5th

International Conference on Computer Communication , pages 845�849, 1984.

Christophe de Cannière and Bart Preneel. Trivium sp eci�ca-

tions. eSTREAM, ECRYPT Stream Cipher Pro ject, 2005.

http://www.ecrypt.eu.org/stream .

Christophe De Cannière, Orr Dunkelman, and Miroslav Kne�zevi¢. KATAN and

KTANTAN � a family of small and e�cient hardware-oriented blo ck ciphers.

In Proc. of CHES 2009 , volume 5747 of LNCS , pages 272�288. Springer, 2009.

Blandine Debraize and Louis Goubin. Guess-and-determine algebraic attack on

the self-shrinking generator. In Proc. of FSE 2008 , volume 5086 of LNCS ,

pages 235�252. Springer, 2008.

Frédéric Didier and Jean-Pierre Tillich. Computing the algebraic immunity

e�ciently. In Proc. of FSE 2006 , volume 4047 of LNCS , pages 359�374.

Springer, 2006.

Tim Dierks and Eric Rescorla. The transp ort layer security (TLS) proto col

version 1.2. RFC 5246, 2008. http://tools.ietf.org/html/rfc5246 .

Itai Dinur and Adi Shamir. Cub e attacks on tweakable black b ox

p olynomials. Cryptology ePrint Archive, Rep ort 2008/385, 2008.

http://eprint.iacr.org .

Itai Dinur and Adi Shamir. Cub e attacks on tweakable black b ox p olynomials. In

Proc. of EUROCRYPT 2009 , volume 5479 of LNCS , pages 278�299. Springer,

2009.

Danny Dolev and Andrew Yao. On the security of public key proto cols. IEEE

Trans. Inform. Theory , 29:198�208, 1983.

Dang Nguyen Duc and Kwang jo Kim. Securing HB+
against

GRS man-in-the-middle attack. In Proc. of SCIS 2007 , 2007.

http://koasas.kaist.ac.kr/bitstream/10203/23125/1/SCIS2007_Duc.pdf .

http://www.ecrypt.eu.org/stream
http://tools.ietf.org/html/rfc5246
http://eprint.iacr.org
http://koasas.kaist.ac.kr/bitstream/10203/23125/1/SCIS2007_Duc.pdf

BIBLIOGRAPHY 135

Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key

attack on the kasumi cryptosystem used in GSM and 3G telephony. In Proc.

of CRYPTO 2010 , volume 6223 of LNCS , pages 393�410. Springer, 2010.

William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.

Message veri�cation and transmission error detection by blo ck chaining. US

Patent 4074066, 1976.

Tobias Eibach. Generic Attacks on Stream Ciphers . PhD thesis, Universität

Ulm, Ulm, Germany, 2008.

Patrik Ekdahl. On LFSR Based Stream Ciphers (Analysis and Design) . PhD

thesis, Lund University, Sweden, 2003.

Patrik Ekdahl and Thomas Johansson. Another attack on A5/1. In Proc. of

International Symposium on Information Theory , page 160. IEEE, 2001.

eStream. eSTREAM, ECRYPT stream cipher pro ject, 2008.

http://www.ecrypt.eu.org/stream .

eSTREAM Discussion Forum. A reformulation of Trivium . eS-

TREAM, ECRYPT Stream Cipher Pro ject, Discussion Forum, 2005.

http://www.ecrypt.eu.org/stream/phorum/read.php?1, 448 .

Jean-Charles Faugère. A new e�cient algorithm for computing Gröbner bases

(F4). Journal of pure and applied algebra , 139(1-3):61�68, 1999.

Jean-Charles Faugère. A new e�cient algorithm for computing Gröbner basis

without reduction to zero (F5). In Proc. of ISSAC 2002 , pages 75�83. ACM

Press, 2002.

Jean-Charles Faugère and Gwenole Ars. An algebraic cryptanal-

ysis of nonlinear �lter generators using Gröbner bases, 2003.

http://www.inria.fr/rrrt/rr- 4739.html .

Simon Fischer, Willi Meier, and Dirk Stegemann. Equivalent representations of

the F-FCSR keystream generator. In Workshop Record of The State of the

Art of Stream Ciphers (SASC 2008) , 2008.

Ewan Fleischmann, Christian Forler, and Michael Gorski. Classi�cation of

the SHA-3 candidates. Cryptology ePrint Archive, Rep ort 2008/511, 2008.

http://eprint.iacr.org/ .

Scott R. Fluhrer and Stefan Lucks. Analysis of the E0 encryption system. In

Proc. of SAC 2001 , volume 2259 of LNCS , pages 38�48. Springer, 2001.

Marc Fossorier, Mio drag Mihaljevi¢, Hideki Imai, Yang Cui, and Kanta Mat-

suura. An algorithm for solving the LPN problem and its application to

security evaluation of the HB proto cols for RFID authentication. In Proc. of

INDOCRYPT 2006 , volume 4329 of LNCS , pages 48�62. Springer, 2006.

Dimitry Frumkin and Adi Shamir. Untrusted-HB: Security vulnerabili-

ties of Trusted-HB. Cryptology ePrint Archive, Rep ort 2009/044, 2009.

http://eprint.iacr.org .

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.inria.fr/rrrt/rr-4739.html
http://eprint.iacr.org/
http://eprint.iacr.org

136 BIBLIOGRAPHY

Heni Gilb ert, Matthew J.B. Robshaw, and Yannick Seurin. HB

#
: Increasing

the security and e�ciency of HB

+
. In Proc. of EUROCRYPT 2008 , volume

4965 of LNCS , pages 361�378. Springer, 2008a.

Henri Gilb ert, Matthew J.B. Robshaw, and Hervé Sib ert. Active attack against

HB

+
: A provable secure lightweight authentication proto col. Electronic Let-

ters , 41:1169�1170, 2005.

Henri Gilb ert, Matthew Robshaw, and Yannick Seurin. Go o d variants of HB

+

are hard to �nd. In Proc. of Financial Cryptography and Data Security ,

volume 5143 of LNCS , pages 156�170. Springer, 2008b.

Zbigniew Goªebi¦wski, Krzysztof Ma jcher, and Filip Zagórski. Attacks on CKK

family of RFID authentication proto cols. In Proc. Adhoc-now 2008 , volume

5198 of LNCS , pages 241�250. Springer, 2008.

Jovan Dj. Goli¢. Correlation via linear sequential circuit approximation of com-

biners with memory. In Proc. of EUROCRYPT 1993 , volume 658 of LNCS ,

pages 113�123. Springer, 1993.

Jovan Dj. Goli¢. Cryptanalysis of alleged A5 stream cipher. In Proc. of EURO-

CRYPT 1997 , volume 1233 of LNCS , pages 239�255. Springer, 1997.

Jovan Dj. Goli¢. Correlation prop erties of general binary combiners with mem-

ory. Journal of Cryptology , 9(2):111�126, 1996.

Jovan Dj. Goli¢, Vittorio Bagini, and Guglielmo Morgari. Linear cryptanalysis

of Blueto oth stream cipher. In Proc. of EUROCRYPT 2002 , volume 2332 of

LNCS , pages 238�255. Springer, 2002.

Solomon W. Golomb. Shift Register Sequences . Aegean Park Press, 1981.

Marc Goresky and Andrew Klapp er. Fib onacci and Galois representations of

feedback-with-carry shift registers. IEEE Trans. Inform. Theory , 48(11):

2826�2836, 2002.

Marc Goresky and Andrew Klapp er. Perio dicity and distribution prop erties of

combined FCSR sequences. In Proc. of SETA 2006 , volume 4086 of LNCS ,

pages 334�341. Springer, 2006.

Mark Goresky and Andrew Klapp er. Arithmetic crosscorrelations of feedback

with carry shift registers. IEEE Trans. Inform. Theory , 43:1342�1345, 1997.

Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of

lightweight hash functions. In Proc. of CRYPTO 2011 , volume 6841 of LNCS ,

pages 222�239. Springer, 2011.

Matthias Hamann. On the complexity of a learning problem induced by

a lightweight cryptographic construction. Master's thesis, University of

Mannheim, 2010.

Jonathan Hammell, André Weimerskirch, Joao Girao, and Dirk Westho�.

Recognition in a low-p ower environment. Proc. of International Conference

on Distributed Computing Systems , 9:933�938, 2005.

BIBLIOGRAPHY 137

Philip Hawkes and Gregory G. Rose. Rewriting variables: the complexity of

fast algebraic attacks on stream ciphers. In Proc. of CRYPTO 2004 , volume

3152 of LNCS , pages 390�406. Springer, 2004.

Martin Hell. On the Design and Analysis of Stream Ciphers . PhD thesis, Lund

University, Sweden, 2007.

Martin Hell and Thomas Johansson. Breaking the F-FCSR-H stream cipher

in real time. In Proc. of ASIACRYPT 2008 , volume 5350 of LNCS , pages

557�569. Springer, 2008.

Martin Hell and Thomas Johansson. Breaking the stream ciphers F-FCSR-H

and F-FCSR-16 in real time. Journal of Cryptology , pages 1�19, 2009.

Martin Hell and Thomas Johansson. Two new attacks on the self-shrinking

generator. IEEE Trans. Inform. Theory , 52(8):3837�3843, 2006.

Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A

stream cipher prop osal: Grain-128. eSTREAM, ECRYPT Stream Cipher

Pro ject, Rep ort 2005/010, 2005. http://www.ecrypt.eu.org/stream .

Miia Hermelin and Kaisa Nyb erg. Correlation prop erties of the Blueto oth com-

biner. In Proc. of ICISC 1999 , volume 1787 of LNCS , pages 17�29. Springer,

1999.

Christopher Ho oley. On artin's conjecture. J. Reine Angew. Math. , 22:209�220,

1967.

Nicholas Hopp er and Manuel Blum. Secure human identi�cation proto cols.

In Proc. of ASIACRYPT 2001 , volume 2248 of Lecture Notes in Computer

Science , pages 52�66. Springer, 2001.

ISO/IEC. ISO/IEC 9797-1: Information technology � Security techniques �

Message Authentication Codes (MACs) � Part 1: Mechanisms using a block

cipher , 1999.

ISO/IEC. ISO/IEC 9798-2: Information Technology - Security techniques �

Entitiy Authentication Mechanisms Part 2: Entity Authentication with sym-

metric techniques , 1993.

ISO/IEC. ISO/IEC 13616-2: Financial services - International bank account

number (IBAN) � Part 2: Role and responsibilities of the Registration Au-

thority , 2007.

Markus Jakobsson and Susanne Wetzel. Security weakness in Blueto oth. In

Proc. of CT-RSA 2001 , volume 2020 of LNCS , pages 176�191. Springer, 2001.

Éliane Jaulmes and Frédéric Muller. Cryptanalysis of the F-FCSR stream cipher

family. In Proc. of SAC 2006 , volume 3897 of LNCS , pages 20�35. Springer,

2006.

Éliane Jaulmes and Frédéric Muller. Cryptanalysis of ECRYPT candidates

F-FCSR-8 and F-FCSR-H. eSTREAM, ECRYPT Stream Cipher Pro ject,

Rep ort 2005/046, 2005. http://www.ecrypt.eu.org/stream .

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

138 BIBLIOGRAPHY

Ari Juels and Stephen A. Weis. Authenticating p ervasive devices with human

proto cols. In Proc. of CRYPTO 2005 , volume 3621 of LNCS , pages 293�308.

Springer, 2005.

David Kahn. The Codebreakers . Scribner, 1996.

Auguste Kerckho�s. La cryptographie militaire. Journal des Sciences Militaires ,

pages 161�191, 1883.

Andrew Klapp er. A survey of feedback with carry shift registers. In Proc. of

SETA 2004 , volume 3486 of LNCS , pages 56�71. Springer, 2004.

Andrew Klapp er and Marc Goresky. Feedback shift registers, 2-adic span, and

combiners with memory. Journal of Cryptology , 10:111�147, 1997.

Andrew Klapp er and Mark Goresky. 2-adic shift registers. In Proc. of FSE

1994 , volume 809 of LNCS , pages 174�178. Springer, 1994.

Andrew Klapp er and Jinzhong Xu. Register synthesis for algebraic feedback

shift registers based on non-primes. Des. Codes Cryptography , 31(3):227�250,

2004.

Matthias Krause. BDD-based cryptanalysis of keystream generators. In Proc.

of EUROCRYPT 2002 , volume 2332 of LNCS , pages 222�237. Springer, 2002.

Matthias Krause. OBDD-based cryptanalysis of oblivious keystream generators.

Theor. Comp. Sys. , 40(1):101�121, 2007.

Matthias Krause, Christoph Meinel, and Stephan Waack. Separating the eraser

turing machine classes Le , NLe , co� NLe and Pe . In Mathematical Foun-

dations of Computer Science 1988 , volume 324 of LNCS , pages 405�413.

Springer, 1988.

Hugo Krawczyk. LFSR-based hashing and authentication. In Proc. of CRYPTO

1994 , volume 839 of LNCS , pages 129�139. Springer, 1994.

Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC:

Keyed-hashing for message authentication. RFC 2104, 1997.

http://tools.ietf.org/html/rfc2104 .

Leslie Lamp ort. Password authentication with insecure communication. Com-

mun. ACM , 24:770�772, Novemb er 1981.

Yuseop Lee, Kitae Jeong, Jaechul Sung, and Seokhie Hong. Related-key chosen

IV attacks on Grain-v1 and Grain-128. In Information Security and Privacy ,

volume 5107 of LNCS , pages 321�335. Springer, 2008.

Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Secu-

rity and Cryptography for Networks , volume 4116 of LNCS , pages 348�359.

Springer, 2006.

Yi Lu and Serge Vaudenay. Faster correlation attack on the Blueto oth keystream

generator. In Proc. of CRYPTO 2004 , volume 3152 of LNCS , pages 407�425.

Springer, 2005.

http://tools.ietf.org/html/rfc2104

BIBLIOGRAPHY 139

Yi Lu and Serge Vaudenay. Cryptanalysis of an E0-like combiner with memory.

Journal of Cryptology , 21:430�457, 2008.

Yi Lu and Serge Vaudenay. Cryptanalysis of the Blueto oth keystream generator

two-level E0. In Proc. of ASIACRYPT 2004 , volume 3329 of LNCS , pages

483�499. Springer, 2004.

Yi Lu, Willi Meier, and Serge Vaudenay. The conditional correlation attack: A

practical attack on Blueto oth encryption. In Proc. of CRYPTO 2005 , volume

3621 of LNCS , pages 97�117. Springer, 2005.

Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westho�. Con-

crete security for entity recognition: The Jane Do e proto col. In Proc. of

INDOCRYPT 2008 , volume 5365 of LNCS , pages 158�171. Springer, 2008.

Yishay Mansour, Noam Nisan, and Praso on Tiwari. The computational com-

plexity of universal hashing. In Proc. of STOC '90 , pages 235�243, New York,

NY, USA, 1990. ACM.

George Marsaglia and Arif Zaman. A new class of random numb er generators.

Annals of Appl. Prob. , 1(3):462�480, 1992.

Alexander Maximov and Alex Biryukov. Two trivial attacks on Triv-

ium . eSTREAM, ECRYPT Stream Cipher Pro ject, Rep ort 2007/006, 2007.

http://www.ecrypt.eu.org/stream .

Alexander Maximov, Thomas Johansson, and Steve Babbage. An improved

correlation attack on A5/1. In Proc. SAC 2005 , volume 3357 of LNCS , pages

1�18. Springer, 2005.

Willi Meier and Othmar Sta�elbach. Nonlinearity criteria for cryptographic

functions. In Proc. of EUROCRYPT 1989 , volume 434 of LNCS , pages 549�

562. Springer, 1989.

Willi Meier and Othmar Sta�elbach. Fast correlation attacks on stream ci-

phers. In Proc. of EUROCRYPT 1988 , volume 330 of LNCS , pages 301�314.

Springer, 1988.

Willi Meier and Othmar Sta�elbach. The self-shrinking generator. In Proc. of

EUROCRYPT 1994 , volume 950 of LNCS , pages 205�214. Springer, 1994.

Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decomp o-

sition of b o olean functions. In Proc. of EUROCRYPT 2004 , volume 3027 of

LNCS , pages 474�491. Springer, 2004.

Christoph Meinel. Modi�ed Branching Programs and Their Computational

Power , volume 370 of LNCS . Springer, 1989.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Applied

Cryptography . CRC Press, 2001.

Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems . PhD thesis,

Stanford University, 1979.

http://www.ecrypt.eu.org/stream

140 BIBLIOGRAPHY

Ralph C. Merkle. A certi�ed digital signature. In Proc. of CRYPTO '89 , volume

435 of LNCS , pages 218�238. Springer, 1990.

Mio drag J. Mihaljevi¢. A faster cryptanalysis of the self-shrinking generator. In

Proc. of ACISP 1996 , volume 1172 of LNCS , pages 192�189. Springer, 1996.

Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.

Pushing the limits: A very compact and a threshold implementation of AES.

In Proc. of EUROCRYPT 2011 , volume 6632 of LNCS , pages 69�88. Springer,

2011.

Jorge Munilla and Alb erto Peinado. HB-MP: A further step in the HB-family

of lightweight authentication proto cols. Computer Networks , (51):2262�2267,

2007.

National Institute of Standards and Technology

NIST. Secure Hash Standard (SHS) , Octob er 2008.

http://csrc.nist.gov/publications/fips/fips180- 3/ .

National Institute of Standards and Technology NIST. Cryp-

tographic Hash Algorithm Competition , Decemb er 2010.

http://www.nist.gov/hash- competition/ .

Karsten Nohl and Sascha Kriÿler. Geheimnislos - Verschlüsselung von Handy-

Gesprächen knacken. i'X , 5:97�99, 2010. (in german).

Jim Noras. Fast pseudorandom sequence generators: Linear feedback shift reg-

isters, cellular automata, and carry feedback shift registers. Technical Re-

p ort 94, Univ. Bradford Elec. Eng. Dept., Bradford, U.K., 1997.

Khaled Oua�, Raphael Overb eck, and Serge Vaudenay. On the security of HB

#

against a man-in-the-middle attack. In Proc. of ASIACRYPT 2008 , volume

5350 of LNCS , pages 108�124. Springer, 2008.

Srinivasa R. Pappu. Physical One-Way Functions . PhD thesis, Massachusetts

Institute of Technology, 2001.

Bart Preneel. CBC-MAC and variants. In Henk Tilb org, editor, Encyclopedia

of Cryptography and Security , pages 63�66. Springer US, 2005.

Bart Preneel. The state of hash functions and the NIST SHA-3 comp etition.

In Information Security and Cryptology , volume 5487 of LNCS , pages 1�11.

Springer, 2009.

Bart Preneel. Analysis and Design of Cryptographic Hash Functions . PhD

thesis, K.U. Leuven, 1993.

Bart Preneel, René Govaerts, and Jo os Vandewalle. Hash functions based on

blo ck ciphers: a synthetic approach. In Proc. of CRYPTO '93 , volume 773

of LNCS , pages 368�378. Springer, 1994.

Ronald Rivest. The MD5 message-digest algorithm. RFC 1321, 1992.

http://tools.ietf.org/html/rfc1321 .

Rainer A. Ruepp el. Design and Analysis of Stream Ciphers . Springer, 1986.

http://csrc.nist.gov/publications/fips/fips180-3/
http://www.nist.gov/hash-competition/
http://tools.ietf.org/html/rfc1321

BIBLIOGRAPHY 141

Rainer A. Ruepp el. Stream ciphers. In Contemporary Cryptology � The Science

of Information Integrity , pages 65�134. IEEE Press, 1992.

Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Ste-

fan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James

Dray, and San Vo. A Statistical Test Suite for the Validation of Random Num-

ber Generators and Pseudo Random Number Generators for Cryptographic

Applications . National Institute of Standards and Technology (NIST), April

2010. http://csrc.nist.gov/rng/ .

Markku Saarinen. Re: Blueto oth and E0 . Posted at sci.crypt.research,

02/09/00, 2000.

Mahmoud Salmasizadeh, Jovan Dj. Goli¢, Ed Dawson, and Leone Simpson. A

systematic pro cedure for applying fast correlation attacks to combiners with

memory. In Proc. of SAC 1997 , 1997.

Felix Schleer. Einsatz von OBDDs zur Kryptanalyse von Flusschi�ren. Master's

thesis, University of Mannheim, Mannheim, Germany, 2002. (in german).

Yaniv Shaked and Avishai Wo ol. Cryptanalysis of the Blueto oth E0 cipher using

OBDDs. Technical rep ort, Cryptology ePrint Archive, Rep ort 2006/072, 2006.

http://eprint.iacr.org/ .

Claude Shannon. Communication theory of secrecy systems. Bel l Systems Tech-

nical Journal , 28(4):656�715, 1949.

Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions

for cryptographic applications. IEEE Trans. Inform. Theory , IT-30(5):776�

780, 1984.

Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext

only. IEEE Trans. Inform. Theory , C-34(1):81�85, 1985.

Fabio Somenzi. CUDD: CU decision diagram package . University of Colorado,

Boulder, CO, USA, March 2001. http://vlsi.colorado.edu/ � fabio/.

Paul Stankovski, Martin Hell, and Thomas Johansson. An e�cient state recov-

ery attack on X-FCSR-256. In Proc. of FSE 2009 , volume 5665 of LNCS ,

pages 23�37. Springer, 2009.

Dirk Stegemann. BDD-basierte Kryptanalyse des A5/1 Schlüsselstromgenera-

tors. Master's thesis, University of Mannheim, 2004. (in german).

The Blueto oth SIG. Speci�cation of the Bluetooth System , February 2001.

Tian Tian and Wen-Feng Qi. Linearity prop erties of binary FCSR sequences.

Designs, Codes and Cryptography , 52:249�262, 2009.

Serge Vaudenay. A Classical Introduction to Cryptography . Springer US, 2006.

Ingo Wegener. Branching Programs and Binary Decision Diagrams: Theory and

Applications . SIAM Monographs on Discrete Mathematics and Applications,

2000.

http://csrc.nist.gov/rng/
http://eprint.iacr.org/

142 BIBLIOGRAPHY

Clint R. Whaley and Antoine Petitet. Minimizing development and maintenance

costs in supp orting p ersistently optimized BLAS. Software: Practice and

Experience , 35(2):101�121, 2005.

Guo-Zhen Xiao and James L. Massey. A sp ectral characterization of correlation-

immune combining functions. IEEE Trans. Inform. Theory , IT-34(3):569�

571, 1988.

Hong Xu and Wen-Feng Qi. Auto correlations of maximum-length FCSR se-

quences. SIAM J. Discrete Math. , 20(3):568�577, 2006.

Hong Xu, Wen-Feng Qi, and Yong-Hui Zheng. Auto correlations of l -sequences

with prime connection integer. Journal of Cryptography and Communications ,

1(2):207�223, Septemb er 2009.

Erik Zenner. On Cryptogaphic Properties of LFSR-based Pseudorandom Gen-

erators . PhD thesis, University of Mannheim, Mannheim, Germany, 2004.

Erik Zenner, Matthias Krause, and Stefan Lucks. Improved cryptanalysis of

the self-shrinking generator. In Proc. of ACISP 2001 , volume 2119 of LNCS ,

pages 21�35. Springer, 2001.

Bin Zhang and Dengguo Feng. New guess-and-determine attack on the self-

shrinking generator. In Proc. of ASIACRYPT 2006 , volume 4284 of LNCS ,

pages 54�68. Springer, 2006.

Rob ert Zuccherato. Entity authentication. In Henk Tilb org, editor, Encyclope-

dia of Cryptography and Security , pages 203�203. Springer US, 2005.

List of Tables

5.1 Information rates � for the restricted A5/1 76

5.2 Simulation parameters of the BDD-based attack 77

5.3 Performance of the BDD-based attack in practice 78

6.1 The resource consumption of the fastest correlation attack on E0

as presented by Lu and Vaudenay (2004) 90

6.2 The resource consumption of an algebraic attack on E0 with key

size n and an equation of degree d 91

6.3 Maximum absolute biases and p erformance of correlation attacks

for � a -generators . 92

6.4 mindeg and numb er of Z -functions for the candidate generators . 92

6.5 De�nitions of the candidate generators 92

6.6 Performance of algebraic and correlation attacks on the candidate

generators . 93

9.1 Performance of the passive attack on CKK

2
. 122

144 LIST OF TABLES

List of Figures

2.1 The Shannon communication mo del 8

2.2 Stream cipher communication scenario 11

2.3 Common construction of the keystream generator 11

3.1 Feedback shift register (FSR) of length n 16

3.2 LFSR in Fib onacci architecture 17

3.3 LFSR in Galois architecture . 17

3.4 Mapping b etween p erio dic Galois and Fib onacci LFSR states . . 20

3.5 FCSR in Fib onacci architecture 22

3.6 FCSR in Galois architecture . 23

3.7 Mapping b etween p erio dic Galois and Fib onacci FCSR states . . 27

4.1 FSR-based combination generator 34

4.2 FSR-based �lter generator . 34

4.3 Equivalent representations of combination and �lter generators . 35

4.4 The E0 keystream generator . 37

4.5 The A5/1 keystream generator 39

4.6 Derivation of the keystream from the internal bitstream 44

5.1 An oracle graph G0
over f z0; : : : ; z3g and a G0

-FBDD 49

5.2 A � -OBDD over f z0; : : : ; z3g with � (0) = 0 , � (1) = 2 , � (2) = 1
and � (3) = 3 . 51

6.1 Comparison of the candidate generators to E0 93

7.1 Message authentication with message authentication co des 101

8.1 Basic round of the HB proto col 107

8.2 Basic round of the HB+
proto col 109

8.3 Initialization of the HB++
proto col 110

8.4 Basic round of the HB++
proto col 111

8.5 Basic round of the HB�
proto col 112

8.6 Basic round of the HB- MP proto col 113

8.7 One round of the HB#
proto col 114

9.1 Basic round of the (n; k; L) proto col 118

9.2 Basic round of the (n; k; L)+
proto col 119

9.3 Basic round of the (n; k; L)++
proto col 120

146 LIST OF FIGURES

List of Algorithms

1 F-FCSR-H-KeyIVSetup(K , IV) 41

2 F-FCSR-H-KeystreamGeneration 41

3 F-FCSR-16-KeyIVSetup(K , IV) 42

4 F-FCSR-16-KeystreamGeneration 42

5 RecoverInitialState . 53

6 Fib onacciFCSR- Sm (� m ; w) . 58

7 SelfShrinkingGenerator- Qm (w; z) 60

8 E0 - Qm (q0 , w , z) . 61

9 read-once-A5/1(w) . 62

10 A5/1- Qm (w; z) . 65

11 RecoverInitialState-DCS . 70

12 (n; k; L)+
_MITM-Attack (n; k; L) 119

13 CKK

2
_Attack (n; k) . 122

14 LULS-solve(O) . 125

Index

Zahlen

2-adic numb ers . 23

2-adic span . 30

A

A5/1 . 38

Advanced Encryption Standard 10

AES see Advanced Encryption

Standard

auto correlation . 12

B

BDD see Binary Decision Diagram

Binary Decicsion Diagram 48

blo ck cipher . 9

C

CBC see Cipher Blo ck Chaining

Cipher Blo ck Chaining 10

CKK . 121

connection p olynomial 18

D

Data Encryption Standard 10

DES . . . see Data Encryption Standard

digital signature 104

E

E 0 . 36

ECB see Electronic Co deb o ok

Electronic Co deb o ok 10

F

F-FCSR . 40

FBDD see Free Binary Decision

Diagram

Feedback Shift Register 16

Feedback with carry shift register . . 21

Fib onacci architecture 16, 22

Free Binary Decision Diagram 49

G

Galois architecture 17, 22

Grain . 40

H

Hamming weight 15

hash chain . 105

hash function . 102

HB . 107

HB

�
. 111

HB

+
. 108

HB

++
. 110

HB

#
. 113

HBMP . 112

HMAC . 103

L

linear complexity 21

Linear Feedback Shift Register (LFSR)

16

M

MAC see message authentication co de

MD5 . 103

message authentication co de 101

O

OBDD . . see Ordered Binary Decision

Diagram

one-time pad . 9

oracle graph . 48

Ordered Binary Decision Diagram . 50

S

self-shrinking generator 36

SHA . 103

SSG see self-shrinking generator

T

To eplitz matrix 114

Trivium . 39

Trusted-HB . 114

W

wt (x) see Hamming weight

	Introduction
	What this Thesis is about
	Publications

	I Confidential Communication with Stream Ciphers
	Algorithms for Confidential Communication
	Security Definitions and Attacker Models
	Block Ciphers
	Dedicated Stream Ciphers
	Asymmetric Ciphers

	Stream Cipher Building Blocks
	Boolean Functions
	Feedback Shift Registers
	Linear Feedback Shift Registers (LFSRs)
	Feedback Shift Registers With Carry (FCSRs)

	Stream Ciphers based on Feedback Shift Registers
	Generic Constructions
	Combination Generators and Filter Generators
	Additional Memory
	Irregular Clocking

	Example Ciphers
	Self-Shrinking Generator
	E0 Generator
	A5/1 Generator
	Trivium
	Grain-128
	Filtered FCSRs

	Abstraction: Internal Bitstream Generators

	The BDD-Attack
	Introduction and Overview
	Representing Boolean Functions with Binary Decision Diagrams
	Free Binary Decision Diagrams (FBDDs)
	Ordered Binary Decision Diagrams (OBDDs)

	BDD-based Initial State Recovery
	Generic BDD Constructions
	Keystream Consistency Check Qm
	FSR Consistency Check Rm

	Applications
	Self-Shrinking Generator
	Bluetooth Keystream Generator E0
	GSM Keystream Generator A5/1
	Trivium
	Grain-128
	The F-FCSR Stream Cipher Family

	Divide-and-Conquer Strategies (DCS)
	DCS for regularly clocked (k,l)-Combiners
	DCS for the A5/1 Generator

	Simulations and Experimental Results
	Discussion of the BDD-Attack

	Other Generic Attacks on Stream Ciphers
	Correlation Attacks
	The Basic Idea
	Analysis of the Special Case C(xt,qt)=(xt)(qt)

	Algebraic Attacks
	The Basic Idea
	Analysis of a restricted Scenario

	Countermeasures and Design Principles
	Increasing the Resistance against Correlation Attacks
	Increasing the Resistance against Algebraic Attacks

	Application to E0

	II Authenticity with Linear Protocols
	Algorithms for Entity and Message Authentication
	Security Definitions and Attacker Models
	Entity Authentication
	Entity Recognition
	Message Authentication
	Message Recognition
	Attacker Models

	Message Authentication Codes
	Message Authentication Codes based on Block Ciphers
	Message Authentication Codes based on Cryptographic Hash Functions

	Message Authentication with Digital Signatures
	Challenge-Response based Entity Authentication
	Authentication Schemes based on Hash Chains
	Authentication based on the Hardness of Learning Problems

	The HB Family of Authentication Protocols
	The HB Protocol
	The HB+ Protocol
	Variants of the HB+ Protocol
	The HB++ Protocol
	The HB* Protocol
	The HB-MP Protocols
	The HB# Protocol
	The Trusted-HB Protocol

	The (n,k,L) Family of Authentication Protocols
	Introduction and Overview
	The Linear (n,k,L) Protocol
	The Linear (n,k,L)+ Protocol
	The Linear (n,k,L)++ Protocol
	Special Cases of Linear (n,k,L) Protocols
	Security of Linear (n,k,L)-type Protocols and the LULS Problem
	The Search-for-a-Basis Heuristic
	The LULS Problem
	On Solving the LULS Problem

	Discussion

	Conclusion

	Bibliography
	List of Tables
	List of Figures
	List of Algorithms

