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1 Introduction and Summary

Falling birth rates accompanied by increasing levels of public debt have been a

common trend among OECD countries over the last five decades. In this context,

the theories of optimal population and government debt, with their longstanding

tradition in social sciences, are of renewed interest. The current thesis presents

five neoclassical parables which emphasize particular aspects of the demographic

transition and the associated role of government debt. The natural framework for

such an analysis is provided by the non-ricardian overlapping generations model.

The first part of this thesis is dedicated to the deterministic overlapping generations

model with its consumption loan market failure and the pivotal two-part golden

rule relation. The second part is concerned with stochastic OLG models where

the consumption loan market failure is complemented by the missing markets for

factor-price risks.

Regarding methodology, this thesis intends to favor clarity over complexity. The

demographic transition and the theory of public debt are therefore treated in an

eclectic manner. While the analysis throughout is conducted in general equilibrium,

each chapter contains a setting which is adapted to the particular question at hand.

To obtain prominent results, the number of assumptions will be kept to the bare

minimum necessary to describe the respective objects of interest. The assumptions

chosen tend to be neoclassical. Apart from striking results, this rudimentary ap-

proach also allows to see their limitations. In particular, results are so transparent

that they can immediately be related to the assumptions upon which they rest. In

turn these assumptions can, in principle, be evaluated to whether or not they are

appropriate in the respective context.

This thesis studies the scope for government intervention which is associated with

the characteristic market failure in overlapping generations economies. This market

failure and the related concept of “dynamic (Pareto-) efficiency” will be approached

from different angels. Our results from the deterministic OLG models of chapters 2

and 3 suggest that the scope for Pareto-improving government interventions is rather
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narrow. In particular, we find that in models with intracohort heterogeneity the

concept of dynamic efficiency regarding the size of the public debt is less restrictive.

Except for special cases it is no-longer possible to judge whether an economy is

dynamically efficient by the classical golden rule criterion. That is, competitive

growth pathes where the rate of return permanently falls short of the growth rate

of the aggregate economy can no longer be characterized as inefficient. This picture

changes in Chapter 4 where aggregate risks are introduced into the model. In this

case there are two missing markets. Those for consumption loans and those for

factor-price risks. This double incompleteness of competitive markets increases the

scope for government intervention. Namely, it allows to make a restructuring of the

public debt Pareto-improving. This suggests that the restructuring of the public

debt may be a field where the government can take an active role without the

adoption of a strong welfare criterion.

1.1 Organization

This thesis can be divided into two parts. The first one deals with the consumption

loan market failure in the deterministic overlapping generations model.1 In this

setting, the two-part golden rule is of pivotal importance as it serves as the watershed

between steady states that are efficient and those which are inefficient. In Chapter

2, we study the role of the golden rule in the context of the problem of optimal

population growth. Interestingly, it turns out that the growth rate for population

which leads the economy to a golden rule path may minimize utility. Moreover, the

growth rate for population associated with a golden rule path is never optimal in

an economy with government debt. Equipped with these doubts on the golden rule

relation, we introduce intracohort heterogeneity in Chapter 3. In this setting we find

that, except for one special case, the golden rule ceases to serve as a demarcation

line between Pareto-efficient and inefficient steady states.

In the second part of the thesis we introduce aggregate risks into our framework.

This gives rise to a second type of market failure. Households can trade neither

consumption loans nor factor-price risks. In this setting we analyze whether or

not the analytical equivalence of government bonds and pension debt known from

the deterministic Diamond (1965) model carries over. While the breakdown of this

1The deterministic OLG model is due to Allais (1947), Malinvaud (1953), Samuelson (1958)
and Diamond (1965).
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strong equivalence/irrelevance result is hardly surprising, the analysis gives rise to an

interesting relevance result. Evaluated from an ex-ante expected utility perspective,

we show that there exists an optimal composition for the public debt. The fact that

this structure can be reached in a Pareto-improving manner makes it attractive.

Finally, in the last chapter we revisit the demographic transition in a stochastic

overlapping generations model. In this chapter we ask a positive question. Namely,

whether the risk free rate on government bonds will react more sensitive to the

demographic transition than the rate of profit to risky capital.

1.2 Results

In the first chapter we analyze the role of the two-part golden rule by varying the

growth rate for population as in Samuelson (1975a). However, unlike Samuelson

(1975a), we discuss a competitive economy rather than a pure planning framework.

Via the Serendipity Theorem, we approach the two-part golden rule relation from

the side of a competitive economy.2 The intention with the current approach is to

obtain a better understanding for the paradoxical interior minima that were found

by Deardorff (1976) and Michel and Pestieau (1993). The results can be summarized

as:

1. The growth rate for population under which the competitive economy with-

out government debt obtains a golden rule steady state may either maximize

steady state utility or minimize it. Moreover, the growth rate for population

which yields a golden rule allocation in an economy with debt is never optimal

and differs from the one obtained in the planned economy. Consequently, the

Serendipity Theorem does not hold in a model with debt.

2. If the growth rate for population, that yields a competitive golden rule steady

state, maximizes utility when compared to the other steady state equilibria, it

also maximizes the utility of all planned golden rule steady states and vicev-

ersa. That is, the necessary and sufficient conditions for an interior optimum

2The Serendipity theorem of Samuelson (1975a) can be stated as follows: provided that there
exists only one stable steady state equilibrium, the competitive economy will automatically evolve
into the most golden golden rule steady state once the optimum growth rate n∗ is imposed. It was
later shown that this n∗ may also be a minimum. A prominent example for an interior minimum
is the case where production and utility are of the Cobb-Douglas type.
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are identical.

3. The optimum growth rate for population in 2. exists if and only if high (low)

growth rates for population yield efficient (inefficient) steady states.

4. A lower growth rate for population increases (decreases) steady state utility if

and only if the original steady state was efficient (inefficient).

5. Finally we show that the growth rate for population that maximizes steady

state utility in an economy with debt implies a capital intensity that falls short

of the golden rule level.

The results 1 − 5 are of interest in the following sense. The pure planning frame-

work discussed by Samuelson (1975a, 1976), Deardorff (1976), Arthur and McNicoll

(1977, 1978), Michel and Pestieau (1993) and Bommier and Lee (2003) indicates

that the existence of an interior optimum hinges on unobservable parameters. The

current approach relates the existence of an interior optimum growth rate for pop-

ulation to observable variables instead. Namely, the growth rate for population

and the marginal product of capital. Moreover, we find that simulations based on

Cobb-Douglas production functions tend to yield watershed results. For elasticities

of capital-labor-substitution smaller (larger) than one, an increase in population

growth by one percent will increase the interest rate by more (less) than one percent

in the long-run.

In the second chapter, we approach the two-part golden rule relation from an-

other angle by introducing intracohort heterogeneity. In such a setting, it becomes

apparent that the two-part golden rule differs substantially from the golden rule of

accumulation. The golden rule of accumulation originates purely from the Solow

(1956), Swan (1956) models of capital and growth and maximizes per capita con-

sumption only. The two-part golden rule, on the contrary, is a composition of the

golden rule of accumulation and the Samuelson (1958) golden rule for consumption

loan interest. This composite character becomes visible once households differ re-

garding their preferences or their labor endowment. More specifically, we obtain the

following results:

1. If agents differ with regard to their labor endowment only, the two-part golden
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rule continues to maximize steady state utility if preferences are homothetic.3

In all other cases, however, the two-part golden rule relation ceases to separate

efficient from inefficient steady states. There will always exist households

whose steady state utility is maximized at a capital intensity exceeding the

golden rule level and vice versa. Hence, these steady states are no longer

inefficient in a competitive economy.

Taking the perspective of Abel et al. (1989), an increment in capital acts as

a source (sink) to society as a whole, i.e. increases aggregate consumption

in each period, if r > n (r < n). If society consisted of a representative

agent, r = n would therefore describe the steady state optimum. However,

in a society which is fragmented into different groups this conclusion does not

apply. Even if capital is already a sink to society as a whole, it may still act

as a source to some groups of that society.

2. If heterogeneity is introduced on the preference side, the two-part golden rule

ceases to serve as a demarcation line between efficient and inefficient steady

states in general. The classic result of Stein (1969) is therefore not warranted.

3. The two-part golden rule, however, continues to serve as a watershed in the

following sense: it separates agents whose present value of savings exceeds

(falls short of) the amount of capital absorbed by their labor supply. Those

agents with a relatively large (small) supply of savings prefer interest rates

exceeding (falling short of) the golden rule level. One may therefore interpret

the utility loss of thrifty households which occurs once the economy moves

towards the golden rule steady state as a case of the Bhagwati (1958) result

on “immiserizing growth”. While societies consumption rises, falling profits

and rising wages worsen the “terms of trade” for thrifty agents.

Put differently, agents would unanimously subscribe to the golden rule optimum if

they where “representative”. In this case, preferences and production are separable.

The Phelps (1961) golden rule maximizes consumption and the Samuelson (1958)

golden rule ensures efficient consumption patterns. Taken together, they maximize

utility. In a competitive economy with heterogeneous agents, the same golden rule

3This condition is equivalent to the requirement that all agents have linear Engel-curves with
identical slopes. That is, the propensity to save must be constant and identical for all households.
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allocation is still available. However, this time it is dominated by other non-golden

rule allocations. Despite their lower level of aggregate consumption. That is, the

competitive mechanism brings-about intragenerational transfers which are so strong

that they allow some members of society to reach a higher utility than they would

reach at the golden rule.

Regarding policy, these transfers force us to think about intragenerational trade-

offs. That is, changes in the size of a Bismarckian pension scheme with “intragen-

erational fairness” induce intragenerational transfers through their effect on factor-

prices. In particular, if the propensity to save increases with income, the Bismarck

pension scheme reallocates resources from the poor to the wealthy. In the case of a

Beveridge scheme, these indirect transfers will thwart some of the direct redistribu-

tion. Put differently, this result complements earlier studies, e.g. Börsch-Supan and

Reil-Held (2001), on the intragenerational redistribution brought about by Pay-Go

pension systems. If one thinks of the propensity to safe as an observable variable the

conditions which we derive from our theoretical model are accessible to empirical

evaluation.

In the fourth chapter, aggregate factor-price risks are introduced into the over-

lapping generations model. Now there are two types of market failure as households

can neither trade consumption loans nor factor-price risks privately. It is well known,

that this second type of market failure introduces a second role for the government to

improve upon market allocations.4 In particular Green (1977), Krüger and Kubler

(2006) and Gottardi and Kubler (2008) have compared the risk sharing benefits

associated with government debt to the long-run utility losses that stem from the

associated crowding-out of capital. Starting from a situation without debt, they show

that even the introduction of a small social security scheme is not Pareto-improving,

i.e. the crowding-out effect dominates the risk sharing benefits.

In Chapter 4 of this thesis we argue that these previous papers have dealt with

a specific question where the consumption loan problem is mixed up with the risk

sharing properties of government debt. Rather than starting from a situation with-

out debt, we discuss an initial value problem where the government can either issue

safe bonds or claims to wage indexed social security to service a given initial liability.

In this setting we can separate the crowding-out effect from the risk sharing benefits

4See e.g. Diamond (1977), Merton (1983), Gordon and Varian (1988), Shiller (1999) and Ball
and Mankiw (2007).
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of fiscal policy. In a different interpretation we ask whether or not it is possible to

change the composition of the public debt in a Pareto-improving manner. Tracing

out this question yields four results.

1. If the government can service a given initial debt by issuing new bonds or by

introducing a social security system with a linear contribution rate, there is a

set of efficient debt schemes and another set of inefficient debt schemes. This

set is characterized by the conflicting interests of the current young agents and

the yet unborn generations regarding the allocation of factor-price risks.

2. Unlike deterministic economies, however, intertemporal compensation is possi-

ble. By varying the size and the composition of the governments debt scheme,

it is possible to shift risks and resources simultaneously and independently

between different generations. Consequently, the government can intermedi-

ate between the generations until only one optimal structure for the public

debt is left.5 This structure for government debt is optimal in the following

sense: maintaining any other debt structure permanently, is (ex-ante) Pareto-

inefficient.6

3. If society is fragmented into agents who undertake risky investments and others

who do not, both of these groups require different debt schemes. If the amount

of debt rolled over on the shoulders of those agents who do not undertake risky

investment, is too small to transport a sufficient amount of wage income risk

into the retirement period, it is Pareto-improving to inject some of the debt

from the “capitalists” debt scheme into the pension schemes of “workers”.

The results 1− 3 are of particular interest with regard to the current discussion

concerning the reform of unfunded social security schemes. While there are many

numerical studies available that quantify the effects stemming from “a transition”

to a “funded” pension scheme, these studies do not start from an optimization

5More precisely, the government can use its two instruments, i.e. the size and the composition
of the debt, to steer the economy towards a point on the contract curve.

6Note that this concept of Pareto-efficiency is also implicit in the golden rule result. Capital-
intensities exceeding the golden rule are only inefficient if the excess capital is maintained perma-
nently. That is, the excessive capital may never be consumed.
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problem.7 It is unclear whether or not the proposed allocations are actually efficient.

Regarding this open problem, the current analysis suggests that the prospects of a

Pareto-improving reshuffling of the debt are rather good. Consequently, the set of

efficient rollover schemes tends to be small. Put differently, our results reconfirm

that a change in the size of the debt alone requires a welfare criterion if r > n.

There is a continuum of efficient debt sizes. However, if the government can change

both, the size and composition of the debt Pareto-improvements are possible. In

the current case, we obtain the strong result that there is only one Pareto-efficient

composition of the public debt. While we certainly cannot take this result literally,

it still indicates that the restructuring of the public debt may be a field where the

government can take an active role without a strong welfare criterion.

Chapter 5 generalizes the results of Chapter 4. It analyzes how the scope of gov-

ernment intervention increases with the number of missing markets: if there are N

missing markets and the government commands M different intertemporal budget

constraints intertemporal compensation is possible iff N,M = 2. If this condition is

satisfied, the government can use its budget constraints to open “surrogate markets”

for the respective goods, i.e. shift capital, consumption, natural resources and vari-

ous risks between the generations. Moreover, the efficiency gains associated with the

opening of markets can be recovered in a Pareto-improving manner. The resulting

new efficiency conditions differ qualitatively from those obtained in a setting where

N = M = 1 as in the classic Diamond (1965) model.

The last chapter considers whether or not there is a link between the growth rate

for population and the equity premium in a stochastic version of the Diamond (1965)

model. Put differently, we ask whether the demographic transition will affect the

risky or the risk-free rate more severely. We develop a tractable model, that intends

to complement previous studies which were based exclusively on numerical examples

and yielded conflicting evidence. The present setting emphasizes the portfolio choice

behavior of risk avers agents with von Neumann-Morgenstern preferences. We find

that:

1. A lower birth rate lowers the overall level of interest. Both, the risky return

7See Campbell and Feldstein (1999) for a collection of papers with such reform proposals. See
Merton (1983) for a theoretical approach that suffers from a similar difficulty. Merton (1983) does
not consider wether a transition towards the steady state “optimum” is Pareto-improving. More-
over, Merton (1983) implements an incomplete markets allocation which may even be inefficient.
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to capital and the safe rate earned on government bonds fall. This lower level

of interest rates will be associated with a lower equity premium. That is, the

risky rate will react more sensitive to changes in the growth rate of population.

2. The falling equity premium originates from an asymmetry in the portfolio

adjustment behavior of the households. The portfolio share invested in the

risky asset reacts more sensitive to a one percent change in the risk free rate

than to a one percent change in the risky rate.

3. In a model where households hold unrealized wage-income, the level effect on

the equity premium described in 1 and 2 is thwarted by a “human capital

effect”. While both rates of return will still fall during the demographic tran-

sition, the resulting change in the equity premium depends on the size of the

implicit human capital holdings.
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The Optimum Growth Rate for Population Reconsidered 11

2 The Optimum Growth Rate for Population Re-

considered

In this chapter8, we derive sharp conditions for the existence of an interior optimum

growth rate for population in the neoclassical two-generations-overlapping model.

In an economy where high (low) growth rates of population lead to a growth path

which is efficient (inefficient) there always exists an interior optimum growth rate

for population. In all other cases there exists no interior optimum. The Serendipity

Theorem, however, does in general not hold in an economy with government debt.

Moreover, the growth rate for population which leads an economy with debt to a

golden rule allocation can never be optimal.

2.1 Introduction

It was Phelps (1966a) who brought up the idea that there might exist a “golden

rule of procreation” in the neoclassical overlapping generations framework. In a

subsequent article on “the optimum growth rate for population” Samuelson (1975a)

proved − within the basic Diamond (1965) model without government debt − the

so-called Serendipity Theorem: provided that there exists only one stable steady

state equilibrium, the competitive economy will automatically evolve into the most

golden golden rule steady state once the optimum growth rate for population n∗ is

imposed.

However, Deardorff (1976) pointed out that the optimum growth rate for popu-

lation n∗ of Samuelson (1975a) is not optimal in general. In the special case where

both the utility and the production function are of the Cobb-Douglas type utility

takes on a global minimum at the n∗ of Samuelson.9 Deardorff also proved that,

in an economy with depreciation δ, there always exists an optimal corner solution

where n∗ = −δ as long as the elasticity of substitution between capital and labor

remains bound above unity. This discussion has been supplemented by Michel and

Pestieau (1993), who study the special case of a CES/CIES framework.

8This chapter is a revised version of the paper Jaeger and Kuhle (2009).
9Recently Abio et al. (2004) considered the problem of Samuelson (1975a) and Samuelson

(1975b) in an endogenous fertility setting. They derive general sufficient conditions for the existence
of an interior optimum and show that, in such a framework, there may exist an interior optimum
growth rate for population even within a double Cobb-Douglas economy.
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After all, the debate can be summarized as follows: granted that the respective

elasticities of substitution (in consumption and more importantly production) are

not “too large” there does exist an interior optimum growth rate for population

n∗ > −δ in the planned economy. The greatest deficiency in this discussion appears

to be the fact that it was necessary to resort to a multitude of special cases in order

to examine the significance of the Serendipity Theorem. Especially since Samuelson

(1976) points out, that the respective elasticities of substitution are hard to estimate

and are prone to change once the growth rate for population is altered.

With the exception of Abio et al. (2004), who discuss the Samuelson (1975a)

and Samuelson (1975b) problem in a certain endogenous fertility setting, the recent

literature, e.g. Golosov et al. (2007), has not taken up the Samuelson approach to

the problem of optimal population. Thus the fundamental question for the exact

general structure of the problem of optimal population in the basic Diamond (1965)

model where population is exogenous remains, as Cigno and Luporini (2006) note,

still unresolved.

The intention with this chapter is twofold: In Section 2.2, we use, contrary to

the foregoing essays, a laissez faire framework to derive exact general sufficient

conditions for the existence of an interior optimum growth rate for population in

the Diamond (1965) model without government debt. In this framework it is our

primary intention to understand why some of the solutions to the Samuelson (1975a)

problem are optima while others constitute pessima. Using the concept of dynamic

efficiency we will develop a typology which allows to subsume and interpret all

special cases which have been discussed so far. In Section 2.3 we reconsider the

validity of the results of Samuelson (1975a) in the general Diamond (1965) model

with government debt.

2.1.1 Organization

In Section 2.2 we proceed along the following lines: our theoretical starting point

is the planning problem of Samuelson (1975a) where an imaginary authority can

set all quantities to their respective optimal level. In a second step we discuss a

laissez faire framework where the imaginary authority can only vary the growth rate

for population. In this competitive framework we utilize the stability condition to

derive a relation between the rate of profit r and the growth rate for population n.

This crucial r-n relation will then allow to draw the following conclusions:
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1. The necessary and sufficient conditions for the existence of an interior optimum

growth rate for population in a planned economy and in a laissez faire economy

are identical.

2. The existence of an interior optimum growth rate for population hinges solely

on the change in efficiency, which occurs in the laissez faire economy once

the growth rate for population is changed (increased or decreased) from the

optimal/worst level, where n = n∗ = r. Along these lines we find that it is

necessary to distinguish four cases in order to give a complete assessment of

the problem of optimal population. Only one of these four cases has been

analyzed by Samuelson (1975a).

3. The exact sufficient condition for the existence of an optimum growth rate for

population is given by dr
dn |n=n∗

> 1.

As previously mentioned, we will then generalize the foregoing discussion in

Section 2.3 by introducing government debt into the framework of analysis. In such

a framework we find that:

1. The Serendipity Theorem does not hold in an economy with government debt.

2. In an economy with debt there typically still exists a growth rate ñ ≷ n∗ for

population which leads the laissez faire economy to a golden rule allocation.

However, this growth rate will never be optimal. Instead, the optimum growth

rate for population n∗∗ in a laissez faire economy with government debt will

lead to an allocation where r > n.

2.2 The Optimum Growth Rate for Population without Debt

2.2.1 The Planning Problem

The planning problem in the conventional Diamond (1965) model for given growth

rates of population, can be stated as:10

max
c1,c2,k

U(c1, c2) s.t. f(k)− nk = c1 +
c2

(1 + n)
; f ′(k) > 0, f ′′(k) < 0. (1)

10People live for two periods, one period of work is followed by one period of retirement. Ordinal
wellbeing is described by a quasi-concave utility criterion U(c1, c2), where c1 and c2 are per capita
consumption in the first and second period respectively. Population grows according to: Nt = (1+
n)Nt−1 and each young individual supplies one unit of labor inelastically. Capital and labor inputs,
K and N , produce aggregate net output F (K, N). Where F (K, N) is concave and first-degree-
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With the familiar first order conditions:
Uc1

Uc2
= 1 + n, (2)

f ′(k) = n, (3)

f(k)− nk = c1 +
c2

(1 + n)
. (4)

Condition (2) describes the optimal distribution of income between the generations.

Condition (3) describes the optimal accumulation pattern. Taken together condi-

tions (2) and (3) constitute the two-part golden rule. Condition (4) is the social

availability/budget constraint. These three conditions define (truly) optimal values

c1n, c
2
n and kn for every given growth rate of population.

By varying the growth rate for population, as in Samuelson (1975a), it is now

possible to choose the best among all golden rule paths, i.e. the optimum optimorum:

max
n

U(n) = U
(
f(kn)− nkn −

c2n
(1 + n)

, c2n

)
, (5)

where U(n) is the indirect utility function for the planned economy. The first order

condition to this problem is:

− kn +
c2n

(1 + n)2
= 0. (6)

The corresponding sufficient condition for a maximum is given by:

d2U

dn2 |n=n∗
= Uc1

(
− dkn

dn
+

(1 + n)2 dc
2
n

dn
− 2(1 + n)c2n

(1 + n)4

)
< 0. (7)

Condition (6) describes the tradeoff between the negative capital widening (−kn)
and the positive intergenerational transfer effect ( c2n

(1+n)2
), and implicitly defines the

optimum growth rate for population.

Together conditions (2)-(4) and (6) implicitly define optimal values c1∗, c2∗, k∗, n∗

which characterize the social optimum optimorum.11 However, as previously noted,

the first order condition (6) might locate the growth rate for population where the

indirect utility function U(n) takes on a global minimum rather than a maximum,

i.e. we might actually have d2U
dn2 |n=n∗

> 0.

homogenous. Per capita output is thus f(k) := F (K,N)
N with k := K

N . The real wage w payed for one
unit of labor is defined as w := f(k)−f ′(k)k. The rental rate r for one unit of capital is defined as
r := f ′(k). Output can either be consumed by the young generation, the old generation or invested;
the resource constraint for the economy is thus given by: F (Kt, Nt)+Kt = Kt+1 + c1

t Nt + c2
t Nt−1.

In the following we compare different steady state equilibria only; hence, the time index will be
omitted where no misunderstanding is expected.

11Deardorff (1976), Samuelson (1976) and especially Michel and Pestieau (1993) show that unique
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2.2.2 The Serendipity Theorem

The representative individual is driven by the following maximization problem:

max
c1,c2

U(c1, c2) s.t. w = c1 +
c2

(1 + r)
; w = f(k)− f ′(k)k, r = f ′(k). (8)

With the corresponding first order conditions:

Uc1

Uc2
= 1 + r, (9)

f(k)− rk = c1 +
c2

(1 + r)
. (10)

Once we set k = k∗ and n = n∗ so that conditions (3) and (6) hold, we find that

the individual behavior, which is described by conditions (9) and (10), is compatible

with the remaining conditions (2) and (4) for the social optimum. Since condition

(6), with r = n∗, is identical with the steady state life-cycle savings condition,

we find that the values c1∗, c2∗, k∗, n∗ describe a feasible laissez faire steady state

equilibrium. This is the Serendipity Theorem of Samuelson (1975a): provided that

there exists only one stable steady state equilibrium, the competitive economy will

automatically evolve into the most golden golden rule steady state once the optimum

growth rate n∗ is imposed.

2.2.3 The Optimum Growth Rate for Population in a Laissez Faire Econ-
omy

In order to analyze the welfare implications of changes in the growth rate for pop-

ulation in the laissez faire economy, we assume that consumption in each period is

a normal good, and use the life-cycle savings condition which is given by:

(1 + n)kt+1 = s(wt, rt+1); 0 < sw < 1. (11)

interior solutions to the first order conditions (2)-(4) and (6) exist for a wide range of parameters
(Michel and Pestieau (1993) report only one special instance of multiple solutions). From now on
we will assume that there exists one unique interior solution in order to focus on the important
question why some of these solutions constitute minima rather than maxima. In other words we
are trying to find the unifying economic characteristics of those cases for which we have a planned
minimum (maximum). We will also show (Proposition 1) that the results on the existence of
interior solutions for the planning framework of Michel and Pestieau (1993) remain fully valid for
a laissez faire economy.



16 Intertemporal Allocation with Incomplete Markets

Furthermore, we assume the existence of one unique and stable steady state equi-

librium with a capital intensity k = k̃ > 0:12

0 <
dkt+1

dkt
=

−swk̃f ′′(k̃)
(1 + n)− srf ′′(k̃)

< 1. (12)

Differentiation of (11) allows, by virtue of (12), to derive that an increase in the

growth rate for population decreases the steady state capital intensity:

dk

dn
=

−k
(1 + n)− srf ′′(k) + swkf ′′(k)

< 0. (13)

From the life-cycle savings condition (11), the respective factor-prices, and the in-

dividual budget constraint, one obtains the following maximization problem for the

laissez faire economy:

max
n

U(n) = U
(
f(k)− f ′(k)k − (1 + n)k, (1 + f ′(k))(1 + n)k

)
; k = k(n). (14)

Condition (9), which is always satisfied in a laissez faire economy, allows to rewrite

the first order condition for the optimum growth rate for population so that we have:

dU

dn
= Uc1

[n− f ′(k)

1 + f ′(k)
f ′′(k)k

]dk
dn

= 0. (15)

According to the Serendipity Theorem, condition (15) holds only for n = n∗. The

sufficient condition for an optimum at n∗ is given by:

d2U

dn2 |n=n∗
= Uc1

[(1− f ′′(k) dk
dn

)

(1 + f ′(k))
f ′′(k)k

]dk
dn

< 0. (16)

Condition (16) reveals that the existence of an optimum or a minimum or an inflec-

tion point at n∗ hinges solely on:

dr

dn |n=n∗
= f ′′(k)

dk

dn
=

−k
1
f ′′

(1 + n) + swk − sr
T 1. (17)

However, a priori we can only say that dr
dn

> 0, if the steady state equilibrium is

stable. Hence it is necessary to distinguish four cases:

12As in Diamond (1965), we relegate the case of oscillatory stability to Appendix 2.5.3, where
we show that for −1 < dkt+1

dkt
< 0, we have dk

dn > 0. In such an economy, we have d2U
dn2 < 0, i.e. the

sufficient condition for an optimum is always satisfied.
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1. The economy is growing on a dynamically inefficient (efficient) steady state

path where r < n (r > n) for low (high) growth rates of population n < n∗

(n > n∗). In this case we have dr
dn |n=n∗

> 1, and the sufficient condition for an

interior maximum is satisfied.

2. The economy is growing on an efficient (inefficient) steady state path for low

(high) growth rates n < n∗ (n > n∗). In this case we have dr
dn |n=n∗

< 1, that

is, an interior minimum.

3. The economy is growing on an inefficient path for all n 6= n∗. In this case we

have dr
dn |n=n∗

= 1 and population should grow as fast as possible. There is an

inflection point in the U(n) curve at n = n∗.

4. All steady states are efficient and the lowest possible growth rate for population

is best. We have, once again, an inflection point in the U(n) curve at n = n∗

and dr
dn |n=n∗

= 1. Similar to Case 3 this is a second special case.

With respect to Case 3 and Case 4 we can note that these cases have not been

explored so far. However, as the condition dr
dn |n=n∗

= 1 indicates and Quadrant II in

Diagram 1 illustrates, they seem to be rather special, and in our opinion they are

most likely of no relevance.

After these preparations it is now possible to give a complete diagrammatic

representation of the problem of optimal population in Diagram 1 (the formal aspects

to Diagram 1 are given in Appendix 2.5.1):

At this point we can note that the factor-prices which are associated with the two-

part golden rule allocation − for all given growth rates n 6= n∗ − allow in general to

reach a higher indifference curve in Quadrant III than the set of factor-prices which

is generated in the laissez faire framework.

More interesting, however, is a related point which can be found in Quadrant III

of Diagram 1: the conditions for the existence of an interior optimum growth rate

n∗ in a planned economy, where the central authority forces r = n as in Samuelson

(1975b) are identical with those in a laissez faire economy: in both cases it is nec-

essary that the indifference curve in the w, r plane is a tangent to the factor-price

frontier, i.e. dw
dr |dU=0

= φ′(r), and it is sufficient that the curvature of the indiffer-

ence curve is algebraically larger than the curvature of the factor-price frontier, i.e.
d2w
dr2 |dU=0

> φ′′(r).
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Diagram 1: Population growth and welfare without debt.
Quadrant I is the familiar U, n diagram which contains the respective utility con-
tours for the laissez faire economy. Quadrant II is the decisive n, r diagram where
all planned equilibria are located along the 45◦ line. The locus of the laissez faire
steady state curve with dr

dn
= f ′′(k) dk

dn
> 0 is ambiguous and four cases have to be

distinguished: Case 1: 1-1, Case 2: 2-2, Case 3: 1-2, Case 4: 2-1. Quadrant III
is a w, r diagram which contains the convex factor-price frontier φ and the respec-
tive indifference curves indicating an optimum (pessimum). Quadrant IV gives the
wage utility relation. Quadrant V illustrates the respective individual consumption
patterns for different growth rates (Case 1 only).
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Diagram 2: The factor-price frontier as a surrogate budget constraint.

This means that regardless of whether we are in a planned economy or a laissez

faire economy: choosing the growth rate for population means choosing a set of

factor-prices on the same factor-price frontier. The convex factor-price frontier,

which in general defines a concave set of feasible allocations, should be interpreted

as a surrogate social budget constraint as illustrated in Diagram 2.

Proposition 1. (Extended Serendipity Theorem): The necessary and sufficient con-
ditions for the existence of an interior optimum growth rate for population in a
planned and in a laissez faire economy are identical. The exact general sufficient
condition for an interior optimum growth rate for population is given by dr

dn |n=n∗
> 1.

In all other cases where the structure of the economy is such that we have dr
dn |n=n∗

5 1

in the laissez faire framework, no interior optimum exists.

Proof. See Appendix 2.5.2.

Corollary 1. The qualitative findings of Michel and Pestieau (1993) on the exis-
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tence of an interior optimum growth rate for population in the CES/CIES planning
framework remain fully valid for a laissez faire economy.

Hence, all specifications, most notably the Cobb-Douglas case, where there is

an interior planned minimum are consistent with Case 2 and the counterintuitive

change in efficiency at n = n∗. In our opinion it is this counterintuitive behavior of

economies with high elasticities of substitution that should be criticized and not the

behavior in the two “corners” where k →∞ or n→∞ as in Samuelson (1976).13

We can now conclude that the reasoning of Samuelson (1975a) and Samuelson

(1975b) only remains valid as long as the economy behaves according to Case 1.

However, the assertion of Samuelson (1975a), (p. 535) and Samuelson (1975b), (p.

542) that all economies behave according to Case 1 − which was never questioned

by Deardorff (1976) or Michel and Pestieau (1993) − is wrong.

However, Case 1 is obviously the most plausible scenario. Using the data in Mar-

quetti (2004) for the years 1963-2000, Kuhle (2007) shows that real world economies

tend to behave according to Case 1. Estimates of the r-n relation for Japan, the

USA and a group of 17 mostly developed countries allow to refute the null hypothesis
dr
dn
< 1 with a probability of error (t-test) of less than 2.5 percent.

2.3 The Optimum Growth Rate for Population in an Econ-
omy with Government Debt

We will now proceed along the following lines: in a first step the Diamond (1965)

model with internal government debt and the corresponding government budget

constraint will be restated. In a second step we will show that the Serendipity

Theorem is in general not valid in an economy with government debt. The third

step is to derive the welfare implications which stem from a change in the growth

rate of population in a laissez faire economy where the government runs a constant

per capita debt policy.

13At this point we shall note that Phelps (1968) shows for a laissez faire economy that the Cobb-
Douglas case is consistent with what we have called Case 2, i.e. an interior minimum at n = n∗.
Hence, in the light of the Serendipity Theorem, it should have been no surprise to Deardorff (1976)
and Samuelson (1975a) that the “most golden golden rule steady state” must be a minimum in
that case.
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2.3.1 The Model

The Diamond (1965) model with debt differs from the one which was discussed in

the foregoing section only with respect to the government budget constraint and

the steady state life-cycle savings condition. Government debt has a one-period

maturity and yields the same interest as real capital and there is no risk of default.

In each period the government has to service the matured debt Bt−1 and it has to

pay interest amounting to f ′(kt)Bt−1. The government can use two tools to meet

these obligations: it can raise a lump-sum tax Ntτ
1
t from the young generation, or

it can issue new debt Bt. Hence we have:

Bt +Ntτ
1
t = (1 + f ′(kt))Bt−1. (18)

In the following the government will simply pursue a constant per capita debt policy

defined by:14

Bt−1

Nt

= b ∀t. (19)

Thus (18) simplifies to:

τ 1 =
[
(1 + f ′(kt))− (1 + n)

]
b = (f ′(kt)− n)b = τ 1(kt). (20)

Equation (20) reveals that taxes can be either positive or negative depending on

b ≷ 0 and the sign of (f ′(k) − n), i.e. on whether the economy is growing on an

efficient or inefficient path.

2.3.2 The Serendipity Theorem with Debt

From the perspective of the social planner the problem remains unaltered: the

relevant tradeoff is still between capital widening and the intergenerational transfer

effect, and conditions (2)-(4) and (6) still describe the social optimum.

The Competitive Economy with Government Debt The individual utility

maximization problem is given by:

max
c1,c2

U(c1t , c
2
t+1) s.t. w(kt)− τ 1

t (kt) = c1t + st; c2t+1 = (1 + f ′(kt+1))st. (21)

14Persson and Tabellini (2000) argue why an elected government might rather run such a debt
policy than use its budget constraint to steer the economy towards the long run optimum as
discussed in De La Croix and Michel (2002).
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Thus the representative individual behaves according to:

Uc1

Uc2
= 1 + f ′(kt+1), (22)

st = w(kt)− τ 1
t (kt)− c1t , (23)

c2t+1 = (1 + f ′(kt+1))st. (24)

Attainability of the Social Optimum In a steady state equilibrium the life-

cycle savings condition is given by:

s(w̃(k), f ′(k)) = (1 + n)(b+ k); s > 0; w̃(k) := w(k)− τ 1(k), (25)

where s > 0 is an obvious restriction since negative savings would lead to negative old

age consumption. We will now examine whether the social optimum (c1∗, c2∗, n∗, k∗),

which is characterized by (2)-(4) and (6), is a feasible laissez faire steady state

equilibrium: once we set k = k∗ and n = n∗, conditions (3) and (6) hold. According

to (20) we have τ 1(k∗) = 0 and the individual budget constraint becomes the same

as the availability constraint. In this case the individual will voluntarily choose c1∗

and c2∗. Finally we have to check the steady state life-cycle savings condition:

s∗ = (1 + n∗)k∗ =
c2∗

(1 + n∗)
6= (1 + n∗)(k∗ + b); ∀b 6= 0. (26)

This means that since internal debt leads to the substitution of capital with debt

(paper) in the portfolio of the representative individual, the Serendipity Theorem

does not hold. Thus the only way to decentralize the social optimum is to reduce

per capita debt to zero.

2.3.3 The Optimum Growth Rate for Population in a Laissez Faire Econ-
omy with Debt

Comparison of the social optimum and the individual behavior revealed that the

Serendipity Theorem does not hold in the Diamond model with internally held debt.

We will now assess the question of optimal population in a competitive economy.

Two related points will be discussed:

1. A change in the constant debt policy for a given growth rate for population.

2. A change in the growth rate for population for a given debt policy.
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Temporary Equilibrium As De La Croix and Michel (2002) point out, there are

several conditions which have to be met in each period to allow for a meaningful

temporary equilibrium:

st−1 > 0, (27)

w̃(kt, b) = w(kt)− τ 1(kt) = w(kt)− b(f ′(kt)− n) > 0, (28)

s(w̃(kt, b), f
′(kt+1)) = (1 + n)(kt+1 + b) > (1 + n)b. (29)

While (27) ensures positive consumption of the old generation, w̃ in (28) describes

that the income after taxes of the current young individuals must be positive. Con-

dition (29) must hold to allow for a positive capital intensity.

Steady State Equilibrium In order to carry out the following comparative static

(in per capita terms) analysis, it is necessary to determine the signs of dk
dn

and dk
db

.

As in Diamond (1965), we will assume that there exists a unique stable steady state

at k = k̃:

0 <
dkt+1

dkt
=
−sw̃(k̃ + b)f ′′(k̃)

(1 + n)− srf ′′(k̃)
< 1; 0 < sw̃ < 1; k̃ > 0. (30)

Total differentiation of the life-cycle savings condition (25) with db = 0 leads to:

dk

dn |db=0
=

k + (1− sw̃)b

srf ′′ − (1 + n)− sw̃(k + b)f ′′
< 0. (31)

The sign in the denominator of the expression (31) is negative by virtue of the

stability condition (30). The assumption of normality (0 < sw̃ < 1) and conditions

(27) and (29) reveal that the sign of the numerator is positive. Total differentiation

of (25) with dn = 0 yields:

dk

db |dn=0
=

(1 + n) + sw̃(f ′ − n)

srf ′′ − (1 + n)− sw̃f ′′(k + b)
< 0. (32)

With 0 < sw̃ < 1, the sign in the numerator of (32) must be positive. The sign of

the denominator is negative according to (30).

Once the signs of dk
dn

and dk
db

are known to be negative, the key elements to our

question can be displayed in Diagram 3.
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ñ n
∗

ñ
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Diagram 3: The golden rule and government debt.
The kn line gives the respective golden rule capital intensities and separates the
efficient from the inefficient equilibria. For the laissez faire steady state curves, it
is once again necessary to distinguish Cases 1, 2, 3 and 4. Once the government
issues debt (the debt loci have an apostrophe) these loci shift according to dk

db
< 0 and

the growth rate of population which leads to a golden rule allocation changes from
n∗ to ñ. The Serendipity Theorem does not hold in this case.

Debt and Welfare After these preparations, the Diamond (1965) result concern-

ing the welfare implications of a change in the constant per capita internal debt

policy can be reproduced: from the life-cycle savings condition (25) and the respec-

tive factor-prices one obtains the following indirect utility function:

U = U
(
f(k)− kf ′(k)− (1 + n)(k + b)− τ 1(k), (1 + f ′)(1 + n)(k + b)

)
. (33)

Using (20) allows to rewrite (33) as:

U = U
(
f(k)− kf ′(k)− (1 + n)k − (1 + f ′(k))b, (1 + f ′(k))(1 + n)(k + b)

)
. (34)

The first order condition for the optimum debt policy is given by:

dU

db
= Uc1(n− f ′)

(
1 +

(k + b)

(1 + f ′)
f ′′
dk

db

)
T 0. (35)

Equation (35) reveals that the sign of dU
dn

depends solely on the sign of (n − f ′).

Hence an increase of per capita debt increases (decreases) per capita utility if the

economy is experiencing over-accumulation (under-accumulation) in the steady state

equilibrium. Thus, debt should be issued (recovered) up to the point where golden

rule growth is attained.
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Population Growth and Welfare The same indirect utility function (34) can

now be used to derive the welfare implications which originate from changes in the

growth rate for population. Hence, the first derivative with respect to the growth

rate of population is:

dU

dn
= −Uc1

(
[(k + b)f ′′ + (1 + n)]

dk

dn
+ k

)
+ Uc2

(
[(1 + n)(1 + f ′) + f ′′(1 + n)(b+ k)]

dk

dn
+ (1 + f ′)(k + b)

)
. (36)

Using (22), we obtain:

dU

dn
= Uc1b+ Uc1

(n− f ′)(k + b)

1 + f ′
f ′′
dk

dn
T 0;

dk

dn
< 0. (37)

The first order derivative (37) contains two elements: the first element Uc1b > 0 (for

b > 0) is the biological interest rate effect, which suggests that population should

grow as fast as possible. The reason for the appearance of the biological interest

argument is the following: each young individual buys government debt amounting

to (1 + n)b and pays taxes (f ′(k) − n)b. Hence the young individual hands over

a total amount of (1 + f ′(k))b to the government. In the retirement period the

government serves its obligations and pays (1 + f ′(k))(1 + n)b.

Thus the individual receives the biological rate of interest (1 + n) on its total

payments. This also reveals that the total amount of resources which is transferred

into the retirement period, at the biological rate of interest, depends on the rate

of interest (1 + f ′(k)) and hence, via the capital intensity, on the growth rate of

population.

The second element Uc1
(n−f ′)(k+b)

1+f ′
f ′′ dk

dn
describes the factor-price effects which

originate from a change in the growth rate of population. An increase in n leads to

a fall in k, which increases the interest rate payed on capital and debt, and decreases

wages.

In the special case b = 0, (37) degenerates into (15) where dU
dn

= 0 for n = n∗,

and at n∗ the pair of factor-prices w(k(n∗)), r(k(n∗)) ensure maximum (minimum)

lifetime utility. The tradeoff is solely between wages and interest.

In the case b 6= 0 the situation differs fundamentally: as (37) indicates, the

tradeoff is now between what we will call the aggregate factor-price effects and the

biological interest rate. The growth rate which maximizes (minimizes) laissez faire

utility in an economy with government debt will be referred to as n∗∗. We can note
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that n∗∗ is larger (for Case 1, b > 0) than the growth rate ñ which causes a golden

rule allocation, and it may or may not be larger than n∗. The conditions which

have to be met to allow for a laissez faire optimum at n∗∗ remain, compared to the

case without debt, basically unaltered with dr
dn
> 1; the only additional condition is

that the difference (n − f ′(k(n))) must increase sufficiently to allow for an interior

optimum at n∗∗.

Optimal Population vs. Optimal Debt Conditions (35), and (37) indicate

that there is no symmetry in the respective optimal debt and population policies with

respect to the golden rule allocation. This gives rise to the following Proposition:

Proposition 2. In a laissez faire economy with constant per capita government debt,
the growth rate of population, which leads to a golden rule allocation, can never be
optimal.

Corollary 2. If the government pursues an optimal debt policy according to condi-
tion (35), the growth rate for population cannot be optimal simultaneously.

Corollary 3. : If the government imposes an optimum growth rate for population
according to (37), the debt policy cannot be optimal simultaneously.

Only by setting the per capita level of debt to zero and the growth rate for

population to n∗, the two optimality conditions (35) and (37) can be satisfied simul-

taneously:

Proposition 3. If the social planner can choose both: the optimum growth rate for
population and the optimal amount of debt, the only optimal debt policy is zero debt.

Illustration Using Case 1 with b > 0 as an example (the reader can experiment

with (35) and (37), which allow to evaluate the remaining three cases; Cases 2 and

3 may contain multiple solutions), the foregoing discussion concerning the optimum

growth rate of population in an economy with government debt can be summarized

in Diagram 4.15

Diagram 4 illustrates that the optimum growth rate for population n∗∗ is larger

than ñ. Compared to the case without debt, the preference ordering in the w, r

quadrant is changed since the interest rate is not only determining the relative price

15In Appendix 2.5.4 we develop the corresponding slope of the households indifference curves
displayed in Diagram 4. In Appendix 2.5.5, we show that the quality of our results remains
unaltered in a model with pay-go social security.
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Diagram 4: The optimum growth rate for population in a laissez faire economy.
Case 1, with positive government debt.

of future consumption; it also determines the total amount of resources which go

through the hands of the government and yield the biological interest rate. Thus the

indifference curves with debt Ū1 and ¯̄U1 may intersect the indifference curve Ū1,b=0.

At the optimum growth rate for population n∗∗, which might be larger, smaller or

equal to the optimal n∗ of Samuelson (1975a), we have (n∗∗−f ′(k(n∗∗))) < 0. Hence,

according to (35), the government can always improve steady state utility through a

reduction of per capita debt. The (social) optimum optimorum would once again be

reached at n∗ with b = 0 (the U(n) curve for the planned economy is not included

in Diagram 4).

2.4 Concluding Remarks

In the first section we discussed the problem of the optimum growth rate for pop-

ulation in a laissez faire economy. In the course of this discussion we developed
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a general typology for the problem of optimal population in the Diamond (1965)

model without government debt. This led to the conclusion that:

1. The qualitative necessary and sufficient conditions for the existence of an in-

terior optimum growth rate for population in a planned and in a laissez faire

economy are identical. In both cases it is the convex factor-price frontier which

can be interpreted as the social budget constraint. Hence we have shown that

the findings of Michel and Pestieau (1993) for the planned economy remain

also valid in the more realistic case of a laissez faire framework.

2. There always exists an interior optimum in an economy where low (high)

growth rates for population lead to over-accumulation (under-accumulation).

The general sufficient condition for an interior optimum in a laissez faire as

well as in a planned economy is hence given by dr
dn |n=n∗

> 1. All cases where

there exists an interior minimum, like the Cobb-Douglas case, are consistent

with an economy, in which rapid population growth leads to over-accumulation

and low or negative growth rates for population lead to under-accumulation.

3. An increase in the growth rate for population increases (decreases) steady state

welfare only if the economy is growing on an inefficient (efficient) steady state

path.

In a second step we generalized the discussion by introducing government debt. In

such a framework we find that:

1. Due to the substitution between debt and capital in the portfolios of the

representative individuals, the Serendipity Theorem does not hold anymore.

However, except for the case of permanent efficiency there still exists at least

one growth rate for population ñ, which leads the laissez faire economy to

(two-part) golden rule growth.

2. In a laissez faire economy with constant per capita debt, the growth rate for

population ñ, which leads to a golden rule allocation, cannot be optimal since

it only balances the wage-interest tradeoff. The optimum growth rate for

population balances the tradeoff between factor-prices and the internal rate

of return of the pension/debt scheme. Such an optimum growth rate leads

the competitive economy to an allocation where the marginal productivity of

capital exceeds the optimum growth rate for population.
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2.5 Appendix

2.5.1 Construction of Diagram 1

In this appendix we substantiate our claim that the qualitative conditions for an

interior optimum are properly represented in Quadrant III of Diagram 1. Hence

we have to show that the necessary condition for an optimum at n∗ requires that

the indifference curve in the w, r plane is a tangent to the factor-price frontier, i.e.
dw
dr |dU=0

= φ′(r). Analogous we show that the sufficient condition is satisfied only if

the curvature of the indifference curve is larger than the curvature of the factor-price

frontier, i.e. d2w
dr2 |dU=0

> φ′′(r). The factor-price frontier is given by:

w = φ(r);
dw

dr
= φ′(r) = −k; d2w

dr2
= φ′′(r) =

−1

f ′′
.

The indifference curve of the representative individual in the w, r plane is:

U = U(w, r);
dw

dr |dU=0
=
−s(w, r)
(1 + r)

;
d2w

dr2 |dU=0
=
sws(w, r)− sr(1 + r) + s(w, r)

(1 + r)2
.

Using the Serendipity Theorem we can show that the first order condition for a

laissez faire/planned optimum at an interior n∗ is satisfied if φ′(r) = dw
dr |dU=0

at n∗:

− k∗ +
c2∗

(1 + n∗)2
= 0 ⇔ −k∗ =

−s∗

(1 + f ′(k(n∗)))
; f ′(k(n∗)) = n∗; c2∗ = (1 + n∗)s∗.

Now we will show that the sufficient condition d2w
dr2 |dU=0

> φ′′(r) can be trans-

formed into f ′′(k) dk
dn
> 1, which was our sufficient condition (compare with (16) and

(17)) for a laissez faire optimum at n∗:

sws(w, r)− sr(1 + r) + s(w, r)

(1 + r)2
>
−1

f ′′
;

at the stationary point we have s = (1 + n)k and n = n∗ = r, and hence:

sw(1 + n)k − sr(1 + n) + (1 + n)k

(1 + n)
>

−1

f ′′
(1 + n),

this can be rearranged such that:

− k <
1

f ′′
(1 + n) + swk − sr,

with 1
f ′′

(1 + n) + swk − sr < 0 by virtue of the stability condition (12). Thus we

obtain:
−k

1
f ′′

(1 + n) + swk − sr
> 1 ⇔ f ′′(k)

dk

dn
> 1.
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2.5.2 Proof of Proposition 1

It follows directly from the Serendipity Theorem that the first order conditions for

the existence of an interior n∗ in the planned economy and the laissez faire economy

both identify the same stationary point; for n = n∗ = r∗, conditions (6) and (15)

are both satisfied.

We will now extend the Serendipity Theorem by proving that the same is also true

for the sufficient conditions. Thus we have to show that the sufficient condition for

an optimal interior n∗ in the planned economy is only satisfied if −k
1

f ′′ (1+n)+swk−sr
> 1

at the stationary point.

The second order derivative of the indirect utility function (5) for the planned

economy was given by:

d2U

dn2 |n=n∗
= Uc1

(
− dkn

dn
+

(1 + n)2 dc
2
n

dn
− 2(1 + n)c2n

(1 + n)4

)
T 0. (38)

The sign of this second order derivative hinges on two distinct elements: the first

element dkn

dn
is the aspect of optimal capital accumulation. The second element

(1+n)2
dc2n
dn

−2(1+n)c2n
(1+n)4

is concerned with the optimal consumption pattern.

From the first order condition for the optimal capital accumulation pattern we

have:

rn = f ′(kn) = n,
dkn
dn

=
1

f ′′(kn)
. (39)

For the second element, which is concerned with the optimal consumption pat-

tern, we find that in a planned economy we have:

Uc1(c
1
n, c

2
n)

Uc2(c1n, c
2
n)

= 1 + n,

wn = f(kn)− nkn = c1n +
c2n

(1 + n)2
.

These two equations clearly define an optimal consumption pattern c1n and c2n, where

c2n = (1 + n)s(wn, rn); once the individual faces the biological rate of interest it will

voluntarily (for all given real wages wn) choose the optimal (biological) consumption

pattern (Samuelson (1958) and Cass and Yaari (1966)). Hence:

dc2n
dn

=
d[(1 + n)s(wn, rn)]

dn
= s(wn, rn) +

(
sw
dwn
dn

+ sr
drn
dn

)
(1 + n), (40)
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with:

drn
dn

= 1;
dwn
dn

= f ′(kn)
dkn
dn

− kn − n
dkn
dn

= −kn.

We can now substitute the expressions in (39) and (40) into (38) to evaluate the sign

of d2U
dn2 at the stationary point, where we have c2∗n = (1 + n∗)s(w∗, r∗) = (1 + n∗)2k∗:

d2U

dn2 |n=n∗
= Uc1

(
− 1

f ′′(k∗)
+

(1 + n∗)3k∗ + (−swk∗ + sr)(1 + n∗)3

(1 + n∗)4
− 2(1 + n∗)3k∗

(1 + n∗)4

)
.

Hence d2U
dn2 |n=n∗

is negative if:

− k∗ < (1 + n∗)
1

f ′′(k∗)
+ swk

∗ − sr. (41)

According to the stability condition (12) we have (1 +n∗) 1
f ′′(k∗)

+ swk
∗− sr < 0 and

we find that d2U
dn2 |n=n∗

< 0 if and only if:

−k∗

(1 + n∗) 1
f ′′(k∗)

+ swk∗ − sr
> 1. (42)

This sufficient condition for a social optimum (42) is identical with the sufficient

condition (17) for a laissez faire optimum at n∗.

2.5.3 Oscillatory Stability

In this appendix we will discuss the case of one unique oscillatory steady state

equilibrium. The corresponding stability condition is:

− 1 <
dkt+1

dkt
=

−swf ′′k
(1 + n)− srf ′′

< 0; sw > 0. (43)

Since the numerator is positive sr must be algebraically large and negative, which

is only possible for σ < 1. From the life cycle savings condition (11) we obtain once

again:

dk

dn
=

−k
swf ′′k + (1 + n)− srf ′′

. (44)

Utilizing (43) reveals that dk
dn
> 0 and hence we have dr

dn
< 0. It is now easy to show

that the sufficient condition for an interior optimum growth rate for population is

always satisfied:

d2U

dn2 |n=n∗
= Uc1

(1− dr
dn

)

(1 + r)
k
dr

dn
< 0. (45)
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Hence we find that an interior minimum is only possible for

0 < dr
dn |n=n∗

< 1, in all other instances we have an interior optimum. However,

the oscillatory case with dk
dn

> 0 appears to be rather unrealistic. In addition we

note that the claim, that the ”stability condition” together with the assumption of

normality allows to derive the sign of dk
dn

, is not accurate. Instead, it is necessary to

distinguish two cases, in the same manner as in Diamond (1965).

2.5.4 Formal aspects to Diagram 4

Individual utility is given by:

U = U
(
w(n)− s(w̃(n), r(n))− (r(n)− n)b, (1 + r(n))s(w̃(n), r(n))

)
,

by varying the growth rate for population only, we obtain the following slope for the

indifference curve:

dw

dr |dU=0,
U

c1
U

c2
=1+r,dn6=0

= b− s

1 + r
− dn

dr
b.

We can now reproduce the first order condition (37) by setting
dw
dr |dU=0,

U
c1

U
c2

=(1+r)
= φ′(r) = −k:

b− s

(1 + r)
− dn

dr
b = −k ⇔ n− r

1 + r
(k + b)

dr

dn
+ b = 0.

For n = ñ = r we have:

dw

dr
= b− s

(1 + r)
− b

dn

dr
< −k,

since,

− b
dn

dr
< 0.

Hence at ñ the slope of the indifference curve is algebraically larger than that of the

factor-price frontier.

2.5.5 Appendix: Pay-as-you-go Social Security and optimal population

In this appendix we will briefly substantiate the claim that the qualitative condi-

tions for an interior optimum in an economy with debt are similar to those for an

economy with a pay-as-you-go social security system. Once we denote the per capita
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contributions by α and the old age benefits by β, the budget constraint for the social

security can be written as:

Ntα = Nt−1β ⇔ (1 + n)α = β. (46)

Hence the representative individual living in a steady state equilibrium is affected

by demographic change according to:

U(n) = U(w(k)− α− (1 + n)k, β + (1 + n)(1 + f ′(k))k).

Utilizing (46) and the respective factor-prices gives:

U(n) = U(f(k)− f ′k − α− (1 + n)k, (1 + n)α+ (1 + n)(1 + f ′)k).

Hence the first order condition, after some cancelling of terms, for the optimum

growth rate is given by:

dU

dn
= Uc1

α

(1 + f ′)
+ Uc1

(n− f ′)k

(1 + f ′)

dr

dn
= 0. (47)

Comparison between (47) and (37) reveals that once again, the tradeoff is between

the increased internal rate of return of the pension system Uc1
α

(1+f ′)
and the two

factor-prices Uc1
(n−f ′)k
(1+f ′)

dr
dn

.

The key difference between the constant per capita debt policy and the pay-

as-you go social security system is that the contribution rate α does not enter the

second term. The reason for this is the following: In an economy with pay-as-you-

go pension scheme, the (constant) contribution rate to the system is independent

from the growth rate for population. In the economy with government debt there

is a link between the amount of resources, which are distributed by the government

and the growth rate for population: The tax on the young generation is given by

τ 1(k) = (f ′(k(n)) − n)b). Hence, once the growth rate for population is changed,

the tax rate also changes and thus the total amount of resources which goes through

the hands of the government, which yield the biological rate of return.
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3 Dynamic Efficiency and the Two-Part Golden

Rule with Heterogeneous Agents

This chapter is concerned with the role of the two-part golden rule as the watershed

between equilibria which are dynamically efficient and those, which are inefficient.

In an economy where agents differ regarding their labor endowment, the golden

rule allocation ceases to serve as such a demarcation line. Except for the special

case where all agents possess a linear Engel-curve with identical slope, some agents’

maximum steady state utility will always be associated with a capital intensity

exceeding (falling short of) the golden rule level. This result stems from the fact

that the competitive markets entail an intra-generational redistribution of resources

once the capital intensity is altered. If heterogeneity is introduced on the preference

side, we find that the golden rule is never optimal for all agents. Consequently,

earlier results in the literature (e.g. Stein (1969)) on the two-part golden rule with

heterogeneous agents are not warranted.

3.1 Introduction

Having less of something useful may improve welfare. This is one of the key results

obtained from the normative evaluation of the Solow (1956), Swan (1956) models

of capital and growth: maintaining a capital intensity that permanently exceeds

the golden rule level is known to be inefficient.16 At the same time we know from

the pure consumption loan economy of the Samuelson (1958) type that a given

endowment should be distributed between adjacent cohorts such that the rate of

return on consumption loans is equated to the growth rate of population. Taken

together, these two optimality conditions constitute the two-part golden rule which

maximizes steady state utility in the Diamond (1965) model. The golden rule of

accumulation ensures maximum consumption in each period. In turn, the golden

rule of interest on consumption loans ensures efficient intergenerational distribution

of the consumption available.

In more recent studies, this two-part golden rule result was shown to be robust

with regard to several changes in the underlying assumptions. In particular, Abel

et al. (1989) and Zilcha (1990) show that the golden rule criterion carries over to a

16See Phelps (1961, 1966b), von Weizsäcker (1962), Cass (1972). See Burmeister and Dobell
(1970) and Jones (1975) for more references.
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setting with aggregate and idiosyncratic risk. Angel and Garcia (2008) extend the

result to a model with endogenous labor supply.

Against this background, the present chapter is concerned with the role of the

two-part golden rule in a Diamond (1965) economy with heterogeneous agents. To

illustrate our results, two forms of heterogeneity which are widely employed in the

overlapping generations literature will be discussed: (i) heterogeneous labor endow-

ments, with homogeneous preferences and (ii) homogeneous labor endowments with

heterogeneous preferences. In these settings, the Phelps (1961) golden rule continues

to maximize society’s consumption opportunities, and the Samuelson (1958) golden

rule ensures efficient intergenerational consumption patterns. The two-part golden

rule, however, no longer describes the demarcation line between competitive equilib-

ria which are efficient and those which are inefficient. That is, even if the two-part

golden rule equilibrium could be reached at no (transition) cost, there will always be

individuals who prefer a lower and others who prefer a higher steady state capital

intensity. This result originates from an intra-generational reallocation of resources,

which operates through the competitive markets and occurs once the capital inten-

sity is altered. Compared to the golden rule level, this transfer effect will allow

agents whose present value of savings s
1+r

exceeds (falls short of) the capital stock

lk, which is absorbed by their labor supply l, to reach higher steady state utility

once the capital intensity is reduced (increased). If heterogeneity is introduced on

the preference side, the corresponding condition is given by si

1+r
T k, where thrifty

agents ( si

1+r
> k) will once again prefer steady states with interest rates exceeding

the golden rule level.

Despite its simplicity, this result differs from what appears to be the consensus in

the literature. In particular, the often cited17 paper by Stein (1969) p. 144 analyzes

a competitive Diamond (1965) model where agents differ with regard to their rate

of time preference. As we show in Section 3.2.3, his conclusion that the golden rule

allocation is optimal for all members of such a society is not warranted.

17See Gale (1973), Ihori (1978), Krohn (1981) and Crettez et al. (2002). See De La Croix
and Michel (2002) for a recent textbook. De La Croix and Michel (2002) p. 81 criticize Stein
(1969) by pointing out that he fails to notice the double infinity aspects emphasized by Shell
(1971). However, they do not point out that the golden rule no-longer serves as the watershed
between efficient and inefficient steady states under the assumptions made by Stein (1969), where
households are heterogeneous. In Section 3.2.3 we complement their criticism and point out that
the golden rule does not separate efficient from inefficient steady states in a competitive economy
with heterogeneous preferences.
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Given the pivotal role played by the golden rule, our results may also provide use-

ful inference with regard to the social security literature (e.g. Persson and Tabellini

(2000) and in particular Pestieau et al. (2006)), where it is often argued that Bev-

eridge schemes are redistributive while Bismarck schemes are not.18 In the current

case, we find that both schemes redistribute resources through their induced factor-

price changes. In particular, if the propensity to save increases with income, the

crowding-out of capital brought about by both social security schemes favors the

rich at the expense of the poor. In the case of a Beveridge pension scheme, some of

the direct intra-generational redistribution is therefore thwarted by the associated

factor-price changes.

The rest of the chapter is organized as follows: In Sections 3.1.1 and 3.1.2,

we recall the two golden rule relations for the representative agent economy. In

Section 3.1.3 we present a dissection of the overlapping generations structure of

incomplete markets. With these elements in place, we isolate the main result in a

partial equilibrium setting. In Section 3.2, we prove the result in general equilibrium.

Section 3.3 offers concluding remarks.

3.1.1 Consumption Maximizing Growth

In the standard one-sector growth models of Solow (1956) and Swan (1956), where

production is homogeneous of degree one, output can be consumed or saved. With

flexible factor-prices, savings always equal investment and at each point in time we

have:

F (Kt, Lt) = Kt+1 −Kt + Ct = Ltf(kt); kt =
Kt

Lt
, f ′() > 0, f ′′() < 0.(48)

With population growing at a constant proportional rate n, per capita steady state

consumption c := C
L

is then:

c = f(k)− nk. (49)

18Pestieau et al. (2006), p. 591 discuss an open economy with general non-homothetic prefer-
ences with heterogeneous labor endowment. However, they conclude their analysis by remarking
“If instead the pension system were purely contributive (Bismarckian), there would be no redis-
tribution across individuals, and thus no tax competition per se. Then capital mobility would not
have any effect on the choice of the payroll tax, and each country would use it to achieve dynamic
efficiency just as in autarky” (p. 595). The current analysis shows that the usual notion of dynamic
efficiency, i.e. the golden rule result does not apply to the framework analyzed by Pestieau et al.
(2006). That is, Bismarckian schemes are not only contributive but also redistributive.
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As shown by Phelps (1961), von Weizsäcker (1962) and others, consumption is

maximized if the rate of return on capital investment is equal to the economy’s

growth rate:

max
k
c(k) = max

k

(
f(k)− nk

)
= f(kn)− nkn, f ′(kn) = n, (50)

where kn denotes the golden rule capital intensity. Once reached, this consumption

maximizing steady state can be sustained by investing profits, snf(kn) = nkn =

f ′(kn)kn, and the consumption of wages, c(kn) = f(kn)− nkn = wn.

3.1.2 Utility Maximizing Growth

In the Diamond (1965) life-cycle model, steady state utility is at its long-run op-

timum once the two-part golden rule is implemented. In each period t, aggregate

consumption Ct can now be allocated between the old and the young cohort, i.e.

Ct = C1
t + C2

t . Recalling the resource constraint (48), the social planner chooses

the consumption maximizing capital intensity kn defined in (50). In turn, consump-

tion is allocated to the old and young according to the second biological interest

rate relation of Samuelson (1958). With utility concave in first and second period

consumption, we have the two-part golden rule optimum:

max
k,c2

U(c1, c2) s.t. f(k)− nk = c1 +
c2

1 + n
; (51)

f ′(kn) = n, (52)

Uc1(c
1
n, c

2
n)

Uc2(c1n, c
2
n)

= 1 + n, (53)

where (52) maximizes consumption and (53) ensures efficient intergenerational dis-

tribution. As Diamond (1965), Samuelson (1975b) and Ihori (1978) show, this util-

ity maximizing allocation can be decentralized by an appropriate intergenerational

transfer that forces k = kn such that (52) is satisfied. In turn, consumers will volun-

tarily choose consumption according to (53). A striking property of (52) and (53)

is their asymmetry. A change in the utility function affects the consumption profile

c1n, c
2
n but does not affect the optimal capital intensity kn. However, a change in

the production function affects all three quantities kn, c
1
n, c

2
n. If preferences are not

homothetic, it also affects the ratio c1n
c2n

.
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3.1.3 Competitive Incomplete Markets

In this section, we dissect the competitive apparatus of maximizing behavior and

market clearing, which restricts the set of feasible steady state allocations. This

dissection will provide the background to interpret our results in Section 3.2. In a

first step we summarize the OLG market structure in the c1, c2 plane. In a second

step, we approach the same question in the w, r plane to emphasize the role of the

factor-price frontier as a resource constraint. The key insight in this section is that

the golden rule result vanishes for the representative agent economy once one of the

equations which describe the competitive equilibrium is not taken into account. In

Section 3.2, where we introduce heterogeneity, it will turn out that some equations,

most notably the life-cycle savings condition, are less restrictive: in a model with

heterogeneous agents, average savings rather than each agent’s savings have to be

sufficient to support the steady state capital stock. That is, in what follows we show

that dropping one of the equations of the representative agent model will make the

golden rule allocation suboptimal. In turn, we show in Section 3.2 that heterogeneity

will have an effect which is similar to the dropping of one equation: the life-cycle

savings condition will only require that average savings support the steady state. It

is therefore less restrictive and the golden rule result vanishes in the same manner

as it does in the representative agent economy where the life-cycle savings condition

is not taken into account.

The Golden Rule Consumption Profile The equations describing the com-

petitive Diamond (1965) model, where taxes are raised in each period to keep the

debt to labor ratio bt = Bt

Lt
constant over time, may be summarized as follows:

Lt+1 = (1 + n)Lt, (54)

st = (1 + n)(kt+1 + b), (55)

st = wt − c1t − (rt − n)b, (56)

c1t +
c2t+1

(1 + rt+1)
= wt − (rt − n)b, (57)

wt = f(kt)− f ′(kt)kt, (58)

rt = f ′(kt), (59)

f(kt) = (1 + n)kt+1 − kt + c1t +
c2t

1 + n
. (60)
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Taken together, (54)-(59) describe market clearing, the households’ budget con-

straint and profit maximizing firms, leaving open the households’ savings decision.

Equation (60) is the aggregate resource constraint. It is straightforward to show

that (54)-(60) have one linearly dependent equation. We can therefore drop (60)

and work with the system (54)-(59). Along a steady state path, disregarding the

households’ savings decision for the moment, first and second period consumption

can now be described as functions of the capital intensity:

c1 = f(k)−
(
f ′(k) + (1 + n)

)
k − (1 + f ′(k))b, (61)

c2 = (1 + f ′(k))(1 + n)(k + b). (62)

Differentiation of (61)-(62) yields the locus OT of all feasible consumption bundles:

dc2

dc1 |OT
= −(1 + n)[f ′′(k)(k + b) + (1 + f ′(k))]

f ′′(k)(k + b) + (1 + n)
. (63)

Comparison of the slope of the market constrained consumption curve OT with that

of the aggregate resource constraint (51), where dc2

dc1 |dk=0
= −(1 + n), yields:

− dc2

dc1 |OT
− (1 + n) =

(1 + n)(f ′(k)− n)

(1 + n) + (k + b)f ′′(k)
, (64)

where (64) indicates that the OT curve is a tangent to society’s resource constraint

once k = kn. Diagram 5a depicts the market process in the “pure case” without

government debt, where b = 0 in the c1, c2 plane, as a curve ranging from O to T .

In particular, diagram 5a indicates that the utility maximizing social optimum S

is typically incompatible with the market process without debt, i.e. the OT-line.

Moreover, even if the market process is capable of golden rule growth G, market

constrained utility would be higher at F . If, however, individuals choose savings

privately, the model is closed and a specific equilibrium E can be located on the OT

curve. This equilibrium E, where the marginal rate of substitution is equal to the

slope of the households’ budget constraint, may or may not be inferior to F and G.

Adding the households’ savings decision explicitly, we have:

max
s
U = U(c1, c2), s.t. c1 = w − (r − n)b− s; c2 = (1 + r)s. (65)

Hence, optimal savings are:

s = s(w − (r − n)b, r), sr T 0, 0 < sw < 1, (66)
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Diagram 5: Competitive incomplete markets.
The OT curve in Diagram 5a depicts the market constrained c1 − c2 pairs. The
equilibrium E obtained on the OT curve may be either efficient, i.e. located on the
OG section, or, as in the present case, in the inefficient section GT . Note that G is
associated with a capital intensity which satisfies (52), but the consumption bundle

at G violates (53); hence, we have
¯̄̄̄
UG < ŪS. Diagram 5b illustrates the social

optimum S which can be decentralized by an appropriate over/under-funded social
security/debt scheme.

where 0 < sw < 1 implies that consumption in each period is assumed to be a

normal good. Once we combine the savings function defined in (66) with the market

process (54)-(59), our model is closed and an equilibrium E as in Diagram 5a will

be realized. Diagram 5b now depicts how the government can vary per capita debt

b as in Diamond (1965), in order to decentralize the social optimum S.

The Wage Interest Tradeoff From a different perspective, we may disregard the

life-cycle savings condition (55) for the moment and consider the conditions under

which an increase in the capital intensity increases individual utility. From a partial

equilibrium perspective, it is easy to trace out individual preferences for the optimal

capital intensity:

max
k
U

(
w − (r − n)b− s(w, r), (1 + r)s(w, r)

)
, (67)
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where savings are defined as in (66). Hence, recalling (58) and (59), the optimal

capital intensity is the root of:

dU

dk
= −Uc1

(
k + b− s(w, r)

(1 + r)

)
f ′′(k) = 0 ⇔ −k = b− s(w(k), r(k))

(1 + r(k))
. (68)

In a partial equilibrium context, we therefore have the following proposition:19

Proposition 4. An increase in the capital intensity increases (decreases) utility iff
the present value of individual savings falls short of (exceeds) the per capita stock of
assets in the economy. Put differently, an increase in the capital intensity increases
(decreases) utility iff the slope of the individual indifference curve b − s

(1+r)
in the

w−r plane is algebraically smaller (larger) than the slope of the factor-price frontier
−k.

Proof. Follows from (68). See Appendix 3.4.1 for the slopes of the factor-price fron-
tier and the households’ indifference curves and a Cobb-Douglas example showing
that (68) is prone to corner solutions.

Hence, from a partial equilibrium point of view, households would (if they could)

choose the capital intensity such that their indifference curve in the w − r plane is

a tangent to the factor-price frontier as depicted by point F in Diagram 6. The

notable property of (68) is that it is by no means related to a golden rule condition.

In particular, we find that changes either on the preference side or on the labor

endowments side will also change the optimal capital intensity, a behavior which

did not occur in the command optimum (52)-(53), where f ′(kn) = n was defining a

unique capital intensity kn − independent of the preference ordering or (as is easy to

check) the households’ labor endowment. However, taking into account the life-cycle

savings condition (55), the competitive economy will settle in some point E. As in

Diamond (1965), the government may now choose a negative level of per-capita debt

to decentralize the golden rule optimum S, where, for r = n, (54)-(59) and (68) hold

simultaneously and the golden rule describes an optimum.

In the following Section 3.2, we show how the golden rule result changes once

we introduce intra-cohort heterogeneity into the model. While the government can

still decentralize the golden rule allocation (52)-(53), described in this section, it is

no longer the best allocation for each group in society. Depending on the propensity

to save, some households will attain maximum utility in a steady state where r > n

19In an economy with homogeneous agents it is now clear from the life-cycle savings condition
(55) that the golden rule capital intensity kn solves (68).
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Diagram 6: The wage-interest tradeoff.
The factor-price frontier φ describes the wage-interest tradeoff implied by the neo-
classical production function. The pair (w∗, r∗) maximizes unconstrained utility in
partial equilibrium without debt. Taking the life-cycle savings condition ψ into ac-
count, the equilibrium E, where r > n, is obtained. Lowering per capita debt to a
negative level pivots ψ such that the two-part golden rule optimum S is reached (see
Appendix 3.4.1 for a derivation of ψ and the corresponding shifts in ψ and U).

and vice versa. That is, in a competitive economy where r > n, some members of

society will reach a consumption profile located “north-east” of the wn, (1 + n)wn

golden rule constraint described in Diagram 5a. Equivalently, thinking in terms of

Diagram 6, heterogeneity pivots the households’ indifference curves in the w − r

plane such that some agents prefer a wage-interest pair different from n,wn.

3.2 Competitive Markets with Heterogeneous Agents

In this section we derive the main results. We proceed in two steps:

1. We analyze a setting where heterogeneity is introduced with regard to the

amount of efficient labor. Again, we do so in two steps:

(a) First in a setting with government debt/paygo pensions, we analyze how

changes in the level of debt influence utility through the induced changes

in the capital intensity.
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(b) In a second step, we show that the break-down of the golden rule result

depends on the structure of the competitive markets. That is, we show

that it is independent from the particular debt scheme which we employ.

2. Heterogeneity is introduced on the preference side as in Stein (1969). Once

again we study a setting with debt and in turn show that the result carries

over to the case without debt.

The intention with this approach is to have one stylized setting where changes in

the size of the public debt are evaluated. To this end we discuss the basic Diamond

(1965) setting where the changes in the capital intensity are caused by changes in per

capita debt. Subsequently we add the setting without debt as a robustness check to

show that the golden rule result does not vanish because of the specific tax-scheme

which the government runs.

Section 3.2.4 shows that the results will also carry over to a setting where the

change in the capital intensity is caused by a change in total factor productivity.

In all three cases, we find that the result isolated in Proposition 4 will carry over

seamlessly into general equilibrium, i.e. heterogeneity will weaken the life-cycle

savings condition and the golden rule ceases to maximize steady state utility.

3.2.1 Heterogeneous Labor Endowment with Debt

The economy in this section is inhabited by a continuum of agents who differ re-

garding their innate labor endowment. Normalizing period 0 labor supply to unity,

aggregate labor evolves according to:

Lt = (1 + n)t
∫ l̂

ľ

ldF (l);

∫ l̂

ľ

ldF (l) = µ = 1, l̂ > ľ > 0, (69)

where l denotes the type of agent and dF (l) the size of the group of type l agents.

As in Diamond (1965), the government is assumed to collect the taxes needed to

finance interest payments by raising a lump-sum tax on wages:20

τ(l) = (r − n)lb;

∫ l̂

ľ

τ(l)dF (l) = (r − n)b. (70)

20The government budget constraint reads Bt+1 − Bt(1 + rt) = −Lt

∫ l̂

ľ
τ(l)dF (l). Defining

bt ≡ Bt

Lt
, we have the steady state relation

∫ l̂

ľ
τ(l)dF (l) = (r − n)b.
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We choose the specific tax scheme in (70) for three reasons: (i) it allows to extend the

golden rule result to a setting with homothetic preferences, (ii) it closely resembles

the formulation used in Diamond (1965), and (iii), as we show at the end of Appendix

3.4.2, it gives the same qualitative first order conditions that would be obtained

from a setting with a Bismarckian pension scheme with a linear contribution rate

on wages.

As shown in Appendix 3.4.2, all remaining agent specific quantities can be inte-

grated/summed, such that the aggregate economy behaves as characterized in (54)-

(59). In particular, the life-cycle savings condition requires that:∫ l̂

ľ

s(wl − (r − n)bl, r)dF (l) = (1 + n)(k + b). (71)

For our purpose it is important that (71) only requires that average savings support

the steady state. The indirect utility of a type l agent now reads:

U(wl − (r − n)bl − s(wl − (r − n)bl, r), (1 + r)s(wl − (r − n)bl, r)). (72)

Taking into account the equations (58) and (59) and the households’ Euler equation,

the first order condition for the optimum quantity of debt is:21

dU

db
= −Uc1

(
(r − n)l +

[
(k + b)l − s(wl − (r − n)bl, r)

1 + r

]
f ′′(k)

dk

db

)
= 0,

dk

db
< 0.(73)

Given k̃, condition (73) identifies the type l̃ = l(k̃) agent whose utility is optimized

by the particular capital intensity, or, given l̆, the optimal capital intensity k̆ = k(l̆)

which maximizes the respective utility of a type l agent. In the present setting,

the golden rule allocation rather separates “savers” from “non savers” than efficient

from inefficient steady states. Obviously, the two-part golden rule result is violated

for all agents who do not exactly hold their proportional stock of debt and capital

in their portfolio. For r = n, thrifty agents prefer that debt is issued to a point

where r > n and vice versa. Hence, we can graph condition (73) in diagrams 7 and

8. Moreover, we have the corresponding proposition:22

Proposition 5. Agents who hold less than their proportional share of assets (k +
b)l benefit (suffer) from a capital intensity which exceeds (falls short of) the level
prescribed by the golden rule. If preferences are not homothetic, there are always
some agents that prefer a steady state where n > r and vice versa.

21In Appendix 3.4.2, we use the stability condition to establish that dk
db < 0.

22In Appendix 3.4.2, we show that the same result can be obtained for a setting with a Bismarck
pension scheme with a linear contribution rate.
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Proof. See Appendix 3.4.2.
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Diagram 7: Intragenerational redistribution and the Engel-curve.
Intragenerational redistribution via competitive markets with an increasing (decreas-
ing) propensity to save. For the empirically relevant case, where the propensity to
save increases with income, a decrease in the capital intensity below golden rule levels
increases “capitalists’” utility at the expense of “workers’” utility and vice versa.

Corollary 4. If preferences are homothetic, the savings function is of the form
s = ξ(r)(w− (r−n)b)l. In this case, where the Engel-curve is linear and of identical
slope for all agents, the golden rule describes the demarcation line between efficient
and inefficient steady states.

Proof. See Appendix 3.4.2.

Diagrams 7 and 8 depict cases where utility is not homothetic. We now show that

the results displayed above are not an artifact of the particular debt scheme.
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Diagram 8: Intragenerational redistribution with nonhomothetic preferences.
Diagram 8a compares a thrifty high income household’s utility at the two-part golden
rule equilibrium S to the market equilibrium E. Diagram 8b illustrates the inferior
consumption bundle at E, which is allocated to the “average household”.

3.2.2 Heterogeneous Labor Endowment without Debt

In this section there is no government debt to adjust the capital intensity. Instead

we ask whether a household of a particular type would prefer to be born into a

society where savings support a steady state with a capital intensity that exceeds

(falls short of) the golden rule level. Once we recall the indirect utility function

(72) and the life-cycle savings condition (71) it suffices to set b = 0. The associated

first order condition for the optimal capital intensity yields the following analogue

to Proposition 5:

Corollary 5. Agents who hold less than their proportional share of assets kl benefit
(suffer) from a capital intensity which exceeds (falls short of) the level prescribed by
the golden rule. If preferences are not homothetic, there are always some agents that
prefer a steady state where n > r and vice versa. If preferences are homothetic, the
golden rule separates efficient from inefficient steady states.

Proof. Consider the indirect utility function in (72). If we set b = 0, changes in the
capital intensity affect utility of a type l agent according to:

dU

dk
= −Uc1

(
kl − s(wl, r)

(1 + r)

)
f ′′(k) T 0 ⇔ kl T

s(w(k)l, r(k))

(1 + r(k))
. (74)

Taking into account the life-cycle savings condition, which once again requires that
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average savings are sufficient to support the steady state, we have:∫ l̂

ľ

s(wl, r)dF (l) = (1 + n)k. (75)

If the economy grows on a golden rule path where we have r = n, conditions (75)
and (74) yield for a steady state:

kl =

∫ l̂

ľ
s(wl, n)dF (l)

1 + n
l T

s(wl, n)

(1 + n)
. (76)

Hence, depending on the propensity to save out of income, a household of type l will
prefer a capital intensity that exceeds (falls short of) the golden rule level. Finally,
if preferences are homothetic, savings are known to be a positive fraction ξ(r) of the
available income. That is, s(wl, r) = ξ(r)wl. Plugging this savings function into
(76), we find that it holds with equality at the golden rule capital intensity. The
golden rule therefore maximizes steady state utility if U() is homothetic.

3.2.3 Heterogeneous Preferences

Now let us change the perspective slightly and consider an economy inhabited by

agents with uniform labor endowment. As in Stein (1969), heterogeneity will now

be introduced on the preference side only. Society now consists of a continuum of

agents, where each group i has its own preference ordering Ui(c
1, c2); i ∈ [0, 1]. Thus,

according to (65), each agent chooses a unique optimal si(w, r). Integration over

the index set in turn yields the aggregates in the same manner as in the previous

section. If agents are taxed equally, as in Diamond (1965), we have the following

first order condition with regard to the optimal capital intensity for a type i agent:23

dUi
db

= −Ui,c1
(
(r − n) +

[
(k + b)− si

(1 + r)

]dr
db

)
= 0;

dr

db
= f ′′(k)

dk

db
> 0.(77)

Condition (77) indicates and Diagram 9 illustrates that thrifty agents benefit from

capital-intensities below the golden rule level. Impatient agents prefer capital-

intensities exceeding golden rule levels. This is in fact the opposite of the result

derived by Stein (1969) p. 141, who considers a competitive economy with het-

erogeneous time preferences just like ours and concludes his analysis:24 “No inter-

personal comparisons of utility are involved in this concept of an optimum since (7)

23Once again, we obtain dk
db < 0 from the stability condition.

24See also footnote 2 in Stein (1969), p.142, where he assumes “For simplicity we assumed
that βi = β....”. The subsequent optimality conditions would therefore not hold without this
assumption.
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[r = n] is valid for all βi where 1 > βi > 0. No other point than r(k) = n would

be chosen in a social compact entered into by all generations present and future.”

Instead, we find the following proposition:

Proposition 6. In a competitive economy with heterogeneous preferences, there
are always agents who prefer a capital intensity exceeding the golden rule level.
Moreover, there are also agents who prefer a capital intensity falling short of the
golden rule level. Consequently, changes in the capital intensity always require inter-
personal utility comparisons.

Proof. see Appendix 3.4.3.
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Diagram 9: Dynamic efficiency and the Engel-curve.
Households with a steep (flat) income expansion path lose (gain) utility once the rate
of return falls short of the golden rule level. Diagram 9a depicts the income expansion
path with an intertemporal elasticity of substitution of unity but heterogeneous time
preferences as in Stein (1969). Diagram 9b depicts a case where current and future
consumption are complements where sr < 0.

Propositions 5 and 6 may be seen as trivial corollaries to Proposition 4. Once

we note that the direct change in the tax rate is r − n = 0 at the golden rule

equilibrium, we are left with the pure factor-price trade off (k+ b)− si

(1+r)
described

in Proposition 4. This trade off, however, is unrelated to a golden rule result.

Each change in preferences or labor endowments has an effect on the desired capital

intensity, i.e., the optimal wage-interest pair on the factor-price frontier.

In a different interpretation we may think of (k + b) − si

(1+r)
as a sort of terms

of trade. Those agents whose labor supply absorbs many assets compared to their
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own saving, prefer a capital intensity exceeding the golden rule level and vice versa.

Consequently, the decrease in utility incurred by some agents once the capital inten-

sity moves towards the golden rule can be seen as a case of “immiserizing growth”.

Similar to the result on foreign trade derived by Bhagwati (1958), we find that an

increase in the capital intensity towards the golden rule increases per capita con-

sumption in each period. However, it also worsens the terms of trade of the thrifty

households.

Taking the current view it is also intuitive that the golden rule result holds in the

setting of section 3.2.1, where the labor supply was the sole source of heterogeneity,

if preferences are homothetic and homogeneous. In this case, each agent supplies

precisely the amount of savings necessary to absorb his proportional share of assets

in the economy. Consequently, in our trade interpretation, each group of agents lives

in “autarky”. In this case, the golden rule result carries over.

Finally, we note that the golden rule once again also ceases to serve as a watershed

in an economy without debt. Setting b = 0, the first order condition for the optimal

steady state capital intensity is given by:

dUi
dk

= −Ui,c1
(
k − si

(1 + r)

)
= 0. (78)

Once again it is now easy to show that a household of type i will prefer to be born

into an economy where r T n, depending on whether his propensity to save is above

(below) the economy’s average propensity to save.

3.2.4 Hicks Neutral Technological Change

To further illustrate how Proposition 4 carries over to different settings, we will now

briefly reconsider the results which were derived regarding the adoption of a superior

“Hicks neutral” technology. While Matsuyama (1991) and Galor (1988) have shown

that such a technological innovation may only decrease utility if the economy is

dynamically inefficient, we will now show that this result once again does not carry

over to our heterogeneous agent setting.

Augmenting the production function with a technology level α, we define ỹ ≡
αf(k), r̃ ≡ αf ′(k) and w̃ ≡ α[f(k) − f ′(k)k]. Changes in α now affect utility
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according to:25

dU

dα
= Uc1

1

α

[
w̃ +

r̃

1 + r̃
s
]

+ Uc1
[s(w̃l, r̃)

1 + r̃
− kl

]
αf ′′(k)

dk

dα
= 0. (79)

The first term in (79) indicates that utility increases due to the outward shift of

the factor-price-frontier. At a given capital intensity, wages and returns to capital

rise. The second term represents the movement along the factor-price frontier, re-

sulting from the changed capital intensity. This change may or may not increase the

respective agent’s utility obtained from his particular factor supplies (l, s(w̃l, r̃)).

Disregarding the heterogeneity in the labor endowment, condition (79) is identical

with that derived by Galor (1988). In the current case, however, the second term

will always be negative for some agents even if r > n. Hence, the results of Galor

(1988) and Matsuyama (1991), who show that technological progress may only de-

crease utility of some agents in an economy which is dynamically inefficient, do not

carry over.26

If we think of our households as small open economies, the second term in (79)

may once again be interpreted as a worsening of the “terms of trade” for thrifty

households. In a similar fashion it would now be straightforward to show that the

two-part golden rule ceases to serve its watershed role in similar problems, like for

example the optimum growth rate for population analyzed in Samuelson (1975a),

Michel and Pestieau (1993) and Jaeger and Kuhle (2009).27 Rather than separating

efficient equilibria from inefficient ones, the golden rule separates savers from non-

savers as in Propositions 4, 5 and 6 respectively.

3.3 Conclusion

The two-part golden rule balances the wage interest tradeoff faced by the represen-

tative agent in the competitive Diamond (1965) model. Competitive paths with a

25Note that dk
dα = sw(f(k)−kf ′(k))+srf ′(k)

(1+n)+swαf ′′(k)k−srαf ′′(k) T 0. Assuming asymptotic (cyclical) stability, we
can show that the denominator is positive (negative). The numerator is positive if sr > 0, but
ambiguous if sr is sufficiently negative.

26The notable exception is of course the case with identical homothetic preferences.
27The first order condition for the optimum growth rate for population for a type l agent is given

by:

dU

dn
= −Uc1

(
kl − s(lw, r)

1 + r

)
f ′′(k)

dk

dn
= 0, (80)

and has the same structure as the foregoing ones.
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capital intensity exceeding the golden rule level are therefore dynamically inefficient.

This result carries over to economies where the present value of each agent’s savings

is equal to his proportional share of assets in the economy. This condition is sat-

isfied in economies where all agents have linear Engel-curves with identical slopes,

i.e. preferences which are homogenous and homothetic.

In all other cases, it turns out that the golden rule ceases to serve as a demar-

cation line between efficient and inefficient steady states. There are always some

members in society who prefer a capital intensity exceeding the golden rule level.

Hence, these steady states can no longer be viewed as inefficient.28 Taking the per-

spective of Abel et al. (1989), we find that an increment in capital acts as a source

(sink) to society as a whole, i.e. increases aggregate consumption in each period, if

r > n (r < n). If society consisted of a representative agent, r = n would therefore

describe the steady state optimum. However, in the current case society is frag-

mented into different groups. That is, while capital may already be a sink to society

as a whole, it may still act as a source to some groups of that society.29

Given the growing interest in models with heterogeneous agents, the current

result may provide useful inference in two directions: The simple comparison of

interest rate and aggregate growth rate is feasible for economies with heterogeneous

agents as long as consumption expansion paths are linear and identical, e.g. CES

specifications with homogeneous time discount rates. In another interpretation, the

above analysis may be a case against the reliance on CES specifications to the extent

that empirical evidence suggests that the savings propensity increases (or at least

varies) with income. Consequently, the intra-generational redistribution, which is a

byproduct of changes in the capital intensity, is not captured.

28Steady states with a capital intensity falling short of the golden rule level are now efficient for
a second reason. Even if a golden rule allocation could be reached at no cost, this new path would
always bring about long-run utility losses for some agents.

29Naturally, this result carries over to competitive OLG models where risk avers agents face
ideosyncratic risks.
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3.4 Appendix

3.4.1 Construction of Diagram 6

In this appendix we develop the properties of the Diamond (1965) model in the w−r
space:

Factor-price frontier The firm’s first order conditions are given by r = f ′(k),

w = f(k)− f ′(k)k. For k ∈ R+, f ′(k) is bijective and defines k = k(r). Differentia-

tion now yields:30

φ(r) = w(k(r)),
dw

dr
= φ′(r) = −k, d2w

dr2
= φ′′(r) = − 1

f ′′(k)
. (81)

Indifference curves Regarding preferences, we recall (65) and (66), which imply
Uc1

Uc2
= 1 + r, to obtain:

dw

dr |dU=0
= b− s

1 + r
,

d2w

dr2 |dU=0
=
sws− sr(1 + r) + s

(1 + r)2
. (82)

Stability and life-cycle savings Throughout this chapter we assume that the

equilibrium is asymptotically stable. Using the life-cycle condition (1+n)(kt+1+b) =

s(wt − (rt − n)b, rt+1), the local stability condition around the steady state, where

k = kt = kt+1, reads:

0 <
dkt+1

dkt
=
−swf ′′(k)(k + b)

(1 + n)− srf ′′(k)
< 1. (83)

For a stable economy, the locus ψ of w−r pairs, where life-cycle savings support

a steady state, i.e. (1 + n)(k(r) + b) = s(w − (r − n)b, r), is now given by:

dw

dr |ψ
=

(1 + n)− srf
′′(k)

swf ′′(k)
+ b <|(83) −(k + b) + b = −k. (84)

Hence, the savings locus ψ in the w−r space is steeper than the factor-price frontier

φ. Moreover, for r > n, ψ is also steeper than the indifference curve, i.e., dw
dr |ψ <

−k = φ′(r) = b − s
1+n

<|r>n b − s
1+r

= dw
dr |dU=0

. Varying per capita debt will now

30See Samuelson (1962) for an exposition of the factor-price frontier.
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allow the planner to move both the savings locus and the households’ indifference

curve to a point where life-cycle savings support a golden rule steady state:

dw

db |dr=0,ψ
=

1 + n+ (r − n)sw
sw

> 0, (85)

dr

db |dw=0,ψ
=

−(1 + n+ swr)

(1 + n+ swbf ′′(k)− srf ′′(k))
1

f ′′(k)

> 0. (86)

Hence, increasing debt shifts the savings locus ψ to the right. The households’

indifference curves rotate around the point wn, n according to:

dw

db |dU=0
= r − n T 0;

dr

db |dU=0
=

r − n

b− s
1+r

T 0. (87)

Example Finally we may note an example which shows that condition (68), with

b = 0, is prone to corner solutions. Assuming a Cobb-Douglas production function,

full depreciation and logarithmic utility, with a propensity to save out of wage-

income of 0 < ξ < 1, we have y = kα, w = (1− α)kα, 1 + r = αkα−1, and thus (68)

reads:
dU

dk
= − 1

c1

(
1− ξ

(1− α)

α

)
k T 0;

α

1− α
T ξ. (88)

3.4.2 Comparative Statics

In this section we briefly show how the market clearing apparatus (54)-(59) carries

over to an economy with heterogeneous agents. Moreover, we show that the stability

condition implies that an increase in per capita debt decreases the capital intensity.

Integrating the per capita quantities yields the respective aggregates:

Lt+1 =

∫ l̂

ľ

(1 + n)tldF (l) = (1 + n)Lt, (89)∫ l̂

ľ

ls(wtl − (rt − n)bl)dF (l) = (1 + n)(kt+1 + b), (90)∫ l̂

ľ

st(l)dF (l) =

∫ l̂

ľ

(wtl − c1t (l) + (rt − n)bl)dF (l), (91)∫ l̂

ľ

(c1t (l) +
c2t+1(l)

1 + rt+1

)dF (l) =

∫ l̂

ľ

(wtl − (rt − n)bl)dF (l), (92)

wt = f(kt)− f ′(kt)kt, (93)

rt = f ′(kt). (94)
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Defining C1
t ≡

∫ l̂

ľ
c1t (l)dF (l), C2

t+1 ≡
∫ l̂

ľ
c2t+1(l)dF (l), Wt ≡

∫ l̂

ľ
wtldF (l) and S ≡∫ l̂

ľ
st(l)dF (l), we obtain the same set of equations as in (54)-(59). The geometric

exposition in Diagram 5a, 5b can now be constructed as before. However, C1, C2

now depict average consumption rather than the consumption of the representative

consumer.

Lemma 1: An increase in per capita debt decreases the steady state capital inten-

sity if the equilibrium exhibits Walrasian stability.

Proof: In per capita terms the life-cycle savings condition (90) reads
∫ l̂

ľ
s
(
w(kt)l−

(r(kt)−n)bl, r(kt+1)
)
dF (l) = (1+n)(kt+1+b). Differentiation now yields the follow-

ing (Walrasian) stability condition: 0 < dkt+1

dkt
=

−(k+b)f ′′(k)
R l̂

ľ sw(wl−(r−n)bl,r)ldF (l)

(1+n)−f ′′(k)
R l̂

ľ sr(wl−(r−n)bl,r)dF (l)
< 1.

Government debt will therefore change the steady state capital intensity according

to: dk
db

=
(1+n)+

R l̂
ľ sw(f ′(k)−n)ldF (l)

f ′′(k)
R l̂

ľ srdF (l)−(1+n)−(k+b)f ′′(k)
R l̂

ľ swldF (l)
< 0, where the numerator is positive

since 0 < sw < 1. By utilizing the stability condition, it is straightforward to show

that the denominator is negative.

Proof of Proposition 5 With general non-homothetic preferences, we have ∂s(wl,r)
∂l

≷
∂s(wl̃,r)

∂l̃
for some l, l̃ ∈ [ľ, l̂]. Consequently, the life-cycle savings condition

∫ l̂

ľ
s(wl, r)dF (l) =∫ l̂

ľ
(1+n)(k+b)ldF (l) is only satisfied if the savings of some agents exceed (1+n)(k+

b)l and other agents’ savings fall short of what they absorb. Assuming the contrary,

s(wl, r) > (1 + n)(k + b)l, for all l ∈ [ľ, l̂] yields
∫ l̂

ľ
s(wl, r)dF (l) > (1 + n)(k + b),

which contradicts the steady state condition
∫ l̂

ľ
s(wl, r)dF (l) = (1+n)(k+b). Thus,

according to (73) there will always be two groups of agents. One group preferring

a capital intensity exceeding the golden rule and another preferring a lower capital

intensity where r > n. Those preferring the golden rule are of course a measure zero

set.

Proof of Corollary 4 For homothetic preferences savings are known to be a

positive fraction ξ of wealth, i.e. s = ξ(r)(w−(r−n)b)l.31 Consequently, the golden

rule steady state life-cycle savings condition in (71) reads ξ(n)w(kn) = (1+n)(kn+b).

Hence, we have s(l)
1+r

= s(l)
1+n

= (kn + b)l. Consequently condition (73) is satisfied for

31See Mas-Colell et al. (1995) p. 50 or De La Croix and Michel (2002) p. 53-54 for a proof.
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all agents at the golden rule capital intensity.

Bismarck Pensions If the debt scheme is Bismarckian, where τ s denotes the

contribution rate, indirect utility can be written as:

U = U
(
(1− τ s)wl − s, (1 + r)s+ (1 + n)τ swl

)
. (95)

Hence, we have the following relation between the contribution rate and welfare:

dU

dτ s
= −Uc1

r − n

1 + r
l
(
w − τ s

dw

dτ s

)
− Uc1

(
kl − s

1 + r

)
f ′′(k)

dk

dτ s
. (96)

Once again the golden rule conclusion would require that each agent saves precisely

what he absorbs. Consequently, taking into account that the life-cycle savings con-

dition (1 + n)k =
∫ l̂

ľ
s(wl, r, τ s), Proposition 5 and Corollary 4 carry over.

3.4.3 Proof of Proposition 6

In per capita terms, the steady state equations are given by:∫ 1

0

sidi = (1 + n)(k + b), (97)∫ 1

0

(c1i +
c2i

1 + r
)di = w − (r − n)b, (98)∫ 1

0

sidi = w −
∫ 1

0

c1i di+ (r − n)b, (99)

w = f(k)− f ′(k)k, (100)

r = f ′(k). (101)

The proof of Proposition 6 is now straightforward: If savings are heterogeneous,

we have si 6= sj for some i, j ∈ [0, 1]. Consequently, the life-cycle savings condition∫ 1

0
sidi = (1+n)(k+ b) is only satisfied if some agents’ savings exceed (1+n)(k+ b)

and other agents’ savings fall short of the average. Assuming on the contrary si >

(1 + n)(k + b) for all i ∈ [0, 1] yields
∫ 1

0
sidi > (1 + n)(k + b), which contradicts

the steady state condition
∫ 1

0
sidi = (1 + n)(k + b). Thus, according to (77) there

will once again be two groups of agents: one group preferring a capital intensity

exceeding the golden rule and another one preferring a lower capital intensity where

r > n. Those preferring the golden rule are, again a measure zero set.
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4 The Optimum Structure for Government Debt

This chapter studies the structural differences between implicit and explicit govern-

ment debt in a two-generations-overlapping model with stochastic factor-prices. If

a government can issue safe bonds and new claims to wage-indexed social security

to service a given initial obligation, there exists a set of Pareto-efficient ways to do

so. This set is characterized by the conflicting interests of the current young and

the yet unborn generations regarding the allocation of factor-price risks.

However, it is shown that there will always exist a simple intertemporal compensa-

tion mechanism which allows to reconcile these conflicting interests. This compen-

sation mechanism narrows the set of Pareto-efficient debt structures until only one

remains. This result hinges on the double-incomplete markets structure of stochastic

OLG models where households can neither trade consumption loans nor factor-price

risks privately.

4.1 Introduction

Privatizing social security has often been described as a pure “shell game”, where

an implicit liability is replaced by an explicit liability of equal size.32 From a dif-

ferent perspective, this equivalence between implicit and explicit government debt,

may also be seen as a counterpart to the Modigliani-Miller Theorem in corporate

finance. The underlying argument for this irrelevance result has its roots in the

consumption loan nature of both debt instruments. A pure reallocation of resources

between two adjacent cohorts can at most yield the biological interest rate.33 For

a deterministic economy, which is dynamically efficient in the sense of Diamond

(1965), bonds are issued with a rate of return that is, at first sight, superior to

the biological return earned on social security contributions. However, to prevent

an eventual default, the government has to collect a tax that exactly offsets this

return advantage. Taking these taxes into account, both instruments yield identical

32See e.g. Breyer (1989), Fenge (1995), Belan and Pestieau (1999), Friedman (1999). See Sinn
(2000) for a survey. Samuelson (1975b) proves the related result that fully funded social security
is also neutral. More recently, Ludwig and Reiter (2009) have extended the result to a stochastic
setting with state dependent taxes.

33Samuelson (1958, 1959), Lerner (1959), Aaron (1966) and Cass and Yaari (1966). In the sequel,
we abstract from technological progress as it does not change the basic tradeoffs.
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allocations.34 In particular, they reduce long-run utility by crowding-out capital.

In stochastic overlapping generations models Enders and Lapan (1982), Merton

(1983), Gordon and Varian (1988), Gale (1990), Krüger and Kubler (2006) and

Gottardi and Kubler (2008) have shown that intergenerational transfers via PAYGO

pension schemes and safe government debt may serve a second role. They allow

to facilitate intergenerational risk sharing.35 In-turn, these beneficial aspects of

government debt have been compared to the negative long-run losses which stem

from the crowding-out of capital. In particular Green (1977), Krüger and Kubler

(2006) and Gottardi and Kubler (2008) examine this trade-off between risk sharing

and worsening factor-prices. Their analysis indicates that even the introduction of

a very small social security system tends to decrease long-run utility. That is, the

positive risk sharing effect is dominated by the negative crowding-out effect.36

The current analysis complements this literature by taking a different perspec-

34Both schemes pay the same returns, cause (in absence of intragenerational redistribution)
the same excess burdens in the labor market, reallocate the same amount of resources between
generations, displace an equal amount of private savings and lower long-run utility.

35In particular, Fischer (1983) and Gale (1990), discuss the desirability of safe debt and its
maturity structure in an OLG context with rate-of-return risk. Enders and Lapan (1982) examine a
mature pay-go scheme in an economy where fiat money is the only alternative store of value. Merton
(1983) derives closed-form solutions for a three period OLG model with simultaneous demographic,
TFP and income share risks. He shows that a tax and transfer system may replicate an (incomplete
markets) equilibrium where agents can trade human capital freely. In the Merton (1983) setting
such an intervention is always warranted as young agents would starve under “total market failure”.
Bohn (1998, 2003) shows that a constant debt to GDP ratio leads to pro-cyclical debt issues, that
amplify aggregate risks. Starting from a situation without government debt, Krüger and Kubler
(2006) give numerical evidence that the introduction of unfunded social security is unlikely Pareto-
improving − despite its risk sharing capacities − due to the crowding-out of capital. Gottardi
and Kubler (2008) discuss the prospects of an ex-ante Pareto-improving introduction of unfunded
social security in an economy with land. See Diamond (1977, 2000) for a broader assessment of
intergenerational and intragenerational insurance aspects of social security, and Shiller (1999) for
more references on the sharing of aggregate risks. See Abel (2001a), Diamond and Geanakoplos
(2003), and Ball and Mankiw (2007) for different approaches to utilize trust-fund assets − a
question somewhat related to the present one. To focus firmly on the unfunded component of
social security we will not introduce a trust-fund. Moreover, we leave-out idiosyncratic risks. As
Bester (1984) and Abel (1989) show these can be insured within each cohort, i.e. are not essential
in the current context.

36Intuitively this result is plausible if we think of it in terms of the Finetti (1952), Pratt (1964),
Arrow (1970) approximation: E[U(c0 + ε)] ≈ U(c0) + U ′(c0)µε + 1

2U ′′(c0)σ2
ε . The crowding-

out of capital induces first order welfare losses by lowering expected consumption µε. The risk
sharing benefits, however, are only of second order. For the above approximation we have used
the approximation σ2

ε = E[ε2]− E[ε]2 ≈ E[ε2], which is accurate if E[ε] is small. For E[ε] = 0 we
have E[U(c0 + ε)] ≈ U(c0) + 1

2U ′′(c0)σ2
ε . In this case, the lower consumption would be associated

with a reduction in c0.
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tive. We ask whether it is possible to restructure the vast debt which is already

present in most countries in a Pareto-improving manner. Following this question,

we show that it is possible to separate the crowding-out effect from the risk sharing

problem. Changes in the composition of the public debt leave expected intergen-

erational transfers constant over time but alter the allocation of factor-price risks

between different cohorts. Changes in the size of the debt change intergenerational

transfers but tend to leave the allocation of factor-price risks unaltered. This separa-

tion of crowding-out and intergenerational risk sharing associated with public debt

will in general allow the government to make a restructuring of the debt Pareto-

improving. To derive this result, we set up an initial value problem. Each member

of an initial old generation holds claims from past pension promises and debt issues

amounting to g0. The government can now raise a share λ of the revenue needed

to service these claims through the introduction of a linear social security tax on

the current young generations wage income. The remainder share 1 − λ has to be

financed by selling safe debt. Finally, there is the group of yet unborn generations

who have to service future pension claims issued to the current young generation.

There are two corollaries to the separation result sketched earlier: (i) if the

government can only change the composition of the existing debt, there will be a

set of efficient debt structures and another set of inefficient ones. The efficient set

is characterized by the conflicting interests of those agents who are currently young

and those who are yet unborn. The unborn generations benefit from the ex-ante

diversification of their wage risk if a large share λ of the initial debt is injected into

social security. The current young, who have already observed their wage income,

on the contrary prefer safe debt, i.e. safe retirement benefits. (ii) if the government

can also issue/recover additional bonds, i.e. change the size of the expected future

intergenerational transfers, the set described in (i) can be narrowed to only one

Pareto-optimal debt structure, which maximizes societies (ex-ante) “Marshallian

surplus” from intergenerational risk sharing. Put differently, the government can

use its two instruments, i.e. the size and the composition of the debt, to steer the

economy towards a point on the contract curve.

This second result appears to be of particular interest, when compared to the

problem of optimal capital accumulation in a deterministic Diamond (1965) model.

In analogy to our result (i), there always exists a set of efficient capital intensities.

This means that every change in the capital intensity requires a welfare criterion as
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we can either shift resources into the future or redirect resources from the future

towards current generations.37 In the present stochastic setting, however, we show

that it is possible to compensate intertemporally. We can shift resources and risks

between the current young and the yet unborn members of society simultaneously

and independently. As a consequence, the government can compensate intertempo-

rally and narrow the set of efficient debt structures (without compensation) to the

set of points on the contract curve (with compensation).

Regarding our assumptions, a notable aspect of our analysis is that we rule-out

state-contingent lump-sum transfers. Following Merton (1983), Gordon and Varian

(1988), Bohn (1998, 2003), Krüger and Kubler (2006) and Gottardi and Kubler

(2008) we try to capture the basic features of most real-world pension and debt

schemes by limiting the government debt instruments to safe bonds and a linear

social security contribution rate on wages. We do so for two reasons: (i) while

state-contingent lump-sum transfers may allow to reach better allocations than our

simplistic debt instruments, they are not observed in actual policy. (ii) The optimal

allocations which are derived for such state-contingent tax and transfer systems

usually imply that the public debt follows a random walk as described in Gordon and

Varian (1988) and Ball and Mankiw (2001, 2007).38 Hence, if the government would

actually implement these policies, it would default in finite time with probability

one. One may therefore argue that such a risk sharing policy amplifies rather than

dampens the small risks faced by each generation as they create a tremendous default

risk.

Subsequently, in Section 4.2 we begin by laying out our model. The represen-

tative households, are assumed to maximize expected utility. Moreover, first and

second period consumption are assumed to be normal goods. Savings can be in-

vested in a risky and a safe production technology. Wages are determined according

to a third risky technology. As in Diamond and Geanakoplos (2003), it is assumed

that aggregate investment does not affect marginal returns. This tri-linear setting

37The lack of such a compensation mechanism led to the turnpike literature, see, e.g., Samuelson
(1968) or Blanchard and Fischer (1989). The absence of such an intertemporal compensation
mechanism is of course also the reason for the intertemporal efficiency of pay-go schemes that we
have been referring to in Footnote 32.

38Gordon and Varian (1988), p. 192, and Ball and Mankiw (2001, 2007) (Proposition 2), point
out that their debt schemes that reallocate risks “optimally” imply that per capita debt will follow a
random walk. Hence per-capita debt will hit any boundary in finite time. Consequently, as Gordon
and Varian (1988), p. 192 point out, the economies total assets will eventually be negative, forcing
the government to default at some point.
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will help us to bring out the underlying economic mechanisms more clearly.39 In a

different interpretation we may think of our model as a small open economy. Sub-

sequently, the budget constraints of the social security system and the treasury are

introduced. With the model in place, the two main results (i) and (ii) are derived

in Section 4.2. In Section 4.3, we show that our results carry over once some of

the restrictive assumptions made in Section 4.2 are relaxed. Namely, the assump-

tion of a constant risk-free rate will be dropped. Moreover, we consider a defined

benefit social security system, and briefly touch upon an economy with intra-cohort

heterogeneity. Section 4.4 offers concluding remarks.

4.2 The Model

In this chapter we first introduce our assumptions regarding technology and prefer-

ences. Subsequently, we trace out the preferences of the current young and the yet

unborn generations regarding the composition of the debt. The key results on the

efficiency of different debt schemes are derived towards the end of the chapter.

4.2.1 Population and factor-prices

The economy is inhabited by two-period-lived agents that form overlapping genera-

tions. During the first period of life each agent supplies one unit of labor inelastically.

Population evolves according to:

Nt+1 = (1 + n)Nt, (102)

where Nt is the size of the cohort born in period t and 1+n is the number of children

raised by each member of cohort t.

The wage rate wt and the interest rate to risky capital Rt are both stochastic.

They follow an exogenously given, serially i.i.d., distribution. The stochastic wage

rate wt realized in period t has a lower bound w̌ > 0. Risky investments have the

limited liability property, i.e. Řt = −1. Furthermore the rate of return Rt may be

correlated with the wage rate wt, i.e. cov(wt, Rt) T 0.40 In our baseline specification

39As the per capita size of expected intergenerational transfers will be kept constant over time
we do not expect large changes in aggregate savings once implicit debt is replaced by explicit debt
(cf. Diamond (1996)). Hence the crowding-out effects along the neoclassical competitive factor-
price-frontier, which are so notable when additional debt is issued, do not come into play in the
current analysis.

40In Appendix 4.5.4, we discuss the different types of risks involved. We point out that it is not
implausible to assume that cov(w,R) < 0.
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we assume that the safe rate r is exogenously given; respectively defined by a safe

linear technology. In the sequel we also assume that Ř < r < E[R], such that both

risky and riskfree assets may be held by risk-avers investors. In Section 4.3, we relax

the assumption of a constant riskfree rate.

4.2.2 Implicit and Explicit Government Debt

The government can interact with the competitive economy both via an unfunded

pay-as-you-go social security system and through the intertemporal budget con-

straint of the treasury. While both of these schemes may be used to roll over debt,

they differ with respect to the way that wage-income is taxed.

An unfunded social security system with a contribution rate τ s and per capita

benefits p is characterized by its budget constraint:

τ st wtNt = ptNt−1. (103)

Using the biological interest rate relation (102), constraint (103) can be rewritten,

such that per capita pension benefits are given by:

pt = (1 + n)τ st wt. (104)

Equation (104) indicates that an agent born in period t will contribute an amount

τ swt to the pension system in exchange for uncertain future benefits (1 + n)τ st wt+1.

In terms of expectations, the consumption loan scheme will grow at rate n if the

contribution rate is fixed. In this case, it remains constant in per capita terms:

Ewt+1 [pt+1] = (1 + n)τ sEwt+1 [wt+1]. (105)

The second channel through which the government can roll over debt is the treasury’s

budget constraint. Denoting the total amount of outstanding debt byBt, the amount

of claims that are due in period t+ 1 by Bt+1 and the treasury’s tax rate by τ tt , the

treasury’s intertemporal budget constraint for period t is:

Bt+1 = (1 + rt+1)(Bt −Ntτ
t
twt). (106)

Defining debt per worker by bt ≡ Bt

Nt
and substituting (102) into (106) yields:

(1 + n)bt+1 = (1 + rt+1)(bt − τ ttwt). (107)

If no taxes were levied, per capita debt would grow at a proportional rate of rt+1−n
(1+n)

,

from period t to period t+ 1. To ensure that in per capita terms no additional debt
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is passed forward from generation t to generation t + 1, the treasury has to collect

taxes from generation t amounting to:

τ ttwt =
rt+1 − n

(1 + rt+1)
bt. (108)

Taxes are either positive or negative depending on whether the returns to intergen-

erational redistribution dominate market returns, i.e. if r T n.41

4.2.3 The Structure of Government Debt

At the beginning of time there is an initial generation −1 of retirees and a generation

0 of workers. The generation of retirees holds per capita claims to an existing social

security system and/or from past issues of government debt, amounting to g0. To

service these claims the government has to raise a revenue of g0
1+n

from each member

of generation 0. A share λ ∈ [0, 1] of the needed revenue can now be raised via the

initiation of an unfunded pension scheme with a defined contribution rate τ s:42

τ s0w0N0 = λg0N−1, ⇔ τ s = τ s0 =
λ

w0

g0

(1 + n)
. (109)

The remainder share (1− λ) can then be raised by issuing safe government bonds:

(1− λ)g0N−1 = B0, ⇔ (1− λ)
g0

(1 + n)
= b0. (110)

Recalling (108), per capita taxes in period 0 must satisfy:

τ t0 = (1− λ)
(r1 − n)

(1 + r1)w0

g0

(1 + n)
. (111)

Once we do not ask any future generation to redeem the debt, all subsequent gen-

erations will be taxed according to:

τ tt = (1− λ)
rt+1 − n

(1 + rt+1)wt

g0

(1 + n)
. (112)

41The taxes needed to keep per capita debt from growing to infinity, will be paid by the young
consumers. However, as long as the representative agent invests into the riskfree technology, he
will be indifferent between a tax of (rt+1−n)

1+rt+1
b when young or a tax of (rt+1 − n)b when old.

42Note that as with the explicit debt scheme, the amount resources transferred via social security
may not permanently outpace the economy. At the same time lowering the contribution rate would
amount to a repayment of some debt by the affected generation of retirees. To make both schemes
feasible and comparable, we therefore fix τ s.
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Inspection of (109) and (112) immediately yields the equivalence proposition that

we have been referring to in the introduction.43 In what follows, we drop the time

index where no misunderstanding is expected.

4.2.4 The Optimum Structure for Government Debt

In this section we start by tracing out the preferences of the current young regarding

the structure for government debt λ. Subsequently, we characterize the interests of

the yet unborn generations. With these results at hand, the two main results are

derived in Section 4.2.5. A representative member of cohort 0 can allocate his net

income to first period consumption c1, invest an amount a0 into the safe technology

and devote h0 to the risky technology:

max
c1,c2

W = U(c1) + βEwR[U(c2)]; U ′() > 0, U ′′() < 0, (113)

s.t. c1 = w0(1− τ t0 − τ s0 )− a0 − h0,

c2 = a0(1 + r) + h0(1 +R1) + τ s0w1(1 + n).

The corresponding first order conditions, which imply a∗0 and h∗0, are:

∂W

∂a0

= −U ′(c1) + β(1 + r)EwR[U ′(c2)] = 0, (114)

∂W

∂h0

= −U ′(c1) + βEwR[(1 +R)U ′(c2)] = 0. (115)

If felicity, U() in (113), is such that first and second period consumption are normal

goods we have:44

s = s(w; τ s) = a+ h; 0 <
∂s

∂w
< (1− τ s). (116)

Equipped with these conditions, the social planner can, disregarding the utility of

subsequent generations for the moment, use the two debt instruments by choosing

43In the standard Diamond (1965) economy, the steady state budget constraint of the represen-
tative agent reads c1 + c2

1+r = w(1− τ s− τ t) + τsw
1+r (1 + n). Plugging the two budget constraints of

the treasury (112) and the social security administration (109), with w0 = w, into this budget con-
straint yields for the right-hand-side: w− r−n

1+r
g0

1+n (1−λ)− g0
(1+n)λ+λ g0

1+r = w− (r−n)g0
(1+r)(1+n) . The life-

cycle savings condition is also independent of λ: (1+n)(λ g0
1+n +(1−λ) g0

1+n +k) = g0+(1+n)k = s.
Hence, changing the debt structure along the steady state, is irrelevant as it neither affects the
household’s budget constraint nor the life-cycle savings condition.

44The increment in income from a high realization of wt is given by (1−τ s−τ t(wt))+
∂τt(wt)

∂wt
wt =

(1− τ s).
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λ such that the indirect utility of generation 0 is maximized. Taking into account

the budget constraints (109) and (111) yields the planning problem:45

max
λ

V0 = U(w0(1− τ s0 − τ t0)− a0 − h0) (117)

+βEwR[U(a0(1 + r) + h0(1 +R) + τ s0w(1 + n))],

s.t. (109), (111).

Utilizing the envelope condition (114) and the covariance rule, λ∗ is implicitly defined

by:

dV0

dλ
=
U ′(c1)g0

1 + r

(E[w]− w0

w0

+
covwR(U ′(c2), w1)

w0EwR[U ′(c2)]

)
= 0. (118)

Condition (118), which is reminiscent of the C-CAPM, indicates that members of

generation 0 will benefit from a high fraction of debt that is injected into the social

security system as long as the expected excess rate-of-return on this fraction of debt,

compared to the after-tax-return on safe bonds, is positive, i.e. Ew−w0

w0
> 0. The

other relevant component is the covariance between second period marginal utility

and the pension benefit. Depending on cov(R1, w1) T 0, we have cov(U ′(c2), w1)|λ=0 S

0, i.e. the wage-indexed social security claims may or may not be a welcome oppor-

tunity to diversify stock market risks.

Subsequent Generations The social planner’s perspective on the welfare of sub-

sequent generations, which is obviously connected to the current choice of λ, will

be an ex-ante perspective. While the social planner knows the distribution over R

and w, the realizations are yet unknown. The agents, however, will start to make

their consumption savings decisions in period t after wt has been realized. The con-

sumer’s behavior is therefore still characterized by conditions (114) and (115) which

imply the wage dependent investment decisions at = at(wt;λ) and ht = ht(wt;λ).

Put differently, the social planner, who optimizes ex-ante utility, has to take note of

the agent’s investment decisions conditional on the realization of wt. Moreover, the

budget constraints (109) and (112) have to be satisfied in each period. From the

45Note that there is no life-cycle savings condition for bonds and capital in a small open economy,
i.e. we only take note of the taxes that are needed to keep per capita debt from growing. In a closed
economy with a tri-linear technology, we can also neglect the market clearing condition as long
as agents demand safe investments in excess of the debt offered. In the following we assume that
agents are equating at the margin, i.e. we omit the prospect of Kuhn-Tucker-type ramifications.
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perspective of period 0, the planning problem is therefore given by:

max
λ

Vt = Ewt

[
U(wt(1− λ

g0

w0(1 + n)
)− r − n

(1 + r)

(1− λ)g0

(1 + n)
− at − ht)

]
(119)

+βEwtwt+1Rt+1

[
U(at(1 + r) + ht(1 +R) + λ

g0

w0

wt+1)
]
.

The first order condition for an optimum debt structure, taking the envelope con-

ditions (114) and (115) into account (see Appendix 4.5.1), is then given by:46

dVt
dλ

=
g0

(1 + n)

(n− r

1 + r

E[w]− w0

w0

Ewt [U
′(c1)] (120)

−covwt(U
′(c1),

wt
w0

) + β(1 + n)covwtwt+1R(U ′(c2),
wt+1

w0

)
)

= 0.

Equation (120) characterizes the debt structure λ∗∗ which maximizes long-run ex-

pected utility. Inspection of (120) indicates that agents who are not yet born will

suffer a loss from excessive intergenerational redistribution if the safe returns ex-

ceed the biological returns on consumption loans. That is, the expected excess

amount of resources − when compared to bonds which are not wage-indexed − that

is redistributed via social security is given by Ew−w0

w0
.47 The second element is the

intergenerational diversification of wage-income risk. With λ > 0 we have a positive

social security tax rate τ s, which transfers some of the risk associated with the real-

ization of wt into period t+1, where wt+1, i.e. the pension benefits are realized. The

sufficient condition for an interior optimum requires that dV
dλ

is downward-sloping

in λ. A first inspection of (120) suggests dcov(U ′(c1),wt)
dλ

> 0, dcov(U ′(c2),wt+1)
dλ

< 0, and

therefore d2V
dλ2 < 0. Hence, as we shift wage-income risk from the first into the second

period, we expect the wage related covariance risk to move in the same direction

(see Appendix 4.5.2 for the associated conditions). However, as the set of admis-

sible debt structures is closed and bounded, there will always exist a “best” debt

structure λ∗∗ ∈ [0, 1].

The efficiency of the size of the debt scheme can be assessed once we ask whether

the unborn generations benefit from a larger initial debt. Taking the first derivative

46Taking advantage of our assumption that the stochastic wage rate wt is serially uncorrelated
we may rewrite covwtwt+1R(U ′(c2), wt+1

w0
) = covwt+1R(Ewt

U ′(c2), wt+1
w0

). If such a serial correlation
existed, it would affect the location of λ∗∗. If a and h are normal, we have da

dwt
> 0 and dh

dwt
> 0;

thus we would have a smaller λ∗∗ if cov(wt, wt+1) > 0, and vice versa.
47The expected intergenerational transfer through social security is E[τ sw] = g0

(1+n)w0
Ew. Re-

garding bonds, the transfer is g0
(1+n) . The difference in the expected size of the transfers, which

yield the inferior biological return, is therefore given by g0
(1+n)

(Ew−w0)
w0

.
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of Vt with respect to g0 yields:

dVt
dg0 |dλ=0

=
n− r

(1 + r)(1 + n)

(w0 + λ(E[w]− w0)

w0

)
E[U ′(c1)] (121)

+λ
1

(1 + n)

(
(1 + n)βcov(Ewt [U

′(c2)],
wt+1

w0

)− cov(U ′(c1),
wt
w0

)
)

T 0.

The first element in (121) is the familiar return condition; larger intergenerational

reallocation of resources is desirable as long as consumption loans dominate market

returns. The second element reflects the benefits from intergenerational risk sharing

through the share λ of debt that is injected into the pension system. To see this

more clearly, we recall (120) and rearrange (121) such that:

dVt
dg0 |dλ=0

=
n− r

(1 + r)(1 + n)
E[U ′(c1)] +

λ

g0

dVt
dλ

T 0. (122)

If λ is zero or at its long-run optimum λ∗∗, the second risk sharing related term

vanishes and (122) exhibits the pure interest condition.

Furthermore, (122) indicates that safe debt does not reallocate risks, while social

security does. This is the opposite of the Bohn (1998, 2003) conclusion, where

debt was issued pro-cyclical such that it shifted risks towards future generations.

Equation (122) also shows that if the national debt is small, then this debt should

be injected entirely into the pension scheme if dVt

dλ
, dV0

dλ
> 0, such that the benefits

from risk sharing are maximized with λ = 1. In a different interpretation, the sign

of (122) is the subject studied by Green (1977), Krüger and Kubler (2006) and

Gottardi and Kubler (2008).

4.2.5 Efficiency

Inspection of our above analysis indicates that generation 0 will prefer a debt struc-

ture λ∗, that is a solution to (118), rather than λ∗∗, which solves (120).48 If the

government can control the composition of the public debt only, all debt structures

located between λ∗ and λ∗∗ are Pareto-efficient. Raising λ beyond λ∗ will increase

expected utility of all unborn generations at the expense of generation 0. Start-

ing with λ∗∗, the same applies when λ is lowered. Hence, we have the following

proposition:

48For appropriate (Ew − w0, r − n, cov(w,R)), λ∗ may actually coincide with λ∗∗. In this case
both generations prefer − though for different reasons − the same debt structure, and, except
for choosing this structure, no additional government intervention is necessary. The same applies
when corner solutions coincide.
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Proposition 7. If the government can only implement the debt structure that is used
to roll over the initial debt, there exists a set [λ∗, λ∗∗] ⊆ [0, 1] of efficient financing
methods. This set is characterized by the conflicting interests of the current young
and the yet unborn generations.

Diagrams 10a and 10b illustrate this trade-off. We now trace out the set of Pareto-

1

b

λ

MB, MC

λ∗ λ∗∗

MC = −

dV0

dλ

MB =
dVt

dλ

1

b

λ

MB, MC

λ∗∗ λ∗

MC = −

dV0

dλ

MB =
dVt

dλ

1

10a 10b

Diagram 10: Efficient debt structures.
Diagrams 10a and 10b illustrate the gains and losses of generation 0 and one rep-
resentative member of the yet unborn generations. All debt structures located in
the dashed area are inefficient. Diagram 10b depicts a situation that may occur if
E[w] � w0 and r � n.

improving transitions from one debt scheme to another, which are available once

the government can change both, the composition and the structure of the public

debt. As we have stressed earlier, with these two instruments, it will be possible for

the government to separate the risk sharing properties of the public debt from the

crowding-out effect.

Efficiency with Government Intermediation Suppose now that the initial

conditions are such that λ = λ∗ < λ∗∗. In this case each member of the yet unborn

generations is willing to accept a (slightly) higher level of public debt in exchange for

a more favorable composition λ̃ > λ∗ of the debt. At the same time members of the

current young generation are willing to accept additional pension claims and safe
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bonds in exchange for the less favorable allocation of factor-price risks associated

with λ̃. The government can now offer generation 0 to increase the per-capita (in

terms of generation −1) size of the public debt by π. The new debt scheme has a

per-capita (of generation 0) size of g
1+n

≡ g0+π
1+n

. The associated Lagrangian, which

allows to trace-out the set of Pareto-improving pension reforms, is then given by:

max
π,λ,µ

L = V0(λ, π) + µ(Vt(λ, g)− V̄ ); Vt(λ, g) = V̄ ≡ Vt(λ
∗, g0), g ≡ g0 + π.(123)

Where the Lagrangian (123) consists of the indirect utility functions of the current

young and the yet unborn generations which where discussed earlier in Section 4.2.4.

The additional argument π in V0 reflects that members of generation 0 receive ad-

ditional safe consumption (after taxes) amounting to (1 − λ) 1
1+r

π and additional

pension claims λ π
w0
w1 once the debt scheme is increased in size. The partial deriva-

tive ∂V0

∂π
is therefore positive. Regarding future generations, we focus on the inter-

esting case where resources are scarce and an increase per-capita debt alone is not

Pareto-improving. That is, the partial derivative ∂Vt

∂g
, described in (122), is assumed

to be negative. Finally, as per-capita debt does not grow over time it is sufficient to

represent future generations using only one lagrangian multiplier µ. Regarding the

first order conditions associated with (123) we have:

∂L
∂π

=
∂V0

∂π
+ µ

∂Vt
∂g

= 0, (124)

∂L
∂λ

=
∂V0

∂λ
+ µ

∂Vt
∂λ

= 0. (125)

Combining (124) and (125) we can drop the Lagrangian multiplier µ. The first order

condition for the optimum structure for government debt λ∗∗∗ is then:

∂V0

∂λ
∂V0

∂π

=
∂Vt

∂λ
∂Vt

∂g

. (126)

Condition (126) indicates that the optimum structure for government debt is as-

sociated with a point on the contract curve. It equalizes the marginal rates of
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Diagram 11: Efficiency gains from intertemporal compensation.
Diagrams 11a and 11b illustrate the compensation described in (126). In the case
where Ū = Ut(λ, g0) all efficiency gains π − α accrue to Generation 0.

substitution between the burden of an additional unit of debt and risk sharing ben-

efits between current and future generations. By varying the size and composition

of the debt it is possible to recover the efficiency gains displayed in Diagram 11 in

a Pareto-improving manner. We therefore have the following proposition:

Proposition 8. If the government can vary both, the size of the public debt and its
composition, it is possible to separate the crowding-out effect from the risk sharing
properties of the public debt scheme. The efficiency gains associated with the op-
timum structure for government debt λ∗∗∗ can be recovered in a Pareto-improving
manner.

Remark 1: The optimum structure for debt λ∗∗∗ may be at a corner solution.

Remark 2: Different reference levels V̄t for the utility of future generations will

change the distribution of the efficiency gains brought about by the implementation

of λ∗∗∗. The associated income effects will slightly affect the location of λ∗∗∗.

Remark 3: If the initial debt structure is such that λ > λ∗∗∗, some of the

efficiency gains associated with the implementation of λ∗∗∗ can be passed forward to

compensate the unborn generations. In this case, generation 0 gives up resources in

exchange for lower labor income risk.

Remark 4: To keep in touch with the steady state as a reference point, Propo-

sition 8 neglects the possibility of a repeated restructuring of the debt.
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Remark 5: The golden rule of accumulation lends itself to the interpretation:

maintaining a capital intensity that permanently exceeds the golden rule level is

inefficient. In the present case we have a stronger result: maintaining any debt

structure that permanently differs from λ∗∗∗ is inefficient.

Risk

Resources

b

b

C

K

∆Π

∆λ

2

1

Resources

Risk

1

Diagram 12: Separation of crowding-out and risk sharing
A linear social security tax 1 implies a combination of crowding-out and intergener-
ational reallocation of factor-price risks. Introducing a particular social security tax
moves the economy from the origin to point K. Line 2 indicates the minimum reallo-
cation of risks necessary to compensate future generations for the negative crowding-
out effect. In the present case the government has two instruments available. It can
therefore move freely in the risk-resource plane and implement the optimal allocation
C.

Interpretation At this point it is interesting to compare the present result on

the possibility of Pareto-improving social security reforms with the earlier negative

results by Green (1977), Krüger and Kubler (2006), Gottardi and Kubler (2008).

In the case, where an initial debt is already present, a change in the composition

of this debt reallocates factor-price risks but does not affect the size of the inter-

generational transfer. By choosing λ∗∗∗ as a debt structure it is now possible to

tailor a particular exchange of risks and resources such that it is beneficial to both

groups of agents. Namely, those living in the “long-run” and those who live today.
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Diagram 12 illustrates this. Curve 1 represents the long-run consequences of a linear

social security tax. As this tax increases, the economy moves from the origin to a

certain point e.g. K. Curve 2, which is steeper than 1, shows the threshold where

future generations are indifferent between the crowding-out of capital and the risk

sharing benefits. Finally, point C is an allocation that can be reached in the manner

described above: a change in the composition of the debt reallocates many risks via

the linear social security tax. The change in the allocation of resources is mainly

due to the change in the size of the debt π. Put differently, by introducing a linear

social security tax alone the government can only move along arrow 1. If there is

already an initial debt present it has two linearly independent instruments. In this

case it can move in the entire plane, where point C is associated with an optimal

pair λ∗∗∗, π∗∗∗.

Another Interpretation In a different interpretation (126) may be seen as an

intertemporal version of the Samuelson (1954) condition for the efficient provision

of a public good. Recalling equation (122) we can rewrite (126) such that:49

∂V0

∂λ
∂V0

∂π

=
∂Vt

∂λ

−Ewt [U
′(c1)] r−n

(1+r)(1+n)
+ λ

g
∂Vt

∂λ

(127)

=
∞∑
t=1

(1 + n

1 + r

)t ∂Vt

∂λ

−Ewt [U
′(c1)] 1

1+r
+ λ

g
∂Vt

∂λ
1+n
r−n

.

Condition (127) indicates that all future generations benefit from the public good

“risk sharing” which is embodied in the debt scheme. The cost with the provision of

this public good has to be incurred only once by generation 0, which bears additional

wage-related risk. Depending on its position on the time axis, the present value of

tax payments differs from cohort to cohort. The first element −E[U ′(c1)] 1
1+r

in the

numerator of the marginal rate of substitution of future generations indicates the

negative crowding-out effect. The second element λ
g
∂Vt

∂λ
is positive. As a share λ

49For r > n, we have
∑∞

t=1

(
1+n
1+r

)t

= 1+n
r−n . Note that the RHS of condition (126) is the marginal

rate of substitution between an increase in λ and and increase of the debt level of one unit. The new
formulation in (127) is the sum of the marginal rates of substitution between a marginal increase
of λ and a marginal increase in the tax level. In Appendix 4.5.3 we develop the more intuitive case
where only safe debt is used as a means of compensation. That is, the debt is not injected into the
optimal debt scheme.
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of the new debt π is injected into social security. This increases the willingness of

future generations to accept a higher level of public debt.

The analogy to the problem of public good provision also extends to the aspect

of income effects. Changing levels of V̄t will require different compensation schemes.

Hence, the exact location of λ∗∗∗ depends on the particular compensation scheme

as the associated income effects may slightly change preferences for λ, i.e. shift the

marginal cost and benefit curves displayed in Diagram 11.

4.3 Extensions

So far attention was confined to an economy where the safe rate-of-return is constant

over time. The prospects of a third debt instrument, namely a defined benefit social

security system, have also been neglected. In a first step, we now show that a time-

varying, safe rate-of-return does not alter the quality of the foregoing conclusions

and that defined benefits are equivalent to safe bonds. Finally a second group of

representative agents who do not invest in the stock market (risky technology) is

introduced into our model. In this setting we show that both groups require different

social security contribution rates, i.e. debt structures. If either is at a corner solution

there is additional scope for an intragenerational reallocation of the public debt.

4.3.1 Time-Varying Safe Returns

To work out the pivotal elements, the safe rate of return was assumed to remain

constant over time. However, the main results of our previous analysis carry over

to an economy where r is now an i.i.d. random variable. Regarding generation 0,

nothing is changed, i.e. the agents and the social planner start maximizing after r1

is known. Except for the additional expectations regarding r the long-run planning

problem (120) is also little changed:

max
λ

Vt = Ewt,rt+1

[
U(wt(1− λ

g0

w0(1 + n)
)− rt+1 − n

(1 + rt+1)

(1− λ)g0

(1 + n)
− at − ht)

]
+βEwtwt+1Rt+1rt+1

[
U(at(1 + rt+1) + ht(1 +R) + λ

g0

w0

wt+1)
]
.

Employing the envelope conditions (114) and (115), yields:

dVt
dλ

=
g0

(1 + n)

(
Ewr

[rt+1 − n

1 + rt+1

U ′(c1)
]w0 − E[w]

w0

(128)

−covwtrt+1(U
′(c1),

wt
w0

) + β(1 + n)covrt+1wtwt+1R(U ′(c2),
wt+1

w0

)]
)

= 0.
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Due to the nature of the treasury’s tax schedule (112), the initial interest rate r1 does

not, unlike the wage rate w0, enter into the long-run first order condition. While

there are now additional expectations regarding the safe rate-of-return, the principal

structure of the first order condition is preserved. Regarding our Pareto-improving

interventions that were discussed in Section 4.2.5, we note that the government

can still reallocate gains and losses along its budget constraint. However, each

compensation scheme will now require some sort of risk-taking.

4.3.2 Defined Benefits

We will now briefly show that a defined benefit system is equivalent to an explicit

debt scheme. The budget constraint of a defined benefit system, which is used to

roll over a fraction γ of the public debt, is given by:

τDBt wt =
γg0

(1 + n)
, pDBt = γg0. (129)

Once we recall that the young agent can consume c1, invest an amount a into safe

assets and an amount h into risky assets, the present value budget constraint is

given by:

c1t + at + ht = wt(1− τDBt − τ tt ) +
pDBt+1

(1 + rt+1)
. (130)

Utilizing (129) and (112) where (1 − λ) is replaced by (1 − γ), the right-hand side

of (130) can now be rewritten such that:

c1t + at + ht = wt −
g0(rt+1 − n)

(1 + n)(1 + rt+1)
. (131)

Hence the structure of debt γ is irrelevant, i.e. a defined benefit system is equivalent

to a bond-financed debt scheme.

4.3.3 A Working Class

This final paragraph considers a society that is partitioned into a group of capitalists

who are endowed with a large amount of efficient labor and a group of workers with

a low labor endowment. While capitalists participate in the stock-market, workers
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invest in the safe technology only.50,51 The working class is assumed to make up a

fraction α of the population and each worker has only a fraction φ of the effective

labor endowment of a capitalist. Hence, workers earn a fraction θ = αφ
1+α(φ−1)

of

aggregate wages. Consequently, with a linear social security tax, the debt rolled over

on the shoulders of workers and capitalists is given by gw0 = θ g0
1+n

and gc0 = (1−θ) g0
1+n

.

Workers will now choose safe investment according to (114). The optimal shares of

debt for the working class, λ∗w, λ
∗∗
w are then characterized by (118) and (120), with

the notable difference that h = 0.52 For Ew = w0, we therefore have
dV w

0

dλw |λw=0
= 0

and
dV w

t

dλw |λw=0
> 0 and

d2V w
t

(dλw)2
< 0; i.e. a unique globally optimal debt structure λ∗∗∗w

exists if g0 is large enough (see (140) in Appendix 4.5.2). If per capita debt g0
1+n

θ

is not large enough to transport a sufficient amount of wage-related risk into the

retirement period, we have λ∗∗∗w > 1 and hence, dV w

dλw |λw=1
> 0. Once λ∗∗∗c < 1, bonds

from the capitalists’ debt scheme can be injected into the workers’ pension scheme.

If the capitalists, in turn, pay the implicit tax associated with this debt swap as

a subsidy to the workers, the marginal increase in rent for workers is, recalling

equations (122)-(126) with λw = 1, given by:

∂Lw

∂gw
=

1

gw
∂V0

∂gw

( ∂V w
0

∂λw

∂V w
0

∂gw

−
∂V w

t

∂λw

∂V w
t

∂gw

)
> 0. (132)

Thus, while utility of the capitalists remains constant, the utility of workers has

increased.

To a certain extent this result illustrates the main point of our analysis. Given

that we already have incurred the debt, the risk sharing capacities of the debt are a

scarce resource. Transferring some of the debt from capitalists to workers improves

risk sharing without any additional crowding-out of capital.

50At this point, we take the non-participation of workers in the stock-market as given; Abel
(2001a) endogenizes the participation decision by introducing fixed costs that make it rational for
agents with a small portfolio to abstain from the stock market. Regarding this non-participation
decision, Diamond and Geanakoplos (2003) point out that roughly 50 percent of the working
population in the US does not hold any stocks (this figure includes indirect holdings of stocks
through pension plans).

51To focus on the intertemporal and intergenerational reallocation of risks, rather than intra-
generational redistribution which can also be achieved without social security, we assume that the
affiliation with the two groups of all agents is known in period t = 0, i.e. cannot be insured against.

52Given the different labor endowment and the different exposition to the covariance risk
(cov(R,wt+1)), it is clear that it is not optimal to choose a “one-size-fits-all pension scheme”.
Hence we will right away allow for distinct debt structures λc, λw for capitalists and workers.
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λ∗∗∗

w
λ∗∗

w
λw

MB, MC

MC′

w

MB′

w

MBw

MCw0

1

b

λ∗

w

1

Diagram 13: Intragenerational reallocation of the debt.

The shaded area to the right of λ = 1 is the welfare gain associated with an intra-
generational debt swap.

4.4 Conclusion

If a government can issue safe bonds and claims to an unfunded social security

system to service a given obligation, there exists a set of Pareto-efficient financing

policies. This set is characterized by the conflicting interests of agents who are

currently alive and those who are yet unborn. The current young, who have already

observed their wage income, will prefer safe debt, i.e. safe retirement benefits. The

unborn generations on the contrary benefit from the ex-ante diversification of their

wage risk if a large portion of the initial debt is injected into social security.

The government may now act as a representative of the unborn members of

society. Through its budget constraint, it can offer generation 0 a compensation

that reflects the willingness to pay of all unborn agents. Such an intermediation

allows to collect the benefits, which are associated with the optimum structure for

government debt λ∗∗∗ in a Pareto-improving manner. If the initial conditions are

such that λ∗∗∗ > 0, an unfunded social security system is therefore always warranted.

Unlike the deterministic economy, where all debt policies are equally desirable,

the current analysis shows that the structure of government debt has distinct impli-

cations for individual welfare. If we compare our analysis to the problem of optimal

capital accumulation, the following analogy is notable: While the golden rule capital

intensity maximizes long-run utility, it comes at the cost of lower consumption along
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the transition path. All capital intensities below the golden rule level are efficient

and there is no compensation mechanism available.53 All government interventions

are either neutral or require a welfare criterion. Compared to the reallocation of

aggregate risks, the situation without compensation is similar; there exists a whole

set of efficient debt structures. In the present case, however, the government budget

constraint can be used to reconcile the conflicting interests of the current young and

those who live in the long run in a Pareto-improving manner. As a result, subject

to our assumptions, the set of efficient debt structures can be narrowed.

4.5 Appendix

4.5.1 The Envelope Conditions

Derivation of condition (120): Equations (114) and (115) imply an investment behav-

ior for each realization of the wage-income wt, namely at = at(wt, λ), ht = ht(wt, λ).

Hence, agents smooth consumption state by state with regard to first period wage

income. At the same time, they smooth consumption in expectations when it comes

to second period consumption. Taking expectations Ewt of (114) and (115) yields:

Ewt [U
′(c1)] = β(1 + r1)Ewt

[
Ewt+1R[U ′(c2)]

]
, (133)

Ewt [U
′(c1)] = βEwt

[
Ewt+1R[(1 +R)U ′(c2)]

]
. (134)

Writing out the first order condition for λ∗∗, we obtain:

dVt
dλ

=
(
Ewt

[
− U ′(c1)wt + (1 + n)βEwt+1R[wt+1U

′(c2)]
] g0

w0

(135)

+
r − n

(1 + r)
g0Ewt

[
U ′(c1)

]) 1

1 + n

− Ewt [U
′(c1)(

da

dλ
+
dh

dλ
)− βEwt+1R[U ′(c2)((1 + r)

da

dλ
+ (1 +R)

dh

dλ
)]] = 0.

To rearrange the first line in (135), equation (133) can be utilized as
Ewt [U

′(c1)]

1+r
=

βEwt [U
′(c2)]. Applying the covariance rule (E[xy] = cov(x, y) + E[x]E[y]) to the

53The lack of such a compensation mechanism led to the turnpike literature; see e.g. Samuelson
(1968) or Blanchard and Fischer (1989). The absence of such an intertemporal compensation
mechanism is of course also the reason for the intertemporal efficiency of pay-go schemes that we
have been referring to in Footnote 32.
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resulting expressions, we obtain (120). Noting that the derivatives da
dλ

and dh
dλ

are

functions of wt, the second line can be rearranged using the covariance rule such

that:

−Ewt [U
′(c1)]Ewt [

da

dλ
] + (1 + r)βEwtwt+1R[U ′(c2)]Ewt [

da

dλ
]

−Ewt [U
′(c1)]Ewt [

dh

dλ
] + βEwtwt+1R[(1 +R)U ′(c2)]Ewt [

da

dλ
]

+covwt(−U ′(c1) + (1 + r)βEwt+1R[U ′(c2)],
da

dλ
)

+covwt(−U ′(c1) + βEwt+1R[(1 +R)U ′(c2)],
dh

dλ
) = 0.

That is, recalling (114), (115), (133), and (134), the expressions related to changes

in the investment behavior vanish by the envelope theorem.

4.5.2 Characteristics of the Long-run Optimum

This appendix examines the properties of condition (120). In a first step we note

that (120) characterizes a “best” debt structure, which may or may not be interior.

In a next step it is shown that interior solutions will exist for appropriate parameters.

Finally the conditions, which ensure that dVt(λ)
dλ |λ=0

> 0 and that d2Vt(λ)
dλ2 < 0, are

outlined.

Existence Since short sales of bonds or social security claims were ruled out, the

set of feasible debt structures [0, 1] is a compact subset of R. If Vt(λ) is continuous

and real-valued, it will therefore attain its bounds on this choice set according to

the Weierstrass theorem.

Interior Solutions If dcov(U ′(c1),wt)
dτs

dτs

dλ
and dcov(U ′(c2),wt+1)

dτs
dτs

dλ
are continuous and

dh
dτs < 0, it is obvious that for sufficiently large g0, sufficiently small cov(R,wt+1),

and Ew[w] = w0 or r = n, we have:

dVt
dλ |λ=0

> 0,
dVt
dλ |λ=1

< 0. (136)

In this case, there exists one interior global optimum λ∗∗ and there may exist several

local optima.
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Unique Optimum To interpret condition (120) in more detail, we will first show

that cov(U ′(c1), wt) < 0 and give a condition for cov(U ′(c2), wt+1) T 0:

cov(c1, wt) = cov((1− τ s)wt −
r − n

1 + r

g0

1 + n
(1− λ)− s(wt, τ

s), wt) (137)

= cov((1− τ s)wt − s(wt, τ
s), wt) > 0,

where the sign cov(c1, wt) > 0 is due to the normality of c1; i.e. ∂((1−τs)wt−s(wt,τs))
∂wt

>

0. Hence, since U ′′() < 0, cov(U ′(c1), wt) < 0. For cov(U ′(c2), wt+1) we have:

cov(c2, wt+1) = cov((1 + r)a+ (1 +R)h+ τ s(1 + n)wt+1, wt+1) (138)

= hcov(R,wt+1) + τ s(1 + n)σ2
w T 0; τ s = λ

g0

(1 + n)w0

.

Hence, depending on the amount of risky assets h, cov(w,R) T 0 and the amount

of debt that is injected in the pension system, we may have cov(U ′(c2), wt+1) T 0.

Together with the ambiguous sign of (n−r)(Ew−w0)
w0(1+r)

, we may or may not have dVt

dλ |λ=0
>

0.

Sufficient Condition To allow for a global optimum, it is a sufficient condition,

that dVt

dλ
is downward-sloping in λ:

d2Vt
(dλ)2

=
g0

1 + n

(n− r

1 + r

E[w]− w0

w0

dE[U ′(c1)]

dλ
(139)

−
dcovwt(U

′(c1), wt

w0
)

dλ
+ β(1 + n)

dcovwt+1R(U ′(c2), wt+1

w0
)

dλ

)
< 0.

A first inspection of (139) indicates that for Ew = w0 and/or r = n, we ex-

pect dcov(U ′(c1),wt)
dλ

> 0, dcov(U ′(c2),wt+1)
dλ

< 0 and thus d2Vt

dλ2 < 0.54 With respect to
dcov(U ′(c1),wt)

dλ
we have:

dcovwt(U
′(c1), wt)

dλ
= covwt(U

′′(c1)(−wdτ
s

dλ
− ds

dλ
), w) (140)

≈ Ewt [U
′′(c1)]covwt(−w

dτ s

dλ
− ds

dλ
, w) T 0,

54Regarding the first element, which is inherently ambiguous, we note that for U ′′′(c1) > 0,
dE[U(c1)]

dλ is most likely negative, as the variance of first period consumption is decreasing in λ.
However, at the same time an increase in λ may increase second period variance and if U ′′′() > 0,
precautionary savings (see Green (1977) and Kimball (1990) for the coefficient of prudence) will
increase E[U ′(c1)].
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where (140) holds with strict equality if U ′′′(c1) = 0. Condition (140) indicates that
dcovwt (U

′(c1),wt)

dλ
> 0 as long as covwt(

ds
dλ
, wt) is not large and negative. Finally, by the

same approximation as in (140) we have:

dcov(U ′(c2), wt+1)

dλ
≈ EwR[U ′′(c2)]

(dh
dλ
cov(R,wt+1) + (1 + n)σ2

w

)dτ s
dλ

T 0, (141)

where (141) is negative if dh
dλ
cov(R,wt+1) + (1 + n)σ2

w > 0. If cov(R,wt+1) is large

and positive and the share of savings invested in the risky technology is also very

large, the crowding-out effect (with regard to risky investment) of additional pen-

sion claims may in principle overcompensate the direct effect of the exposition to

additional wage-related risks once λ is increased.

4.5.3 Lagrangian

In this appendix, we discuss the Lagrangian associated with the set of efficient debt

structures and compensation schemes. However, in the current case, the premium

πt payed by members of generation t, is not injected into the general debt scheme.

Instead πt is issued in period 0 and redeemed (principal and interest) by generation

t in period t. In this case, the analogy to the problem of the efficient provision of a

public good is easier to conceive:

max
{πt}t=∞

t=1 ,λ
L = V0(λ, π0) +

∞∑
t=1

µt

(
Vt(λ, πt)− V̄ (λ∗, 0)

)
(142)

+γ
( ∞∑
t=1

(1 + n

1 + r

)t
πt − π0

)
Taking the first derivatives and eliminating γ yields:

∂L
∂πt

=
(1 + n

1 + r

)t∂V0

∂π0

+ µt
∂Vt
∂πt

= 0, ∀t = 1, 2, .....∞, (143)

∂L
∂λ

=
∂V0

∂λ
+

∞∑
t=1

µt
∂Vt
∂λ

= 0. (144)

Substitution allows to drop µ, and we have

∂V0

∂λ
∂V0

∂π0

−
∞∑
t=1

(1 + n

1 + r

)t ∂Vt

∂λ
∂Vt

∂πt

= 0 (145)
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In the particular case where each agent pays the same premium, πt = π, this sim-

plifies to:

∂V0

∂λ
∂V0

∂π0

− 1 + n

r − n

∂Vt

∂λ
∂Vt

∂π

= 0. (146)

If ∂Vt

∂λ
, ∂V0

∂λ
> 0 and ∂2V0

∂λ2 ,
∂2Vt

∂λ2 < 0, as discussed in Appendix 4.5.2, the expression in

(146) changes signs and an interior maximum exists.

4.5.4 The Covariance Risk

Technology and Covariance This appendix reflects on the sign of cov(wt, Rt).

Taking the perspective of a small open economy, we examine the correlation of factor-

prices received from the global economy. If global production uses capital and labor

inputs, K and L, to produce aggregate net output zF (K,L), where zF (K,L) is

concave and first-degree-homogenous, factor-prices are given by

wt =
∂ztF (Kt, Lt)

∂Lt
= ztFLt(Kt, Lt), (147)

Rt =
∂ztF (Kt, Lt)

∂Kt

= ztFKt(Kt, Lt).

If the global supply Lt of (efficient) labor fluctuates over time, we have cov(wt, Rt) <

0 since (by the Euler Theorem) FKtLt > 0 and FLtLt < 0. Examples for a stochastic

global labor supply may be the entrance of the labor force from Eastern Europe

into the EU labor market, or the rise of China. If total factor productivity zt is

stochastic, wages and profits are perfectly correlated and we have cov(wt, Rt) =

σ2
zt
FLtFKt > 0.55 If depreciation is stochastic, we have cov(wt, Rt) = 0. Finally,

unpredicted changes in global savings are associated with cov(wt, Rt) < 0. Hence,

depending on the relative magnitude of the respective effects, the sign the covariance

between wages and profits is ambiguous.

55See Bohn (1998) and Smetters (2006) for the strong results that originate from perfect corre-
lation.
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5 Intertemporal Compensation with Incomplete

Markets

This chapter briefly puts the results derived in chapters 2, 3, and 4 into a broader

perspective. In previous chapters we have shown that the scope for government

intervention increases with the number of missing markets in the economy. In this

chapter we sketch the more general underlying structure of the problem. In par-

ticular, we show that the potential use of the government budget constraint as an

intertemporal collusion device changes in nature once there are at least two goods

and two government budget constraints available. That is, an increase in the num-

ber of goods and budget constraints from one to two changes the quality of the

efficiency results obtained for OLG economies. Diagrams 14 and 15 illustrate this

point. Further increases in the number of budget constraints beyond two, however,

do not change the quality of the results.

For a simple exposition we discuss a stylized economy with the following prop-

erties:

Assumption 1: Households live for two periods. Each generation i has a smooth

and (jointly) concave utility criterion Ui = Ui(x
1
i , x

2
i ) : Rn

+ ×Rn
+ 7→ R. Where x1

i , x
2
i

are vectors containing n different consumption goods. In the first period of life, each

household is endowed with x̄i ∈ Rn
+ units of consumption goods.

Assumption 2: Each consumption good can be stored/invested. The rate of return

rl > 0 for each good l = 1, 2, ...., n is independent of the aggregate level of investment.

Assumption 3: Technological progress and population growth are zero.

Assumption 4: The government can transfer goods of type l from generation i to

generation j. These transfers are denoted by τi,j ∈ Rn, i, j = 0, 1, 2...∞. Where τi,j,l,

l = 1, 2, ..., n, are the components of τi,j. These transfers are financed by appropriate

borrowing and lending at the technologically determined interest rates.

With these assumptions in place it is useful to define the following indirect utility

function for an agent born at node i:

Vi := argmax
si

{
Ui

(
x̄i − si −

i−1∑
j=0

(1 + r)i−jτi,j −
∞∑

j=i+1

1τi,j, (1 + r)si

)}
, (148)

where si is a n×1 vector and (1+r) and 1 are diagonal matrixes of dimension n×n
with diagonal entries (1 + rl) and 1 respectively.



84 Intertemporal Allocation with Incomplete Markets

−1

0

1

1

Diagram 14a Diagram 14b

Diagram 14: Unfolding the missing markets and intertemporal compensation

In Diagram 14a there is only one government budget constraint along which goods
can be transferred. Every increase in consumption for generation i lowers consump-
tion for members of some generation j. If r > 0 and marginal utility is positive, each
allocation (transfer scheme) is Pareto-efficient. In Diagram 14b on the contrary,
there is a vector of taxes available in each period and intertemporal compensation
is possible. Depending on the respective preferences, there exists a large set of inef-
ficient allocations (transfer schemes). Using these taxes, the government can make
up for missing markets. However, private savings must be large enough to support
the government borrowing along the diagonal of the diagram.

We now proceed as in the previous chapters. To find the set of Pareto-improving

intertemporal reallocations we write the associated Lagrangian:

max
{τi,j ,µi,j ,λi,γi}∞i,j=0

L = U0(x̄0 −
∞∑
i=1

τ0,i) (149)

+
∞∑
i=1

λi

(
Vi(x̄i −

i−1∑
j=0

(1 + r)i−jτi,j −
∞∑

j=i+1

1τi,j)− Vi(x̄i)
)

+
∞∑
j=0

∞∑
i=j+1

µi,j(τi,j + τj,i)

+
∞∑
i=0

γi

( i∑
k=0

∞∑
j=i+1

τk,j(1 + r)i−k + si(x̄i −
i−1∑
j=0

(1 + r)i−jτi,j −
∞∑

j=i+1

1τi,j)
)
.

Where the Lagrangian multipliers µi,j ensure that a transfer from agent i to agent

j increases consumption for agent j and lowers it for agent i and viceversa. The
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second restriction associated with γi is of the Kuhn-Tucker type. It requires that the

government debt in the respective goods may not exceed households savings. That

is, if the government borrows in good l̃ to implement trades between the generations

i and j, the generations in between must have sufficient savings to absorb the debt

which is rolled over from period i to period j. Put differently, if this condition

binds as in Diagram 15, households savings are a bottleneck to intergenerational

transfers.56 The savings decision would be associated with an externality. If the

reallocation scheme is sufficiently small the savings condition γi is not binding, i.e.

γi = 0, and the first order conditions for τi,j are:

−∇V0 + µi,0 = 0 ∀i = 1, 2, ...∞, (150)

−λi(1 + r)i−j∇Vi + µj,i = 0 ∀i > j, i = 1, 2, ...∞, j = 0, 1, 2, ...∞, (151)

−λi∇Vi + µi,j = 0 ∀i < j, i = 1, 2, ...∞, j = 0, 1, 2, ...∞, (152)

τi,j + τj,i = 0 ∀i, j = 0, 1, 2, ...∞, (153)

Vi = V̄i ∀i = 1, 2, ...∞, (154)
i∑

k=0

∞∑
j=i+1

(1 + r)i−kτk,j (155)

+si(x̄i −
i−1∑
j=0

(1 + r)i−jτi,j −
∞∑

j=i+1

1τi,j) = 0, ∀i = 1, 2, ...∞.

Where λi is a scalar and γi, µi,j, si, τi,j are appropriate n×1 vectors. Finally (1+r)i−j

is a diagonal matrix of dimension n× n with diagonal entries (1 + rl)
i−j. Rewriting

these conditions yields the first order condition for the respective tax rates τi,j,l:

∂Vj
∂xl
∂Vj

∂xl+1

∂Vi
∂xl
∂Vi

∂xl+1

=
( 1 + rl

1 + rl+1

)i−j
, ∀ i, j = 0, 1, 2, ...∞, l = 1, 2, ...n− 1, (156)

56If one cohort i has a very low endowment (when compared to the surrounding generations)
it will save little and therefore, it can absorb only little amounts of public debt. In this case this
savings constraint is likely to bind, i.e. γi 6= 0. In a different interpretation the condition associated
with γi requires that aggregate assets of the different types cannot be negative at any point i.
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where (156) indicates that taxes should be chosen such that a point on the contract

curve is reached.57 Moreover, if we have only m < n tax rates available per agent,

n − m optimality conditions are lost. Regarding the prospects of intertemporal

compensation we therefore have the following proposition:

Oi

Oj

τi,j

b

b

b

z

y

x

x1

x2

x1

x2

1

Diagram 15: The contract curve

The two origins represent members of generation i and j, respectively. Starting from
the market allocation at x the government can raise a tax such that a point z on the
contract curve is obtained. If γi is binding at some point, we can only move towards
y where savings are no longer sufficient to support further transfers. The dashed
lines surrounding the contract curve represent the “savings constraint”.

Proposition 9. If there are n > 1 goods and the government has m > 1 intertem-
poral budget constraints it can reallocate resources such that a point on the contract
curve is reached in a Pareto-improving manner. Moreover, only those tax and trans-
fer schemes that steer the economy towards a point on the contract curve are efficient.
If the government can only reallocate resources of one type (one budget constraint)
a Pareto-improving change in the tax scheme is not possible. Each initial allocation
is constrained efficient.

Proof. The first part is obvious. For the second part we note that an increase in
period 0 consumption, i.e. τ0,i < 0, requires higher taxes τi,0 > 0 at some point i. If

57This first order condition is of particular interest with regard to the problem of natural re-
sources. If the first generation is the only one in possession of a particular good/resource, condition
(156) defines how these resources can be exhausted optimally. That is, future households would be
willing to live with a higher debt in a different consumption good in exchange for more (natural)
resources. Similar to the change in the validity of the golden rule there will be corresponding
changes to results like, e.g., the “green golden rule”.
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preferences are locally non satiated this violates the condition Vi(x̄i− τi,0(1 + r)i) 5
Vi(x̄i).
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Diagram 16: The optimum structure for government debt

Compared to our problem of the optimum structure for government debt two

differences are notable: (i) we have changed the debt structure once for all to keep

in touch with the literature and the steady state as a reference point. (ii) The

current setting is linear regarding the resources transferred. In the setting with

the optimum structure for government debt we have the aspect of non-linearity.

This is reflected in the fact that there are points of satiation, namely λ∗ and λ∗∗.

If we would introduce non-linearity into the current model, there would also be

the possibility of satiation as with the optimal capital intensity in the Diamond

(1965) model. Moreover, there would be more externalities of a similar type as the

current savings externality (associated with the γi constraint). Diagram 16 gives

an illustration of the effects of nonlinearity of the derivatives of the indirect utility

functions associated with the FOC (126) in Chapter 4, for the optimum structure

for government debt.

The interesting point with Diagram 16 is the fact that the set of efficient alloca-

tions now depends on both, the curvature of the utility function and the technology.

In the case with only one good, this is different: positive marginal utility and the

interest rate condition are the only data required to know that all transfer schemes

are efficient as long as rl > 0 for all goods l = 1, 2, ...n.
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5.1 Conclusion

The concept of dynamic efficiency in the basic Diamond (1965) model has a remark-

able property: the set of efficient capital intensities does not depend on preferences.

It is defined by the curvature of f(·) and the growth rate of the aggregate economy.

The mere comparison of the marginal product of capital and the aggregate growth

rate suffices to decide whether or not the economy grows on an efficient or inefficient

path. The results derived in Chapter 3 showed that this result was sensitive once

preferences are heterogeneous. In Chapter 4, where two goods were available, this

conclusion was also altered for a representative agent economy for the case with two

budget constraints and two missing markets. The present chapter shows that the

efficiency properties of the economy in general change once there are more than two

markets missing and there are at least two intertemporal budget constraints avail-

able. In the current model, the government can steer the economy to a certain point

on the contract curve. In this case the set of inefficient policies is quite large. The

notable difference compared to the Arrow-Debreu setting is the fact that the par-

ticular location on the contract curve is not an outcome of a market process. It has

to be chosen by the planner rather than the households. Moreover, if the economy

is closed, the life-cycle savings condition still limits intergenerational trades.

Taken together, chapters 3, 4 and the current one suggest that the role of pref-

erences tends to increase when the economy becomes more complex. Along-side the

scope for Pareto-improving government intervention also increases. On the contrary,

the importance of technology diminishes. The set of efficient capital intensities can

no-longer be determined by the shape of f(·) and the aggregate growth rate n alone.
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6 Demographic Change and the Rates of Return

to Risky Capital and Safe Debt

This chapter studies how the upcoming demographic transition will affect the re-

turns to risky capital and safe government debt. In a neoclassical two-generations-

overlapping model we show that the entrance of smaller cohorts into the labor market

will lower both interest rates. The risky rate, however, will react more sensitive than

the risk free rate. Consequently, the risk premium deteriorates during the transition.

6.1 Introduction

Neoclassical models of the Solow (1956), Swan (1956) type predict a positive relation

between the growth rate for population and the rate of return to capital. In more

refined models, involving uncertainty and more than one asset, several authors have

recently examined the consequences of the demographic transition with regard to the

rates of return to risky capital and safe debt.58 However, while these studies tend to

agree that the overall level of interest will fall when the baby boom generation retires,

it remains an open question whether the demographic transition will affect both

rates of return in the same manner. In particular, Brooks (2002) and Geanakoplos

et al. (2004) project that the risky rate will deteriorate more severely than the

return to safe government bonds. That is, the equity premium would fall during the

demographic transition. At the same time, Brooks (2004) and Börsch-Supan et al.

(2007) project an increase in the equity premium for that period.

The purpose of the current note is to complement these previous studies, which

were based exclusively on simulations, by developing a modified version of the Di-

amond (1965) model which allows to analyze the relation between the growth rate

for population and the two key interest rates.

This chapter is organized as follows: In Section 6.2 we discuss a baseline setting

where households work in the first period only, aggregate shocks are log-normal, and

utility is of the Epstein and Zin (1989) type. In this setting we show that (i) both

rates of return increase with the growth rate for population, (ii) the risky rate to

capital reacts more sensitive than the risk free rate, i.e. the equity premium increases

with the growth rate of population. In Section 6.3 we show that the results from

Section 6.2 carry over to a setting with a general concave utility function and shocks

58See Poterba (2001) and Poterba et al. (2005) for surveys.
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which are no longer log-normal. Finally, we discuss a model where households work

in both periods of life. In this setting it turns out that there is a “human capital

effect” to our portfolio choice problem which thwarts the positive relation between

the growth rate for population and the equity premium. While both rates fall, the

safe return will be affected more severely if the human capital effect is sufficiently

large.

6.2 The Model

6.2.1 Technology and factor-prices

The economy is inhabited by overlapping generations who live for two periods; one

period of work is followed by one period of retirement. During the first period of

life, each individual supplies one unit of labor inelastically and population evolves

according to:

Nt+1 = (1 + nt+1)Nt, (157)

where Nt is the size of the cohort born at time t and 1 + nt+1 is the number of

children raised by each member of cohort t.

Production is characterized by a continuous, concave, constant returns to scale,

aggregate production function F (Kt, Nt) ≡ F̃ (Kt, Lt) + (1− δ)Kt. This production

process is subject to an aggregate technology shock zt, which follows a log-normal

distribution. For simplicity we assume that this shock is on average neutral. Per

capita output yt is therefore given by:

yt = ztf(kt); f ′() > 0, f ′′() < 0, E[zt] = 1, ∀t. (158)

Once the respective realization of the shock zt is known, each firm will rent capital

and hire labor up to the point where the respective marginal products are equal to

the market prices:

Rt = zt
∂F (Kt, Nt)

∂Kt

= ztf
′(kt), (159)

wt = zt
∂F (Kt, Nt)

∂Nt

= zt(f(kt)− f ′(kt)kt). (160)
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6.2.2 Government Debt

Contrary to the approach, where safe debt/consumption loans are issued by the

households (zero net supply), we will take note of the fact that the government is

the only entity that can supply safe debt. The budget constraint of the government

is given by:

Bt +Ntτt = rtBt−1, (161)

where Bt−1 is the amount of outstanding and Bt the amount of newly issued debt

in period t. Lump-sum taxes are denoted by τt. The rate of (gross) interest on

government debt which was issued at time t−1 is denoted by rt. This rate of interest

earned on government debt is deterministic, i.e. at time t the government issues debt

with a guaranteed rate of return rt+1. Risk averse individuals will therefore be willing

to hold safe debt even if its rate of return is below the expected risky rate. As in

Bohn (1998) and Smetters (2006) we assume that the government holds the debt

to GDP ratio constant over time. This assumption is indeed consistent with the

Maastricht criterion on government debt for countries in the Euro-zone. If policy is

characterized by such a constant debt output ratio ρ, we have:59

Bt

Yt
= ρ ∀t. (162)

Solving (161) for per capita taxes τ , using (162) and (157), yields:

τt =
( 1

(1 + nt)
rtyt−1 − yt

)
ρ. (163)

6.2.3 Households

The representative household lives for two periods and supplies labor inelastically

in the first period only. Towards the end of the first period the household faces

a consumption/saving and a portfolio allocation decision. Preferences over current

and future consumption, ct,1 and ct+1,2, are described by a simplified Epstein and

Zin (1989) utility function:

Ut = ln(ct,1) +
β

1− φ
ln(Et[(ct+1,2)

1−φ]); 0 < φ, 0 < β < 1. (164)

59There are obviously many different debt policies perceivable. However, the following results
will be valid for all perceivable debt policies provided that taxes τt and the amount of debt Bt

which is issued at time t do not depend on variables that are not yet realized in period t, e.g., the
future capital intensity kt+1.
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The utility function in (164) exhibits an elasticity of intertemporal substitution of

unity. Hence, the individual savings/consumption decision is independent of the

interest rate, since income and substitution effects cancel and precautionary savings

neither dampen nor amplify private thrift. This assumption is reasonable as long

as the (ambiguous) influence of changes in the rate of interest on savings is not too

large. The advantage of this specification can be seen in the coefficient of relative

risk aversion φ with respect to second period consumption, which allows to study

the entire scope of the portfolio choice problem.

Recalling the taxes levied by the government τt, the value of wealth owned by

the consumer when young can be written as:60

Ωt ≡ wt − τt. (165)

For given values of lifetime wealth Ω, the individual chooses to hold assets amounting

to:

at ≡ bt + ht, (166)

where bt and ht are the amounts of riskless bonds and risky capital respectively.

Denoting the portfolio share of risky assets by γt ≡ ht

at
and the share of riskfree

assets by (1− γt) ≡ bt
at

yields, according to (164) and (165), the following household

problem:

max
a,γ

Ut = ln(Ωt − at) + β ln(at) +
β

1− φ
ln

(
Et

[
(γtRt+1 + (1− γt)rt+1)

1−φ
])
, (167)

with the corresponding first order condition for the optimal portfolio size:

at =
β

1 + β
Ωt, (168)

where the propensity to save out of wealth is β
1+β

. The portfolio choice is character-

ized by the familiar implicit condition for γt:

Et

(
[γtRt+1 + (1− γt)rt+1]

−φ(Rt+1 − rt+1)
)

= 0. (169)

Using a second order Taylor series approximation, Campbell and Viceira (2002)

show that the corresponding optimal portfolio share can be approximated as:

γt(Rt+1, rt+1;φ) =
Et[ln(Rt+1)]− ln(rt+1) + 1

2
σ2
t

φσ2
t

= ln
(Et[Rt+1]

rt+1

) 1

φσ2
t

, (170)

60The individual receives his wage wt after the realization of zt is known. Note also that taxes
are known once zt is known.
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where σ2
t = V ar[ln(Rt+1)] = V ar[ln(zt+1)] and ln(Et[Rt+1]) = Et[ln(Rt+1)] + 1

2
σ2
t .

61

Once the investment opportunities are changing, the individual will adjust his port-

folio according to:

γr ≡
∂γt
∂rt+1

= − 1

rt+1

1

φσ2
t

< 0, γf ′ ≡
∂γt

∂(f ′(kt+1))
=

1

Et[Rt+1]

1

φσ2
t

> 0. (171)

The decisive property of the portfolio adjustment behavior in (171) is:

d(f ′(kt+1))

drt+1 |dγt=0

= − γr
γf ′

=
f ′(kt+1)

rt+1

> 1, (172)

where (172) indicates that, for positive expected equity premia, the share devoted to

the risky asset reacts more sensitive with respect to the riskfree rate than the risky

rate. That is, an increase in both rates of return, which leaves the equity premium

unchanged, will result in a lower portfolio share in the risky asset.

6.2.4 Equilibrium

Having completed the partial analysis of the firm, the government and the household,

we can now turn towards the equilibrium conditions for the bond and equity markets.

Capital market clearing requires:

(1 + nt+1)kt+1 = γt
β

1 + β
Ωt. (173)

The bond market equilibrium condition reads:

ytρ = (1− γt)
β

1 + β
Ωt. (174)

Taken together, equations (173), (174), (170) and (159) define the time path of the

capital intensity k, the safe rate of return r, the optimal portfolio share γ and the

risky rate R. Finally, the resulting expected equity premium Et[Πt+1] is given by:

Et[Πt+1] = Et[Rt+1]− rt+1 = f ′(kt+1)− rt+1. (175)

61 The rate of return Rt+1 = zt+1f
′(kt+1) inherits its log-normal distribution from the technology

shock zt+1. Thus, ln(Rt+1) follows a normal distribution.
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6.2.5 Baby-Boom and Equity-Premium

We can now consider the consequences of the entrance of a large/small cohort into

the labor market. Taking the current state of the economy (kt−1, kt, zt−1, zt) as

given, we differentiate (173) and (174) with respect to dnt+1, dγt, dkt+1. Hence,

after recalling (159) and (170), we have:

dkt+1

dnt+1

= − kt+1

(1 + nt+1)
< 0, ∴

d(f ′(kt+1))

dnt+1

= f ′′(kt+1)
dkt+1

dnt+1

> 0 (176)

and

dγt
dnt+1

= 0, ∴ γf ′
d(f ′(kt+1))

dnt+1

+ γr
drt+1

dnt+1

= 0. (177)

The expressions in (176) indicate that a change in the growth rate of population

does not change government taxes (163). Hence the value of life-cycle income Ωt out

of which individuals save a constant fraction remains unchanged. Thus, an increase

in the relative size of the next cohort lowers the capital intensity and increases the

expected future return on risky investments. The expressions in (177) follow from

the bond market equilibrium condition. They indicate that, for d(f ′(kt+1))
dnt+1

> 0, the

government has to offer a higher riskless rate drt+1

dnt+1
> 0 to sell a given amount of

debt. With respect to the expected equity premium (175), we can now use the

individual portfolio adjustment behavior described in (172) to show that:

d(Et[Πt+1])

dnt+1

=
(d(f ′(kt+1))

drt+1

− 1
) drt+1

dnt+1

=
(Et[Πt+1]

rt+1

) drt+1

dnt+1

> 0. (178)

Equation (178) indicates that, due to the higher sensitivity of the portfolio shares

with respect to the riskfree rate, the government does not need to raise its riskfree

rate one for one with the expected risky rate to sell its debt. Diagram 17 illustrates

this link. The demographic transition affects the returns to physical capital through

the capital widening effect. In turn, households demand a higher safe rate. Due to

the asymmetric portfolio adjustment effect, the equity premium rises.

6.3 Extensions

In this section, we will briefly discuss the robustness of our foregoing results. In

particular we analyze the role of a potential human capital effect. Moreover, we

consider a more general portfolio choice setting, which is no longer based on CRRA

preferences and log-normal shocks.
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Diagram 17: Demographic change and portfolio adjustment.

6.3.1 The Effect of Human Capital

If households second period labor endowment is given by θ, the demographic tran-

sition will not only affect the rates of return. It also changes the present value of

the labor endowment through the induced factor-price changes. Consequently, the

household problem now reads:

max
a,γ

Ut = ln(Ωt − at) + β ln(at) +
β

1− φ
ln

(
Et

[
(γtRt+1 + (1− γt)rt+1)

1−φ
])
, (179)

where life-cycle wealth is given by Ωt ≡ wt − τt + θwt+1

Rt+1
.62 Solving the household

problem in the same manner as before, we obtain our two market clearing conditions:

(1 + nt+1)kt+1 = γt
β

1 + β
Ωt − θ

wt+1

Rt+1

(180)

ytρ = (1− γt)
β

1 + β
Ωt. (181)

While the bond market clearing condition remains unaltered, the capital market

clearing condition has to reflect that households only buy capital in excess to what

they already hold as human capital. Moreover, Ωt is now a function of the future

capital intensity. To trace out the comparative statics of our system, it is useful to

note that (180), (181) and (170) are separable. Beginning with (180) and (181), we

62Given our specification of the production sector, second period wage income and capital are
perfectly correlated (perfect substitutes), i.e. corr(wt+1, Rt+1) = cov(wt+1,Rt+1)

σwσR
= 1.
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determine how changes in the growth rate for population affect the risky rate and

the portfolio share. Subsequently we differentiate (170) to determine the change in

the safe rate. Taken together, we obtain:

dkt+1

dnt+1

=
kt+1

1
1+β

θ f(kt+1)f ′′(kt+1)
f ′2(kt+1)

− (1 + nt+1)
< 0, (182)

∴
df ′(kt+1)

dnt+1

= f ′′(kt+1)
dkt+1

dnt+1

> 0,

dγt
dnt+1

=
(1− γt)θ

−f(kt+1)f ′′(kt+1)
f ′2(kt+1)

Ωt

dkt+1

dnt+1

< 0, (183)

∴ γf ′
d(f ′(kt+1))

dnt+1

+ γr
drt+1

dnt+1

< 0.

The relations in (182) and (183) reveal that an increase in the population growth

rate lowers the capital intensity and increases both rates of return.63 The decrease in

the share of the risky asset in the portfolio reflects, that the present value of life-cycle

wealth decreases, as the human capital deteriorates with higher birth rates. Hence,

as the supply of government debt is unchanged, the share of the safe asset must be

larger in the new equilibrium. Consequently, as the demand for safe bonds shrinks

due to the decrease in Ωt, the government has to offer a higher safe interest rate to

sell its debt. Differentiation of (175) and (170) now yields the induced changes in

the equity premium:

dEt[Πt+1]

dnt+1

=
(d(f ′(kt+1))

drt+1

− 1
) drt+1

dnt+1

=
( dγt

dnt+1

dnt+1

drt+1

γf ′
− γr
γf ′

− 1
)

T 0, (184)

The second expression in (184) reflects the pure portfolio adjustment effect, which, as

we have observed earlier, will once again increase the equity premium, i.e. − γr

γf ′
−1 >

0. However, due to the human capital effect, the portfolio share of the risky asset

decreases. Hence, as
dγt

dnt+1

dnt+1
drt+1

γf ′
< 0, the resulting change in the risk premium is

ambiguous. In particular, (183) shows that the human capital effect rises with

the labor endowment θ. This may explain why Börsch-Supan et al. (2007) and

Brooks (2004) find that falling birth rates increase the equity premium in their

large-scale OLG models where households hold lots of unrealized human capital.

63From (182), we have df ′(kt+1)
dnt+1

> 0 in turn we find that dγ
dnt+1

< 0, together with γr < 0 and

γf ′ > 0 implies that drt+1
dnt+1

> 0.
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Accordingly, the simulations of Brooks (2002) and Geanakoplos et al. (2004) yield the

opposite result for smaller three- and four-generation-overlapping models. Diagram

18 illustrates the human capital effect to the portfolio adjustment problem.
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Diagram 18: The human capital effect and portfolio adjustment.
If the human capital effect is large (small), the equity premium is destined to fall
(rise) if a large cohort enters the labor market.

6.3.2 The Portfolio Decision

In the previous section attention was confined to an economy where the TFP shock

was log-normal and utility of the CRRA variety. In this section we show, that the

asymmetry in the portfolio adjustment, which was driving our earlier results, carries

over to a more general setting where utility is only assumed to be concave. Moreover,

TFP shocks are no longer assumed to be log-normal. In this case, the two-period
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two-asset problem is given by:64

max
γt

U(Ωt − st) + βEt[U((rt+1 + γt(Rt+1 − rt+1))st)], (186)

performing a second order Taylor-series expansion of the objective function at the

point where γ = 0 yields the portfolio problem:

max
γt,st

U(strt+1) + U ′(strt+1)Et[γtst(Rt+1 − rt+1)] (187)

+
1

2
U ′′(strt+1)Et[(γtst(Rt+1 − rt+1))

2],

where we have dropped the constant β in (187). The corresponding optimal portfolio

share is thus given by:

γ∗t = −U
′(strt+1)

U ′′(strt+1)

E[Rt+1 − rt+1]

st(σ2
R + Et[(Rt+1 − rt+1)]2)

(188)

=|CRRA,r≈1
1

φ

E[Rt+1 − rt+1]

σ2
R + Et[(Rt+1 − rt+1)]2

.

64Note that there are two ways to think about the savings decision:

max
γt,st

U(Ωt − st) + βEt[U((rt+1 + γt(Rt+1 − rt+1))st)].

expanding (186) at the point γ = 0 and s = s̄, we have:

U(Ωt − s̄t) + βU(s̄trt+1) (185)

+βU ′(s̄trt+1)E[Rt+1 − rt+1]s̄tγt +
1
2
βU ′′(s̄trt+1)

(
E[Rt+1 − rt+1]s̄tγt

)2

+
(
− U ′(Ωt − s̄t) + βU ′(s̄trt+1)rt+1

)
(st − s̄t)

+
1
2

(
U ′′(Ω− s̄t) + βU ′′(s̄trt+1)r2

t+1

)
(st − s̄t)2

+γtE[Rt+1 − rt+1]βU ′(s̄trt+1)
(U ′′(s̄trt+1)

U ′(s̄trt+1)
rt+1s̄t + 1

)
(st − s̄t).

The last term in (185) indicates the interaction between the size and the composition of the portfolio
(cross derivative). There are now two ways to think of our approximation in the main text: (i)
The household chooses savings according to the usual Euler equation and chooses the portfolio
shares according to the Taylor approximation (187). Put differently, the household chooses savings
according to a precise rule. The portfolio shares, however, rely on an approximation. (ii) The
household chooses both s and γ according to (185). In this (less appealing) case there would be
an additional component in the FOC for γ of ambiguous sign.
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If we assume γf ′ > 0, we find that γr < 0.65 Moreover, the portfolio adjustment is

once again asymmetric:66

γr + γf ′ = − 2Et[Πt+1]f
′(kt+1)σ

2
z

φ(σ2
R + Et[(Rt+1 − rt+1)]2)2

< 0 ∴ − γr
γf ′

> 1. (189)

For small equity premia we may follow Campbell and Viceira (2001, 2002) and regard

Et[(Rt+1 − rt+1)]
2 as very small. This simplifies the approximate portfolio share in

(188) such that we have:

γ∗t = −U
′(strt+1)

U ′′(strt+1)

E[Rt+1 − rt+1]

stσ2
R

. (190)

Compared to the special case studied by Campbell and Viceira (2001, 2002) the

formula in (190) has the advantage that we neither require log-normal shocks nor

CRRA utility. Moreover, it is interesting to note that the numerator now reads

E[Rt+1− rt+1] rather than log(E[Rt+1])− log(rt+1).
67 For the portfolio adjustment,

with CRRA utility, we now obtain:

γf ′ 5 |γr|. (191)

Where the inequality holds if shocks are multiplicative as specified in (158). Other-

wise, if shocks are additive, the adjustment is symmetric. In reality one can expect

some sort of multiplicative (TFP) component and thus our comparative statics with

γf ′ < |γr| shall point in the right direction.

6.3.3 Discussion

We have considered the consequences of the demographic transition with regard to

the two key interest rates. In our log-linear example at the out-set, the asymmetric

65The respective partial derivatives are γf ′ = σ2
R−E[Π]2−E[Π]2f ′σ2

z

C and γr = −σ2
R+E[Π]2

C where C
is a positive constant. Hence, if γf ′ > 0, then γr < 0.

66For large equity premia, the term Et[(Rt+1 − rt+1)]2 in the denominator grows very large
compared to Et[(Rt+1 − rt+1)] in the numerator. Increases in f ′(k) may now in principle decrease
the portfolio share in the risky asset.

67Apparently, for small rates of return, there is not much difference between the two formulas.
For small x, we have the first order Taylor-series log(1 + x) = 0 + 1 · x = x. Thus, log(E[Rt+1])−
log(rt+1) ≈ E[Rt+1 − rt+1]. Moreover, in the denominator, var(zf ′) ≈ var(log(z)) if the variance
of z is small and the (net) rate of return close to zero, i.e. f ′ ≈ 1. With regard to our analysis
of the equity premium, however, the expression in (190) has the disadvantage that the relative
risk aversion is now a function of savings and changes during the transition. In this case it is not
possible to derive appealing conditions for the relation between the risk premium and the growth
rate for population.
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portfolio adjustment behavior was relating the equity-premium positively to the

growth rate of population. A higher level of interest was associated with a higher

risk-premium and viceversa.

In a more general setting with a human-capital effect this result was dampened.

An increase in the growth rate for population lowers the present value of second

period human-capital and increases savings in the risky asset. Moreover, the present

value of life cycle wealth falls. This effect lowers the demand for safe second-period

consumption and forces the government to increase the safe rate to sell its debt.

If this effect is sufficiently large, the initial conclusion may be reversed. Finally,

we relaxed our assumptions on the stochastic processes and the utility function to

conclude that the asymmetry in the portfolio adjustment is robust.

nr n0 n1r0,1

ER

ER0

ER1A1

γ
γ = 0

b

A0
b

∆π = ∆R

1

Diagram 19: Myopic adjustment.
If the demographic transition is unanticipated or the link between the rate of return
to capital not understood, the demographic transition will lower the expected risk
premium one for one.

Against this background it may be interesting to note that the relation between

the demographic structure and the risk-free rate is a fragile one. If households do

not understand that faster population growth dilutes the capital stock and raises

the risky rate, they do not demand a higher safe return to by safe bonds. In this

case, the equity premium increases one for one with the risky rate as Diagram 19

indicates. Apparently, the same effect is at work when fertility is stochastic, i.e.,

when each change in the growth rate for population is unanticipated as in the models

of Abel (2001b, 2003).
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6.4 Conclusion

Motivated by the conflicting results of previous simulation-based studies, we have

discussed the link between the entrance of smaller cohorts into the labor market

and the equity premium in a simple two-generations-overlapping economy. In this

framework it was shown that the entrance of a large (small) cohort into the labor

market will lead to a higher (lower) expected equity premium. While both rates of

return rise (fall), the risky rate will rise (fall) by more than the riskless rate.

In this setting, the positive link between the growth rate for population and

the equity premium is indirect. It operates through the capital widening effect

which increases the expected risky rate and forces the government to offer a higher

riskless rate to sell its debt. The increase in the equity premium is solely due to the

asymmetric portfolio adjustment behavior, i.e. γf ′ < |γr|.
Myopia on the side of the households will amplify these effects. In the special

case of fully myopic households, there is a one for one relation between the risky

rate and the equity premium. However, in the case where households also antici-

pate changes in their implicit human capital holdings, our conclusions are no-longer

unambiguous. Increasing population growth lowers the present value of human cap-

ital. This reduces the demand for safe assets. Consequently, the government needs

to raise its riskfree rate more than in the case without human capital. That is, the

current model predicts that the rates of return to safe and risky assets will fall dur-

ing the demographic transition. The consequences for the equity premium, however,

are ambiguous.
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