
Security of Smartphones

at the Dawn of their Ubiquitousness

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Michael Becher

aus Kleve, Deutschland

Mannheim, 2009

Dekan: Prof. Dr.-Ing. Felix Freiling, Universität Mannheim
Referent: Prof. Dr.-Ing. Felix Freiling, Universität Mannheim
Korreferent: Prof. Dr.-Ing. Ulrike Meyer, RWTH Aachen

Tag der mündlichen Prüfung: 09.10.2009

iii

Abstract

The importance of researching in the field of smartphone security is substantiated in
the increasing number of smartphones, which are expected to outnumber common
computers in the future. Despite their increasing importance, it is unclear today
if mobile malware will play the same role for mobile devices as for common
computers today. Therefore, this thesis contributes to defining and structuring
the field mobile device security with special concern on smartphones and on the
operational side of security, i.e., with mobile malware as the main attacker model.
Additionally, it wants to give an understanding of the shifting boundaries of the
attack surface in this emerging research field.

The first three chapters introduce and structure the research field with the main
goal of showing what has to be defended against today. Besides introducing related
work they structure mobile device attack vectors with regard to mobile malicious
software and they structure the topic of mobile malicious software itself with regard
to its portability.

The technical contributions of this thesis are in Chapters 5 to 8, classified according
to the location of the investigation (on the device, in the network, distributed in
device and network). Located in the device is MobileSandbox, a software for dy-
namic malware analysis. As another device-centric contribution we investigate on
the efforts that have to be taken to develop an autonomously spreading smartphone
worm. The results of these investigations are used to show that device-centric parts
are necessary for smartphone security. Additionally, we propose a novel device-
centric security mechanism that aims at reducing the attack surface of mobile
devices to mobile malware.

The network-centric investigations show the possibilities that a mobile network
operator can use in its own mobile network for protecting the mobile devices of its
clients. We simulate the effectiveness of different security mechanisms.

Finally, the distributed investigations show the feasibility of distributed computation
algorithms with security modules. We give prototypic implementations of protocols
for secure multiparty computation as a modularized version with failure detector
and consensus algorithms, and for fair exchange with guardian angels.

iv

Zusammenfassung

Die Wichtigkeit der Forschung zur Sicherheit von multifunktionalen Mobiltele-
fonen (engl. “smartphones”) wird untermauert von ihrer steigenden Anzahl, die
vermutlich die Anzahl von herkömmlichen Rechnern in Zukunft übersteigen wird.
Trotz ihrer steigenden Bedeutung ist es unklar, ob mobile Schadprogramme (engl.
“mobile malware”) dieselbe Rolle für mobile Endgeräte spielen werden, wie es her-
kömmliche Schadprogramme für herkömmliche Rechner tun. Aus diesem Grund
leistet diese Arbeit einen Beitrag dazu, das Thema Sicherheit mobiler Endgeräte
zu definieren und zu strukturieren. Insbesondere behandelt sie multifunktionale
Mobiltelefone und die operative Seite der Sicherheit, die mobile Schadprogram-
me als das hauptsächliche Angriffsmodell hat. Die Arbeit möchte zusätzlich ein
Verständnis von den sich verschiebenden Grenzen der Angriffsvektoren in diesem
neuen Forschungsfeld geben.

Die ersten drei Kapitel führen in das Themenfeld ein, strukturieren es, und zeigen,
wogegen man sich heute schützen muss. Neben der Nennung von verwandten
Arbeiten werden Angriffsvektoren für mobile Endgeräte in Bezug auf mobile
Schadprogramme, sowie mobile Schadprogramme in Bezug auf ihre Portabilität
strukturiert.

Die technischen Beiträge dieser Arbeit folgen in den Kapiteln 5 bis 8, aufgeteilt
durch den Ort der Untersuchung (auf dem Endgerät, im Netz, verteilt zwischen
Endgerät und Netz). Im Endgerät angesiedelt ist MobileSandbox, ein Programm
für die dynamische Analyse von Schadprogrammen. Ein weiterer Beitrag bezogen
auf das Endgerät ist die Untersuchung der Aufwände für die Entwicklung eines
sich autonom verbreitenden Wurms auf multifunktionalen Mobiltelefonen. Die
Ergebnisse dieser Untersuchungen werden benutzt, um endgerätezentrierte Teile
als für die Sicherheit von multifunktionalen Mobiltelefonen notwendig zu zeigen.
Außerdem wird ein neuartiger endgerätezentrierter Sicherheitsmechanismus vorge-
stellt, der die Angriffsfläche der Endgeräte gegenüber mobilen Schadprogrammen
reduziert.

Die netzzentrierten Untersuchungen zeigen die Möglichkeiten, die ein Mobilfunk-
netzbetreiber in seinem Mobilfunknetz benutzen kann, um die mobilen Endgeräte
seiner Kunden zu schützen. Die Effektivität von verschiedenen Sicherheitsmecha-
nismen wird simuliert.

Schließlich zeigen die verteilten Untersuchungen die Durchführbarkeit von Sicher-
heitsmodulen benutzenden Algorithmen zur verteilten Berechnung. Es werden
vorgestellt: eine prototypische Implementierung von Protokollen zur sicheren ver-
teilten Berechnung in einer modularisierten Version mit Ausfallerkennern und
Konsensusalgorithmen. Außerdem eine Implementierung von fairem Austausch
mit Sicherheitsmodulen.

Acknowledgments

A work like this cannot be done without the support of numerous people.

Thanks go to all the employees of Deutsche Telekom who supported me with their
time for discussions, with hardware, and with insights into the mobile world and
into my research field. Dr. Thomas Breitbach for his trust in me and for enabling
the funding during my work on this thesis. Special thanks go to Dr. Uwe Wilhelm
for being my all-purpose contact at Deutsche Telekom during all the years.

My proofreaders have contributed to an understandable text. Cordial thanks for
carefully reading and commenting on every line of the draft chapters that I sent
them: Alexander Becher, Andreas Sensen, Philipp Vorst. With valuable suggestions
from their different perspectives they helped me a lot to refine my arguments and
to make the text more understandable for a general computer science audience.

Additional thanks go to the scientific world. To all my students from Aachen and
Mannheim for their interest in the world of smartphone security and for choosing
me as their supervisor. To all the people in Mannheim who gave the work on
this thesis also a social component. To my referee Prof. Dr. Ulrike Meyer, who
carefully read the thesis and gave valuable feedback to me that has formed this
final version of the thesis. And to my supervisor Prof. Dr. Felix Freiling, who also
carefully commented on the chapters of this thesis, who gave me support in every
phase of my scientific work, and who always shared his insights into science.

My family receives the most cordial thanks. They all know that this thesis would
neither have started nor finished without them.

vi

Contents

1 Introduction 1

2 Related Work 9
2.1 Mobile Devices . 10

2.1.1 Definition . 10
2.1.2 Security Modules . 11
2.1.3 Specifics of Mobile Devices 15

2.2 Mobile Device Security . 20
2.2.1 Definition of Security 21
2.2.2 Security in Application Frameworks 22
2.2.3 Security in Windows Mobile 24
2.2.4 Security in Symbian OS 29

2.3 Mobile Malicious Software . 34
2.3.1 Definition of Malware 34
2.3.2 Surveys of Mobile Malware 35
2.3.3 Virus Scanners . 37

2.4 Analytic Mechanisms . 40
2.4.1 Dynamic Software Analysis 41
2.4.2 Simulation . 42

2.5 Distributed Computation . 43
2.5.1 Secure Multiparty Computation 44
2.5.2 Fair Exchange . 47

3 Structuring Mobile Device Attack Vectors 51
3.1 Attack Vector Classes . 52
3.2 Hardware-Centric Attacks . 53

3.2.1 Intercepting MNO Smartcard Communication 55
3.2.2 Attacking the Device . 55

3.3 Device-Independent Attacks . 56
3.3.1 Wireless Transmission Security 57
3.3.2 Backend Systems . 61

viii CONTENTS

3.4 Software-Centric Attacks . 62
3.4.1 General . 62
3.4.2 Operating System Modifications 64
3.4.3 Web Browser . 66

3.5 “Layer 8”: The User as Attack Vector 68
3.5.1 Security Awareness . 69
3.5.2 Influence of the User . 70
3.5.3 Social Engineering . 71
3.5.4 Security & Usability . 72

3.6 Conclusion . 75

4 Structuring Mobile Malicious Software 77
4.1 Known Mobile Malware . 78

4.1.1 Windows Type of Operating Systems 78
4.1.2 Symbian OS . 81
4.1.3 Java Platform, Micro Edition (J2ME) 86

4.2 Phases of Malware . 87
4.2.1 Infection . 87
4.2.2 Malicious Functionality 88
4.2.3 Spreading . 90

4.3 Mobile Malware Portability . 90
4.3.1 Cross-Platform Malware 91
4.3.2 Portability between Mobile Operating Systems 93

4.4 Conclusion . 95

5 Developing a Dynamic Malware Analysis Tool 97
5.1 Design . 98

5.1.1 General Design Considerations 98
5.1.2 Environment . 99
5.1.3 Logging . 100
5.1.4 Analysis Duration . 100

5.2 Implementation . 100
5.2.1 Components of MobileSandbox 100
5.2.2 Prolog and Epilog . 102
5.2.3 User-Level Hooking . 102
5.2.4 Kernel-Level Hooking 104
5.2.5 Portability . 107

5.3 Evaluation . 107
5.3.1 Performance . 108
5.3.2 Completeness . 108
5.3.3 Malware Analyses . 109

CONTENTS ix

5.4 Conclusion . 114

6 Device-Centric Security Investigations 115
6.1 Developing a Smartphone Worm 116

6.1.1 Proof-of-Concept Malware for Mobile Devices 117
6.1.2 Constant Part: The Building Blocks 119
6.1.3 Variable Part: Measuring Resistance 123

6.2 Attack Surface Reduction in Mobile Device Security 125
6.2.1 Justifying Increased User Control 126
6.2.2 Policy Enforcement and Security Interfaces 130
6.2.3 Prototype Design . 131

6.3 Conclusion . 134

7 Network-Centric Security Investigations 135
7.1 Mobile Dynamic Malware Analysis 136

7.1.1 Collecting Samples . 136
7.1.2 Analyzing Samples . 140
7.1.3 Responding to the Analysis 140

7.2 Simulation . 142
7.2.1 Model . 142
7.2.2 Implementation . 144
7.2.3 Evaluation . 145

7.3 Conclusion . 148

8 Distributed Security Investigations 149
8.1 Distributed Computation in Real-World Environments 150

8.1.1 Mobile Network Setting 150
8.1.2 Virtual Trusted Third Parties 152

8.2 Secure Multiparty Computation with Security Modules 155
8.2.1 Design . 155
8.2.2 Implementation . 156
8.2.3 Memory Requirements Evaluation 159

8.3 Fair Exchange with Security Modules 160
8.3.1 Design . 160
8.3.2 Implementation . 163
8.3.3 Evaluation . 164

8.4 Conclusion . 166

9 Conclusion 169
9.1 Summary . 169
9.2 Discussion . 170

x CONTENTS

9.2.1 Future Entities . 170
9.2.2 Security Requirements 171

9.3 Perspective . 172
9.3.1 Future Validity of the Specifics 172
9.3.2 Future Challenges . 173

Bibliography 175

List of Figures

2.1 Structure of Command APDUs 15
2.2 Specifics of Mobile Devices . 16
2.3 Vulnerability Lifetime . 17
2.4 System Call Architecture of Windows Mobile 26
2.5 Operating Systems Targeted by Mobile Malware 36

3.1 Mobile Device Attack Vectors (High-Level) 53
3.2 Mobile Device Attack Vectors (Incarnations) 54
3.3 Web Browser Undermining the Security Model 67

4.1 Cross-Platform Malware . 91

5.1 Structure of MobileSandbox . 101
5.2 Import Address Table Patching 103
5.3 Kernel-Level System Call Hooking 105
5.4 Dust Source Code (Excerpt) . 110
5.5 Analysis of Dust (Excerpt) . 111
5.6 Analysis of Pmcryptic (Excerpt) 112

6.1 Exploitation with Staged Shellcode 120
6.2 Infected Device . 122
6.3 Measuring Resistance . 124
6.4 Policy Enforcer in the Mobile Device 127
6.5 Policy Enforcer System Architecture 132

7.1 File Collection Vectors . 137
7.2 Simulation System Design . 143
7.3 Applying Virus Scanners vs. User Education 146
7.4 Effects of User Education . 147
7.5 Virus Scanner Update Times . 147

8.1 System Architecture of SMC Solution 155

xii LIST OF FIGURES

8.2 Application Protocol Data Units of SMC Solution 157
8.3 Content of Encrypted Messages 158
8.4 Design of Fair Exchange Solution 162

List of Tables

2.1 Access Rules for Data Caging 31

3.1 Personal Security Profile . 74

4.1 Known Mobile Malware . 79
4.2 Mobile Malware Portability . 94

5.1 Performance of MobileSandbox 108

7.1 Detected Bluetooth Services . 139

8.1 Memory Requirements of Failure Detector 159
8.2 Approximated Memory Requirements Java Card 159
8.3 Fair Exchange Adversaries . 165
8.4 Fairness Evaluation Using InformedRandomAdversary 165
8.5 Average Execution Times Depending on Cryptography 166

xiv LIST OF TABLES

Chapter 1

Introduction

Motivation

The goal of this thesis is contributing to the topic of smartphone security. This topic
covers all mechanisms that are intended to increase the security of sophisticated
mobile devices—called smartphones. Besides a connection to mobile phone
networks, smartphones can be characterized as mobile devices having a large
screen, reasonable processing power and memory, and an operating system that is
extensible with third-party software.

The beginning of the smartphone era can be seen as beginning with the new
millennium. Since then, numerous articles have been written about the topic of
smartphone security and the potential of malicious software on smartphones. A
recent study expected “that by the end of 2007, enough factors will have come
together that the risk of mobile attacks will be much greater. Those factors include
less heterogeneity in operating systems, more penetration of smartphones and a
greater incidence of people actually accepting downloads and sending executables
to one another on mobile devices, [...]” [115].

There are more articles that try to give a statement on the future of smartphone
security, e.g., “The wireless epidemic” in 2007 [114], “Is it finally time to worry
about mobile malware?” in 2008 [119], and others from 2000 to 2007 [120, 75,
42, 121, 100, 101].

What do all these statements mean? They mean that experts are expecting a major
security incident with mobile phones ever since these devices began to become
more powerful: with increased processing power and memory, increased data
transmission capabilities of the mobile phone networks, and with open and third-
party extensible operating systems. However, such an incident has not happened

2 INTRODUCTION

until the time of this writing in 2009. The reasons are unclear, but the heterogeneity
of mobile operating systems could be a reason. Contrary to the prediction quoted
above, heterogeneity of mobile operating systems has even increased. Besides the
operating systems Windows Mobile and Symbian OS, the mobile world has seen
the advent of the iPhone OS and the Linux-based Android operating system during
the last two years. Despite of their young age, both operating systems already
gained their market share and they are predicted to even increase this market share
[28]. Moreover, the view that mobile operating systems are sufficiently secure
today [26] might be another reason why no major security incident has happened
until now.

Smartphones and mobile phones in general have particular specifics. A first unique
feature is the availability of trusted modules in every mobile device: the subscriber
identity module (SIM card). This module gives additional possibilities for security
mechanisms, as Chapter 8 will show. It is a deployed and currently available basis
for a key infrastructure, which is a difficult problem for common computers. A
second unique feature is the more centralized infrastructure that facilitates the
network-centric solutions of Chapter 7. More of these differences between mobile
phones and common computers can be seen in Chapter 2.

This thesis deals with smartphone security that is a subset of the broader topic
mobile security. In particular, the thesis covers two aspects of smartphone security:

1. Analyzing, writing, and contributing to the defense against mobile malicious
software (malware).

2. The feasibility of secure computation on mobile devices. These main contri-
butions are placed into the more general context of mobile device security in
Chapter 3.

Mobile Malicious Software Investigations. We investigate device-centric secu-
rity mechanisms, network-centric security mechanisms, and something in-between:
distributed security mechanisms. We aim at showing how the local view of these
single security mechanisms can be brought together in a global view that the mobile
device user accepts and is able to understand. As a basis of its investigations we
see every real-world parameter as changeable, especially those that only the mobile
network operator is able to change.

Mobile malware covers malware for mobile phones and smartphones in particular.
Malware is the usual form in which vulnerabilities and the exploits of an operating
system or an application manifest themselves to become security problems for a
broad audience. Examples of malware are viruses, worms, and Trojan horses.

3

Investigating the damage potential of mobile malicious software is challenging
today because this new kind of malware has the potential to have mobile phone
users question the trust in the mobile telephony system as such.

Therefore, we see the main research tasks for mobile device security in the attacks
that can be committed by mobile malicious software. The mobile device can be
seen as a Byzantine node, i.e., having arbitrary and possibly malicious behavior.
We call this the operational side of security. We will focus on mobile devices that
work in today’s mobile phone networks, that is, we cover mobile phones containing
a smartcard that is controlled by the mobile network operator. This smartcard
is used for regaining control over the otherwise Byzantine mobile devices: it is
assumed that mobile malware cannot spread onto the smartcard.

Feasibility of Secure Multiparty Computation on Mobile Devices. This leads
to the second area of contributions: the investigation of proactive mechanisms
to reduce the influence that malicious software can have on smartphones. These
mechanisms are distributed computation protocols that use a trusted module on the
device of a participant to build a trusted subnet and to relieve the need for a trusted
third party. The protocols are secure multiparty computation and fair exchange.

Secure multiparty computation is a hard problem. Informally, it is defined as: “A
set of parties wants to compute a common function F on their local inputs, while
keeping their local data as private as possible, but who do not trust each other,
nor the communication channels” [37]. Fair exchange is defined as: two or more
mutually untrusted parties want to exchange secrets in such a way that either all
of them receive the desired information or none of them learns anything valuable.
It is challenging to solve these problems on smartphones because of their limited
resources compared to current implementations of these protocols.

In summary, we can take an approach in this thesis without being forced into
specific parameters by real mobile device security incidents. The importance of
the research topic is substantiated in its investigation subjects, which are becoming
ubiquitous and which are expected to outnumber common computers in the future.
As a final remark, we take the attacker point of view most of the times, which
proved to be a valuable point of view for information security [79].

Contributions

The contributions in this thesis can be grouped into three areas. The first area
is non-technical, the second area is about mobile malware (called device-centric
investigations and network-centric investigations), and the third area is about

4 INTRODUCTION

the feasibility of distributed computation algorithms on mobile devices (called
distributed investigations).

One part of the device-centric investigations is MobileSandbox, a software for
dynamic malware analysis of Windows Mobile executables. Another device-
centric investigation is researching on the efforts that have to be taken to develop
an autonomously spreading smartphone worm. The results of these investigations
are used to show that device-centric parts are necessary for smartphone security
and we propose a novel device-centric security mechanism that aims at reducing
the attack surface of mobile devices to mobile malware. The network-centric
investigations show the possibilities that a mobile network operator has to use its
own mobile network for protecting the mobile devices of its clients. We simulate
the effectiveness of different security mechanisms.

The distributed investigations show the feasibility of distributed computation algo-
rithms with security modules. We give prototypic implementations of protocols for
secure multiparty computation as a modularized version with failure detector and
consensus algorithms, and for fair exchange with guardian angels.

In detail, the contributions of this thesis are:

• We give two non-technical contributions for structuring of the topic smart-
phone security as a conceptual framework. First, an attack model with four
attack classes that argues for a clear distinction between its classes (Chap-
ter 3), presenting in detail what we call the operational side of mobile device
security, that is, vulnerabilities exploitable by mobile malware. Second,
a survey on the current state of real-world examples and a projection of
the potential of mobile malicious software, together with a classification
concerning portability between different platforms with the main goal of
showing what has to be defended against today (Chapter 4). It shows that
even if most of today’s mobile malware targets Symbian OS, most of these
pieces of malware are portable to other mobile operating systems.

• We contribute a software for dynamic malware analysis of Windows Mobile
binaries (Chapter 5, the core parts are already published [48]). This software
has advantages over existing solutions: it solves the problem of logging a
particular run of a Windows Mobile software sample for the first time. Most
of the work in this area of dynamic analysis has been done for common Win-
dows systems, and this chapter will point out why their approaches cannot
be transferred to Windows Mobile. Either they use processor emulators with
sophisticated interfaces (TTAnalyze [17]) or they use DLL overwriting tech-
niques (CWSandbox [232]) that cannot be used for systems like Windows
Mobile because they execute DLLs directly in ROM (“execute in place”,

5

see Section 2.2.3). Abstracted from the different target operating systems,
MobileSandbox has two conceptual advantages over the two solutions from
above. First, it logs system calls not only at user level (CWSandbox) but
even at the level of the kernel, enabling a more detailed system call log.
Second, it can be integrated into a running device without any changes to the
firmware of the device.

• As there are currently no incarnations of smartphone worms, we contribute
on the efforts that have to be taken to develop an autonomously spreading
smartphone worm for Windows Mobile by actively researching character-
istics and countermeasures to learn more about its associated threats. The
results are embedded into a three phases model of breaking a system and
are used to derive a cost-to-break metric for Windows Mobile (Section 6.1,
the results are already published [20]). This investigation shows that it is
possible to come very close to the target of developing a smartphone worm
with reasonable effort.

• We show device-centric parts as necessary for smartphone security, because
some important security requirements can only be implemented on the
mobile device itself. We use the MobileSandbox dynamic software analysis
tool of Chapter 5 as a basis for a novel device-centric security mechanism—
called the policy enforcer—that aims at reducing the attack surface of mobile
devices concerning mobile malware. This security mechanism differs from
recent related work in the area by relieving the need to be added to the device
at manufacturing time (Section 6.2).

• Chapter 7 investigates the possibilities of increasing mobile device security
within the mobile network itself. It uses discrete event simulation to simulate
the effectiveness of various network-centric security mechanisms.

• Finally, we show the feasibility of distributed computation algorithms with
security modules by giving prototypic implementations of protocols for se-
cure multiparty computation in a modularized version and for fair exchange
(Chapter 8). The implementation of secure multiparty computation is the
first for more than two participants in an environment that is not synchronous.
We show that this implementation only needs minimal resources compared
to other systems for solving secure multiparty computation. The implemen-
tation of the probabilistic fair exchange with guardian angels protocol is
shown to inherit the fairness properties of the underlying protocol by being
resilient against a large number of attacker classes.

Besides its key contributions, this thesis wants to convey the following insights:
in the fast-changing world of mobile device security, the boundaries of security

6 INTRODUCTION

are constantly changing, e.g., with application frameworks and with mobile Web
browsers. This makes it necessary to reduce the attack surface of the operating
systems of mobile devices. Moreover, this thesis shows that many insights from
security research remain valid in the context of smartphone security. This is
especially true for the combination of systems that are secure for themselves but
whose combination can lead to unexpected vulnerabilities.

Organization

We make a clear separation between related work and our own contributions in
this thesis. Therefore, the preliminary knowledge of a chapter usually is not in
direct vicinity, but can be found in Chapter 2. Besides reading this thesis from
beginning to end it is possible to select particular chapters. For the latter case, the
texts contains back references to the sections where a topic was introduced.

The first three chapters introduce and structure the topic with the main goal of
showing what has to be defended against today. The following technical contribu-
tions are classified according to the location of the investigation: on the device, in
the network, distributed in device and network.

The individual chapters are organized as follows:

• Chapter 2 introduces related work that is a necessary basis for understanding
the solutions of this thesis. It is subdivided into the introduction of mo-
bile devices, mobile device security, mobile malicious software, analytic
mechanisms, and distributed computation algorithms.

• Chapter 3 defines what this thesis calls the operational side of mobile de-
vice security by structuring current mobile device attack vectors into the
four classes hardware-centric attacks, device-independent attacks, software-
centric attacks, and user-layer attacks. Special attention is on attack vectors
that can be used by mobile malware.

• Malicious software for mobile devices is covered in Chapter 4 where current
pieces of mobile malicious software are investigated according to their
portability to other mobile operating systems.

• The technical contributions of this thesis start in Chapter 5 with the descrip-
tion of design and development of a tool for dynamic software analysis in
Windows Mobile, which is able to log system calls of a particular execution
of a software sample on the level of user-level system calls and kernel-level

7

system calls. It is evaluated by analyzing known malware for Windows
Mobile.

• In Chapter 6 we investigate the resistance of Windows Mobile against fuzzing
attacks aimed at understanding the current state of mobile device security.
The chapter further argues for an attack surface reduction in mobile device
security because the current diversity of mobile device security mechanisms
is seen as inappropriate for the common mobile device user. Therefore, a
policy enforcer is introduced.

• Chapter 7 investigates the possibilities of increasing mobile device security
within the mobile network itself. It uses discrete event simulation to simulate
the effectiveness of various network-centric security mechanisms.

• Chapter 8 investigates how algorithms for distributed computation can be
applied in the setting of this thesis: the trusted module SIM card is used to
solve two problems. First, secure multiparty computation in an implementa-
tion using J2ME and Java Card. Second, fair exchange with guardian angels
in partially synchronous network settings using Java.

• Chapter 9 summarizes the content of this thesis and discusses the pros
and cons of the security mechanisms that were introduced in the previous
chapters.

8 INTRODUCTION

Chapter 2

Related Work

This chapter introduces related work as a basis for the rest of this thesis and it
connects this related work to our contributions.

Section 2.1 gives a definition of mobile devices—the investigation subjects. Closely
connected to the investigated mobile devices is the trusted module—the mobile
network operator (MNO) smartcard—that will be introduced, as well as well as
specifics of mobile devices compared to desktop security.

Section 2.2 gives basic definitions of mobile device security. Afterwards, Windows
Mobile, Symbian OS, and J2ME are introduced as examples of the current state
of security in mobile device operating systems and application frameworks. This
technical knowledge is necessary to understand the later parts of this thesis.

Section 2.3 introduces the definition and presents surveys of mobile malicious
software. Moreover, it presents virus scanners as the defense side of malicious
software.

Two analytic mechanisms are introduced in Section 2.4: dynamic software analysis
and discrete event simulation. The topic of dynamic software analysis is a basis for
the MobileSandbox dynamic malware analysis tool of Chapter 5. The methods of
simulation are used in Chapter 7.

The distributed computation algorithms secure multiparty computation and fair
exchange in Section 2.5 are the basis for understanding their implementation on
mobile devices in Chapter 8. Both algorithms use security modules.

10 RELATED WORK

2.1 Mobile Devices

This section gives a definition of mobile devices—the investigation subjects.
Closely connected to the investigated mobile devices is the trusted module—the
mobile network operator smartcard—that will be introduced, as well as well as
specifics of mobile devices compared to desktop security.

2.1.1 Definition

As a first approach, the investigation subject of this thesis is defined as: any mobile
device that contains a smartcard that is controlled by a mobile network operator
(MNO). Intuitively, this is the definition of a mobile phone.

This definition is mainly true, but there are mobile phones that are not in the focus of
this thesis. These are mainly the kind of phones that can only be used for the phone
functionality (plus text messaging and some basic other functionality), often aligned
with a limited display size. They sometimes have proprietary operating systems
and are not extensible with additional software. Even though the applications on
these phones can be attacked, e.g., denial-of-service attacks with malformed SMS
messages, they are not the typical attack target of mobile malicious software.

Other exceptions are some restricted environments that are not in the focus of
this thesis either: USB sticks that enable laptops to use the mobile network are
not covered. Moreover, there are some other devices with operator-controlled
smartcards that are a restricted environment of their own (machine-to-machine
types of communication). Both are not extensible with third-party software and the
operating systems are proprietary developments.

Mobile devices also have other communication interfaces like WLAN and Blue-
tooth, and malicious software exists that only uses these interfaces for spreading.
Consequently, devices can be imagined that do not have a connection to a mobile
network, i.e., do not contain an operator-controlled smartcard, but are attackable
by mobile malware. Fortunately, all relevant mobile device operating systems
provide the interface to the mobile network together with the local communication
interfaces. That is why the intuitive definition from the beginning still holds.

A more formal definition follows now as an important distinction concerning the
possible security mechanisms.

MNO Smartcard: An MNO smartcard is a smartcard inside the mobile device
that is controlled by a mobile network operator (MNO). Whenever this term is used

2.1 Mobile Devices 11

in this thesis, it can be used for all smartcards in mobile devices that are controlled
by an MNO regardless of the actually used technology (see Section 2.1.2.2).

Smartphone: A smartphone contains an MNO smartcard with a connection to a
mobile network. Moreover, it has an open operating system that can be extended
with third-party software. These two properties in combination are the reason for
this entire work and the smartphone is is the central attack target of this thesis.

The term “smartphone” as one word is chosen intentionally. It is supposed to
denote that not only “smart phones” are under attack, but that the smartphone with
its two main properties defines a complete new class of attack targets and protection
needs, which takes place in a setting with mobile devices connected to the network
over a wireless link and a more centralized environment of the network operators.
Additional properties of these smartphones can be found in the literature [237].

Feature Phone: A feature phone has a closed operating system that has pre-
installed applications but that does not allow third-party software to be installed.
Apart from that fact it is comparable to the smartphone because it has applications,
large display and amenable processing power. Therefore, feature phones are prone
to the same attacks as smartphones, but they cannot easily be protected with security
mechanisms like locally installed anti-virus software. As a side note: smartphones
may be restricted to be feature phones by not making an SDK available.

The distinction smartphone vs. feature phone is only relevant in some parts of the
thesis. Therefore, the investigation subject is abstracted in the rest of this thesis
as mobile device or just device. When the connection to the mobile network is
emphasized, it is called mobile phone. The mobile network is operated by the
mobile network operator (MNO).

Mobile devices offer various services to its users. Popular is messaging as Short
Message Service (SMS) or Multimedia Messaging Service (MMS). They use
certain protocols that are explained in the literature [90].

In contrast to mobile devices, the traditional computers are called here common
computers. When their fixed location is emphasized, they are called desktop
computers.

2.1.2 Security Modules

This section will introduce the topic of security modules for mobile devices. Special
focus is on solutions for secure multiparty computation with security modules,

12 RELATED WORK

which will be introduced in Section 2.5 and investigated in Chapter 8. The topic of
security modules is also addressed by Anderson [5].

2.1.2.1 General Properties

Notation. Today, security modules usually have the form of a smartcard, i.e., a
card with a specific form factor containing a chip with processor and memory. The
spelling “smart card” is also in use, but as with smartphones above this thesis uses
the more forward-looking spelling. This is based on the fact that the card is not
only a “card that is smart” but defines a new class of entities.

Tamper-Proof. Security modules are trusted hardware inside of a mobile device.
That is, they can contain data (e.g., cryptographic keys) that is only accessible via
a defined interface of operations. This ensures that no tampering is possible even if
a possible attacker has control over the entire device.

The main incarnation of a security module in mobile devices today is the MNO
smartcard. Currently, there are other initiatives trying to bring new security modules
into mobile devices, enabling more third-parties to provide applications with
security modules.

Trustworthy. The smartcard is expected to behave according to the software that
it was programmed with. A user has to trust the device manufacturer because he is
hardly able to verify this assumption. The manufacturer publishes a specification
of the smartcard functionality and promises the accordance of the implementation
to this specification. The specification also lists possible interactions with the
interface of the smartcard. It must not be possible to invoke operations that have
not been pre-defined and documented.

Restricted Environment. Smartcards have restrictions in computing power and
memory. Mobile devices have this restriction in general, but this is even more
significant for smartcards. Therefore, it is crucial to limit the involvement of the
card in any solution that makes use of the smartcard.

Exchange Frequencies. The question can be posed how new security features
find their way into mobile devices. Two alternatives exist: waiting for more
sophisticated MNO smartcards and waiting for new devices containing new security
hardware. Replacing all the existing MNO smartcards is an expensive task and it

2.1 Mobile Devices 13

can be assumed that no new functionality of the MNO smartcard will be introduced
by exchanging all existing cards, regardless of how sophisticated the functionality
is. The assumption can be made that new (security) functionality is introduced
more likely with new devices because they are supposed to be exchanged more
frequently than MNO smartcards.

2.1.2.2 MNO Smartcard

The MNO smartcard was called “SIM card” in the GSM network (2G). It was
a monolithic entity, being able to denote the physical smartcard or the logical
functionality within the GSM network. In 3G networks the Universal Integrated
Circuit Card (UICC) was introduced as the physical card. It contains logical
applications for different use cases: a SIM application for communication with 2G
networks and a USIM application for communication with 3G networks.

MNO smartcards are seen more and more as a server component in the recent time
[113, 224]. While this is true for modern and advanced smartcards, the majority
still has very limited capabilities (1 kilobyte of RAM, small EEPROM).

Provisioning of applications can only be done by the MNO. Therefore, the MNOs
have control over third-party applications using the MNO smartcard as a security
module on mobile devices. This is a reason why the security specifications exist
that are introduced now.

The so-called SIM lock is a feature of a mobile device to only accept MNO
smartcards of a specific MNO. This is used for subsidized devices and for devices
that are bound to a specific MNO, e.g., the iPhone.

2.1.2.3 Security Specifications

There exist additional specifications for security modules in mobile phones. A
more thorough introduction can be found in Pisko et al. [175].

Open Mobile Terminal Platform: Trusted Environment. The Open Mobile
Terminal Platform (OMTP) defines requirements for trusted environments. The
OMTP Trusted Environment [160] defines a model of the mobile device and the
MNO smartcard. Additionally, a threat model is defined based on the device model.
It is the basis for the OMTP Advanced Trusted Environment [164], where secure
storage and secure boot are defined as enablers for future applications. Trusted
device management is named as an example of these applications.

14 RELATED WORK

Trusted Computing Group: Mobile Security Specification. The Mobile Phone
Working Group (MPWG) is part of the Trusted Computing Group (TCG) with the
goal to define standards that get their security by using a trusted platform module
in the mobile phone, called Mobile Trusted Module (MTM) [218]. They define
a mobile reference architecture (RA) consisting of distinct trusted engines. The
definition of this security module approaches the problem of mobile device security
from a deeper technical level, because they have an attacker model with a more
sophisticated attacker. A first implementation of this reference architecture based
on SELinux was given by Aciicmez et al. [1].

The effects of the MTM for the overall security of mobile devices have been
reflected by Leavitt in 2005 [122], thoughts about deploying these modules were
published by Kasper et al. [189], and using these trusted modules for virtualizing
the MNO smartcard has been investigated by Kasper et al. [190].

2.1.2.4 Java Card Framework

The Java Card Framework is a Java runtime environment for smartcards. It is a
subset of the Java Platform, e.g., important data types like float and string are not
available. The Java Card framework is the basis for our implementation of secure
multiparty computation with security modules in Section 8.2. More information
about technologies and using the Java Card framework can be found in the literature
[32, 128].

Communication can take place with application protocol data units (APDU) or
with a more sophisticated Java Card remote method invocation (JCRMI). Of most
interest is APDU, because it is implemented more often than JCRMI in mobile
devices (see Section 2.2.2).

Application Protocol Data Units. The application protocol data unit (APDU)
is the common communication means between a Java Card applet and its host
application. Communication is specified as ISO standard 7816. It is a simple
request-response protocol (half duplex communication), where after a request
(command) from the host a response (response) from the Java Card with a fixed
return value length follows. The Java Card applet can indicate the availability of
data with a special return value, which can be retrieved with a GET RESPONSE
command.

There are two main protocols for APDU communication: T=0 and T=1. T=0 is a
byte-level protocol and T=1 a block-level protocol.

Figure 2.1 shows the structure of a command APDU. The header consists of four
bytes: class of instruction (CLA) selects the addressed application on the smartcard,

2.1 Mobile Devices 15

Header Body
CLA INS P1 P2 Lc DATA Le

1 1 1 1 1 0-* 1

Figure 2.1: Structure of Command APDUs

the instruction code (INS) selects the addressed command of the application, and
the parameters P1 and P2 give additional information without the need to attach
the optional body to the APDU. The Lc byte of the body specifies the length of the
following DATA field that contains application-specific data. The Le byte specifies
the length of the response APDU. If no answer is expected, the byte is omitted.

The response APDU consists of a body and a trailer. The length of the body was
defined by the Le byte of the command APDU. The trailer consists of two status
bytes that contain a status code of the command execution.

Java Card version 3. A draft for a new version 3 of the Java Card framework
exists (released in March 2008). It will be split into two parts. The classic edition
is an evolution of current version 2.2.2. The connected edition introduces the Web
protocol HTTP to the Java Card world. Java Card applications can be a servlet
that can be accessed via HTTP from the host application. With Java Card 3, MNO
smartcards can be seen as in the process of developing from a multi-applications
smartcard platform to a multi-interface network connected secure token [224].

2.1.3 Specifics of Mobile Devices

A central question for the solutions of this thesis comes from the scientific point
of view: is researching on the security of mobile devices different from common
security research? Could it not be possible to transfer known security solutions
from common desktop computers to mobile devices? Could it possibly be the same,
only with the additional word “mobile” in the title?

This thesis says: no, there are specifics of mobile device security that justify
research on this topic. In its solutions, this thesis makes use of these unique
features of mobile devices compared to common desktop computer security. They
are the basis to novel security mechanisms especially designed for mobile devices
and their infrastructure, and these mechanisms cannot be transferred from existing
common computer security solutions. An overview of these differences is shown
in Figure 2.2 and they will be introduced subsequently.

16 RELATED WORK

creation of costs

network enviro
nment

limited device resources

expensive wire
less lin

k

reputation

security−unaware user

Figure 2.2: Specifics of Mobile Devices

2.1.3.1 Creation of Costs

The specific creation of costs is the inherent possibility for malware to generate
costs for the user and revenue for the malware author. It has two aspects: events
that are billed by the mobile network operator (phone calls, messages) and the
arising payment systems.

Billed Events. The problem of billed events existed previously in PC security
when dial-up connections via modem or ISDN were common. Malware could
dial premium-rate numbers and with it directly benefit the malware author. With
the appearance of DSL and flat rates this problem mostly vanished, because the
connection to the telephone system was not available anymore. However, in mobile
devices it will most likely be a problem for a long time. Even if flat rates for data or
voice services become common, separately charged premium services will always
be available.

Payment Systems. A first type of payment systems uses the messaging func-
tionality of mobile phones as a trustworthy channel for transmitting authorization
information, e.g., online banking with mobile transaction numbers or online pay-
ment services like mpass. In general, there are two communication channels that
need to be compromised. However, the mobile device is the only channel that
needs to be compromised if an attacker has access to the authentication information

2.1 Mobile Devices 17

firmware update
available
(patch, image)

time

firmware update
application

normal
operation

exploit

normal
operation

vulnerability period
(short today for most services)

Figure 2.3: Vulnerability Lifetime

of the targeted account. Customized mobile malware might forward the messages
to the attacker or respond to them in the expected form. However, the necessity of
these attacks being customized makes it more probable that mobile malware will
use the cost-creating functionality of the mobile network.

A second type of payment systems uses the mobile phone as payment device and
physical proximity as part of the authorization (Near Field Communication, NFC).
In this case, the required proximity to the receiver of the payment enhances the
security and makes these attacks unlikely compared with directly using the mobile
network cost-creating functionality.

2.1.3.2 Network Environment

The specific network environment consists of the three aspects strong connection,
firmware update process, and remote device management.

Strong Connection. Strong connection means the presence of the mobile net-
work operator and its influence on the device. Different from PCs where the
network provider almost always has no influence on the user’s computer, the
mobile network operator has the MNO smartcard inside the mobile phone as a
trusted device. It is possible to create trusted applications on the mobile phone with
enhanced security. This specific remains true even despite of the facts that trusted
platform modules start to appear in PCs and that third-party trusted modules are
available for mobile devices, e.g., embedded into a memory card. Both do not have
the unique owner that the MNO smartcard has.

Firmware Update Process. The process of updating the firmware of mobile
devices changed rapidly during the last few years. A few generations of mobile
phones ago, an update of a firmware could only be done in a local setting, possibly

18 RELATED WORK

only by the device manufacturer itself. With the rise of smartphones and extensible
operating systems, more sophisticated hardware architectures have been used.
These new architectures enable a firmware or third-party software update remotely.

Figure 2.3 shows the lifetime of a vulnerability. The time between the exploit of
a vulnerability and the provision of a firmware update is the vulnerability period.
As Section 3.4 will show, the time until a patch is provided for today’s most
important application layer vulnerabilities is sufficiently short. This makes two
aspects important: the technical process of applying the update and the role of the
mobile device user who sometimes has to play an active role in the update process.

Even though remote update is possible today and an update nowadays does not dif-
fer much from common computers, updating mobile devices remains a challenging
task. If not connected to a host computer on a regular basis, an update process has
to use the expensive wireless interface.

Updating the firmware over the air is an important functionality to update vul-
nerable parts of the mobile device’s operating system. It is also a critical feature,
because most update procedures cannot be interrupted without damaging the de-
vice. Instead of a complete firmware update, the exchange of single files of the
operating system’s file structure is better suited. This is especially true in terms of
wireless communication and device resource costs. The firmware update process
itself is considered secure in this thesis. Every part of the update is cryptographi-
cally signed and a secure boot process can ensure that only legitimate updates are
executed.

An important application of automatic remote firmware updates are feature phones.
They have a closed operating system and cannot be extended with virus scanners
or other security software. Therefore, these type of devices need more attention of
the mobile network operator.

An additional aspect is the entity that starts the update. This has traditionally been
the mobile network operator, but only recently the manufacturers started to control
the firmware update process themselves (examples are the iPhone and Android).

Remote Device Management. Remote device management provides methods
to manage mobile devices when they are already in use. An important feature
of mobile devices is the ability to be managed by a remote entity. This is due to
the fact that usually some entity has more power over the device than in common
computer environments, e.g., the mobile network operator, the device manufacturer,
or the corporate IT department.

The common user experiences feature changes mainly as remote configuration,
for example, when MMS or WAP settings are pushed to the device. Other feature

2.1 Mobile Devices 19

changes are mainly targeted at corporate environments, where the IT department
has to enforce a corporate information security policy on the devices. Examples of
these features are disabling the Bluetooth, WLAN, or memory card interfaces for
preventing corporate data to leak from the protected device. An interesting feature
in this context is the “remote wiping” functionality. Lost or stolen devices can be
deleted completely by a remote entity. Relevant documents in this area are the
“OMTP Advanced Device Management” [163] and the “OMTP User Experience
Remote Service” [158].

2.1.3.3 Limited Device Resources

The specific limited device resources has the two aspects resource-limitedness and
mobility.

Resource-Limited. This is the most obvious difference to common computers.
Even though it is always said that mobile devices today have the computing power
of desktop computers of “some years ago”, they are still limited compared to
common computers. The limiting factors are the central processing unit (CPU) and
the main memory (RAM).

These two factors limit the sophistication of possible security solutions, e. g. ,
the sophisticated intrusion detection algorithms that hardly work for real-life
application on common computers will never be transferable to mobile devices.

Mobile. The factor battery limits the resource needs for a security solution from
the point of view of the general acceptance factor. Even though the common
user might not notice this point, it is important that a security solution does not
constantly need large portions of available CPU time, leading to battery exhaustion.

2.1.3.4 Expensive Wireless Link

An additional specific of mobile device security is the expensive wireless link.
Expensive is meant here more in terms of computation costs for the algorithm than
in terms of costs for the user.

Expensive Computation Costs. Compared to local computations on the device
the wireless link is always expensive for an algorithm. Thus, solutions for in-
creasing the security of mobile devices should try to avoid this communication.

20 RELATED WORK

However, transferring computation load from the device to the mobile network is
desirable as the device resources are limited. This is an area of conflict between
the limited device resources (processing power, memory), the design of security
algorithms using the computing resources of the mobile network, and the expensive
communication between these two.

Expensive Communication Costs. A minor aspect are the communication costs,
i.e., the costs of using the mobile network. This is only a side aspect of the specific
expensive in Figure 2.2 compared to the computation costs.

Communication cost means that either the user has to pay for the security solution or
the network operator has to consider these communication costs in the calculation
of its flat rate conditions.

2.1.3.5 Reputation

The specific reputation can be seen as a weak specific of mobile devices. The
mobile network operator will invoice every event that generated costs, even though
it might have been generated by malware. Therefore, it can be thought that the
mobile network operator could be held responsible from the user’s point of view.
In case of a widespread mobile malware outbreak with several network operators
involved, mobile malware might even have an impact on the reputation of the entire
mobile phone system in general.

2.1.3.6 Security-Unaware User

A last specific is the security-unaware user of mobile devices. Connected with
the reputation of the mobile network operator, this topic differs from common
computer security. This unawareness is discussed in more detail in Section 3.5.

2.2 Mobile Device Security

This section gives a minimal definition of the important parts of security that
are necessary for this thesis to be self-contained. However, we do not want to
repeat large parts of the definitions of other authors. This section is based on the
definitions of Gollmann [85] and Avižienis et al. [9] who can be referred to for a
more comprehensive introduction.

2.2 Mobile Device Security 21

As examples of the current state of security in mobile device operating systems and
application frameworks Windows Mobile, Symbian OS, and J2ME are introduced.
These technical details of current mobile operating systems are necessary for
understanding the attack vectors of Chapter 3, the description of mobile malware in
Chapter 4, and the dynamic software analysis tool in Chapter 5 with its applications
in Chapter 6.

2.2.1 Definition of Security

The notion security is closely connected with the protection of assets. It is com-
monly accepted to define three main properties of security from the view of how
the protected assets can be compromised: confidentiality, integrity, and availability.

Confidentiality is about preventing unauthorized disclosure of information, integrity
is about preventing of unauthorized modification of information, and availability is
about preventing unauthorized withholding of information or resources.

Additional properties were defined. Non-repudiation is about providing unforge-
able evidence that a specific action occurred. This property will be of importance
for fair exchange protocols in Chapter 8.

When considering the topic of this thesis, we adopt the broadest definition by
Gollmann [85]: “Computer Security: Concerned with the measures we can take to
deal with intentional actions by parties behaving in some unwelcome fashion.”

A vulnerability is an internal fault of a system that enables an external fault.
Common vulnerabilities of software systems are buffer overflows or race conditions.
A vulnerability becomes important in the security context if it can be exploited,
meaning to violate the security properties of a system.

Of special importance in the context of telecommunications networks are au-
thentication, access control and accounting. With access control being called
authorization, the abbreviation AAA is commonly used for this triple.

Authentication is about verifying the claim of one entity that it is possesses a
particular secret.

Access control is about controlling the areas that a (previously authenticated) user
can access. Besides the mobile network setting access control is also present on
the devices itself.

Accounting refers to logging the use of resources and to the ability to link these logs
with the entity that was responsible for this use of resources. In mobile networks,
this information is mostly used for billing purposes.

22 RELATED WORK

2.2.2 Security in Application Frameworks

Application frameworks aim at defining an interface to the functions of the operat-
ing system, i.e., restricting what applications can do on the system. One example
of such application frameworks is the Java Platform, Micro Edition (J2ME), which
is introduced in this section. Other application frameworks are the Dotnet Com-
pact Framework and the Binary Runtime Environment for Wireless (BREW). The
advantage of J2ME over the other frameworks is its wide adoption in mobile
devices. J2ME and its Security and Trust Services API are the technical basis for
our implementation of secure multiparty computation in Chapter 8.

2.2.2.1 Common Properties of Application Frameworks

The executables of application frameworks do not contain machine code instruc-
tions but an intermediary format (“bytecode language”). Therefore, the executables
can be interpreted on any hardware platform that provides a converter from byte-
code language to the native machine code of the hardware.

The runtime environment has complete control over the executed application and
can be seen as a security interface. This is sometimes called “sandboxing” and
access to the system can efficiently be restricted. The functionality of an application
framework is provided by APIs and similar APIs are often grouped.

2.2.2.2 Java Platform, Micro Edition (J2ME)

This is a very short introduction to the security of the Java Platform, Micro Edition.
More comprehensive information—including its functional features—can be found
in the literature [44].

J2ME is subdivided into configurations and profiles. The configuration in mobile
phones usually is the Connected Limited Device Configuration (CLDC, JSR 139),
which is currently available in version 1.1. The profile usually is the Mobile Infor-
mation Device Profile (MIDP). The runtime environment of J2ME is the K Virtual
Machine (KVM). A reference implementation and several other implementations
exist [44].

Additional specifications for security communication with smartcards exist. They
are specified in JSR 177: “Security and Trust Services API”. It is included in JSR
248: “Mobile Service Architecture”. All these specifications will be discussed
shortly.

2.2 Mobile Device Security 23

2.2.2.3 Mobile Information Device Profile (MIDP, JSR 37/JSR 118/JSR 271)

MIDP version 2 (JSR 118 [106]) introduced an enhanced security model with
permissions, named oneshot, session, blanket. Currently, MIDP version 3 (JSR
271 [109]) enhances the security model of MIDP2. It is currently being specified
and supposed to be published at the end of 2009.

The MIDP 3 specification “extends the expressiveness of the security policy” [109]
by defining a format for writing a security policy that is based on the Java Standard
Edition security policy format.

Another work is the extensive comparison of “implementation versus specifica-
tion” of J2ME low level security [178]. This work contributes tools for low-level
manipulation of MIDlet suites and an analysis of the robustness of current im-
plementations against these low-level manipulations. Aspects of analyzing Java
malware (not restricted to J2ME) and possible measures of virus writers to prevent
an analysis of their code can be found [177]. Moreover, an analysis of J2ME with
a risk assessment approach (“MEHARI” method) is available [44].

2.2.2.4 Security and Trust Services API for J2ME (SATSA, JSR 177)

The “Security and Trust Services API for J2ME” [107] defines the interface be-
tween J2ME and Java Card functionality within the mobile device. The specifica-
tion consists of four parts that are all optional to implement: APDU, JCRMI, PKI,
and CRYPTO.

APDU defines APIs for communicating with the smartcard using application
protocol data units and JCRMI for communicating with the smartcard using the
Java Card remote method invocation protocol. The CRYPTO package defines
cryptographic functions like encryption and hash algorithms. The PKI package
defines APIs for creating digital signatures from the keys within the smartcard and
provides basic management methods for the keys.

Commonly implemented today are the APDU and the CRYPTO part. The APDU
part is most important for the implementation of secure multiparty computation in
Chapter 8.

2.2.2.5 Mobile Service Architecture (MSA, JSR 248/JSR 249)

The success of the Java Community Process led to a growing number of additional
specifications, e.g., file access (JSR 75), Bluetooth (JSR 82), messaging (JSR 205).
The claim of J2ME to be device-independent started to lose its validity because of

24 RELATED WORK

the numerous optional JSRs. A first attempt for defining a standard set of JSRs was
“Java Technology for the Wireless Industry” (JTWI). The current approach is the
“Mobile Service Architecture” (MSA), defined in JSR 248 as MSA 1.1 [108] and in
JSR 249 as MSA 2.0 [105]. MSA defines profiles with corresponding mandatory
JSRs, and devices have to implement these JSRs for being compliant to the profile.

MSA 1.1 defines a full set and a subset. JSR 177 is only included in the full set
with APDU, CRYPTO, and PKI. MSA 2.0 defines a full set, a subset, and a limited
set. JSR 177 is not included in the limited set, but is included in the subset with
APDU and in the fullset with APDU, CRYPTO, and PKI.

2.2.2.6 Other Application Frameworks

Dotnet. The Dotnet framework uses the Microsoft Intermediate Language (MSIL)
for its binaries. A special version for mobile devices exists, the Dotnet Compact
Framework. An unofficial extension is the SmartDeviceFramework, which imple-
ments some of the parts that are not present in the Dotnet Compact Framework.

The Dotnet framework on mobile devices aims at being the standard framework for
third-party software. When the operating system is closed for third-party software,
many vulnerabilities of Windows Mobile would be relieved.

OMTP ASF. The Open Mobile Terminal Platform (OMTP) is a forum of mobile
network operators [175]. They define requirements for mobile devices in several
requirements documents and dedicate some of their activities to mobile device
security, being signing of applications and the definition of an “application security
framework” [165]. Contributions of the framework are the subdivision of API
functions into different groups and the definition of several trust levels. Both are
comparable to the J2ME definitions. Another notable contribution is the precise
definition of run-time prompting, which can be summarized as “for unapproved
applications prompt for every access” (oneshot).

2.2.3 Security in Windows Mobile

The technical knowledge on Windows Mobile in this section will be used to
understand design and implementation of the MobileSandbox dynamic software
analysis tool in Chapter 5, for the development of a proof-of-concept smartphone
worm in Section 6.1, and for designing a means to reduce the attack surface of
mobile devices in Section 6.2.

2.2 Mobile Device Security 25

First, the environment of Windows Mobile is introduced. Following is informa-
tion on system calls, protected server libraries, and kernel data structures. This
discussion of Windows Mobile concludes with a survey on vulnerability research
for Windows Mobile and with its exploited vulnerabilities.

These sections only give the most necessary information for understanding the
operating system internals due to space restrictions of this chapter. A more detailed
description of Windows CE can be found in the literature [149].

2.2.3.1 Windows Mobile Environment

The term Windows Mobile describes the collection of an operating system core
together with productivity applications. The core is named Windows CE, partially
being published as source code. Our solutions are designed for Windows CE
version 5 that is basis for the current Windows Mobile versions 5 and 6. The most
important concept concerning our implementation are the Windows type of system
calls. All services of the operating system are accessible only by using system
calls.

The central kernel-level process is nk.exe. Every system call on kernel-level first
leads to this process in the kernel. We will exploit this fact for intercepting the
system calls within nk.exe. A user-level process is able to run as kernel-level
process by using the undocumented system call SetKMode.

ActiveSync is a synchronization program and protocol for common computers
running the Windows type of operating systems.

2.2.3.2 Windows CE System Calls

From the user-level perspective, Windows CE provides the well known Win32
API interface with some minor exceptions. Therefore, many user space programs
written for Windows NT based operating systems can be easily ported to Windows
CE. In contrast to user space, the kernel is different from the kernels of the other
Windows operating systems. Especially processing of system calls is different.

System calls on common computers are typically implemented by executing dedi-
cated software interrupts like int2e in Windows NT. Some versions also use the
special sysenter instruction that is provided by the x86 instruction set. Subse-
quently, a handler function is executed in the kernel, the requested system call is
processed and finally, the kernel gives execution back to the initiator of the system
call in user space. The requested function and the parameters are given by the
parameters of the interrupt call and the user space stack.

26 RELATED WORK

User Space

Kernel Space

CoreDLL

Application
lookup address

IAT

direct call

Exception
Handlernk.exe

Figure 2.4: System Call Architecture of Windows Mobile

Windows CE uses a slightly different approach. Although the ARM processor
architecture provides an interrupt instruction SWI, the transition from user space
to kernel space is achieved by jumping to a specially crafted invalid memory
address consisting of an architecture-dependent fixed offset, an APISet number and
a method number. Consequently, the exception dispatcher is executed and checks
whether or not the address is assigned to a certain system call. Therefore, a special
area of the memory is reserved for such system call traps, denoted as the kernel
trap area. On ARM processors, this area is located between the memory addresses
0xF0008000 and 0xF0010000, and kernel trap addresses can be computed by the
formula

0xF0010000–(APISetID� 8)|MethodID) ·4

Figure 2.4 illustrates the way of a system call through the system. The direct way
described above directly leads into kernel space.

The common way is by using the import address table (IAT). This is a table with
the actual addresses of the system calls. System call addresses in executable files
are indirect jumps to addresses that are in a fixed position of the IAT. This has to
be done because the actual addresses of system calls can be different on different
incarnations of the system. It is a task of the Windows loader to fill the IAT with
the actual addresses.

With the correct address from the IAT, the call goes from the application to the
designated export in a DLL (usually CoreDLL), where an exception is raised as
mechanism to switch into kernel mode. The exception handler within the kernel

2.2 Mobile Device Security 27

looks up the system call addresses in a CINFO structure and jumps to the start of
the system call.

2.2.3.3 Protected Server Libraries

Windows CE loads device drivers as non-privileged user mode processes. As a
consequence, system calls are processed in separate processes, whose executions
must take place in kernel mode.

Each device driver process that exports system call APIs has to register its own
APISet first by calling the special functions CreateAPISet and RegisterAPISet. The
parameters consist of an arbitrary name with a length of four bytes, the number of
exported functions, a method pointer table to the corresponding handler functions,
and a pointer to a signature table being a bitmask of 32 bits, where the various bits
indicate whether or not a certain argument is a pointer. The number of different
APISets is limited to 32, where the lower 16 identifiers are reserved for the kernel.
In a traditional client/server model, the caller and the server run in separate threads.
In contrast, Windows CE lets threads migrate between both processes in a system
call for the sake of performance. Therefore, the current process of a thread does
not necessarily have to be the thread’s owner. This information can be obtained by
calling GetCurrentProcess, GetOwnerProcess and GetCallerProcess. The latter
returns the caller process of the current protected server library (PSL) API, while
GetOwnerProcess obtains the process which really owns the thread performing the
function call.

2.2.3.4 Internal Kernel Data Structures

To understand how it is possible to hook API calls on the kernel mode level, one
has to know which relevant and modifiable data structures are maintained by the
kernel.

Each APISet contains all its information in a CINFO structure. This includes all
the parameters that were passed to CreateAPISet, as well as the dispatch type.
Currently, Windows CE distinguishes handle-based from implicit APISets, the
former ones being direct system calls while the latter ones are attached to handles
such as files, sockets, and so on.

An implicit API is identified by its APISet identifier and method identifier. In
contrast, a handle-based API is given by its handle and the method identifier. In
order to access the data of each implicit APISet, the kernel maintains an array
that holds all CINFO structures. A pointer to this array can be found in the

28 RELATED WORK

UserKInfo array which is always located at the fixed offset 0xFFFFCB00 on the
ARM architecture. As even the kernel mode APISets are registered when the
system boots, all the relevant pointers are contained in writable memory pages.
Thus, they can simply be altered and redirected to different functions. On the other
hand, a CINFO structure exists for each handle, which is allocated when the handle
is created and deallocated when it is closed.

For the purpose of completely intercepting system calls, the attached CINFO
pointer must be changed after its creation. As every handle is created in an implicit
API call (such as CreateFile, socket, etc.) those functions will need some special
handling in order to hook the method of the handle they return. This special
handling does not prevent the hooking of all system calls.

2.2.3.5 Windows CE Vulnerability Research.

A high-level analysis with concern to electronic signatures has been given by
Murmann and Roßnagel [148]. The operating system was rated according its
possibility to be a trustworthy environment for a signature scheme. It was found
as unsuitable because of its lack of encryption and its completely unprotected
internal communication. The work concludes that the Perseus project1 and the
use of a trusted platform module would lead to a solution of the problems. The
Perseus project is a security kernel with special focus on trustworthy internal
communication and isolation of security-relevant processes.

An early publication on Windows CE low-level security was at Black Hat Europe
2003 by de Haas [43]. Besides some hardware information, the talk summarizes
typical security flaws of that version and presents the “Wallaby Patch Tool” custom
boot loader for the HTC Wallaby, which is able to copy device memory to the SD
card and to remove the device PIN. In Black Hat talk “Pocket PC Abuse”, Fogie
[74] presents a keyboard logger, the possibilities of hidden programs, and code to
trigger a hard reset.

The topic of shellcode generation is dealt with in the year 2005 by Mulliner [145],
Hurman [98], and in Phrack magazine [185]. These works use Windows CE
version 4.2 as a basis. Finally, we investigated Windows Mobile version 5 recently
in 2007 (Becher et al. [20]). This work adds a robust framework around the topic
of low-level shellcode creation.

The work of Asselineau and Hospital [8] deals with the use of the C API in order
to infect a process and with the limitations of exploiting Windows CE at the kernel
level. It proposes the transfer of the concept of capabilities from Symbian OS as a

1http://www.perseus-os.org/

2.2 Mobile Device Security 29

solution, and mentions a solution based on virtual machines. It concludes with a
statement on currently available anti-virus and personal firewall programs. They
would not offer sufficient protection, because:

1. the defensive process would have the same rights as the malicious process,
therefore it could be terminated by the latter, and

2. the anti-virus engines would be insufficient and it would be impossible to
deal with a sufficiently complete signature database. Even the behavior-
based detection is discarded by the authors, because the operating system
would already need too much of the limited resources of the device.

2.2.3.6 Exploited Vulnerabilities of Windows CE.

Only one remote code exploit is known so far for Windows Mobile. It is a buffer
overflow in the handler program of MMS messages [147].

The user receives an MMS message with a specially crafted header field that will
trigger a buffer overflow when the MMS is processed by the message handler
process tmail.exe. The header field will be read when the user opens the MMS for
reading. The buffer overflow is not executed when the MMS is unread in the inbox.

The exploit today is the only known example of an infection of malware requiring
only common interaction (see Section 4.2). Updated versions for the message
handler are available and can be downloaded for protecting the device against
possible malware that exploits the vulnerability.

2.2.4 Security in Symbian OS

This section introduces the most basic knowledge about Symbian OS and its
Platform Security Architecture (PSA). Only the most important parts are presented
here that are necessary for understanding technical information on attack vectors in
Chapter 3 and on the Symbian malware of Chapter 4. A more thorough introduction
can be found in the literature [46, 95].

2.2.4.1 Operating System

A central notion for the modularity of Symbian OS is the provision of services
through servers that can be accessed by clients. A server usually runs as an
independent process and waits for commands. The client accesses the server

30 RELATED WORK

through a well-defined protocol, possibly with the help of a client-side library that
defines APIs (application programming interface) as a basic unit for providing
services. This modularity makes the introduction of security features easy, as can
be seen in the following section.

Symbian OS uses the concept of dynamic link libraries (DLLs) just as other
operating systems: they provide functionality that can be used by more than one
process at the same time. A DLL is loaded into memory when a process uses one
of the DLL’s APIs. The DLL is removed from memory when it is no longer used
by any process.

The installation packages of Symbian are called SIS files. They can contain several
files like executables and resource files. An installation package also specifies
a version number that will be important when another version of the package is
already installed on the device. The installer recognizes installation packages by
its type and not by its suffix, a property that is exploited by the Beselo malware.
When unsigned software packages are installed the user has to confirm several
security messages referring to the possible malicious nature of the package.

2.2.4.2 Platform Security Architecture

Beginning with Symbian OS version 9 in 2005, the Platform Security Architecture
(PSA) has been introduced to increase the security of Symbian OS.

Capabilities. The capability model is a central concept of the Symbian PSA.
Applications need capabilities to access certain system resources. They are defined
within the installation packages. Holding a capability means for a process to possess
an unforgeable data value that authorizes it against system processes when the
process accesses sensitive functionality. The PSA specifies well-defined mappings
between most of the APIs of Symbian OS and their associated capabilities [208].

There are 20 defined capabilities and they are discrete and orthogonal. That means,
there is no hierarchy, every process must possess exactly the necessary capability
for accessing a particular API.

Special attention is needed for DLLs, because they may be equipped with capabil-
ities that may differ from the capabilities of their host process. Therefore, there
exist rules for the interaction between DLLs and other processes. These DLL rules
are defined as:

• A process holds a number of capabilities and these capabilities do not change
during its lifetime. The capabilities are defined in the executable file of the
process.

2.2 Mobile Device Security 31

Table 2.1: Access Rules for Data Caging

Path
Capability needed for:

Reading Writing
\sys AllFiles Tcb
\resource none Tcb
\private\〈ownSID〉 none none
\private\〈otherSID〉 AllFiles AllFiles
\〈other〉 none none

• A process is only allowed to load a DLL, if the capabilities of the DLL are a
subset of the process capabilities.

• It is not allowed to statically link a DLL to another DLL that possesses less
capabilities.

Data Caging. Another central part of the PSA is data access control. This
data caging is used to protect sensitive files. It is implemented as three access-
restricted directories: \sys, \resource, and \private. All other directories
provide unrestricted access for every process. The directories are shown together
with their required capabilities in Table 2.1 and are explained now.

The directory \sys and its subdirectories are only accessible by the trusted kernel
(Tcb capability). The directory contains all executable files of the system, ensuring
that only the trusted kernel is allowed to create executable files or to load them into
memory. The directory \resource is used for read-only resource files that do not
need to be altered after installation.

The subdirectories of \private provide a private area for every application to
store its data. The subdirectories are named after the secure identifier (SID), a
value that uniquely identifies a running process. Processes can access their own
private directory without any capabilities, but they need the capability AllFiles
for accessing the private directories of other processes.

File System Environment. The file system defines certain rules referring to the
addition of new files. With two exceptions, installation packages are not allowed to
overwrite files. First, if the package is marked as an update for an already installed
package, then overwriting of files is allowed. Second, if a trusted installation
package tries to overwrite files of an untrusted package, then the user may be asked
to allow the trusted package to overwrite the file, depending on how the PSA is
configured on a particular device.

32 RELATED WORK

An eclipsing situation can occur, if two drives contain paths with equal name that
contain files with equal name. The loader of Symbian OS searches for a file in
reverse alphabetical order from drives Y to A and finally drive Z, until it finds the
file. The SWInstaller tries to avoid security-relevant situations with the following
eclipsing rules.

First, a SIS file tries to install a file that creates an eclipsing situation with a file of
an untrusted package. The SWInstaller can ask the user if he wants to remove the
untrusted file.

Second, creating an eclipsing situation with ROM files is always prevented. One
exception exists: if the ROM contains a so-called “SIS stub file”, the SWInstaller
can identify the replacement file as legitimate file for updating the ROM.

2.2.4.3 Cryptographic Application Signing

Cryptographically signing of applications is most prominent in Symbian OS,
because examples of recent mobile malware for this operating system exist that
happened to be signed (FlexiSpy and Yxe, see Section 4.1.2). This led to malware
samples that can use sensitive system calls without the user being informed. The
reasons why this could happen are introduced here.

Preliminaries. Cryptographic signing of applications usually uses public key
schemes, so every device needs a public key for verifying the signature of an
application, the root certificate. The root certificates can, for example, be supplied
by the device manufacturer or the mobile network operator. When signing schemes
are applied, it might be the case that a signed application (e.g., signed with an
operator certificate) is allowed to generate cost-creating events (e.g., sending
messages) without asking the user for permission. It is not possible to override this
trust relationship between the device and the operator-signed application. Operator-
signed applications are usually connected with the provision of reliable sources
for downloading the applications, for example, by using an operator-controlled
download portal. This MNO view is documented in signing scheme [159] and
application security [165] specification documents.

Certificates of the public key schemes are commonly classified into three different
trust levels, depending on their issuer: device manufacturer, mobile network
operator, and anyone else (“trusted third party”, TTP). Applications can be signed
by the owner of the certificate’s secret key. These applications are then, for example,
called “approved”.

2.2 Mobile Device Security 33

Cryptographic signing of applications is a good approach towards more trustworthy
applications. However, it is difficult to put into practice for all programs, mainly
because of the costs that come from the process.

Process. Basis for a successful implementation of cryptographic signing are
certificates on actual mobile devices. In the best position for supplying these are
the device manufacturers and the MNOs. For individual devices, extending the
valid root certificates is also possible.

When an application is supposed to be signed, the author uses the appropriate
signing program to retrieve a signature. This signature proves that the binary of the
application is certified by the signing program, locally verifiable on every device
with the corresponding root certificate. The necessary steps for passing the certifi-
cation vary. Current signing programs mainly require contractual commitment and
sometimes tests for functionality. Security is only part of the contractual agreement.
It is desirable to have security properties tested contrary to have them only stated
by a signed contract. This is current research in the MOBIUS project [136].

Depending on the policy of the signing program, a signed application may ask
fewer questions to confirm access to security-relevant APIs. Or it may allow access
to more APIs than unsigned applications have. Different trust levels might control
access to different groups of similar APIs.

Symbian Signed. For Symbian OS, the Symbian Signed program delivers the
infrastructure and the process for signing an application [211]. There are three
possibilities to get an application signed: Open Signed, Express Signed, and
Certified Signed.

Open Signed provides two different methods. The old method (which is no longer
available) provided a developer certificate so that the developer is able to sign
the application himself. Since the middle of 2008 it is no longer possible to get
new certificates for this method. However, signing with existing certificates is still
possible. The new and current method uses an online submission. A developer
has to submit a SIS file and wait until the signing process is finished, reaching
from some minutes to several hours. Express Signed allows self-signing as Open
Signed, but these applications can be distributed to other devices afterwards. This
is a fast method for signing SIS files with the restriction that not all capabilities
can be granted. The most important option for commercial software development
is Certified Signed. It requires that the application fulfills certain testing criteria
and the application must be tested by an independent testing house.

34 RELATED WORK

Revocation. A current challenge of the mobile device world is establishing the
use of certificate revocation. It is imaginable that a malicious application is able to
fulfill the criteria for being signed, and actual examples exist [72, 220]. Reasons
can be hidden functionality or insufficient testing. Therefore, it is useful to define
means for revoking the signature in case of a signed malicious application. A device
is able to check a valid signature against public revocation lists for increasing the
possibility of avoiding a malicious application. Protocols are defined (Online
Certificate Status Protocol - OCSP [151]) and they are implemented, but either
they are not used (because of the costs of downloading revocation lists) or their
check can be overridden by the user [15]. Whenever security incidents are going to
matter in the mobile world, it will be discussed who is responsible for the damage.
This can be of special of importance in the case of financial damage. Compared
with the discussion on phishing for online banking, the mobile network operators
might be held responsible for the damage unless they prove the user as guilty.

Effects. The main difference of signed applications compared to unsigned appli-
cations is the former being connectable to an author and the signing entity has seen
at least the binary executable of the application. Additional expressiveness of a
cryptographic signature depends on the signing program and varies. In their basic
form, the author states in a contractual form some properties of his application.
These properties are tested only in some cases. In any case, a benefit of signed
applications is the possibility to revoke the signature.

As a first remark: one could ask what the signing programs are good for when
even spyware can get signed [220]. And as a second remark: in case of damage—
especially monetary damage—the affected parties (user or MNO) have to prove
the cause of the damage. This is not possible with current signing schemes.

2.3 Mobile Malicious Software

This section introduces the definition and presents surveys of mobile malicious
software. Moreover, it presents virus scanners as the defense side of malicious
software.

2.3.1 Definition of Malware

Malware, composed of the words malicious software, is the usual form in which
vulnerabilities and their exploits manifest themselves to become security problems

2.3 Mobile Malicious Software 35

for a broad audience. For the most parts of this thesis, the umbrella term malware
will be used for the investigated topics and samples. For completeness, this section
shows definitions with more detail regarding the functionality of the malware.

A virus has its name according to its analogy in the real world: it infects other files
that serve as a host to it. Its execution is bound to the execution of its host. Most
of the times, the functionality of the host is not changed except for the additional
virus parts.

A Trojan horse or trojan is a program with malicious side-effects. It fulfills its
intended purpose, but sometimes it executes functionality that was not documented
or advertised. A backdoor is a special type of Trojan horses whose malicious
functionality is providing access to the phone for the attacker. The attacker can use
this access for committing malicious actions from the phone, while at the same
time hiding his identity from the victim.

A worm is characterized by its self-replication property. It does not infect other
files like a virus and does not promise to provide legitimate functionality as a
Trojan horse. It is possible to say that a worm infects the entire host rather than
single files on the host.

The term spyware denotes a kind of malware that aims at gathering information
about the mobile device user, contrary to creating revenue for the attacker or
damaging the user’s data on the device. It is common that spyware is commercial
software.

It is possible to define the notion of a malware family that subsumes malware with
similar functionality. It might be the case that every member of a malware family
exploits the same vulnerability of an program for infection.

Chapter 4 will present additional classifications of malware, tailored to mobile
malware there.

2.3.2 Surveys of Mobile Malware

This section names in a chronological order the most relevant surveys of mobile
malware as of today. Peikari [170] gives an overview of Windows Mobile and
Symbian OS malware. An extensive article covering nearly all malware of its time
of writing was given by Shevchenko in the year 2005 [197]. Bachfeld [13] gives
an overview of the filtering activities of German mobile operators of the year 2005
and assumes that the malware threat is currently only relevant from the perspective
of anti-virus companies. It ends with a test of Symbian OS anti-virus programs. A
book by Eren and Detken [52] lists the known malware samples until 2006, surveys
the weaknesses of mobile operating systems, and describes much of the mobile

36 RELATED WORK

Figure 2.5: Operating Systems Targeted by Mobile Malware (according to F-Secure
[48])

and the mobile device security knowledge of that time. Töyssy and Helenius [215]
list infection routes and some examples of malware of the year 2006, but their
focus is on countermeasures and media perception of mobile malware. F-Secure
published statistics of operating systems that are targeted by mobile malware (see
Figure 2.5).

Bontchev [25] notes mobile malware classification problems and chooses Symbian
OS malware as an example. Although not explicitly stated, his findings can be
generalized for malicious software on any operating system.

A survey in the “Scientific American” was given by Hypponen in 2006 [100].
Besides a summary of mobile device security knowledge of that time, it shows in
an illustrative comic cartoon that many repetitions of an installation attempt (via
Bluetooth) could even break down the resistance of a security-conscious user. A
mobile malware summary was given by Hypponen at the Black Hat conference in
the year 2007 [101].

McAfee published a study in 2007 as a result of surveying mobile network operators
[129]. This survey shows how mobile network operators start preparing defenses
against mobile malware. The most recent surveys as of the time of writing of this
thesis are given in 2009 by Morales [48, Chapter 3] and Schmidt et al. [188].

2.3 Mobile Malicious Software 37

2.3.3 Virus Scanners

The concept malware detection with the incarnation virus scanners is a reactive
aspect of security. It is known to most of the users of information technology,
even if they are not very security-conscious otherwise (see Section 3.5). Despite
the criticism of virus scanner in this section, the topic has its place in the security
landscape because the user has accepted the interface that virus scanning provides.
Thus, novel security solutions can use the terms of virus scanners for increased
acceptance.

This section introduces to the concept of malware detection, which is usually
subdivided into two parts: signature-based and behavior-based [213]. The section
will especially point out the weaknesses of the applied technologies, facts that the
above-mentioned users usually do not know or do not take into consideration.

The classical formal treatments of malware detection are from the early nineties by
Adleman [2] and Cohen [36]. Singh and Lakhotia [199] listed detection approaches
in an annotated bibliography in the year 2002. More references to different detec-
tion algorithms as of 2004 are given by Christodorescu and Jha [34] and as of 2006
by Aycock [12].

2.3.3.1 Signature-Based Detection

Signature-based detection of malicious software was the prevalent approach of
malware detection in the recent years. It is based on the assumption that every
malware sample contains a unique signature that can be detected when scanning
an infected file. Now, every file can be checked against a signature database. In
theory, the only remaining problem is the time gap between the first appearance of
a malware in the wild and the addition of a signature to the signature databases (cf.
Figure 2.3). However, there are other deficiencies that are named now.

Detection Rate. Recent studies investigated the detection rate for a large number
of malware samples. One result was that currently available virus scanners have
poor detection rates for malware actually spreading in the wild [16, 142]. One
explanation for this might be that not all signatures are checked in a normal run
because of runtime efficiency and the efficiency of distributing an updated database
via a communication network. Because of the lower resources of mobile devices
(processing power, data communication speeds), an on-device virus scan is likely
to have even more limitations.

38 RELATED WORK

Behavior-Preserving Binary Changes. Another deficiency of the signature-
based approach are small changes in the malware sample that can even be applied
to its binary version without access to the source code. This can be done in
two levels of sophistication: string changes and replacing some machine code
instructions by semantically equivalent instructions.

The first change can be as simple as changing a human-readable string within the
malware binary. This can be the output of the malware and it might be the string
that forms the signature [142]. This can be done with an ordinary editor. More
semantically equivalent versions can be created with access to the source code. An
example is a changed name of a variable.

In case the malware sample is not encrypted in some form, it is possible to replace
machine code instructions by semantically equivalent instructions. Another possi-
bility is the addition of NOP (no operation) instructions or some of their numerous
equivalents like “add rx, 0” into the binary. These simple changes lead to malware
variations with the same behavior as the original malware sample, but they have
been found to be largely undetected by current virus scanners [34, 142, 144].

Conclusion. Signature-based malware detection still is the main component of
current virus scanners today [27], mainly because alternatives usually have a higher
false-positive rate. A currently active topic of research is behavior-based malware
detection, which starts to be integrated in virus scanner products [191].

2.3.3.2 Behavior-Based Detection

With the rapidly increasing numbers of malware and the associated problems
with signature-based detection, the topic of behavior-based detection became an
important research topic. Current tests of virus scanners note that behavior-based
detection is increasingly integrated into virus scanners [191], at least on common
computers.

Behavior-based malware detection collects behavior data at some level, e.g., system
calls. This data is classified or abstracted and finally used to distinguish legitimate
behavior from malicious behavior.

The enforcement of security policies during runtime given by Schneider [192] can
be seen as an implementation of behavior-based detection and a first work on the
topic. Other early work came from the research area intrusion detection. Anderson
[5] has broad view of intrusion detection as a general notion of computer security
and defines virus scanners as an element of this notion. From host-based intrusion
detection came contributions where attacks can be investigated at the deeper level of

2.3 Mobile Malicious Software 39

the operating system. In different levels of sophistication, publications contributed
to solve the fundamental of host-based intrusion detection systems that use system
call detection [31, 133, 150]. These results can be useful for any solution that is
able to log system calls (see Chapter 5).

A comprehensive introduction to more literature and to the current state of the topic
in the year 2008 is given by Morales [141]. For this type of malware detection,
a form of “normal behavior” has to be modeled. There are two possibilities: to
describe the normal (legitimate) behavior (“whitelisting”) and to model malicious
behavior (“blacklisting”). The commonly used method of blacklisting (signature-
based detection) is in general a bad concept [99] that is only of limited use, even if
mainly applied in practice (virus scanners, firewalls). Behavior-based detection
offers from its concept the possibility to implement whitelisting for virus scanners.

Behavior-based malware detection is a promising approach, because the restricted
environment should lead to more precise models of legitimate or malicious behavior.
A recent contribution by Bose et al. [27] provides a behavior-based detection
especially targeted to mobile devices.

Approaches for “collaborative virus detection” were proposed (Cheng et al. [33])
that use the accumulated statistics of short message sending activity for detecting
malicious behavior. This bird-eye view reduces the influence of the behavior of a
single device to the algorithm.

A recent contribution [187] extends this approach to implement behavior-based
malware filtering within the network by using feature vectors of device activity,
e.g., CPU and RAM access activity. The task of the device is reduced to gathering
the feature vectors. Contrary to the previously named message statistics, the vectors
have to be sent regularly into the network for applying detection algorithms to the
vectors. The overall goal is to identify a malware-infected device by evaluating
these feature vectors, but the system increases the workload of the mobile device
(that has only limited resources).

The drawbacks of behavior-based virus scanners can be summarized as: “While
a behavior blocker knows which executable is the problem, unlike an integrity
checker, it again cannot identify or disinfect the virus. Run-time overhead and
false positives are a concern, as is the fact that the virus is already running on the
system prior to being detected.” [12]

2.3.3.3 Virus Scanners on Mobile Devices

Virus scanners on mobile devices differ from common virus scanners mainly in
two points: first, there are two possible locations for scanning (device and mobile

40 RELATED WORK

network), and second, communication of the device with the network is expensive
(in the meaning of computationally expensive).

Scanning on the mobile device can be done with the resources of the mobile device
itself or with the help of a host computer, e.g., when the device is connected for
synchronizing. The host computer provides more computing power and less battery
dependence, thus being able to scan more efficiently. However, the time between
two subsequent connections to the PC might be too long to effectively protect the
device and the host computer might have a too restricted access to the file system
of the mobile device.

Scanning within the mobile network creates privacy problems because the content
of the scanned data has to be processed (e.g., the content of short/multimedia mes-
sages, e-mail). Another problem is the reaction when a message was identified as
malicious: is the MNO allowed to discard the message, possibly without notifying
the user? This is not advisable, because false positives may cause acceptance
problems of such a service. Thus, it is at least necessary to notify the user of a
detected message, possibly with a message preview as common virus scanners
sometimes do. However, such a preview seems only feasible for e-mail messages,
not for MMS messages. A possible solution is a notification with reference to a
“malware preview page” in the MNO’s Web frontends. With the upcoming rise of
the mobile Web browser this page would even be accessible via the mobile device
as a seamless service between the messaging application and the Web browser,
but providing a safe environment for reviewing the message [162]. An additional
drawback of scanning within the network is the inability to detect malware that
infects the device from local interfaces like Bluetooth (this will be discussed in
Chapter 7).

Incarnations of virus scanners on mobile devices are tested from time to time with
poor results: the false-negative rates are almost 50 % [142].

2.4 Analytic Mechanisms

This section introduces the two analytic mechanisms dynamic software analysis
and simulation. The topic of dynamic software analysis is a basis for the Mobile-
Sandbox dynamic malware analysis tool of Chapter 5. The methods of simulation
are used in Chapter 7.

2.4 Analytic Mechanisms 41

2.4.1 Dynamic Software Analysis

The main idea of dynamic analysis is executing a given sample in a controlled
environment, monitor its behavior, and obtain information about its nature and
purpose. This can be done for analyzing normal software analysis or malware,
and it is especially important in the field of malware research because a malware
analyst must be able to assess the threat of an investigated program and to create
proper countermeasures.

While static analysis might provide more precise results, the sheer mass of newly
emerging malware each day makes it impossible to conduct a static analysis for
even a small portion of today’s malware, because static analysis is a manual task
of the malware analyst. Dynamic analysis is an automatic task of a software. The
malware analyst only has to analyze the results of this software and even parts
of these tasks can be automated, e.g., extracting botnet access information. The
numbers of malware are different for mobile devices today (especially for Windows
Mobile, see Section 4.1), but it is always good to develop tools for the future (like
MobileSandbox in Chapter 5).

Recently, much work has been done in this direction for Windows malware.
CWSandbox [232] and TTAnalyze [17] monitor the execution of one sample
and log the activities during one particular run. Even though this method misses
more sophisticated malware that has some additional requirements for showing its
malicious behavior, the absolute number of detected malware is still large because
of the vast overall number of malware for Windows [91]. The adaption of these
methods to Windows Mobile is possible [123].

Recent work enhances the dynamic analysis by being able to analyze multiple
execution paths [143], which is a promising step towards a complete dynamic
analysis, even though the approach has some limitations. They apply tainting to all
variables that come from a defined set of external inputs of the program and are
able to process all linear modifications of variables that are relevant for conditional
branches. They use a linear constraint solver to achieve the goal of reaching the
alternative branch, setting the emulated execution back to the relevant starting
point. Another approach is “forced sampled execution” [231], where heuristics are
applied to reach the alternative branches.

The overall goal of dynamic software analysis is being as complete as possible,
because this would relieve all the drawbacks of static analysis like scrambled or
self-modifying binaries.

42 RELATED WORK

2.4.2 Simulation

This section introduces the topic discrete event simulation and related work that
uses simulation for investigating the spreading characteristics of mobile malware.
This is the basis for our own simulation of mobile malware spreading characteristics
in Chapter 7.

2.4.2.1 Discrete Event Simulation

The central notion of discrete event simulation is the event. Events are created by
the active entities in the system and they are collected in the event list. Based on a
global clock the simulation system processes events from the event list, leading to
state changes of the system. The system state is defined by the set of state variables.
A special state variable is the end condition that will end a simulation run if its
logical value is true. Other important parts of the system are random number
generators and the logging of events and state changes for statistic evaluation of a
simulation run.

At the start of a simulation run the global clock is set to zero and the state variables
and counters are set to their initial values. Additionally, the end condition is set to
false and a first event is created for being processed.

This was the most basic knowledge on discrete event simulation for understanding
the contribution of Chapter 7. A more detailed introduction can be found in the
literature [202].

2.4.2.2 Simulation in Mobile Device Security

Various recent articles on investigating the spreading of mobile malware exist.
They are the basis for our own investigations.

A preliminary investigation of worm infections in a Bluetooth environment was
given in 2006 by Su et al. [204]. They simulated the spreading of Bluetooth
worms by varying the parameters number of infection seeds and initial time of the
outbreak. They conclude their simulation that Bluetooth worms have the potential
of “infecting a population of 10,000 devices over a few days only”.

An application of simulation for investigating malware propagation in mobile
phone networks was given in 2007 by Fleizach et al. [73]. The authors have
developed a simulation environment and a network topology generator, both for
mobile phone networks. They build a virtual network and simulate the spreading
of malware over a VoIP client and MMS with different parameters like propagation

2.5 Distributed Computation 43

speed and size of address books. With their simulation system design they conclude
that one danger with aggressively spreading mobile malware are bottlenecks of the
capacity of internal links.

An effort for quantifying the effectiveness of mobile phone virus response mecha-
nisms was given in 2007 by Ruitenbeek et al. [183]. They have a simulation system
with four different types of MMS viruses with varying spreading aggressiveness.
Six response mechanisms are simulated with these viruses, subdivided into three
groups: at the point of reception, at the point of infection, and at the point of
dissemination.

The first group is virus response mechanisms at the point of reception: virus scan
of all MMS attachments in an MMS gateway and virus detection algorithm in
an MMS gateway (more general than the former because even unknown viruses
can be detected). The second group is virus response mechanisms at the point of
infection: phone user education and immunization using software patches. The
third group is virus response mechanisms at the point of dissemination: monitoring
for anomalous behavior and blacklist phones suspected of infection.

The elements of the first group are common approaches, also using software patches
of the second group. The effects of educating phone users are discussed throughout
this thesis, mostly in Section 3.5. The elements of the last group belong to the part
anomaly detection of intrusion detection research. Their success in a real-world
scenario is questionable because of the inherent problems of intrusion detection
systems. They conclude that “an optimal response strategy must incorporate
mechanisms to counteract a wide variety of virus behaviors”.

A recent contribution for understanding the spreading patterns of mobile phone
viruses was given in 2009 by Wang et al. [225].

2.5 Distributed Computation

This section introduces to the topic of distributed computation problems. It presents
secure multiparty computation (SMC) and fair exchange. They are presented in
this chapter because solutions to solving distributed computation problems help to
increase the security of the participants by providing confidentiality, integrity, and
sometimes non-repudiation.

There are two possible approaches for solving distributed computation problems:
by using a trusted third party (TTP) and by only using the participants. Having a
TTP makes solutions to SMC easier. The more elegant solutions of SMC virtualize
the TTP among the participants.

44 RELATED WORK

In the setting of this thesis, the mobile network operator could serve as a TTP
(also proposed by Jøsang and Sanderud [111]). However, even in simple use cases
participants with different MNOs are involved, requiring administrative efforts
between the MNOs for the solution. Therefore, solutions with a virtual TTP
are worthwhile. This section introduces algorithms that use a virtual TTP. An
implementation of these algorithms on mobile devices using the MNO smartcard
as trusted module (cf. Section 2.1.2) will be presented in Chapter 8.

2.5.1 Secure Multiparty Computation

2.5.1.1 Problem Definition

Secure multiparty computation is a hard problem. Informally, it is defined as: “A
set of parties wants to compute a common function F on their local inputs, while
keeping their local data as private as possible, but who do not trust each other, nor
the communication channels” [37]. A formal definition follows (with an F-result
defined as the result of the function F).

Definition: A protocol solves SMC if it satisfies the following properties:

• Validity: If a process receives an F-result, then F was computed with at least
the inputs of all correct processes.

• Agreement: If some process pi receives F-result ri and some process p j
receives F-result r j then ri = r j.

• Termination: Every correct process eventually receives an F-result.

• Privacy: Faulty processes learn nothing about the input values of correct
processes apart from what is given away by the result r and the input values
of all faulty processes.

A synchronous system has known and bounded timing parameters for the network.
In an asynchronous system, the timing parameters can be arbitrarily long. A par-
tially synchronous system means that bounds on all important network parameters
eventually hold [37].

2.5.1.2 SMC in Synchronous Systems

There are three interesting implementations of SMC for synchronous systems
today: FairPlay, Proactive-Reactive Recovery, and TrustedPals.

2.5 Distributed Computation 45

FairPlay. The FairPlay system was implemented by Malkhi et al. [125] for a
two-party computation setup. An extension for multiparty computation was given
with FairPlayMP in 2008 by Ben-David et al. [21]. The main drawback of the
FairPlay implementations are the computational resources that the system needs
and the special programming language SFDL (secure function definition language),
which is used for programs that instruct a virtual trusted third party.

TrustedPals. TrustedPals solves SMC for an arbitrary number of participants
by using smartcards. The system is subdivided into two parts: the untrusted host
system and the trusted system inside the smartcard (security module). The security
modules build a virtual trusted third party. A first version of TrustedPals [76] used
a monolithic approach and assumed a synchronous network setting. A second
version was designed for asynchronous network settings, which will be introduced
below.

Proactive-Reactive Recovery. Sousa et al. [201] propose a system that is similar
to TrustedPals but with a different attack model. They assume attacks on the hosts
as only possible from outside the hosts. In TrustedPals, the host itself can be the
attacker (the Byzantine node).

2.5.1.3 SMC in Asynchronous Systems

A second version of TrustedPals takes a modular approach with a consensus
algorithm and a failure detector algorithm, enabling a use in network settings with
less synchrony [37]. Necessary notions for this version of TrustedPals are defined
subsequently.

In- and Out-Connected Processes. An important definition are in- and out-
connected processes. They are defined as processes that can only receive messages
(in-connected) and processes that can only send messages (out-connected). This
distinction can be made in TrustedPals because of its setup of the failure detector.

Consensus. Every process proposes a value and correct processes must eventu-
ally decide on some common value that has been proposed [169]. It is defined by
the properties termination, validity, and agreement, which are slightly modified for
the setup in TrustedPals.

• Termination: Every in-connected process eventually decides some value.

46 RELATED WORK

• Integrity: Every process decides at most once.

• Uniform Agreement: No two processes decide differently.

• Validity: If a process decides v, then v was proposed by some process.

The consensus algorithm is subdivided into four phases:

• Phase 1: All processes send their input value to the round leader.

• Phase 2: If the round leader gets an input value from the majority of all
processes, it sends the most current input value to all processes. If the round
leader does not receive a sufficient number of messages, it will send a NEXT
message to all processes. This leads to the start of a new round with the next
process as round leader.

• Phase 3: If processes receive a value from the round leader, they reply with
an ACK message to the round leader.

• Phase 4: If the round leader receives an ACK message from the majority of
all processes, it sends the value again with the addition to decide that value.
Afterwards, all processes decide the value of phase 4, if they have received
the last message.

Consensus cannot be solved in an asynchronous system, because very slow pro-
cesses cannot be distinguished from stopped processes. However, it can be solved
in a synchronous or partially synchronous system [49].

Failure Detector. The task of a failure detector is to create synchrony in an asyn-
chronous system. That is, it encapsulated timing assumptions. It holds information
about the status of the other processes. The TrustedPals version uses n×n matrices
for n processes instead of simple “alive” messages, enabling a process to gain more
information about communication possibilities between the processes.

TrustedPals uses the “eventually perfect” failure detector. It fulfills the following
three properties:

• Strong completeness: Every process that is not out-connected will not be
permanently considered as out-connected by any in-connected process.

• Eventual strong accuracy: Eventually every process that is out-connected
will be permanently considered as out-connected by every in-connected
process.

• In-connectedness: Eventually every process will permanently consider itself
as in-connected iff it is in-connected.

2.5 Distributed Computation 47

Weak SMC. Compared to only one bit as an input value, SMC in completely
asynchronous systems is a difficult problem. SMC with arbitrary input values in
asynchronous systems can only be performed as a weak SMC [132]. Each input
value requires its own consensus round ri, where the input value of process pi is
distributed. In case of asynchronous systems it may happen that a process pi is not
able to distribute its value in round ri. Even though pi is not crashed, it was not
able to participate in the SMC. This leads to different success probabilities for the
participating processes, depending on their position i in the consensus rounds.

2.5.2 Fair Exchange

Fair exchange can intuitively be defined as: two or more mutually untrusted parties
want to exchange secrets in such a way that either all of them receive the desired
information or none of them learns anything valuable.

2.5.2.1 Problem Definition

A fair exchange protocol fulfills the following requirements [7, 168]:

• Effectiveness: If both parties follow the protocol and do not want to abandon
the exchange and the items match their known description, then A has iB, B
has iA, and both reach a success state upon completion.

• Termination: A party which behaves according to the protocol will eventually
reach either a success or abort termination state.

• Strong Fairness: If at least one party does not follow the protocol or an
item does not match its description, then no honest participant wins or loses
anything of value.

An additional requirement can be [7]:

• Non-repudiability: After an effective exchange, any party A will be able to
prove non-repudiability of origin, meaning that the item iB originated from
B, and non-repudiability of receipt, meaning that B received iA.

Non-Repudiability is useful in subsequent disputes after a fair exchange, where
it may be necessary to solve the conflict outside of the system, e.g., by a court of
justice.

Also, the exchanged items can be classified:

48 RELATED WORK

• Generatability: An item is generatable if it can be produced by a third party
(an arbiter) upon request.

• Revocability: An item is revocable if it can be revoked by the arbiter and
thus rendered useless for the receiving party.

2.5.2.2 Impossibility Result of Fair Exchange

Even and Yacobi [54] formally proved the impossibility result of fair exchange
that no protocol exists that solves fair exchange in the following setting: A and B
want to exchange digital items in a sequence of communication rounds. At some
point during the exchange—namely after n rounds—B will have received sufficient
information to reconstruct the desired item iA. However, due to mutual distrust A
will only give away that amount of information and participate in that round if it has
already received enough information to reconstruct iB in a previous communication
round m < n. This contradicts the fairness requirement of fair exchange.

Therefore, it is only possible to specify a fair exchange protocol by utilizing the
help of a trusted third party (TTP), also referred to as the trustee. Of course, the
involvement of another participant poses new problems to be solved. An arbiter
must possess certain properties in order to be eligible as a TTP. Two aspects are
particularly relevant, namely trustworthiness and availability [168].

Concerning trustworthiness, both parties A and B need to be sure that the trustee
neither teams up with the other party, nor that it has an agenda of its own, e.g.,
stealing the items or eavesdropping on the conversation between A and B. This
means it has to be ensured that the TTP follows its specified protocol precisely.
Concerning availability, the parties need assurance that the TTP will be available to
carry out the exchange as expected. This is especially important in the exchange of
time-sensitive items. In asynchronous systems, the TTP must ensure to be at least
eventually up and able to serve all incoming requests. The higher the reliability
requirements an application puts on the TTP, the harder it is to ensure a certain
implementation will be able to fulfill these demands. Trust is therefore usually
not really towards a TTP itself, but rather towards its manufacturer or independent
experts.

2.5.2.3 Fair Exchange Protocol Classes

As solving fair exchange without a trusted third party is impossible and the intro-
duction of a TTP as a new entity in the protocols leads to increased complexity,

2.5 Distributed Computation 49

research in the area of fair exchange focuses on how to reduce the involvement of
the trustee to a minimum.

Early solutions for fair exchange fall into one of two categories: third party
protocols with an online trusted third party and gradual exchange protocols [7].
In online TTP protocols, both parties A and B send their items to the trustee.
After verifying the correctness of the items, the trustee forwards both items to
the corresponding recipients. It can easily be seen that this solution causes a
high workload on the trustee and heavily relies on its availability. In gradual
exchange protocols, the probability of correctness is increased over several rounds
of communication. This leads to a communication overhead, because items are
only transferred partially in each round.

Recent work introduced other possible solutions: optimistic third party protocols
use an offline TTP. In these optimistic protocols, the participants perform the
exchange of their digital items without outside help. In case of a system failure
or in case of one party suspecting unfair behavior, the TTP is asked to collect
information on the exchange and—if possible—lead the exchange to a state where
fairness is achieved. Unfortunately, optimistic protocols require items that are
either generatable or revocable. As such, optimistic protocols cannot be used
in any fair exchange scenario, at least not without tolerating loss of fairness or
termination.

Until now, the presented fair exchange protocols rely on the continuous availability
of a trusted third party, either actively involved in the exchange or available for
dispute resolution. This has several drawbacks. Apart from the difficulties of
designing an external host in such a way that it reliably provides trustworthiness
and availability, factors such as network topology and user conduct may pose even
greater challenges to third-party protocols. Therefore, it is beneficial to explore
how the duties of a TTP might be delegated to other entities that operate closer to
the parties involved in the exchange.

One approach that has gained attention in literature is the use of tamper-proof
hardware or security modules [10, 11, 222, 223]. By using security modules, it
is possible to solve fair exchange of time-sensitive items as well as fair exchange
of arbitrary items (which are not generatable or revocable), and fair exchange can
be reduced to other well-known problems in distributed computing. For example,
Avoine et al. [10] introduced the gracefully degrading fair exchange protocol
that offers probabilistic fairness in case of a honest majority. The following fair
exchange protocol with guardian angels provides equal properties in the case
of two-party fair exchange, where the honest majority is only given when both
participants are honest.

50 RELATED WORK

2.5.2.4 Fair Exchange with Guardian Angels

Avoine and Vaudenay [11] proposed an approach to have security modules assist
in the construction of a fair exchange protocol. They proposed a model of pirates
(the hosts) and guardians (the smartcards). By reducing the fair exchange problem
to a synchronization problem known as non-blocking atomic commit, they are able
to construct a protocol that offers probabilistic fairness without assuming a trusted
third party.

Communication between the pirates is suspected to be insecure and to provide
no timeliness guarantees. In contrast, every host may communicate to its local
smartcard in a secure and timely fashion. Guardians are even able to communicate
to each other in a secure manner over the unprotected communication network.
This is possible by implementing message confidentiality, integrity, and authenticity
with cryptographic techniques.

Avoine and Vaudenay introduced a keep-in-touch (KiT) synchronization protocol.
It basically enables two participants A and B to agree on a specific time to terminate
their connection. A sends a termination request to B, stating an amount c of mes-
sages to be exchanged before termination. Both parties then start sending (empty)
messages back and forth until the number c is reached. In that case, they both end
in a success state. In case of a time-out while expecting a message, a participant
ends in a failure state and stops sending messages. In this case, the other party also
times out and considers the protocol to have failed. The probability of successfully
manipulating this protocol depends on c and the probability distribution that c was
derived from.

An attacker would have to correctly guess the number c of messages and disrupt
the network connection when the last message is sent. Only in that case, the
sending party would suspect success while the waiting party would time out,
leading to a failure state. Since the communication between A and B is suspected
to be secure, an adversary may not learn c from eavesdropping, neither may he
insert fake messages or disturb communication in any way other than disabling
communication completely.

The authors then apply this synchronization protocol to fair exchange as follows:
both participants send their respective items, as well as a description of the desired
item to their local guardian. The guardians exchange the items over their secure
communication channel. After verifying the correctness of the items received, they
perform the keep-in-touch protocol. If this is successful, they deliver the items to
their local hosts. Otherwise, the exchange has to be re-initiated. Therefore, the
fair exchange protocol delivers probabilistic fairness equal to the probability of
successfully running the KiT protocol.

Chapter 3

Structuring Mobile Device Attack
Vectors

While the previous chapter used common denominations for its topics, this chapter
contributes an attack model with four attack classes and argues for a clear distinc-
tion between the classes. This attack model in Section 3.1 serves as the framework
for the division of the rest of this chapter. Its parts concerning attack vectors
exploitable by mobile malware will be used in the rest of this thesis together with
the specifics of mobile device security in Section 2.1.3. The chapter shows that the
increasing functionality of mobile devices (leading to smartphones, cf. Section 2.1)
brings more possible attack vectors to them. It presents in detail what we call the
operational side of mobile device security, that is, vulnerabilities exploitable by
mobile malware. The attack vector classes can be used as a framework to evaluate
future vulnerabilities and their exploits according to their potential to be used by
mobile malware.

The MOBIUS project defined a threat model for mobile devices [137, Chapter 3].
Besides a MIDP threat model it defines (according to the focus of the project)
common attacks on information flow security and common attacks on resource
control. Instead of a classification of attack vectors, this work is more focused
on the potential damage that an attacker can commit on the mobile device. This
chapter extends this work for attack vectors.

The relevant document from an industry perspective is the OMTP “Security Threats
on Embedded Consumer Devices” [166]. It defines six threat categories: software
modification threats, software opportunistic threats, and four type of hardware
threats (external, terminal intrusive, component invasive, hardware cloning). The
software-opportunistic threats are comparable to the software-centric attacks of this
chapter, the hardware threats are comparable to the hardware-centric attacks. As

52 STRUCTURING MOBILE DEVICE ATTACK VECTORS

another related work: an informal brainstorming on finding attack vectors of mobile
device security was done by Whitehouse [229]. To the best of our knowledge, no
other classifications of mobile device attack vectors specifically aimed at finding
out mobile malware attack vectors exist. This chapter differs from the previous
two pieces of related work by giving examples of real-world incidents for each of
the attack vectors.

The chapter is structured according to the classes of mobile device attack vectors
of Section 3.1. Section 3.2 lists local attacks that are only relevant to a particular
mobile device but not suited to be exploited by mobile malware. The remote attacks
of Section 3.3 are not related to the security level of a particular mobile device, but
they cannot be exploited by mobile malware either.

The following sections show the field where mobile malware can attack: vulnera-
bilities of mobile device applications in Section 3.4 and the impact of the mobile
device user on mobile device security in Section 3.5.

3.1 Attack Vector Classes

This section presents a classification of mobile device attack vectors as a framework
for the rest of the chapter. Its intention is to show the relevant attack vectors that
can be used by mobile malware.

Mobile device threats are classified here as belonging to one out of four classes:
hardware-centric attacks, device-independent attacks, software-centric attacks,
and user layer attacks. From the point of view of defending against vulnerabilities,
every layer is separate from the other and needs its own security mechanisms.

Figure 3.1 shows a high-level view of these four attack vector classes and Figure 3.2
shows the actual attack vectors of these classes that will be introduced in the rest
of the chapter.

Hardware-centric attacks belong to mobile device security only from a broader
point of view but not from the definition of this thesis. Even though they are suited
to violate security properties (e.g., confidentiality of personal data violated by
forensic analysis) they are not suited to be exploited by mobile malware, because
these vulnerabilities cannot be exploited remotely, but only with physical access to
the mobile device.

Device-independent attacks directly belong to the protection targets of the mobile
device user: eavesdropping on the wireless connection or leaking mirrored personal
data on backend systems both violate confidentiality of the user’s personal data.
However, just as device-centric attacks they are not vulnerabilities that can be

3.2 Hardware-Centric Attacks 53

Layer 8

Device−Independent Attacks

Hardware−Centric Attacks

Attacks

Software−
Centric

Figure 3.1: Mobile Device Attack Vectors (High-Level)

solved with the solutions of this thesis, as these threats are independent from the
security level of a particular mobile device.

In the context of this thesis, the most important class of technical vulnerabilities
for mobile devices are software-centric attacks. Especially the rise of the—hardly
security-specified—mobile Web browser led to various exploited vulnerabilities in
the recent time.

User layer attacks contain every exploit that is not of technical nature. As Chapter 4
will show that many of today’s mobile malware samples are not based on a technical
vulnerability, but trick the user into overriding all technical security mechanisms.
This is an important class of vulnerabilities, even if not of technical nature.

3.2 Hardware-Centric Attacks

These hardware-centric attacks belong to the security of mobile devices only from
a broader point of view. Even though they are suited to violate security properties
(e.g., confidentiality of personal data violated by forensic analysis), they are not
suited to be exploited by mobile malware because these vulnerabilities cannot
be exploited remotely, they need physical access to the mobile device. They are

54 STRUCTURING MOBILE DEVICE ATTACK VECTORS

W
LA

N
A

ccess
P

oint

A
ttacking

E
ncryption

A
ttacking

F
ram

ew
orks

A
ttacking

W
eb B

row
ser

F
orensic A

nalysis
JT

A
G

 A
ttacks

D
B

S
ubsystem

s
IP M

essaging
S

ubsystem
s

W
eb

F
rontends

M
N

O
 S

ystem
s

E
vil T

w
in

E
vil T

w
in

M
obile M

alw
are

A
ttacking

D
ata R

eplication

A
ttackable by

W
LA

N
M

obile N
etw

ork

B
reaking E

ncryption
B

reaking E
ncryption

"Layer 8"

F
irm

w
are

M
odifications

or M
apping

B
ackend S

ystem
s

A
ttacking

M
alicious

C
ertificates

F
ram

ew
orks

A
pplication

A
ttacking

A
pplications

A
pplications

F
irm

w
are

M
N

O
 S

m
artcard

M
IT

M

W
eb

B
row

ser

S
m

artcard
M

N
O

C
ertificate

S
tore

S
ession

K
eys

Figure
3.2:M

obile
D

evice
A

ttack
V

ectors
(Incarnations)

3.2 Hardware-Centric Attacks 55

subdivided here into attacks on the removable security module of the mobile device
(the MNO smartcard) and into attacks on the device itself.

3.2.1 Intercepting MNO Smartcard Communication

Communication between the mobile device and the MNO smartcard is unencrypted,
because a man-in-the-middle (MITM) attack on this communication was consid-
ered as infeasible when this interface was specified

A product named TurboSIM successfully implements the MNO smartcard MITM
attack of Figure 3.2. TurboSIM is a product of the Czech company Bladox [24] and
is offered since 2004. It is a small chip that intercepts the communication between
the MNO smartcard and the mobile device. It is added to a mobile device by
removing a small part of the smartcard’s plastic frame. TurboSIM was successfully
applied to removing the SIM lock of the iPhone [22]. As the hardware interface is
the same for 2G SIM cards and 3G UICCs, it is possible to use TurboSIM for both
settings.

Without regarding the limitations of the actual implementation of TurboSIM, in
general, such a MITM attack can change every communication between MNO
smartcard and mobile device, or even inject new communication. The only relief
for this attack would be to encrypt the communication. This would work because
this piece of hardware has access to the internals neither of the MNO smartcard
nor of the mobile device.

It is difficult to close this attack vector with billions of vulnerable devices world-
wide. From a high-level point of view it is a task for engineering. Fortunately
for the context of this thesis, this attack is not targeted to damage other users but
to enhance the functionality of the attacker’s phone. As it is an attack with the
introduction of additional hardware, it cannot be exploited by mobile malware
either. Therefore, it is no threat that will be dealt with in this thesis.

3.2.2 Attacking the Device

Hardware-centric attacks that target the mobile device itself can be subdivided
according the the status of the mobile device: switched on (JTAG attacks) or
switched off (forensic analysis).

56 STRUCTURING MOBILE DEVICE ATTACK VECTORS

3.2.2.1 JTAG Attacks

Joint Test Action Group (JTAG) is a standard for testing and debugging hardware.
Even though this debugging functionality is no longer necessary in mobile devices
that are sold to the users, the JTAG functionality is sometimes still accessible. This
functionality allows inspecting the device on a deep level being able to lead to
exploitable vulnerabilities.

This threat is addressed by industry requirements documents [164] and as it is
an attack that needs physical access to the device, this attack vector cannot be
exploited by mobile malware.

3.2.2.2 Forensic Analysis

The forensic analysis of mobile devices is an attack vector targeting the confi-
dentiality of the stored data. It is an unexpected attack vector and it is only valid
in the case of an attacker getting physical access to the device. There are two
possibilities for that: an attacker that takes the device for a limited period of time
without the owner noticing, and a legitimate change of ownership. Especially the
second case is common today, as some studies show: it encompasses data from
personal conversations [78] to confidential corporate data [219].

From a high-level point of view, this attack vector can be closed quite easily by just
adding sound encryption schemes to the data. In both cases from above, an encryp-
tion scheme is sufficient that encrypts the data whenever the device is switched off,
because a thorough forensic analysis requires removing the device’s battery (access
to the data using means like data cables should also be restricted). Dealing with
the solution in more detail leads to the consideration that cryptographic functions
need the limited device resource processing power, leading to increased battery
usage. Therefore, the two alternatives must be weighed against each other.

3.3 Device-Independent Attacks

These vulnerabilities directly belong to the protection targets of the mobile device
user: eavesdropping on the wireless connection (Section 3.3.1) or leaking mirrored
personal data on backend systems (Section 3.3.2) both violate the confidentiality
of the user’s personal data. However, just as the local attacks of Section 3.2 they
are not vulnerabilities that can be solved with the solutions of this thesis, as these
threats are independent from the security level of a particular mobile device. Just
as the device-centric attacks of Section 3.2 they cannot be exploited by mobile

3.3 Device-Independent Attacks 57

malware either. An exception could be the wireless pairing process, which could
be influenced by a mobile malware, e.g., by forcing the device to connect to an evil
twin access point. However, this is seen as irrelevant here, because WLAN only is
a side aspect in this thesis.

3.3.1 Wireless Transmission Security

Wireless transmission security belongs to the confidentiality of the wireless link be-
tween the mobile device and the MNO, be it voice calls or a data transmission. The
topic is subdivided into cryptanalytic attacks against the encryption mechanisms
and into imitating parameters of a legitimate communication access node.

3.3.1.1 Breaking Encryption

Breaking Mobile Network Encryption. The encryption in the GSM system
uses the A5 family of algorithms. These algorithms have been defined without
public review prior to their implementation (“security by obscurity”). Mainly two
variations of the algorithm are deployed today: A5/1 and A5/2, the latter being
a cryptographic weaker version for countries with legal restrictions on usage of
cryptographic schemes. The cryptographic stronger version A5/1 was reverse-
engineered and published in 1998 [200]. Since then it has been investigated by the
public cryptanalytic community and several attacks have been published with the
recent addition by Gendrullis et al. [84] of increasing the implementation speed of
an attack to only six hours for revealing the internal state of the A5/1 algorithm
by using a low-cost special-purpose hardware. The publication also introduces to
the related work of this research area, and the interested reader is referred to their
article.

It has to be noted that the mobile network encryption key is not only endangered
by cryptanalysis. Session keys are derived from the master key and stored outside
the MNO smartcard. Thus, mobile malware could access these keys for decrypting
the communication without breaking the algorithm. Practical restrictions exist with
this attack vector, because the storage location of these session keys is not specified,
meaning that it is dependent on the implementation of a specific operating system.
Therefore, it is not clear if mobile malware is able to access these keys at all.

As a side-note: from a high-level lifetime view of cellular mobile networks: one
could argue that with the speed at which the weaknesses in the A5/1 algorithm
are discovered, the algorithm fulfilled its purpose over its lifetime. With the third
generation (3G, UMTS) mobile networks, new encryption algorithms have been
introduced (UEA1, UEA2) and they are backported to the GSM systems as A5/3

58 STRUCTURING MOBILE DEVICE ATTACK VECTORS

and A5/4. Contrary to A5/1, these algorithms are public. The algorithms UEA2
(A5/4) were specified precautionary for being able to replace UEA1 (A5/3) in case
of a successful attack against the latter. Details of these algorithms can be found at
the European Telecommunications Standard Institute [53].

UMTS introduced additional mechanisms for protecting the wireless link (e.g., see
Pütz et al. [176]). It introduces an integrity key for protecting signaling information
and sequence numbers for preventing replay attacks. Additionally, the cipher and
integrity keys are changed on a regular basis, depending on time or the amount of
already encrypted data.

A remaining problem is the introduction of new encryption algorithms. The devices
have to support them as well as the mobile network itself. The network side requires
hardware changes in the base stations, so that the actual introduction could take
too long for A5/1 being secure. However, application-layer encryption can be used
even without secure network-level algorithms, e.g., virtual private networks for
data communication and speech encryption systems for voice communication as
an additional layer in case of legal interception.

Breaking WLAN Encryption. Wireless local area networks (WLAN) have been
a hot topic in real-world security since their beginnings. Either they have been
used without any encryption at all, by using flawed encryption schemes, or with
weak passwords. The following paragraphs shortly summarize the status of this
part of mobile security. Technical information on the schemes and the attacks can
be found in the literature [52].

In the beginning WLAN deployments, especially privately operated networks did
not use encryption. The access points even offered a DHCP server to automatically
supply the attacker with valid network settings for IP address, name server, and
gateway.

Wireless equivalent privacy (WEP) was the first encryption protocol that has been
widely adopted. Its weaknesses are a short encryption key that is the same for
every connected client. Additionally, several reductions in search space have been
found by cryptanalysts.

Today, WLANs are protected by Wi-Fi Protected Access (WPA) security protocols.
WPA is based on the Temporal Key Integrity Protocol (TKIP) that was designed
to allow the migration from WEP to WPA on already deployed hardware. The
main security enhancements are dynamic encryption keys, sequence numbers for
packets (for preventing replay attacks), and message integrity checks. For small
networks, WPA has a “pre-shared key” mode that is based on a shared key.

3.3 Device-Independent Attacks 59

The encryption might be vulnerable because of a short key length of the shared
key. With limited input possibilities, e.g., only a number keypad, users of mobile
devices might set short encryption keys that only contain numbers. This raises the
probability that an attacker is successful with a brute force attack.

The successor of WPA is called WPA2. It replaces the RC4 cipher of WEP/WPA
with the AES encryption standard. Moreover, it replaces TKIP (in Counter Mode)
with Cipher Block Chaining Message Authentication Code Protocol (CCMP). For
the purposes of this thesis, WPA/WPA2 are assumed to be sufficiently secure and
attacks are considered to be brute-force attacks only.

Conclusion. Currently available security protocols for WLANs are considered
secure, if used appropriately. As an additional security measure, even additional
cryptographic measures can be taken on application layer.

3.3.1.2 Evil Twin Radio Access Nodes

The wireless connection of a device and a radio access node of a mobile network
is always endangered by entities in the same physical area that can act as evil
twin: they imitate the parameters of the legitimate communication partner. This
attack vector is always possible when a communication partner does not need to
authenticate itself. This sections shows the examples of GSM base stations and
WLAN access points.

Evil Twin WLAN Access Points. More sophisticated WLAN clients remember
wireless networks, to which they were connected. This is a convenience feature,
but it may be a security weakness. An attacker would set up a WLAN access point
with the same parameters as the legitimate access point (SSID, probably the active
channels) in the same physical area as the legitimate access point. Whenever a
mobile device is in the access point’s coverage area and recognizes the access point,
it might switch to use this (cheap) link for data connections. If the mobile device
user uses applications that transfer data over unencrypted connections, the attacker
is able to intercept the data.

There are several constraints that have to be met before this type of attack can take
place. Encrypted wireless networks are not vulnerable to this type of attack, only if
the attacker was able to figure out the encryption key. Moreover, corporate wireless
networks often do only allow access via virtual private network connections, even
though an association with the access point might be possible without restrictions
and without encryption. As a consequence, the only type of wireless networks

60 STRUCTURING MOBILE DEVICE ATTACK VECTORS

susceptible to this type of attack are unencrypted wireless networks. The main
use case for them is the provision of Internet services in cafés and some public
places, where uncomplicated access to the wireless network is seen as a feature of
usability.

For these public networks, recent work proposed a solution for avoiding an evil
twin attack by using two additional colored indicator lights in the access point with
a client application showing the simultaneously submitted flashing sequence of
the lights [182]. The user could verify the sequence by comparing its local display
with the physically visible access point. This system was tested for usability with
intriguing simplifications compared to the original propositions.

Rogue WLAN Access Points. The security topic connected to this term does
not contribute to the mobile device security in the context of this thesis, but it is
inserted for clarification. A rogue access point is defined as a WLAN access point
that is added to a cable-based computer network without the permission of the
network operator. A typical example is an employee who wants to enable access to
the corporate network that is not physically bound to his desk. More details can be
found in the literature [172]. These rogue access points do not have to be confused
with the concept of evil twin access points.

Evil Twin GSM Base Stations. It is possible in the GSM network to simulate a
base station. When the requirement of physical proximity is fulfilled, the so-called
“IMSI Catcher” is able to simulate the base station, to connect to the real network,
and to forward the authentication requests to the attacked mobile device. This is
a successful man-in-the-middle attack without the need to break the underlying
encryption, because the mobile device is requested to switch off encryption, a
feature of the GSM network. For more information on the topic see Fox [77].
They call this a man-in-the middle attack, because the IMSI Catcher exchanges
data between the victim and the mobile network. For terminology uniformity with
WLAN evil twins, this thesis calls this attack evil twin GSM base station. This is
also called “false base station attack” in the literature [85, 176].

A second aspect of evil twin base stations is the possibility to commit a man-in-the-
middle attack on the UMTS network. In GSM networks only the mobile device has
to authenticate itself, and for increased security UMTS was designed to provide
mutual authentication of mobile device and the network. Additionally, signaling
information is integrity-protected as a means to prevent evil twin base stations
[176].

However, UMTS was also designed to be compatible to GSM, whenever no suf-
ficient UMTS coverage can be provided. This compatibility makes a roll-back

3.3 Device-Independent Attacks 61

attack possible, where the compatibility mechanisms between these two mobile
networking standards are exploited [130].

Conclusion. In summary, the evil twin attack vector can break the confidentiality
of the mobile device user’s data, most prominently access passwords to services
like e-mail or Web accounts. As always, application layer encryption helps in these
cases.

3.3.2 Backend Systems

This section adds an attack vector to mobile device security that is not obvious at
first glance, but with the example of a year 2005 security incident it is shown how
insecure backend systems can even compromise the privacy of a mobile device
user.

3.3.2.1 Danger Hiptop / T-Mobile Sidekick

The Hiptop device (named “Sidekick” in the T-Mobile version) of United States
based company Danger is a feature phone with a closed operating system (cf.
Section 2.1). It differs from other mobile phones in storing its media data not
only on the device itself, but mirroring the data in the MNO’s network for Web
accessibility. The data is protected by a password only. That means, it is possible
to break a user’s on-device data confidentiality by not attacking the mobile device
at all.

The incident took place in the T-Mobile network of the United States of America
in 2005 and led to the publication of phone numbers and private data of prominent
United States citizens. It is reported by the Washington Post [117] to have been a
combination of Web application attacks (cf. Section 6.2.1.2) and social engineering
attacks (see Section 3.5).

The Web applications had a vulnerability that allowed to reset the access pass-
word to the mirrored data, resulting in locking the legitimate user out of its own
account and giving the new password to the attacker. The only necessary piece of
information for this attack was the mobile phone number.

The social engineering part of the attack was finding the mobile phone number
of a prominent client of the MNO. This was achieved with a social engineering
attack on an MNO’s store, tricking the employees to reveal an access password
for internal systems of the MNO. From this starting point it was possible to map
names to phone numbers.

62 STRUCTURING MOBILE DEVICE ATTACK VECTORS

3.3.2.2 Other Backend Systems

Attacks on backend systems also comprise GPRS attacks [233] or attacks on the
MMS infrastructure [89]. Moreover, the upcoming outsourcing of computation
(“cloud computing”) might lead to new privacy concerns and to new solutions for
ensuring privacy. The solutions could possibly be transferred to solve the problems
of backend systems with mobile devices.

3.3.2.3 Conclusion

The previous examples demonstrated the possibility of unexpected attack vectors, in
this case to break the confidentiality of on-device data. The Sidekick incident might
be non-repeatable because of the coincidental combination of vulnerabilities that
led to the successful attack. Together with the fact that on-device data usually is not
mirrored on network servers this attack vector will be uncommon and improbable
in the future, except for users in corporate environments.

3.4 Software-Centric Attacks

Software-centric vulnerabilities are the most important class of vulnerabilities
for mobile devices from the attack model of this thesis. Especially the rise of
the—hardly security-specified—mobile Web browser led to various exploited
vulnerabilities in the recent time.

3.4.1 General

3.4.1.1 SMS Vulnerabilities

An incident of the early times of mobile phones (not even smartphones at that time)
was an implementation bug in the SMS parser of a Siemens S55 when receiving
an SMS with Chinese characters, leading to a denial-of-service [29]. A denial-
of-service also affected some Nokia phones when Nokia sent an invitation to the
CeBIT computer fair with a picture SMS [124].

Both bugs required a local firmware update, forcing the users to bring or send in
their device to customer service. This class is expected to be of less importance
in the future, because modern smartphone architectures are increasingly allowing
local or remote firmware updates.

3.4 Software-Centric Attacks 63

A recent denial-of-service attack is the “curse of silence” short message, which
was published at the end of 2008 [51]. It is caused by an omitted sanity check of
input data: A rarely used function of the short message service is an e-mail to SMS
gateway function. The standard defines a maximum length of 32 characters for the
e-mail address. Some implementation of this function in Nokia phones assumes
this length as verified by the mobile network and does not perform a sanity check
on the device, but the mobile network did not limit the e-mail address length. This
led to a failure of the messaging functionality of the affected Nokia phones, and
they had to be reset to factory settings.1 This is a clear violation of the principle
to never trust (resp. assume anything of) an input value (see, e.g., Huseby [99]).
A solution for this vulnerability would have been proper adherence to software
development best practice.

The “curse of silence” exploit shows that both denial-of-service attacks and vul-
nerabilities in operating system applications are not only of historical interest, as
the dates of the other listed exploits show, but support the hypothesis that there are
always exploitable vulnerabilities in operating systems.

3.4.1.2 MMS Vulnerabilities

In the year 2006, a remote code execution exploit for mobile phones using MMS as
the attack vector was published [147]. It exploited a buffer overflow in the MMS
handling program of Windows Mobile. The targeted return address was known for
a specific device except for the current memory slot (cf. Section 2.2.3), which had
to be guessed, therefore lowering the success probability of the exploit.

As being the first of its kind, it supported the public fear of that time that mobile
devices would start to become commonly attacked. The exploit received some
attention by a technical audience and the mobile network operators who published
patches for affected devices. Anti-virus companies added the exploit to their
signature databases, but the exploit never appeared as part of mobile malware.

There are two possible explanations for this fact. The first one is the probability of
succeeding with the message by using the correct memory slot. A second and more
probable explanation is the actuality of the affected devices. Windows CE 4.2 was
already succeeded by Windows CE 5 at the time when the exploit was published.
Therefore, this vulnerability only affected comparatively dated devices.

1Nokia published a removal tool one month after the publication. This tool enabled to delete
only the malicious messages, therefore avoiding the need to lose other data.

64 STRUCTURING MOBILE DEVICE ATTACK VECTORS

3.4.1.3 Application Framework Vulnerabilities

At the end of 2004, implementation vulnerabilities in the virtual machine imple-
mentation of some devices were presented [88]. It was possible to bypass the
bytecode verifier and to access methods of the underlying native operating system
directly. Unfortunately, the results have not been published in detail.

3.4.1.4 Sophisticated Applications

Different from the general software-centric attack vectors named so far are so-
phisticated applications like the e-mail program or the Web browser. They differ
from SMS/MMS programs because of their extended functionality, leading to an
increased attack surface. This is also true compared to application frameworks
because these frameworks usually have a more sophisticated security architecture
and the separation from the operating system is their main reason for existence.

The Web browser as a software of rapidly increasing importance in mobile devices
has its own discussion in Section 3.4.3.

3.4.2 Operating System Modifications

Sometimes it is possible to evade security features by modifying the operating
system itself. As real-world examples, this section covers firmware manipulation
and malicious signing certificates.

Not all operating system modifications that are named here belong to the software-
centric attack class. Especially the manipulation of the firmware image and the
introduction of malicious certificates on the mobile device are attacks that are
hardly to be committed by mobile malware. However, the possibility exists.

3.4.2.1 Manipulating the Firmware Image

As real-world example, a vulnerability in Symbian OS is described here. The
Symbian OS Platform Security Architecture (PSA) has a central configuration file
SWIPolicy (cf. Section 2.2.4). This file is set by the manufacturer or the mobile
network operator and cannot be configured by the user, but changing this file is
necessary for a user to gain extended control over his device.

It was possible in 2008 to manipulate a Nokia firmware image before installing it
on the device. Nokia allowed users to perform a firmware update with their own
computers. The user had to download a firmware image from Nokia, which was

3.4 Software-Centric Attacks 65

installed on the phone afterwards. Some versions of the firmware image happened
to contain the SWIPolicy in human-readable text [127]. Therefore, it was possible
to modify the image file.

Two remarks on the real-world applicability of this topic are necessary: first, even
though it was possible to modify the SWIPolicy, it was necessary to maintain the
length of the firmware image to satisfy basic sanity checks by the firmware installer.
This posed an additional complexity to the exploit, but it was solved. Second, this
vulnerability was quickly fixed by Nokia, i.e., the vulnerability did not have any
long-lasting impact.

This adds another attack vector to mobile device security. However, it is not
considered in this thesis, because it is in its current incarnations no attack vector
that is accessible by mobile malware. And Chapter 2 introduced that this firmware
update process is well-secured, leading to additional effort for an attacker.

3.4.2.2 Mapping ROM to Writable Memory

The problem of mapping read-only memory to writable memory does not arise on
common computers, because all files reside on the hard disk there. Mobile devices
have an inherent advantage here, because all files residing in read-only memory
cannot be corrupted by mobile malware. Unfortunately, there are exceptions.

Symbian OS allows to override files in ROM when a file with the same name
resides on the memory card (cf. Section 2.2.4) and Windows Mobile allows to
change a central pointer to lead the operating system into using files from writable
memory. This effectively leads to the same implications as the manipulation of the
firmware image from above.

3.4.2.3 Runtime Memory Manipulation

Similar to the static process of mapping system files during installation from above,
manipulating the memory of a process at runtime allows to get advanced control
over the process.

There is an example for Symbian OS where a (signed) runtime debugger on the
device was allowed to read and write the memory of other processes [212]. If the
signature gives sufficient rights to the signed program, even reading and writing of
system process memory is possible.

66 STRUCTURING MOBILE DEVICE ATTACK VECTORS

3.4.2.4 Using Malicious Certificates

Whenever a signed application is installed, the signature is verified against a list of
valid certificates (cf. Section 2.2.4). That means, there are two ways to illegally get
a valid signature: computing the signature without a valid certificate and adding an
own certificate to the list. The first option is equivalent to breaking the underlying
cryptography scheme and is considered unfeasible here. The second option is of
more interest and has a real-world example.

An anonymous author posted a Symbian signing certificate to a Web forum [6].
This certificate enabled a user to sign his own applications, after he was able to
add the certificate to the list of valid certificates. Valid certificates are recognized
in the directory c:\resource\swicertstore\dat. Usually, this directory is
only readable, but getting write permissions was possible with a runtime exploit
(described later in this chapter). Afterwards, using the signing certificate was
possible.

3.4.3 Web Browser

3.4.3.1 Evolution of the Mobile Web Browser

The mobile Web browser is an emerging attack vector in mobile devices. Just as
common Web browsers, mobile Web browsers are being extended from pure Web
browsing software to complete application frameworks with widgets or completely
browser-based mobile devices [157]. It can be expected that even security-relevant
functions of the operating system are accessible in the near future.

Industry requirements documents even include these security-relevant features.
An example is the browser requirements document of OMTP [162]. Requirement
BR-2540 demands: “The browser MUST support the making of voice calls and
video calls from a URI / IRI”.

Requirement BR-2570 suggests appropriate security mechanisms in the imple-
mentation of this requirement: “The browser SHOULD ask for user confirmation
before initiating any call from a hyperlink”. Even though, a possible complying im-
plementation is the vulnerable iPhone Web browser, which enables browser-based
dialers to create costs for the user without necessary confirmation (see below).

Therefore, the mobile Web browser as an application framework of its own is
able to undermine the mobile device’s security model: the original—and possibly
secure—model of signed applications is replaced by the security model of the
Web browser developer. This is visualized in Figure 3.3. Examples for successful

3.4 Software-Centric Attacks 67

Web Browser
Application
(unsigned)

possibly malicious

(signed, trusted)
Web Browser

Mobile Device

Figure 3.3: Web Browser Undermining the Security Model

attacks—besides denial-of-service attacks on the mobile Internet Explorer [41]—
are the jailbreak of the iPhone, hacking the Android browser, and using the iPhone
browser as a dialer.

After having read the subsequent details of mobile Web browser exploits, one might
ask the question, how to solve the problem of an increasing number of security
mechanisms. These questions touch the next class of mobile device attack vectors,
the mobile device user (see Section 3.5). A possible solution will be discussed
in more detail in Section 6.2, where a technology-independent security solution
solution is proposed.

3.4.3.2 iPhone Jailbreak

Unlocking the iPhone with firmware 1.1.1 was completely based on vulnerabilities
of the Web browser. Therefore, the exploit of this vulnerability is documented here
as an example of how important the attack vector Web browser is for the security
of the mobile device. A documentation with more technical details can be found
in the literature [48, 140]. The iPhone firmware version 1.1.1 was supposed to
re-enforce the jailbreak of previous firmware versions, but the developers used an
old library in the iPhone firmware.

The affected library is named libtiff that is used for displaying TIFF images. It
had a stack-based buffer overflow vulnerability [40] that was fixed in version 3.8.2
of March 2006. Firmware 1.1.1 was published in September 2007, using a still
vulnerable version of libtiff. Ten days later, a browser-based jailbreak possibility
was published. The authors already used this vulnerability to exploit the Sony
Playstation Portable, so it was only necessary to port the exploit code. Now it
was possible to remove the third-party software restriction by visiting a specially
prepared Web site.

68 STRUCTURING MOBILE DEVICE ATTACK VECTORS

3.4.3.3 Android Vulnerability

A vulnerability in the Android Web browser was discovered in October 2008. Like
the iPhone vulnerability above, it was due to a deprecated and vulnerable library
module. An important difference to the iPhone vulnerability was the sandboxing
architecture of Android that restricted the effects of this vulnerability to the Web
browser process. Despite the restriction to a single process: being able to control
the Web browser process is a rewarding target.

3.4.3.4 iPhone Web Browser Dialer

A recent vulnerability [146] of the iPhone Web browser allows a Web page to
initiate a phone call without user interaction. The vulnerability is based on the
interaction of different applications.

URIs with beginning with “tel:” allow Web pages to initiate phone calls. As a
security mechanism, a confirmation dialog is shown. Unfortunately, when the
confirmation dialog is active and when the Web page requests a second application
to launch (e.g., with a “sms:” URI), the Web browser closes the active dialog with
the option “call” instead of “cancel”. For increasing the chances of succeeding
with the phone call, it is even possible to freeze the GUI for some seconds with a
long number after the “sms:” prefix.

This vulnerability is an example of the combination principle of security that even
when two systems are secure, the combination of these systems is not as secure as
the systems themselves.

3.5 “Layer 8”: The User as Attack Vector

The user is sometimes seen as an additional layer on top of the application layer.
When considering the ISO OSI network reference model [238] with its seven
layers from the physical layer 1 to the application layer 7, it is natural to assign the
term layer 8 to the user. Colloquially, a “layer 8 problem” consists of a working
technical system with the erroneous behavior of the system’s user. Scientific
discussion also assigns the term “semantic layer” to the user [111]. This point
of view that the users of technical systems are sometimes the only problem of
malfunction is especially important in the security field. Schneier introduces
the security of a system as being defined by the weakest link, in many cases
being represented by the system’s user [193]. Gollmann [85] even calls this the

3.5 “Layer 8”: The User as Attack Vector 69

“fundamental dilemma of computer security” based on the number of users dealing
with security topics having increased from a few organizations to every user of the
Internet: “Security-unaware users have specific security requirements but usually
no security expertise.”

Many studies have been performed to evaluate the security knowledge of the
common user. Most of them show what already the well-known study of Whitten
and Tygar [230] found out: the common user is not able to use security mechanisms
in a correct way. Different attempts have been made to simplify the interface for
security settings, but even the very simple Windows security slider with only four
possible positions was not completely understood and therefore set wrong by users
who rated themselves as “IT proficient” [82].

Therefore, the question arises what these numerous security mechanisms are useful
for, when the user does not understand them. Even if he understands to work with
one mechanism, another mechanism might be incompatible with his understanding.
People working in the security field always want to achieve the desirable goal of
more security-conscious users, but the will, the interest, and the time to learn more
than one security mechanism is likely to be limited for the common user.

This section shows in detail important topics of the user’s role in security. Sec-
tion 3.5.1 starts with the security awareness that is hardly available. Section 3.5.2
shows the contrast, how much influence the user has on security-critical decisions.
Section 3.5.3 presents the “user as attack vector” as the topic of social engineering.
Finally, Section 3.5.4 introduces to the research on security and usability that came
into life in the recent years for relieving the situations presented in this section thus
far.

3.5.1 Security Awareness

When it comes to the question who is responsible for the security of mobile devices,
there are contradicting results in the literature. Furnell and Clarke found out in
2005 that “customers are indeed security conscious, but perceive the issue to
be handset-dependent rather than operator-related” [35]. A study by the OMTP
group of MNOs in 2006 showed that “participants stated that their mobile operator
was primarily responsible for mobile security” [161]. In 2008, F-Secure found a
contrary result that “over half of those questioned felt it was up to the individual
user to ensure their phone was protected” and “a third expected this to be taken
care of by their mobile phone carrier, with the US putting the greater emphasis
on third-party responsibility. Only 11 per cent of Germans believed their mobile
phone provider should be in charge of security, compared with over 32 per cent in
France.“ [71]

70 STRUCTURING MOBILE DEVICE ATTACK VECTORS

These results—of course—do not mean that the MNO should leave security to its
clients. They can be explained with the fact that there are currently no widely used
operator-based security mechanisms. Therefore, the participants might not have
been able to imagine how these security mechanisms would look like. If the MNOs
start to proactively provide security mechanisms, the results could change towards
the MNO seen as a good entity for introducing security mechanisms.

An approach to increasing security awareness is education. There are documented
attempts for the mobile world where the network operators provide educational
material for their clients [215]. However, their impact is limited and the material
contains notions that are more difficult to understand than the Windows security
slider from above. Additionally, other work vigorously proposes that users do not
need to become security experts at all, because it is the task of the security experts
to protect the common user. Additionally, educating users would not raise their
security awareness [92].

Denning [45] and Anderson [5] give examples of poor password use, documenting
low security awareness, because the relationship between guessable passwords,
successful attacks, and the role of the user is often not clear to a particular user.
Users compromise security by rating convenience in a particular situation higher
than an abstract security threat. This leads to short passwords, and especially
on mobile devices to passwords only consisting of numbers, as they are most
convenient to enter on the mobile device keyboard.

Additionally, it is assumed here that the appreciation of the mobile device is lower
than for desktop PCs, and that it is more seen as a disposable item [161]. The
security awareness with regard to their mobile devices can be assumed lower than
for PCs as well. Therefore, the cost of security solutions must be lower than for
PCs, the solutions should especially work automatically and should not need much
operator maintenance like adding new signatures to anti-virus databases.

In summary: this thesis assumes that the average user does not have extensive
security awareness. Even if his security awareness should be raised by media
coverage of security incidents like worm or virus outbreaks, it seems questionable
if he is able to differentiate between different classes of security products to use
them correctly. An additional assumption is: even if the user is security-aware, his
will to get into the depths of security research and products will be close to zero.

3.5.2 Influence of the User

Opposite to the low security awareness of the common user is his influence over
the mobile device: “the human factor can negate all technical mechanisms taken to

3.5 “Layer 8”: The User as Attack Vector 71

secure systems” [197]. Chapter 4 will show that there are only few cases where
harm to the user happens without any interaction of the mobile phone (resp. the
malware) with the user. So in most of the cases, the user is able to prevent harm
to himself, but he must be able to understand the security solutions of his mobile
phone.

It might be the case that the implications of security mechanisms like application
frameworks (e.g., the Java framework J2ME) and signature schemes for different
trust levels might not be understood by the average user. An example is a phone
that was locked for third-party software. This was a good measure from the
security point of view, but this measure was not accepted by its users for usability
reasons, forcing the provider Orange to unlock the devices, thus decreasing the
security of the unlocked devices [167]. Recently, this story was repeated with the
iPhone. These are indications to expect that devices will be open to extensions,
and therefore open to malware, in the future. This leads to the definition of two
problems of usable security on mobile devices.

Permission Flat Rate Problem: Users are not able to see the full extent of
security decisions with persistent effects. Current security mechanisms (e.g., on
the J2ME application framework) sometimes give the possibility to the user to
permit a security-relevant action conveniently not only for the current instance, but
for all future instances. This is a problem because of the direct correlation between
security-naive users and decisions that are not remembered afterwards.

Security Acceptance Problem: Whenever users are restricted too much by se-
curity, they will open the doors and bypass the security mechanisms.

These two problems point into the direction of security services that are embedded
into the system (also discussed by Kuper and Gannon [118]): security mechanisms
should be invisible and unchangeable by the user. This view shows that most of the
current security mechanisms (cf. Chapter 2) probably have dealt with the wrong
attack vectors, where the user should be seen as the most influential attack vector.

3.5.3 Social Engineering

Social engineering is the act of leading a user to override technical security mecha-
nisms. A classical essay on this topic is the book “The Art of Deception” [135]
and Anderson discusses the topic in his book “Security Engineering” [5]. Here,
the two dimensions abuse of trust relationships and imitation of functionality are
shortly shown for the domain of mobile devices.

72 STRUCTURING MOBILE DEVICE ATTACK VECTORS

Social engineering becomes most important when there are no more technical
vulnerabilities to exploit. So in general, it is a good cause that security is only
dependent on the user. It means that technical security mechanisms are effective
and sufficient.

3.5.3.1 Abuse of Trust Relationships

Trust relationships exist between known persons and these relationships are com-
monly documented in the address book of the mobile device. In unsecured systems,
mobile malware can access the address book and spread by sending itself to the
contacts. The Commwarrior MMS worm is an example of this technique.

An important additional condition for this type of attack to suffice are the com-
munication expectations of the targeted user. If the language is different than the
common communication language, the targeted user might become suspicious.
Even if the language is correct, there are additional aspects of the message that
might raise the targeted user’s suspicion. Only if everything fits, he probably takes
the supposed actions like installing the delivered software, thereby infecting his
own device.

3.5.3.2 Imitation of Functionality

There are cases where even a security-aware user cannot distinguish a social engi-
neering attack from legitimate functionality. This is especially true for incoming
messages, mainly via the short-range Bluetooth technology.

Not quite common in Europe but widespread in Asia is marketing via Bluetooth.
Shops can have a Bluetooth sending entity, sending messages via the Bluetooth
protocol to persons who are passing. Sometimes, the message might indicate
that the prospected client should install a game for gaining access to vouchers.
Whenever such a system is active, an attacker can set up a similar system that
sends imitated legitimate messages, but with malicious content. A more detailed
introduction can be found in the literature [180].

A similar case are large events where participants are open to receive additional
information. Some successful outbreaks of the Cabir worm are documented in
Europe during sports events and concerts [13].

3.5.4 Security & Usability

This section introduces the research field “security & usability” and proposes an
easy-to-use interface to security afterwards.

3.5 “Layer 8”: The User as Attack Vector 73

3.5.4.1 The Research Field

Security & usability is a research field that came out of research on human-computer
interaction (HCI). It started with the famous study by Whitten and Tygar in 1999
[230] and gained some attention in the following years [39, 83]. User studies
regularly find out that security mechanisms are not understood or used correctly by
the majority of their users [230, 80, 81, 82]. Moreover, some authors propose to
embed security in products [118] and in the development process [92] rather than
having it stand-alone. Usability heuristics have been developed by Nielsen [154]
and Shneiderman and Plaisant [198]. They are a good starting point for usability
of security solutions.

3.5.4.2 Interface Proposal

The following interface proposal is based on the results of user studies [161],
especially that participants were more willing to take responsibility for their own
security when given the means that would enable them to do this, e.g., security set-
tings. Additionally, the participants suggested that their phone should be equipped
with rudimentary security aids, similar to an antivirus, or to have an “overarching”
security setting that they could configure if required.

The proposed interface uses the idea of a personal security profile [19], where
the user only has to answer a few simple questions to define his profile. These
questions should be self-explanatory and understandable, so that the user can set
the answers according to his protection goals. This establishes a direct means for
the user to communicate his security needs.

This simple interface complies with two of Nielsen’s principles for user interface
design [154]: “Match between system and the real world: The system should speak
the users’ language, with words, phrases and concepts familiar to the user, rather
than system-oriented terms. [. . .]” And: “User control and freedom”.

Possible questions are shown in Table 3.1. This interface is very simple and
the questions are completely focused on the user’s protection goals. Therefore,
the system will provide a baseline of protection in every possible situation. It
might even continue to be useful when sophisticated policy systems fail because of
complexity and unpredicted security conditions, both of them being a major danger
when the transition is made from example policies to real-world application.

The first setting of Table 3.1 is a virus scan within the network of all files that are
downloaded to the device. This setting may reduce the subjective feeling of privacy
for the user, but it has the benefit of increased security.

74 STRUCTURING MOBILE DEVICE ATTACK VECTORS

Table 3.1: Personal Security Profile
Option Settings
Allow anti-virus scan by operator yes/no
Limit data traffic yes/no/# per time unit
Limit number of allowed messages yes/no/# per time unit
Restrict sending of messages to messaging application yes/no
Restrict access to personal data yes/no

The second and third row allow to specify upper limits for data traffic and the
number of messages. When the limit is reached, the user will be informed and
every new event of the corresponding type has to be confirmed explicitly. This
leads to the definition of a third problem of usable security on mobile devices.

Paradox of Security mechanisms: Even when the restrictions “number of
events per time unit” are commonly used, it can be expected that attacks try to
create less malicious events per time unit for not triggering the security restrictions.
If they are successful with this strategy, the only remaining means for detecting
monetary damage is the monthly invoice. Or the user must monitor his sensitive
assets more often than once a month. A possible solution could be that the MNO
sends an SMS with this information on a weekly basis.

The fourth row defines that only the messaging application is allowed to send
messages without user confirmation. Whenever an application, be it a J2ME MIDlet
or a Web browser widget, tries to access this central function for creating costs, the
user will be warned before the costs are created. The problems of implementing
such a solution are vulnerabilities in the implementation. Even if sending messages
is restricted, an exploitable messaging application undermines this security setting.
This is the same problem as for signed applications or operating system modules.

The last row considers the problem of preventing illegitimate information flow.
This is a difficult problem that is currently being attacked [152]. Of course, this
problem cannot be solved with this simple setting from a theoretical point of
view, because it is easily possible that a legitimate program accesses the data and
forwards it to an unsecured location where a malicious program accesses the data.
However, this solution should work for the majority of mobile malicious software.

This interface proposal leaves room for extensions. Advanced users could be sup-
plied with additional log entries, for example, a trace of sent messages, regardless
whether the messaging application sent them or another program by using a system
call.

3.6 Conclusion 75

As a conclusion, whenever mobile device security incidents start to increase, it is
not the minority of security-aware users that will define the view on these incidents,
but the majority of the common users. It is more useful then to have a simple
solution in place that will prevent or remedy the majority of possible damage
instead of having several sophisticated security mechanisms in place that are not
understood and therefore not used. The design of a policy enforcer for the proposed
interface will be presented in Section 6.2.

3.6 Conclusion

This chapter contributed to the question how to shape the research topic mobile
device security by presenting incidents of mobile device security of the recent
years. It showed that the increasing functionality of mobile devices (leading to
smartphones) brings more possible attack vectors to them. It presented in detail
the operational side of mobile device security, that is, vulnerabilities exploitable by
mobile malware.

The chapter contributed an attack model with four attack classes (hardware-centric,
device-independent, software-centric, user layer), two of them exploitable by
mobile malware: software-centric attacks and user layer attacks.

Of special importance is the user of mobile devices. The average user does not
have extensive knowledge of security. Even if his security-awareness should be
increased by media coverage of security incidents like worm or virus outbreaks,
it seems questionable if he is able to differentiate between different classes of
security products to use them correctly. An additional proposition is that even if
the user is security-aware, his will to get into the depths of security research and
products might be close to zero. Therefore, it can reasonably be assumed that the
common user of mobile devices will never become perfectly security-aware and
never become able to use sophisticated security mechanisms. Especially techniques
of social engineering can be expected to be successfully applicable for an indefinite
amount of time. This is an inadequate situation, because security issues threaten
every user of mobile devices and not just the few security-proficient users.

Because of these facts, it is proposed that most of the users need a solution that
is embedded into the normal handling of the used device rather than a separate
solution. Together with the specifics of mobile device security in Section 2.1.3, this
chapter is the basis for the technical solutions of this thesis beginning in Chapter 5.

76 STRUCTURING MOBILE DEVICE ATTACK VECTORS

Chapter 4

Structuring Mobile Malicious
Software

This thesis on smartphone security sees mobile malicious software (malware) as
the main attacker model. The previous chapter presented the attack vectors that
mobile malware is able use. This chapter surveys the current state of real-world
examples of mobile malware. It will show that mobile malware is not a topic of
the same importance as it is in the common computer world today. Even though,
malware for mobile devices has been a topic of increasing importance since the
middle of 2004, when the worm Cabir for Symbian OS and the virus Dust for
Windows Mobile appeared.

Since their first appearance, mobile malicious software has been a topic of scientific
investigation (Section 2.3.2) and of mainstream media coverage [226]. Section 4.1
presents notable examples of mobile malware together with their main functionality,
with the goal of showing the status of what has to be defended against today.

This chapter contributes a coherent presentation of mobile malware for the time of
this writing in August 2009. It extends related presentations because the description
are presented with regard to portability of the malware. It shows that even if most
of today’s mobile malware targets Symbian OS, most of these pieces of malware
are portable to other mobile operating systems.

General properties of mobile malware are presented in the two following sections.
The behavior of a malware sample is categorized into the three phases infection,
malicious functionality, and spreading in Section 4.2. Finally, Section 4.3 discusses
the portability of today’s malware.

78 STRUCTURING MOBILE MALICIOUS SOFTWARE

4.1 Known Mobile Malware

Figure 2.5 shows the absolute numbers of mobile malware samples for different
operating systems over the years. It ends in 2006, but the trend is visible: almost
all malware targets the Symbian operating system and only few malware targets
the J2ME application framework or Windows Mobile (“Pocket PC”). Complete
and current lists of mobile malware names including descriptions are published by
the anti-virus companies (e.g., F-Secure, Kaspersky [221]) and by other authors
in the surveys of Section 2.3.2. Therefore, this section does not want to cover
all of today’s mobile malware. Instead, this section highlights aspects of the
presented mobile malware that are important in the context of this thesis. Table 4.1
summarizes the following enumeration of mobile malware and is ordered by the
year of its first appearance.

Section 4.1.1 lists mobile malware for Windows Mobile, equivalently Section 4.1.2
for Symbian OS. Section 4.1.3 presents mobile malware for the application frame-
work J2ME. These samples can run on any mobile operating system that imple-
ments a J2ME runtime environment.

4.1.1 Windows Type of Operating Systems

This section contains descriptions of malware for the Windows type of operating
systems. Besides mobile malware targeting Windows Mobile it includes some
malware running on the desktop variants of the Windows operating system. The
connection of this cross-platform malware will be analyzed in more detail in
Section 4.3. Section 5.3.3 will give a detailed dynamic analysis of the Dust and Pm-
cryptic malware samples with our dynamic software analysis tool MobileSandbox,
which will reveal a more complete view of their functionality.

Dust. Dust appeared in the year 2004 and is the first virus for Windows Mobile.
It is a proof-of-concept file infector virus, which asks the user for permission to
perform its malicious functions. If allowed to do so, it will infect all executable
files in the root directory of the mobile device. It was subject to a detailed static
analysis shortly after its appearance [173].

Brador. The malware Brador was found shortly after Dust. It is a backdoor
program, which “copies itself to the startup folder, mails the IP address of the
PDA to the backdoor author and starts listening commands on a TCP port” [56]. A
detailed analysis can be found in the literature [174].

4.1 Known Mobile Malware 79

Table 4.1: Known Mobile Malware (ordered by year)
Name Type Year Operating System
Dust virus 2004 Windows Mobile
Brador backdoor 2004 Windows Mobile
Cabir worm 2004 Symbian OS
Mosquitos trojan 2004 Symbian OS
Skulls trojan 2004 Symbian OS
MetalGear trojan 2004 Symbian OS
Lasco virus 2005 Symbian OS
Locknut trojan 2005 Symbian OS
Feakk worm 2005 Symbian OS
Commwarrior worm 2005 Symbian OS
Cardblock virus 2005 Symbian OS
CardTrap virus 2005 Symbian OS
Blankfont trojan 2005 Symbian OS
Crossover virus 2006 Dotnet
Letum worm 2006 Dotnet
Fontal trojan 2006 Symbian OS
Mobler worm 2006 Symbian OS
Redbrowser trojan 2006 J2ME
Wesber trojan 2006 J2ME
FlexiSpy spyware 2006 “multi OS” (see text)
Acallno spyware 2006 Symbian OS
Beselo worm 2007 Symbian OS
InfoJack trojan 2008 Dotnet
Pmcryptic worm 2008 Windows Mobile
Yxe worm 2009 Symbian OS

80 STRUCTURING MOBILE MALICIOUS SOFTWARE

Crossover. The Crossover virus is an example of a malware that is able to cross
the borders of a platform. It achieves this by using the intermediate bytecode
language of the Dotnet application framework (cf. Section 2.2.2.6). It is able to run
on common Windows systems and on Windows Mobile systems. More information
on cross-platform malware will be given in Section 4.3.

Crossover has different operation modes for the different platforms, the functional-
ity is chosen by using a runtime query API of Dotnet. In case of Windows Mobile,
the process waits for an ActiveSync connection and in case of an established
connection, copies itself on the connected computer and inserts itself as auto start
program. In case of common Windows it is vice versa. A more detailed analysis
can be found in the literature [171].

Letum. Another example for Dotnet is the worm Letum. It was discovered in
2006 and spreads via e-mail and usenet technology [206]. This worm is written
for the Dotnet runtime environment, and therefore it can be executed on mobile
devices running Windows Mobile. It is unclear, whether the worm is able to
execute as intended on mobile devices, but because of the differences between the
Dotnet framework and the Dotnet Compact Framework, it can be assumed that the
malicious functionality of the worm is restricted to common Windows systems. As
an example, the worm inserts itself in the auto start part of the registry with a path
containing the “C:” device. This alone renders the worm useless in an unmodified
form on Windows Mobile devices.

InfoJack (Infomeiti). The InfoJack malware was discovered as the fourth Win-
dows Mobile malware in February 2008 [70]. It is a trojan that comes in two parts.
The first part spreads on the devices by adding itself to installation packages of
other software. In case of an available Internet connection, the malware will con-
nect itself to a home server and download the second part. It is a noteworthy feature
of InfoJack that it disables security settings in the registry of the Windows Mobile
device, enabling software to be installed without security warnings or restrictions,
a special vulnerability of the Windows Mobile operating system, which we will
use in our own proof-of-concept worm in Section 6.1. Therefore, InfoJack is not
portable to other mobile operating systems. The InfoJack malware is described in
more detail in the literature [48, Chapter 10].

Pmcryptic. The Pmcryptic worm was discovered in November 2008 [207]. It
spreads via memory cards and its malicious functionality is dialing a premium-rate
phone number. Its infection functionality comprises hiding directories, adding files,
and modifying the registry. Dialing phone numbers and spreading on memory

4.1 Known Mobile Malware 81

cards is portable behavior. However, as it is unlikely that other operating systems
allow such a program to modify settings of the system in the registry, this malware
is seen as not portable.

4.1.2 Symbian OS

Cabir. The first version of the Cabir malware family was released in June 2004
as the first malware for Symbian OS, written as a proof-of-concept worm [205]. It
was developed as a Trojan horse within a Symbian OS security package. It spreads
over the Bluetooth wireless connection. Many variants have been developed (F-
Secure counts more than 30 variants [48]), because the source code was published
in December 2004. The original Cabir sample adds itself as an auto start program,
therefore it is started during every device boot process. Then it activates Bluetooth
and starts scanning for another device in proximity. When a device was found, the
malware sends its executable file over Bluetooth. No vulnerability is exploited, the
targeted victim has to confirm that he is willing to receive the file. The original
sample only sends its executable file out once for every boot process of the infected
device, some of the succeeding variants implement more aggressive spreading
mechanisms, more targeted to causing real damage.

One of the noteworthy variants of Cabir is the malware Mabir. It keeps the
Cabir functionality of spreading via Bluetooth, but adds spreading via MMS by
listening for incoming messages (SMS, MMS). Whenever the device receives
a message, Mabir replies with an infected MMS. This procedure exploits the
increased acceptance ratios when a user expects the owner of the infected device to
send a message (cf. Section 3.5).

Mosquitos. The Mosquitos trojan (found in August 2004) was embedded into a
game of the same name [134]. It sent out SMS messages to a premium-rate number,
creating costs at the infected device. The creator of this trojan functionality turned
out to be the developing company itself with the goal to embed a copy protection
into the game. The copy protection did not work correctly in all cases and affected
legitimate owners of the game. Therefore, this piece of software fulfilled the
classification criteria for malware. The developing company removed the copy
protection from later versions of the game.

Skulls. The Skulls trojan was found in November 2004 [58]. It is a special
malware in two regards. First, it is bound to the Symbian operating system,
because it uses a special vulnerability. The second point is the vulnerability itself:

82 STRUCTURING MOBILE MALICIOUS SOFTWARE

in Symbian OS it is possible to overwrite system files, and overwritten system files
influence the stability of the system. Even though the system files are in read-only
memory, Symbian OS will disregard these files, if it finds a file with the same name
on the (writable) device C:\ (cf. Section 2.2.4).

The Skulls trojan exploited this vulnerability to overwrite the menu icon of every
installed application to a picture of skulls and crossbones. This action sufficed to
render the system applications useless, the only remaining functionality was using
the device for phone calls. Its malicious functionality, compared to PC viruses, was
summarized as: “In terms of damage caused and technical sophistication, viruses
from this class are analogous to DOS file viruses which executed the command
‘format c:\”’ [197]. This demonstrates the early state of mobile malware (as of
2004, but valid for the year 2009 as well): malware does not aim at generating
money for criminal subjects like the majority of common computer malware today,
but is more proof-of-concept, even in terms of malicious functionality.

MetalGear (MGDropper). This trojan from December 2004 uses the same
Symbian OS vulnerability as Skulls to disable applications, especially targeting
virus scanners [57]. Additionally, it installs the Cabir worm on the mobile device.
Because of using the same Symbian OS specific vulnerability as Skulls, MetalGear
is not easily portable to other operating systems either (see Section 4.3).

Lasco. Lasco is a file infector virus. It searches all installation packages on the
mobile device and adds itself as a part of the installation. Whenever an installation
package was transferred to another Symbian OS device and installed afterwards, the
virus succeeds in its spreading functionality. To this regard, Lasco is the Symbian
OS equivalent to InfoJack on Windows Mobile, but without the registry change,
which is specific for Windows Mobile.

Locknut (Gavno). This trojan was discovered in February 2005 [61]. It uses
another vulnerability of the Symbian operating system: it creates entries for a
new application in the application directory. The files only contain text instead
of application information. Despite their invalid format, Symbian OS tried to
execute the files when advised to do so, leading to a system freeze [197]. Because
of the file’s position within the directory structure (auto start folder), the device
tried to execute it during every boot process. This led to a denial-of-service of the
complete device, because it was no longer able to boot. Like MetalGear, Locknut
also dropped a version of the Cabir worm.

4.1 Known Mobile Malware 83

Feakk. Feakk is a proof-of-concept malware that has been developed as a re-
search project. It sends SMS messages to all contacts in the address book, if it finds
an address book entry named “HACKME”. The most interesting thing about it is
the timeline of events. It was developed and presented in March 2005 [93], and
its source code was released in October 2006 [227]. However, only in April 2007
anti-virus company F-Secure added this malware to its mobile malware list [68]. It
is unclear, with which date the Feakk malware found its way into the “malware
curve” (cf. Figure 2.5). In case of the last date (March 2007) this curve would be
something like a self-fulfilling prophecy: when more work is put into finding new
malware samples, especially when also adding proof-of-concept malware to the
lists, then a rising number of known malware samples is a natural phenomenon.

Commwarrior. The Commwarrior worm appeared in March 2005 [55]. It uses
the two spreading vectors Bluetooth and MMS. Spreading via Bluetooth was
already common at that time, but it was the first piece of malware spreading
via MMS. Once installed, the malware permanently scans for other devices in
Bluetooth range, but leaving the device’s Bluetooth indicator switched off [155].
The malware uses social engineering by using only the device’s address book for
choosing its spreading targets.

Commwarrior only replicates itself and has no malicious functionality. Because of
its spreading vector, the activity of this worm could be measured within the mobile
networks. Its main activity was between the years 2005 and 2006 [195].

Cardblock. The Cardblock malware was discovered in 2005 [59]. Besides
deleting several files, it encrypts the storage card of the device with a random
password, leading to a loss of data. This type of malware can be extended to a
business model for malware authors by setting a deterministic recovery password
and selling the password to the victims. This development would be equivalent
to common computer malware (e.g., the Gpcode malware [112]). Regarding
portability, this malware uses standard functionality to access the storage card.
Therefore, it is portable to other operating systems.

CardTrap. The CardTrap malware of September 2005 is an example of malware
for different target operating systems [60]. The Symbian OS part of the malware
copies a version of a Windows worm (Wukill) on the card, which will be executed
by the auto start feature of Windows operating systems for removable storage
cards. The mobile device part of the malware is portable, as only functionality
for accessing the storage card is used. The auto start functionality of the dropped

84 STRUCTURING MOBILE MALICIOUS SOFTWARE

Windows malware is not portable in any case. However, this is not part of the
portability thoughts.

Fontal, Blankfont. These trojan pieces of malware cause a denial-of-service:
for Fontal, the device will no longer start when it is rebooted [63]. For Blankfont,
the device will start, but it will not display any font [67]. Both effects are due to a
replacement of system font files with invalid files: font files, but from a different
language version of the operating system. These two pieces of malware exploit
the same vulnerability of Symbian OS as Locknut and MetalGear: the ability to
replace system files in ROM by user-given files of arbitrary content.

Mobler. Mobler is a cross-platform malware targeting Symbian OS and the PC
variants of the Windows operating system. As the formats of executable files
of these two systems differ, it uses a dropping mechanism (see Section 4.3) for
crossing the system borders. The Symbian OS executable has two main functions.
First, it tries to copy files on the removable storage card. These files target the auto
start mechanism of the Windows operating system for removable storage cards
[216]. Second, it overwrites a number of files for disabling their corresponding
applications, e.g., virus scanners. Besides the malicious behavior, the Windows part
drops a Symbian OS installation package into different directories of the Windows
system, most notably into removable drives [217].

When considering portability, the dropping mechanism is portable. However, it
is difficult to say whether all other operating systems allow the overwriting of
application files and whether they support an auto start mechanism. Therefore,
Mobler is seen as not portable.

Acallno (GSM surveillance phone). Acallno is an example of the spyware kind
of malware that aim at gathering information about the mobile device user, contrary
to creating revenue for the attacker or damaging the user’s data on the device.
Acallno is a commercial software that is classified by the anti-virus companies
as malware, for the first time in 2006. It sends copies of incoming and outgoing
SMS messages. Acallno has two interesting properties: it hides itself from the user
and it is bound to only one mobile phone per sample, identified by the IMEI [64].
Associated with this piece of malware name are a number of commercial mobile
phone spying programs for listening to phone calls, sending location information,
and informing about phone restarts or changes of the MNO smartcard [203].

The most interesting function is the SMS forwarding functionality, because it
can lead to financial loss besides being spied. If the user uses mobile banking

4.1 Known Mobile Malware 85

with transaction numbers (TANs) or other mobile payment schemes sent out via
SMS/MMS, an attacker might be able to get the message and use the TAN before
the legitimate user does so. This way, an attack vector leading to financial loss is
enabled, which is different from the common ways to lose money with the mobile
phone.

Considering portability, the message forwarding functionality is likely to be avail-
able on all operating systems. However, the hiding functionality is likely to be not
portable. This assumption is supported by the fact that the spyware is only offered
for some Symbian OS devices.

FlexiSpy. FlexiSpy is spyware and a commercial service like Acallno. It started
as a Symbian OS program. Currently, it is also available with different properties
for Windows Mobile, Blackberry, and the iPhone [220]. Anti-virus companies
categorized it as mobile malware shortly before Acallno [62]. It was chosen as an
investigation subject for a detailed static analysis in the literature [48, Chapter 10].

Most interesting about this software is its signature from the Symbian Signed
program. Even though it was classified as malicious software, the installation
package received a signature of the Symbian Signed program, enabling messaging
and phone functions without user acknowledgment [228].

Beselo. The Beselo worm appeared in December 2007, and as a malware family
it is said to be “very similar to the Commwarrior family but contains enough
differences in the code base and behavior that it is counted as separate family” [69].
Beselo does not have malicious functionality besides its cost-creating spreading
functionality via MMS, but it has two noteworthy attributes. First, it is a new piece
of malware to appear after some months without the discovery of a new mobile
malware. Media attention of the mobile malware threat had decreased at this time,
having its peak in the year 2006 [14].

Second, it uses another functionality of the Symbian operating system. Its exe-
cutable does not have the extension of a Symbian OS installer package (SIS),
but comes with media file extensions (MP3, JPG). Together with appealing file
names, it tries to convince the user to open the file. It used a functionality of the
Symbian OS media file handler, which recognized the file as an installer package
despite its extension. Therefore, the user will see the common installation prompts
(cf. Section 2.2.4). Inexperienced users could fail to notice that media files usually
do not need to be installed.

86 STRUCTURING MOBILE MALICIOUS SOFTWARE

Yxe. A recent addition of the year 2009 is the worm Yxe [72]. Its new contri-
bution to the mobile malware world is its spreading vector short message service
(SMS). The message content consists of an appealing message and of the URL of
a helper program that uses the address book to send the helper program’s address
to all contacts in the address book. This malware sample uses trust between mes-
sage sender and receiver together with an appealing message. Thus, it is another
example of malware using social engineering to trick the users into overriding
all technical security mechanisms. The malware uses standard techniques like
accessing the contact list and sending text messages. Therefore, the malware can
be ported to other operating systems.

As an additional aspect, the program has a valid signature of the Symbian Signed
program. That means, the operating system will not ask the user for confirmation
before the malware sends its spreading messages. The signing certificate has
been revoked, so this malware is a reason to start focusing the currently not used
certificate revocation processes (OCSP, cf. Section 2.2.4). In July 2009, a new
variant (named Yxe.D) was found that used another vendor name for the signature,
thus increasing the number of Symbian Signed approved malware vendors [72].

4.1.3 Java Platform, Micro Edition (J2ME)

A J2ME malware sample has the advantage of being able to run on almost any
mobile device at the time of this writing. It is only restricted, if it exploits imple-
mentation vulnerabilities of a particular virtual machine. As shown in Section 2.2.2,
J2ME offers most of the necessary functionality that today’s malware for other
operating systems uses: messaging functions, address book access, networking
functions.

No J2ME malware had existed until the year 2006 (cf. Figure 2.5). The two samples
Redbrowser and Wesber are described shortly here. In 2008, Kaspersky reported
an increase in Trojan horses for J2ME counting fifty different samples with almost
the same functionality: sending short messages to premium numbers [87]. Despite
the total number of J2ME malware samples increasing, there are only few malware
families for J2ME.

Redbrowser. The Redbrowser trojan appeared in March 2006. It promises to be
a browser (for WAP, the Wireless Application Protocol) that enables free browsing
by using free SMS. After the program is started, its only function will be to
continuously send SMS messages [65]. The security architecture of J2ME will
ask the user for confirmation, because the MIDlet is not signed. The user might

4.2 Phases of Malware 87

assume that these messages are free of charge. Due to the social engineering, the
user is likely to approve the confirmation requests before an SMS is sent.

Redbrowser is a good example that technical security mechanisms fail when the
user is able and willing to override them (cf. Section 3.5). The attacked user is
likely to approve at least the first few confirmation requests before he might get
suspicious.

Wesber. The Wesber trojan of September 2006 is similar to Redbrowser [66]. It
is only worthwhile to mention, because it is the second sample of J2ME malware.
Like Redbrowser, it sends out SMS messages to a premium-rate number. The
messages are sent without country prefix and the premium-rate number was only
valid in Russia, so the trojan cannot cause financial loss outside of Russian mobile
networks. Neither does it employ social engineering, nor does it possess any other
noteworthy features.

4.2 Phases of Malware

After describing mobile malware examples in the previous section, this section
now abstracts from specific examples. The main phases of malware are seen here
as infection of the device, spreading, and malicious functionality. These are mainly
the phases of a self-replicating worm. In general, a taxonomy of malware is difficult
[12] and the phases trigger and making itself permanent could be added [94], while
at the same time the phase spreading can be combined with the phase infection,
which is most useful for viruses. The chosen subdivision of this section is more
general and is effective for the proof-of-concept malware in Section 6.1.

4.2.1 Infection

Infection is the phase when the malware infiltrates the device. Chapter 3 listed
attack vectors, e.g., a technical vulnerability of the device or a social engineering
attack.

Malware infection for such devices can be categorized according to the degree of
user interaction that is necessary for the malware to infect the system. This results
in four distinct classes of decreasing required user interaction:

1. Explicit permission. The most benign interaction is asking the user, whether
it is allowed to infect the device, clearly indicating its potential malicious
behavior. This is the typical behavior of proof-of-concept malware.

88 STRUCTURING MOBILE MALICIOUS SOFTWARE

2. Implicit permission. The next category are the standard questions at instal-
lation procedures for (unsigned) software. The user might be accustomed
to them because of previously performed installation procedures. This is
the standard way how Trojan horses get installed, usually by seducing the
user with social engineering techniques, so that he really wants to install the
offered software (e.g., with a text like: “Free World Cup After-Party Ticket -
just install”).

3. Common interaction. The third category is an action that is common behavior
when using a mobile phone. An example is the MMS buffer overflow of
Section 3.4.1.2, which only requires the user to open the MMS message.

4. No interaction. The most dangerous type of malware is a smartphone worm,
which is able to infect a device without any user interaction. This would be
the worst case concerning mobile phone security, but as of today, no such
type of malware is known.

4.2.2 Malicious Functionality

Once on the device, the malware can commit its malicious actions. The possibilities
for these actions under Windows Mobile comprise the entire system functionality
[20]. For Symbian OS since version 9 with the Platform Security Architecture
it is assumed to be more difficult for malware to perform malicious actions on
the device, as the sensitive APIs are protected by the Symbian OS capabilities
(cf. Section 2.2.4). However, if a signature of the Symbian Signed program can
be obtained (like the spyware programs of Section 4.1.2), the protection of the
PSA is undermined in some way. More formal treatments of possible malicious
functionality can be found in the literature: from a scientific point of view [137]
and from a mobile network operator point of view [166].

Malicious functionality is subdivided here into monetary damage, data damage,
and hidden damage. Real-world incarnations of monetary damage and data damage
have been given in the mobile malware descriptions of Section 4.1.

4.2.2.1 Monetary Damage

Monetary damage is the malicious functionality that the common user will notice
in any case, because he has to pay for it. Other malicious functionality like stolen
personal data, the use of the device as mobile botnet, or even denial-of-service
might go mainly unnoticed: in case of a denial-of-service attack because the attack

4.2 Phases of Malware 89

might be attributed to a general failure of the device. Therefore, monetary damage
is a malicious functionality that deserves the highest attention.

The most common functionality of current mobile malware is sending messages
to premium-rate SMS numbers, because the malware author can earn money with
this procedure. The same is true for dialing premium-rate phone numbers. As
most current malware uses the specified API for accessing this functionality, a
security-conscious user can prevent monetary damage most of the times.

An interesting consideration are “business models” for malicious software authors.
Services like premium-rate SMS/phone numbers are not anonymous, because they
must be registered with the mobile network operator. Calling phone numbers
in foreign countries might be an option for increased anonymity and might be
feasible by abusing the way how today’s billing models are constructed. However,
the possibilities are finite and calling these numbers can be prevented with an
appropriate security policy. Such a mechanism is provided by our solution in
Section 6.2.

4.2.2.2 Data Damage

Data damage can be subdivided into data theft and data destruction. Data on the
mobile device can comprise e-mails from the e-mail software or personal data like
short messages, pictures, video and audio recordings, and in general the internal
file system or memory cards with all personal or possibly corporate data. Data
theft will try to get hold of this data.

Data destruction is the simplest way for a malware author to show that he is able
to do something malicious. Besides the data types from above, also device con-
figuration settings or specific parts of the file system can be targeted for advanced
denial-of-service attacks like a non-reacting user interface or a device that is unable
to boot properly.

4.2.2.3 Hidden Damage

Most interesting is malicious functionality that only makes sense in the mobile
world, because the mobile device is carried with its owner most of the time.
This functionality is intended to be more hidden from the victim than currently
implemented denial-of-service or data destruction functionality.

There have been thoughts about advanced versions of spyware, e.g., audio recording
software, backdoors into the corporate network [43], and video-capturing software

90 STRUCTURING MOBILE MALICIOUS SOFTWARE

[234]. Also, location tracking is possible when a malware is able to access and
forward location information (e.g., GPS signal or cell identification).

A transfer of common malicious functionality is the use of mobile devices as bots
in botnets. The limited data network bandwidth is acceptable for most botnet
functionality. Sending unsolicited bulk e-mails is possible and even denial-of-
service attacks, because small individual bandwidths quickly accumulate to a large
overall bandwidth. These botnets could be used in the traditional way against
computers in the Internet or against the infrastructure of the MNO.

4.2.3 Spreading

In the spreading phase, a malware wants to distribute itself. It has to reduce the huge
number of possible targets in the chosen spreading channel to a feasible selection.
Channels for spreading are local connections like Bluetooth or wireless LAN,
remote connections over the phone network (phone numbers), remote connections
over the data network (IP addresses), and e-mail.

Spreading in the wireless LAN is easy for devices running Windows Mobile, as
they announce themselves when connecting to the network. For other devices it
is necessary to actively scan for new targets. The different characteristics of the
spreading process are discussed by Mickens and Noble [131], who propose an
extension of the commonly used Kephart-White model for modeling spreading
between locally related devices (WLAN or Bluetooth). Other work is based on this
new model, e.g., Zheng et al. [236].

When the malware uses telephone numbers as targets (e.g., when replicating via
MMS), a reasonable choice is using the address book of the infected device. This
strategy has a social engineering component, because the recipient knows the
sender of the message and is more willing to open the message.

4.3 Mobile Malware Portability

The term “portability” has two dimensions, answering two important questions:
Which properties does malware need to possess for spreading on different operating
systems (Section 4.3.1)? And can mobile malware be ported between different
mobile operating systems (Section 4.3.2)?

4.3 Mobile Malware Portability 91

CardTrap
Mobler

(Symbian OS and Win32 Executables)
(Symbian OS and Win32 Executables)

Examples:

RedBrowser

Wesber

J2ME
Mobile
Devices

Common
Computers

Domain: Domain:

Windows Mobile

Symbian OS

Win32

Cross−Platform Malware Type 1

Crossover
Letum

Dotnet

Cross−Platform Malware Type 2

Figure 4.1: Cross-Platform Malware

4.3.1 Cross-Platform Malware

The topic of cross-platform malware is illustrated in Figure 4.1, answering the im-
portant question, which properties malware needs to spread on different platforms.
This question has two answers, leading to two types of cross-platform malware:
the first type of cross-platform malware uses application frameworks that have
runtime environments on different platforms. The second type carries executables
of different platforms and spreads them when it is able to use a data connection to
a suitable target operating system.

4.3.1.1 Platforms

The term platform is used here in the common definition as “an environment
that allows software to run”. This definition used to mean a “hardware platform”
with the corresponding machine code format, but the definition is extended with
application frameworks (see below). An executable belongs to a platform, if the
runtime environment of the platform is able to interpret the binary format of the

92 STRUCTURING MOBILE MALICIOUS SOFTWARE

executable. That means for the upcoming two cross-platform malware types:

• The Windows EXE container format is not specific to a platform (e.g., Win-
dows with Intel CPU, Windows Mobile with ARM CPU), but the contained
machine code instructions are. Therefore, common computer EXE files
cannot be executed on Windows Mobile, despite their common suffix.

• Application Frameworks provide an intermediary format (“bytecode lan-
guage”, cf. Section 2.2.2). Therefore, the executables can be interpreted on
any hardware platform that provides a converter from bytecode language to
the native machine code of the hardware. Examples are J2ME and Dotnet.
Application Frameworks shift the boundaries of the traditional platform
definition.

4.3.1.2 Cross-Platform Malware Type 1

Type 1 of cross-platform malware uses application frameworks that have runtime
environments on different platforms. Examples are known for the Java Platform,
Micro Edition (J2ME), and for the Dotnet environment. Not included in this type
is malware exploiting a vulnerability of the virtual machine. Despite their ability
to be executed in all runtime environments, the malicious functionality would be
specific to a platform.

The classical J2ME malware is named Wesber and Redbrowser (cf. Section 4.1.3).
These malware samples only use the specified programming interface and com-
pletely rely on social engineering. The malware Crossover (cf. Section 4.1.1) uses
the Dotnet application framework. As Figure 4.1 shows, it crosses the platform
borders between common computers running the Windows operating system and
mobile devices running the Windows Mobile operating system.

The portability is restricted by the availability of libraries. Even though the appli-
cation frameworks share the same binary format, they provide different libraries
for programs. This has been introduced for J2ME in Section 2.2.2.2, the additional
libraries could be the File Access API (JSR 75) and the Bluetooth API (JSR 82).
As this diversity also affects “normal” software, it can be expected that initiatives
like MSA (JSR 248/249) will provide a common runtime environment for J2ME
software—and also for malware—in the future. Libraries of the Dotnet environ-
ment have been introduced in Section 2.2.2.6. Of special concern is the Smart
Device Framework that tries to add the library functions of common Windows
systems to mobile devices. Crossover circumvents the problem by using a runtime
query to choose platform-specific functionality, this way having platform-specific
code in a platform-independent container.

4.3 Mobile Malware Portability 93

4.3.1.3 Cross-Platform Malware Type 2

Type 2 of cross-platform malware carries executables of different platforms and
spreads them when it is able to use a data connection to a suitable target operating
system.

Examples are Cardtrap and Mobler (cf. Section 4.1.2). This type of cross-platform
malware can theoretically cross any platform borders, because it uses a dropper
functionality to deliver an executable that fits to the target operating system. In
practice, this type of malware needs a connection between the two operating
systems to use as an attack vector. Memory cards can be used for this purpose
or other file transmitting functionality like synchronization software to which the
malware has access.

Most of today’s cross-platform malware type 2 uses existing mobile malware
samples as dropped malware and adds a custom wrapper to them. An example is
the Cardtrap virus that carries the Windows worm Wukill.

4.3.2 Portability between Mobile Operating Systems

A second dimension of mobile malware portability is the dependency of current
mobile malware on a specific mobile operating system. Most of today’s mobile
malware targets the Symbian operating system (cf. Figure 2.5), so it must be
asked, if Symbian OS is less secure than the other operating systems. Therefore,
this section contributes to the question, if the bias towards Symbian OS, which
is illustrated in Figure 2.5, can be traced back to increased weaknesses of this
operating system.

4.3.2.1 Common API

The question of portability between different mobile operating systems is the
availability of relevant system calls. So the question is: what are the relevant
system calls for mobile malware? An important functionality (cf. Section 4.2)
is the spreading and the damaging mechanism. Both of these can be realized by
sending MMS messages (e.g., realized by the Commwarrior worm). Spreading and
making itself permanent on the device can be done by writing to the file system or
the external memory card. It can reasonably be assumed for all this functionality to
be accessible via using system calls by programs written for the operating system.
As a subset of all programs, also malware is able to use these system calls.

Exceptions are Skulls, Locknut, or Blankfont, which are not portable. They all
use the same vulnerability of the Symbian operating system. InfoJack uses a

94 STRUCTURING MOBILE MALICIOUS SOFTWARE

Table 4.2: Mobile Malware Portability
operating system (OS) not portable portable to other

mobile OS
Windows Mobile InfoJack

Pmcryptic
Dust
Brador

Symbian OS Skulls
MetalGear
Locknut
Blankfont
Fontal
Mobler
Acallno
Beselo

Cabir
Mosquitos
Lasco
Feakk
Commwarrior
Cardblock
CardTrap
FlexiSpy
Yxe

J2ME - Redbrowser
Wesber

vulnerability of the Windows Mobile registry that allows software to change the
security settings for software installation themselves.

The portability of Commwarrior as an example will be presented in detail sub-
sequently. Table 4.2 shows the portability of the mobile malware that has been
introduced in Section 4.1.

4.3.2.2 Case Study Commwarrior

The Commwarrior worm for the Symbian operating system used MMS to spread
its binary to other devices (cf. Section 4.1.2). It is an interesting question, if this
functionality can be transferred to other operating systems. Especially Windows
Mobile was of interest, because its native MMS composer software does not allow
executables or installation packages to be added to the MMS message.

Our tests with a virtual MMS system setup (technically based on Mulliner and
Vigna [147]) revealed: it is possible to send executables and installation packages
via MMS messages to other Windows Mobile devices. The file suffix is most
relevant for the MMS handling application: it is only recognized as executable,
when the suffix is either EXE or CAB. Additionally, the MIME type has to be of
“application/*”, where the asterisk is a true wild card. These facts can contribute to
the design of filters in the mobile networks.

4.4 Conclusion 95

4.4 Conclusion

This chapter contributed to the definition of the investigation subject mobile mal-
ware. Mobile malware is not a topic of the same importance as it is in the common
computer world today, but has received continuous interest since the first version
of modern mobile malware in the year 2004. The chapter listed surveys of mobile
malware and presented notable examples of mobile malware together with their
main functionality, with the goal of showing the status of what has to be defended
against today.

Concerning portability of today’s available mobile malware, it can be stated that
most of today’s mobile malware does not use vulnerabilities of its host operating
system. Therefore, the dominance of Symbian OS malware in current statistics is
not due to technical and security aspects.

An interesting dimension of malware portability is cross-platform malware. This
type of malware can cross platform borders in nearly any direction, either because
of using intermediate languages of application frameworks or by carrying different
executables for each target platform. This leads to problems when these types of
malware are supposed to be classified. There are only few incarnations of this
type of malware today, but these blended threats may become a common type of
malware in the future.

A bottom line of the current state of mobile malware: first, today’s mobile malware
incarnations are simple, mostly being Trojan horses attacking the user without the
need to use a technical vulnerability of the mobile device. Second, mobile malware
has many possibilities to commit its malicious actions once it is on the device. This
is especially true, because the mobile device user sometimes overrides technical
security mechanisms (cf. Section 3.5).

96 STRUCTURING MOBILE MALICIOUS SOFTWARE

Chapter 5

Developing a Dynamic Malware
Analysis Tool

The previous chapters laid the conceptual framework for the technical solutions of
this thesis. This first technical solution chapter brings dynamic software analysis
with the investigation of one particular run (cf. Section 2.4.1) to the Windows
Mobile operating system. This chapter makes two contributions. First, it provides
a dynamic analysis solution with advantages over existing solutions. Second, it is
the basis for a novel device-centric solution in the next chapter.

Concerning the advantages over existing solutions: this tool solves the problem of
logging a particular run of a Windows Mobile software sample for the first time.
Most of the work in this area of dynamic analysis has been done for common
Windows systems, and this chapter will point out why their approaches cannot
be transferred to Windows Mobile. Either they use processor emulators with
sophisticated interfaces (TTAnalyze [17]) or they use DLL overwriting techniques
(CWSandbox [232]) that cannot be used for systems like Windows Mobile because
they execute DLLs directly in ROM (“execute in place”, cf. Section 2.2.3).

Abstracted from the different target operating systems, MobileSandbox has two
conceptual advantages over the two solutions from above. First, it logs system calls
not only at user level (CWSandbox) but even at the level of the kernel, enabling a
more detailed system call log. Second, it can be integrated into a running device
without any changes to the firmware of the device, a property that will be used in
the next chapter.

One note on terminology: the word “sandbox” can be confusing, because of
different meanings in other contexts. The word is also used in the context of
application frameworks (cf. Section 2.2.2). For example, sandboxing in the context
of the Java virtual machine means that a Java applet is not able to escape its

98 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

restricted environment. Another meaning is an environment that can be reset after
use. This is especially useful for public computer terminals, which are able to
provide a clean environment for every user. A third use of the word refers to the
technique of software-based fault isolation [192]. Sandboxing in the context of the
MobileSandbox tool refers to the topic of dynamic software analysis, the execution
of a program in a controlled environment (as introduced in Section 2.4.1).

This chapter is structured as follows: Section 5.1 shows the design of the Mobile-
Sandbox tool. Section 5.2 gives some details of the implementation. Finally, the
tool is evaluated in Section 5.3.

5.1 Design

5.1.1 General Design Considerations

When designing a sandbox, the question arises as to which extent behavioral data
of a sample is detected and logged. A commonly used concept is monitoring the
interaction between the sample’s process and the operating system environment,
that is, intercepting the system calls in either or both the user space and the kernel
space. In the case of user-level interception, calls to the corresponding system
libraries are monitored (for Windows Mobile this is mainly CoreDLL.dll), while
in the case of kernel-level hooking, intercepting system calls inside the operating
system kernel is required.

The following list shows examples for interesting operating system functionality,
being implemented as system calls. Especially the last item is specific for the
mobile world, which make this world unique:

• Which DLLs have been loaded?

• Which files have been created, opened, changed?

• Has the registry been read, has it been changed?

• Did the sample affect other processes?

• Did it start new processes?

• Was network activity present? What about messaging activity? Voice call?
Bluetooth?

5.1 Design 99

Designing a sandbox for a mobile device is similar to designing a sandbox for
common computers. Windows Mobile provides nearly a full compatibility to the
common Win32 API layer, so user-space-only sandbox solutions for Windows
PC operating systems could be ported to Windows Mobile. A difference is the
ROM-based “execute in place”, because large parts of the operating system code
reside in ROM. This restricts the number of feasible implementations when it
comes to system call hooking, because it implicitly involves modifying data or
code in memory that is only readable in the case of Windows Mobile.

For MobileSandbox, we have chosen to create a sandbox that is injected into the
sample’s process and the kernel process and monitors all system calls on both user-
level and kernel-level. It works on any given device that runs Windows Mobile 5
or later.

5.1.2 Environment

An important design decision is the environment, in which the sandbox works.
Most solutions execute the sample in a real operating system environment and
let the sandbox inject into the running sample process. In this case, system call
interception works on the same level as the sample. This has some implications. A
positive aspect of this solution is that it is well-established and usually very fast.
On the negative side, the sandbox can easily be detected by the sample, because
both share the same permissions. One solution to this problem is implementing
the sandbox only as kernel mode process and to implement some kind of rootkit
functionality, which allows to completely hide its presence. However, this would
also have a negative impact on the expressiveness of the analysis results, since the
operating system implements certain system calls in user space only for improving
performance and the information that we get on kernel-level is generally less
informative.

In this context, the most powerful solution is emulating the entire hardware environ-
ment (examples for the common computer world are names like QEMU or Bochs).
These emulators are generally slower than a real system, and for the ARM-based
Windows Mobile no emulator exists. The only emulator that is known to us is the
standard Windows Mobile emulator, but it does not provide an API for reading or
writing memory, so it cannot be used for the purposes of dynamic analysis for the
Windows Mobile environment.

Therefore, we decided to implement a solution that executes the samples in a
real operating system environment, in user space and in kernel space. With this
decision, MobileSandbox is able to run on the device emulator and on real devices.

100 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

5.1.3 Logging

Another design decision is defining a place to store the log data. There are two
general possibilities: logging on the device or logging to a remote location. A local
log file on the device is the easiest solution, because it can be read after the analysis
has finished. This has two main drawbacks. First, a log on the same device as the
analyzed sample is accessible by the sample itself and therefore the log file might
be compromised before it is read. Second, malware can render the system unusable,
e.g., by causing a continuous reboot as Fontal.A does. The log file cannot be read
in this case and is unusable as well. These problems are solved when logging to a
remote location, as soon as the log information is present. It can be implemented
in a variety of ways, as the main purpose of mobile devices is communicating with
the outside world. IP is a good choice for achieving this, because the IP protocol is
implemented on top of nearly every transmission technology today.

MobileSandbox uses a TCP connection with a host computer over an ActiveSync
connection. Additionally, it stores a log file on the device, in textual form or in a
binary format for large analyses.

5.1.4 Analysis Duration

A remaining question is, for how much time a sample should be analyzed. In
general, the malware sample can be executed for an arbitrary duration. As Sec-
tion 4.2 said, it is likely that malware shows its most interesting behavior quite at
the beginning of execution, because it can never be sure to get a second chance or
more time to perform its malicious actions.

MobileSandbox analyzes a sample for two minutes by default. However, if the
analyst assumes that the investigated malware requires certain user interaction
or other actions to show its malicious behavior, he might choose to increase the
analysis duration.

5.2 Implementation

5.2.1 Components of MobileSandbox

The sandbox consists of the following files (illustrated in Figure 5.1):

• MSandboxDLL.dll: This is where the user-level hooking and the main part of
the hook-handling are implemented. The DLL is injected into each analyzed
process. See Section 5.2.3.

5.2 Implementation 101

Host.exe

Domain:
Windows

sample.exe

MSandboxDLL.dll

Domain:

1. starts

2. injects

ActiveSync

nk.exe

KernelHookService.dll

3. loads if KLI

user space

kernel space

Mobile

Start.exe

Windows

Figure 5.1: Structure of MobileSandbox

• KernelHookService.dll: This DLL contains all the kernel-level hooking code.
It is injected into the kernel process nk.exe. See Section 5.2.4.

• Start.exe: This program initializes the process which should then be analyzed
and thus performs the injection of MSandboxDLL.

• Host.exe: In contrast to the already mentioned files, Host.exe is a Win32
PC program. It holds a TCP connection to an attached Windows Mobile
device via ActiveSync. It is responsible for the initialization of an analysis
and receives log data directly from the device’s MSandboxDLL.

Four stubs are set up at runtime for every system call (see Figure 5.2):

• PreProlog: This stub prepares the entry of the general prolog function
MainProlog.

• PostProlog: After returning from MainProlog, we jump to the actual system
call that the caller requested and set up the CPU registers so that the call will
return to PreEpilog.

• PreEpilog: After the system call has executed successfully, it returns to
this method. PreEpilog sets up certain parameters and enters MainEpilog
afterwards.

• PostEpilog: After returning from MainEpilog, control is handed back to
analyzed program with a jump.

Each stub is made up of a small number of ARM assembler instructions. This is
necessary, because we need direct access to the CPU registers for not corrupting
the parameters, which would inevitably lead to program inconsistencies.

102 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

5.2.2 Prolog and Epilog

Our design approach uses system call hooking (cf. Section 2.4.1) that substitutes
certain pointers of the system with pointers to our solution . The original call and
the hooked call will take different ways through the system, as soon as the executed
code is outside of the investigated application. This will be explained in technical
detail for the two cases of import address table patching and kernel-level hooking
in Section 5.2. Abstracted from this implementation, the handling of the hooked
call is similar and will be described here (the structure with the involved entities is
visualized in Figures 5.2 and 5.3a).

Control over the system is handed over to MobileSandbox before and after the
original system call in the central functions MainProlog and MainEpilog. These
functions only exist once within the system, therefore every hooked system call
has individual stubs that prepare the entrance of MainProlog and MainEpilog and
perform cleanup operations when the hook is finished. They are replicated for
every API function and these replicated stubs only differ in the individual data that
is passed as parameters to MainProlog and MainEpilog.

MainProlog is responsible for logging the intercepted system call and for inter-
cepting system calls that need to be handled to ensure the integrity of the sandbox.
Examples are system calls that create a new process (e.g., CreateProcess and
ShellExecuteEx) or return pointers to other system calls (e.g., GetProcAddress).
If a new process is created, the sandbox has to prepare the new process for being
hooked. If a pointer to another system call is returned, MobileSandbox needs to
change the returned address and let it point to our corresponding PreProlog stub
instead.

MainEpilog first logs the return value of the system call and might also modify
the return value, for example, when GetProcAddress was called. As previously
said, we then set up new stubs and let the return value point to the new PreProlog,
because otherwise MobileSandbox would miss the subsequent calls of this system
call.

5.2.3 User-Level Hooking

This section explains the user-level hooking of system calls. MobileSandbox
uses the technique of import address table patching. This is a basic technique for
intercepting system calls, but malware can easily evade this hooking type, requiring
the kernel-level hooking techniques of Section 5.2.4. Nevertheless, import address
table patching is useful to keep the logs readable. User-level system calls sometimes

5.2 Implementation 103

PreEpilog
MainEpilog
PostEpilog

original
system call

original

system call
IAT

lookup address
Caller:

PreProlog
MainProlog
PostProlog

MSandboxDLL.dll

Figure 5.2: Import Address Table Patching

lead to several kernel-level system calls, where the user-level call is more concise
and much more expressive.

This import address table patching part of MobileSandbox is similar to CWSandbox
from the Win32 world, but it uses a different method to intercept the system calls:
CWSandbox rewrites the first portion of the method in the DLLs. This is impossible
in Windows Mobile because many DLLs are saved in read-only memory. We use
another standard method instead, patching the import address table (IAT).

When an executable starts, the Windows loader looks up the addresses of each used
system call and inserts them into the IAT, because these addresses are not known at
compile time. A system call in the program reads the address of the system call out
of the IAT and jumps to this address afterwards. This normal way is represented
by the dashed line in Figure 5.2.

After the Windows loader filled the IAT, MobileSandbox does some steps that will
lead to the way of the solid lines in Figure 5.2. The address of every entry
in the IAT is changed. For every changed address four functions are set up
(PreProlog, PostProlog, PreEpilog, PostEpilog). They handle saving and restoring
the current processor state and calling the two main functions of MobileSandbox
(MainProlog and MainEpilog). The IAT entry for each system call now points to
its corresponding PreProlog function, which is the unique entry point for every
system call.

A malware sample is able to circumvent this user-level hooking, because a program
may calculate the system call address itself and does not need to use the IAT .
Whenever it wants to use a system call, it sets the address and sets the system into
kernel mode. User-level hooking is not able to log this event, because it has no
access to the kernel structures. So, an extension within the kernel is necessary that

104 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

is described in the following section.

5.2.4 Kernel-Level Hooking

The deeper level of intercepting system calls at the kernel level is explained here.
As already said, this is necessary when programs do not use the import address
table and it is important for hiding the presence of a sandbox solution from the
analyzed sample.

As previously introduced, our sandbox solution consists of two different DLLs (cf.
Figure 5.1), one being responsible for user-level hooking (MSandboxDLL) and the
other one taking care of kernel-level hooking (KernelHookService). This separation
is a consequence of the architecture of Windows Mobile system calls and the fact
that there might be several sandboxed processes at a time. The kernel-level DLL is
loaded on initialization of a sandboxed process by the user-level DLL.

It is a vital point, where the kernel-level DLL is positioned within the system
kernel processes. As already explained, system calls are executed in many different
processes. Therefore, the kernel-level hooking code has to be accessible from
every system kernel process, because the kernel switches to the address space of
the system kernel process before performing the call. One solution is to inject
the DLL into every PSL process. MobileSandbox uses a different solution by
injecting its kernel-level DLL KernelHookService only into the nk.exe process.
Because the kernel switches a user-level thread into kernel mode before performing
a kernel-level system call, our code in nk.exe will be accessible, because Windows
Mobile allows all kernel-level threads to access each other. In order to inject into
nk.exe, MobileSandbox uses the undocumented PerformCallback4 function, which
executes code in another process just like in a system call. By using this technique,
MobileSandbox executes the LoadLibrary function in the process of nk.exe with a
global pointer which points to the name of our kernel-hooking DLL.1

To go into detail, a system call goes through the following stages when intercepted
at kernel-level (illustrated in Figure 5.3b):

Start. When the system call is processed by the exception handler, the corre-
sponding function address is extracted from the method pointer that was previously
patched by the sandbox. Thus, our individual stub instructions are executed rather
than the intended function. As explained above, the kernel switches to the address

1The CreateRemoteThread API would have been useful for this task, but is not available on
Windows Mobile.

5.2 Implementation 105

Prolog Epilog

System
Call

nk.exe

MobileSandbox

Application

Kernel Space

hooked system call

(a) High-Level View

Handle Object CINFO Pointer APISet Array CINFO Pointer

System Call

EpilogKernelHookServiceDLL

API Call

Kernel

Core DLL

Exception Handler

Kernel Trap

Method Table PointerCINFO

Application

PSL Process Handler

Stubs PreProlog PreEpilog

Prolog ...

implicithandle−based

original callhooked call

original call

hooked call

(b) Complete View

Figure 5.3: Kernel-Level System Call Hooking

106 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

space of the PSL process, this has to be taken into account when dealing with
pointers.

Stub. The task of the stub is to prepare and call our unique MainProlog function.
Care has to be taken to not alter registers values, because they might hold some of
the arguments of the system call and might be used later on. Therefore, the first
step is to save all registers to the stack, followed by setting up the arguments of the
prolog, which are the APISet identifier and method identifier as well as a pointer to
the current stack where the register values were stored. On ARM processors, the
first four arguments are passed in the general purpose registers R0-R3, whereas the
rest is stored on the stack. Additionally, the contents of the registers R4-R12 have
to be preserved through function calls.

Prolog. The prolog first checks, which process has initiated the system call. If
this process is not sandboxed, it returns immediately. Additionally, kernel-hooking
might be deactivated for single threads under certain circumstances. In this case,
the prolog also returns. As an example, we only intercept the first level of system
calls, because system calls within system calls are not of interest. We only care
about the sandboxed application and not the way how system calls are implemented
in a PSL, so this is ignored. As another example, a system call might already have
been intercepted in user space by IAT. Special care had to be taken of the correct
implementation of these conditions, because the kernel might quickly hang in an
endless loop otherwise, when an intercepted system call performs system calls
itself.

If the prolog has decided to intercept the call, it writes the parameters of the call
to a shared memory region and indicates that there is a system call to be executed
by triggering a special event, causing the special thread in the application address
space to further process the interception. This includes extracting and logging the
parameter information of the call. When finished, a second event is triggered that
wakes up the sleeping kernel mode system call. Events are indicated using standard
inter-process communication functions such as global mutexes or global events.
Eventually, the prolog returns, register values are restored from the stack, and the
original system call is executed.

Epilog. In case the system call was hooked, the stub also prepares the entry of a
generic epilog hook function after the call was executed. The epilog goes through
the same stages as the prolog. In some situations, it might also modify the return
value of a system call. For instance, this could be necessary when the sandbox
wants to hide its presence.

5.3 Evaluation 107

5.2.5 Portability

The portability of the presented approach to other mobile operating systems is an
interesting question. Our approach is based on the facts that Windows Mobile
allows untrusted processes to inject DLLs into other processes and to enter kernel
mode. This functionality is specific to Windows Mobile with its common security-
unaware architecture. However, if relaxing the requirement of being able to run on
actual devices, there are possibilities because of the device emulator architectures,
running on common computers.

Symbian OS. As an example we consider Symbian OS with its Platform Security
Architecture. Access to operating system functions is only possible by using the
specified interfaces of the servers (cf. Section 2.2.4) and access to them is generally
restricted. This can be seen, when even accessing file system APIs with anti-virus
or encryption software needs a sophisticated Symbian DevKit [210] and the TCB
capability, which can only be granted by the phone manufacturer. In old versions of
Symbian OS, system files could be overwritten, which is exploited by a number of
mobile malware samples, e.g., Skulls and Blankfont, (cf. Section 4.1.2). Therefore,
it could be possible to implement a dynamic software analysis solution even on
real devices, at least on the devices where the above named mobile malware runs
as intended.

Another option is to restrict the dynamic analysis to the emulator. With the Sym-
bian emulator, it is possible to exchange system DLLs with custom DLLs. The
official tool HookLogger [209] uses this method for enabling advanced debug-
ging functionality. One option is to log all API calls, which proves the desired
functionality to be implementable.

That means, porting MobileSandbox to Symbian OS is possible, at least for the
device emulator. Either the tool HookLogger can be used or the architecture of
MobileSandbox can serve as a basis for a Symbian OS sandbox, but major changes
in the implementation can be expected.

5.3 Evaluation

This section evaluates the MobileSandbox tool. It will investigate the performance
of the solution, discuss the completeness of the logged system calls, and present
analyses of some current malware samples for Windows Mobile.

108 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

Table 5.1: Performance of MobileSandbox
(average/median/standard deviation in milliseconds)

System Call Normal Time User-Level
Hooking

User-Level &
Kernel-Level
Hooking

Sleep 104/101/9 113/109/6 116/115/9
GetSystemInfo 0/0/0 25/15/22 24/16/32

5.3.1 Performance

This section shows how the use of MobileSandbox influences the performance
of the investigated program. We have chosen to measure at the level of single
system calls for eliminating side effects. The Sleep system call is a good indicator
of performance loss, because its execution time is defined. The other system call
is GetSystemInfo, which is considered to return its result as fast as possible and
without any significant overhead. Table 5.1 shows the results of the measurements.
The first column shows measured times without any system call hooking at all, the
second column with import address table patching, and the third column with both
hooking methods. We used a Windows Mobile device emulator running in a virtual
machine for our measurements. We called both system calls ten times and the
presented numbers are the average value, the median, and the standard deviation.

The GetSystemInfo system call has large values for standard deviation, so it is not
useful for measuring despite its simplicity. The results for the Sleep system call
indicate that our system adds an overhead of of about 10 percent for user-level
hooking and about 15 percent for combined user-level and kernel-level hooking.
This is an acceptable result together with the intuitive feeling that MobileSandbox
does not delay execution times for complete samples.

5.3.2 Completeness

There are two aspects when considering completeness: interception of every system
call and recognition of the signature of the system call (that is, its parameters). The
solution for both aspects is described subsequently.

5.3.2.1 Interception

The most important part is to see every system call. This is achieved through the
technique depicted in Figure 5.3. MobileSandbox changes the central pointer for

5.3 Evaluation 109

the data structures to point to its own data structures, and there is no other way
for a program to enter kernel mode when using system calls. However, there are
several special cases to consider: handle-based system calls and the services of
MobileSandbox itself.

Handle-based system calls load the kernel space addresses at the handle’s creation
time. Therefore, it is necessary to change the addresses there, so that these sys-
tem calls do not circumvent our system. An example system call is CreateFile,
where pointers to handle-based system calls (such as ReadFile, WriteFile) are
maintained in an individual CINFO structure which is connected to the handle
object. Therefore, one has to patch the handle right after it was created.

Another special case is the KernelHookService DLL of MobileSandbox. It provides
some services that are necessary for the system but that are not intercepted.

5.3.2.2 Signature Recognition

The signatures of the system calls can be found in the header files of the shared
Windows CE source code that is distributed with the Platform Builder. These
header files have a unique format that can be parsed. The system calls are grouped
into different APISets. These are documented as comments in the header files. The
source code can be parsed with a tool like doxygen and the actual signatures can
be assigned to the system call in its corresponding APISet. Some system calls are
undocumented, therefore they are not present in the shared source header files.
Typical examples are the GWES (graphics, window and event subsystem) API
functions. All of these are intercepted, but it might happen that their signature is
unknown. This case requires manual effort to locate the signature. This can be
solved by using a disassembler (like IDA Pro) and decompiling the library file.

5.3.3 Malware Analyses

This section shows excerpts from the analyses of current Windows Mobile malware
and compares the results with the public analyses that were done with manual anal-
ysis techniques. This should show the strengths and weaknesses of MobileSandbox
for real-world malware. Short descriptions of the investigated malware samples
were already given in Section 4.1.1.

5.3.3.1 Malware “Dust”

Dust is a good example for demonstrating the usefulness of MobileSandbox for
dynamic malware analysis, because its source code has been published and it has

110 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

mov lr, pc
ldr pc, [r11, #-24] ; find first file

Figure 5.4: Dust Source Code (Excerpt)

been analyzed thoroughly [173], so our analysis can directly be compared with
the source code. Because of that, it is the most interesting piece of native malware
for Windows Mobile. Dust does not use the import address table to access the
system calls, so a sandboxing solution with only IAT patching would not see the
interesting parts of its behavior. Instead, Dust calculates the addresses with the
formula of Section 2.2.3 and directly jumps to these addresses. An example are
two lines of the source code (Figure 5.4), where the program counter is set to a
value of the stack that was previously set to the address of FindFirstFileW. This
corresponds to API call ID #3 in Figure 5.5, where the direct jump is indicated by
the “(Kernel API)” statement in the log.

We used a device emulator with Windows CE version 5. The original Dust sam-
ple did not start here, because it was written for Windows CE version 4, where
programs were automatically started in kernel mode. An addition of a call to
SetKMode and a compilation of the source code was a necessary step to make
the malware execute in MobileSandbox.2 More of the analysis can be seen in
Figure 5.5. You can see the proof-of-concept nature of Dust in API call ID #2,
where the program asks, if it is allowed to spread. For this analysis, we chose “Yes”
in the message box. The program then searches for files with the pattern *.exe in
the root directory. The first returned file is Start.exe, which happens to be a file of
MobileSandbox itself, but this fact does not influence the analysis. The program
then starts the infection (calls #3 to #6) and finishes it after a few other actions in
call #17. Calls #18 to #21 show that no other files are found and Dust terminates
itself.

5.3.3.2 Malware “Pmcryptic”

Pmcryptic is the most current Windows Mobile malware, found in November 2008.
Its main malicious functionality is hiding files and dialing premium-rate phone
numbers. Figure 5.6 shows an excerpt, but the complete analysis is available.3 The
analyzed file is named after its MD5 hash value:
0x33aea5c280aff3dff0badfba9a01f925.

2We are aware that we created a new malware variant with this proceeding.
3http://mobilesandbox.org/analysis_pmcryptic.html

5.3 Evaluation 111

ID API call Arguments Return
value

2 USER_MessageBoxW
(Kernel API)

hWnd=0
lpText=Dear User, am I allowed to
spread?
lpCaption=WinCE4.Dust by
Ratter/29A
uType=4

6

3 FS_FindFirstFileW
(Kernel API)

lpFileName=*.exe
lpFindFileData=639770832

3987199810

4 SC_CreateFileForMapping
(Kernel API)

lpFileName=Start.exe
dwDesiredAccess=3221225472
dwShareMode=0
lpSecurityAttributes=0
dwCreationDisposition=3
dwFlagsAndAttributes=0
hTemplateFile=0

229103390

5 SC_CreateFileMapping
(Kernel API)

hFile=229103390
lpsa=0
flProtect=4
dwMaxSizeHigh=0
dwMaxSizeLow=42496
lpName=0

3449191462

6 SC_MapViewOfFile
(Kernel API)

hMap=3449191462
fdwAccess=6
dwOffsetLow=0
dwOffsetHigh=0
cbMap=42496

1200619520

.
15 SC_UnmapViewOfFile

(Kernel API)
lpvAddr=1200619520 1

16 SC_MapCloseHandle
(Kernel API)

hMap=3449191462 1

17 FindNextFileW
(Kernel API)

hFindFile=406608
lpFindFileData=639770832

1

18 FindNextFileW
(Kernel API)

hFindFile=406608
lpFindFileData=639770832

0

19 FindClose
(Kernel API)

hFindFile=406608 1

20 SC_ProcTerminate
(Kernel API)

hProc=66
dwExitCode=765234978

1906388608

Figure 5.5: Analysis of Dust (Excerpt)

112 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

ID API call Arguments Return
value

5 wcscmp Arg0=\system.exe
Arg1=\33aea5c280aff3dff0badfba9a01f925xx.exe

1

6 _wcslwr Arg0=1174096 1174096
7 wcsstr Arg0=\33aea5c280aff3dff0badfba9a01f925xx.exe

Arg1=autorun.exe
0

.
13 CopyFileW lpExistingFileName=\33aea5c280aff3dff0badfb. . .

lpNewFileName=\system.exe
bFailIfExists=0

1

14 Sleep dwMilliseconds=1000 0
15 SetFileAttributesW lpFileName=\system.exe

dwFileAttributes=2
1

.
22 CreateProcessW pszImageName=\system.exe

pszCmdLine=0
psaProcess=0
psaThread=0
fInheritHandles=0
fdwCreate=0
pvEnvironment=0
pszCurDir=0
psiStartInfo=0
pProcInfo=0

Figure 5.6: Analysis of Pmcryptic (Excerpt)

5.3 Evaluation 113

The first interesting logged system call is the fifth call: The program checks, if
its own previously retrieved filename equals \system.exe. After a lowercase
conversion of a string in call #6, the program checks in call #7, if its own filename
contains the string autorun.exe. Both of these comparisons will fail, because
of the non-matching file names. It can be assumed that the result of these checks
will lead to different behavior of the malware. Figure 5.6 shows the case of initial
infection mode.

Call #13 copies the original malware executable to the file \system.exe in the root
folder. The next call #14 stops the program execution for one second, before call
#15 sets the file attributes to FILE_ATTRIBUTE_HIDDEN (=0x02). That means,
the file will not be included in an ordinary directory listing.

The last logged call #22 is CreateProcessW. It executes the newly created hidden
file \system.exe. Unfortunately, the analysis ends here, because MobileSandbox
does not follow newly created processes at the moment. Another deficiency could
be seen in call #6: the call takes a wchar_t* pointer as an argument and returns a
pointer of the same type. Unfortunately, the pointers are not dereferenced, so the
string’s content cannot be seen.

5.3.3.3 Analysis Extensions

The malware “Dust” shows its malicious behavior every time it is started, but some
malware—be it mobile or common—is dependent on certain user actions or other
conditions. Especially trojans show no special behavior most of the time, but might
send a text message to a premium-rate number from time to time. So it might be
necessary to run the suspicious piece of software for some time and to interact
with it. MobileSandbox supports this approach, because the device (or the device
emulator) can be used as usual when run with a local version of MobileSandbox.

The following list shows some useful extensions that certainly will improve the
analysis. They are not implemented at the moment, but they are on the wish list.
They give an idea of the possible future of dynamic analysis:

• Logging system calls over an extended period of time leads to new challenges
for the analysis environment, because the log can easily grow very large.
This can be solved by implementing some kind of “capture filters” that do
not log every system call, but only the calls the analyst is interested in, for
example networking and messaging activities.

• A sample of mobile malware might not show its malicious behavior directly
but install other programs that are no direct child processes, but instead are

114 DEVELOPING A DYNAMIC MALWARE ANALYSIS TOOL

triggered by an external condition. In the environment of mobile devices
this can be a messaging filter. They are triggered if an incoming message
(SMS or MMS) matches its filter condition. If such a filter is installed, its
actions should be logged just as the original sample. Now, the analyst can
send messages to the device and find out what the filter does, for example by
watching the filter conditions or text comparisons of the code.

• Loops in the source code lead to long log traces that are very similar but
that cannot be recognized as related at a first look. An example is the
presented Dust analysis, where Dust scans every file in the root folder. An
important extension is combining logs of loops in a readable way, maybe
even graphically. This can easily be achieved by using the program counter
values of the logs.

• Two more improvements are useful when the sample changes the user in-
terface or the file system. These changes could be added to the log, user
interface changes in the form of screenshots and file changes in the form of
diffs to the previous version. Both extensions would simplify the task of a
malware analyst even more, but may increase the log size considerably.

• In case of an increasing number of malware samples, a framework can be
built around MobileSandbox for a massively automated analysis of malware
samples. This heads into the direction of CWSandbox today.

5.4 Conclusion

This chapter presented MobileSandbox, a tool for dynamic software analysis of
Windows Mobile executables, i.e., the execution of a program in a controlled
environment. It gave insights into design and implementation, and proved its
performance penalty to be acceptable. Most interesting is its application on real
Windows Mobile malware. Despite some rough edges, the tool proved itself to be
functional, enabling the dynamic analysis of Windows Mobile software without
any technical knowledge (like being able to use a debugger or disassembler).

The MobileSandbox tool will be used in Section 6.2 as a building block for a
policy enforcement solution and in Chapter 7 as a part of network-centric security
mechanisms, where the question is investigated how restrictive the limitation of
being able to log only one sample execution is for a large-scale system.

Chapter 6

Device-Centric Security
Investigations

This is the second technical solution chapter of this thesis. It gives two contribu-
tions: developing a smartphone worm and providing a mechanism to protect the
device against this threat.

First, Section 6.1 investigates the efforts that have to be taken to develop an
autonomously spreading smartphone worm for Windows Mobile. A smartphone
worm is the most dangerous category of mobile malware. Fortunately, there
are currently no incarnations of this category, which was the reason for actively
researching characteristics and countermeasures to learn more about its associated
threats.

The focus on a worm restricts the possible attack vectors to interfaces that have
connections to other devices, e.g., Bluetooth, Infrared, IP over WLAN or over
the mobile network, of which IP over WLAN was chosen because it appeared to
be most promising. The possible vulnerabilities include buffer overflows, heap
overflows, and race conditions. Buffer overflows are chosen here as a vulnerability
that was seen as the most dangerous programming error of the recent years [38],
that is easier to exploit compared to heap overflows, and that has been found in
Windows Mobile 2003 (cf. Section 3.4.1.2). We utilize the approach of fuzz testing
for finding a vulnerability because the previously named buffer overflow was found
with fuzz testing.

The results of our investigation are embedded into a three phases model of breaking
a system and are used to derive a cost-to-break metric for Windows Mobile. This
investigation shows that it is possible to come very close to the target of developing
a smartphone worm with reasonable effort.

116 DEVICE-CENTRIC SECURITY INVESTIGATIONS

The second part of the chapter in Section 6.2 shows device-centric parts as necessary
for smartphone security, because some important security requirements can only
be implemented on the mobile device itself. It uses the MobileSandbox dynamic
software analysis tool of the previous chapter as a basis for a novel security
mechanism—the policy enforcer—on mobile devices that aims at reducing the
attack surface of mobile devices to mobile malware.

The policy enforcer extends related work [102] in two ways. First, it is applied
at the deeper level of the device’s operating system, not on a virtual machine
level. Therefore, it can be used for native programs, enabling a broader application.
The boundaries are equal to the physical device, which is an important property
of usability. Second, it can be applied to existing devices without changing the
operating system. That means, we implement the concept of a reference monitor as
a flexible solution that can be applied to existing devices as an add-on in contrast
to a major change of the operating system.

6.1 Developing a Smartphone Worm

This section focuses on malware for Windows Mobile. Section 4.1.1 showed
that only few instances of malware for Windows Mobile are known today (a
complete list in August 2009: Dust, Brador, Crossover, Infojack, Pmcryptic).
According to the classification of Section 4.2.1, neither any of these programs can
be called a smartphone worm, nor the existing malware for other mobile operating
systems. However, according to the classification, a smartphone worm is most
dangerous concerning infection, thus we need to actively research characteristics
and countermeasures to learn more about the associated threats. This part of the
thesis makes most use of taking the attacker’s point of view [79].

The remainder of this section is structured as follows: our approach of developing a
proof-of-concept worm for Windows Mobile is presented in Section 6.1.1. The de-
velopment of building blocks as the constant part of smartphone worm development
is presented in Section 6.1.2. The search for buffer overflows by employing fuzz
testing as the variable part of development will be presented in Section 6.1.3. Fuzz
testing or fuzzing means automatically searching for vulnerabilities in software.
The attacker generates input that complies with the structure of the expected input,
but contains random data that is intended to make the targeted process fail. If this
happens, the next step is analyzing the possibility of using this failure for injecting
malicious code into the process.

6.1 Developing a Smartphone Worm 117

6.1.1 Proof-of-Concept Malware for Mobile Devices

Many standard techniques for malware development known from the desktop and
server world do not work in the mobile environment. As an example, the hardware
architecture used in smartphones (ARM) is very different from the well-understood
Intel x86 family, a fact that leads to additional demands for shellcode development.
Operating system concepts like processes, scheduling and virtual memory are
also quite different in mobile devices, even between different versions of mobile
operating systems. Thus, it is neither clear how easy it is to stage standard attacks
from the PC world in mobile environments, nor how easy it is to transfer known
attacks for one version of Windows Mobile to the next.

In this Section 6.1, we investigate the question of how easy or difficult it is to create
a smartphone worm for Windows Mobile version 5. We do this by measuring
the effort needed by a skilled individual to create such a worm using standard
methods of penetration testing, standard security tools, and software engineering
methods. Other proof-of-concept malware for mobile devices has been developed
by Molitor [139], Jamaluddin et al. [103], Haas [93], Emm [50], and Cheng et al.
[33]. However, none of these publications measured the effort of developing the
malware.

This section aims at measuring the effort that is needed to find a vulnerability. The
intrusion process of breaking a system can be seen as subdivided into three phases
(according to Jonsson and Olovsson [110]). The first phase is a learning phase,
where information about the targeted system is collected. The standard attack
phase consists of a number of fairly straightforward actions and standard tools
for breaking a system, with a rather high probability of success. The innovative
phase consists of inventing new methods for breaking a system. The time between
successful breaches increases, because it can never be said, after how much time
the ideas of an attacker will lead to an effective attack. This model can be applied
to our situation. When starting our efforts, we were in the innovative phase of the
model. The situation changes with the publication of our results, because parts of
them can now be taken as successful (i.e., standard) attacks on the system.

We managed to build a prototype worm that can spread autonomously in case
a vulnerability is given in a Windows Mobile service that is accessible over the
network. The working effort encompasses the following tasks:

1. Building a worm toolkit, i.e., a software library that contains shellcode and
worm spreading functionality. This is what we call the constant part of the
attack. It is developed once and can be used for any future vulnerability,
possibly with slight modifications that can in terms of time still be regarded

118 DEVICE-CENTRIC SECURITY INVESTIGATIONS

as constant compared to the variable part. The effort required for achieving
this was about 13 weeks of full time work.

2. Finding a vulnerability in the network interfaces of Windows Mobile 5. This
task included attempts to execute known attacks for Windows Mobile 2003
as well as applying the technique of fuzzing to the WLAN network stack of
Windows Mobile 5 to find buffer overflows. This is what we call the variable
part of the attack.

This separation might increase the needed time for development slightly, but
it is favorable in terms of effort, because the attacker is also able to incorpo-
rate vulnerabilities, that have been found by others. So, using this procedure of
modularization—the classic software engineering approach—the attacker maxi-
mizes the effects of his work by enabling the reuse of his code.

Both parts are presented in the section, but the focus is clearly on the constant part,
i.e., on the building block for a smartphone worm. The variable part is only shown
as an example here. In both parts, the efforts for developing them was measured.
The effort necessary for the second task can only be approximated because we
terminated our efforts after forty hours of work without finding a new vulnerability
that could be exploited by a worm. We however found two denial-of-service
vulnerabilities, on which we report.

To summarize, we found that it takes roughly 600 work hours (14 weeks of full
time work) to come very close to the target of building a smartphone worm. The
benefit of our work is that it helps to understand the difficulties adversaries face
when attacking Windows Mobile. It also highlights the strengths and weaknesses
of Windows Mobile version 5 over version 2003 as well as the general difficulties
of attacking ARM-based architectures.

Most importantly, however, the insights from our study can be used to estimate
lower bounds of cost-to-break metrics for current and future versions of Windows
Mobile. Cost-to-break metrics are usually used to assess the security of safes. The
situation is different in computer security because the tools are different and an
attacker can be lucky to find an exploitable vulnerability in a short time, which is
unlikely for real-world safes. This topic of IT security metrics is further discussed
in the literature [186] .

Even if many parameters are likely to vary in different environments (skilled indi-
vidual, tools available, exploit finding), at least the constant part of our smartphone
worm can be used to estimate the lower bound in case of attacking an operating
system where such a worm toolkit is not available in advance. We are unaware of
any other work that has measured attack effort as precisely as we have.

6.1 Developing a Smartphone Worm 119

6.1.2 Constant Part: The Building Blocks for a Smartphone
Worm

This section documents the development of the building blocks for a smartphone
worm. It describes the infection functionality, the spreading functionality, and the
steps for assembling the building blocks.

6.1.2.1 Infection

The infection routine is the first part of the building block. It injects code into
the mobile device by exploiting a security vulnerability, and gains access to the
operating system and its resources. The injected code is the shellcode and its
development is the main task in this section. Besides the covered topics, problems
of zero-free shellcode and self-modifying code on the ARM architecture arise.
They are addressed in an extended version of this work [20].

Vulnerable Application. For the development of shellcode for a smartphone
worm, a program is needed that can be exploited. The program contains a stack-
based buffer overflow, a security vulnerability that is a very common programming
error in programming languages like C/C++. The vulnerability is used to create a
proof-of-concept for exploitation of this class of vulnerabilities.

Stack-based buffer overflows. Exploiting stack-based buffer overflows in Win-
dows Mobile 5 works in principle the same way as it does in other operating
systems. A local buffer in a function is filled with user data that exceeds the buffer
boundary. This way, memory behind the buffer can be overwritten. That is also
true for the memory address that contains the saved return address of the function.
If this address can be manipulated, the program will continue its execution at this
address after the running function has returned. The return address may now point
to an address that is controlled by the user. Usually, this is the address of the buffer
that was overwritten. Therefore, machine code is put at the beginning of the buffer.
The machine code (or shellcode) can then be executed by the CPU.

Shellcode stages. The user input that fills the buffer is often limited to a defined
size. Therefore, shellcode must be as small as possible. Very small shellcodes
exist for operating systems like Linux and UNIX. 40 bytes are sufficient to take
over such a system [214]. Shellcode for Windows Mobile is bigger for several
reasons. All processor instructions in the ARM architecture are four bytes long.

120 DEVICE-CENTRIC SECURITY INVESTIGATIONS

Figure 6.1: Exploitation with Staged Shellcode

Note that in the x86 architecture some simple instructions just need two bytes.
Another reason is the load-store architecture used by ARM processors. Memory
can only be altered, if it is first transferred to a register, then manipulated, and
finally written back to memory. That is why all modifications on memory take at
least three instructions.

The interface between user processes and the operating system is the last reason
for bigger shellcode. In Linux, a shell interpreter for the execution of arbitrary
commands exists. Unfortunately, in Windows Mobile (and other Microsoft systems)
the command interpreter is not as powerful and useful as a shell interpreter in Linux
[116]. Access to the Windows API is absolutely essential and many instructions
are required to use it.

If there is not enough space in the buffer, then the size and complexity of payloads
is limited. Because a worm is a complex program, a solution for that problem
is needed. The solution is to divide the shellcode in two stages. The first stage
contains the smaller part of the shellcode. Its only purpose is to download the
second stage from the attacking host, save it to heap memory, and execute it. The
second stage is practically not limited in size, and may hold even large worm
programs. Figure 6.1 depicts the functioning of the staged exploitation.

Second stage shellcode. Now any payload of worm code can be appended to the
second stage. To simplify the development of the worm payload, the high-level
language C is used. The result is an executable file (EXE).

The second stage is now separated into an executable starter and the executable
payload (the EXE file). On execution of the second stage, the starter saves the
payload to the file system of the mobile device. Afterwards, the executable file
is executed in a new process by using the system call CreateProcess. Finally, the
process of the exploited program is killed.

Whenever an executable is started, the operating system validates the signature
of the executable. If the executable is not signed or the signature is invalid, the

6.1 Developing a Smartphone Worm 121

operating system prompts the user for a confirmation. This behavior is not desired
by a smartphone worm, because now the infection depends on user interaction.
However, it is possible to circumvent this by manipulating the Windows registry.
The registry features a security policy named “Unsigned Prompt Policy” that
defines the behavior when loading an unsigned executable.

; Unsigned Prompt Policy
[HKEY_LOCAL_MACHINE\Security\Policies\Policies]

"0000101a"=dword:0

The default policy for Pocket PCs is the user prompt (value 0). If the value is
changed to 1, the prompt will be disabled. This can be done with the registry func-
tions from the Windows API (RegOpenKeyEx, RegSetValueEx, and RegCloseKey).
Note that these functions may be restricted when the process runs in normal execu-
tion mode on Smartphones. This is no limitation for Windows CE up to version 5,
because all processes run in or can set themselves to privileged execution mode.

6.1.2.2 Spreading

At this point any worm payload can be developed in a high level language and ARM
assembler is no longer needed. The focus is now on the spreading functionality of
the worm.

The task of the worm’s spreading function is finding mobile devices on the network
and to start the infection. Our smartphone worm spreads over the wireless network
(WLAN) via the IP protocol. The question is, how IP addresses of other mobile
devices as possible victims can be found.

The simplest algorithm would be to canonically enumerate all IP addresses of
connected networks and start infection for every IP address. Of course, this is a
time-consuming task. In a test, the infection of a whole class C network (254 hosts)
took about 30 seconds to finish. For a class B network (65534 hosts) the algorithm
would take more than two hours. This is a strong limitation for the spreading of a
smartphone worm.

Fortunately, the problem can be solved for Windows Mobile because of its specific
behavior within data networks. Every Windows Mobile device that connects to
local network initially sends a series of NetBIOS packets on UDP port 137 to the
network broadcast address. This is used by the devices to notify their participation
in the “NetBIOS Name Service”. The behavior can be exploited to find out the IP
addresses of devices on the network. To do this, it is necessary to listen on UDP
port 137 for incoming packets. In Windows Mobile, it is possible to steal a port
from a listening process [20].

122 DEVICE-CENTRIC SECURITY INVESTIGATIONS

Figure 6.2: Infected Device

6.1.2.3 Assembling the smartphone worm

The worm program is a Windows PE executable for ARM processors. It was
developed with the gcc compiler for the target system arm-wince-pe. It uses three
threads:

1. a main thread,

2. a thread to provide the second stage shellcode (cf. Section 6.1.2.1),

3. a thread for spreading (cf. Section 6.1.2.2).

The main thread does the following:

1. show a confirmation dialog (see Figure 6.2) at startup,

2. use port stealing to be able to receive NetBIOS packets,

3. launch a thread for the providing of the second stage shellcode and thread
for spreading.

When the worm program is executed on a Windows Mobile 5 device, it first shows
a confirmation dialog and asks the user if it should proceed (see Figure 6.2). If the
user confirms, port stealing is used to listen on the NetBIOS port 137. Then the
program launches the thread for providing the second stage shellcode. After that,
the spreading thread is launched. The spreading thread now waits for incoming
NetBIOS packets from victim devices and sends, on event, the exploit with the
first stage shellcode back to the victim device. The victim device executes the first
stage shellcode and connects back to receive the second stage. Finally, the second
stage shellcode is executed on the victim device, and again the confirmation dialog
of Figure 6.2 is shown.

6.1 Developing a Smartphone Worm 123

6.1.2.4 Conclusion

The research showed that it is possible to develop a smartphone worm (the fourth
malware category of Section 4.2.1) for devices running Windows Mobile 5. Infec-
tion and spreading work reliably and effectively. The exploited security vulnerabil-
ity is not a real vulnerability, and does not exist in default software for Windows
Mobile devices. The results can be applied to the other malware categories accord-
ing to user interaction as well. The third category (common behavior) can use the
infection part (Section 6.1.2.1), because the staged execution and the shellcode
work is useful there. The second category (Trojan horse) can use the spreading
part, e.g., to send an installation version of itself to the other device.

The research and development of the worm program was done in a time of about
thirteen weeks. About nine weeks were spent for developing and testing the shell-
code, the remaining four weeks for the spreading algorithms and for assembling the
worm. This is just the constant part needed by smartphone worm. A real security
vulnerability is still needed for the worm to become a real threat.

6.1.3 Variable Part: Measuring Resistance

The variable part of an autonomously spreading worm is finding an actual vulnera-
bility of the investigated system. Finding vulnerabilities in an operating system
like Windows Mobile 5 can be subdivided into several stages. The focus on a
worm restricts the possible attack vectors to interfaces that have connections to
other devices, e.g., Bluetooth, Infrared, IP over WLAN or over the mobile network,
of which IP over WLAN was chosen. The possible vulnerabilities include buffer
overflows, heap overflows, and race conditions. Buffer overflows are chosen here
as a vulnerability that was seen as the most dangerous programming error of the
recent years [38] and that has successfully been exploited in Windows Mobile 2003
(cf. Section 3.4.1.2). So the focus was on searching for buffer overflows that can
be exploited through the WLAN interface. The following steps are illustrated in
Figure 6.3.

6.1.3.1 Finding the attack vectors

The first step is port scanning the device (one hour of work). This resulted in five
open UDP ports: 68 (DHCP), 137, 138 (both NetBIOS), 1034 ("activesync-notify"),
and 2948 (WAP Push). Then, research on the structure of protocol messages
is necessary (resulting in 17 hours of work). Some protocols are sufficiently
documented, others (like "activesync-notify") lack a documentation, implying that

124 DEVICE-CENTRIC SECURITY INVESTIGATIONS

Wireless Session
Protocol (WSP)

MMS Message
Encapsulation

X−Mms−Transaction−ID
From
Subject
X−Mms−Content−Location

68
137
138
1034
2948

UDP PortsFuzzing

Mobile Device

Fuzzing Port 2948:

Headers

Content type

Figure 6.3: Measuring Resistance

the structure can only be found by reverse engineering sniffed protocol messages,
or by giving input without any structure at all.

The string variables in the protocol messages are the attack vectors that are used
during fuzzing sessions. The last preparation step is incorporating the protocol
message structure into the fuzzing framework (work time included in the fuzzing
time). Now the actual fuzzing process can take place.

6.1.3.2 Fuzzing

The fuzzing part includes varying the input to the attack vectors (i.e., the strings of
protocol messages). Any unusual behavior of the investigated device, especially
a crash of the input handling process, can be a sign that a candidate input for a
buffer overflow has been found. After fuzzing sessions with each of the attack
vectors (21 hours of work), no candidate unusual behavior has been found, but two
denial-of-service possibilities and the insight that security cookies are used in the
investigated processes (five hours of work).

One denial-of-service possibility was found in the MMS handling process. For
inputs in a wrong format, the device displays a warning message that the user must
confirm. If these inputs are sent repeatedly to the attacked device, it is rendered
unusable. Another denial-of-service possibility was found in the DHCP handling
process. When unsolicited DHCP ACK messages are sent to the device in a fast
sequence, the reaction times of the user interface decelerate, possibly rendering the
device unusable.

6.2 Attack Surface Reduction in Mobile Device Security 125

6.1.3.3 Results

Searching for a buffer overflow adds another week (exactly 44 hours) of full-
time work to the efforts. After that time, searching for buffer overflows in the
protocol fields of WLAN visible interfaces of applications in Windows Mobile 5
was terminated.

The search was done with standard techniques for finding buffer overflows. This
time was needed to find two possible denial of service attacks and to verify that the
system was compiled with security cookies.

As already said, the situation for an attacker changes with the publication of our
results. So the measured effort will be invalid for the investigation of Windows
Mobile 5 beginning with their publication time. Their value is that they can be
used to predict the resistance of other operating systems under the simplifying
assumption that all mobile operating systems are largely comparable.

Our results can serve as a basis for further work in Windows Mobile malware
research, where it will be—as the results are known now—in the second phase of
the three phases model, the standard attack phase.

The next section will now use these results as insights into the current state of
mobile device security and propose a novel security solution for mobile devices.

6.2 Attack Surface Reduction in Mobile Device Se-
curity

This section shows device-centric parts as necessary for any mobile device security
strategy, because some important security requirements can only be implemented
on the mobile device itself. It uses the MobileSandbox dynamic software analysis
tool of the previous chapter as a basis for a novel security mechanism on mobile
devices that aims at reducing the attack surface of mobile devices to mobile
malware.

The term attack surface was defined by Wing et al. (the most current use in 2009
[126]). It is connected with measuring the attack surface. This section does not
measure the attack surface but uses the term in an intuitive way. Alternatively, the
term security boundary [33] can be used to describe the topic of this section.

This section first justifies why the user of mobile devices should have more control
over his own device. Then it lists the foundations for implementing such an
interface. Finally, it shows the design of such an interface by using MobileSandbox
as a basis.

126 DEVICE-CENTRIC SECURITY INVESTIGATIONS

6.2.1 Justifying Increased User Control

6.2.1.1 Control Requirements

The previous section showed the simplicity with which an attacker can control
the mobile device once he has successfully attacked the device. Moreover, Chap-
ter 3 introduced that the increasing functionality of mobile devices—leading to
smartphones—brings more and more possible attack vectors to them. An example
for these shifting boundaries of common notions is the mobile Web browser, which
evolves into a complete application framework (cf. Section 3.4.3). Therefore, it
seems necessary to install an umbrella security mechanism on the mobile device,
which is reliable to the user, regardless of any possible new functionality of his
device. The classical concept of a reference monitor will be used to present the
design of such a solution based on our tool MobileSandbox of Chapter 5.

The concept of a reference monitor [4] is a useful approach for mobile devices.
The main task of a reference monitor is being called every time that a system call is
used. Additionally, it must be protected against manipulation and only be a small
piece of code for security analyses. Schneider introduces the concept of security
automata for enforceable security policies as a model for a reference monitor
[192]. Reference monitors are also implemented in the Symbian OS operating
system [46, 95] and many security problems can be solved with their help. Every
system call can now be restricted to a certain policy. Examples are restrictions for
messaging, phone and data network functions. Messages and phone calls can be
restricted to certain numbers. All of these functions can be limited in numbers per
time unit. Reference monitors are an important part of security today (cf. Gollmann
[85]) and solutions with them are under active research [23, 102].

As Section 3.5 argued, most of the users are sensible to monetary damage. There-
fore, it is reasonable to implement the following two requirements as representatives
for the whole set of possible requirements (these requirements were categorized
together with other requirements by the MOBIUS project [138]):

1. “It is possible to restrict the amount of data/short messages that a program
can transmit per time unit.”

2. “No program sends short messages except the SMS program.”

The implementation of only these two requirements already leads to an attack
surface reduction in the security of mobile devices and adds a new entity to the
mobile device: the policy enforcer. It is visualized in Figure 6.4

Recent work proposes a reference monitor for the Java Platform, Micro Edition
(J2ME), an application framework that is present on almost all of today’s mobile

6.2 Attack Surface Reduction in Mobile Device Security 127

policy enforcer
protected by

policy enforcer

Figure 6.4: Policy Enforcer in the Mobile Device

devices. They implement an extension of an open-source J2ME virtual machine.
The extension must be present at compile time of the virtual machine and must
afterwards be incorporated into the device [102]. Also, permissions with multiplic-
ities for J2ME in the context of proof-carrying codes have been defined, allowing
access to particular system calls for a defined number of times with one single
confirmation [23]. Moreover, Schneider has shown that information flow, not being
a safety property, is not enforceable by the use of reference monitors [192].

Our solution in this section is different in two ways from the J2ME contribution
above [102]. First, it is applied at the deeper level of the device’s operating system,
not on a virtual machine level. Therefore, it can be used for native programs,
enabling a broader application. The boundaries are equal to the physical device,
which is an important property of usability. Second, it can be applied to existing
devices without changing the operating system. That means, we implement the
concept of a reference monitor as a flexible solution that can be applied to existing
devices as an add-on in contrast to a major change of the operating system.

From the general point of view of this thesis arises the question, why the mobile
device itself should be the right starting point. Let us assume the mobile network
is the place for implementing the two requirements from above. For requirement
#1 it would be possible to collect the amount of already transmitted data within
the mobile network. However, the network cannot prevent data transmissions
beginning at some threshold, because the transmission has already been performed
when the network recognizes it. Thus, resources have already been consumed, even
if the network discards the transmitted data. Requirement #2 is even more clear,

128 DEVICE-CENTRIC SECURITY INVESTIGATIONS

because the mobile network cannot distinguish, which process of the mobile device
sent a message. Already these two simple requirements show that the mobile
device itself has to be part when considering the security of mobile devices.

Additionally, the concept of increasing user control through the use of a policy
enforcer can only be introduced in the mobile setting with its strong connection
between mobile network operators and the devices. Implementing such a concept
for a majority of devices in the common computer world seems not feasible,
because it has not happened until now.

6.2.1.2 Firewalls

The common security mechanism firewall together with its evolution over the
recent years is introduced now, because this history of firewalls is a good example
of the shifting boundaries of security and how security mechanisms adapt to these
changes.

Evolution of Firewalls in the Data Network Firewalls have been applied in
computer networks for a long time with the intention to separate different networks
or network segments from each other.

The first firewalls were packet filters. These have a single IP packet as their
maximum inspected unit, based on the headers like source and target IP addresses.
For protecting servers, firewalls can restrict access to the TCP ports that are
intended to be publicly accessible. The limitation to a single packet means that
these firewalls are not able to define policies for semantics between different
packets. Especially, these firewalls are not able to follow connections (TCP or
in some way also UDP, e.g., when stateless UDP packets all belong to a logical
connection like multimedia streaming on application layer). Stateful firewalls
are able to recognize the connection context of single packets and they are able
to determine if the packet is related to the current connection state. This state
of firewalls was comprehensive for successfully separating networks up to OSI
layer 4.

A common setup today is the Web server as the only network entity that is exposed
to the public Internet. Fortunately for attackers, Web applications as frontends for
the now closed backend systems became increasingly important. So, a publicly
accessible Web application uses internal systems (like central database servers)
for accessing necessary data. Attackers could now use the clear-text protocols of
the World Wide Web, and they did successfully with a plethora of attacks because
of poorly written Web applications [99]. Network-level firewalls could not help

6.2 Attack Surface Reduction in Mobile Device Security 129

in this situation because they only allowed to either close the Web port (usually
TCP port 80) or to open it completely. Additionally, many protocols started to be
tunneled through the Web port for being able to evade network-level firewalls.

In this situation, the shifted boundaries of attack vectors had to be reflected and
application-level firewalls (ALF) started to be of importance. They also inspect
the traffic on the application layer (OSI layer 7), thus having to understand the
application protocols. Even as this leads to more computational complexity of
these firewalls, the concept of application-level filtering is an established layer of
defense in the data network today.

A common setup for data networks is the separation into a militarized zone (MZ)
and a demilitarized zone (DMZ). As another shifted boundary, this distinction is no
longer applicable for application-layer attacks, because the DMZ system usually
only forwards the requests. The interested reader is referred to our more thorough
explanation of this fact and our more detailed investigation of Web application
firewalls [18].

Firewalls for Other Purposes Users are accustomed to the firewall security
mechanism. Therefore, it is also used in different contexts where a generalization
of the notion firewall is applied implicitly.

Personal firewalls are programs that a user can install on his computer. They
fulfill at least the tasks of network-level firewalls with the exception of not being a
dedicated device in the network. Personal firewalls are proven to fulfill usability
criteria and at least the basic functionality is used correctly by the users [96].

From the definition above, firewall solutions on mobile devices are also personal
firewalls. Current incarnations copy the network-level functionality of common
computer personal firewalls. These firewalls filter IP traffic in both directions.
For example, this was necessary for devices running Windows Mobile (up to
version 5.1), because they exposed some UDP ports at all interfaces (GSM, WLAN),
leading to vulnerabilities [20]. Also, design and implementation of a simple port
blocking firewall was published [97]. In general, mobile devices do not offer
network servers so that a firewall for incoming traffic is not necessary.

Current firewall incarnations on mobile devices should be extended to more func-
tionality, for example, filtering message traffic. As with behavior-based virus
detection, the limited use cases of the mobile device are advantageous here. See
Section 6.2 for this.

130 DEVICE-CENTRIC SECURITY INVESTIGATIONS

6.2.2 Policy Enforcement and Security Interfaces

6.2.2.1 Security Interfaces

The policy enforcer as a new entity in the mobile device adds a new interface for
security. This section shows that the implementation is almost not restricted even
on currently existing mobile devices. It adds a new line of defense to the mobile
device with many possible functions, of which the most useful have to be defined.
The most important point is that the policy enforcer is developed independently of
the functional evolution of the mobile device and any technology on it.

With regard to the security awareness of mobile devices users (cf. Section 3.5),
such a solution with a stable interface promises to be a more effective solution than
the security mechanisms of particular mobile device technologies. When reflecting
upon the evolution of firewalls from packet-level over stateful and stream-oriented
to application-level firewalls (cf. Section 6.2.1.2), we have an example that it is
useful to include higher protocol layers for being able to handle more incidents.

Regarding the usability of the solution, the interface of personal firewall is related
to this interface here. The effectiveness of this interface was investigated [96] and
the propositions of this section have successfully been applied for the successful
ZoneAlarm personal firewall, where—besides user-centric and user-driven design—
especially the design principle “eliminate complexity” was used [39, Chapter 27].

6.2.2.2 Policy Languages

Currently out of scope is the question of how the security policy finds its way
from the specification into our system. At the moment, we simply assume that it
is present as a reasonable assumption, because the two following relevant aspects
of it are solvable. The first aspect is parsing a configuration text file which is a
standard task. The second aspect is the content of the configuration file, the security
policy’s format. There are several current solutions that are all applicable. They
are briefly surveyed afterwards (aspects of usability have already been discussed in
Section 3.5.4).

The sophisticated Symbian OS Platform Security Architecture was already men-
tioned. This is a mechanism at the operating system level. Also already mentioned,
Schneider [192] introduces security automata as a formalism. Another formal-
ism is the Security Policy Language (SPL) [179]. Other work tries to provide
some kind of security certificate together with the application. The first one was
proof-carrying code [153] that creates formal proofs for certain security properties.
This approach was not easily applicable, so extensions were developed. Model-
carrying code [196] and abstraction-carrying code [3] go into the direction of more

6.2 Attack Surface Reduction in Mobile Device Security 131

human-readable policies. Security-by-contract [47] adds semantics to the signing
of mobile code. For completeness: similar systems have been thought about some
years ago from an industry perspective [104].

It is an interesting question, why there is such a big gap between research results and
real-world implementations. Currently available security policy implementations
on mobile devices only enable coarse-grained policies. Especially, there are only
few possibilities to restrict data network usage. The current expressiveness is to
disallow an access to a certain API completely, to allow it unrestricted (for every
run of the program or for the current session), and to ask every time that an API
is called. Especially asking every time can be very tedious for the user when
the program uses many consecutive calls to a certain API. It would be useful to
enhance the expressiveness of security policies to allow at once a certain number of
events, e.g., a number n of messages or amount x kilobytes of data (as already
said above).

6.2.2.3 Definiteness of Policy Rules

An important question in the context of policy enforcement is how definite the
settings in the policy enforcer are. It is imaginable that certain applications of
the mobile network operator or the device manufacturer needs certain restricted
functionality, but are sufficiently trusted to bypass the policy enforcer. Technically,
this would add a list of processes with superior rights to the policy enforcer, and a
checkbox for answering the question of definiteness can be added as well.

It is then a question of the interaction between device manufacturers, mobile
network operators, and users of mobile devices, if these choices can be changed by
the user and how they are set initially. It could be imaginable that certain operator-
signed or manufacturer-signed applications are able to override the settings of the
user.

6.2.3 Prototype Design

The implementation of the idea of attack surface reduction is now sketched here,
based on the tool MobileSandbox of Chapter 5.

It is important to prevent other programs from switching into kernel mode for
ensuring that our reference monitor implementation runs with superior rights
compared to other processes except for the operating system processes. Fortunately,
there are only a limited number of ways for switching into kernel mode, as shown
in Section 2.2.3. The separation between user mode and kernel mode is effective in

132 DEVICE-CENTRIC SECURITY INVESTIGATIONS

Handle Object CINFO Pointer
APISet Array CINFO Pointer

Method Table PointerCINFO

System Call

API Call

Kernel

Core DLL

Exception Handler

Kernel Trap

Application

EpilogKernelHookDLL
allow

block

original call

hooked call

original call hooked call

Figure 6.5: Policy Enforcer System Architecture (cf. Figure 5.3)

Windows CE, so the only way to switch into kernel mode is to use a system call. As
all system calls are hooked by our solution, we are always able to prevent a program
from switching into kernel mode if all ways into kernel mode are intercepted. It can
simply return an appropriate error code for an unsuccessful system call. Normal
programs do not need to switch into kernel mode, therefore it is no restriction of
functionality when disallowing kernel mode.

We use the technique of kernel-level system call interception for accessing the
operating system. This well-known technique can easily be used in Windows
Mobile, because this operating system implements almost no security mechanisms.
This is one of the reasons that our implementation is most needed for this operating
system.

Without a loss of generality, we use the example of data network access in the
following description. We explained that a kernel-level process is able to intercept
all system calls. Of course, this includes any system calls to access the data network
and every access to the data network must use a system call. Therefore, our solution
will see every access to the data network and is able to apply access restrictions by
a security policy.

Figure 6.5 shows the two possible ways for a system call in our implementation.
The main decision is made in the KernelHookDLL, where a system call either is
allowed to be executed or is blocked. When the system call is allowed, we set the

6.2 Attack Surface Reduction in Mobile Device Security 133

return address to point again to our own system. Then, control is passed back to the
operating system. After the system call execution finished, we are able to modify
the return value in the Epilog, and then pass control back to the calling application.
When the system call is blocked, we jump to the Epilog directly. This poses two
questions. First: how exactly can a system call be blocked, so that the calling
application does not recognize a difference to a failed system call? And second:
how is our system set up, that is, how does our KernelHookDLL find its way into
the operating system kernel? Both questions will be answered subsequently.

The first question has a simple answer from a conceptual point of view: the system
only needs to create a valid fail return condition for every blocked system call. As
an example, for handle-based system calls it is a value of -1 most of the times.
Processes get the specific error condition usually by calling GetLastError after a
failure of the system call was indicated. Our system needs to set this value with
special care.

The answer to the second question is DLL injection. To put our system in place as
a reference monitor, we have chosen to inject our DLL into the nk.exe process. As
explained in Section 2.2.3, the kernel switches a process into kernel mode before
performing the system call, so our code will always be accessed. We show the
DLL injection procedure in Section 5.2. In order to inject into nk.exe, our system
uses the undocumented PerformCallback4 function that executes code in another
process just like in a system call. Therefore, we execute the LoadLibrary function
in the process of nk.exe with a global pointer which points to the name of our
kernel-hooking DLL.

For implementing the requirement of only allowing certain processes to call certain
system calls, it is necessary to match the calling process. This can be done with the
system call GetCallerProcess in a reliable way. The system is now able to enforce
policies like restricting the sending of messages to the messaging application.

Now, a reference monitor is in place that can be used to effectively enforce security
policies. Moreover, this reference monitor implementation is able to perform
additional functions. A fundamental problem in the Windows CE world is the lack
of any reasonable type of security policy. Other security systems like Symbian
OS or J2ME implement concepts like private persistent data spaces for every
program, API grouping and several trust levels, with selective access to API groups
depending on the trust level. Our system is able to add these concepts to Windows
CE. With the same techniques as restricting data network usage, it is possible to
restrict access to certain parts of the persistent storage to certain processes and
therefore programs.

Additionally, it is possible to restrict the access to cost-generating functions like
messaging or phone functions. So, it is useful to globally restrict access to these

134 DEVICE-CENTRIC SECURITY INVESTIGATIONS

functions. For example, the Internet browser on mobile devices is likely to be an
increasingly important attack vector with the increasing prevalence of data network
usage. However, the Internet browser does not need to access messaging (or phone)
functions, and likely does no other program with the notable exception of signed—
and therefore trusted—programs. So it is useful to restrict the possibility to send
messages to the messaging process and the possibility to initiate phone calls to the
phone handler process. All other calls to these functions can either be prevented or
prompted to be confirmed by the user. This way, many of the expected problems of
upcoming mobile malware can be solved, and our solution is able to accomplish
this.

6.3 Conclusion

In the first part of this chapter, we investigated the resistance of Windows Mobile 5
against the threat of an autonomously spreading smartphone worm as the innovative
part of the three phases model of breaking a system. Our results are that the constant
part can be implemented as a reliable basis. The search for a buffer overflow by
using fuzzing was not successful. The entire needed effort for creating the constant
part (building block) and the variable part (fuzzing) was approximately 600 hours
(fourteen weeks of full-time work, without the time for documenting the results).

In the second part of the chapter we showed device-centric parts as necessary
for smartphone security, because some important security requirements can only
be implemented on the mobile device itself. We proposed a policy enforcer on
mobile devices that aims at reducing the attack surface of mobile devices towards
mobile malware. It was developed based on two simple security requirements that
already cope with large parts of relevant smartphone security. Finally, we showed
a possible design of this policy enforcer.

Chapter 7

Network-Centric Security
Investigations

This chapter investigates the possibilities of increasing mobile device security
within the mobile network itself. This encompasses all the possibilities that a
mobile network operator can provide with its special position for increasing mobile
device security. This view is supported by a year 2005 Gartner study that encour-
aged a different approach for mobile device security: the mobile world should
not repeat the mistakes of the personal computer world. Security mechanisms
should be installed on network-level first, the mobile devices should be the last
resort [115]. Moreover, Schneier proposed that the security industry would shift
from having direct contact with the mobile device user to being a supplier for the
mobile network operators, "just like new automotive technologies are marketed to
automobile manufacturers, rather than individual car owners" [194]. Both views
make it worthwhile to investigate the influence that a mobile network operator can
have on mobile device security.

As we have discussed in Section 3.5, studies of mobile device users indicate that
most users do not see the mobile network operator responsible for protecting their
mobile devices. Even though the user acceptance is not given as a prerequisite, this
chapter investigates the possible advantages of the more centralized environment of
mobile networks, and mobile network operators may be well advised to proactively
install these mechanisms in their networks, because they could legally be forced
to refund any monetary damage that customers experience because of malware.
Indications in this direction for mobile devices are present from the year 2007
[181] and have long been known for banking attacks.

If the mobile network operator is legally forced, it could be justifiable to invade
the user’s privacy and analyze every piece of installable software that reaches the

136 NETWORK-CENTRIC SECURITY INVESTIGATIONS

user via the network. It could even be required that installable software from local
sources like memory cards or a Bluetooth/infrared connection must be sent to the
network operator before installing.

The analysis system here uses the mobile network as analysis place rather than
the mobile device for two reasons. First, the mobile network has more computing
power to perform a more thorough analysis (cf. Section 2.1.3). Only this makes
the presented mobile dynamic malware analysis feasible. Second, it is assumed
that most software will be delivered via the mobile networks, in part because of
the easier handling compared to dealing with local connections.

The contribution of this chapter is the simulation of some of the proposed network-
based security mechanisms. With our own simulation system we reproduce some
of the results of Ruitenbeek et al. [183] and provide evidence that the protection
of a virus scanner helps in reducing spreading velocity, even when only a small
percentage of users are protected. As an add-on contribution we document the
results of a Bluetooth honeypot case study that confirms the results of similar case
studies [30, 204].

Section 7.1 will give a high-level overview of a mobile dynamic malware analysis
system, subdivided into the three main parts collecting samples, analyzing samples,
and responding to the analysis. Emphasis of the section is on the mechanisms of an-
alyzing the samples, because the effectiveness of these mechanisms is investigated
with discrete event simulation in Section 7.2.

7.1 Mobile Dynamic Malware Analysis

Three parts are important for mobile dynamic malware analysis: collecting the
software samples as complete as possible (Section 7.1.1), analyzing the samples as
complete as possible (Section 7.1.2), and taking certain actions as a response to the
analysis (Section 7.1.3).

7.1.1 Collecting Samples

There are various ways, how installable software can reach the mobile device
(illustrated in Figure 7.1): messaging, data network, WLAN, local connections via
Bluetooth, infrared, memory cards and PC connections. Only few of them are under
the control of the network operator (messaging, data network) and are instantly
ready to be analyzed. These local software installation vectors are a general
drawback of all network-based solutions, that is, a network-based analysis service

7.1 Mobile Dynamic Malware Analysis 137

Bluetooth

memory cards/
PC connection

public services

MNO services

files (local)

files (WLAN)

files (Bluetooth)

files (network−centric)

Figure 7.1: File Collection Vectors

could miss a malware sample that has been installed via a local installation vector.
Therefore, the part of collecting the possible malicious samples has to employ
heuristic methods. Mechanisms for collecting software samples are described
subsequently.

7.1.1.1 Backbone Network Scanning

The backbone network of an MNO is the place where all data from the mobile
device is available that was transmitted using wireless links of the MNO (mobile
network or WLAN hotspots). These are the network-centric files of Figure 7.1.

Messaging Systems. Chapter 4 showed that there are examples for malware
spreading via MMS (Commwarrior) and SMS (Yxe). The messaging systems are
centralized and under the control of the MNO. Therefore, it is reasonable to collect
software there.

IP Systems. Data traffic is increasing steadily. Like the messaging systems, the
IP systems are under the control of the MNO and a reasonable place for collecting
software. Collecting in IP systems has increased effort, because there is more
traffic and more application protocols. However, scanning the application protocols
is necessary, because malware can use any of them (e.g., Web traffic to the mobile
browser, e-mail) for attacking the mobile device.

7.1.1.2 Collecting Locally Distributed Software

Chapter 4 showed that mobile malware also uses local attack vectors like Bluetooth
or memory cards for spreading. An MNO is not able to monitor or to influence this

138 NETWORK-CENTRIC SECURITY INVESTIGATIONS

communication. However, in order to protect the mobile devices of its clients, the
MNO must become aware of these samples.

A first solution would be to extend the installer of the mobile device: whenever a
software is going to be installed, the installer sends a hash value of the installation
package to the mobile network. There are two possibilities: if the hash value is
known, the mobile network returns the threat assessment of this software. If the
hash value in unknown, the mobile device might send the installation package to
the mobile network for an analysis. This would be a straightforward extension
of the installer, because the installer is already supposed to implement online
certificate status checking. Sending a hash value would only be a minor addition to
the functionality of the installer.

However, there are executable files that are executed immediately without using
the installer. This would be a task for the executable loader of the mobile device to
check the executable against a local list of threat assessments or—if necessary—to
add this software to the list with the procedure described above.

7.1.1.3 Bluetooth Honeynets

To be informed about current malware spreading via Bluetooth, implementing a
Bluetooth honeynet could be a good idea. Especially crowded areas promise to be
a good source of malware [30]. When proactively analyzing samples, the analysis
of a particular submitted software might already be finished when the user submits
a sample via the extended installer or the executable loader.

Of the local connections, PC connections and memory cards require active involve-
ment of the user. Infrared connections need intervisibility. So all of them can be
expected to play only a minor role in mobile malware propagation. Only Bluetooth
with a wireless communication range of several meters has the potential of being
a major source for malware propagation, even though the mobility of the devices
could successfully prevent some infections [235].

We performed a case study of using a Bluetooth honeypot during several weeks
in the city of Mannheim. This case study showed no connection attempt of other
devices at all, meaning that no mobile malware within our reception area spread
via Bluetooth.

For estimating the potential of Bluetooth mobile malware, we measured the avail-
able Bluetooth devices at crowded places in the city and in the main station of
Mannheim, each for two hours. In these two hours, 151 resp. 170 devices with
active Bluetooth were detected. As a rough estimation of the number of active
Bluetooth devices, we estimated a Bluetooth transmission range of 10 meters and

7.1 Mobile Dynamic Malware Analysis 139

Table 7.1: Detected Bluetooth Services (321 devices in total)
Service Number of Detection
OBEX Object Push/OBEX File Transfer 156
Dial-Up Networking 150
Headset/Hands-free Audio Gateway 123

estimated about 500 persons during two hours, leading to roughly 30% resp. 34%
of the persons carrying an active Bluetooth device. The absolute number of devices
are similar to related studies [30, 204] with the tendency to have slightly more
devices with active and visible Bluetooth detected.

Table 7.1 shows the detected Bluetooth services. The reason that only about half
of the devices offer any Bluetooth service is the mobility of the devices: they are
already out of the reception area before the services could be detected (cf. Carettoni
et al. [30]).

As part of the offensive approach of this thesis we also wanted to find out how
persons with Bluetooth devices react to receiving unsolicited messages via Blue-
tooth. At the main station of Mannheim we sent contact information (vCard) to
25 devices, where the name of the contact was the following text (translated from
German): “Welcome to the main station of Mannheim”. Seven transmission were
accepted. The other 18 transmission attempts were either rejected or not recognized
in the reception area of our device, this cannot be distinguished. The number of
transmission attempts was low and we only sent a contact instead of a software
(because of legal considerations). However, the number of successful transmissions
indicates a tendency of users towards accepting unsolicited transmissions on the
mobile device.

7.1.1.4 Conclusion

The numerous local installation vectors are an argument for solutions like local
anti-virus software, but as we have seen it is possible to send the software to the
network for analysis before actually installing it. This needs time and will create
costs, but it could be necessary to ensure security for mobile device users, because
it enables more sophisticated analysis (see next section). And it can be expected
that data traffic will be more common in the future or it could be possible not to bill
certain traffic in connection with the security system. In order to minimize costs
it could be useful to send a hash value of the software first to see if the network
already knows this particular software.

140 NETWORK-CENTRIC SECURITY INVESTIGATIONS

7.1.2 Analyzing Samples

The collected samples must now be analyzed. This part of the system can incorpo-
rate different analysis modules as its sources, for example, an anti-virus product.
Another example of an analysis module is MobileSandbox of Chapter 5.

7.1.2.1 Virus Scanners

One common method to assess the treat of a software is scanning with a virus
scanner. Current anti-virus scanners analyze most of the times based on their
signature database with all their known drawbacks regarding completeness and
susceptibility to small binary changes in the sample (cf. Section 2.3.3).

Even though, virus scanners give a quick threat assessment of a given software.
The reaction can be based on that assessment.

7.1.2.2 Dynamic Analysis

The use of formal verification methods could be thought of, but it can be expected
that no formal specification for a software is available most of the times. Methods
of static analysis could be used, but they are limited (cf. Section 2.4.1).

A promising approach is an automatic dynamic analysis where system calls are
logged and afterwards analyzed for malicious behavior. Because of mobile device
limitations this cannot be done efficiently on the mobile device itself.

The optimal case is a complete analysis that can be rated against several security
profiles like the user’s personal security profile. An additional network-wide
security profile can exist, e.g., where known malicious behavior like malicious
premium-rate services can be stored. However, even the solutions with one run
(like MobileSandbox) are able to assess the threat in a certain way.

In the example where messaging functionality is restricted to the messaging pro-
gram (cf. Section 6.2), every access to messaging functions is a violation of the
profile and therefore malicious behavior.

7.1.3 Responding to the Analysis

The mobile network operator can choose from several mechanisms based on the
analysis. These are the topic of this section and these mechanisms are explained
subsequently.

7.1 Mobile Dynamic Malware Analysis 141

7.1.3.1 Removing the Malware

A simple and common way is to remove the malware. If it is already installed on
the device, then the device must be disinfected. If the malware is still under the
control of the MNO (e.g., in its backbone network), the message or packet might
be discarded and an explanatory message might be sent to the user.

7.1.3.2 User Interface and Privacy

A problem in the setup of today’s mobile networks is the inability to assess the costs
of premium-rate services in the operational systems. This is due to the fact that this
information is only available in the billing systems. Thus, it is not possible to design
an easy prompt for the user, where the device displays all relevant information on
the upcoming action, enabling the user to take an informed decision. Unfortunately,
this inability also in some way limits the upper monetary limit for transactions like
sending messages.

The MNO is able to disallow the installation of the software, send a message to
the user that the program violates the security profile of the user or of the network,
maybe even as a voice confirmation of the user, depending on how severe the
damage is expected to be. From an operator’s point of view, the proceeding of
asking the user for confirmation and recording his reply could relieve the operator
of refund claims.

7.1.3.3 Remote Policy Adaption

In the context of this thesis, we have the policy enforcer of Section 6.2 available as
a security entity on the mobile device. This policy enforcer defines many interfaces
to security functionality. As an example, it is able to restrict access to the phone
functionality, even on the level of single phone numbers.

A security analysis might find out phone numbers that are used in a malicious
way. The network-based security mechanism of remote policy adaption can send
this security information to the mobile device for informing the user or restricting
access to these numbers. Keeping such a system with a global view on malicious
players—leading to malicious phone numbers—in the mobile network is especially
useful because of the inability to assess the costs of premium-rate services prior
to their use (cf. above). This procedure is comparable to application revocation,
because in both cases the previously available trust into an entity (application or
phone number) has to be reverted and this new status has to be conveyed to the
mobile device users.

142 NETWORK-CENTRIC SECURITY INVESTIGATIONS

7.2 Simulation

This section measures the spreading velocity of mobile malware with varying the
parameters number of users protected with a network-based virus scanner, update
time of virus signatures, and user acceptance ratio.

7.2.1 Model

Before a simulation can take place, a model has to be created from the real-world
system that is supposed to be simulated. This modeling consists of the two steps
problem definition and a description of the events.

7.2.1.1 Problem Definition

The first step towards a working model is defining the problem. It is here the
spreading velocity of mobile malware. The simulation is supposed to answer the
following questions: can network-based technical security mechanisms decrease
the spreading velocity of mobile malware? Is it necessary to educate a subset of
the users? This is answered here for the particular parameters number of protected
users and user acceptance ratio. Another question concerns the necessity for fast
signature updates when a previously unknown virus starts spreading.

For answering these questions, the mobile network has to be modeled. The design
of our simulation system can be seen in Figure 7.2. It consists of the following
modules: virus scanner, messaging servers, users (protected and unprotected), and
the two active message sending modules MMS message and virus.

Figure 7.2 shows that all users are connected to the messaging server. Both types
of users have a probability of accepting a message. We assume that protected users
are more probable to accept messages, because they rely on the network-based
security system. Messages for protected users are routed through the virus scanner.
This adds a certain delay to message delivery, especially when the virus scanner
has no more capacity.

7.2 Simulation 143

P(acceptance)

protected user

delay, capacity

delay, capacity

virus scanner

MMS server

SMS serverP(acceptance)

unprotected user
MMS
message

virus
message

Figure 7.2: Simulation System Design

7.2.1.2 Event Description

Having defined the problem, it is now necessary to structure the elements of the
system and to define the relationships among them. Our simulation consists of one
MNO that provides the messaging server and the virus scanner. The events of the
system are described now.

Messages. The messaging module and the virus module continuously send mes-
sages of variable length to the users of the system. They are passing the MNO
systems and are delivered to the user. When the message reaches the user, he
processes the message according to his behavior.

Mobile Network Operator. The messages pass the systems of the MNO and
are routed through the virus scanner if the user subscribed to the network-based
virus scanning service. If no malware is detected, the message is delivered to the
user. The virus scanner is updated in certain time intervals.

User. The users are subdivided into the group of protected users and the group
of unprotected users. All users have a contact list with a random number of other
users. The entries of the contact list are a bijective relation: if user A has user B
in his contacts, then user B has user A in his contacts. Users are classified into
three classes according to their message acceptance ratio: The unconcerned users

144 NETWORK-CENTRIC SECURITY INVESTIGATIONS

accept every message, the paranoid users do not accept any message, and the
normal users have specific personal rules for accepting messages, these rules being
abstracted as a probability p in our simulation.

Malware. In case of a successful infection, the malware controls the infected
user. Depending on the spreading strategy of the actual malware module, the
malware will try to attack other users.

7.2.2 Implementation

7.2.2.1 OMNeT++

For our discrete, event-oriented simulation, we use the tool OMNeT++ [156].
It is often used for simulating protocols in communication networks. A model
in OMNeT++ consists of modules that communicate by exchanging messages.
Modules are in a hierarchy, with simples modules being at the lowest level and
being embedded into compound modules.

A model is based on the topology description and on the message definitions.
The modules can be flexibly extended by embedding C++ language into them.
The parameters for the actual simulation run are provided in configuration files.
Examples are the simulation duration, the number of mobile devices, the number
of protected devices, and the contact list of each mobile device.

7.2.2.2 Entities

Virus. This virus spreads by sending a copy of itself to one random phone
number. This is only successful with a probability of 53.3% (derived from the
number of connected phones in Germany compared to the maximum possible
number of phone numbers) and if unsuccessful, this particular instance of the
virus stops spreading. In the following, this virus type has two incarnations that
are independent of each other and that are intermittently sent from the outside to
devices of our simulated system. They are denoted Virus 1 and Virus 2.

Virus Scanner. The behavior of the virus scanner is dependent on the simulation
time. Within the first three simulated days, only Virus 1 is detected. An imagined
update at the beginning of day four enables the virus scanner to detect Virus 1 and
Virus 2.

7.2 Simulation 145

The scanning time is set to be between one and three seconds. Moreover, the virus
scanner only has a limited capacity of 2500 kbytes per second. If this capacity
is exceeded, the scanning process is delayed. The virus scanner module keeps
track of several events: overall number of scanned messages, detected malware,
undetected malware.

Server. The server module is responsible for routing the message. If a message
contains Virus 1 or Virus 2, the message is only processed further with a probability
of 53.3% (because of the random target phone number). Afterwards, for a pro-
tected recipient the message is forwarded to the virus scanner. For an unprotected
recipient, the message is delivered immediately.

User. The user is modeled to answer to received messages with a Gaussian
distribution with a mean of thirty minutes. If a user becomes infected with a
malware, the malware takes over the control over this user. That is, it will send
messages according to its own spreading mechanism.

A protected user has a higher probability to accept messages and install contained
applications than an unprotected user, because the protected user does not expect
to receive infected messages. The exact values for these probabilities are varied in
the evaluation.

7.2.3 Evaluation

For validating our solution, we take the same parameters as Ruitenbeek et al. [183]
and compare their results to ours. The parameters are: 1000 users, 40% acceptance
probability for unprotected users, 60% acceptance probability for protected users,
percentage of protected phones 5% and 30%. An additional parameter of our
system is a variable message size uniformly distributed between 30 kbytes and 300
kbytes. Protected users have a higher probability of accepting a message because
they rely on the network-centric security system.

The simulations run for approximately 23 simulated days (the exact value is two
million seconds). This proved to be a time interval in which all relevant results
can be seen. For rating the simulation results we see the line of 10% infected
users as the main indicator for success of the varied parameters. 10% of our 1000
simulated users are 100 infected users. Compared with real-world numbers (e.g.,
30 million users for one MNO) 10% are already 3 million infected users. Even
if the convergence behavior of these curves it interesting for other purposes, the
relevant indicator for our investigation is the 10% threshold.

146 NETWORK-CENTRIC SECURITY INVESTIGATIONS

(a) No Virus Scanner, 50 Protected Users, 300
Protected Users

(b) No Virus Scanner, Decreasing User Accep-
tance

Figure 7.3: Applying Virus Scanners vs. User Education

7.2.3.1 Introducing Virus Scanners

The simulation without any protection leads to the infection of all users after 22
days (topmost curve of Figure 7.3a). This shows that even our virus with polite
spreading characteristics infects on the average 45 users per day.

The results of Figure 7.3a are comparable to the referenced paper. They show the
decrease in spreading velocity for 50 and for 300 protected users. The curves show
that even a small number of protected users (5% for 50 protected users) decreases
the overall number of infected users after 22 days. Of special importance is the
10% threshold. It is reached in less than one day for no virus protection. For 5%
protected users it is reached after approximately two days and for 30% protected
users after approximately three days. This gives more time to every involved entity
for reacting to the current malware.

7.2.3.2 Effects of User Education

The effects of introducing a virus scanner (Figure 7.3a) can be compared to the
effects of educating the users. This is shown in Figure 7.3b. The topmost curve
is the same (no protection) and every curve below has a reduced acceptance
probability by 10%.

Figure 7.4 shows the effects with 5% protected users and a acceptance probability
that is reduced by 10% for every curve. Figure 7.4a shows a decreasing acceptance
probability for protected users only with almost no effects. Figure 7.4b shows
decreasing acceptance probability for all users. This shows less effects than the
technical security measures.

7.2 Simulation 147

(a) Only Protected Users Decrease Acceptance
Probability

(b) All Users Decrease Acceptance Probability

Figure 7.4: Effects of User Education

Figure 7.5: Virus Scanner Update Times

7.2.3.3 Update Times

The curves up to now showed the ideal case of a virus scanner: every virus in the
system is detected. As a last investigation, we simulate the appearance of a virus
that is not in the virus database (Virus 2). It is introduced after one simulated day.

As a final simulation result, Figure 7.5 shows the spreading velocity of our virus
while we varied the update times of the virus database: 1/2/4/7 days before the
new virus is detected by the system. As we can easily see, there are only minor
differences in the curves, especially there are almost no difference at the 10%
threshold.

148 NETWORK-CENTRIC SECURITY INVESTIGATIONS

7.3 Conclusion

This chapter investigated the possibilities of increasing mobile device security
within the mobile network itself. Section 7.1 gave a high-level overview of a
mobile dynamic malware analysis system, subdivided into the three main parts
collecting samples, analyzing samples, and responding to the analysis. Emphasis
of the section was on the mechanisms of analyzing the samples, because the
effectiveness of these mechanisms was investigated with discrete event simulation
in the subsequent Section 7.2.

The contribution of this chapter was the simulation of some of the proposed
network-based security mechanisms. With our own simulation system we repro-
duced some of the results of Ruitenbeek et al. [183] and provided evidence that the
protection of a virus scanner helps in reducing spreading velocity, even when only a
small percentage of users are protected. As an add-on contribution we documented
the results of a Bluetooth honeypot case study that confirms the results of similar
case studies [30, 204].

Based on our simulation system, further measurements could be done with a new
virus variant with a more aggressive spreading behavior: the virus uses the contact
list of the infected device for increasing the success probability of choosing a valid
phone number. Moreover, the virus spreads more than once per instance. An
additional advantage of using the contact list is an increased acceptance probability,
as the attacked user might think that this message is a personal message from a
known contact.

Chapter 8

Distributed Security Investigations

This chapter investigates a field in-between the device-centric and the network-
centric focus of the previous two chapters. Connected to the question of the thesis
what the future entities of mobile device security are, this chapter makes use of
the MNO smartcard, the trusted module within the mobile phone. This is based
on the insight that protecting a mobile device against the influence of mobile
malware needs parts in the device that cannot be attacked by mobile malware. As a
consequence, this chapter explores the feasibility of using these security modules.

One question related to these modules is their applicability to other tasks than the
ones that they already perform. Fortunately, protocols are in place that use the
potential of the available security modules for distributed computation problems.
This chapter studies the feasibility of of distributed computation protocols with
the use of security modules. The first implemented protocol is secure multiparty
computation as a modularized version with failure detector and consensus algo-
rithms in the trusted module. The second implemented protocol is fair exchange
with guardian angels.

Section 8.2 shows an implementation of secure multiparty computation (SMC)
that uses security modules for building a trusted subnet. We selected this protocol
because it is the first implementation of SMC on mobile devices with their restricted
environment. It extends previous work because it is the first implementation of
SMC for more than two participants in an environment that is not synchronous.
Our result is that this implementation only requires minimal resources compared
to other systems for solving SMC.

Section 8.3 shows an implementation of the probabilistic fair exchange with
guardian angels protocol. We selected this protocol because it has never been
implemented in an asynchronous setting with special regard to the resource con-
straints of mobile devices. Our results are that the implementation inherits the

150 DISTRIBUTED SECURITY INVESTIGATIONS

fairness properties of the underlying protocol by being resilient against a large
number of attacker classes.

The general applicability of these protocols in mobile real-world scenarios is
discussed in Section 8.1. The necessary basic knowledge for this chapter was
introduced in Section 2.5, covering definitions of secure multiparty computation
and fair exchange together with algorithms and their terminology. This back
reference to the early parts of this thesis is intentional because of the clear separation
between related work and our own contributions in this thesis.

8.1 Distributed Computation in Real-World Environ-
ments

This section discusses the properties of distributed computation when they are
applied in real-world environments. This is the mobile network setting and the
use of security modules as virtual trusted third parties, both discussed with a bias
towards the application of fair exchange.

8.1.1 Mobile Network Setting

The properties of the mobile network setting are important when accessing a
trusted third party (TTP). Relevant properties are synchrony in mobile networks
and increased time-sensitivity in mobile settings where the location of a device is
only temporary.

8.1.1.1 Synchrony in Mobile Networks

The setting of this chapter is a number of participants who communicate in a
partially synchronous communication network. The participants are subject to
Byzantine (i.e., arbitrary and possibly malicious) behavior. There are two properties
of communication networks that are denoted as centralized and open. Centralized
networks are under the control of a single point of responsibility, while open
networks are the interconnection of several independent service providers.

Synchronous systems with an upper bound for the message transmission delay are
infeasible in most practical settings. It may be possible in centralized networks
to achieve a high probability of synchrony by careful monitoring of the network
infrastructure and redundant system design. In open networks, where we are facing
not only unreliable links possibly with malicious behavior, synchrony is rendered

8.1 Distributed Computation in Real-World Environments 151

impossible without assuming a time-out that would be out of the scope of every
practical application. Therefore, it is of great importance to select protocols that
are built to cope with restrictions of the given infrastructure. Complex protocols
and applications may fail in unpredictable ways if their requirements are not met.

Mobile networks belong to the centralized category, but only for the cable-based
part. The wireless link is a problem in these networks. Disconnects are encountered
regularly, e.g., when switching from one area of wireless coverage to another or
when network availability is limited. Moreover, the travel speed of the mobile
device may lead to reduced connectivity.

A final factor for the synchrony of mobile networks are the network transitions
to other operators. It cannot be assumed in general that the participants use the
same (assumable as centralized) mobile network. As a conclusion, even though the
centralized environment of mobile networks gives the possibility of them being in
the category centralized networks, the wireless link and network transitions make
them be seen as open networks in the context of this thesis. In terms of message
delivery, they are asynchronous or at most partially synchronous networks.

8.1.1.2 Increased Time-Sensitivity in Mobile Settings

Connected with the mobile setting is an increased time-sensitivity. Time-sensitive
items are goods that lose their value over time (e.g., concert tickets, stock market
data). It may seem as if many digital items do not belong to this category, thus
the delivery delay imposed by a temporarily unavailable TTP would be of minor
importance. However, the time-sensitivity may depend on the user’s point of view.
In protocols with an active trustee, the availability of that trustee is the decisive
factor. If the chosen TTP has a high workload, a user may not be able to use its
services at the desired time.

Even if the TTP is only needed in the rare case of dispute resolution in optimistic
fair exchange protocols, these protocols assume the TTP to be available at least
eventually. While failures may occur during protocol execution, the TTP will at
some time in the future be able to serve all requests that have previously been
issued. While the assumption of an eventually available TTP is perfectly valid for
achieving theoretical fairness, the “eventual” part of the observation above may be
too long in a mobile setting.

Time-sensitivity is especially true for location-based services (such as route plan-
ning or restaurant guides) where the perceived value of the service is connected to
the (temporary) location of the mobile device, because the user will likely move
on while the delivery takes place. The same may be true for access keys to a local
wireless network. Imagine a user who is in a foreign town and who wants to use

152 DISTRIBUTED SECURITY INVESTIGATIONS

his mobile phone for browsing the Web. He may encounter a pay-per-use network
service at some place where he orders access for 15 minutes. If the delivery of
access credentials takes too long, he may already have moved to a different location.
While the credentials will still be valid, the user may never return to the coverage
area of the wireless network, thus the item is perceived as useless now.

8.1.2 Virtual Trusted Third Parties

This section first discusses the properties of trusted third parties regarding trustwor-
thiness and availability. Afterwards, their virtualization is discussed.

8.1.2.1 Properties of Trusted Third Parties

Trustworthiness. It is difficult for a user to place trust into a TTP, as he is usually
not able to evaluate the set-up and implementation of such a service. Therefore,
trust actually has to be placed into either the manufacturer/provider of the arbiter
service or an external evaluation authority. While the latter is obviously more
trustworthy, it is still infeasible to assume perfect trustworthiness. This is less
due to inaccuracy in the verification of the machine’s technical specification but
more to missing or uncertain knowledge about possible connections between such
service providers and untrusted participants in an exchange. Even if the trusted
third party is an important factor of fair exchange protocols, a formal analysis of
the requirements to be met by the TTP is not available.

Availability. It is impossible to construct a fair exchange protocol without the
help of a trusted third party (Even and Yacobi [54], cf. Section 2.5). Literature
has since focused on reducing the necessary involvement by the TTP in order to
guarantee fairness. This direction of research is advantageous also regarding the
specifics of the mobile network setting introduced above. When standard protocols
make use of an active TTP on a regular basis, they run the risk that the TTP becomes
a bottleneck. When considering the operation of a TTP in a real-world—possibly
mobile—scenario, it is reasonable that one TTP will be responsible for supporting
numerous exchanges simultaneously. This places a high burden on the system,
both in terms of communication as well as computation demands. As an additional
remark, this central TTP can be subject to denial-of-service attacks.

A major improvement has been achieved by proposing optimistic protocols. Those
solutions rely on the observation that most exchanges are executed without ma-
licious intent and terminate successfully. For the rare case of failure, a TTP is

8.1 Distributed Computation in Real-World Environments 153

available to aid the conflicting parties in dispute resolution. While the optimistic
approach proves to be much better suited for actual deployment, all solutions based
on external third parties need to address serious challenges. Any entity willing to
offer such services will have to be recognized by all participants as trustworthy.
Up to now, these aspects have been mostly ignored in literature.

8.1.2.2 Relaxing the Trustworthiness Requirement

A way to increase the level of trust between the participants in an exchange and
to simplify and improve fair exchange protocols is to utilize trusted hardware as
security modules. Chapter 2 showed that the MNO smartcard of today’s mobile
devices can serve as a basic security module, with possible extensions by using
more sophisticated smartcards.

Such hardware-based solutions offer multiple advantages: placing a smartcard
close to the participant makes the communication between those two entities more
trustworthy. It can be assumed that the security module is locally attached to the
user’s device and that the communication takes place fast and synchronously.

The security module may also be able to perform part of the duties that would
usually fall to the central TTP. This lowers the risk of the trustee forming a
bottleneck, since the load on that server may be significantly reduced. The danger
of the local security device being overloaded is minimal: each participant has access
to its own device and the workload is restricted to his own computations.This is an
advantage compared to a central TTP that has to handle potentially hundreds of
participants simultaneously.

It also has to be noted that an adversary trying to disturb the exchange may find
less potential attack vectors when secure hardware is used. This is mainly due to
the fact that many critical operations take place within a well-defined environment
with restricted access possibilities.

8.1.2.3 Benefits and Disadvantages of Utilizing Trusted Hardware

Optimistic fair exchange protocols are able to guarantee deterministic strong
fairness if at least one of the exchanged items is either revocable or generatable.
Fair exchange protocols using security modules achieve probabilistic strong fairness
for any digital item. Even though we exchange the deterministic strong fairness
with a probability, this is a major step forward for the applicability of fair exchange
protocols, because digital items are only rarely revocable and only sometimes
generatable (e.g., digital signatures). A fair exchange framework offering protocols

154 DISTRIBUTED SECURITY INVESTIGATIONS

that guarantee strong fairness without regard to the goods exchanged opens up
more possibilities to use this technique in practice. Furthermore, trusted hardware
enables timely delivery even when parts of the network infrastructure, e.g., the
connection to the central TTP, are unreliable.

Hardware-based protocols have been proposed that ensure this important property.
A locally equipped smartcard may even be able to deliver an item although the item
to be delivered in return has not been sent yet. Literature investigates solutions
such as incentive-based fair exchange (Vogt et al. [222]). The basic idea here is to
reward fair behavior and penalize efforts to cheat. For example, the smartcard may
be locked while an exchange has not been completed successfully, thus making it
useless for its possessor.

Another interesting property of solutions based on security modules is the intro-
duction of anonymous exchanges. It may be desirable in certain settings for a
participant to not expose his identity to an outside entity. This is not possible in
classical fair exchange protocols as soon as dispute resolution is needed. Secure
hardware can be a solution for this problem, because the customer may reliably
use its security module as an arbiter that deals with the vendor. As the smartcard
is expected to work as specified, the vendor may trust that a request to resolve a
dispute or to cancel a contract has indeed originated at the customer. Still, he has
no way to learn of that person’s true identity.

As a final advantage, the participants do no longer need to trust an external en-
tity with unknown and unobservable relationships to other—possibly malicious—
entities. Even though both TTP settings require trust in the producer of the hardware
and the provider of the software of the TTP, the behavior of a local TTP is more
observable than the behavior of an external TTP.

A drawback of applying security modules is their limited computational power and
memory. For important applications, such hardware seems to be well suited, as
the rest of this chapter will show. Research already investigates how to overcome
performance constraints by securely outsourcing parts of the smartcard’s workload
onto its host computer [222]. An additional possibility is the virtualization of the
trusted module. These results of trusted computing research use the hardware
trusted module for providing a software trusted module that has access to the full
capabilities of the host device while at the same time being as inaccessible as its
hardware counterpart [190]. A successful virtualization of a security module would
relieve most of the restrictions of Section 8.2.3.

As a conclusion, even by using security modules it is not possible to deliver
deterministic strong fairness. The impossibility result by Even and Yacobi still
holds and third parties are needed to achieve such requirements. Though, the notion
of probabilistic fairness as introduced in the fair exchange with guardian angels

8.2 Secure Multiparty Computation with Security Modules 155

JSR 177

Consensus

Failure Detector

User
Interface

Timer

Sender

Mobile Device

Host (J2ME)

Smartcard (Java Card)

IP

Figure 8.1: System Architecture of SMC Solution

and gracefully degrading fair exchange protocols are a promising approach for
real-world application scenarios. While it is more than desirable for fair exchange
systems to be able to accomplish as much dispute resolution as possible, absolute
fairness, at least in a legal sense, will always only be possible by calling upon a
legal entity.

8.2 Secure Multiparty Computation with Security
Modules

Section 2.5 introduced a solution to solving SMC with a consensus and a failure
detector. This section will show an implementation of this algorithm for mobile
devices with MNO smartcard, using the technologies J2ME and Java Card. As also
said in Section 2.5, we implement a weak SMC, because we have a weak failure
detector.

8.2.1 Design

The design of TrustedPals is subdivided into the untrusted host system and the
trusted smartcard system. Figure 8.1 shows the architecture of the developed
system.

156 DISTRIBUTED SECURITY INVESTIGATIONS

8.2.1.1 Host Application

The host application is responsible for the communication between the participants,
for the user interface, and for providing a clock signal to the smartcard, as the
smartcard does not have access to a clock signal.

After the user confirmed his input value, the participants synchronize and start the
consensus. Upon successful completion, the result is given to the user.

8.2.1.2 Smartcard Application

With the consensus and the failure detector, the most important parts of the SMC
algorithm reside on the smartcard. Both parts were introduced in Section 2.5.

The failure detector is the first implementation of the algorithm that was proposed
by Cortiñas et al. [37]. It continuously sends and receives failure detector matrices
and builds a process liveness table from the received matrices. The consensus with
its four phases will be used as proposed. For computing the common function F ,
consensus is executed once for the input value of each participant.

An important security feature of the algorithm is attaching the consensus messages
to the recurrently sent failure detector messages. If no consensus message has to
be sent, the consensus part of the failure detector message is filled with random
content. As the failure detector messages are sent in encrypted form, outside
attackers cannot learn the behavior of the consensus algorithm.

Triggered by the clock signal, a failure detector sends its state messages to the other
failure detectors. Thus, the observable communication has fixed time intervals
when assuming a regular clock signal. Additionally, messages only leave the trusted
smartcard in an encrypted form. Unencrypted sensitive data is only available in the
secure memory of the smartcard.

8.2.2 Implementation

8.2.2.1 APDU Communication

Communication with the smartcard is done with APDUs. The most important
command APDUs are for starting the SMC, for sending messages, and for sending
clock signals to the smartcard. They are illustrated in Figure 8.2.

Start APDU. The Start APDU has the instruction byte 0x30 and carries the
user input from the host to the smartcard. The successful start of the SMC will be
confirmed with a response of value of 1.

8.2 Secure Multiparty Computation with Security Modules 157

Start APDU: CLA 0x30 0 0 1 estimate 1

Message APDU: CLA 0x40 0 0 ML message -

Clock APDU: CLA 0x50 0 0 - - -

Figure 8.2: Application Protocol Data Units of SMC Solution

Message APDU. Incoming messages from other participants are forwarded with
the message APDU to the smartcard. The instruction byte is 0x40 and the message
length (ML) is dependent on the number of participants. No response is expected,
so there is no Le byte that would indicate the length of the response APDU.

Clock APDU. The clock APDU is responsible for triggering the step counter of
the smartcard part. As there is no additional data and no expected response, no Le
and no data bytes are part of this APDU.

8.2.2.2 Host Application

The implementation of the host application parts is straightforward. The user
interface is simple, because its only functionality is retrieving the desired input
value from the user, starting the SMC, and displaying the result.

The timer recurrently sends the clock APDUs to the smartcard and the sender is
responsible for scrambling the packets and sending them to the other participants.

8.2.2.3 Smartcard Application

General. Implementations of the Java Card application on real devices can be
done with the Nokia Series 40 5th edition, because it implements the APDU part
of the JSR 177 specification. These devices can access the Java Card functionality
of the MNO smartcard. Another possibility is a special Java Card hardware
module. Such a module exists at the moment in Nokia phones with Near Field
Communication (NFC) technology (e.g., Nokia 6121).

The implementation uses the cryptographic methods that Java Card provides in the
javacard.security package. Available are asymmetric encryption schemes and key
agreement for symmetric encryption schemes.

158 DISTRIBUTED SECURITY INVESTIGATIONS

1 1 1
⌈n2

8

⌉
n 1 1 1 1

sender receiver time failure
detector
matrix

failure
detector
version

round estimate
(consensus)

age estimate
round

(consensus)

Figure 8.3: Content of Encrypted Messages (Size in Bytes)

Consensus. The consensus algorithm is the main part for distributing the input
values of the participating processes. As said in Section 8.2, it is executed once for
each participating process and messages are embedded into a continuous message
stream (the estimate parts of Figure 8.3).

Failure Detector. The failure detector holds the following data: lists of in- and
out-connected processes, time-out counters for each process, the time stamp for
the next expected message of each process, its own step counter, as well as various
flags for newer versions of the failure detector matrix. A new failure detector
message from another process is processed by comparing the own failure detector
matrix with the received matrix. Differences are adopted when they have a larger
version number than the own failure detector matrix.

Then, the failure detector matrix is raised to the power of the number of partici-
pating processes. The failure detector matrix is the adjacency matrix of a directed
graph. Entry (p,q) equals 1 iff an edge from node p to node q exists. The ex-
ponential matrix informs about the connectedness of the processes. A process is
in-connected, if it is able to receive messages from at least

⌈ (n+1)
2

⌉3 processes.
Therefore, a process p is in-connected, if the exponential matrix has in row p at
least

⌈ (n+1)
2

⌉
non-zero entries.

Message Box. Figure 8.3 shows the message that is created and sent when a
clock signal is received from the host. The messages for the other processes are
concatenated and sent to the host in a single response APDU. The total length of
this message is (9+n+

⌈n2

8

⌉
) · (n−1)6 bytes for n participating processes. With

a maximum APDU length of 256 bytes, this leads to a number of 9 participating
processes possible in one APDU. A solution can be extra-long APDUs that are
sent with offsets, but when assuming the size of 1 kilobyte overall memory of the
smartcard more participating processes are prevented anyhow.

8.2 Secure Multiparty Computation with Security Modules 159

Table 8.1: Memory Requirements of Failure Detector
Attribute Memory Requirements (in Bytes)

n Participants 9 Participants
Matrix

⌈n2

8

⌉
9

Exponential Matrix
⌈n2

8

⌉
9

In- and Out-Connected Processes 2 ·
⌈n2

8

⌉
4

Version List n 9
Constant Overhead 20 20
Total 4 ·

⌈n2

8

⌉
+n+20 51

Table 8.2: Approximated Memory Requirements Java Card (9 Participants)
Function Memory Requirements

(in Bytes)
FD and Consensus 80
Messages 250
Other 50
Total 380

8.2.3 Memory Requirements Evaluation

The memory size of currently existing smartcards usually is 1 kilobyte, sometimes
up to 2 kilobytes and in rare cases even more. These values show that smartcard-
based applications need to respect the low available memory. With the given
number of 9 participants almost a quarter of the available memory is filled with
the buffer (256 bytes). Incoming messages have a size of 9 +

⌈n2

8

⌉
+ (n− 1)

bytes (equals 28 bytes for nine participating processes). As such a message can
be processed directly, the memory buffer is available again immediately after
processing the buffer and is only needed once.

The failure detector needs memory for its matrix, for the exponential matrix, for the
version list, and for the lists of in- and out-connected processes. Table 8.1 shows
the memory requirements for n participating processes and for the fixed number of
9 processes. There is an overhead of 20 bytes that is independent of n.

Table 8.2 show the complete memory requirements for the smartcard part. The
consensus needs 10 bytes statically and two lists of length n. This totals at least 380
bytes memory for 9 participating processes and leaves approximately 600 bytes as
buffer for incoming messages. With the numbers from above this buffer can store
21 messages, or approximately three messages per participating process.

160 DISTRIBUTED SECURITY INVESTIGATIONS

Intuitively, these numbers seem to be too low for robustness of the algorithm, and
attack scenarios can be constructed to let this buffer overflow. An example is a
Byzantine participant that increases the clock signal of its smartcard, leading to an
increased number of failure detector messages with future round numbers. When
the other participants receive these messages, they have to buffer them.

Worthwhile future work for our implementation is investigating how these theoreti-
cal values influence the robustness of the multiparty computation in the presence
of real attackers.

8.3 Fair Exchange with Security Modules

This section describes our implementation of the probabilistic fair exchange with
guardian angels protocol, subdivided into design, implementation, and evaluation.

8.3.1 Design

This design part first describes how the fair exchange with guardian angels protocol
is mapped to our solution. Then it introduces the design of the host system part
and of the smartcard application part.

8.3.1.1 General Mapping of Fair Exchange Algorithm

The fair exchange with guardian angels protocol is mapped to the three phases key
agreement, item exchange, and keep-in-touch protocol.

Phase 1: Diffie-Hellman Key Agreement. Symmetric cryptographic techniques
are used to encrypt the data exchanged between the security modules. Since it is
infeasible to assume that all security modules share a single common secret key, a
symmetric key is generated using the Diffie-Hellman key agreement scheme. To
perform the key agreement, both participants need access to the other’s public
Diffie-Hellman key. Therefore, A first sends its public key to B, who answers with
his own public key. When both parties are in possession of the remote public key,
they can start the agreement and end up with the same common secret without
further communication. This common secret is then used to encrypt all subsequent
communication between the two participants.

8.3 Fair Exchange with Security Modules 161

Phase 2: Item Exchange. Once that A has computed the secret key, A starts
the second phase of the fair exchange protocol. A message object is constructed
to hold the plain text that A wants to exchange for a non-repudiation of receipt
(NRR) token. This item is then sent to B, who verifies that it matches the hash
value proposed during exchange initiation. B in turn delivers his NRR token to the
smartcard of A, thus completing the item exchange.

Phase 3: The Keep-in-Touch Protocol. The third and final phase implements
the keep-in-touch (KiT) protocol proposed by Avoine and Vaudenay. A starts this
phase by sending a fake message to B. This fake message includes no explicit
contents except for a number k, which has been chosen randomly from a range of
3 to MaxFakeRounds (one of the global parameters). For testing purposes, we set
this parameter to 10.

When receiving such an initialization message for the KiT protocol, B saves the
total number of rounds proposed and sends a new fake message back to A. The
fake messages include a round count—namely “two” if it is the first message sent
by B—which can be checked by the recipient. If the round count included does
not match the state of the smartcard’s internal counter, the exchange is aborted.
As long as the count does match, A and B keep sending such messages back and
forth. When this message exchange has lasted for the saved number of total rounds,
both A and B can be sure that at least probabilistic fairness has been achieved.
The internal exchange object is updated to reflect the successful outcome and the
smartcard signals the success to its host application. The host may then choose to
have the item delivered from the smartcard’s internal memory.

8.3.1.2 Host System Application

Figure 8.4 shows the design of the fair exchange system. The abstract base
classes Exchange, FXSmartCard, and FXSmartCardMessage define functionality
of any fair exchange implementation. These abstract interface definitions include
an object model in Exchange, a smartcard definition in FXSmartCard, and a
message format for the communication between the host and the security module
in FXSmartCardMessage. All concrete implementations of fair exchange solutions
should be derived from this set of interface definitions and extend their functionality
where needed.

The host uses the PacketCollector interface to listen for messages that carry a
GAFXSmartCardMessage payload. When such a message is encountered, its
(encrypted) content is recovered from the XML representation and the smartcard’s
method to handle the message is called. The smartcard method verifies the origin

162 DISTRIBUTED SECURITY INVESTIGATIONS

uses

uses

uses

uses

abortExchange()
resolveConflict()

uses

handleMessage()

sendSCMessage()

javax.crypto

KeyAgreement

InformedRandomAdversary

GAExchange

Exchange

SimpleCDXMPPClient

RandomAdversary

BiasedRandomAdversary

FXSmartCardMessage

GAFXSmartCardMessage

Adversary

FXSmartCard

GAFXSmartCard

ExponentialAdversary

communicates via RMI

org.jivesoftware.smack

PacketCollector

Figure 8.4: Design of Fair Exchange Solution

of the message and processes it depending on the current phase of the protocol
execution. If a message does not pass the verification or if it belongs to a protocol
phase other than the one currently in execution, it will be dropped and not regarded
any further. This is a simple security mechanism to prevent message spoofing and
deliberate attacks on the protocol run.

8.3.1.3 Smartcard Application

Our solution only simulates the smartcard in an object. For communicating with the
simulated smartcard it uses method calls. When using a real smartcard, this would
be equivalent to using the sophisticated remote method invocation (RMI) services
instead of the APDU communication in the implementation of secure multiparty
computation in Section 8.2. RMI abstracts from the APDU message format and
provides an environment for accessing the Java card that is more adapted to the
concepts of the Java language.

8.3 Fair Exchange with Security Modules 163

8.3.2 Implementation

8.3.2.1 Host System

Our implementation uses the extensible message and presence protocol (XMPP
[184]). This XML-based protocol is mainly used for the Jabber instant messaging
clients, but it has been defined as a general technology for communication-related
tasks. Therefore, it is a reasonable choice as basis for the implementation. The
Jabber client application is implemented in the class SimpleCDXMPPClient. It
takes care of XMPP connection management and basic Jabber chat functionality
as well as the management of the smartcard device and delivering messages to and
from the smartcard.

When its sendSCMessage method is called, the specified payload is attached to
a custom XMPP message and delivered to the receiver’s XMPP client. When a
custom smartcard XMPP message is received by the client, its payload is extracted
from the XML envelope and passed on to the module’s handleMessage method
implementation. The custom payload is encrypted and includes status and identity
information about the exchange as well as additional data depending on the current
protocol phase (e.g., public keys, digital items, dummy payloads). It is stored in a
GAFXSmartCardMessage object that can be serialized to and deserialized from a
byte array representation using Java’s Serialization API and then be transported as
part of an ASCII encoded XML message.

Communication between the parties in all three phases of the exchange uses the
blocking PacketCollector mechanism while awaiting an answer. This is necessary
to implement the time-out functionality that our solution uses to detect process
failures. This blocking of the user interface is acceptable in our proof-of-concept
environment. In production environments it is desirable to restrict operations
that block the user interface. For adding non-blocking behavior to our solution,
it is possible to implement the failure detector in a thread of its own. The user
interface would stay responsive and communicate with the failure detector thread
via signaling mechanisms.

8.3.2.2 Smartcard

Our smartcard simulation provides a number of publicly invokable methods. The
methods address the provision of general status information concerning both the
smartcard itself as well as fair exchanges currently being executed, but they also
provide means to actively modify the exchange execution, e.g., through the methods
abortExchange and resolveConflict.

164 DISTRIBUTED SECURITY INVESTIGATIONS

8.3.3 Evaluation

8.3.3.1 Fairness Analysis

Adversaries. To test the fairness provisions of our prototype, we modeled differ-
ent attackers and included them in our system. Attackers are able to compromise
the communication channels or the host computers in such a way that they can ar-
bitrarily disrupt such communication and drop any messages at their own choosing
(Byzantine behavior). They may not, however, make an informed decision whether
to drop a message based on its contents, since this would violate the confidentiality
assumption of secure channels.

Our attackers are included in the adversaries package and follow different strategies
when deciding whether to drop a given message or not.

• The RandomAdversary uses a random number generator and drops messages
with a probability of 50%.

• The ExponentialAdversary keeps track of the number of messages received
and drops all messages that have a count of 2n.

• The BiasedRandomAdversary may be initialized with a custom threshold
value in order to change the probability that messages are dropped.

Other strategies, especially combinations of those described here, may be inter-
esting to investigate. However, performing one hundred test runs, we were not
able to reach a fairness breach even once. Whenever a message was dropped by an
adversary, the expecting party would reach its timeout limit and abort the exchange.
The remote party would also time out as expected.

There is a more sophisticated attack scenario that will have to be investigated
further. Having knowledge of the protocol execution, an attacker will know that
there are exactly four messages exchanged before the keep-in-touch protocol
starts (not counting the exchange proposal). An attacker may also know the
maximum number of fake rounds that a smartcard will support, and make a partly
informed decision about dropping messages based on this knowledge. So while
in theory, choosing the parameter k of fake messages may render the chance
to successfully attack the protocol arbitrarily low, it has to be considered that a
practical implementation of this protocol will always have to make a trade-off
between security and applicability. In a real-world network setting it is infeasible
to assume the exchange of more than a few fake messages, and an attacker may
be able to deduce the range inside which that parameter can be found by carefully
observing the protocol executions.

8.3 Fair Exchange with Security Modules 165

Table 8.3: Fair Exchange Adversaries
Name Knowledge Strategy
RandomAdversary none drop randomly
BiasedRandomAdversary none drop randomly
ExponentialAdversary none counting
InformedRandomAdversary KiT interval drop random KiT message

Table 8.4: Fairness Evaluation Using InformedRandomAdversary
maxk 10 20 30 40 50 60 70 80 90 100
Fairness Breaches 8 4 4 2 3 1 1 1 3 0
Theoretical Values 10 4 3.3 2.5 2 1.7 1.4 1.3 1.1 1

We have implemented such an attacker in the InformedRandomAdversary class.
This implementation provides a constructor method which is called with a lower
and a upper bound on the expected number of keep-in-touch messages. The
adversary will then randomly choose a specific message to be dropped from that
interval and increase an internal message counter each time a message is sent
or received. When the counter equals the pre-determined message number, that
message will be dropped. All other messages will be passed on. An overview of
all modeled adversaries is given in Table 8.3.

The described informed attacker should succeed in a fairness breach if and only
if the randomly chosen message is the last message in the keep-in-touch protocol
phase. If the attacker drops messages too early, the exchange should abort for both
parties. If the attacker drops them too late, the protocol will complete successfully
before any message is dropped. After each exchange, the adversary’s internal
message counter is reset to zero.

Fairness Breaches. We varied the maximum number of KiT rounds maxk and
performed one hundred test runs each. The obtained results are shown in Table 8.4.
The theoretical breach rate for each unit of measurement is 100

maxk
%. Although this

cannot be exactly verified with the results at hand, there seems to be a distinct trend
towards lower breach rates for higher values of maxk. Therefore, we conclude that
our implementation indeed inherits the probabilistic fairness results of the guardian
angels protocol.

There is one more potential security issue to be noted here. Right now, the receiver
accepts any number of KiT rounds k that is proposed by the originator’s smartcard.
If that device only offers a rather weak implementation of the guardian angels

166 DISTRIBUTED SECURITY INVESTIGATIONS

Table 8.5: Average Execution Times Depending on Cryptography (in milliseconds)
maxk 10 20 30 40 50 60 70 80 90 100
Crypto On 120 126 131 140 144 156 157 172 182 189
Crypto Off 32 35 45 45 60 55 74 75 83 91

protocol, the receiving party might unknowingly suffer from insufficient ranges
for k. It should therefore be allowed to reject certain values. In our opinion, the
best approach would be to agree on an allowed range during some kind of feature
negotiation phase prior to starting the actual exchange.

8.3.3.2 Performance Analysis

The Diffie-Hellman key agreement is one of the most complex operations per-
formed during an exchange. Therefore, we wanted to identify the impact of the
cryptographic primitives on execution speed. So we removed all cryptographic
operations (key agreement, message encryption and decryption) from our im-
plementation and measured the performance. The results for a local setup with
negligible communication times are shown in Table 8.5.

8.4 Conclusion

Based on the insight that increasing the security of a mobile device by protecting
it against the influence of mobile malware needs parts that cannot be attacked by
mobile malware, this chapter explored the feasibility of using trusted modules
in mobile devices for advanced distributed computation problems. It showed the
general applicability of these protocols in mobile real-world scenarios. Afterwards,
it presented prototypic implementations of two distributed computation protocols:
secure multiparty computation with security modules and fair exchange with
guardian angels.

The implementation of secure multiparty computation with security modules is
the first implementation of SMC for more than two participants in an environment
that is not synchronous. We showed that this implementation only needs minimal
resources compared to other systems for solving SMC.

Avoine and Vaudenay’s fair exchange protocol with guardian angels was the basis
of our implementation for a two-party fair exchange scenario as certified message
delivery for the Extensible Messaging and Presence Protocol (XMPP). We were
able to show that the implementation inherits the fairness properties provided by

8.4 Conclusion 167

the underlying fair exchange protocol. It successfully withstood different adversary
models which behaved according to the attack model laid out for the study of
hardware-based protocols. We also showed how we were able to meet the desired
security requirements of our communication infrastructure using cryptographic
techniques.

168 DISTRIBUTED SECURITY INVESTIGATIONS

Chapter 9

Conclusion

9.1 Summary

The importance of researching on the smartphone security topic is substantiated in
the increasing number of smartphones, which are expected to outnumber common
computers in the future. Despite their increasing importance, it is unclear today
if mobile malware will play the same role for mobile devices as for common
computers today. Therefore, this thesis contributed to defining and structuring
the topic mobile device security with special concern on smartphones and on the
operational side of security, i.e., with mobile malware as the main attacker model.

The first three chapters introduced and structured the topic with the main goal of
showing what has to be defended against today. First, an attack model with four
attack classes that argues for a clear distinction between its classes. Second, a
survey on the current state of real-world examples and a projection of the potential
of mobile malicious software, together with a classification concerning portability
between different platforms with the main goal of showing what has to be defended
against today.

We subdivided the technical investigations of this thesis into the three parts device-
centric security mechanisms, network-centric security mechanisms, and something
in-between: distributed security mechanisms.

The device-centric investigations contributed MobileSandbox, a software for dy-
namic malware analysis of Windows Mobile binaries with the following advantages
over existing solutions: first, it logs system calls not only at user level but even at
the level of the kernel, enabling a more detailed system call log. Second, it can be
integrated into a running device without any changes to the firmware of the device.

170 CONCLUSION

As additional device-centric investigations we contributed on the efforts that have
to be taken to develop an autonomously spreading smartphone worm for Windows
Mobile by actively researching characteristics and countermeasures to learn more
about its associated threats. Moreover, we showed that device-centric parts are
necessary for smartphone security, because some important security requirements
can only be implemented on the mobile device itself. We proposed a policy enforcer
as a security mechanism that aims at reducing the attack surface of mobile devices
to mobile malware. This security mechanism differs from recent related work in
the area by relieving the need to be added to the device at manufacturing time.

The network-centric investigations showed the possibilities that a mobile network
operator can use in its own mobile network for protecting the mobile devices of its
clients. We simulated the effectiveness of different security mechanisms and came
to the conclusion that the protection of a virus scanner helps in reducing spreading
velocity, even when only a small percentage of users are protected.

Finally, the distributed investigations showed the feasibility of distributed compu-
tation algorithms with security modules by giving prototypic implementations of
protocols for secure multiparty computation as a modularized version with failure
detector and consensus algorithms in the trusted module and for fair exchange
with guardian angels. The implementation of secure multiparty computation is the
first for more than two participants in an environment that is not synchronous. We
showed that this implementation only needs minimal resources compared to other
systems for solving SMC. The implementation of the probabilistic fair exchange
with guardian angels protocol was shown to inherit the fairness properties of the
underlying protocol by being resilient against a large number of attacker classes.

9.2 Discussion

This discussion synthesizes the essence of the previous chapters. Future entities of
smartphone security are shown in a coherent section. This is equally done for the
security requirements that are reasonable for a future with secure smartphones.

9.2.1 Future Entities

Besides its key contributions, this thesis conveyed the following insight: in the fast-
changing world of mobile device security, the boundaries of security are constantly
changing. This makes it necessary to reduce the attack surface of the operating
systems of mobile devices. This is especially true when the combination of systems

9.2 Discussion 171

that are secure for themselves lead to unexpected vulnerabilities in combination
with other systems.

The device-centric investigations argued for the future entity policy enforcer. Under
the aspect of security and usability the policy enforcer is a sophisticated combina-
tion of a device firewall, an extended installer, and a remote device management
receiver.

The network-centric investigations indicated that network-based virus scans are
a reasonable measure for decreasing the propagation velocity of mobile malware.
Indications exist that update times of signature databases are not critical in the
order of days.

One future entity is seen in proactive security protocols. They evade the security
problems of this thesis in a way by using a secure subnet built by trusted modules
that can even withstand a compromised host device acting as a Byzantine node in
the protocol.

One possible future entity was not named until now, because it only makes sense in
the combination of the contributions of this thesis. This entity is a fraud database
within the mobile network under the control of the mobile network operator and
connected to the mobile devices. This fraud database would at least contain the
malicious phone numbers that were introduced in Chapter 7. This is a network-
centric security mechanism in combination with the device-centric policy enforcer
that will enforce the policies of the fraud database. This database can architecturally
be combined with the certification revocation databases.

9.2.2 Security Requirements

We see three main security requirements for mobile devices that contribute to
increase their security: address space randomization, an active policy enforcer, and
the necessity for process logging.

Address Space Randomization: The technical parts of this thesis—especially
the development of our smartphone worm—showed the effects that the simple
security measure address space randomization can have. Malware can use hard-
coded addresses of system calls that are currently valid on similar devices. With a
randomized address space, the hard-coded addresses are only valid for one device.
This would lead to an increased effort for malware authors who want to hide their
malware from the system by using hard-coded addresses.

172 CONCLUSION

Active Policy Enforcer: The policy enforcer of Chapter 6 can be used to limit
costs and for other useful security functionality on the mobile device. As this en-
forcer is proposed to be independent of particular technologies, it can be demanded
as a security requirement.

Process Logging: It can be demanded to log the process that initiated a security-
relevant event on the mobile device. This is especially true for monetary events.
Chapter 6 proved this functionality as feasible. The logs can be used for two
reasons. First, they can be used for dispute resolution between the MNO and a user
who was a victim to monetary damage caused by mobile malware. Second, this
data could be used as input for fraud detection algorithms.

9.3 Perspective

This section discusses the future validity of the fundamentals that underlay the
investigations of this thesis. Ultimately, it indicates challenges for future research
in mobile device security.

9.3.1 Future Validity of the Specifics

We recall the mobile device security specifics of Figure 2.2. They were the
framework for the investigations in this thesis. Important for future research is
knowing whether these specifics remain valid.

We see the following directions:

• Creation of costs is a specific that will even be of more importance in the
future. As more and more services are introduced to mobile devices, it is
likely that some of them will be payment services and other services with
monetary effects.

• The network environment is likely to stay the same. With the observation
of the recent years, a tendency towards an increased usage of remote device
management and remote firmware update can be expected.

• The expensive wireless link will decrease in importance. The communication
costs will decrease because of more available bandwidth of mobile networks.
The computation costs for algorithms on the device will also decrease be-
cause the fourth generation of mobile networks (4G) is designed for high
bandwidth and low latency for data traffic.

9.3 Perspective 173

• The limited device resources are likely to decrease in a way, leading to more
processing power and more memory. The battery as the most important
factor in mobile devices seems probable to remain a factor that has to be
considered. Altogether, limited device resources remain a specific of mobile
device security.

• The security-unaware user might become a little more security-aware when
mobile device security moves into common attention. This is likely to be
connected to the reputation, because more understanding for the problems of
mobile device security might relieve the MNOs from unsubstantiated claims
from the users.

As a conclusion: smartphones are rapidly closing the gap on common computers in
terms of processing power, display size, and versatility of operating systems. How-
ever, they have inherent constraints that will remain valid in the future. Therefore,
the specifics of Figure 2.2 can be used as a framework for future mobile device
security research.

9.3.2 Future Challenges

As smartphones are subject to a fast-paced change it can be expected that the
shifting boundaries of mobile device security will continue to be a challenge for the
future. The shifting boundaries started with the mobile Web browser that evolved
into a complete application framework. For this reason, the policy enforcer was
introduced as an entity that is independent of functional progress. However, even
the security contributions of this concept might be insufficient in the future.

A challenge for realization is application revocation of mobile device applications.
This topic came into focus in 2009 when two signed pieces of malware were found.

A challenge for future offensive research can be the abuse of firmware flashing
functionality. Even if this was assumed to be secure in the context of this thesis,
the process might be attacked successfully. As this attack would lead to devices
that are completely Byzantine, they might not only attack other devices but even
the mobile network instead.

Two challenges concerning the user interface were not covered with the solutions of
this thesis. First, it is possible that the user interface does not display the message
that the program or the operating system expects. Examples are APIs for dialog
boxes that accept strings of an arbitrary length for the message to be displayed.
This can be exploited if these string are related to the other elements of the dialog
box. Second and even more challenging is malware that is able to simulate actions

174 CONCLUSION

of the user, e.g. by automatically reacting to security confirmations. Some common
computer operating systems provide APIs for this task and it can be imagined that
mobile operating systems will provide this functionality in the future. It becomes
even more intriguing in combination with mobile malware that re-flashed some
parts of the operating system.

Both of these user interface challenges are on another level than the device-centric
security policy enforcer. A first solution to these problems is introducing Turing
tests (CAPTCHAs) for every security-relevant event on the mobile device in order
to prove that an event was confirmed by the human user. The task for future
research could be to explore the portion of security problems that remain when this
solution is applied.

An important question for the future is how criminals can earn money with mobile
devices. At the moment, premium-rate services or foreign country calls are a
working method. In the future, smartphone-based payment systems could be
exploited. With an abuse database and with the enforcement of this abuse database
on a mobile device with the policy enforcer we expect some of the currently
working methods to cease.

The challenge for mobile network operators is contributing to the cessation of the
current potential to earn money with exploiting mobile device security vulnera-
bilities, especially concerning premium-rate and foreign country services. And
the challenge for future research in mobile device security is identifying the kind
of successful attacks that cannot be solved with the security entities that were
presented in this thesis.

Bibliography

[1] ACIICMEZ, O., LATIFI, A., SEIFERT, J.-P., AND ZHANG, X. A Trusted Mobile Phone
Prototype. In 5th IEEE Consumer Communications and Networking Conference (Jan. 2008).

[2] ADLEMAN, L. M. An abstract theory of computer viruses. In CRYPTO ’88: Proceedings of
the 8th Annual International Cryptology Conference on Advances in Cryptology (1990).

[3] ALBERT, E., PUEBLA, G., AND HERMENEGILDO, M. Abstraction-Carrying Code: a
Model for Mobile Code Safety. New Generation Computing 26, 2 (Feb. 2007), 171–204.

[4] ANDERSON, J. Computer Security Technology Planning Study. Technical Report ESD-TR-
73-51, U.S. Air Force Electronic Systems Division, 1972.

[5] ANDERSON, R. J. Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd ed. Wiley Publishing, Apr. 2008.

[6] ANONYMOUS. How to install ANY applications using platform hack! http://www.
ipmart-forum.com/showthread.php?t=247062 (Accessed 08/2009).

[7] ASOKAN, N., SHOUP, V., AND WAIDNER, M. Asynchronous Protocols for Optimistic Fair
Exchange. Security and Privacy, IEEE Symposium on (1998).

[8] ASSELINEAU, R., AND HOSPITAL, J.-M. Bewertung der Sicherheit von mobilen
Endgeräten unter Windows CE. Misc 1 (2006), 17–23.

[9] AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing 01, 1 (2004), 11–33.

[10] AVOINE, G., GÄRTNER, F. C., GUERRAOUI, R., AND VUKOLIC, M. Gracefully Degrading
Fair Exchange with Security Modules. In EDCC (2005), M. D. Cin, M. Kaâniche, and
A. Pataricza, Eds., vol. 3463 of Lecture Notes in Computer Science, Springer, pp. 55–71.

[11] AVOINE, G., AND VAUDENAY, S. Fair Exchange with Guardian Angels. In The 4th
International Workshop on Information Security Applications - WISA (2003), no. 2908 in
Lecture Notes in Computer Sciences, pp. 188–202.

[12] AYCOCK, J. Computer viruses and malware. Advances in information security; 22. Springer,
New York, NY, 2006.

[13] BACHFELD, D. Wurmflug. c’t 13 (2006), 156–163.

[14] BACHFELD, D. Warnung vor neuem Handy-Wurm, Jan. 2008. http://www.heise.de/
security/news/meldung/102303 (Accessed 08/2009).

http://www.ipmart-forum.com/showthread.php?t=247062
http://www.ipmart-forum.com/showthread.php?t=247062
http://www.heise.de/security/news/meldung/102303
http://www.heise.de/security/news/meldung/102303

176 BIBLIOGRAPHY

[15] BADURA, T., AND BECHER, M. Testing the Symbian OS Platform Security Architecture.
In AINA ’09: Proceedings of the 23rd International Conference on Advanced Information
Networking and Applications (May 2009), IEEE Computer Society.

[16] BAILEY, M., OBERHEIDE, J., ANDERSEN, J., MAO, Z. M., JAHANIAN, F., AND
NAZARIO, J. Automated Classification and Analysis of Internet Malware. In RAID (2007),
pp. 178–197.

[17] BAYER, U., MOSER, A., KRUEGEL, C., AND KIRDA, E. Dynamic Analysis of Malicious
Code - TTAnalyze. Journal of Computer Virology (2006).

[18] BECHER, M. Web Application Firewalls - Applied Web Application Security. VDM Verlag,
2007.

[19] BECHER, M., AND FREILING, F. C. Towards Dynamic Malware Analysis to Increase
Mobile Device Security. In Proc. of SICHERHEIT (2008).

[20] BECHER, M., FREILING, F. C., AND LEIDNER, B. On the Effort to Create Smartphone
Worms in Windows Mobile. In Information Assurance and Security Workshop (June 2007),
pp. 199–206.

[21] BEN-DAVID, A., NISAN, N., AND PINKAS, B. FairplayMP: a system for secure multi-
party computation. In CCS ’08: Proceedings of the 15th ACM conference on Computer and
communications security (New York, NY, USA, 2008), ACM, pp. 257–266.

[22] BERKA, J. Turbo SIM add-on allows full iPhone unlock-
ing, Aug. 2007. http://arstechnica.com/apple/news/2007/08/
turbo-sim-add-on-allows-full-iphone-unlocking.ars (Accessed 08/2009).

[23] BESSON, F., DUFAY, G., AND JENSEN, T. P. A Formal Model of Access Control for
Mobile Interactive Devices. In Gollmann et al. [86], pp. 110–126.

[24] BLADOX, S.R.O. Turbo SIM. http://www.bladox.com/ (Accessed 08/2009).

[25] BONTCHEV, V. SymbOS Malware Classification Problems. In Virus Bulletin Conference
(Aug. 2006).

[26] BONTCHEV, V. Virusability of Modern Mobile Environments. In Virus Bulletin Conference
(Sept. 2007).

[27] BOSE, A., HU, X., SHIN, K. G., AND PARK, T. Behavioral detection of malware on
mobile handsets. In MobiSys ’08: Proceeding of the 6th International Conference on Mobile
Systems, Applications, and Services (New York, NY, USA, 2008), ACM Press, pp. 225–238.

[28] BRIEGLEB, V. Marktforscher: Offene Handy-Betriebssysteme werden wichtiger, Feb. 2009.
http://www.heise.de/mobil/newsticker/meldung/132476 (Accessed 08/2009).

[29] BUGTRAQ. Siemens M Series SMS DoS Vulnerability, Mar. 2003. http://www.
securityfocus.com/bid/7004/ (Accessed 08/2009).

[30] CARETTONI, L., MERLONI, C., AND ZANERO, S. Studying Bluetooth Malware Propaga-
tion: The BlueBag Project. IEEE Security and Privacy 5, 2 (2007), 17–25.

[31] CHARI, S. N., AND CHENG, P.-C. BlueBoX: A policy-driven, host-based intrusion
detection system. ACM Trans. Inf. Syst. Secur. 6, 2 (2003), 173–200.

[32] CHEN, Z. Java Card Technology for Smart Cards. Addison-Wesley Professional, 2000.

http://arstechnica.com/apple/news/2007/08/turbo-sim-add-on-allows-full-iphone-unlocking.ars
http://arstechnica.com/apple/news/2007/08/turbo-sim-add-on-allows-full-iphone-unlocking.ars
http://www.bladox.com/
http://www.heise.de/mobil/newsticker/meldung/132476
http://www.securityfocus.com/bid/7004/
http://www.securityfocus.com/bid/7004/

BIBLIOGRAPHY 177

[33] CHENG, J., WONG, S. H., YANG, H., AND LU, S. SmartSiren: Virus Detection and
Alert for Smartphones. In MobiSys ’07: Proceedings of the 5th International Conference
on Mobile Systems, Applications, and Services (New York, NY, USA, 2007), ACM Press,
pp. 258–271.

[34] CHRISTODORESCU, M., AND JHA, S. Testing malware detectors. SIGSOFT Softw. Eng.
Notes 29, 4 (2004), 34–44.

[35] CLARKE, N. L., AND FURNELL, S. Authentication of users on mobile telephones - A
survey of attitudes and practices. Computers & Security 24, 7 (2005), 519–527.

[36] COHEN, F. B. A short course on computer viruses, 2nd ed. John Wiley & Sons, Inc., New
York, NY, USA, 1994.

[37] CORTIÑAS, R., FREILING, F. C., GHAJAR-AZADANLOU, M., LAFUENTE, A., LARREA,
M., PENSO, L. D., AND ARRIOLA, I. S. Secure Failure Detection in TrustedPals. In SSS
(2007), pp. 173–188.

[38] COWAN, C., WAGLE, P., PU, C., BEATTIE, S., AND WALPOLE, J. Buffer overflows:
attacks and defenses for the vulnerability of the decade. Foundations of Intrusion Tolerant
Systems, 2003 (2003), 227–237.

[39] CRANOR, L., AND GARFINKEL, S. Security and Usability: Designing Secure Systems That
People Can Use. O’Reilly Media, Inc., 2005.

[40] CVE-2006-3459. Multiple stack-based buffer overflows in the TIFF library, July
2006. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3459 (Ac-
cessed 08/2009).

[41] CVE-2007-0685. Denial of Service for Internet Explorer on Windows Mobile 5.0 and
Windows Mobile 2003 and 2003SE for Smartphones and PocketPC, Feb. 2007. http://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0685 (Accessed 08/2009).

[42] DAGON, D., MARTIN, T., AND STARNER, T. Mobile Phones as Computing Devices: The
Viruses are Coming! IEEE Pervasive Computing 3, 4 (2004), 11–15.

[43] DE HAAS, J. The phone in the PDA - Pocket PC Phone edition security. In Black Hat
Briefings Europe (May 2003).

[44] DEBBABI, M., SALEH, M., TALHI, C., AND ZHIOUA, S. Embedded Java Security:
Security for Mobile Devices. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[45] DENNING, D. E. R. Information Warfare and Security. Addison-Wesley, 1999.

[46] DIVE-RECLUS, C., DIXON, J., AND JAKL, M. Symbian OS Platform Security Architecture
- Evolution of the Security Architecture for Symbian OS v9. In IWWST: International
Workshop In Wireless Security Technologies (2005).

[47] DRAGONI, N., MASSACCI, F., NALIUKA, K., AND SIAHAAN, I. Security-by-Contract:
Toward a Semantics for Digital Signatures on Mobile Code. In EuroPKI (2007), pp. 297–
312.

[48] DUNHAM, K., BECHER, M., ABU-NIMEH, S., , FOGIE, S., HERNACKI, B., MORALES,
J. A., AND WRIGHT, C. Mobile Malware Attack and Defense. Syngress Media, Nov. 2008.

[49] DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in the presence of partial
synchrony. J. ACM 35, 2 (1988), 288–323.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3459
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0685
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0685

178 BIBLIOGRAPHY

[50] EMM, D. The Changing Face of Malware. In IWWST: International Workshop In Wireless
Security Technologies (2005).

[51] ENGEL, T. Remote SMS/MMS Denial of Service - "Curse Of Silence"
for Nokia S60 phones, Nov. 2008. http://berlin.ccc.de/~tobias/cos/
s60-curse-of-silence-advisory.txt (Accessed 08/2009).

[52] EREN, E., AND DETKEN, K.-O. Mobile Security. Hanser, 2006.

[53] EUROPEAN TELECOMMUNICATIONS STANDARD INSTITUTE. 3GPP Security Algorithms.
http://www.etsi.org/WebSite/OurServices/Algorithms/3gppalgorithms.
aspx (Accessed 08/2009).

[54] EVEN, S., AND YACOB, Y. Relations among public key signature systems. Tech. Rep.
Technical Report 175, Technion - Israeli Institute of Technology, 1980.

[55] F-SECURE. Malware Information Pages: Worm:SymbOS/Commwarrior. http://www.
f-secure.com/v-descs/commwarrior.shtml (Accessed 08/2009).

[56] F-SECURE. Virus Descriptions: Brador, Aug. 2004. http://www.f-secure.com/
v-descs/brador.shtml (Accessed 08/2009).

[57] F-SECURE. Virus Descriptions: MGDropper.A, Dec. 2004. http://www.f-secure.com/
v-descs/mgdropper.shtml (Accessed 08/2009).

[58] F-SECURE. Virus Descriptions: Skulls.A, Nov. 2004. http://www.f-secure.com/
v-descs/skulls.shtml (Accessed 08/2009).

[59] F-SECURE. Virus Descriptions: Cardblock.A, Sept. 2005. http://www.f-secure.com/
v-descs/cardblock_a.shtml (Accessed 08/2009).

[60] F-SECURE. Virus Descriptions: Cardtrap.A, Sept. 2005. http://www.f-secure.com/
v-descs/cardtrap_a.shtml (Accessed 08/2009).

[61] F-SECURE. Virus Descriptions: Locknut.A, Feb. 2005. http://www.f-secure.com/
v-descs/locknut_a.shtml (Accessed 08/2009).

[62] F-SECURE. Malware Information Pages: Flexispy.A, Mar. 2006. http://www.f-secure.
com/v-descs/flexispy_a.shtml (Accessed 08/2009).

[63] F-SECURE. Malware Information Pages: Fontal.A, Jan. 2006. http://www.f-secure.
com/v-descs/fontal_a.shtml (Accessed 08/2009).

[64] F-SECURE. Spyware Information Pages: Acallno.A, Aug. 2006. http://www.f-secure.
com/sw-desc/acallno_a.shtml (Accessed 08/2009).

[65] F-SECURE. Trojan Information Pages: Redbrowser.A, Mar. 2006. http://www.f-secure.
com/v-descs/redbrowser_a.shtml (Accessed 08/2009).

[66] F-SECURE. Trojan Information Pages: Wesber.A, Sept. 2006. http://www.f-secure.
com/v-descs/wesber_a.shtml (Accessed 08/2009).

[67] F-SECURE. Malware Information Pages: Blankfont.A, Sept. 2007. http://www.
f-secure.com/v-descs/blankfont_a.shtml (Accessed 08/2009).

[68] F-SECURE. Malware Information Pages: SMS-Worm:SymbOS/Feak, Apr. 2007. http:
//www.f-secure.com/v-descs/sms-worm_symbos_feak.shtml (Accessed 08/2009).

http://berlin.ccc.de/~tobias/cos/s60-curse-of-silence-advisory.txt
http://berlin.ccc.de/~tobias/cos/s60-curse-of-silence-advisory.txt
http://www.etsi.org/WebSite/OurServices/Algorithms/3gppalgorithms.aspx
http://www.etsi.org/WebSite/OurServices/Algorithms/3gppalgorithms.aspx
http://www.f-secure.com/v-descs/commwarrior.shtml
http://www.f-secure.com/v-descs/commwarrior.shtml
http://www.f-secure.com/v-descs/brador.shtml
http://www.f-secure.com/v-descs/brador.shtml
http://www.f-secure.com/v-descs/mgdropper.shtml
http://www.f-secure.com/v-descs/mgdropper.shtml
http://www.f-secure.com/v-descs/skulls.shtml
http://www.f-secure.com/v-descs/skulls.shtml
http://www.f-secure.com/v-descs/cardblock_a.shtml
http://www.f-secure.com/v-descs/cardblock_a.shtml
http://www.f-secure.com/v-descs/cardtrap_a.shtml
http://www.f-secure.com/v-descs/cardtrap_a.shtml
http://www.f-secure.com/v-descs/locknut_a.shtml
http://www.f-secure.com/v-descs/locknut_a.shtml
http://www.f-secure.com/v-descs/flexispy_a.shtml
http://www.f-secure.com/v-descs/flexispy_a.shtml
http://www.f-secure.com/v-descs/fontal_a.shtml
http://www.f-secure.com/v-descs/fontal_a.shtml
http://www.f-secure.com/sw-desc/acallno_a.shtml
http://www.f-secure.com/sw-desc/acallno_a.shtml
http://www.f-secure.com/v-descs/redbrowser_a.shtml
http://www.f-secure.com/v-descs/redbrowser_a.shtml
http://www.f-secure.com/v-descs/wesber_a.shtml
http://www.f-secure.com/v-descs/wesber_a.shtml
http://www.f-secure.com/v-descs/blankfont_a.shtml
http://www.f-secure.com/v-descs/blankfont_a.shtml
http://www.f-secure.com/v-descs/sms-worm_symbos_feak.shtml
http://www.f-secure.com/v-descs/sms-worm_symbos_feak.shtml

BIBLIOGRAPHY 179

[69] F-SECURE. Malware Information Pages: Worm:SymbOS/Beselo, Dec. 2007. http:
//www.f-secure.com/v-descs/worm_symbos_beselo.shtml (Accessed 08/2009).

[70] F-SECURE. Malware Information Pages: Trojan:WinCE/InfoJack, Feb. 2008. http://www.
f-secure.com/v-descs/trojan_wince_infojack.shtml (Accessed 08/2009).

[71] F-SECURE. Mobile Users Do Not Take Security Precautions, Mar. 2008.
http://www.f-secure.com/en_US/about-us/pressroom/news/2008/fs_news_
20080304_1_eng.html (Accessed 08/2009).

[72] F-SECURE. Virus Descriptions: Worm:SymbOS/Yxe, 2009. http://www.f-secure.
com/v-descs/worm_symbos_yxe.shtml (Accessed 08/2009).

[73] FLEIZACH, C., LILJENSTAM, M., JOHANSSON, P., VOELKER, G. M., AND MEHÉS, A.
Can you infect me now? Malware propagation in mobile phone networks. In WORM ’07:
Proceedings of the 2007 ACM workshop on Recurring malcode (New York, NY, USA, 2007),
ACM, pp. 61–68.

[74] FOGIE, S. Pocket PC Abuse. In Black Hat (July 2004).

[75] FOLEY, S. N., AND DUMIGAN, R. Are handheld viruses a significant threat? Commun.
ACM 44, 1 (2001), 105–107.

[76] FORT, M., FREILING, F. C., PENSO, L. D., BENENSON, Z., AND KESDOGAN, D.
TrustedPals: Secure Multiparty Computation Implemented with Smart Cards. In Gollmann
et al. [86], pp. 34–48.

[77] FOX, D. Der IMSI-Catcher. Datenschutz und Datensicherheit 26, 4 (2002).

[78] FREILING, F., HOLZ, T., AND MINK, M. Reconstructing Peoples Lives: A Case Study in
Teaching Forensic Computing. In IMF: IT-Incidents Management & IT-Forensics (2008).

[79] FREILING, F. C. Vom Wert offensiver Methoden - Ein Blick auf IT-Sicherheit aus An-
greiferperspektive. DuD - Datenschutz und Datensicherheit 33, 4 (2009).

[80] FURNELL, S. Why users cannot use security. Computers & Security 24, 4 (2005), 274–279.

[81] FURNELL, S. Making security usable: Are things improving? Computers & Security 26, 6
(2007), 434–443.

[82] FURNELL, S., JUSOH, A., AND KATSABAS, D. The challenges of understanding and using
security: A survey of end-users. Computers & Security 25, 1 (2006), 27–35.

[83] GARFINKEL, S. L. Design principles and patterns for computer systems that are simultane-
ously secure and usable. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2005.

[84] GENDRULLIS, T., NOVOTNÝ, M., AND RUPP, A. A Real-World Attack Breaking A5/1
within Hours. In CHES (2008), pp. 266–282.

[85] GOLLMANN, D. Computer Security, 2nd ed. John Wiley & Sons, Inc., New York, NY, USA,
Jan. 2006.

[86] GOLLMANN, D., MEIER, J., AND SABELFELD, A., Eds. Computer Security - ESORICS
2006, 11th European Symposium on Research in Computer Security, Hamburg, Germany,
September 18-20, 2006, Proceedings (2006), vol. 4189 of Lecture Notes in Computer Science,
Springer.

http://www.f-secure.com/v-descs/worm_symbos_beselo.shtml
http://www.f-secure.com/v-descs/worm_symbos_beselo.shtml
http://www.f-secure.com/v-descs/trojan_wince_infojack.shtml
http://www.f-secure.com/v-descs/trojan_wince_infojack.shtml
http://www.f-secure.com/en_US/about-us/pressroom/news/2008/fs_news_20080304_1_eng.html
http://www.f-secure.com/en_US/about-us/pressroom/news/2008/fs_news_20080304_1_eng.html
http://www.f-secure.com/v-descs/worm_symbos_yxe.shtml
http://www.f-secure.com/v-descs/worm_symbos_yxe.shtml

180 BIBLIOGRAPHY

[87] GOLOVANOV, S., GOSTEV, A., AND MASLENNIKOV, D. Kaspersky Security Bulletin
2008: Malware Evolution January - June 2008, Sept. 2008. http://www.viruslist.com/
analysis?pubid=204792034 (Accessed 08/2009).

[88] GOWDIAK, A. Java 2 Micro Edition security vulnerabilities. In Hack in the Box Security
Conference (Oct. 2004).

[89] GSMA. MMS Security Considerations, Sept. 2003. http://www.3gpp1.com/ftp/
tsg_sa/WG3_Security/TSGS3_31_Munich/Docs/PDF/S3-030694.pdf (Accessed
08/2009).

[90] GUTHERY, S. C., AND CRONIN, M. J. Developing MMS Applications - Multimedia
Messaging Services for Wireless Networks. McGraw-Hill Professional, June 2003.

[91] GÖBEL, J., HOLZ, T., AND WILLEMS, C. Measurement and Analysis of Autonomous
Spreading Malware in a University Environment. In DIMVA (2007), B. M. Hämmerli and
R. Sommer, Eds., vol. 4579 of Lecture Notes in Computer Science, Springer, pp. 109–128.

[92] GÖRLING, S. The Myth of User Education. In Virus Bulletin Conference (Oct. 2006).

[93] HAAS, P. Cellular Phone Viruses, Mar. 2005. http://www.cs.ucsb.edu/~seclab/
projects/smartphones/2005_haas_cellviruses.pdf (Accessed 08/2009).

[94] HARLEY, D., AND SLADE, R. Viruses Revealed. McGraw-Hill Companies, 2001.

[95] HEATH, C. Symbian OS Platform Security. John Wiley & Sons, 2006.

[96] HERZOG, A., AND SHAHMEHRI, N. Usability and Security of Personal Firewalls. In
Proceedings of the IFIP TC-11 22nd International Information Security Conference (SEC)
(2007), pp. 37–48.

[97] HUANG, J., ANG, R. J., MCDONALD, C. A. G., AND SUSILO, W. Personal Firewall for
Pocket PC 2003: Design & Implementation. In AINA ’05: Proceedings of the 19th Interna-
tional Conference on Advanced Information Networking and Applications (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 661–666.

[98] HURMAN, T. Exploring Windows CE Shellcode, June 2005. http://www.
pentest.co.uk/documents/exploringwce/exploring_wce_shellcode.html (Ac-
cessed 08/2009).

[99] HUSEBY, S. H. Innocent Code: A Security Wake-Up Call for Web Programmers. John
Wiley & Sons, 2004.

[100] HYPPONEN, M. Malware goes Mobile. Scientific American (2006), 70–77.

[101] HYPPONEN, M. Status of Cell Phone Malware in 2007. In Black Hat Briefings USA (July
2007).

[102] ION, I., DRAGOVIC, B., AND CRISPO, B. Extending the Java Virtual Machine to Enforce
Fine-Grained Security Policies in Mobile Devices. In ACSAC ’07: Proceedings of the
23nd Annual Computer Security Applications Conference (2007), IEEE Computer Society,
pp. 233–242.

[103] JAMALUDDIN, J., ZOTOU, N., EDWARDS, R., AND COULTON, P. Mobile Phone Vulnera-
bilities: A New Generation of Malware. In IEEE International Symposium on Consumer
Electronics (2004).

http://www.viruslist.com/analysis?pubid=204792034
http://www.viruslist.com/analysis?pubid=204792034
http://www.3gpp1.com/ftp/tsg_sa/WG3_Security/TSGS3_31_Munich/Docs/PDF/S3-030694.pdf
http://www.3gpp1.com/ftp/tsg_sa/WG3_Security/TSGS3_31_Munich/Docs/PDF/S3-030694.pdf
http://www.cs.ucsb.edu/~seclab/projects/smartphones/2005_haas_cellviruses.pdf
http://www.cs.ucsb.edu/~seclab/projects/smartphones/2005_haas_cellviruses.pdf
http://www.pentest.co.uk/documents/exploringwce/exploring_wce_shellcode.html
http://www.pentest.co.uk/documents/exploringwce/exploring_wce_shellcode.html

BIBLIOGRAPHY 181

[104] JANSEN, W. A., GAVRILA, S. I., AND KOROLEV, V. A Unified Framework for Mobile
Device Security. In Security and Management (2004), H. R. Arabnia, S. Aissi, and Y. Mun,
Eds., CSREA Press, pp. 9–14.

[105] JAVA COMMUNITY PROCESS. JSR 249: Mobile Service Architecture 2. http://jcp.
org/en/jsr/detail?id=249 (Accessed 08/2009).

[106] JAVA COMMUNITY PROCESS. JSR 118: Mobile Information Device Profile 2.1, June 2006.
http://jcp.org/jsr/detail/118.jsp (Accessed 08/2009).

[107] JAVA COMMUNITY PROCESS. JSR 177: Security and Trust Services API for J2ME, Aug.
2007. http://jcp.org/en/jsr/detail?id=177 (Accessed 08/2009).

[108] JAVA COMMUNITY PROCESS. JSR 248: Mobile Service Architecture, Feb. 2008. http:
//jcp.org/en/jsr/detail?id=248 (Accessed 08/2009).

[109] JAVA COMMUNITY PROCESS. JSR 271: Mobile Information Device Profile 3, Mar. 2008.
http://jcp.org/en/jsr/detail?id=271 (Accessed 08/2009).

[110] JONSSON, E., AND OLOVSSON, T. A Quantitative Model of the Security Intrusion Process
Based on Attacker Behavior. IEEE Trans. Softw. Eng. 23, 4 (1997), 235–245.

[111] JØSANG, A., AND SANDERUD, G. Security in mobile communications: challenges and
opportunities. In ACSW Frontiers ’03: Proceedings of the Australasian information security
workshop conference on ACSW frontiers 2003 (Darlinghurst, Australia, Australia, 2003),
Australian Computer Society, Inc., pp. 43–48.

[112] KASPERSKY. Virus.Win32.Gpcode.ak, June 2008. http://www.viruslist.com/en/
viruses/encyclopedia?virusid=313444 (Accessed 08/2009).

[113] KEHR, R. Mobile Security with Smartcards. PhD thesis, Department of Computer Science,
Darmstadt University of Technology, Darmstadt, Germany, May 2002.

[114] KLEINBERG, J. The wireless epidemic. Nature 449, 20 (Sept. 2007), 287–288.

[115] KOTADIA, M. Major smartphone worm ’by 2007’, Gartner Study, June 2005.

[116] KOZIOL, J., LITCHFIELD, D., AITEL, D., ANLEY, C., EREN, S., MEHTA, N., AND
HASSELL, R. The Shellcoder’s Handbook: Discovering and Exploiting Security Holes.
John Wiley & Sons, 2004.

[117] KREBS, B. Paris Hilton Hack Started With Old-Fashioned Con, May 2005.
http://www.washingtonpost.com/wp-dyn/content/article/2005/05/19/
AR2005051900711.html (Accessed 08/2009).

[118] KUPER, P. The State of Security. IEEE Security & Privacy 3, 5 (2005), 51–53.

[119] LAWTON, G. Is It Finally Time to Worry about Mobile Malware? IEEE Computer 41, 5
(2008), 12–14.

[120] LEAVITT, N. Malicious Code Moves to Mobile Devices. IEEE Computer 33, 12 (2000),
16–19.

[121] LEAVITT, N. Mobile Phones: The Next Frontier for Hackers? IEEE Computer 38, 4 (2005),
20–23.

[122] LEAVITT, N. Will Proposed Standard Make Mobile Phones More Secure? IEEE Computer
38, 12 (2005), 20–22.

http://jcp.org/en/jsr/detail?id=249
http://jcp.org/en/jsr/detail?id=249
http://jcp.org/jsr/detail/118.jsp
http://jcp.org/en/jsr/detail?id=177
http://jcp.org/en/jsr/detail?id=248
http://jcp.org/en/jsr/detail?id=248
http://jcp.org/en/jsr/detail?id=271
http://www.viruslist.com/en/viruses/encyclopedia?virusid=313444
http://www.viruslist.com/en/viruses/encyclopedia?virusid=313444
http://www.washingtonpost.com/wp-dyn/content/article/2005/05/19/AR2005051900711.html
http://www.washingtonpost.com/wp-dyn/content/article/2005/05/19/AR2005051900711.html

182 BIBLIOGRAPHY

[123] LEMAN, D. Spy: A Windows CE API Interceptor, Oct. 2003. http://www.ddj.com/
architect/184405459 (Accessed 08/2009).

[124] LÖDING, T. Nokias CeBIT-Einladung per SMS bringt eigene Handys zum Absturz, Mar.
2004. http://www.heise.de/newsticker/meldung/45400 (Accessed 08/2009).

[125] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y. Fairplay—a secure two-party
computation system. In SSYM’04: Proceedings of the 13th conference on USENIX Security
Symposium (Berkeley, CA, USA, 2004), USENIX Association.

[126] MANADHATA, P. K., KARABULUT, Y., AND WING, J. M. Report: Measuring the Attack
Surfaces of Enterprise Software. In ESSoS ’09: Proceedings of the 1st International Sym-
posium on Engineering Secure Software and Systems (Berlin, Heidelberg, 2009), Springer-
Verlag, pp. 91–100.

[127] MANKO. Goodbye S60 Platform Security, Hello CAPABILITIES!, Oct. 2007. http:
//www.symbaali.info/2007/10/goodbye-s60-platform-security-hello.html
(Accessed 08/2009).

[128] MAYES, K., AND MARKANTONAKIS, K., Eds. Smart Cards, Tokens, Security and Applica-
tions. Springer, 2008.

[129] MCAFEE. Handy-Viren grassieren: Bereits 83 Prozent aller Mobilfunkbetreiber be-
troffen, Feb. 2007. http://www.mcafee.com/de/about/press/corporate/2007/
20070212_174646_p.html (Accessed 08/2009).

[130] MEYER, U., AND WETZEL, S. A man-in-the-middle attack on UMTS. In WiSe ’04:
Proceedings of the 3rd ACM workshop on Wireless security (New York, NY, USA, 2004),
ACM, pp. 90–97.

[131] MICKENS, J. W., AND NOBLE, B. D. Modeling epidemic spreading in mobile environments.
In WiSe ’05: Proceedings of the 4th ACM workshop on Wireless security (New York, NY,
USA, 2005), ACM Press, pp. 77–86.

[132] MIDDELHAUFE, H. Secure Multiparty Computation with Mobile Phones. Master’s thesis,
RWTH Aachen, Feb. 2009.

[133] MIETTINEN, M., AND HALONEN, P. Host-Based Intrusion Detection for Advanced Mobile
Devices. In AINA ’06: Proceedings of the 20th International Conference on Advanced
Information Networking and Applications (Washington, DC, USA, 2006), IEEE, pp. 72–76.

[134] MILLER, J. A. Mosquito Trojan Bites Developer Back, Aug. 2004. http://www.
smartphonetoday.com/articles/2004/8/2004-8-13-Mosquito-Trojan-Bites.
html (Accessed 08/2009).

[135] MITNICK, K. D., AND SIMON, W. L. The Art of Deception: Controlling the Human
Element of Security. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[136] MOBIUS - MOBILITY, UBIQUITY AND SECURITY. http://mobius.inria.fr/twiki/
bin/view/Mobius (Accessed 08/2009).

[137] MOBIUS PROJECT. Deliverable D1.1, Resource and Information Flow Security Re-
quirements, Mar. 2006. http://mobius.inria.fr/twiki/pub/DeliverablesList/
WebHome/Deliv1-1.pdf (Accessed 08/2009).

[138] MOBIUS PROJECT. Deliverable D1.2, Framework- and Application-Specific Security Re-
quirements, Mar. 2006. http://mobius.inria.fr/twiki/pub/DeliverablesList/
WebHome/Deliv1-2.pdf.

http://www.ddj.com/architect/184405459
http://www.ddj.com/architect/184405459
http://www.heise.de/newsticker/meldung/45400
http://www.symbaali.info/2007/10/goodbye-s60-platform-security-hello.html
http://www.symbaali.info/2007/10/goodbye-s60-platform-security-hello.html
http://www.mcafee.com/de/about/press/corporate/2007/20070212_174646_p.html
http://www.mcafee.com/de/about/press/corporate/2007/20070212_174646_p.html
http://www.smartphonetoday.com/articles/2004/8/2004-8-13-Mosquito-Trojan-Bites.html
http://www.smartphonetoday.com/articles/2004/8/2004-8-13-Mosquito-Trojan-Bites.html
http://www.smartphonetoday.com/articles/2004/8/2004-8-13-Mosquito-Trojan-Bites.html
http://mobius.inria.fr/twiki/bin/view/Mobius
http://mobius.inria.fr/twiki/bin/view/Mobius
http://mobius.inria.fr/twiki/pub/DeliverablesList/WebHome/Deliv1-1.pdf
http://mobius.inria.fr/twiki/pub/DeliverablesList/WebHome/Deliv1-1.pdf
http://mobius.inria.fr/twiki/pub/DeliverablesList/WebHome/Deliv1-2.pdf
http://mobius.inria.fr/twiki/pub/DeliverablesList/WebHome/Deliv1-2.pdf

BIBLIOGRAPHY 183

[139] MOLITOR, S. Mobiles unter Beschuss - Viren und Verwandte auf Handys, June 2004.
http://www.heise.de/mobil/artikel/50820 (Accessed 08/2009).

[140] MOORE, H. D. Cracking the iPhone, Oct. 2007. http://blog.metasploit.com/2007/
10/cracking-iphone-part-1.html (Accessed 08/2009).

[141] MORALES, J. A. A Behavior Based Approach to Virus Detection. PhD thesis, Florida
International University, Mar. 2008.

[142] MORALES, J. A., CLARKE, P. J., DENG, Y., AND KIBRIA, B. M. G. Testing and
evaluating virus detectors for handheld devices. Journal in Computer Virology 2, 2 (2006),
135–147.

[143] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring Multiple Execution Paths for
Malware Analysis. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 2007), IEEE Computer Society, pp. 231–245.

[144] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of Static Analysis for Malware
Detection. In ACSAC ’07: Proceedings of the 23nd Annual Computer Security Applications
Conference (Dec. 2007), pp. 421–430.

[145] MULLINER, C. Exploiting PocketPC. In What The Hack (Jul 2005).

[146] MULLINER, C. iPhone Safari phone-auto-dial (vulnerability), June 2009. http:
//mulliner.org/security/advisories/iphone_safari_phone-auto-dial_
vulnerability_advisory.txt (Accessed 08/2009).

[147] MULLINER, C., AND VIGNA, G. Vulnerability Analysis of MMS User Agents. In ACSAC
’06: Proceedings of the 22nd Annual Computer Security Applications Conference (2006),
IEEE Computer Society, pp. 77–88.

[148] MURMANN, T., AND ROSSNAGEL, H. Sicherheitsanalyse von Betriebssystemen für Mobile
Endgeräte. In SICHERHEIT (2005), H. Federrath, Ed., vol. 62 of LNI, GI, pp. 129–138.

[149] MURRAY, J. Inside Microsoft Windows CE. Microsoft Press, Redmond, WA, USA, 1998.

[150] MUTZ, D., VALEUR, F., VIGNA, G., AND KRUEGEL, C. Anomalous system call detection.
ACM Trans. Inf. Syst. Secur. 9, 1 (2006), 61–93.

[151] MYERS, M., ANKNEY, R., MALPANI, A., GALPERIN, S., AND ADAMS, C. X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC 2560 (Proposed
Standard), June 1999.

[152] NAIR, S. K., SIMPSON, P. N. D., CRISPO, B., AND TANENBAUM, A. S. A Virtual
Machine Based Information Flow Control System for Policy Enforcement. Electron. Notes
Theor. Comput. Sci. 197, 1 (2008), 3–16.

[153] NECULA, G. C. Proof-carrying code. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (New York, NY, USA, 1997),
ACM Press, pp. 106–119.

[154] NIELSEN, J. Ten Usability Heuristics, 2005. http://www.useit.com/papers/
heuristic/heuristic_list.html (Accessed 08/2009).

[155] O2. How to recognise Comwarrior. http://www.o2.com/cr/comwarrior.asp (Ac-
cessed 08/2009).

[156] OMNET++ COMMUNITY. OMNeT++. http://omnetpp.org (Acessed 08/2009).

http://www.heise.de/mobil/artikel/50820
http://blog.metasploit.com/2007/10/cracking-iphone-part-1.html
http://blog.metasploit.com/2007/10/cracking-iphone-part-1.html
http://mulliner.org/security/advisories/iphone_safari_phone-auto-dial_vulnerability_advisory.txt
http://mulliner.org/security/advisories/iphone_safari_phone-auto-dial_vulnerability_advisory.txt
http://mulliner.org/security/advisories/iphone_safari_phone-auto-dial_vulnerability_advisory.txt
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.o2.com/cr/comwarrior.asp
http://omnetpp.org

184 BIBLIOGRAPHY

[157] OMTP LIMITED. OMTP BONDI. http://bondi.omtp.org (Accessed 08/2009).

[158] OMTP LIMITED. Functional Requirements for Remote Service Provisioning - Version 2,
Jan. 2006.

[159] OMTP LIMITED. Mobile Application Security - Requirements for Mobile Applications
Signing Schemes - Version 1.23, Dec. 2006.

[160] OMTP LIMITED. Trusted Environment - OMTP TR0, Mar. 2006.

[161] OMTP LIMITED. User Research for Application Security Prompting Focus Groups and
Usability Study, May 2006.

[162] OMTP LIMITED. Browser, Oct. 2007.

[163] OMTP LIMITED. Advanced Device Management, Jan. 2008.

[164] OMTP LIMITED. Advanced Trusted Environment - OMTP TR1, May 2008.

[165] OMTP LIMITED. Application Security Framework - Version 2.2, June 2008.

[166] OMTP LIMITED. Security Threats on Embedded Consumer Devices, May 2008.

[167] ORANGE. Certificate Security Disabling / Enabling. http://developer.orangews.com/
orgspv/comdefq.aspx.

[168] PAGNIA, H., VOGT, H., AND GÄRTNER, F. C. Fair Exchange. Comput. J. 46, 1 (2003),
55–75.

[169] PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching Agreement in the Presence of
Faults. J. ACM 27, 2 (1980), 228–234.

[170] PEIKARI, C. PDA attacks, part 2: airborne viruses - evolution of the latest threats.
(IN)SECURE Magazine 4 (Oct. 2005), 32–41.

[171] PEIKARI, C. Analyzing the Crossover Virus: The First PC to Windows Handheld
Cross-Infector, Mar. 2006. http://www.informit.com/articles/article.aspx?p=
458169 (Accessed 08/2009).

[172] PEIKARI, C., AND FOGIE, S. Maximum Wireless Security. Sams Publishing, 2002.

[173] PEIKARI, C., FOGIE, S., AND RATTER/29A. Details Emerge on the First Windows Mobile
Virus, Sept. 2004. http://www.informit.com/articles/article.aspx?p=337069
(Accessed 08/2009).

[174] PEIKARI, C., FOGIE, S., RATTER/29A, AND READ, J. Reverse-Engineering the First
Pocket PC Trojan, Oct. 2004. http://www.informit.com/articles/article.aspx?
p=340544 (Accessed 08/2009).

[175] PISKO, E., RANNENBERG, K., AND ROSSNAGEL, H. Trusted Computing in Mobile
Platforms - Players, Usage Scenarios, and Interests. DuD - Datenschutz und Datensicherheit
29, 9 (2005), 526–530.

[176] PÜTZ, S., SCHMITZ, R., AND MARTIN, T. Security Mechanisms in UMTS. Datenschutz
und Datensicherheit 25, 6 (2001).

[177] REYNAUD-PLANTEY, D. Reverse Engineering and Java Viral Analysis. In Virus Bulletin
Conference (Oct. 2005).

http://bondi.omtp.org
http://developer.orangews.com/orgspv/comdefq.aspx
http://developer.orangews.com/orgspv/comdefq.aspx
http://www.informit.com/articles/article.aspx?p=458169
http://www.informit.com/articles/article.aspx?p=458169
http://www.informit.com/articles/article.aspx?p=337069
http://www.informit.com/articles/article.aspx?p=340544
http://www.informit.com/articles/article.aspx?p=340544

BIBLIOGRAPHY 185

[178] REYNAUD-PLANTEY, D. The Java Mobile Risk. Journal in Computer Virology 2, 2 (2006),
101–107.

[179] RIBEIRO, C., ZUQUETE, A., FERREIRA, P., AND GUEDES, P. SPL: An Access Control
Language for Security Policies and Complex Constraints. In Proceedings of the Network
and Distributed System Security Symposium (2001).

[180] ROGGE, M. Bluetooth als Einfallstor - Wie Bluetooth-Marketing Anwender für mobile
Viren desensibilisiert, Dec. 2006. http://www.heise.de/security/artikel/81447.

[181] ROOS, U. Handynutzer haften nicht bei Angriffen, July 2007. http://www.heise.de/
security/news/meldung/92881 (Accessed 08/2009).

[182] ROTH, V., POLAK, W., RIEFFEL, E. G., AND TURNER, T. Simple and effective defense
against evil twin access points. In WiSec ’09: Proceedings of the second ACM conference
on Wireless network security (2008), pp. 220–235.

[183] RUITENBEEK, E. V., COURTNEY, T., SANDERS, W. H., AND STEVENS, F. Quantifying
the Effectiveness of Mobile Phone Virus Response Mechanisms. In DSN ’07: Proc. 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (June
2007), T. Courtney, Ed., pp. 790–800.

[184] SAINT-ANDRE, P. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 3920
(Proposed Standard), Oct. 2004.

[185] SAN. Hacking Windows CE. Phrack Magazine 6, 63 (July 2005).

[186] SCHECHTER, S. E. Computer Security Strength & Risk: A Quantitative Approach. PhD
thesis, Harvard, 2004.

[187] SCHMIDT, A.-D., PETERS, F., LAMOUR, F., AND ALBAYRAK, S. Monitoring Smartphones
for Anomaly Detection. In MOBILWARE (2008), ACM Press.

[188] SCHMIDT, A.-D., SCHMIDT, H.-G., BATYUK, L., CLAUSEN, J. H., CAMTEPE, S. A.,
ALBAYRAK, S., AND YILDIZLI, C. Smartphone Malware Evolution Revisited: Android
Next Target? In Proceedings of the 4th IEEE International Conference on Malicious and
Unwanted Software (Malware 2009) (2009), IEEE, pp. 1–7.

[189] SCHMIDT, A. U., KUNTZE, N., AND KASPER, M. On the deployment of Mobile Trusted
Modules. In WCNC ’08: Proceedings of the Wireless Communications and Networking
Conference (Apr. 2008), IEEE Computer Society, pp. 3163–3168.

[190] SCHMIDT, A. U., KUNTZE, N., AND KASPER, M. Subscriber Authentication in Cellular
Networks with Trusted Virtual SIMs. In Proceedings of the 10th International Conference
on Advanced Communication Technology (Feb. 2008), vol. 2, IEEE Computer Society,
pp. 903–908.

[191] SCHMIDT, J. Wachwechsel - 10 Antiviren-Programme im Test. c’t 23 (2008), 146–155.

[192] SCHNEIDER, F. B. Enforceable Security Policies. Information and System Security 3, 1
(2000), 30–50.

[193] SCHNEIER, B. Secrets and Lies: Digital Security in a Networked World. John Wiley &
Sons, 2004.

[194] SCHNEIER, B. The Death of the Security Industry. IEEE Security and Privacy 5, 6 (2007),
88.

http://www.heise.de/security/artikel/81447
http://www.heise.de/security/news/meldung/92881
http://www.heise.de/security/news/meldung/92881

186 BIBLIOGRAPHY

[195] SCHUOLER, T. Sicherheit im mobilen Netz, June 2006. http://www.voev.ch/dcs/
users/2/VoeV_IT_2_Schuoler.pdf (Accessed 08/2009).

[196] SEKAR, R., VENKATAKRISHNAN, V., BASU, S., BHATKAR, S., AND DUVARNEY, D. C.
Model-carrying code: a practical approach for safe execution of untrusted applications. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems principles
(New York, NY, USA, 2003), ACM Press, pp. 15–28.

[197] SHEVCHENKO, A. An overview of mobile device security, Sept. 2005. http://www.
viruslist.com/en/analysis?pubid=170773606 (Accessed 08/2009).

[198] SHNEIDERMAN, B., AND PLAISANT, C. Designing the User Interface: Strategies for
Effective Human-Computer Interaction, 4th ed. Pearson Addison Wesley, 2004.

[199] SINGH, P. K., AND LAKHOTIA, A. Analysis and detection of computer viruses and worms:
an annotated bibliography. SIGPLAN Not. 37, 2 (2002), 29–35.

[200] SMARTCARD DEVELOPER ASSOCIATION. SDA Releases GSM Voice-Privacy Algorithm
A5/1. http://www.scard.org/gsm/ (Accessed 08/2009).

[201] SOUSA, P., BESSANI, A., CORREIA, M., NEVES, N., AND VERISSIMO, P. Highly
Available Intrusion-Tolerant Services with Proactive-Reactive Recovery. Parallel and
Distributed Systems, IEEE Transactions on forthcoming (2009).

[202] SPANIOL, O., AND HOFF, S. Ereignisorientierte Simulation. Konzepte und Systemreal-
isierung. Thomson Publishing, 1995.

[203] SPYPHONES.BIZ. SMS CATCHER. http://www.spyphones.biz/index.php?
categoryID=81 (Accessed 08/2009).

[204] SU, J., CHAN, K. K. W., MIKLAS, A. G., PO, K., AKHAVAN, A., SAROIU, S., DE LARA,
E., AND GOEL, A. A preliminary investigation of worm infections in a bluetooth environ-
ment. In WORM ’06: Proceedings of the 4th ACM workshop on Recurring malcode (New
York, NY, USA, 2006), ACM Press, pp. 9–16.

[205] SYMANTEC. SymbOS.Cabir, June 2004. http://www.symantec.com/security_
response/writeup.jsp?docid=2004-061419-4412-99 (Acessed 08/2009).

[206] SYMANTEC. MSIL.Letum.A@mm, Apr. 2006. http://www.symantec.com/security_
response/writeup.jsp?docid=2006-040813-2610-99.

[207] SYMANTEC. Security Response: WinCE.Pmcryptic.A, Nov. 2008. http://www.
symantec.com/security_response/writeup.jsp?docid=2008-111111-4000-99
(Acessed 08/2009).

[208] SYMBIAN. Functions listed by capability. http://www.symbian.com/
developer/techlib/v9.2docs/doc_source/guide/platsecsdk/GT_9.3/
FunctionsByCapablity.html.

[209] SYMBIAN. HookLogger. http://developer.symbian.com/main/tools_and_sdks/
developer_tools/supported/hook_logger/index.jsp (Acessed 08/2009).

[210] SYMBIAN. What Symbian OS Development Kit Do I Need?, Dec. 2005.
https://developer.symbian.com/wiki/pages/viewpage.action?pageId=1859
(Acessed 08/2009).

[211] SYMBIAN FOUNDATION. Symbian Signed. http://www.symbiansigned.com/ (Acessed
08/2009).

http://www.voev.ch/dcs/users/2/VoeV_IT_2_Schuoler.pdf
http://www.voev.ch/dcs/users/2/VoeV_IT_2_Schuoler.pdf
http://www.viruslist.com/en/analysis?pubid=170773606
http://www.viruslist.com/en/analysis?pubid=170773606
http://www.scard.org/gsm/
http://www.spyphones.biz/index.php?categoryID=81
http://www.spyphones.biz/index.php?categoryID=81
http://www.symantec.com/security_response/writeup.jsp?docid=2004-061419-4412-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-061419-4412-99
http://www.symantec.com/security_response/writeup.jsp?docid=2006-040813-2610-99
http://www.symantec.com/security_response/writeup.jsp?docid=2006-040813-2610-99
http://www.symantec.com/security_response/writeup.jsp?docid=2008-111111-4000-99
http://www.symantec.com/security_response/writeup.jsp?docid=2008-111111-4000-99
http://www.symbian.com/developer/techlib/v9.2docs/doc_source/guide/platsecsdk/GT_9.3/FunctionsByCapablity.html
http://www.symbian.com/developer/techlib/v9.2docs/doc_source/guide/platsecsdk/GT_9.3/FunctionsByCapablity.html
http://www.symbian.com/developer/techlib/v9.2docs/doc_source/guide/platsecsdk/GT_9.3/FunctionsByCapablity.html
http://developer.symbian.com/main/tools_and_sdks/developer_tools/supported/hook_logger/index.jsp
http://developer.symbian.com/main/tools_and_sdks/developer_tools/supported/hook_logger/index.jsp
https://developer.symbian.com/wiki/pages/viewpage.action?pageId=1859
http://www.symbiansigned.com/

BIBLIOGRAPHY 187

[212] SYMBIAN FREAK. Mission Accomplished S60 3rd Edition FP1 hacked.
http://www.symbian-freak.com/news/008/03/s60_3rd_ed_feature_pack_
1_has_been_hacked.htm (Acessed: 08/2009).

[213] SZOR, P. The Art of Computer Virus Research and Defense. Addison-Wesley Professional,
2005.

[214] THE METASPLOIT PROJECT. http://www.metasploit.org (Acessed 08/2009).

[215] TÖYSSY, S., AND HELENIUS, M. About malicious software in smartphones. Journal in
Computer Virology 2, 2 (2006), 109–119.

[216] TREND MICRO. SYMBOS_MOBLER.B, Sept. 2006. http://www.trendmicro.com/
vinfo/virusencyclo/default5.asp?VName=SYMBOS_MOBLER.B (Acessed 08/2009).

[217] TREND MICRO. WORM_MOBLER.B, Sept. 2006. http://www.trendmicro.com/
vinfo/virusencyclo/default5.asp?VName=WORM_MOBLER.B (Acessed 08/2009).

[218] TRUSTED COMPUTING GROUP. Mobile Trusted Module Specification, version 1.0, revi-
sion 6, June 2008. http://www.trustedcomputinggroup.org/developers/mobile/
specifications (Acessed 08/2009).

[219] UNIVERSITY OF GLAMORGAN. Disk Study 2008-2009, May 2009. http://isrg.weblog.
glam.ac.uk/2009/5/7/disk-study-2008-2009 (Acessed 08/2009).

[220] VERVATA CO LTD. Flexispy Web page. http://www.flexispy.com (Acessed 08/2009).

[221] VIRUSLIST.COM. http://viruslist.com/ (Acessed 08/2009).

[222] VOGT, H., GÄRTNER, F. C., AND PAGNIA, H. Supporting Fair Exchange in Mobile
Environments. Mob. Netw. Appl. 8, 2 (2003), 127–136.

[223] VOGT, H., PAGNIA, H., AND GÄRTNER, F. C. Using Smart Cards for Fair Exchange. In
WELCOM ’01: Proceedings of the Second International Workshop on Electronic Commerce
(London, UK, 2001), Springer-Verlag, pp. 101–113.

[224] VÉTILLARD, E., AHMAD, S., AND TOURNIER, F. Next-Generation Java Card Technol-
ogy for Secure Mobile Applications. Java One, 2007. http://developers.sun.com/
learning/javaoneonline/2007/pdf/TS-5686.pdf (Acessed 08/2009).

[225] WANG, P., GONZALEZ, M. C., HIDALGO, C. A., AND BARABASI, A.-L. Understanding
the Spreading Patterns of Mobile Phone Viruses. Science (April 2009).

[226] WEISSENBORN, R. Langzeitbombe Handyvirus. Spiegel online, May 2008. http://www.
spiegel.de/netzwelt/mobil/0,1518,555019,00.html (Acessed 08/2009).

[227] WHITEHOUSE, O. University of Santa Barbara Release Source Code for Symbian
Worm, Oct. 2006. https://forums2.symantec.com/t5/blogs/blogarticlepage/
blog-id/mobile_wireless/article-id/18 (Accessed 08/2009).

[228] WHITEHOUSE, O. Even Symbian 9 Spyware Can Get Signed, July 2007. http://www.
symantec.com/connect/blogs/even-symbian-9-spyware-can-get-signed (Ac-
cessed 08/2009).

[229] WHITEHOUSE, O. Mobile Device Threats (Poster), May
2007. https://forums2.symantec.com/t5/Mobile-Wireless/
A-Picture-is-Worth-a-Thousand-Words-And-I-Only-Have-to-Type-300/
ba-p/306396 (Accessed 08/2009).

http://www.symbian-freak.com/news/008/03/s60_3rd_ed_feature_pack_1_has_been_hacked.htm
http://www.symbian-freak.com/news/008/03/s60_3rd_ed_feature_pack_1_has_been_hacked.htm
http://www.metasploit.org
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=SYMBOS_MOBLER.B
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=SYMBOS_MOBLER.B
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_MOBLER.B
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_MOBLER.B
http://www.trustedcomputinggroup.org/developers/mobile/specifications
http://www.trustedcomputinggroup.org/developers/mobile/specifications
http://isrg.weblog.glam.ac.uk/2009/5/7/disk-study-2008-2009
http://isrg.weblog.glam.ac.uk/2009/5/7/disk-study-2008-2009
http://www.flexispy.com
http://viruslist.com/
http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-5686.pdf
http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-5686.pdf
http://www.spiegel.de/netzwelt/mobil/0,1518,555019,00.html
http://www.spiegel.de/netzwelt/mobil/0,1518,555019,00.html
https://forums2.symantec.com/t5/blogs/blogarticlepage/blog-id/mobile_wireless/article-id/18
https://forums2.symantec.com/t5/blogs/blogarticlepage/blog-id/mobile_wireless/article-id/18
http://www.symantec.com/connect/blogs/even-symbian-9-spyware-can-get-signed
http://www.symantec.com/connect/blogs/even-symbian-9-spyware-can-get-signed
https://forums2.symantec.com/t5/Mobile-Wireless/A-Picture-is-Worth-a-Thousand-Words-And-I-Only-Have-to-Type-300/ba-p/306396
https://forums2.symantec.com/t5/Mobile-Wireless/A-Picture-is-Worth-a-Thousand-Words-And-I-Only-Have-to-Type-300/ba-p/306396
https://forums2.symantec.com/t5/Mobile-Wireless/A-Picture-is-Worth-a-Thousand-Words-And-I-Only-Have-to-Type-300/ba-p/306396

188 BIBLIOGRAPHY

[230] WHITTEN, A., AND TYGAR, J. D. Why Johnny Can’t Encrypt: A Usability Evaluation of
PGP 5.0. In SSYM’99: Proceedings of the 8th conference on USENIX Security Symposium
(Berkeley, CA, USA, 1999), USENIX Association, pp. 14–14.

[231] WILHELM, J., AND CHIUEH, T. A Forced Sampled Execution Approach to Kernel Rootkit
Identification. In RAID (2007), pp. 219–235.

[232] WILLEMS, C., HOLZ, T., AND FREILING, F. Toward Automated Dynamic Malware
Analysis Using CWSandbox. IEEE Security and Privacy 5, 2 (2007), pp. 32–39.

[233] XENAKIS, C. Malicious actions against the GPRS technology. Journal in Computer Virology
2, 2 (2006), pp. 121–133.

[234] XU, N., ZHANG, F., LUO, Y., JIA, W., XUAN, D., AND TENG, J. Stealthy video capturer:
a new video-based spyware in 3G smartphones. In WiSec ’09: Proceedings of the second
ACM conference on Wireless network security (New York, NY, USA, 2009), ACM Press,
pp. 69–78.

[235] YAN, G., AND EIDENBENZ, S. Modeling Propagation Dynamics of Bluetooth Worms
(Extended Version). IEEE Transactions on Mobile Computing 8, 3 (Mar. 2009), pp. 353–368.

[236] ZHENG, H., LI, D., AND GAO, Z. An Epidemic Model of Mobile Phone Virus. In
Pervasive Computing and Applications, 2006 1st International Symposium on (Aug. 2006),
IEEE Computer Society, pp. 1–5.

[237] ZHENG, P., AND NI, L. M. The Rise of the Smart Phone. IEEE Distributed Systems Online
7, 3 (2006), p. 3.

[238] ZIMMERMANN, H. OSI reference model—The ISO model of architecture for open systems
interconnection. pp. 2–9.

	Introduction
	Related Work
	Mobile Devices
	Definition
	Security Modules
	Specifics of Mobile Devices

	Mobile Device Security
	Definition of Security
	Security in Application Frameworks
	Security in Windows Mobile
	Security in Symbian OS

	Mobile Malicious Software
	Definition of Malware
	Surveys of Mobile Malware
	Virus Scanners

	Analytic Mechanisms
	Dynamic Software Analysis
	Simulation

	Distributed Computation
	Secure Multiparty Computation
	Fair Exchange

	Structuring Mobile Device Attack Vectors
	Attack Vector Classes
	Hardware-Centric Attacks
	Intercepting MNO Smartcard Communication
	Attacking the Device

	Device-Independent Attacks
	Wireless Transmission Security
	Backend Systems

	Software-Centric Attacks
	General
	Operating System Modifications
	Web Browser

	``Layer 8'': The User as Attack Vector
	Security Awareness
	Influence of the User
	Social Engineering
	Security & Usability

	Conclusion

	Structuring Mobile Malicious Software
	Known Mobile Malware
	Windows Type of Operating Systems
	Symbian OS
	Java Platform, Micro Edition (J2ME)

	Phases of Malware
	Infection
	Malicious Functionality
	Spreading

	Mobile Malware Portability
	Cross-Platform Malware
	Portability between Mobile Operating Systems

	Conclusion

	Developing a Dynamic Malware Analysis Tool
	Design
	General Design Considerations
	Environment
	Logging
	Analysis Duration

	Implementation
	Components of MobileSandbox
	Prolog and Epilog
	User-Level Hooking
	Kernel-Level Hooking
	Portability

	Evaluation
	Performance
	Completeness
	Malware Analyses

	Conclusion

	Device-Centric Security Investigations
	Developing a Smartphone Worm
	Proof-of-Concept Malware for Mobile Devices
	Constant Part: The Building Blocks
	Variable Part: Measuring Resistance

	Attack Surface Reduction in Mobile Device Security
	Justifying Increased User Control
	Policy Enforcement and Security Interfaces
	Prototype Design

	Conclusion

	Network-Centric Security Investigations
	Mobile Dynamic Malware Analysis
	Collecting Samples
	Analyzing Samples
	Responding to the Analysis

	Simulation
	Model
	Implementation
	Evaluation

	Conclusion

	Distributed Security Investigations
	Distributed Computation in Real-World Environments
	Mobile Network Setting
	Virtual Trusted Third Parties

	Secure Multiparty Computation with Security Modules
	Design
	Implementation
	Memory Requirements Evaluation

	Fair Exchange with Security Modules
	Design
	Implementation
	Evaluation

	Conclusion

	Conclusion
	Summary
	Discussion
	Future Entities
	Security Requirements

	Perspective
	Future Validity of the Specifics
	Future Challenges

	Bibliography

