
Privacy-Preserving Framework for

Context-Aware Mobile Applications

I n a u g u r a l d i s s e r t a t i o n

zur Erlangung des akademischen Grades eines Doktors der

Wirtschaftswissenschaften der Universität Mannheim

vorgelegt

von

Thomas Butter

aus Heidelberg

Dekan: Prof. Dr. Hans H. Bauer

Erstberichterstatter: Prof. Dr. Armin Heinzl

Zweitberichterstatter: Prof. Dr. Martin Schader

Tag der mündlichen Prüfung: 30.09.2009

Contents

1. Introduction 2

1.1. Problem Outline . 2

1.2. Objectives . 3

1.3. Methodology . 4

1.4. Structural Overview . 7

2. Foundations of Mobile Context-Aware Applications 9

2.1. Mobile Applications . 10

2.1.1. User Requirements . 10

2.1.2. Mobile Software Development 11

2.1.3. Technical Challenges . 12

2.1.4. Runtime Environments . 13

2.2. Context-Aware Mobile Applications 16

2.2.1. Context in Mobile Applications 17

2.2.2. Context Sensors . 21

2.2.3. Quality of Context Data 23

2.2.4. Context Representation 25

2.2.5. Design Patterns for Development of Mobile Applications . 29

2.3. Privacy in Context-Aware Applications 35

2.3.1. Consumer Privacy . 36

2.3.2. Data Protection in B2B Environments 37

2.3.3. Private and Public Context 38

3. Service Discovery 40

3.1. Foundations of Context-Aware Service Discovery 42

3.2. Existing Approaches . 43

i

Contents

3.3. A Novel Service Discovery Concept 44

3.3.1. Context Representation 45

3.3.2. Context Manager . 48

3.3.3. Service Transformation . 49

3.3.4. Server-Based Filtering . 49

3.3.5. Mobile Post-Filtering & Ordering 50

3.3.6. Individual Importance of Context Attributes 52

3.4. Prototypical Implementation of the Service Discovery Concept . . 54

3.4.1. Server Component . 54

3.4.2. Context Manager . 54

3.4.3. Learning . 55

3.5. Transferability of the Concept to Navigation 57

3.5.1. Introduction to the Problem Domain 57

3.5.2. Conceptual Elements . 58

3.5.3. Finding Connecting Routes 60

3.5.4. Simulation Setup and Results 60

3.6. Evaluation of the Service Discovery Concept 64

4. User Interfaces 66

4.1. Challenges of User Interfaces on Mobile Devices 66

4.2. Existing Mobile UI Approaches 69

4.2.1. Model-based Development 69

4.2.2. Server-side Transformations 70

4.2.3. Java Frameworks . 70

4.2.4. Mobile Information Device Profile 71

4.2.5. HTML / Javascript . 71

4.2.6. Android . 72

4.2.7. Evaluation of Existing Approaches 72

4.3. User Interface Concept . 74

4.3.1. Adaptation to User Context 76

4.3.2. XUL on mobile devices . 77

4.3.3. Multi-Screen Dialogs . 78

4.4. Prototypical Implementation of the Concept 79

4.4.1. API . 79

4.4.2. Automatic Performance Adjustments 82

ii

Contents

4.4.3. Context / CSS changes . 82

4.4.4. Personal Profile / AWT 82

4.4.5. Mobile Information Device Profile 83

4.4.6. Component Interaction. 86

4.4.7. Compiling XUL . 86

4.4.8. Sample Screens . 88

4.5. Evaluation of the User Interface Concept and Implementation . . 90

5. Service Isolation and Data Protection 92

5.1. Requirements of Service Isolation in Mobile Applications 93

5.2. Existing Approaches . 95

5.3. Virtual Machine Concept . 98

5.4. Design Considerations for VM . 100

5.4.1. Class Loading . 103

5.4.2. Interpreter . 103

5.4.3. Primitive Types, Objects, and Arrays 104

5.4.4. Instances . 104

5.4.5. Threads / Locks . 104

5.4.6. Accessing Outside Fields / Methods 105

5.4.7. Tracing Data . 107

5.5. Evaluation of the Concept and Implementation 111

6. Examples Validating the Utility of the Framework 113

6.1. Consumer Application . 113

6.1.1. Service Discovery . 115

6.1.2. Conclusions . 122

6.2. Mobile Support Application in the Construction Industry 122

6.2.1. Scenario . 124

6.2.2. Virtual Environment . 125

6.2.3. User Interface Design . 125

6.2.4. Searching Tools/Machines 126

6.2.5. Virtual Sensors . 126

6.2.6. Collecting Data . 127

6.2.7. Conclusions . 127

6.3. Summary . 127

iii

Contents

7. Conclusions 129

7.1. Summary . 129

7.2. Contribution and Conclusions . 130

7.3. Future Research . 131

A. Context Serialized Format 133

References 136

iv

List of Figures

1.1. Adaptation vs. Available Data . 4

1.2. Overview of the Framework . 8

2.1. Java Platform . 15

2.2. Partial Definition of a Context Ontology, source: Wang (2004) . . 27

2.3. Definition of a Specific Ontology for Home Domain, Source: Wang

(2004) . 28

2.4. Graphical Context Model, source: Henricksen (2003) 29

3.1. Service Discovery . 45

3.2. Service Discovery . 51

3.3. Unique Connections w.r.t. ∆r . 59

3.4. Region used in Simulation (source OpenStreetMap) 61

3.5. Karlsruhe with Highlighted Areas R1, R2, and Connecting Routes 62

3.6. Number of Nodes w.r.t. r . 62

3.7. Size of Mapdata of Nodes w.r.t. r 63

4.1. Widgets Classdiagram . 81

4.2. GUI Creation Sequence-Diagram 85

4.3. Creation Time for a UI using the Parser and Precompiled XUL . 88

4.4. The Application on a High-end PDA 89

4.5. The Application on a Low-resolution, Low-contrast Screen 89

5.1. VM . 100

5.2. Interaction between MixVM and the Class libraries 102

5.3. Arithmetic Instructions . 108

5.4. Type Conversion Instructions . 108

5.5. Operand Stack Management Instructions 109

v

List of Figures

6.1. Scenario . 115

6.2. Start Screen with Menu . 116

6.3. User Preferences . 117

6.4. Context Attributes Visibility . 117

6.5. Service Selection . 118

6.6. Gastronomy Guide Settings . 120

6.7. Gastro Details . 120

6.8. Navigation to Restaurant . 121

6.9. Laboratory Setting . 123

vi

List of Tables

1.1. Design Science Research Guidelines 6

2.1. Conceptual Categorization of Context 18

3.1. Primitive Types of the Context Representation 46

3.2. Avg. Speed per Road Type . 63

4.1. Example Device Screen Properties 67

4.2. Operating Systems . 67

4.3. Evaluation of Related Work . 73

5.1. Existing Data Protection Approaches 98

5.2. Look-up Benchmarking . 107

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. First of all, I want to thank Prof. Dr. Armin Heinzl and

Prof. Dr. Martin Schader for their guidance and the freedom I received through

my studies. They created a productive environment with great colleagues and

much to learn.

I also would like to thank Prof. Dr. Franz Rothlauf and Dr. Markus Aleksy for

their good advice and support during the time of my thesis.

Furthermore I want to thank the participants of the Mobile Business Research

Group and all my other colleagues for the opportunity to work with them.

My special thanks goes to my family and friends whose patience and support

were essential for the completion of this thesis.

1

1. Introduction

1.1. Problem Outline

In recent years, the pervasiveness of mobile devices, especially mobile phones

and personal digital assistants (PDAs), has increased rapidly. At the same time,

wireless communication networks have improved considerably and the usage of

mobile devices to access the internet is, with decreasing costs, possible almost

everywhere and at any time in industrialized countries. However, the usage of

mobile technology and mobile applications to support business processes, trans-

actions, and personal tasks is still low compared to their potential.

The improved capabilities resulted in the introduction of many applications

for mobile devices by network operators and software vendors. These services

were meant to increase the average revenue per user (ARPU) on top of the voice

call income. But many of these services have failed and none of them has led

to an improved usage of mobile services today, besides e-mail. A new kind of

application, the context-aware application, exploits the ubiquity of the mobile

devices in order to fit the personal need or task the user is about to execute

satisfactorily. Context-aware systems try to improve the communication with

the user by adding information about the current context to the explicit user

input and by adapting the output to the current setting of the user. While those

applications are seen as important steps to a widespread usage, there are strong

factors inhibiting their development and adoption.

First of all, the lack of common frameworks handling context data and improv-

ing software development increases the cost to build context-aware applications.

Each application currently implements its own sensors and logic to handle its

data. Furthermore, service providers need to offer tailored services for every con-

text of the user. Since no single provider is able to be an expert for all kinds

of applications and will not have the necessary number of developers, a com-

2

1. Introduction

mon service which finds services of multiple providers for the current situation

of the user is needed. All services need to utilize the context attributes which

are locally determined by the user’s situation. Development costs are further

boosted by the difficulty of developing applications for multiple devices with

varying input/output (IO) capabilities like speech output, small and big screens,

full qwerty-keyboards, touchscreens, or numeric keypads.

From the user’s perspective, privacy also endangers the adoption of mobile

services. Context information may include very private data and expose the

user’s preferences and habits. While the user may trust a single, well-known,

provider to secure the private data and to respect the user’s privacy concerns,

the problem increases with more and more smaller service providers.

1.2. Objectives

This work examines existing approaches for context-aware mobile applications

and develops new ones in order to build a unified framework for mobile services,

fostering software development, and to offer a high degree of privacy protection.

The framework offers functionality to discover new services, an adaptable user

interface (UI) which automatically adapts to the user’s context using a UI de-

scription based on well-known standards and isolates chosen services for data

protection. This offers new and cost-saving ways to develop applications featur-

ing a better adaptation to the user’s situation.

Figure 1.1 shows the correlation of usable context data and adaptability of

an application. The left graph indicates that the adaptation increases with the

amount of available context data, but the available data on the device is not

always equal to the data a user is willing to expose to a service provider. Privacy

protection leads to a decrease in context data which is available to a service

provider. The level of privacy is individually different for each user denoted by

the thick red region. This work aims to improve the adaptability while decreasing

the exposure of private data to service providers.

The adaptation in this thesis uses a context model that offers a separation of

private data, which may never leave the device of the user and public data that

may be used by remote services. It will be shown that through the combination

3

1. Introduction

Figure 1.1.: Adaptation vs. Available Data

of local and remote processing of search queries, a context-aware service discovery

will be possible without disclosing private data to the search providers.

Research Questions To reach the above-mentioned objectives, in this thesis,

the following research questions will be examined and answered:

• Which tasks and responsibilities of a context-aware application are common

and can be fullfiled by a suitable framework?

• How is it possible to generalize and improve the service discovery under the

aspect of privacy protection?

• How can the heterogenity of mobile devices be handled by developers, es-

pecially for UI design?

• How shall applications be designed for the use on different mobile client

devices?

• How is it possible to separate different components and protect private date

without limiting their utility?

1.3. Methodology

This study originates from the field of information systems research. In this dis-

cipline, two different (but complementary) foundational methodologies can be

4

1. Introduction

identified: behavioral science and design science (March and Smith 1995). Re-

search following the behavioral science paradigm focuses on the development and

verification of theories of organizational behavior in connection with information

systems. Its objective is to understand the interactions between people, tech-

nology, and organizations in order to be able to increase the effectiveness and

efficiency of information systems which manage these relationships. In contrast

to this, the purpose of design science is to improve information systems, to solve

problems, and to reach some predefined goals. The focus is on the creation

and evaluation of new and innovative artifacts, being either constructs, mod-

els, methods, or instantiations (implemented and prototype systems). “Artifacts

are represented in a structured form that may vary from software, formal logic,

and rigorous mathematics to informal language descriptions”. A prototypical

implementation of the framework was implemented and its parts are tested for

functionality and their suitability to the given problem (Hevner, March, Park,

and Ram 2004).

After the successful evaluation of the individual parts, the complete framework

is tested using an exemplary scenario involving several sample services. Using

these demo services, a descriptive evaluation of the whole framework is done.

As a consequence of this classification, this study incorporates the conceptual

guidelines for design science approaches stated by Hevner (Hevner, March, Park,

and Ram 2004). These guidelines can be summarized by the table 1.1.

This work follows each guideline and therefore can be classified as design sci-

ence:

• Guideline 1: The result of this thesis is a framework and architectural

model for context-aware mobile applications, a method to improve the pri-

vacy protection in three relevant areas and a prototype as implemented as

instantiation of a developed concept.

• Guideline 2: A relevant business problem is addressed. The problem and

its relevance for business is described in chapter 2.

• Guideline 3: The concept is evaluated using the implementation of demo

applications in chapter 6 and benchmarking against the requirements is

stated in each chapter and chapter 2.

5

1. Introduction

guideline description

Guideline 1: Design science research must produce a viable artifact in the
form of a construct, a model, a method, or an instantiation.

Guideline 2: The objective of design science research is to develop
technology-based solutions to important and relevant busi-
ness problems.

Guideline 3: The utility, quality, and efficacy of a design artifact must be
rigorously demonstrated via well-executed evaluation meth-
ods.

Guideline 4: Effective design science research must provide clear and ver-
ifiable contributions in the areas of the design artifact, de-
sign foundations, and/or design methodologies.

Guideline 5: Design science research relies upon the application of rig-
orous methods in both the construction and evaluation of
the design artifact.

Guideline 6: The search for an effective artifact requires utilizing avail-
able means to reach desired ends while satisfying laws in
the problem environment.

Guideline 7: Design science research must be presented effectively both
to technology-oriented as well as management-oriented au-
diences.

Table 1.1.: Design science research guidelines (Source: (Hevner, March, Park,
and Ram 2004))

• Guideline 4: New methods for the given problem domains are developed,

tested, and individually published for peer review in internal conferences/jour-

nals.

• Guideline 5: The construction of the artifacts follows software design prin-

ciples and is based on well known software-development patterns outlined

in chapter 2.

• Guideline 6: An extensive search for design alternatives was performed and

design alternatives are shown to each decision made within the parts of this

framework in chapters 3, 4, and 5.

• Guideline 7: The concepts are communicated using different abstraction

levels. A high level outline of the concepts, a prototypical implementation

of each part of the framework, and a sample application.

6

1. Introduction

1.4. Structural Overview

First of all, the current economic mobile business landscape is shown and current

barriers for context-aware services are analyzed. Continuing from this point,

the requirements of a platform for context-aware services with the potential to

overcome the adoption barriers are constructed.

Based on these requirements, different techniques from the field of software

engineering are evaluated for their suitability to the problem. Subsequently,

known techniques are combined with new ideas in suitable places to a framework

for mobile context-aware applications which fulfill the requirements.

The next three chapters are structured according to the usage of mobile services

as shown in figure 1.2. In chapter 3, a concept for service discovery is introduced

(Butter et al. 2006; Aleksy et al. 2006; Butter et al. 2006). Service discovery is

an elementary part of context-aware systems and the initial step in most usage

scenarios. If a physical service, like a restaurant or shop, is found, the user needs

to navigate the point of interest. This is also covered in chapter 3. The next

chapter shows a user interface framework for easy creation and context usage

under the requirement of low privacy invasion (Butter et al. 2007) including

a prototypical implementation and an evaluation. Service isolation and data

protection are examined in chapter 5. In order to offer a runtime environment

for downloaded service components, a virtual machine approach is presented. It

provides full access to any resource while preserving privacy. The chapter includes

a prototypical implementation and measurements about its performance.

An evaluation of the overall practicability of the framework is given in chap-

ter 6. Here, one entertainment / information application for consumers and a

support system for the construction industry is implemented using the developed

framework. The last chapter includes a summary, a conclusion, and an outlook

on future work.

7

1. Introduction

��������	

��������

���������

�����
���������
�����

��������
���������

�������
�����������

��������
��������

������
��������

����������

������
��������

����������
������

������
���������

������
���������!

"���

#�

�$

�����%���� �����%����

#���

$�&���
�����

������

Figure 1.2.: Overview of the Framework

8

2. Foundations of Mobile

Context-Aware Applications

In parallel to continuous miniaturization, as correctly predicted by Moore’s law1

(Moore 1965), mobile devices got increasingly powerful over the last few years.

The networks bandwidth increased a lot, too. Gerry Butters stated in Butters’

Law of Photonics that the cost to transmit a single bit over an (optical) net-

work halves every nine months, which is equally true for wireless networks. This

advance in technology allows hardware manufacturers to build mobile devices

such as laptops, personal digital assistants (PDAs), and smart-phones that have

a similar performance as desktop computers had a few years ago.

The inherent mobility of these ubiquitous companions leads to new types of

applications, customized to the user’s location. While location-based services

are getting more and more popular, the increasing capabilities of miniaturized

sensor technology, which eventually will be embedded in future mobile devices,

offer more contextual information, not only location information. Using this

additional contextual information within services delivers even more value to the

user, leading to higher acceptance and adoption. However, creating context-

sensitive applications for mobile devices is not a trivial task and developers’

experience with these new kinds of applications is low. Thus, the development

of such services and applications or the migration of conventional services to

context-sensitive services will require a framework supporting the development

of client applications and services.

In this chapter, the foundations for the development of context-aware appli-

cations are outlined. The first few paragraphs start with the challenges of mo-

bile applications in general, the following deal with the special requirements of

1Moore predicted a doubling in the number of transistors on an integrated circuit every two
years.

9

2. Foundations of Mobile Context-Aware Applications

context-aware applications, and afterwards give an overview of state of the art

solutions.

2.1. Mobile Applications

Mobile applications impose specific user requirements and challenges to the de-

velopers. The following sections present an overview of those requirements and

challenges.

2.1.1. User Requirements

Besides the technical challenges mentioned before, the requirements of the users

are an important factor for the functional and non-functional requirements of

mobile applications. According to the studies carried out by Bauer et al. (Bauer,

Reichardt, and Schuele 2005; Bauer, Reichardt, Exler, and Tranka 2007) and a

general literature review, the following features are of special importance:

• Dynamic information is information that changes while the user is on the

move. This type of information should therefore be updated permanently

and made available to the user in case that his context deems this to be

appropriate (Cheverst et al. 2000, p. 2). Examples of this type of in-

formation are traffic information, weather forecasts, delayed timetables of

public transport, etc. (Kaasinen 2003, p. 74). This requirement implies a

constant network connection.

• Customization options for the visualization of information need to be con-

figurable to match the preference of the user, especially due to the limited

display space.

• Nowadays, users are flooded with information and sometimes find it difficult

to filter the relevant information on many screens filled with data. Services

should therefore not intend to provide the user with the most information,

but with correct and condensed information (Bieber, Giersich, Kirste 2001,

p. 565). An efficient way to improve the efficiency of mobile information

services is to adapt the presentation of the services to the current context.

10

2. Foundations of Mobile Context-Aware Applications

• Transaction security is another major concern of users (Picot, Neuburger

2002, p. 61; Mustafa, Oberweis, Schnurr 2002, p. 367). Secure transac-

tions are a prerequisite for commitment, which is in turn a prerequisite for

contracting, which again is an essential for successful business applications

(Scheer et al. 2002, p. 101).

• Consumers do also have a great fear which is not connected to any tech-

nological concern or the application itself. It is rather rooted in the user’s

perception of the overall technological advancement that more and more

enters his personal life. Many users feel a loss of control over what is hap-

pening with and around them and this feeling again evokes great uneasiness.

If the application is too always providing the user with the right service at

the exact right time, he will develop a feeling of being totally controlled

by technology. Users do not want the applications to lead to a predestined

and over-controlled environment in which they are completely managed and

controlled by their mobile device (Kaasinen 2003, p. 76).

• Consumers generally hesitate to release personal data. They mainly fear the

misuse of their personal data in the sense that it is used for purposes the user

not explicitly gave permission to (Diezmann 2001, p. 159; M”ohlenbruch,

Schmieder 2002, p. 76). Users also fear their personal data being given

to governmental institutions and see the “Big Brother” -vision becoming

partially true (Pflug, Meyer 2002, p. 413; Turowski, Pousttchi 2004, p.

101).

All these requirements are important for mobile services and are incorporated

in the requirements of the framework components in chapters 3 to 5.

2.1.2. Mobile Software Development

In the following sections, technical challenges and general principles of application

development for mobile devices are illustrated. The following terms will be used

within these sections and shall be defined as follows:

• Mobile Device: A mobile device is any electronic device carried occassionally

or regulary by the user with input/output capabilities suitable to interact

11

2. Foundations of Mobile Context-Aware Applications

with the user, a network connection, and the ability to store general purpose

software. These are typically mobile phones or PDAs.

• Mobile Application: A mobile application is any software executed on a

mobile device.

• Service: A Service offers a certain resource which may be requested from

multiple different users ad hoc. The kind of the offered resource is not

relevant and should be considered opaque. A service may be realized by

multiple homogenous, parallel running service providers to solve aspects

as load-balancing or fault tolerance using replication. Furthermore. it is

possible to realize different service providers which offer different Quality-

of-Service (QoS) criteria. A service may also be used as a homogenous

interface for a subsystem according to the Facade-Pattern (Gamma, Helm,

Johnson, and Vlissides 1995)

• Service Provider: A service provider realizes, at least a part of, a certain

service. Using this term, services composed of different components may

be better described. According to Shal (Stal 99), a component is a binary,

functionally self-contained, software building block which interacts with its

environment via a well-defined interface. The component must be able

to cope with the embedding in different and non-predictable application

contexts.

2.1.3. Technical Challenges

Mobile applications impose several challenges for their development. Especially

their smaller size and mobility adds several limitations which have to be worked

around:

• Disconnected operation: “Mobile computing invalidates some implicit as-

sumptions in current middleware platforms. For example, the CORBA

interoperability protocol and webservices assume a permanent transport

connection between the client and the object implementation. In contrast

to this, PDAs automatically switch themselves off in order to save battery

power. [...]Traditionally, we assumed that application entities would be

permanently available during some application association” (Geihs 2001).

12

2. Foundations of Mobile Context-Aware Applications

• Memory constraints in mobile devices need new programming frameworks

allowing the reuse of already installed components, caching, and eviction

(Fahy and Clarke 2004).

• Flexibility is important in mobile applications. This is especially the case

since the user’s current situation decides about the range of useable services.

Therefore such applications have to include two special abilities: the ability

to efficiently register, discover, use and manage services as well as the ability

for ad hoc configuration (Fahy and Clarke 2004).

• Mobile code requires increased flexibility and new security mechanisms in

order to ensure integrity of the executing machine. (Geihs 2001)

• Personalization is important to be able to present information relevant for

the user. Customization is a key issue in using mobile devices because

it may mitigate some of the limitations of the user interface in terms of

size and resolution. Studies show that every additional click reduces the

transaction probability by 50% (Durlacher Research, 2000). (Tsalgatidou,

Veijalainen, and Pitoura 2000).

• Heterogenous devices offer varying sizes, programming environments, input

and output capabilities. The applications need to be adapted to each device

(see chapter 4).

• Privacy is a user requirement and a technical requirement since different

components need to be shielded against each other (see 2.3).

Many facets of the first two challenges can be tackled with development pat-

terns known from traditional software engineering. These will be illustrated in

this chapter. The others are part of this work’s research questions and are dealt

with in the chapters 3, 4, and 5.

2.1.4. Runtime Environments

As a example of heterogenity the different runtime environments of mobile devices

need special attention. All of them are incompatible and require development

from scratch for all supported platforms. The multitude of device manufacturers

13

2. Foundations of Mobile Context-Aware Applications

and devices offer many runtime environments for applications. Most widely used

are the following runtime environments (Köchy 2008):

• Android is an operating system based on linux and developed by Google.

As of today, two handsets from LG and Samsung are available. It features

a Java runtime using an incompatible bytecode format and class libraries

for licensing reasons.

• The iPhone is a mobile phone from Apple. It is a controlled environment

and allows only applications approved by Apple. Currently applications

downloading components at runtime are forbidden. (Zdziarski 2008)

• Windows Mobile is an embedded variant of Microsoft Windows. Applica-

tions in .NET and native applications in C are possible. (Wind, Jensen,

and Torp 2007)

• Symbian is the most widespread smart phone operating system. It offers

an extensive C API and is mainly developed by Nokia. (Harrison and

Shackman 2007)

• A Java runtime (Java ME) exists on all smart phones, but Android phones

and iPhones. The set of supported optional APIs differs widely. (Muchow

2001)

This thesis considers only the Java ME runtimes as those are available on most

mobile phones. All concepts would also be possible on Android or other VM

based environments.

2.1.4.1. Mobile Java Variants

Java Mobile Edition (Java ME) technology was originally called J2ME and cre-

ated in order to deal with the constraints associated with small and mobile de-

vices. For this purpose, Sun defined the basics for Java ME technology to fit such

a limited environment and make it possible to enable Java applications running

on small devices with limited memory, display, and power capacity.

The Java ME platform is a collection of technologies and specifications which

can be combined to construct a complete runtime environment specifically to fit

the requirements of a particular device.

14

2. Foundations of Mobile Context-Aware Applications

Figure 2.1.: Java Platform

The Java ME technology is based on three components:

• A configuration consists of the most basic set of libraries and virtual machine

capabilities,

• a profile is a set of APIs that support a narrower range of devices, and

• an optional package is a set of APIs not available in all devices with a

specific profile.

The configuration for small devices is called the Connected Limited Device

Configuration (CLDC) (Sun 2004) and the more capable configuration is called

the Connected Device Profile Configuration (CDC) (Sun 2005). An overview is

given in figure 2.1.

Each configuration, as well as each profile and each optional package is defined

through the Java Community Process using specifications called Java Specifi-

cation Requests (JSR). The configuration targeting resource-constraint devices,

such as mobile phones, is called the Connected Limited Device Configuration

(CLDC). It is specifically designed to meet the needs for a Java platform to run

on devices with limited memory, processing power and graphical capabilities. On

top of the different configurations, Java ME platform also specifies a number of

profiles defining a set of higher-level APIs that further define the application. A

15

2. Foundations of Mobile Context-Aware Applications

widely adopted example is to combine the CLDC with the Mobile Information

Device Profile (MIDP) in order to provide a complete Java application environ-

ment for mobile phones and other devices with similar capabilities. It can be

found on the majority of today’s mobile devices that access internet services

(Admob 2008).

With the configuration and the profiles, the actual application then resides,

using the different available APIs in the profile. For a CLDC and MIDP envi-

ronment, which typically is what most mobile devices nowadays are implemented

with, an MIDlet is created. An MIDlet is the application created by a Java ME

software developer, such as an entertainment application, a business application,

or other mobile features. These MIDlets can be written once and run on every

available device conforming with the specifications for Java ME technology. The

MIDlet can reside on a repository somewhere in the ecosystem and the end user

can search for a specific type of application and have it downloaded over the air

to his/her device.

The configuration targeted larger devices with more processing and memory

capacity and with a network-connection, like high-end personal digital assistants,

is called the Connected Device Profile Configuration (CDC). The goal of the CDC

is to leverage technology skills and developer tools based on the Java Platform

Standard Edition (SE) and to support the feature sets of a broad range of con-

nected devices while fitting within their resource constraints.

The CDC configuration offers three distinct profiles:

• The Foundation Profile (JSR 219),

• the Personal Basis Profile (JSR 217), and

• the Personal Profile (JSR 216).

For each of these profiles, there is a set of optional packages on which the actual

application runs, like additions for media applications, telephony, or location

services. On high-end PDA, the Personal Profile is the most widespread variant.

2.2. Context-Aware Mobile Applications

Context-aware mobile applications are mobile applications using context to im-

prove the usability, efficiency, and benefit of a mobile application. The next

16

2. Foundations of Mobile Context-Aware Applications

sections describe context in general, how context data is gathered, and the pri-

vacy issues caused by its usage.

2.2.1. Context in Mobile Applications

In mobile applications, context describes information about the user, the capa-

bilities of the mobile device, or the environment of the user or mobile device.

Context can be used for the customization and configuration of services and ap-

plications. In literature, there exist many different definitions of context. Most of

them define context by listing parameters and categories considered as context or

not (Schmidt, Beigl, and Gellersen 1999; Chen and Kotz 2000). The most well-

known and used definition can be found in (Dey 2001) who states that ”Context

is any information that can be used to characterize the situation of an entity.

An entity is a person, place, or object that is considered relevant to the interac-

tion between a user and an application, including the user and the applications

themselves.”

Displaying complex content on mobile terminals represents a significant chal-

lenge. In particular, in the case that one develops a common infrastructure to

serve such content to a multitude of different devices. Some of the mobile devices

have severe limitations and constraints. Therefore, providing adapted content

to each type of terminal requires the consideration of several aspects that are

involved in the adaptation and the delivery of the final content. Context infor-

mation can be used to adapt services or applications automatically and thus can

remove unnecessary interactions with the user or decrease media breaks. For

example, context can be used to adjust the graphical output of a service to the

technical properties of a mobile device by neglecting irrelevant information or

by changing the used output device from a text-to-speech device to a screen if

necessary (e.g. in noisy environments).

Another important area for context usage is to relieve the user from the explicit

definition of context and to automatically generate or derive context information

from sensors (Gray and Salber 2001). For example, the context property “user

is at work” can be automatically derived from the location of the user. As

long as the user is located in or next to his office or working place, the user is

at work (with high probability) and it is not necessary for the user to define

this context property manually. If the description of the user’s situation can be

17

2. Foundations of Mobile Context-Aware Applications

determined automatically using context information, it is not necessary for the

user to define the current situation manually. For instance, when searching for

a train connection in a city, information about the current time (important for

departure) or the location of the next station can be derived automatically by

context information already available and does not need to be specified by the

user. Another important aspect is the discovery of new services which may be

relevant to the user in his current situation.

Finally, context changes may also be used to trigger actions automatically and

to inform the user of newly available possibilities or to start new services. To

enable the usage of context information, context providers (e.g. sensors) and the

services need to have a common notion for the context attributes used.

2.2.1.1. Categorization of Context

Different categorizations of context attributes exist. The most cited high-level

conceptual categorization by Razzaque et al. (Razzaque, Dobson, and Nixon

2005) is shown in Figure 2.1.

Category Semantics Examples

User context Who? User’s Profile: identifications, relation with
others, to-do lists, etc

Physical context Where? The Physical Environment: humidity, temper-
ature, noise level, etc

Network context Where? Network Environment: connectivity, band-
width, protocol, etc

Activity context What occurs, when? What occurs, at what time: enter, go out, etc
Device context What can be used? The Profile and activities of Devices: identifi-

cations, location, battery lifetime, etc.
Service context What can be obtained? The information on functions which the sys-

tem can provide: file format, display, etc.

Table 2.1.: Conceptual Categorization of Context
Conceptual Categorization of Context (source Razzaque, 2005)

Most categorizations are similar, but sometimes have slightly different category

boundaries. The common categories among those are listed below. Another way

to categorize the attributes is the differentiation by data source. This will be

shown in the section afterwards. The most relevant types of context are:

18

2. Foundations of Mobile Context-Aware Applications

Environmental and Network Context Environmental context combines physi-

cal and network context and is everything that describes the situation of the user

but is not to be directly caused by the user or his mobile device. Common envi-

ronmental attributes are for example constructed from nearby objects, weather,

or traffic (Schiller 2004).

Some context-aware systems generate environmental context information from

the position of the user and a projection of the real world into a virtual world.

Therefore, nearby objects can easily be found using the location of the user.

An example is determining the location of nearby stations, restaurants, or taxis.

Other context-aware systems find nearby objects and environmental conditions

by using local sensors, such as RFID readers and tagged objects (Römer, Schoch,

Mattern, and Düben-dorfer 2003). Frequently, environmental changes occur fast

and they are used for triggering automatic actions for the user. However, such

changes are difficult to determine reliably (compare 2.2.3.1) and the reliability of

such changes should be taken into account before triggering any action based on

environmental context.

Device Context Capabilities of mobile devices are valuable criteria for the

adaptation of applications to the technical properties of the mobile device. Such

parameters do not change as often as environmental context parameters since

the device is changed seldom. Relevant context parameters are for example res-

olution, display size, input and output capabilities and the capabilities of a web

browser. These may restrict or forbid the use of some services or applications

entirely and therefore may be used for the selection of suitable services for a user.

There are also dynamic properties in this category such as the currently used

network connection, the available bandwidth, or the latency and type of payment

for the current network connection. Changes in these context attributes can for

example be used to trigger automatic synchronizations when a cheap network

connection (flatrate) is available or to use graphics with decreased quality in case

that only a low bandwidth is available or network traffic is expensive.

User Context The current activity and the role of the user are described by

the user status. This context information contains attributes such as work status

(leisure time versus work time) or if the user is attending an event (for example a

conference). Furthermore, information regarding the role of the user is important

19

2. Foundations of Mobile Context-Aware Applications

(for example, there is a large difference between the user only attending a talk and

the user giving the talk). Such context attributes often determine the availability

of the user and can be used to change the types of event notifications or restrict

services by the time of availability. An example is to switch off graphical event

notifications if the user is involved in a presentation (which can be determined

from the user’s calendar).

Profiles Profiles are often seen as part of the user context, but consist of ex-

plicitly entered information by the user. Profile information is user-specific and

is pre-specified by the user. Such context information determines the way a

user wants to interact with his mobile device or properties of the user. This

information can be synchronized between multiple devices or stored on a server.

Profile information is the most reliable and important source of context infor-

mation, because the user enters this information directly. However, as profiles

contain private and sensitive information, it is important to protect it and to

allow users to restrict their usage to some services and applications (Jarvenpaa,

Lang, Takeda, and Tuunainen 2003). There are three basic categories of profile

information. The first are preferences/likings of the user. Personal information

like gender, age, and family status constitute the second group. Furthermore,

relationships to other users may be used together with their status information

which is the core of instant messaging systems such as ICQ, Skype, and others.

• Preferences: The personal preferences/likings are the most explicit infor-

mation and may be used directly for services or applications.

• Personal Information: Personal information such as gender, age, and family

status.

• Relationships: The user’s connections to other users (relationships) can be

used by context-aware services and applications in conjunction with the

status of related persons or users. Relationship information is at the core

of messenger systems such as ICQ and others.

History Previous decisions of the user are also important context that can be

used for the customization of services. Therefore, it is useful to save the history of

20

2. Foundations of Mobile Context-Aware Applications

user decisions and to use this information for forecasts, determination of context,

or to predict user behavior (Dey 2001).

2.2.2. Context Sensors

Context sensors are the interface from an application to the real world. They

may exist directly within the mobile device or may be located on a server which

is queried over the network. The latter one offers access to data of other users,

but also involves privacy concerns.

2.2.2.1. Local Context Sensors

Several local sources for context information exist which offer some valuable con-

text information. The next sections describe some of them.

Position Location is generally seen as the most important context for mobile

services (Cheverst, Davies, Mitchell, Friday, and Efstratiou 2000). Several meth-

ods exist to determine the user’s position. The most prominent ones are:

• Global Positioning System (GPS)(Kaplan and Hegarty 2005) is a network

of at least 24 satellites. Each transmits the current time (using high accu-

racy atomic-clocks) and the positions of the satellites. The receiver uses the

signal of at least four different satellites to compute the current time, lon-

gitude, latitude, and altitude. It was introduced in the late 80s by the USA

Department of Defense and offers a slightly degraded signal to commer-

cial users (about 5m under good conditions). Many mobile devices today

include GPS chips, but position acquisiton needs a direct line of sight to

the satellites. Using GPS, no position data is available indoors or under a

cloudy sky.

• Galileo is the European system similar to GPS. It will offer a higher accuracy

and should be fully operational in 2013.

• Cell-based techniques use the infrastructure of GSM and UMTS networks.

It is possible to find the approximate position of the user by looking which

antenna and base station he or she uses. Improvements in accuracy are

possible by measuring the time a signal needs from the handset to station

21

2. Foundations of Mobile Context-Aware Applications

(or in the other direction) using different synchronization techniques. An

overview of GSM-based positioning systems can be found in Varshavsky et

al. (Varshavsky, Chen, de Lara, Froehlich, Haehnel, Hightower, LaMarca,

Potter, Sohn, Tang, , and Smith 2006).

• 802.11-based positioning systems The most promising 802.11-based posi-

tioning systems utilize the so-called fingerprint approach (e.g., (King, Haen-

selmann, and Effelsberg 2007)). This technique comprises two stages: An

offline training phase and an online position determination phase. During

the offline phase, the signal strength distributions are collected from access

points at pre-defined reference points in the operation area. They are stored

in a table together with their physical coordinates. An entry in this dataset

is called a fingerprint. During the position determination phase, mobile

devices sample the signal strengths of access points in their communica-

tion range and search for similar patterns in the fingerprint data. The best

match is selected and its physical coordinates are returned as the position

estimate. With this method, a position accuracy of up to two meters is

achievable under good conditions.

Calendar Databases may be a source for information about available free time,

the next location and the current task of the user. This information may espe-

cially be valuable to find a service supporting the user to find a route to its next

destination.

Output Capabilities Tailoring the presentation of an application needs infor-

mation about the output capabilities of the device. This data got increasingly

dynamic in recent years. Some mobile phones are now equipped with TV outputs,

are able to communicate with video projectors over WiFi, or may use heads-up

displays in cars.

2.2.2.2. Remote Context Sensors

Using a remote connection, several additional context sources are available. While

these do potentially offer important data, they often pose a problem for privacy

protection. This issue is discussed in more detail in chapter 3.

22

2. Foundations of Mobile Context-Aware Applications

Weather While the weather is easily observable by the user, it is hard to “mea-

sure” it on a mobile device which may potentially be in a pocket. Therefore. a

remote service may query a weather database using the user’s position and return

the current weather or a forecast.

Company Schedules In a business environment, it is important which meeting

rooms are occupied and which other people are available. Furthermore, social

graphs may be used for further inference about likeliness of conversations or the

need to meet.

Traffic and Timetables Calculating available time slots involves the place of

the next meeting and the optimal routes under the current conditions. The

quality of the data may be increased with current traffic or delay data.

Context Sharing Scheduling of ad hoc meetings does not only need the position

and the task of one user, but also of the colleagues or friends. This information

may be stored centrally on a server (Grossmann, Bauer, Hönle, Käppeler, Nick-

las, and Schwarz 2005) if all users trust the provider of this service. In contrast to

that, peer-to-peer exchange of context information is possible with several mech-

anisms. One possibility is the use of instant messaging applications as transport

for context data (Leiner 2006).

2.2.3. Quality of Context Data

As mentioned in the previous section, there are multiple sources of context infor-

mation. Most of these sources have some technical limitations of accuracy and

resolution or are based on inference from other context sources which in turn

may degrade the resolution and trustworthiness of context information (Buch-

holz, Küpper, and Schiffers 2003).

From a user’s point of view, the use of inaccurate or wrong context informa-

tion is a larger problem than neglecting the context data entirely. Furthermore,

derived context attributes rely on a minimum quality of other context attributes

they are based on. For example, when determining context information about

the role of a user in a presentation (e.g. to determine the type of user notifica-

tion), the accurate measurement of the user’s position can be important. It can

23

2. Foundations of Mobile Context-Aware Applications

be assumed that the user is currently speaking if his position is next to the pre-

sentation devices. In constrast, it can be assumed that he is only listening to a

presentation in the case that he is constantly located more than five metres away

from the presentation devices. Therefore, an accurate measurement of the user’s

position is important for determining the derived context information “user is

giving/not giving a presentation”. In contrast, when navigating the user to the

room for the presentation, an accuracy of five metres may be precise enough to

guide the user to the conference room.

New context information can also be derived from other context attributes by

inference (Shehzad, Ngo, Pham, and Lee 2004). For example, a context attribute

containing the current city can be derived from the geographical location of the

mobile device and a city database. For determining new context information,

the reliability and accuracy of the used information context is important. When

determining the city from the user’s position, determining the user’s position

with low accuracy near a city border would lead to a low probability value for

the city.

An important issue of context information is private and public context in-

formation. Usually, the user wants to restrict the usage of private context in-

formation by the service or application provider. Common ways to restrict the

usage is to either not give context information to the service provider or to re-

duce the quality of the context information that is given to the service provider

(“blurring”).

2.2.3.1. Quality Losses due to Measurement

The context information accuracy loss can be divided into losses due to techni-

cal limitations or deliberately introduced errors to protect privacy. In general

technical losses are dominant because the others would be stopped by the users

if quality deteriotes too much. For example, GPS devices for determining the

user’s location have an accuracy of about 15 metres in open field while having

a much worse accuracy within cities with limited sky visibility or skyscrapers

blocking the line of sight to the satellites. Therefore, it is important for services

and applications that make use of context to know about the quality of the con-

text information. Determinants of quality of context information are accuracy,

reliability, and time lag.

24

2. Foundations of Mobile Context-Aware Applications

Accuracy The resolution or accuracy of context information usually depends

on the technical capabilities of the sensors. In the simplest form, accuracy can

be expressed by a confidence interval, which is a range of values where the cor-

rect value is inside with a certain high probability. Depending on the type of

context matching, a context-aware system could then consider this information

by either assuming the center of the interval as the correct value or ignoring it

entirely. An advanced form for considering inaccurate context information is to

use probability distribution functions. However, such functions are not available

for every measurement tool and difficult to evaluate.

Reliability Most context attributes (especially if expressed as Boolean values)

have a level of reliability. For example, the reliability of the context information

“user is / is not attending a presentation” depends on other context information

and may be more or less reliable. To deal with the reliability of context infor-

mation, probability values can be assigned to context information in order to be

able to consider the trustworthiness during context evaluation. Trustworthiness

also plays a role when data entered by other users is used as context information.

Here, an anticipated probability of the other user’s trustworthiness can be helpful

for deciding if the value is important.

Time Lag Not every context sensor may be able to constantly supply all rele-

vant context data at all times. Therefore, context information can be outdated

or change over time. To solve problems with time lags, the time of context ac-

quisition should be explicitly noted and transmitted to better utilize the context

information. Combining time lag of context sensors with the history of context

changes can be helpful for making use of context information with time lag.

2.2.4. Context Representation

Different approaches are used to present context data and to model the context

of a user.

Key-value models The easiest form of context representation is the storage in

map with values for pre-defined keys. For instance, the set of coordinates could

be the value for the key “User Location”. These models do not store any kind of

25

2. Foundations of Mobile Context-Aware Applications

meta data like the accuracy of the values and they do not offer structured data

which represents compound data.

Markup scheme models A widely known markup language is the eXtensible

Markup Language (XML) which is derived from the Standard Generic Markup

Language (SGML). Semi-structured models usually use XML. A characteristic

of this model are hierarchical data structures(Strang and Linnhoff-Popien 2004).

For instance, one might create the following markup to model the context at-

tribute “network bandwidth”:

<context>

<network>

<attrib name="bandwidth" type="mbit">10</attrib>

</network>

</context>

In contrast to the key-value based models, those models are able to specify

meta-data like types (the type attribute in the above example) or dependen-

cies(Indulska, Robinson, Rakotonirainy, and Henricksen 2003). Furthermore, the

XML documents can be validated against a schema which eases the verification

of the data.

Object-oriented models Encapsulation in software engineering ensures that

operations on and access to data are performed through a well-defined inter-

face, shielding complex internal workings from the outside. Inheritance means

that more specialized functionality can be derived from a set of basic function-

alities by simply adding new or modified parts while keeping the parts that

are common to the specialized and the general case. These concepts facilitate

reusability. Object-oriented context models try to apply the same principles in

order to manage the complexities of representing and handling context informa-

tion. In that respect, they succeed quite well as they can easily be implemented

using today’s computing systems and allow for the inclusion of dependencies

and meta-information. Using object-oriented programming languages, provid-

ing meta-information as well as defining and listing dependencies, is mostly a

question of designing suitable interfaces for context-handling classes(Strang and

Linnhoff-Popien 2004).

26

2. Foundations of Mobile Context-Aware Applications

Figure 2.2.: Partial Definition of a Context Ontology, source: Wang (2004)

Logic based models Context can also be expressed in highly formalized logic

based models by using facts, rules and expressions. However, logic based models

are not very useable on mobile devices since they require a high complexity in

their evaluation (Strang and Linnhoff-Popien 2004). General logic reasoning is

inherently non-deterministic and thus evaluation algorithms do either not guar-

antee to produce a result in a finite period of time or have exponential runtime

and high memory consumption (Schöning 2000).

Ontology based models Originally, ontologies have their seeds in philosophy

which have been coined differently in the field of computer and information sci-

ence(Floridi 2003). In computer science, ontology refers to “an engineering arti-

fact, constituted by a specific vocabulary used to describe a certain reality, plus

a set of explicit assumptions regarding the intended meaning of the vocabulary

words” (Guarino 1998).

An examplary meta model is shown in figure 2.2. The strengths of ontologies

are:

• power of expression: context can be formally modeled as a set of concepts

and their relations. Subconcepts are capable to define more specific cases

of general concepts and context can be enriched using meta-information. In

figure 2.3, a subconcept for the example above that shows the more specific

home domain is given;

27

2. Foundations of Mobile Context-Aware Applications

Figure 2.3.: Definition of a Specific Ontology for Home Domain, Source: Wang
(2004)

• support for logic inference: higher level context information can be derived

from raw context data and context data can be checked for inconsistencies.

Ontologies are limited to specific application scenarios as a universal context

ontology that covers every conceivable piece of context information for all aspects

just might not be attainable(Wang, Zhang, Gu, and Pung 2004). Also, support

for logic inference generally poses the same high processing requirement found

with logic based models.

Graphical Models Graphical context models are aimed at improving formality

and expressiveness in context modeling in the design phase.

An example of adding quality information to a context model in the form of

freshness and accuracy indicators is shown in figure 2.4. Graphical models are not

primarily for the actual realization, though some approaches can be adapted quite

well to enable context management in database-driven environments, because

they are based on entity-relationship diagrams which are commonly used to model

databases(Henricksen, Indulska, and Rakotonirainy 2003).

28

2. Foundations of Mobile Context-Aware Applications

Figure 2.4.: Graphical Context Model, source: Henricksen (2003)

2.2.5. Design Patterns for Development of Mobile

Applications

The previous sections outlined the requirements of context-aware mobile appli-

cations. Several definitions and classifications of context and different types of

context models to describe context were shown. Besides the need for context

models several design techniques are needed to overcome the technical limita-

tions of many mobile devices in contrast stationary computers (cf. 2.1.3). Also

the high dynamic in usage situations requires special attention. The following

sections will show several software design patterns which were choosen as guiding

principles to solve some of the technical problems.

Design patterns are simple and concise solutions for common programming

problems. Here, they will be used to show the best practices for mobile appli-

cation development. The architect Christopher Alexander (Alexander, Ishikawa,

Silverstein, et al. 1977) is generally seen as the mental father of the design pattern

movement. In the area of software engineering, design patterns became popular

by the work of Gamma et al. (Gamma, Helm, Johnson, and Vlissides 1995).

Their structure follows certain rules and is based on the following elements:

• Pattern name: The name of a pattern is usually short, yet descriptive, and

acts as an addition to the design vocabulary.

• Problem: Patterns should include a short description of the problem they

intend to solve.

29

2. Foundations of Mobile Context-Aware Applications

• Solution: The solution to the problem is described in a generally applicable

way. The elements of the solution are described along with their relation-

ships and responsibilities.

• Consequences: While the main consequence of using the pattern is the

solution to the problem, there do often exist side effects. In order to make

it easier to understand the trade-off involved in using the pattern, it is

important that the potential drawbacks are explained.

As a matter of course, this is not the only possible structure for describing a

pattern, in fact Gamma et al. also provide an extended schema (Gamma, Helm,

Johnson, and Vlissides 1995) and other authors offer alternative descriptions as

well (Fowler 1997).

A design pattern documents a comprehensive solution for common tasks during

the program design that evolved through experience into a useable solution for

many situations. The engineering task during the object-oriented software design

is to find a suitable design pattern for a given programming task or many design

patterns which together solve the problem.

The documentation of the design patterns helps in the design process from

completing requirements of the given problem to the realization in a programming

language. It also acts as a foundation for discussion between the developers about

the solution.

The primary use of a design pattern lies in the documentation of a solution for

a given class of problems. Design patterns are generally language independent.

During the design phase of object-oriented software, they are an accepted tool to

foster the design process.

The ability to efficiently discover, manage, and use services is of essential im-

portance for the design of mobile solutions. Hereby many problems have to be

solved.

Memory constraints Memory is a scarce resource in mobile devices. While

many devices feature more than one gigabyte of flash memory for long-term stor-

age, the amount of random-access memory for executable software is generally

lower than 128MB. Among other things, the deallocation of no longer used ser-

vices is important to deal with this scarcity. This section will show different

30

2. Foundations of Mobile Context-Aware Applications

design patterns for the implementation of an infrastructure which could be used

for mobile clients.

In the case of mobile clients, the use of the Evictor-Pattern (Henning and

Vinoski 1999; Jain 2001) is the most relevant solution. This approach tries to

reach the goal of an efficient use of services through monitoring. Every time a

service is accessed, a marker is set. Services which are not used for a long time

(least recently used – LRU) or which are used only rarely (least frequently used

– LFU) are candidates for deallocation. The deallocation of services may happen

periodically or explicit at any time. The pattern involves the following four roles:

• User is using the resource

• Resource offers a specific functionality

• Evictor is the instance which is responsible for the eviction of the resources

• Eviction Strategy defines the criteria for the eviction of resources

The main advantage of this design pattern is transparency for the client, i.e.

the mobile client does not have to take care about the eviction of his used ser-

vices. The eviction of no longer needed resources is also possible during technical

problems, such as a loss of network connection. The only disadvantage is that

the client application has no chance to reject the eviction of a service. This dis-

advantage is that you need a mechanism to easily to deal with the configuration

of the eviction strategy.

Disconnected Operation Another problem is the fact that not every service

is always available. This may in turn be caused by technical problems (such as

loss of connection) or a changed location. In this case, the Leasing-Pattern (Jain

and Kircher 2000a) could be used. This pattern is based on a method that does

not offer a service for an unlimited time, but only for a limited period. When

the time is over, there are different possibilities. The leasing-concept, which is

used e.g. in Jini (Inc. 2003) and is also specified by Sun, was disregarded for

mobile location-based patterns in the past. This concept is not only useful for

Jini, as the work of Jain and Kircher (Jain and Kircher 2000a) suggests which

even talks about a “Leasing Pattern”. The authors focus on the exact details

of the problem, the structure, and their possible variants. In technologies which

31

2. Foundations of Mobile Context-Aware Applications

do not support the leasing concept directly, such as Common Object Request

Broker Architecture (CORBA), the concept can be realized through a special

service (Aleksy and Gitzel 2002).

The leasing concept involves four roles:

• Resource, which offers a specific functionality

• Resource Claimant / Holder is the component willing to use the resource.

It may only use the resource if it owns a lease.

• Lease is the link between the resource and the resource claimant. It offers

the functionality to free a resource prematurely or to extend the leasing

time if possible.

• Lessor / Grantor is the main management part. It manages the assignment

of the resources to the claimants.

Reconfiguration Furthermore, there are some more design patterns which assist

in the dynamic reconfiguration of software components, e.g. the Service Configu-

rator (Jain and Schmidt 1997) or the Component Configurator (Schmidt, Rohnert,

Stal, and Schultz 2000). Even more related patterns may be found in Welch et

al. (Welch, Marinucci, Masters, and Werme 2002).

The Design Patterns Lazy Acquisition, Virtual Proxy, and Virtual Component

may be used in the field of client-development for mobile applications. They

especially take things like the conservative use of resources into account and

foster the development of adaptable applications.

The second category of the shown Design Patterns is–directly and indirectly–

concerned with the client and the service part of the application. For example, the

Lookup Pattern works as a link between the client part of a mobile application

and the (potentially) used services. The use of the Evictor Patterns frees the

mobile client indirectly from the use of elaborate and complex algorithms for the

efficient utilization of resources.

Other Design Patterns, i.e. Component Configurator or Service Configura-

tor, are concerned with the configuration of services and may lead to a higher

flexibility.

32

2. Foundations of Mobile Context-Aware Applications

Discovery The following paragraphs introduce different design patterns which

can be used for the discovery of available services. First aspects of the client

applications are examined. Later on, the necessary approaches for the server-

based infrastructure are shown.

To utilize a service, a mobile client needs to have the ability to discover available

services in a dynamic environment. The offered services could differ depending

on the context of the user. This brings in the necessity to decouple the client

from the services.

A possibility to solve the first problem would be to let every service periodically

broadcast a beacon and make itself known to the clients and thus its potential

users. An alternative would be to let every client announce its availability via a

broadcast message and every available service sends a reply.

Both techniques are not scalable in the internet and any other unicast network

since the broadcast traffic increases with every user and service.

One common solution to this is the Lookup-Pattern (Jain and Kircher 2000b).

It involves three roles:

• Client, which uses a service,

• Service offering a certain functionality,

• Lookup Service, which allows other services to register. Clients could use

this service to find other services.

This approach is used in different popular technologies, such as the Common

Object Request Broker Architecture (CORBA) (OMG 1995). Further patterns

concerning service discovery—more exactly a complete pattern language—are

described in (Pärssinen, Teemu, and Eronen 2005).

Flexibility The dynamic behavior of mobile applications is also a challenge for

developers. This means that they should not be coupled directly with a service.

To decouple the possible heterogeneous mobile clients from the services, the Ser-

vice Abstraction Layer-Pattern (Vogel 2001) may be used. This design pattern

adds another layer between the client-applications and the services. This may be

realized using the Facade-Pattern (Gamma, Helm, Johnson, and Vlissides 1995).

The Service Abstraction Layer boosts aspects as separation of concerns, generic

request handling, controlled evolution, and communication transparency.

33

2. Foundations of Mobile Context-Aware Applications

In this way, it is possible to tailor services to client applications which are

specific to a location or which have different abilities, such as different Quality-

of-Service-Characteristics (QoS).

Through the constantly changing business processes and the ongoing advent of

emerging technologies, the “Separation of Concerns” (Vlter, Kircher, and Zdun

2000) principle should get special attention. This is, together with the presented

patterns, an integral part for the development of platform- and language-neutral

mobile applications.

Another problem, which has to be solved, is the efficient use of the resources

of the mobile client device. Despite the amazing technical advancements with

respect to memory or available bandwidth, these resources are scarce in mobile

devices. At this point, one could use patterns such as Virtual Proxy (Gamma,

Helm, Johnson, and Vlissides 1995). It creates “proxy” objects which dynamically

load “expensive” objects on demand and thus save active memory. For similar

reasons, patterns such as the Lazy Acquisition-Pattern (Kircher 2001), which aims

to acquire memory as late as possible, were created. It is based on the following

four roles:

• User, who wants to use a specific resource,

• Resource, which offers a specific functionality,

• Virtual Proxy, which offers the same interface as the resource it represents

and functions as local stand-in,

• Resource Environment, which is responsible for the management of the

resources.

Furthermore, the Virtual Component (Corsaro, Schmidt, Klefstad, and ORyan

2002) helps with the aspects of high configurability and flexibility at run-time.

This pattern includes six elements:

• Component defines the interface to use the functionality of the Component,

• Concrete Component is the concrete implementation of the Component

which offers the ability to load only the needed parts of the component,

• Component Factory offers an interface and a method to create the compo-

nent,

34

2. Foundations of Mobile Context-Aware Applications

• Concrete Component Factory is a concrete implementation of a Component

Factory which instantiates the Components,

• Loading Strategy decides when to load a Component and when to instantiate

it,

• Unloading Strategy decides when and if a Component and its associated

resources should be freed.

The interface of a Component represents a building-block of an application

and is realized through a Concrete Component. For the creation of Concrete

Component instances, the corresponding factories are responsible which could

use different Loading/Unloading-Strategies.

2.3. Privacy in Context-Aware Applications

Context-awareness provides many benefits for the adaptation of an application

to the current task for the user. However, with the advent of mobile devices,

which are carried by a user all the time and are always-connected, the protection

of the user’s privacy became an important challenge. While the applications are

collecting more and more information from sensors and recording the habits and

preferences, the potential for intrusion of the user’s privacy becomes even bigger.

As Westin defines privacy as “the claim of individuals, groups or institutions to

determine for themselves when, how, and to what extent information about them

is communicated to others” (Westin 1967), the user must have the possibility to

deny the transfer of personal information.

Many studies show that privacy is one of the main issues users are facing in

context-aware systems (Barkhuus and Dey 2003; Bauer, Reichardt, and Schuele

2005). Privacy also has an economic value for both the user of a service and

the provider, which shows an incentive to invade the privacy of the user (Varian

2002). The increased availability of private data also increases the risk of identity

theft (Berghel 2000).

One way to improve the privacy is to make all outgoing data anonymous on the

way to the service provider(Tatli, Stegemann, and Lucks 2006). Here, problems

arise when subscription services are used which need some kind of authentication.

35

2. Foundations of Mobile Context-Aware Applications

Another way to compromise the privacy is the physical theft of a device, so

encryption of personal data is needed.

Besides protecting information, there needs to be a way for users to decide

which pieces of information may be shared with whom. With a large number

of service providers and peer-to-peer users, there needs to be a system which

is capable of determining the user’s preferences from a small set of questions.

(Leiner 2006; Hull, Kumar, Lieuwen, Patel-Schneider, Sahuguet, Varadarajan,

and Vyas 2004)

Privacy and data security do have different implications for consumers and

companies in B2B enviroments outlined in the following sections.

2.3.1. Consumer Privacy

Consumers often do not see the problems of privacy invasion immediately since

they do not have the knowledge how their data can be combined and aggregated.

It is often underestimated how easily one can uniquely be identified with only

some small amount of data. Sweeney showed with the US Census Data of 1990

that 90% of the US population can be identified with only their gender, ZIP

code, and date of birth. With a textual representation of the place (which could

be city or town), about 53% are still uniquely identifiable(Sweeney 2000). Golle

re-examined the 2000 US Census Data and showed that even if you substite the

“place“ with the “county” 14.8% are still identifiable and 43.6% are 5-anonymous2

or less (Golle 2006). The problems often surface after using the services for a while

and then a consumer backlash may happen after some negative press coverage.

Big social networks collected a lot of data of their users and they were willing

to make them available in large quantities. After they started to do targeted

advertising using this data, many users began to feel uncomfortable with the

large scale data collection (Gross and Acquisti 2005).

Besides the data collection of cooperations, the large-scale surveillance of the

citizens by their government creates another privacy risk for people. The govern-

ment has access to the data of the service providers in many jurisdictions, which

is worsened by the multi-national nature of most big cooperations. The extreme

cases of surveillance and their consequences are outlined in classic novels. Orwell

portrays in “1984” (Orwell 1949) a totalitarian state which monitors all citizen

2k-anonymous means that someone is hidden indistinguishably in a group of size k

36

2. Foundations of Mobile Context-Aware Applications

and enforces the strict rules of the state. In contrast to this, Kafka shows in “Der

Process” a state which is not perceived as “bad” by the protagonist, but the vast

information collected leads to some false accusations and a trial (Kafka 1925).

These fictitious stories show some of the problems of privacy invasion by states

and are in part transferable to large corporation aggregating vast amounts of per-

sonal data. A full analysis of these privacy problems and the common argument

“I’ve got nothing to hide” is given by Solove in his article with the same name

(Solove 2007). One recent example of government regulated data retention abuse

was unveiled in May 2008. The Deutsche Telekom used telephone connection de-

tails to spy their supervisory board. This led to an increased awareness by their

customers and many stated that they will change their telephony behavior3.

2.3.2. Data Protection in B2B Environments

The need for data protection in B2B Environments is even more obvious than

in B2C environments. Companies do have their sensitive data and do not want

to give any valuable information to their competitors. This is especially true in

environments with always changing partners. One industry especially interesting

for mobile services is the construction industry. The ever changing building site

prohibits an extensive use of desktop PCs and a pre-built infrastructure. Also the

distribution of workers between many sites complicates the monitoring of tools

and workers. Increasing complexity of engineering and construction processes

leads to virtual organizations for a single project involving shared processes.

“These processes span enterprises, potentially in different countries or economic

zones and are possibly subject to export restrictions. Each partner providing a

major sub-system (e.g. engine, fuselage of a civil aircraft) also has a network

of component suppliers and logistics support. These production processes are

complex and may require re-scheduling in the case of delays in deliveries, etc. This

may necessitate the sharing of process information (so-called “process visibility”)

across the VO, entailing flexible security systems that control access to internal

information.” (Dimitrakos, Golby, and Kearney 2004).

Notices about delays have to be passed on over organization boundaries but

may not reveal too much about the supplier network of each participant. For the

varying virtual organizations, different services are needed and therefore it would

3Die Zeit, 5.06.2008, page 1

37

2. Foundations of Mobile Context-Aware Applications

be desirable to easily use components of partners without the possibility of data

leakage.

2.3.3. Private and Public Context

In most current mobile applications, all context information is used and trans-

ferred to a server that offers the requested information or application. However,

when dealing with context information, privacy issues are very important. If

privacy issues are not considered appropriately, end-users will not adapt and use

new services (Ho and Kwok 2003). Therefore, mechanisms are necessary that

allow end-users to control the usage of context by mobile services or applications

(Ackerman, Darrell, and Weitzner 2001).

Many context attributes are naturally very personal and breach the privacy of

the user considerably. To overcome the user’s fears of privacy loss, it must be

possible for the user to declare context information as private or public. Public

information may be used by service and application providers, but not private

information. There are also intermediate states of context information possible

by reducing the quality of context information (“blurring”). Then, the user

intentionally reduces the quality of context information. A common example

is disguising the user’s identity when using specific services by using a slightly

changed age or location.

Blurred and public context information often includes enough data for the

service provider to pre-configure a service while still making it hard to track the

exact context of a user. The existence of blurred and private context results in a

situation in which the service provider can consider less context information than

the mobile device for the customization of services. However, the mobile device

often does not have the technical capabilities to perform extensive configurations.

Therefore, mechanisms are necessary that consider the tight hardware restrictions

of mobile devices and which can use the private or blurred context information

for a user-specific configuration of services on the mobile device (Leiner 2006).

When searching for reasons that explain the low usage of advanced mobile

applications and services (Ho and Kwok 2003), privacy issues are seen as an im-

portant, but often neglected, barrier for a widespread use of such services. Users

do not want to give private information like user profiles, information about the

environment, or other types of context to a service provider, but restrict or pro-

38

2. Foundations of Mobile Context-Aware Applications

hibit the usage of such information. Solutions which differentiate between private

and public contexts are needed: Using a service or an application, public context

information can be sent to a service provider and used for the personalization

and customization of the service. In contrast, private information is not sent or

substantially degraded in its quality before sending.

Each user chooses which context attributes are private and which may be used

outside of his mobile device. Furthermore, he may choose to deteriorate the

quality of some attributes in order to decrease the possibility to be tracked by a

service provider.

39

3. Service Discovery

Mobile devices became ubiquitous companions for most people in industrialized

countries. Those devices are getting more powerful and they combine ever more

functions like a camera, a music player, an organizer, and a telephone. An in-

creasing number of mobile phones includes a bunch of sensors enabling them to

know their current location or measure acceleration and gestures.

Using these features, new types of services and applications are possible which

assist people in many common situations. Nevertheless, no single mobile “killer

application”, dramatically increasing usage of mobile services, has been found.

Instead people need many services tailored to different usage scenarios, would be

able to fulfill together many personal user needs in varying circumstances. So, a

bundle of services is more suitable to increase the benefit of the mobile devices

(Stremersch and Tellis 2002). Not all necessary services can be anticipated before

production or even fit into the memory of a single device. Therefore, an important

functionality is the discovery of further suitable services for a user, depending on

his location, task, or, more general, his current context. In this case, a service

could be a software downloadable to the device, a remote service accessible over

the network, or a physical shop or person offering some business service needed

by the person to follow his current intention.

In this chapter, a generic search scenario is described. Based on this scenario,

the foundations outlined in the previous chapter and the current literature re-

quirements for a discovery service are derived. Special attention will be given on

the privacy aspect whose importance was outlined in the previous chapter. It

is followed by an overview of existing approaches and an analysis of their qual-

ity with regards to the requirements. Afterwards, a concept for a privacy aware

service discovery is illustrated and a prototypical implementation is presented.

Based on the concept, the suitability of the concept for routing and navigation

services (which are similar to a service discovery) is shown. The chapter con-

40

3. Service Discovery

cludes with an evaluation of the concept based on the evaluation criteria from

the requirements.

Illustrating the basic concept for a service searching for restaurants, this ex-

ample should be used as a representative for discovery services that are initiated

by a mobile user and return a list of search results – in this case a list of restau-

rants or software components matching the current desire of the user. Discovery

services are offered by service providers and only the outcome of the search – a

list of search results – is sent to the mobile device of a user. Using discovery

or search services, usually user-specific context information like location, prefer-

ences, time, and other context information, is considered in the search. A sample

scenario could look like this:

The mobile device senses the location of the user within a range of several

meters, has the profile data indicating that the user is a smoker, and only wants to

pay with credit card. The user declares the context information “pay with credit

card” as private, meaning that no potentially untrustworthy service provider

should know about it. Furthermore, he does not want to give his exact location

to the service provider, but reduces the accuracy of the context information

“location” to a few hundred meters. The context information “smoker” is used as

public context since it is not seen as sensitive by the user. Now, the user wants

to the find best suitable services beneficial in his current situation. The main

challenge is to find the service without disclosing too much data. A software

implementation for this scenario is presented in chapter 6.

Navigation is often linked to service discovery, especially if physical services

instead of web services are searched for. Making use of a business service usually

requires getting to the physical location of the service. Navigation to the place

of service is a consequence if the user does not know the region. Similar to the

discovery of relevant services, the routing between the current position and a

destination offers many possibilities to infer something about the identity and

the context of the user. Even if navigation is performed by a different service

provider, it could use the destination in order to limit the number of potential

services to a few and the starting location to infer something about the previous

activity of the user. Therefore, the current position and the destination has to

be hidden and a privacy preserving routing algorithm has to be used.

41

3. Service Discovery

3.1. Foundations of Context-Aware Service

Discovery

Based on the previous chapter and a literature review on user requirements, the

following important requirements for a reusable context-aware service discovery

were identified as especially important.

Extendable Kaasinen states that “Users are different and they may use the

services for many different tasks, even for tasks that were not anticipated in

the design” (Kaasinen 2003). Having a pre-defined set of rules to find service

types according to a context would set barriers for new usage scenarios or new

kinds of services. This excludes a pre-defined set of service attributes which are

hard-coded into the mobile application and fixed rules about relation between

attributes and a specific service.

Reusable Being part of a framework which should allow creation of arbitrary

context-aware applications, the service discovery must be reusable together with a

partial concrete implementation of the problem solution (Wirfs-Brock and John-

son 1990). In the domain of a context-aware service discovery, this means that

it should be useable to discover different kinds of services in varying application

domains. It is therefore linked to the first requirement of extendability.

Privacy In section 2.3, important privacy literature was reviewed. Especially

the issues in context-aware service discovery were researched, amongst others,

in (Kaasinen 2003): “In our group interviews, people were worried about their

privacy and the ’big brother’ phenomenon when considering services enabling

people to be located”. A solution therefore has to respect the privacy of the user

and always make the used data transparent to the user.

Learning from previous behavior The personal preferences of each user are

different (Bauer, Reichardt, and Schuele 2005) and so may be the individual

weight of varying context attributes. A search for services and mobile applications

should be able to improve its results over time, based on the user’s decisions in

the past.

42

3. Service Discovery

3.2. Existing Approaches

The PARCTab project(Schilit, Theimer, and Welch 1993) research has focused on

the subject of context-sensitive (context-aware) service discovery. Other research

projects focused on context-sensitive service discovery in earlier times which has

been related to hardware, like near-by printers or other low-level services. In this

section, a brief overview on related work is given with regard to service discovery

using contextual information.

In the CB-Sec project (Mostefaoui and Hirsbrunner 2004), an architecture has

been developed focusing on service discovery of web services using contextual

information. Therefore, a service description schema has been developed that

includes a set of constraints, requirements, and context functions that are used

by a brokering agent to evaluate, filter, and rank services which fit a given set of

context best. Context is collected by the context gatherer that receives contextual

information from software and hardware sensors and is stored over time in the

context data base that is available to the whole system. Context attributes that

are used for service discovery are, for example, the location of people, device and

service capabilities, context history, time of day, and others.

Kuck et al. present an approach for context-sensitive discovery of Web Services

that is based on matching the user’s context and enhanced service descriptions

using information from WSDL descriptions and a UDDI repository. Their service

description includes inferred information of syntactical and textual contents of a

WSDL description as well as feedback information, e.g. the context at the time

of service recommendation (Kuck and Reichartz 2005).

In the COSS approach (Broens, Pokraev, van Sinderen, Koolwaaij, and Costa

2004), ontologies are used for the context and service descriptions. Service adver-

tisement and service requests are represented as documents, while service requests

include attributes defined by the user. An attribute like “nearby” is enhanced

by rule that is evaluated during the matching process, for example the user’s

location is within a certain distance to the service’s location. In the COSS ap-

proach, context providers deliver the necessary contextual information needed

for the matching process. Related to the WASP project, a service platform for

mobile context-aware applications has been built up (Pokraev, Koolwaaij, van

Setten, Broens, Costa, Wibbels, Ebben, and Strating 2005).

43

3. Service Discovery

3.3. A Novel Service Discovery Concept

All approaches in the previous sections are based on a centralized discovery al-

gorithm which uses all available context information to match them against the

available services. The matching services are then presented to the user for fur-

ther inspection and selection. Depending on the approach, this matching phase

is performed on the device of the user or on a server. There are approaches using

a hierachical system forwarding a request to the next server depending on a first

broad match (e.g. (Grossmann, Bauer, Hönle, Käppeler, Nicklas, and Schwarz

2005)), but there is still one central server which gets all context data at one

time. The privacy protection is enhanced by using anonymization which removes

the connection of subsequent queries by destroying the session or randomizing

the IP address of the connecting device (for an overview see (Tatli, Stegemann,

and Lucks 2006)). This certainly decreases traceability for many use-cases, but

only works with a high number of users and non-identifying context attributes.

Having something like the home address as context attribute allows easy corre-

lation of a request with a specific user. Executing the whole service discovery on

the client eliminates the privacy issues, but the number of discoverable services

would be limited because of memory and bandwidth constraints.

Goal of this chapter is a concept which combines the large number of available

services with the high degree of privacy protection. A solution relying only on the

servers or only on the client to run any discovery was shown to be not feasible.

Therefore only a distributed approach can be used. The concept shown here

distributes the discovery between one or multiple servers and the mobile client

to combine the advantages of good privacy protection and an unlimited number

of services to choose from. The concept is described in the next section detailing

the representation of context data, a context manager to gather and store the

data, the discovery server component, and the mobile client component.

In summary, the client sends a representation of the public context attributes

to a discovery server. This server then performs a broad matching in order to find

a list of potentially suitable services and returns this list together with some rules

on how to refine the results using further, potentially private, context attributes.

These rules will then be processed by the client component to find the final result.

An overview of the process can be seen in figure 3.1. Detailed rationale behind

these design decisions is given in the respective sections.

44

3. Service Discovery

Figure 3.1.: Service Discovery

3.3.1. Context Representation

An overview of different context representations is given in section 2.2.4. In our

concept the representation of context data has to be useable for the transmission

of data to the server and for the refining rules sent back to the client. The

representation may not include any datatypes requiring knowledge besides the

ones available at build time, but still has to be extendable to any new context

attribute.

Key-value models do not offer any semantic or even metric for the values and

therefore can not be used to refine the search on the client side (cf. 2.2.4). Logic

or ontology based models would have a very high computational cost on the

client.

Therefore a markup-based representation was chosen which is easily extensi-

ble and offers four primitive types represented in different forms. Any context

attribute has to be expressed using one of these primitives or a combination of

them. The primitives were choosen in a way to accommodate a large list of con-

text attributes. For each primitive, a representation for a single value and for a

45

3. Service Discovery

set or range of values does exist. Using these different representations, the current

context as well as the rules to refine the search results can be expressed. These

sets or ranges can be used to describe the range for which a service is applicable.

Each context attribute needs a well-known name and has to be expressed using

one of the four primitive types. If an attribute is unknown, it is still possible to

match its value with a rule only by knowing its type and name.

The primitives are:

• Coordinates: a Coordinate is represented in different coordinate systems.

The defaults are carthesian coordinates. Sets may be expressed as circles

around a point and every point within a polygon.

• Time: a Time consists of a date and a time of day. Ranges are expressed

as daily, weekly, monthly, or one-time intervals.

• Number: a Number is an arbitrary precision decimal number or a range

with a lower and upper bound.

• String: a String may represent any nominal type. It may match a single

String, a set of Strings, or a regular expression.

Table 3.1 gives an overview of the types and their elements in their serialized

form.

Primitive Type Elements

Coordinates: CircleContextAttribute Center, Radius
PointContextAttribute Latitude, Longitude, Altitude
PolygonContextAttribute Point (1 or many)

Time: DailyTimeIntervalContextAttribute Weekday, StartTime, EndTime
DateRangeContextAttribute StartDate, EndDate
MonthlyTimeIntervalContextAttribute DayOfMonth, StartTime, EndTime
SingleDateContextAttribute Date, Time
Time Hour, Minute, Second

Number: NumberRangeContextAttribute Start, End
SingleNumberContextAttribute Value

String: SingleStringContextAttribute Value
StringSetContextAttribute Value, Value,...
StringRegExpContextAttribute RegExp

Table 3.1.: Primitive Types of the Context Representation

A context attribute using one of these primitive types can then easily be com-

pared to another representation of the attribute in the case that only the primitive

46

3. Service Discovery

type is the same. Using this scheme two sets of context attributes are easily com-

parable on the mobile device without a large amount of processing power. Two

sets of attributes “match” if and only if

• each attribute name appears in none or both sets,

• those with the same name have the same primary type, and

• the value in one set is contained in the other set’s attribute.

An attribute value is “contained” in another one if

• both are an exact value and both values are equal,

• one is a range/region and the exact value is contained in the range, or

• both are a range/region and both overlap.

3.3.1.1. Quality of Context

Any attribute having continuous values may be imprecise. This may be caused

either by error of measurement or by purpose to reduce the invasion of privacy.

An example for the latter case would be the decreased precision of the current

position of the user which is sent to a service. This impreciseness would cause

problems for the matching of a region/range and a position/number. A service

could be valid in a circle of 1 km around a point and the user only knows its

position with an accuracy of 500 m. While using the primitives mentioned above,

a point with a distance of 1300 m to the center of the circle would be outside the

circle. This decision may be incorrect if the accuracy is taken into account.

Therefore, each continuous type may contain an accuracy attribute indicating

the confidence interval of the data. Positional types contain a vertical and a

horizontal accuracy, measured in meters, number ranges a float range, and times

a maximal offset in seconds. The comparison rules are then modified to match

if any value within the accuracy interval matches. The full schema including the

quality attributes is printed in appendix A.

3.3.1.2. Composite Types

The primitive types do only permit only connected ranges and regions to simplify

the matching. Sometimes, it may be desirable to match multiple regions or

47

3. Service Discovery

inverted regions. One way would be to add further representations, but adding

them for any combination would increase the complexity of the parser and the

matching process. A composite type solves this by just adding two new elements.

First, an OR type which may contain any number of other elements and represents

the union of all ranges/regions. Furthermore, a NOT element is introduced which

matches another element if its content does not match.

3.3.2. Context Manager

On the mobile client, available context needs to be managed by a central com-

ponent. It has to gather the data from the sensors, notify components about

changes, serialize the context data, and provide the public and the private set of

attributes.

An interface to register context sensors offers methods for push and pull sensors.

The former notifies the manager on any change of data, while the latter one has to

be queried to get updated data. Choosing the right model for a sensor depends on

the sensoring technique and the cost of acquiring the value. GPS is one prominent

example of a push sensor since the data stream is constantly received from the

GPS receiver. A weather forecast sensor which has to fetch data from a server

should be inactive until new data is needed and thus use a pull.

Public and private attributes are separated on a sensor basis. The application

may set a private, public, or blurred flag for each sensor. Blurred attributes

appear in both sets, the private set with full accuracy and with a decreased

accuracy in the public set.

Access to the data is possible by querying any attribute or by registration of

a listener. The listener may react on any change of an attribute or only if the

attribute hits a specific value. Furthermore, the application is able to get the full

set of public and private attributes.

The component does also offer methods to serialize and deserialize sets of at-

tributes as described in the representation section and to compare two sets of

context attributes. The public context set is sent to the server in its serialized

form in order to initiate a discovery process.

48

3. Service Discovery

3.3.3. Service Transformation

The transformation of service descriptions is a major difference to the other

approaches. Instead of using an algorithm to directly match the descriptions

to the current context of the user, the attributes of the services are translated

into ranges of applicable context data. Those matching rules, in the form of

context attributes, are separated into two blocks. One block contains mandatory

elements. These attributes have to match – if you search for a restaurant, these

would be the opening times and the location. In contrast to that, the other

attributes are optional and may increase the benefit of a service. The current

temperature could be an optional attribute for a beer garden – while it opens on

every day with a temperature of 15 degree celsius or above, it is even better with

a temperature of about 20 degrees.

In case of static service descriptions, this may be computed beforehand, oth-

erwise it has to be transformed on-demand. Any type of service description

language may be used, only the previous matching logic has to be changed into

a transformation. Several examples are given in chapter 6 and (Bostan, Butter,

and Atkinson 2008).

3.3.4. Server-Based Filtering

After sending the request (including only the public part of the available at-

tributes) to the service provider, the service provider uses these results to create

a list of appropriate services whose mandatory rules do not contradict these at-

tributes (van Setten, Pokraev, and Koolwaaij 2004; Hinze and Voisard 2003).

The service provider notes the context attributes which are considered for the

search and which influenced the order of the restaurants in the list that is sent

back to the mobile device. Thanks to that these attributes contain a validity

range, it is possible to re-evaluate the match without understanding the seman-

tics of the service description by comparing the received ranges and the locally

available values for each attribute.

Each context attribute which is not sent to the server may increase the size

of the response since the server’s ability to filter the results is reduced. While

marking single binary attributes as private is expected to double the number of

results, the omission of the location may result in a non-feasible increase in the

49

3. Service Discovery

number of results if there are a lot of location-specific services available. There-

fore, attributes having a big influence on the number of results and continuous

values should preferably be blurred to allow a prefiltering on the server while still

preserving the privacy of the user.

Depending on the size of the results, the server sends back the results or a

notice indicating that the number of results is too high. In that case, hints are

given to the client about which context attributes could decrease the number of

hits most. These hints are calculated by counting the number of distinct values

for each context attribute in the result which is not in the public set from the user.

While this is no accurate estimation without knowledge about the distribution of

values, it is an indication for the user which attributes could be of use in order

to decrease the result size.

3.3.5. Mobile Post-Filtering & Ordering

On the client device the process is repeated, private context is considered and all

services not compatible with any of them are excluded from the list. Furthermore,

the list can be reordered as the correct position of the user (and not the blurred

information sent to the service provider) and can be used for calculating the

distances to the restaurants. An overview of the process is given in figure 3.2.

In contrast to that most services and applications that are currently offered

for mobile devices today, perform the main computational effort on centralized

servers (for example search engines or routing discovery). In this concept, services

and applications are customized in two phases (compare also figure 3.2 as an

example of a search service for restaurants). The first phase happens on the

server using only the public context attributes the user wants to make available

for the service provider. The service provider can use different mechanisms in

order to match the context information with the service descriptions and to adapt

the results to the user’s context. When delivering the service descriptions or the

application to the mobile device, it adds a list of context criteria which are used

for matching and further context criteria which could be used if they are sent by

the client. These additional criteria will be used in the next phase.

The second phase is performed on the mobile device. An application running on

the mobile device scans the context criteria which are not available on the server

and checks whether there are context criteria that have been declared as private

50

3. Service Discovery

Context:

Location: 49°51’;8°49’
Smoker: Yes
CreditCard: Yes

Context:

Location: 49°51’;8°49’
Smoker: Yes

Sending public
context at tr ibutes

Restaurant DB

Matching Attr ibutes

Sending back
results

Restaurant A:
Location: 49°51;8°50’
Smoker: Yes
CreditCard: No

Restaurant B:
Location: 49°51;8°48’
Smoker: Yes
CreditCard: Yes
Outdoor: Yes

Restaurant C:
Location: 49°50’;8°49’
Smoker: Yes
CreditCard: Yes
Outdoor: Yes

Restaurant C
Restaurant A

Result el imination
and reordering with
pr ivate context

Mobile Client Server

Figure 3.2.: Service Discovery

51

3. Service Discovery

to be checked. If private context information exists, it is used for customization.

A simple but illustrative example is the context information “available time”.

This context information can be declared as private and is only used on the

mobile device for customization or narrowing of search results (of course, only

if it makes sense to use this context information). Then, it is possible, amongst

other things, to use the context “available time” on the mobile device in order to

determine if a proposed action is feasible for the user, but it is not necessary to

publish this information to the service provider. The splitted process also allows

visualization of the matching process for the user.

3.3.6. Individual Importance of Context Attributes

The available information regarding the influence of context attributes on the

matching process for each search result and the possibility to repeat the match-

ing process with additional attributes on the mobile client makes it possible to

re-customize the results of the search on the mobile client. This prototype imple-

mentation tries to find out which attributes that have not been considered by the

service provider yet, do influence the choice of the user and how important each

context attribute is for him. If the user prefers search results from the list always

having some specific context attributes, the application observes this behavior,

learns it, and considers the preferences of the user for future searches. The fol-

lowing paragraphs describe in detail how the user preferences are considered for

the ranking of search results on a mobile device.

When dealing with results from search services like a restaurant search, the

order of the restaurants in the list is important. The user’s favorite choices are at

the top of the list so that one does have to scroll or click until finding the favorite

search result. However, when receiving the list of restaurants from the service

provider, all private context information has not yet been used for ordering the

list. Therefore, in a first step, the client discards all results from the list that

can be eliminated due to existing private context attributes. In a second step,

the mobile device weights the relevance of context attributes by using historical

data in order to be able to better anticipate the decisions of the user. The goal of

such mechanisms is to detect the relevant context characteristics and to reorder

the list in such a way that the search results (restaurants) preferred by the user

are at the top of the list.

52

3. Service Discovery

When considering optional context information for resorting the list, it is un-

known how strongly the different context criteria influence the user’s preference

and choice. Some context information (like smoking/non-smoking restaurant)

may be very important for the user’s choice whereas other context information

(such as the distance to a restaurant) is less important. In order to consider

the influence of the different context criteria on the preferences of the user, was

developed an adaptive search algorithm that learns which context characteristics

have been important for previous choices of the user. Since sending the decision

history to the server would expose private and personal information, the whole

weight calculation is performed on the mobile device.

In our approach, a weight wi is assigned to each context information i. wi

represents the importance of context i for the user. The higher the weight wi

of a context information is, the higher the rank of those search results (e.g.

restaurants) that match this context property i. For the ordering of the list of

displayed search results on the mobile device, the sum
�

i xiwi is used. xi denotes

wether the context attribute i matches the property of the search result (xi = 1)

or not (xi = 0). The list presented to the user is ordered in such a way that the

search results with the highest sum are presented at the top of the list.

The ordering of the list offered to the user depends on the weights wi. The

goal is to determine the weights wi so that in all previous searches the search

results that have been chosen by the user would have been near the top of the

list. Then, it can be assumed that for the current search the user’s preferences

are considered appropriately and the search result that will be chosen by the

user appears at the top of the list with a high probability. For this task, an

optimization algorithm is necessary which determines the weights wi so that the

search results (e.g. restaurants) that are preferred by the user are on the top

positions of the list. Such an optimization algorithm can utilize the previous

user’s choices for the evaluation of different combinations of wi.

When the user executes a search service for the first time, there is no informa-

tion available regarding the importance of the different context characteristics.

Therefore, when using a search service for the first time, we assume that all

context characteristics do have the same importance and the list of results that

is received from the service provider is reordered in such a way that all context

criteria are considered equally. For example, for a non-smoker who does not want

53

3. Service Discovery

to use a car to get to a restaurant, a non-smoking restaurant is as attractive as

a restaurant where he does not need a car.

3.4. Prototypical Implementation of the Service

Discovery Concept

The components concerned with service discovery have been implemented to

show their utility, quality, and feasibility according to guideline three in 1.3.

Moreover, it serves as a test environment for the creation of service and the

other components. Some challenging parts and their design choices are outlined

within the next sections. The components are used for the sample applications

in chapter 6.

3.4.1. Server Component

The prototypical test server contains a storage for XML service descriptions that

may contain context rules. Alternatively, an extendable style sheet transfor-

mation language (XSLT) document may be provided to be able to generate the

context attributes out of the service description. It is applied by the server before

the discovery process.

A more sophisticated server following this concept and using a scalable XML

Bostan et al. database and model-based transformations was developed during

the course of the SALSA project by Bostan et al. (Bostan, Butter, and Atkinson

2008).

3.4.2. Context Manager

In order to test the behavior and generation of different context sets a context

management component with several context sensors was developed. The dis-

tinction between private, blurred, and public attributes can be done using a user

interface giving an overview of all sensed data.

54

3. Service Discovery

3.4.3. Learning

For the optimization algorithm that should find the optimal wi, tight technical

restrictions are imposed by the limited capabilities of mobile devices. The most

important are:

• The algorithm must have low heap memory usage and small code size.

• It must be possible to partition the algorithm in very short execution in-

tervals to not interfere with user tasks.

• It should be possible to use old weights wi as a starting solution.

• The algorithm should not rely on floating point arithmetic since these may

be slow on mobile devices.

To find the optimal wi, linear optimization methods cannot be used as the

quality of a solution (a solution can be described by a parameter setting for the

wi) is non-linear and depends on the user’s choices. To solve the problem of

finding the optimal values of wi, a a genetic algorithm (Goldberg 1989) can be

used. This type of optimization algorithm is able solve non-linear problems, it can

work without any noticeable drawbacks for the user, it is possible to implement it

with very few lines of code, it is possible to stop the execution after every single

fitness evaluation without the need to hold extensive state information in heap,

and meaningful results are available anytime. Other optimization techniques like

simulated annealing would probably lead to similar results but require floating

point numbers and more (pseudo) randomly generated bits. These operations

are especially expensive on todays mobile devices.

The implementation the genetic algorithm for the weight optimization on a

mobile device in a Java class file fits in about 5kB. Such a small application can

easily be held in memory all the time. The history (previous user choices) is read

in sequential access for every fitness evaluation (one fitness evaluation calculates

the quality of different wi using the history where a top-ranked service means

high fitness and a low-ranked low fitness) which allows efficient loading for every

storage medium. The algorithm gets some processor time for fitness evaluations

during short idle intervals like the time waiting for a reply over the network.

Using such time slots does not affect the battery lifetime so much, because an

active network connection does not allow a mobile device to use a battery saving

55

3. Service Discovery

state. Furthermore, in such time intervals, the user has to wait for the reply so

that it will not it slow down the user interaction.

56

3. Service Discovery

3.5. Transferability of the Concept to Navigation

Routing is an important service for mobile applications. The mobility of the user

leads directly to the need of routing directions. It is similar to service discovery

which need large amounts of up-to-date data, such as maps and traffic patterns,

which change over time. Current navigation solutions are using static maps on

a local storage or let the server process all route calculations. Therefore, users

are having either old and incomplete data or giving up their location privacy.

Sending out the location of the user for routing purpose has the potential to

eliminate the privacy enhancing techniques shown in this thesis and so a privacy-

aware navigation solution is needed. This section shows how the concepts of the

distributed service discovery presented in the previous sections are also applicable

to routing. First, the concept which splits the processing between the mobile

device and the server will be explained. Afterwards, some measurements are done

with a prototypical implementation to find suitable parameters for the trade-off

between privacy, used bandwidth, and computational cost.

3.5.1. Introduction to the Problem Domain

With an increased usage of context-aware services, automatic routing between

visited points and used services does also increase. Disclosing the start and the

destination of a route may be used to infer the user’s next service. The benefits

of the privacy-aware service discovery will therefore be destroyed. To have all

maps locally on the mobile device, decreases the accuracy since maps and street

conditions often do change and current traffic data cannot be used. Furthermore,

calculating routes with the map data of a whole country is computationally ex-

pensive and, therefore, reduces the battery lifetime.

A routing algorithm is needed which finds the optimal route with minimal

data on the mobile client and without giving accurate location data to the server.

“Optimal” may be the route with the shortest traveling time or shortest distance.

In this section, the shortest traveling time is selected as the optimization criteria.

The shortest distance is just a special case with an assumed constant speed on

all streets.

57

3. Service Discovery

3.5.2. Conceptual Elements

Similar to the discovery approach, the routing is distributed over a server and

the mobile client application. As already mentioned, the user’s current location

and travel destination is sent to the server with decreased accuracy. The server

therefore only knows where the client is located and the desired destination within

a circle around a point with a given radius r1 and not the exact location. It

is then possible to show the route by downloads the map data for these two

areas and the all connecting routes between these areas which are part of optimal

routes between any point in the origin and destination circles . Connecting routes

are defined as the unique route segments outside the areas which connect every

pairwise combination of points within the two areas. Points near the edge of each

circle have many exit routes out of the circle leading to many connecting routes.

The central point in following algorithm is to reduce these connecting routes to

allow a bandwidth and computation efficient communication between the server

and the client.

A streetmap can be represented as a graph where each street/road represents

a vertex between two nodes, which in turn represent an intersection, point of

interest, or dead end. The cost associated with each vertex is the length or

the time to travel that road. Routes for cars are usually calculated using the

“fastest” route from start to destination. Therefore, the length of each vertex, is

multiplied with the reciprocal value of the average speed assumed for this type

of road.1 Since the shortest route is just a special case of the fastest route with

the assumption of equally fast travel on any road only the fastest route case is

examined.

While the number of connecting routes is high and grows with r1, there are

only a few distinct middle segments within those routes. In typical street-maps,

this approach assumes many routes between nearby starting points to the same

(or similar) destination join each other within a small distance of the starting

points. Therefore a second region with an increased size around the middle of

the departure and destination region is introduced.The client then gets the map

data for the larger region (size r2) while only starting/end points within the

1If an A*-search (Hart, Nilsson, and Raphael 1968) is used to find the optimal route the
fastest road needs to have a factor of 1 and each slower road a bigger one. The algorithm
guarantees to find an optimal solution if h(n) (the linear distance) is the shortest possible
path only.

58

3. Service Discovery

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000

U
ni

qu
e

C
on

ne
ct

io
ns

r2 - r1

r1 = 1000
r1 = 2000
r1 = 3000
r1 = 4000
r1 = 5000

Figure 3.3.: Unique Connections w.r.t. ∆r

smaller region are used to find connecting routes. The expanded area is then

used to eliminate duplicate connecting routes. Using only starting points within

the inner area, decreases the number of distinct connecting routes significantly.

Therefore, only a few routes need to be known outside the area where the start

of the route is. This assumption is based on the fact that routes with a smaller

cost are favored and long roads are typically the faster ones (e.g. motorways).

All segments within every optimal route between two points in the start and

destination areas are included, so the optimal route can always be computed

using the maps of the areas and the connecting routes.

To test the assumptions, a simulation was performed. The simulation setup

is explained in section 3.5.4. 500 random points in a circle with radius r1 were

chosen. The simulation takes place in the city of Karlsruhe, Germany. For each

r1, several ∆r which represent the difference between the inner and the expanded

circle are used and the number of different routes to a given destination starting

outside the expanded circle are counted. Figure 3.3 shows the effect of increasing

∆r on the number of unique connections.

Most routes between the two circles tend to join each other into some main

routes, because bigger roads do have a higher average speed and are therefore

favored over other roads. To fully exploit those joined paths which result in a

lower number of distinct connecting routes, the mobile nodes get a bigger part of

the map by increasing the radius of the circles.

59

3. Service Discovery

The route calculation is distributed between the server and the client. The

server sends all routes between the expanded areas and the client calculates the

remaining parts of the routing. Since those graphs are much smaller than graphs

representing routes within whole countries, the route calculation costs on the

client also do decrease.

3.5.3. Finding Connecting Routes

The server uses random points in the inner circles and calculates all routes be-

tween all pairs of nodes in circles A and B with radius r1. The number of routes

is |A| × |B| (with |X| the number of random points in X). The routes needed

on the client side are the unique routes starting with the last point within the

expanded areas with r2. A large number of nodes in dense areas may lead to a

very high number of calculated routes and prohibitive in terms of computation

cost.

Depending on the size difference of the radius, the number of unique routes

does not increase significantly with a higher number of random points n beginning

with n∗. To find suitable values for ∆r and n∗, several simulations examining

the computation/accuracy tradeoff were performed.

3.5.4. Simulation Setup and Results

To get realistic simulation results, real map data is needed. Therefore, the street-

map data of the OpenStreetMap project2 has been used. The map data is col-

lected by volunteers and thus city maps are not always complete.

The simulation uses a subset of the OpenStreetMap data exported in the first

week of March 2008. In the subset, each node and way within the administrative

borders of Germany are contained in a 2GB XML File. To improve the perfor-

mance of the route calculation, the file is parsed once and the nodes are stored

within a hash map. The ways are stored as pairs of nodes and the distance be-

tween the nodes is precalculated. The city of Karlsruhe, Germany, and the city

center of Mannheim, Germany, are esteemed as quite complete by the project

and thus used Karlsruhe and Mannheim was used as places for our simulation

(see figure 3.4). The results were also verified using random rural areas and some

2See http://www.openstreetmap.org/ for details

60

3. Service Discovery

Figure 3.4.: Region used in Simulation (source OpenStreetMap)

British city maps, but using German speed limits. The rural tests did all show

less routes and a smaller number of nodes. British cities were similar to the

German ones. The simulation results do strongly indicate that the two German

cities are good representatives and that rural areas generally perform even better

than urban ones, even though the British speed limits were not used.

In the figures, the increase of map data size for an increased r and the number of

unique external routes with an increased ∆r is shown. A graphical representation

of the areas with colored connecting routes can be seen in figure 3.5. The shaded

areas are not relevant for the routing and therefore are not transmitted.

In figure 3.6, the number of nodes in a circle with the radius r1 with its center

located at the main station in Karlsruhe is shown.

Figure 3.7 shows the size of the map data for these circles in KB. An average

number of connections of 1.95 per node and an average of 10 bytes of compressed

street names for each connection is assumed. These values were extracted out of

the German map with all nodes and connections relevant for car navigation.

61

3. Service Discovery

Figure 3.5.: Karlsruhe with Highlighted Areas R1, R2, and Connecting Routes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

"distancenodes.data" using 2:4

Figure 3.6.: Number of Nodes w.r.t. r

62

3. Service Discovery

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

"distancenodes.data" using 2:(1.95*18*$4/1024)

Figure 3.7.: Size of Mapdata of Nodes w.r.t. r

Road Type Factor Avg. Speed
motorway link 1.2 100
motorway 1 120
trunk link 1.4 86
trunk 1.2 100
primary link 1.4 86
primary 1.3 92
secondary 1.7 70.0
tertiary 2.1 50
residential 4 30

Table 3.2.: Avg. Speed per Road Type

63

3. Service Discovery

The smaller size of the data does not only decrease the data transfer volume,

but also the complexity of route calculation3. Furthermore, the memory usage is

drastically decreased, which is also important in mobile applications as outlined

in the requirements section.

3.6. Evaluation of the Service Discovery Concept

Using context information for the customization of mobile services is a promising

direction to increase the usage of mobile devices. However, when dealing with

context information, privacy issues are very important. Therefore, mechanisms

are necessary that enable the user to control the usage of context. This approach

distinguishes between private and public context information. Public context

information can be used by service providers for the customization of mobile

services. Private context information can be used on the mobile device for further

adaption of mobile services with respect to the user’s context.

It is illustrated for search/discovery services how context information can be

split into public and private context. In search services, a mobile user receives a

list of search results from a service provider which can be sorted according to the

user’s context. The goal is to sort the list in such a way that the items chosen

by the user are at the top of the list. We propose an optimization approach that

orders the results delivered from the service provider with respect to the user’s

private context information and to previous choices of the user. This approach

requires only minimal computational effort and makes optimal use of the limited

resources of mobile devices.

Summarized, the requirements established above are fulfilled as follows. The

functional capabilites of the component within application is shown in chapter 6.

Extendable. Any context attribute can be expressed as one of the primitive

types or a combination of several others. In contrast to other approaches, new

behavior depending on a value of a context attribute does only have to be imple-

mented on the server side and the mobile client is able to refine the search using

the rules sent by the server without any extension on the client side.

3While the complexity of A* does only depends on the length of the shortest route, this is
only true for an optimal h∗ which is not given in the case of different road types.

64

3. Service Discovery

Reusable. Being part of a framework which should allow creation of arbitrary

context-aware applications, it has to be reusable together with a partial concrete

implementation of the problem solution (Wirfs-Brock and Johnson 1990). In the

domain of a context-aware service discovery, this means that it should be usable

to discover different kinds of services within varying application domains. It is

therefore linked to the first requirement of extendability.

Privacy preserving. Using the aforementioned service discovery, the user has

full control over the data which may be sent to the service provider. A critical

point is the increase in used bandwidth for every unset context attribute. The

approach is not feasible if every attribute is declared private and has best results

having the continuous attributes only blurred instead denying the transmission

completely. To improve the situation for the user, it could be combined with

other anonymization approaches.

Learning from previous user behavior. Matching of the optional context rules

is done on the mobile applications. Therefore, it knows about the rules used to

rank the service and may use the user behavior to improve the ranking for future

searches.

65

4. User Interfaces

In this chapter, an adaptable user interface component for the context-aware

framework outlined in the previous chapter is introduced. It starts with the first

section detailing the requirements of mobile context-aware user interfaces based

on current scientific literature, followed by an overview of existing approaches

for desktop and mobile systems. Then, a new concept based on the extendable

user interface language (XUL), cascading stylesheets (CSS), and context rule-

based presentation changes is shown. A prototypical implementation for multiple

configurations and devices is described in the next section. The chapter ends with

an evaluation of the prototype against the outlined requirements.

4.1. Challenges of User Interfaces on Mobile

Devices

In a literature review, the following requirements and challenges in addition to

the general requirements outlined in chapter 2 were identified and will be further

elaborated in the following sections. A general overview of mobile UI require-

ments can also be found in (Satyanarayanan 1996):

• Automatic adaptation for heterogenous devices (see 4.1).

• Adaptation to context (see 4.1).

• Usage of private context (see 4.1).

• Suitability for low processing power of mobile devices (see 4.1).

• Customizable by the user (see 4.1).

• Simplified application development (see 4.1).

66

4. User Interfaces

Heterogenous Devices Mobile devices available in the market today are het-

erogenous with regards to their input and output capabilities, using different

platforms and featuring a multitude of different display resolutions and display

orientations (i.e. landscape or potrait mode)(Lee, Ko, and Fox 2003). It is often

necessary to manually adapt an application to multiple devices at development

time taking into account the different display and input capabilities. The number

of available platform configurations, such as J2ME CDC(Sun 2005) or CLDC(Sun

2004), further increases the number of different implementations needed for a

portable mobile application.

Table 4.1 shows the varying screen size of some current and popular mobile

phones and PDA (Admob 2008). The table 4.2 shows which application platforms

are available for the predominant operating systems. Today, most applications

need to be customized manually for each programming platform and screen size.

Hundreds of different product versions are common for popular applications like

games to cover a wide range of devices on the market. A UI framework should

be able to cover as many screen resolutions and platforms as possible to reduce

the development effort for context aware applications.

Device Screen Size Resolution Colors Orientation Keyboard

Apple iPhone 3.5 inch 480x320 16m p. or l. on-screen
Nokia N95 2.6 inch 240x320 65k portrait number / T9
Nokia N810 4.13 inch 800x480 65k landscape full-qwerty
Nokia 2310 1.2 inch 96x68 65k portrait number / T9
MDA Vario II N/A 240x320 65k landscape1 qwerty

Table 4.1.: Example Device Screen Properties
Example Device Screen Properties (source: manufacturer websites)

Operating System Manufacturer Platforms

Windows Mobile Microsoft, QTek,NET, Java CDC & CLDC2

Symbian9 Nokia, SonyEricsson, ... Symbian, Java CLDC
Symbian8 Nokia, SonyEricsson Symbian, Java CDC
Linux various mostly J2SE compatible
iPhone (OSX) Apple none available
Other Phones various most are CLDC
Android HTC, Google custom Java configuration

Table 4.2.: Operating Systems
Operating Systems (source: manufacturer websites)

67

4. User Interfaces

Adaptation to Context Readjusting the user interface to the user’s current

situation to better suit his needs and desires does improves the usability (Dey

2001). Kaasinen states: “An efficient way of improving the usability of mobile

services and applications is to adapt the contents and presentation of the service

to each individual user and his/her current context of use. In this way, the

amount of user interaction will be minimised: the user has quick access to the

information or service that (s)he needs in his/her current context of use. The

information can even be provided to the user automatically.” (Kaasinen 2003).

Integrating the presentation readjustments with the application logic builds a

huge burden for application developers. A UI framework should eventually allow

easy adaptation of the user interface to the current context of the user without

increasing the development work.

Using private context The notion of private context was introduced in the

foundation chapter. While varying projects use a different notion, most of them

do have some separation between attributes available to random service providers

and those only to the user for privacy reasons.

“In our group interviews, people were worried about their privacy and the ’big

brother’ phenomenon when considering services enabling people to be located”

(Kaasinen 2003). As stated in section 2.3, privacy is an important aspect for

mobile context-aware applications. Therefore, a user interface can only adapt

to context data the user is not worried about or has to be separated from the

application logic to make sure that the private information does not leave the

mobile device. In a scenario with downloadable, untrusted components, the pre-

installed user interface component may still be seen as trusted.

Low Computational Costs While mobile processor speeds increased dramati-

cally in recent years, memory performance is still slow and only minimal if any

instruction or data caches exist. So, mobile processors are still slower than com-

mon desktop CPUs some years ago. Therefore, the solution may not slow down

the execution of downloaded components a lot. Especially the start-up delay

imposed by UI instantiation needs to be small (Varshney, Vetter, and Kalakota

2000). Tolia et al. states that the “crispness” of interactive response is the most

critical user experience performance measure. Here crispness is defined as the

time between an action and a visual reaction by the application (Tolia, Ander-

68

4. User Interfaces

sen, and Satyanarayanan 2006). The user expects so see immediate results on a

“mouse click” or other interaction.

Personalization Customizing the applications according to their user’s explic-

itly stated (in contrast to infered) preferences is called personalization (Lee and

Benbasat 2003; Rayport and Jaworski 2001). According to Bauer et al. person-

alization is an important factor for the adoption of mobile services by consumers

(Bauer, Reichardt, Exler, and Tranka 2007). Customization of mobile devices

through so-called wallpapers, ringtones, or pictures is a multi-billion dollar busi-

ness in Europe and Japan (May and Hearn 2005) and an important lifestyle

component of mobile commerce.

Development Effort One of the most important challenges in UI creation for

mobile devices is the development effort. Currently, most user interfaces have

to be developed for different devices many times (Eisenstein, Vanderdonckt, and

Puerta 2001) and are a significant cost factor in development of mobile applica-

tions.

4.2. Existing Mobile UI Approaches

Several user interface frameworks for different platforms do exist. While most of

them are only available on desktop PCs, some of them are available for mobile

devices. For context-aware user interface frameworks, more requirements need to

be addressed. In the next sections, a brief overview of some exemplary UI frame-

works and outline the requirements for context-aware user interfaces is given. If

the concept is available on different platforms the Java version is shown here for

easier comparison with the prototype. Most concepts exist in similar a form for

most other mainstream platforms.

4.2.1. Model-based Development

Model-based approaches use a model of the user interaction to generate user

interfaces for different platforms (Szekely, Luo, and Neches 1993). Eisenstein in-

troduced an abstraction for describing user interfaces with models. The models

69

4. User Interfaces

are often designed using a graphical environment where interface elements are se-

mantically connected to each other and to event. These are then transformed to

platform dependent models with varying display sizes or usage contexts (Eisen-

stein, Vanderdonckt, and Puerta 2001).

4.2.2. Server-side Transformations

Using server-side transformations, a device independent description of the in-

terface does only exist on the server. Depending on the requesting device, the

description is transformed into a device dependent description or program which

is then transferred and executed. If the device independent description is a model,

the transformation may be a special case of a model-based approach where the

platform dependent model creation is deferred. Capabilities for the target device

need to be stored on the server or transferred with each request.

The XML User Interface Language (XUL) is an XML-based markup language

for the description of user interfaces. It is mainly used by the Mozilla Founda-

tion in products like the Firefox browser or Thunderbird mail client, but is also

increasingly popular in the area of Web applications. For desktop applications,

Java XUL rendering components exist which allow the usage of XUL for Java

applications. XUL is used by several other projects for mobile devices (Ye and

Herbert 2004) to specify user interfaces and then transform the XUL to device

specific HTML or WAP pages. Some other projects allow rendering XUL or al-

ternative transformation to HTML depending on the device using mobile agents

(Mitrovic and Mena 2002).

Some approaches for mobile UIs use XUL and transform it into HTML. Some

use a Swing XUL renderer on high end mobile devices like laptops (Mitrovic and

Mena 2002; Kao, Shen, Yuan, and Cheng 2003). In that case, JavaScript logic

may or may not be inherited for the transformed content. Other approaches use

XUL as an origin for other transformation or compilation into Java bytecode.

4.2.3. Java Frameworks

The first UI toolkit for the Java platform was the Abstract Window Toolkit

(AWT) included in the first version of Java. It features abstraction from native

platform GUI elements in Java to offer cross-platform compatibility. Even though

70

4. User Interfaces

the AWT programming model changed a bit with Java 1.2, it is not the preferred

framework on the J2SE anymore. However it is available with every version of

J2SE and even with J2ME CDC Personal Profile and thus is a good founda-

tion to reach many platforms with a single implementation. In our prototype

implementation, it was decided to base one of our back ends on AWT.

Swing, a newer core Java UI framework, was introduced in Java 1.2. It is

implemented as pure Java components building upon the native bindings of AWT.

Swing features tremendeous easier programming and much easier integration of

own components while offering different look and feels for different platforms to

better integrate into each host platform. However, Swing needs considerably

more system resources, so it is not suited for today’s small mobile devices, but

laptops or tablet PCs. (Traynor 2008).

4.2.4. Mobile Information Device Profile

The Mobile Information Device Profile (MIDP) (Sun 2004) was introduced for the

CLDC platform on very small devices like mobile phones or low-end PDAs, but

it is currently also the most widely deployed platform even on high-end PDAs.

The javax.microedition.lcdui packages only allow very small set of widgets to be

used and the look of these widgets cannot be influenced by the application. In

that framework, the screen is always occupied by elements of the Displayable

type which is in most cases a Screen embedding a Form which further embeds

some standard widgets. In addition to those standard widgets, a Screen may be

replaced by a Canvas which allows custom drawing and reactions to key events.

Often both ways are combined to get the enhanced graphic capabilities of a

Canvas together with the handling of phone input methods like T9 in a TextBox.

(Muchow 2001)

4.2.5. HTML / Javascript

An increasing number of applications for mobile devices use server side processing

and only WAP, HTML, or XHTML browsers for the user interface. Often, there

are different versions of each HTML page adapted to different screen resolutions.

Many mobile devices do only offer a very limited subset of Cascading Style Sheets

(CSS) for styling HTML content and often JavaScript is not supported, thus all

71

4. User Interfaces

actions are server-based which leads to long response times, because of the high

round-trip times in mobile networks. (Nichols, Hua, and Barton 2008)

4.2.6. Android

Android is a new open source operating system for mobile devices introduced by

google in late 20073. It is said to include an XML definition of user interfaces

which adapt similarly to MIDP to different screen sizes and devices.(Köchy 2008)

4.2.7. Evaluation of Existing Approaches

In table 4.3, the mentioned approaches are evaluated according to the require-

ments elaborated in section 4.1. While most approaches are very good in one or

two categories, none of them fulfills all requirements stated above.

Model-based and server-side transformations are similar with respect to their

start with a device independent model and the adaptation of content prior de-

livery to the mobile device. Those can be quite fast since they have no need

for adjustments on the device and all unnecessary descriptions may be left out.

While this is an advantage for performance, it means that the server needs to

know something about the used device and every context that should be used for

the adaptation.

MIDP does not allow any customization of the look and feel of the widgets,

but does work seamless on every device. The applications will look different

depending on the used Java implementation and nothing about the look can be

said beforehand. The AWT is designed for a multi-window enviroment and not

suitable for small devices. Both are not adaptable to the usage context.

Using a well-designed HTML page, it would be possible to design pages suitable

for a wide range of devices. Implementing the application logic in JavaScript

involves expensive processing of DOM operations and redraws. Furthermore, the

high latency of mobile networks leads to long page loading times since HTML

application logic is page based. Context-usage is not envisioned in HTML.

The table shows the summarized results for the different approaches. All of

them are exceptionally good in some respects, but none fulfills all requirements

3The description of Android is based on release m5 rc14 of the SDK which is the latest available
version on 24.2.2008.

72

4. User Interfaces

at all. Especially the combination of adaptation and privacy is not available

anywhere. The next sections show a new proposal to combine these features in

one framework.

Project H
et
er
og
en
ou

s
D
ev
ic
es

A
d
ap

ta
ti
on

to
C
on

te
xt

U
si
n
g
P
ri
va
te

C
on

te
xt

L
ow

P
ro
ce
ss
in
g
P
ow

er

C
u
st
om

iz
ab

le

D
ev
el
op

m
en
t
E
ff
or
t

Model-based + - - + - +
Server-side Transformation + - - + - +
AWT/Swing - - - - + -
MIDP + - - + - -
HTML / JavaScript + - - - - ++
Android + - - + - +

Table 4.3.: Evaluation of Related Work

73

4. User Interfaces

4.3. User Interface Concept

In this section, a component will be introduced which enables the creation of

applications for different mobile devices and fosters a GUI which reacts to context

changes without having the need of any application logic supporting it. We

propose an extension to XUL in order to enable the easy creation of applications

which adapt themselves to different devices and user contexts. The Java platform

was chosen for the prototype since it is available for most mobile phones and

PDAs. In section 4.3.2, a prototypical implementation for the J2ME Profiles

CDC and CLDC, including a compilation approach to speed up UI creation, is

presented.

The usage of sensitive context data restricts the processing to the client side

since no sensitive data should ever leave the users mobile device. While techniques

like anonymization (Tatli, Stegemann, and Lucks 2005) may be suitable to protect

the privacy for some data, it is desirable to use all data. For example, the real

name of the user or the home address for a personalized address would destroy

the benefit of anonymization. Therefore, all customization has to be done on the

mobile device which extends the restrictions imposed by the quite low processing

power of mobile devices.

Customization must be done for the current context as well as the current

device capabilities, such as screen size. As outlined in chapter 2, according to the

context definition of Dey (Dey 2001), device characteristics are a part of the user

context. Therefore, the adaption to different devices is a special case of a flexible

context-sensitive user interface adaption which simplifies the whole concept and

improves usage from a developer perspective. The context representation shown

in chapter 3 handles screen orientation and size in the same way as all other

context data, paving the way to a unified usage of device properties and user

context.

It is generally seen as an important concept in UI toolkits to separate logic,

semantic models, and the styling from each other (Lopes and Hursch 1995).

HTML and CSS are one example for the usage of this paradigm. While inline

Javascript and inline styles in today’s AJAX applications blurr this distinction,

the original goal was to put the semantics of the representation into the HTML,

the styling into the CSS file, and the data/logic on a server side. Following this

approach, XUL as the language to model the semantic description of the UI

74

4. User Interfaces

and CSS to style it was chosen. XUL as user interface description shows some

promising results in other projects like the Mozilla Firefox browser which has its

whole user interface designed using XUL.

The XML User Interface Language (XUL) (XUL Tutorial 2006), introduced by

the Mozilla Foundation, is an XML based standard for describing user interfaces.

It can be mixed with many other markup languages supported by the Mozilla

or Firefox browser like HTML, MathML, or SVG. On desktops, the application

logic is programmed in JavaScript which accesses the XUL via a DOM interface.

A XUL renderer was implemented for small mobile devices. For styling, a sub-

set of CSS was used. Parsing XUL turned out as too computationally expensive

on small devices for a reasonable fast rendering, so a compilation approach was

considered (section 4.4.7).

An XUL example could look as follows:

<?xml ve r s i on=”1.0”?>

<window id=”window” o r i e n t=”ho r i z on t a l”>

<vbox id=”t op l e v e l ”>

<image id=”star t image ”

s r c=”s t a r t s c r e e n . jpg”/>

< l a b e l id=”g r e e t i n g ” value=”Welcome” />

<button id=”setup ”

l a b e l=”Customize p r o f i l e ”

oncommand=”go t oP r o f i l e ”/>

</vbox>

</window>

In this example, a window would be created consisting of a vertical box with

an image and a button. To compensate for the smaller display sizes, a single

window model is used and, therefore, each XUL file defines a single window

which is exclusively visible to the user. The styling of the individual elements is

done using CSS level 3, whose level of support may depend on the type of device.

The application logic should be separated from the user interface. Since pars-

ing a scripting language is quite expensive (see measurents in the evaluation),

the direct usage of the Java language as programming language for the applica-

tion logic was chosen. Maintaining the DOM, providing all necessary operations

75

4. User Interfaces

is quite memory intensive. Therefore, an API to access the XUL components

programmatically without a full DOM interface was developed.

In this case, an XUL renderer for different Java configurations / platforms and

control the user interface via plain Java classes, allowing source compatibility

of application and UI logic between J2SE AWT, J2ME CDC Personal Profile,

and J2ME MIDP, as well as the use of context information in an application

transparent way as outlined in the next sections was developed.

4.3.1. Adaptation to User Context

Bringing in the definition from the foundation chapter, according to Dey “Con-

text is any information that can be used to characterize the situation of an entity.

An entity is a person, place, or object that is considered relevant to the inter-

action between a user and an application, including the user and applications

themselves.” (Dey 2001).

Here context is seen as anything that may be used to adapt a user interface

to the user’s current needs and situation. As the user interface does also need

to be adapted to the device capabilities, the device capabilities can be seen as

context attributes, just as the user’s current position or activity. Thus, our UI

framework does only have to adapt itself according to context changes or the

currently available context information at instantiation of the UI.

While the structure of the user interface is specified using XUL, the appearance

is specified using Cascading Style Sheets (CSS). To better match the current

context, XUL and CSS were extended to allow loading a CSS depending on a

pre-specified user context. For globally used style sheets, the standard HTML

notation may be used:

< l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ”

h r e f=” standard . c s s ”>

or

<s t y l e type=” text / c s s ”>

h1 { c o l o r : red}
</ s t y l e>

Another tag is specified to add or remove style sheets depending on the current

context. The contextstyle element adds a context constraint using a serialized

76

4. User Interfaces

form of context data in a format defined in (Butter, Deibert, and Rothlauf 2006)

and the style tag. Using this tag, it is possible to add styles depending on the

user’s context and thus reaching some dynamic behavior of the UI. Since it is

possible to hide elements using CSS attributes, interface elements may even be

hidden on small devices or in some contexts. An example using a bigger font for

headlines in case the user is walking would look like this:

<c on t e x t s t y l e>

<s t y l e>

h1 { font−s i z e : +1};
</ s t y l e>

<St r ing name=”Act i v i t y ”>

<Value>Walking</Value>

</ St r ing>

</ c on t e x t s t y l e>

Alternatively, larger style sheets may be included using the src attribute for

the style tag:

<s t y l e s r c=” b i g g e r f on t . c s s ” />

The selection of relevant style sheets is done dynamically, so the layout and ap-

pearance of the UI changes automatically if a user starts to walk and the context

management recognizes the change. This can be done without any interaction of

the application logic.

4.3.2. XUL on mobile devices

Mobile devices often do not feature a lot of screen space and are memory con-

strained. A UI framework which has to work on most mobile devices needs to

take these constraints into account. Therefore, it was chosen to not support

JavaScript scripting and not implement a full DOM interface. Furthermore, not

all CSS properties and XUL elements are implemented. Nevertheless, a subset

of XUL and CSS can be used which allows the creation of applications rich of

features. While many visual CSS properties are supported on the Personal Pro-

file version, most are ignored in the MIDP version. Since the Personal Profile

AWT is a subset of the AWT available in the Java Standard edition, the Personal

Profile does also work on desktop computers. In all cases, the same source can be

77

4. User Interfaces

used on both platforms and the framework automatically decides which backend

to use.

4.3.3. Multi-Screen Dialogs

In some scenarios, multi-screen dialogs are desirable. These are well known for ini-

tial settings dialog, called “wizards” on Microsoft Windows or “druids” on Linux

systems. Those screens are strongly connected and typically no data processing

or application logic is involved between the screens. To foster easy creation of

these wizards, a language for their control was developed.

For each XUL window using this feature, a “.rul” file exists. How to use this

feature for rapid prototyping of mobile applications is described in section 6.2.

4.3.3.1. Script Syntax

The “.xul” files consist of the following sections:

• Comments start with a hash-sign and will be ignored.

• method sections begin with the name of the method followed by a colon.

Then, this method is used as an event handler in the XUL. The following

expressions are executed.

• +start denotes a special method name which is always executed on loading.

• +contextchange is another special method, followed by some context

rules. Whenever these results of the rules come true, the corresponding

expressions are executed.

Expressions may be variables, assignments, and commands. Variables are with-

out type (i.e. may be of any type and are transparently converted) and each

element of the XUL file may be used as a variable. Whenever a variable is used

which does not appear in the XUL, a dummy node with that value is inserted.

Those are globally valid in each following XUL file. An assignment is denoted by

a “=” sign and the left variable’s value becomes the value of the right variable.

The only predefined commands are “changeScreen()” and “popup()”. The

former opens the window denoted by the file name within the brackets together

with the .rul file. The latter opens a popup to inform the user about an error.

78

4. User Interfaces

Putting everything together, a multi-screen wizard could be implemented like

this:

#comment

+oncontextchange :

<context>

<St r ing name=”Room”>

<Value>Bedroom</Value>

</ St r ing>

</ context>

changeScreen (”bedroom”) # changes cur rent

sc r een to ”bedroom . xul ”

and uses the

”bedroom . ru l ” r u l e s

methodname1:

changeScreen (other)

methodname2:

popup (”He l lo World”)

var1 = tagID . va lue

4.4. Prototypical Implementation of the Concept

The XUL implementation has to account for the variety of target devices and thus

has to require only small amounts of memory and processing power. Therefore, a

full DOM of the XUL would be too memory consuming and it has been decided

to implement an easier and more lightweight API to access the XUL widgets.

4.4.1. API

The UI component exposes an API allowing the creation of windows using an

XUL file and modification of its elements. Similar methods are available to

those found in W3C DOM, but they are restricted to some simpler variants in

order to save memory. The API enables the component to reuse the parsing tree

79

4. User Interfaces

directly for rendering of the elements. Some selected methods are described in

the following sections:

• XULToolkit.parseXUL(String xul, Object handler) is a static method in

XULToolkit. It gets a String containing the XUL and an eventhandler as

argument, returning a XULWidget which later may be shown as a window.

• XULToolkit.createElement(String tagname) is a static method which cre-

ates a corresponding new element using the given tagname to determine

its type. The returned object is also of the XULWidget type which can be

added to other Widgets as a child.

• XULWidget.setAttribute()/setAttribute() sets or gets attributes of an el-

ement. The attributes correspond to the XML attributes but may also

contain other Objects instead Strings to foster easy storage of data within

a UI element.

• XULWidget XULWidget.findByID(String id) searches for children with the

given id. This can for instance be used to find a label in order to change

its text.

• XULWidget.getChild(int i) returns the child “i” of an element. Iterating

over all children can be achieved using this method.

• XULWidget.addChild(XULWidget) adds a “child” to a node.

Additionally, several convenience methods for common do tasks exist. One

example is the creation of a ListItem which should be placed within a ListBox.

Instead of creating a new element, setting the value and adding to the parent,

the method ListBox.appendItem(String) exists.

Events .

All events from the DOM Event Specification (W3C 2005) concerning mouse

and keyboard events are supported (e.g. onclick, onmousedown, onkeypress). The

event handler is the name of a method in the specified handler which is then

called with the target XULWidget as argument. It was chosen to handle invo-

cation for the eventhandler via reflection instead of a single handle(String event,

XULWidget) method. While the latter would be possible and easier to port to

80

4. User Interfaces

<<
in

te
rfa

ce
>>

Li
st

B
ox

ap
pe

nd
Ite

m
(la

be
l:

S
tri

ng
,v

al
ue

:O
bj

ec
t)

:L
is

tIt
em

ap
pe

nd
Ite

m
(la

be
l:

S
tri

ng
):

Li
st

Ite
m

se
le

ct
Ite

m
(li

:L
is

tIt
em

):
vo

id
ge

tS
el

ec
te

dI
te

m
()

:L
is

tIt
em

ge
tS

el
ec

te
dI

nd
ex

()
:i

nt
re

m
ov

eA
ll(

):
vo

id
m

ov
eI

te
m

(li
:L

is
tIt

em
,n

ew
In

de
x

:i
nt

):
vo

id

<<
in

te
rfa

ce
>>

D
es

cr
ip

tio
n

<<
in

te
rfa

ce
>>

C
he

ck
B

ox

is
C

he
ck

ed
()

:b
oo

le
an

<<
in

te
rfa

ce
>>

Li
st

Ite
m

<<
in

te
rfa

ce
>>

Ta
bs

ge
tA

ct
iv

eT
ab

()
:T

ab
se

tA
ct

iv
eT

ab
(ta

b
:T

ab
):

vo
id

<<
in

te
rfa

ce
>>

Im
ag

e
<<

in
te

rfa
ce

>>
B

ut
to

n
<<

in
te

rfa
ce

>>
B

ox

se
tD

ire
ct

io
n(

di
r:

bo
ol

ea
n)

:v
oi

d

<<
in

te
rfa

ce
>>

M
en

uI
te

m

<<
in

te
rfa

ce
>>

La
be

l

ge
tT

ex
t()

:S
tri

ng
se

tT
ex

t(t
ex

t:
S

tri
ng

):
vo

id

<<
in

te
rfa

ce
>>

M
en

uL
is

t

ad
dM

en
uI

te
m

(it
em

:M
en

uI
te

m
):

vo
id

ad
dM

en
uI

te
m

(it
em

:S
tri

ng
):

vo
id

ge
tS

el
ec

te
dI

te
m

()
:M

en
uI

te
m

se
le

ct
(n

am
e

:S
tri

ng
):

vo
id

<<
in

te
rfa

ce
>>

X
U

LW
id

ge
t

se
tP

ar
en

t(p
ar

en
t:

X
U

LW
id

ge
t)

:v
oi

d
ad

d(
w

:X
U

LW
id

ge
t)

:v
oi

d
ge

tC
hi

ld
(n

:i
nt

):
X

U
LW

id
ge

t
ge

tW
in

do
w

()
:W

in
do

w
ge

tS
ty

le
R

ul
e(

na
m

e
:S

tri
ng

):
S

tri
ng

ge
tP

se
ud

oS
ty

le
R

ul
e(

na
m

e
:S

tri
ng

,p
se

ud
o1

:S
tri

ng
):

S
tri

ng
ge

tS
ty

le
R

ul
e(

na
m

e
:S

tri
ng

,d
ef

:S
tri

ng
):

S
tri

ng
se

tS
ty

le
R

ul
e(

na
m

e
:S

tri
ng

,v
al

ue
:S

tri
ng

):
vo

id
fo

rc
eS

ty
le

R
ul

e(
na

m
e

:S
tri

ng
,v

al
ue

:S
tri

ng
):

vo
id

up
da

te
C

S
S

()
:v

oi
d

cl
ea

rP
se

ud
oS

ty
le

()
:v

oi
d

se
tA

ttr
ib

ut
e(

na
m

e
:S

tri
ng

,v
al

ue
:O

bj
ec

t)
:v

oi
d

ge
tA

ttr
ib

ut
e(

na
m

e
:S

tri
ng

):
S

tri
ng

ge
tA

ttr
ib

ut
eA

sO
bj

ec
t(n

am
e

:S
tri

ng
):

O
bj

ec
t

ge
tT

ag
N

am
e(

):
S

tri
ng

se
tT

ag
N

am
e(

ta
gn

am
e

:S
tri

ng
):

vo
id

fin
dB

yI
D

(id
:S

tri
ng

):
X

U
LW

id
ge

t
se

tN
oP

se
ud

o(
np

:b
oo

le
an

):
vo

id
re

m
ov

eA
ttr

ib
ut

e(
na

m
e

:S
tri

ng
):

vo
id

<<
in

te
rfa

ce
>>

Ta
b

di
sp

la
yA

sA
ct

iv
e(

):
vo

id

<<
in

te
rfa

ce
>>

Te
xt

B
ox

<<
in

te
rfa

ce
>>

W
in

do
w

se
tH

an
dl

er
(h

an
dl

er
:O

bj
ec

t)
:v

oi
d

se
tC

S
S

(c
ss

:C
S

S
):

vo
id

ge
tC

S
S

()
:C

S
S

ca
llH

an
dl

er
(w

:X
U

LW
id

ge
t,n

am
e

:S
tri

ng
):

vo
id

ad
dT

oC
on

ta
in

er
(o

:T
op

Le
ve

lC
on

ta
in

er
):

vo
id

Figure 4.1.: Widgets Classdiagram

81

4. User Interfaces

J2ME CLDC, it would require significant manually written switch blocks which

increases the effort for the application developers.

4.4.2. Automatic Performance Adjustments

On slow devices or devices with a low resolution, the component may automati-

cally disable some effects defined by CSS like :hover, which changes an element’s

appearance if the mouse pointer is within its borders. The UI component does

some time measuring while updating the styles on pseudo-classes (e.g. :hover)

and may choose to disable these if the device is not able to render them quickly

enough to be unnoticed. On devices with a stylus, where the notion of a mouse

and :hoover has no useful meaning, this effect may be disabled using a con-

figuration option. Other costly effects and styles include rounded borders and

high-quality image scaling operations. Disabling those may be achieved using

build-time options for the UI component or a runtime configuration file.

4.4.3. Context / CSS changes

On changes in the CSS, which may be caused by context changes or programmatic

changes on the CSS rules, all changes are propagated through all elements within

a window. Every element has a fast check if a rule applies and queues all changes

until the whole update is done in order to avoid unnecessary repaints or size

calculations.

4.4.4. Personal Profile / AWT

The AWT implementation uses a java.awt.Component for each element and ar-

ranges the using standard AWT layout managers. Some layout managers are

implemented which better suit the layout model of CSS. AWTXULWidget inher-

its java.awt.Component and is responsible for setting the inner borders of each

element and painting CSS borders, interpreting text- and background colors and

implementing the main parts of the previously mentioned API. Low-level events

like key-press or mouseenter are also interpreted at this point. Higher level events

and the rest of the paint work are done in subclasses for each element.

82

4. User Interfaces

4.4.5. Mobile Information Device Profile

Using the existing implementation for AWT is not feasible since the UI concept

of MIDP is very different. Furthermore, not all necessary classes are available in

CLDC. The following problem domains were identified:

• Classlibrary coverage Not all classes are available and some of them are only

available in a scaled down version.

• Lifecycle MIDP applications are part of an MIDlet which has some differ-

ences in its lifecycle.

• Input Devices Most devices with CLDC/MIDP do not offer a mouse, key-

board, or touchscreen.

• Display Size Target devices for this profile usually have a very small screen

with a typical resolution of about 240x320 (see table 4.1).

Those problems and their respective design choices will be further elaborated

in the following paragraphs.

Classlibrary Coverage. The MIDP does not provide a similar layout model as

AWT. Therefore, this version implements a similar layout model as AWT on

top of a Canvas using a custom layout manager. A layout manager arranges

objects within the canvas and, if needed handles a scroll bar at the borders of the

component. The components within the Canvas are then painted by the layout

manager which passes an offset for the upper left corner of each component to

their paint methods. All painting methods must be adapted to the new layout

model of MIDP. While this would allow the same visual appearance as with the

AWT version, the more complex programming and the low resources of most

MIDP devices result in some limitations. Thus, many of the CSS attributes are

ignored and only the most important for layout on very small screens, such as

hiding elements and simple borders, are used. The further effects of the small

screens are analyzed below.

Another important capability missing in CLDC is reflection. It is used to call

the respective handlers for each event specified in the XUL file. Therefore, a

wrapper generation is inserted into the build scripts for the CLDC version. A

83

4. User Interfaces

wrapper is built for each XUL file and emulates some of the reflection behavior

by doing a branch to a specific method which is given in a String argument. The

wrapper generation works as described in section 5.4.6 for the virtual machine.

Lifecycle. An MIDP application has to be a subclass of MIDlet and, therefore,

following its lifecycle contract. The application manager, which is an integral

part of a device’s Java implementation, must be able to control, start and stop

the MIDlet. The MIDlet does also contain the necessary display access methods.

One visible difference to AWT is that always only one MIDlet is active and only

this one may use the screen. Each class (besides the core class libraries) needed

in a MIDlet has to be packaged into a single Java archive (JAR). Without the use

of optional extensions4, it is not possible to load a file from the phone’s memory.

Input Devices. High-end PDAs and Laptops do often offer a keyboard (with

physical keys or a virtual on-screen keyboard) and pointer devices, but mobile

phones do not contain a mouse and most likely only a numerical keypad. It

has to be considered that the user interaction is different when displaying the

user interfaces. Programmatically, this means that the CDC behavior through

a MouseListener and MouseEvents is not available. A new event management

which only requires a (joy-)stick or 4-way pad for navigation and a numerical

keypad is needed. Menus will be implemented using soft-keys, available on any

mobile phone. These keys change their meaning based on a description displayed

above them on the screen.

Text input has to be handled, too. An XUL textfield has to be selectable and

the input will then be done using the keyboard emulation of the device. Without

the pointer, there is no click-metaphor. The toolkit has to emulate the click on a

button by highlighting selected items (e.g. buttons) and then “clicking” them on

a keypress of the “enter” key or the “select” key in 4-way devices. Highlighting an

element corresponds to having the “focus” on ordinary, bigger devices. Therefore,

the :focus pseudo class can be used to highlight an object and gives the developer

full control on the look for specific devices. Using this behavior, the ordering of

the elements within the XUL file is important for a meaningful focus ordering.

4“Optional extensions” are not available on every J2ME/MIDP Device and it is not possible
to start an application using one of them if the device does not support it, i.e. there is no
dynamic discovery.

84

4. User Interfaces

Figure 4.2.: GUI Creation Sequence-Diagram

Display Size. MIDP is designed for devices with small screens and low resolu-

tions and, therefore, offers little space for content and graphical elements. The

component offers some automatic scrolling capabilities to show all necessary in-

formation to the user.

MIDP also offers no layout manager in combination with individually styled

elements. Therefore, a custom layout manager had to be built. It allows the use

of the basic XUL/CSS layout model and offers scrolling if the screen size is too

small.

85

4. User Interfaces

4.4.6. Component Interaction.

Figure 4.2 shows the interaction sequence of components during the creation of

a UI based on a single XUL file with context rules and multiple CSS files, the

change of context and a user action.

UI Creation To create a context-aware user interface, the application developer

needs to write an XUL file which points to a set of CSS files depending on the

context-aware changes to the design. Then, an event handler has to be created

which implements the necessary methods referenced from the XUL event handlers

(see 4.3.2). The application then calls the GUI manager with the name of the

XUL file and an instance of the event handler. Using some caching, the GUI

manager first looks for a pre-parsed version of the XUL file which can be reused.

If none is found a discovery for compiled versions of the XUL is done. If all of

them fail, the XUL file is parsed and an XULWindow is created. All necessary

context attributes are checked to decide which CSS rules should be applied to

the current screen and some listeners are installed with the context manager for

these attributes to allow dynamic reaction to every change. Each applicable CSS

rule is installed and the XULWindow returned.

Context Change. In our example, the location of the user is one of the at-

tributes the GUI manager installed a listener for. When the user changes its

position, the GPSSensor reports a new position to the ContextManager which

then checks its registered listeners. Since the GUI manager is registered for this

event, it is called and checks if the position change is big enough to trigger a

layout change. It then installs the relevant CSS file into the XULWindow which

recalculates its layout and behavior accordingly.

User Action. When the user presses a button on which an event is installed,

the XULWindow calls the EventHandler of the application.

4.4.7. Compiling XUL

String handling and thus XML parsing is an expensive task on today’s mobile

devices. Compilation for XUL files was therefore added to the UI component.

The process of UI rendering was speeded up significantly. Compiling is done in

86

4. User Interfaces

a similar way as parsing the XUL file at runtime. Instead of creating the objects

when an element is encountered, the needed constructs to create the objects

are inserted into a Java file and are then compiled using the standard javac

compiler. Compiled classes are detected automatically at runtime to make this as

transparent as possible to the developer, the framework then loads the compiled

class instead of loading and parsing the XUL file. Unfortunately, loading classes

from outside the application jar is not possible in CLDC and thus compiled XUL

files are only achievable if the compiled class is available at the time of the JAR

creation.

Automatic detection of compiled XULs is done using a mapping from XUL

resource names to Java package name and class. Thus, the parsing method first

tries to instantiate the class (Class.forName()) and, if it is not available, parses

the XUL file. This improvement allows some easy speedup for the UI at creation

time while not decreasing the code compatibility over the available platforms.

Measurements The lack of high-resolution timers on mobile devices makes ex-

act measurements difficult. Futhermore modern JVMs are a black-box having

numerous adaptive optimizations resulting in non-repeatable results. The Sharp

Zaurus SL-C860 PDA was introduced in 2003 and is therefore slower than more

recent mobile phones. This alleviates the lack of high-resolution timers with

slower execution speed. It features a IBM J9 Virtual Machine with options to

turn of dynamic optimizations leading to repeatable results. The compiled XUL

files are tested on the J9 Personal Profile version of the XUL rendering backend.

A UI from an XUL with 5, 10, 15, and 20 visible elements is generated and the

time between the call to the UI generator and the return of the call is measured.

The XUL is parsed using the XmlPullParser (Slominski 2007) in case of the non-

compiled version and the CSS is parsed using our own parser in every other case.

Whenever some context constraints are given for a CSS, it is only parsed if that

CSS is needed at the moment and then cached.

The results are shown in 4.3. As indicated, the speed is improved by a factor of

7 with 5 elements which is a common number for mobile user interfaces and still

a factor of 5 with 20 elements. The absolute time for UI creation is decreased

by up to 110 msec which is noticeable even on this relatively fast PDA. With

slower PDAs or mobile phones, the speed increase is even more important. In

87

4. User Interfaces

 0
 20
 40
 60
 80

 100
 120
 140
 160

 5 10 15 20

tim
e

(m
se

c)

elements

Figure 4.3.: Creation Time for a UI using the Parser and Precompiled XUL

the tested PDA and two tested S60 mobile phones the critical time of 150ms

(cf. (Tolia, Andersen, and Satyanarayanan 2006)) cannot be reached without

precompilation.

4.4.8. Sample Screens

In the project where this framework was developed, a prototypical context-

sensitive application was created. The goal was to show that the development

for different devices is much easier using this framework. Experiences during the

development of the prototype showed many bugs in the rendering of different

virtual machines. This would be nearly impossible to work around again in every

application. Thus, the framework was helpful since the workarounds could be

factored out into the UI component.

Figure 4.4 and 4.5 show the XULmentioned above using two different stylesheets

on two different devices. The changes in the CSS are minimal and the adequate

CSS is chosen automatically. The latter one could also be loaded dynamically in

bright sunlight in order to improve the readability.

88

4. User Interfaces

Figure 4.4.: The Application on a High-end PDA

Figure 4.5.: The Application on a Low-resolution, Low-contrast Screen

89

4. User Interfaces

4.5. Evaluation of the User Interface Concept and

Implementation

In the preceding sections, a novel approach to separate the adaption of user

interfaces to different devices and user contexts, as well as the logic by using

selective and automatic addition of stylesheets to the user interface was shown.

The approach can easily be be used by developers and allows to style the UI for

different devices by every experienced web designer without any programming

knowledge. Besides that, any context available can be used to adapt the user

interface of an application without giving away any information to the service.

Each of the stated requirements will be discussed in the following paragraphs.

Semi-Automatic Adaption to Heterogenous Devices. Currently, it is not

possible to build user interfaces for different screen sizes or device capabilities

easily. Most toolkits offer some basic widgets without any possibility to style

them individually or let the developer design each UI all over for each screen size

only. While HTML overcomes some of these limitations, its page based execution

model does not fit the wireless use case with high latency times very well.

The XUL based approach combines the flexibility of XUL and CSS with a

powerful local programming concept. It is possible to design plain interfaces

that automatically adapt to every type of device while having the possibility to

increase the suitability for every given screen size with custom CSS files. This

reduces drastically the development effort for application with multiple target

devices.

Adaptation to user context. Through context-based selection of style sheets

the user interface is adaptable to every user context. The adaptation process

works without any support in the components logic. It is solely based on the rules

specified in the XUL file. This allows an easy creation of different appearances

using context data.

Usage of private context. By splitting the appearance change by context infor-

mation from the component logic, no information about the context information

used in the UI adaptation will leak to the component.

90

4. User Interfaces

Low processing needs. Benchmarking the performance of the UI component

is not feasible with the high number of different Java implementations on mobile

devices which all have very different performance properties. However, it can be

said that XML parsing is one of the weak performance points of todays mobile

phones which leads to slower UI creation than e.g. using MIDP or AWT directly.

Furthermore, the elements need to be drawn using Java and MIDP may be ren-

dered using native libraries. There are no architectural reasons why the XUL

based approach should be slower than any other non-native UI component with

similar styling properties. Pre-compilation of the XUL can be used to increase

the UI instantiation time significantly.

Customization by the user. The CSS specification features inheritance of style

elements. It is therefore possible to supply the framework with a user CSS file

which modifies the default behavior of each element. Simple customization can

be done using a graphical user interface which allows modification of the back-

ground picture, default font size and colors. These properties are then put into

a generated CSS file which is used on every window.

91

5. Service Isolation and Data

Protection

In context-aware services, the services or the applications attempt to better sup-

port the user by adapting the user interface or the information processing to the

user’s current situation. This certainly improves the usability (Kaasinen 2003)

of the applications, but helping the user to find and deploy the right services or

applications for the current situation is also an important point. Many services

are needed to serve different usage scenarios which leads to the fact that not a

single provider will be able to build all imaginable and useful services. There-

fore, a mechanism to discover services and to download and execute them on

mobile devices is needed. Chapter 3 introduces a concept to discover suitable

services related to the user’s context, while this chapter presents an approach

to isolate (non-electronic) services from untrusted sources, give them access to

sensible data, and still protect sensible data from leakage to service providers.

A single service provider will not be able to offer services for every imagin-

able situation, so an ecosystem for services is needed (Jacobson, Booch, and

Rumbaugh 1999; Garud and Kumaraswamy 2002) leading to a problem of trust,

especially when private information, as context data, is involved. While it is

feasible to assume trust to a single service provider, most users will not trust

all providers to use their data carefully and respect their right of informational

self-determination. A mechanism to download components which may then use

context data in their processing for user adaptation without leaking any infor-

mation about private information over the network is needed. Furthermore, the

integrity of each component has to be guaranteed and its interference with other

components must be prevented. The later problem can be addressed using the

Java Sandbox or similar concepts on other platforms. These code-based pro-

tection schemes control access to security relevant functions. Only trusted code

92

5. Service Isolation and Data Protection

components are allowed to use them while any other component’s access is de-

nied. Although some protection on code basis is available in the Java sandbox,

it is not easily extendable to protect data from leaving the device while still al-

lowing calculations using that data and access to the network. For some types of

adaptation, it is possible to factor out the sensitive part into some trusted com-

ponents and use code-based security in the other components which prohibits

access to any sensitive information. For the adaptation of user interfaces, an

approach using this technique was introduced in the previous chapter. Although

very secure and easy to implement, this method is only suitable in a narrow scope

and it does not permit any unanticipated context-usage. Therefore, an extension

to the security model which broadens the sandbox model to data is created. In

our prototype, it is implemented as a byte code interpreter which runs inside a

JVM. Utilizing this JVM, untrustworthy code may use all locally available data,

but may not send any information originated from private information over the

network.

Another problem is that in some Java configurations, which are predominant

on today’s mobile devices, loading code over the network is not possible. So,

the virtual machine is not only necessary because of the extended sandbox, but

also because the Java Connected-Limited Device Configuration (CLDC) does not

permit classes to be loaded which are not located within the installed original

Java Archive (JAR) file.

The remainder of the chapter is structured as follows: First, requirements

for the service isolation are shown and related approaches to secure data paths

are described. Afterwards, the general structure of the VM is explained. The

next section discusses the data traces of the interpreter. In the last section, the

implementation is evaluated against the requirements.

5.1. Requirements of Service Isolation in Mobile

Applications

A platform for mobile services needs the ability to deliver any kind of (electronic)

service, so the requirements in the following paragraphs are deduced from the

literature or requirements of services outlined in the previous chapters.

93

5. Service Isolation and Data Protection

Many, isolated services. “Users are different and they may use the services

for many different tasks, even for tasks that were not anticipated in the design”

(Kaasinen 2003). The number of different services implies a working ecosystem

with many providers implementing components and services (Garud and Ku-

maraswamy 2002). Each of them has to work independently and without the

possibility to disturb any other service (cf. (Czajkowski 2000)).

Low Memory Footprint. In parallel to the low memory requirement stated in

chapters 3 and 4, the memory available in mobile devices is not virtually unlimited

for everyday applications as in desktop computers. Therefore, the service isolation

should not increase the used memory by a large magnitude.

Execution and Start-up Speed. Mobile processors are still more slow than

common desktop CPUs were some years ago. Therefore, the solution may not

slow down the execution of downloaded components a lot. Especially the start-up

delay imposed by verification needs to be small (Bauer, Reichardt, and Schuele

2005).

Verification on the Mobile Device. The multi-provider nature of the down-

loadable services requires a verification on the mobile device. Further on it is

assumed that the user will only trust one entity1 and therefore this entity would

need to review all components by all providers. This does not scale very well

for many providers since every application needs to be reviewed and in many

cases a source-code review is mandatory to find any case of information leakage.

Currently, Apple is following the single provider verification approach for iPhone

Store Applications and hits major scalability problems leading to a slow approval

of new developers. This model also leaks intellectual property of the providers

to the verification authority which limits the willingness of software vendors to

cooperate with potential competitors on verification.

Access to all context data. The main goal of this work is to increase the

context data usable in services under the restriction of privacy maintenance.

As stated in the introduction, it is desirable to use as much information about

the user context as possible while preserving the user’s privacy. The usefulness

1The same argument would be true if it were “not many entities”.

94

5. Service Isolation and Data Protection

of components can be improved with access to all context data. Therefore, it

should be possible to use any available data.

Privacy. The user needs the ability to specify, with any desired granularity, the

access rights to context attributes (cf. section 2.3). The range of possible access

rights are “no access at all”, “decreased accuracy”, and “full access”. While it

is not important to shield them from any local component, no attribute marked

as private may ever get to a remote service provider through an untrustworthy

component.

Network Access. Many services do need up-to-date information from a server.

One example is the routing service outlined in section 3.5 which needs to download

accurate map data and current traffic patterns. So, the main challenge is to allow

access to all network resources while maintaining the previous two requirements:

protecting the user’s data while still giving full access to context data.

No false positives. A false positive, in this matter, means a wrongly detected

information leakage which leads to stopped execution or a component which

cannot be started in case of prior verification. Any false positive will deny access

to a specific service and therefore should occur only in limited cases.

5.2. Existing Approaches

Existing approaches are from the four groups model checking, sandboxes, anonymiza-

tion, and runtime verification. In each of these groups many implementations for

different security policies exist. In this section only the basic approaches are

outlined without going into detail for the different implementations.

Loading application logic at runtime can be done using many different ap-

proaches. In the CLDC, the loading of classes does only works with classes

already present at the installation time. One way to solve this problem would be

the inclusion of a scripting language interpreter like JavaScript (Flanagan 2002),

Python (Lutz 2006), or TCL (Ousterhout 1994).

There are multiple methods in different areas of computer science which secure

the data movement behavior of applications according to an (implicit) contract.

95

5. Service Isolation and Data Protection

However, current methods are not suited for the described scenario since their

computational costs are too high for mobile devices or they do not allow simulta-

neous usage of the network and the private data while guaranteeing the integrity

of the privacy boundary.

The predominant technique to secure data in Java application is the sand-

box concept (Gong, Mueller, Prafullchandra, and Schemers 1997). The sandbox

grants access to resources depending on the security context of the calling meth-

ods. Using a sandbox could prevent some methods from accessing context data at

all or deny access to the network. Giving untrusted components access to context

data and to the network is not possible in this model without compromising the

user’s privacy.

Hardware virtualization uses similar approaches with a hypervisor. It inter-

cepts system calls to the hardware and replaces them with safer wrapper func-

tions. Those could be used to validate security rules or prohibit some functions

entirely (Mitchem, Lu, and OBrien 1997).

Static Code Analysis and Model Checking (Clarke 1999) trace every possible

path within a program to check the predefined contracts. These techniques tend

to detect false positives since every possible path through the program is used and

no knowledge about valid input can be used to narrow the analysis. Furthermore,

model checking is too computationally heavyweight to be executed in real-time

on today’s mobile devices.

Runtime-verification is a method to check predefined test cases at runtime.

Therefore, rules are specified using a temporal logic. In the context of Java,

the predominant technique is instrumentation (D’Amorim and Havelund 2005)

which adds some code to each class that allows tracing the method calls and

their results. Adapted rules for this use case would be possible, but the runtime

computing power demands are too high to be fulfilled by a mobile device and the

constraint that the test cases are trusted cannot be filled.

A different approach to preserve user privacy is anonymization between the

mobile device and the service provider (Tatli, Stegemann, and Lucks 2006). By

using so-called “Mix”-Nets, many requests of the same user are not correlated

to the IP address of the device. This can be helpful if the sensitive data which

is protected by anonymization does not contain any identifiable data. If the

component wants to greet the user by its name, it would be able to send the

96

5. Service Isolation and Data Protection

user’s name of the user along with the sensitive data. Nevertheless, this could be

combined together with the method shown in this paper to further enhance the

user’s privacy.

5.2.0.1. Evaluation of Current Approaches

The existing approaches can be grouped intomodel checking, sandboxes, anonymiza-

tion, and runtime-verification. Those are evaluated using the requirements out-

lined above. A summary is given in table 5.1.

Model Checking. Model checking performs an exhaustive search of all alterna-

tive paths through the software. This has to be done before starting the software

and needs a large amount of memory and processing power to enumerate all

paths. It is not suited for the verification on the user’s device. Protecting access

and tracing usage of sensitive data is possible, but the number of false positives

is quite high since not only really used code paths are evaluated.

Sandboxes. Sandboxes and hypervisors do restrict access to methods or data

based on a policy. These only restrict access to some methods and can therefore

be implemented in a fast way. Services can be isolated and each does only have

a low-memory overhead imposed by the hypervisor. Access to sensitive data can

only be granted for the component or prevented. Usage of the data while giving

network access is not possible in this model.

Anonymization. Anonymization does not change the component’s behavior,

but is attached at the network functions. The data sent is routed through some

sort of anonymization network in order to conceal the source. Therefore, the

approach is quite fast, the only computational work is the encryption of the

data depending on the used algorithm. The execution of the component itself

is unaltered and at full speed. The main drawback is that it is not suitable for

all data and services. First of all, it requires sophisticated payment solutions

to allow payment or subscription services. Furthermore, some context attributes

may contain data like the name or the address that can be linked to an individual,

even if the source of the transmission is unknown.

97

5. Service Isolation and Data Protection

Runtime-Verification. Traditional runtime-verification needs explicit rules that

are able to decide if the software adheres to a contract. These rules are based on

pre- and post-conditions of code blocks. Using these rules, it is hard or impossible

to find out what has been done using a specific data element, but only if something

was changed or not. Moreover, most approaches do heavily use instrumentation

and therefore decrease runtime performance dramatically.

Approach M
an

y
se
rv
ic
es

M
em

or
y
re
qu

ir
em

en
t

S
p
ee
d

O
n
-d
ev
ic
e

D
at
a
A
cc
es
s

P
ri
va
cy

P
ro
te
ct
io
n

N
et
w
or
k
A
cc
es
s

F
al
se

P
os
it
iv
es

Model Checking 0 - - - + + + -
Sandbox + + + + - + - +
Anonymization + + 0 - 0 + - +
Runtime-Verification 0 - - - + + + -

Table 5.1.: Existing Data Protection Approaches

Table 5.1 summarizes the capabilities of the existing approaches. Especially

the combination of good security with high performance on mobile devices is not

available in any of them. Therefore the next sections focus on a new approach

combined these features.

5.3. Virtual Machine Concept

In the previous section, current approaches were outlined. These do offer a way

to use private data and the network, but still make sure that the private data is

secured by either requiring an offline analysis or a trusted party reviewing each

component for “good” behavior. To meet all requirements shown in section 5.1,

an online verification approach is needed which considers some of the advantages

provided by a code analysis, while offering an instant start of the component

without a trusted third party. Online in this sense means verification during

execution of the component.

98

5. Service Isolation and Data Protection

The VM enforces a strict version of the chinese wall security policy (Lin 2006;

Anderson 2008). The chinese wall policy originates from financial auditors. An

accountant may not have access to sensitive data of two competing companies.

This is enforced by a virtual, moving wall which is built between the user and

the sensitive data. If the user gains access to sensitive data of one company new

wall is errected to the competing companies and the auditor may not work for

those.

Verification techniques do traditionally check every possible path through the

code of a component and, thus, are computationally very complex. To certify a

component before it is executed, this is the only possible way since it is not known

beforehand which path will be chosen. The concept for data protection shown in

this chapter moves the verification into the virtual machine which executes the

component. Combining the verification and the interpretation of code eliminates

the start-up delay and limits the verification efforts to the code paths which

are really used. Without the need to store data for every possible path, it also

reduces the memory requirements and forces the concept closer to a feasible online

verification.

Each component (or even each class or method) can be categorized into “trusted”

and “untrusted”. However, the aspect of classification of the classes is not within

the scope of this work. Several mechanisms are conceivable, such as labeling each

locally and manually installed class as trusted while every class downloaded on

demand is untrusted or the Java security context could be reused (Gong 1997).

However, more complex schemes could be used as those described in (Garfinkel,

Pfaff, Chow, Rosenblum, and Boneh 2003), (Rubin and Geer Jr 1998) or (Zhang

1997).

Mobile devices are equipped with relatively slow processors which lead to un-

acceptable slow applications in an interpreted VM enviroment. Therefore, our

approach executes the trusted code in the device JVM directly which is signif-

icantly faster and only the untrusted code is interpreted. The interpretation is

fully transparent to the application and trusted code can access untrusted code

and vice versa. When common code, like a UI framework or high-level context

processing (cf. chapter 3) functions are included in the trusted code, the slow-

down of the whole application can be neglected. In this chapter, the VM that is

99

5. Service Isolation and Data Protection

Figure 5.1.: VM

shipped with the mobile device is refered as “device VM” and the VM running

inside as “inner VM” or“MixVM” (cf. figure 5.1).

Each variable (object or primitive type) within the inner VM is tagged with

its status which indicates to which group of data the variable belongs. The group

determines if the content of the variable is sensitive and if information about its

content may leave the mobile device over the network. At the execution of a Java

bytecode instruction, the tags of the involved variables are checked. Depending

on the status of the variables which influences the results of the instructions, the

tags for the result are set. As some instructions do also influence the program

counter (PC), it must be tagged in the same way as if it is influenced by a tagged

variable.

Initially, variables get their sensitive status when they transition from trusted

code to untrusted code in a wrapper. The status is then checked again when

trusted code is called which accesses the network in order to form a boundary to

the network.

5.4. Design Considerations for VM

The concept for data protection shown in the previous section can be applied to an

interpreted JVM as well as in a just-in-time compilation JVM. A hybrid approach

was chosen to minimize the development effort and to ease the evaluation. It is

100

5. Service Isolation and Data Protection

an interpreter within an existing JVM for the untrusted code segments. While

the interpreter written in Java slows down the execution of untrusted code, it has

the advantage of running within existing mobile phones and PDA.

Furthermore, this adds the ability to execute downloaded code on CLDC en-

vironments as a side effect. In Java, a class loader is responsible to load classes

from a file or over the network into the virtual machine. The class is only avail-

able within the context of its class loader and all its parent class loaders. Within

CLDC, a simpler security mechanism is implemented which prohibits custom

class loaders and does only contain one which limits its access to a single JAR

file. The interpreter presented in this prototype may be used to overcome this

limitation on current devices.

This VM aims to be compatible with the Java Virtual Machine Specification

(Lindholm and Yellin 1999)2 and therefore to be compatible with a native JVM

for all applications. To save the effort of implementing the class libraries again

and to speed up their execution, the interaction of classes running in the native

VM and the interpreted VM are fully transparent.

To load an interpreted class from a native class3, it would use the newly im-

plemented Clazz.forName() in contrast to the conventional Class.forName() to

instruct the interpreter to load the class and return a reference to it. Every class

referenced from within an interpreted class would have a special class loader

which first would try to locate the class within the interpreter and then would

fall back to the native classes and the bundled class libraries. This fosters a

faster execution by having a framework with high level function within the na-

tive JIT or interpreter and just using the MixVM interpreter for a smaller piece

of the code. In this case, a framework for context-aware mobile applications

which implements the context sensing as well as some reconfigurable graphical

user interface (GUI) based on context changes and downloadable code offering

some service downloaded on demand, depending on the user’s situation. The

downloaded code does only contains some logic which generally is not as compu-

tation intense as the GUI functions or the regular context sensing. Furthermore,

the untrusted source of the component does need special handling.

2The only incompatibility with the specification is the deferred validation of loaded classes,
but this does not affect valid classes.

3For a differentiation of “native” and “interpreted” class see figure 5.1

101

5. Service Isolation and Data Protection

Figure 5.2.: Interaction between MixVM and the Class libraries

102

5. Service Isolation and Data Protection

Figure 5.2 shows the interaction of the virtual machine with the class libraries

and the native-VM. While previously described components of the framework,

as described in chapters 3 and 4 as well as with the class libraries of the used

Java profile, are executed in the native VM, the downloaded code resides within

the MixVM. This consists of a class loader, the interpreter loop, and storage for

the class and instance variables. The objects can be accessed from outside via a

reference to a proxy object. Access from within the MixVM to the outer VM is

performed using a field and a method wrapper. Depending on the state of the

involved data and the called method, the access may be denied and the state of

return values is set. Details of this process are shown in the next sections.

In the following sections, a prototypical implementation is presented. Selected

design choices of the implementation are discussed in the next sections.

5.4.1. Class Loading

Whenever a class has to be loaded, the class loading process starts by fetching

the class out of a JAR or downloading it over the network. A preset class path

is used for searching similar to the process in a standard JVM. The class file is

then parsed according to the Java Virtual Machine Specification(Lindholm and

Yellin 1999). The linking and verification step, as required by the standard, is

postponed to the actual invocation of the classes, methods, or constructors to

save execution time. The outer VM performs equivalent runtime checks anyway.

After parsing and immediate invocation of all static initializers of each loaded

class, they are stored in a hash table to be found later. Various hash tables may

be used if some kind of separation between the classes of different components is

necessary or multiple class loaders must be emulated.

5.4.2. Interpreter

Whenever a method of a class that has been loaded by the interpreter is invoked,

the method execute(String methodname, String descriptor, OperandVector args)

is called including the method name, the descriptor, and all parameters in the

Clazz instance of the loaded class. A new stack frame is created which contains

the program counter (PCount) and the number of slots for local variables as spec-

ified by the method. The entries 1 . . . n of the local variables are then initialized

103

5. Service Isolation and Data Protection

with the n arguments of the method according to the specification. Furthermore,

a status for the PCount is stored for data tracing (see 5.4.7). This information

can be used together with the tagging of variables to detect if an instruction may

leak sensitive data.

The interpreter itself is an interpreter loop which decodes each bytecode and

completes the necessary actions while making notes about the status of the used

data as shown in the next sections.

5.4.3. Primitive Types, Objects, and Arrays

Storage of primitive types and objects is done in wrapper classes. Each variable

is wrapped into an object which contains the primitive type or an object refer-

ence. Furthermore, it contains a status indicator to signal if the variable contains

sensitive information. For every primitive type, a wrapper class exists. Using

these wrappers, type checking is done explicitly by the native VM. Arrays are

wrapped too and every array element is also wrapped to maintain the status on

an element level.

5.4.4. Instances

Instances of classes loaded with the MixVM are of the type Instance. They enclose

a Clazz field which is a reference to the loaded class and an array containing the

instance variables. The latter can be accessed from the instance with wrapper

methods.

5.4.5. Threads / Locks

The behavior of threads and locks is defined in the Java Language Specification.

The Virtual Machine runs within a Java environment, so it is possible to reuse the

thread implementation of the native VM. Whenever a thread is created within the

interpreted code, it is given to the outer VM and a new native thread is created.

Methods are then interpreted within the newly created native thread. The same

is true for locks. If interpreted code acquires a monitor the VM acquires a lock

on the wrapped object in the native VM.

104

5. Service Isolation and Data Protection

5.4.6. Accessing Outside Fields / Methods

Classes running within the inner VM may call methods of classes running in the

outer VM. Java identifies a field by the name of the class, the name of the field,

and a descriptor for access from the bytecode. The descriptor encodes the type of

the field. A non-static field is identified by the same identifier and, additionally,

a reference to an object. In an environment that supports java.lang.reflection, it

is easy to get and set the values of these fields using reflection. Since no reflection

is available in the CLDC environment, a wrapper is needed.

In the presented approach, the wrapper has four static methods: put, get,

putstatic, getstatic. The put methods use the fieldname, the classname, the de-

scriptor, and a value to put into that field. In case of the non-static method, an

additional object reference of type classname or a subclass is used as argument.

The get method uses the same identifying attributes and returns the value of the

field.

Similar to the fields in Java classes, methods are identified by the method name,

a descriptor, the class, and, in the case of a non-static method, a reference to

an object. Access to private or protected classes in the outer VM is not possible

because of Java security restrictions. The class in the inner VM will not be

in the same package as the class libraries. This should cause no problem since

well-behaving software components should never use the same packages as the

framework. The wrapper for methods gets the identifying attributes as String

and a List with the arguments wrapped into the internal representations. The

method wrapper then looks for the corresponding method and casts the object to

the required type. Thereafter, the arguments are unwrapped and casted according

to the method descriptor. Finally, the method is called and the return value is

wrapped again in the appropriate operand container.

Due to the fact that hundreds of fields and methods of the class libraries need

to be accessed, it is not feasible to manually edit this wrapper. Therefore, a

code generator consisting of two parts was implemented. The first one scans the

class library and the trusted classes and writes the results to an XML file. A UI

application parses the method definitions and offers the users a simple interface

to clean the file from methods which should not be accessed via a wrapper. Fur-

thermore, methods can be marked to indicate that they return sensitive data or

105

5. Service Isolation and Data Protection

leak data to other objects. A second tool then generates two Java files. The first

one for the fields and the other one for the methods implementing the wrappers.

There are several possibilities to divert the appropiate method. The following

four alternatives were evaluated:

• One large method with a string comparison for each class/method/argu-

ments combination.

• A nested string comparison, only comparing the method name in the top-

level and thus reducing the number of if instruction in the top-level. In

the next level the method name / signature is checked. The number of

string comparisions is therefore decreased by a factor of methods per class

on average.

• One large switch block over the int hash of the concatenated class/method-

/descriptor.

• A nested switch: the top-level switch uses a hashmod256 over the same

hash and then another switch for the whole hash inside the case block. The

reason for the last method is that dense case operands are implemented

using a tableswitch opcode which is much faster than a lookupswitch. Ta-

bleswitch is internally a table having two columns. In the first column, the

value to compare is stored and in the second column the address which is

used as the new program counter is filed. The VM has to compare each

value until the right one is found. The lookupswitch instruction is only

available for consecutive values. Here, a starting value is subtracted from

the value and the result is used as a pointer to the right offset. No value

comparision is needed in that case, but in case of large holes between the

values the needed memory for the table becomes too big and there is an

architectural limit in Java for a bit less than 65000 values (depending on

the size of the following instructions).

To get some empirical data for this decision, three different implementations

were tested 4. The first one is the nested string comparison, then the switch

statement over all hashes, and as implementation number three the hashmod256

4It was already shown that the plain comparison is slower if the average number of methods
per class is bigger than 1.

106

5. Service Isolation and Data Protection

switch with nested if statements for the hash. The test was performed on a

1.5Ghz Pentium M with 2GB of RAM and a Java 1.6.0-b09 on GNU/Linux.

The VM was used in interpreted mode, since JIT mode is not predictable. In

the HotSpot JIT, the decision for compilation or interpretation is dependent on

many unpredictable outside factors. The static field wrapper with 1000 fields was

used and called 100.000 times with random fields. In Test A, only the upper half

of fields was used, Test B the bottom half and Test C had a uniform distribution

over all fields. The results in table 5.2 show the average time over 5 runs. Since

the nested hash approach provides by far the best performance, it has been used

for the wrapper implementation.

Implementation Test A Test B Test C
String Comparison 30s 36s 34
Hash 13s 14s 14s
Nested hash 8s 8s 8s

Table 5.2.: Look-up Benchmarking

5.4.7. Tracing Data

Each wrapper object has a status field indicating if an object contains sensitive

data or may be passed around freely. Furthermore, a code status flag exists which

indicates if the current code path may give away information about some data.

Each instruction in the Java virtual machine consists of an opcode, determining

the action and some optional data. Depending on the opcode, this status field

is modified. The opcode classes are described in the following paragraphs. The

categorization from the JLS §3.11 is used. To denote the status of a field or

variable A, the notation s(A) is used.

5.4.7.1. Load and Store Instructions

Load and store instructions are used to move a variable from the operand stack

to a local variable or vice versa and to move a constant to the operand stack. In

each of these storages, the variables are wrapped inside a wrapper object which

stores the status of the variable. The reference of the wrapper is simply copied.

If the PCount status indicates a sensitive block, the status is combined with the

code status using a binary logical disjunction.

107

5. Service Isolation and Data Protection

5.4.7.2. Arithmetic Instructions

� �

���������

���������

�����
����������������	
�

���

���

���
�����
����
���
���

	

Figure 5.3.: Arithmetic Instructions

Arithmetic instructions operate on primitive types. They take one (e.g. A) or

two (e.g. A,B) variables of the same type off the operand stack and return the

result which is a simple arithmetic operation on the stack. The privacy status

of the result (e.g. C) is computed using a bitwise disjunction operation of both

status and the code status or the PCount (s(C) = s(A) ∨ s(B)). The result is

then put into a new wrapper object and put on top of the stack.

5.4.7.3. Type Conversion Instructions

� �

���������

���

�
����

���

���

��	
	�

���
��

���

�

Figure 5.4.: Type Conversion Instructions

108

5. Service Isolation and Data Protection

Type conversion instructions operate on a single primitive type on the operand

stack and put back another primitive type. In this case, the privacy status is

copied from the argument to the result.

5.4.7.4. Object Creation and Manipulation

Newly created objects and arrays inherit the status of the code by which they

are created.

Array load and store operations behave in the same way as the load and store

instructions. instanceof, checkcast, and arraylength get the status of the array/ob-

ject and the codestatus combined using a bitwise disjunction.

5.4.7.5. Operand Stack Management Instructions

� �

���������

���

�
����

�
����

���

��	
��	

��

Figure 5.5.: Operand Stack Management Instructions

In case of the dup instructions, the newly created object gets the ORed codesta-

tus and status of the source variable. The swap instruction gives BOTH variables

the combination of the codestatus and status variables using bitwise disjunction.

5.4.7.6. Control Transfer Instructions

If the comparision of a control transfer instruction does not contain any private

tagged variable, no special action is required. Otherwise, an analysis of the not-

followed code path is necessary:

109

5. Service Isolation and Data Protection

• If the path does only contain primitive types and arithmetic operations,

these variables are tagged.

• If the code contains other instructions, a static analysis is started of the

chunk in case of small chunks or the PCount status flag is set.

Without this analysis, the following code snippet could leak information of the

sensitive variable a to b even if the comparison is not true. The variable b is equal

to 1 if a is not equal to 2. In this case, b would implicitly include some information

about a even though the assignment does not happen within a sensitive block.

b = 1;

if(a == 2)

b = 2;

These are the main scenarios in which the VM could lead to false positives and

developers should therefore be advised to use constructs like these in a cautious

way.

5.4.7.7. Method Invocation and Return Instructions

Opcodes out of the invoke family first check if the defining class of the method

is loaded by the interpreter. In that case, the execute(...) method of the loading

Clazz instance is called and the codestatus is inherited by the invoked method.

Otherwise, the corresponding method wrapper is called. Here, the suitability of

the parameter’s privacy status is checked and the method called.

The return instructions remove the current stack frame and return to the next

higher frame.

5.4.7.8. Throwing Exceptions

Throwing an exception has two differenting consequences depending on an en-

closing catch or the methods throws declaration.

• The exception is caught within the current method. Then, the behavior is

similar to that of a Control Transfer Instruction. If the throw depends on a

sensitive variable, the PCount status flag is set and the handling matches.

• The exception is caught by a method higher in the stack. Here, a permanent

PCount status is set.

110

5. Service Isolation and Data Protection

5.4.7.9. Synchronization

Synchronization does not affect any data, thus no special handling is needed. The

locking mechanism of the native VM is used in that case.

5.5. Evaluation of the Concept and Implementation

The outlined concept and the prototypical implementation shown in the previous

sections are the first which fulfill the requirements in section 5.1. Each of the

requirements is shown in the following paragraphs.

Many, Isolated Services. The Java class file interpreter facilitates a natural

isolation of the components. Each interpreter instance has its own set of loaded

classes and static variables, so each component has its own separated execution

environment.

Low Memory Footprint. The interpreter’s size for the compiled class file is

about 100kb, which poses no real problem for today’s mobile handheld devices.

It would be a problem for minimal sensor nodes, but those do not need this kind

of downloadable services anyway. Beyond that, the heap size increases depending

on the type of used primitives and objects. In our tests, it was a factor of about

1.5 to 2.5 for each object hold by the inner class, but these numbers depend on

the type of VM used and cannot be measured reliably.

Execution and Start-up Speed. Using the MixVM, no start-up delay for veri-

fication is needed as in any other approach which fulfills the privacy requirement.

Distribution of the trusted and untrusted code between the two virtual machines

allows trusted code to be executed much faster than the untrusted code and,

therefore, offer a higher execution speed together with the user interface frame-

work of chapter 4. Given that the execution of untrusted and trusted code is

handled differently, existing benchmarks are not significant. A simple untrusted

class which calculates the first 10,000 primes several times is slower by a factor

of 17 on an x86 computer with Sun JDK 6 and therefore would be too slow for

real world usage. Benchmarks using the B2C applications in chapter 6, where

the UI and context framework was trusted and the downloadable components

111

5. Service Isolation and Data Protection

are marked as untrusted, showed only a slowdown with a factor of 1.5 to 3.3

depending on the usage. Using a JIT or integrating directly into a JVM instead

of the interpreted Java prototype, nearly the same speed as without that concept

is attainable.

Verification on the Mobile Device. The number of services prohibits a central

authority verifying all component. Therefore the verification step has to happen

on the mobile device. In this approach all code is verified at run-time and no

assumptions about the downloaded code are made. Therefore, no trust in a

central authority is needed.

Privacy & Access to all Context Data. Downloadable, untrusted components

may use all sensitive context attribute, even for adaption to the user’s situation.

The traceability of private context data allows the access to all data until it is

tried to send it over the network.

Access to network. The tracking of sensitive data fosters a separation of the

context usage and the network usage. Thus, it is possible to give network access

to the components while still preserving the user’s privacy.

False positives. False positives are possible using this approach. Similar tech-

niques as in static code analysis are used to find the path of the used data but

not all code paths are really executed. In a static code analysis all possible values

for any variable and the resulting code paths are evaluated. In this VM only the

used paths are evaluated and only with the live data. Therefore, less code and

data is flagged as confidential. So, the number of false positives is as high as in

static analysis in the worst case, but much better in general.

The shown approach is superior to all other approaches since none of them

is able to fulfill all stated requirements. One drawback is the potential for false

positives, but it is still lower than in in the best competitor (static code analysis)

which would not allow a decentralized service provider scenario.

112

6. Examples Validating the Utility

of the Framework

In this chapter, two sample applications implemented using the framework, de-

veloped in the previous three chapters, are presented to show the feasibility of

context-aware application development using this framework and its rapid proto-

typing capabilities. The first one is a consumer application comprised of several

services emerged during the SALSA project. The second one a simulated business

application for the construction industry.

6.1. Consumer Application

Any usage of a mobile service consists of two parts. First of all a suitable service

has to be found and then the service is used. In some cases the service is already

known and simply has to be activated, but having the ability to find a service in

a new situation is important. Besides entertainment and navigation the largest

portion of services consists of information services (cf. chapter 2). Context in

informational services can be used to augment explicit user input. An example of

heavy context use can be found in recommendation services which use a large set

of context data to deliver good recommendations. This section shows a bargain

hunter and a restaurant recommendation service as examples for this service

type. Results can be easily transferred to other recommendation services. The

utility of the framework is shown using several different services highlighting the

reusability.

In contrast to typical desktop applications, mobile applications show different

characteristics arising from the influence of their environment on their design.

The key distinguishing characteristics include mobility, resource limitations, het-

erogeneity, personalization, and different requirements of usability patterns. In

113

6. Examples Validating the Utility of the Framework

view of all these constraints, it is even more important to provide mobile users

with enhanced support for finding suitable services in an efficient way. Long-

winded interactions between humans and mobile devices in the process of service

discovery should be avoided since users are restricted in their input capabilities

and are mostly not willing to enter large search requests, as they would do us-

ing browser-based search engines on their desktop computers. Context-aware

service discovery delivers significant added value since it considerably reduces

the required interaction and delivers personalized, precise search results that are

suitable in the user’s current context.

In the SALSA project (Software Architectures for Location-Specific Transac-

tions in Mobile Commerce)1, the Mobile Business Research Group at the Uni-

versity of Mannheim has built up a generic software platform which supports

the development of context-sensitive discovery services for service brokers and

providers. Furthermore, SALSA offers a client framework supporting the devel-

opment of generic client applications for mobile devices that enable the dynamic

integration and execution of discovered services and especially considers the user’s

privacy for contextual information.

The basic scenario adopted in the SALSA prototype assumes a mobile user

equipped with a mobile device. The mobile user is interested in immediately get-

ting value from physical (business) services suitable to his current context. Thus,

he sends a service request to a centralized service broker which delivers a choice of

electronic services that he can use for further exploration. The service broker pre-

selects services that fit to the user’s current context (e.g. location, time, weather,

user profile). The mobile user selects one of the specialized services by category

and, if necessary, the client application automatically downloads and executes

components that are needed to consume the service. When sending a service

request to the specialized service using the implicit available context information

of the mobile device, the user is returned a personalized, and customized list of

services suitable for the submitted context. After choosing a service provider, the

client may download components for the service. The general working principle

of the scenario is shown in figure 6.1.

1http://www.salsa.uni-mannheim.de/

114

6. Examples Validating the Utility of the Framework

Figure 6.1.: Scenario

6.1.1. Service Discovery

The application does consist of the aforementioned framework with several con-

text sensors connected to the context manager. The following sensors were im-

plemented and used in this example:

• Calendar to report the available time slot and the next location of the user,

• GPS and WLAN positioning to accurately report the position of the user,

• an interface to a weather service reporting current weather at the position

of the user,

• device orientation to adapt the user interface, and

• context sharing with instant messenger context to gather position informa-

tion of friends and colleagures.

The user handles the application through a main screen (see figure 6.2 for an

example rendering on a high-end PDA) which allows to search for other services

and set user preferences, including the context access permissions.

This screen offers the following actions to the user:

• Setup: Setting profile data and personal preferences.

• Search: Discovery of suitable service for the current user context.

• Context: Overview of the currently gathered context attributes and their

visibility for services.

Each function will be described in the following paragraphs.

115

6. Examples Validating the Utility of the Framework

Figure 6.2.: Start Screen with Menu

Settings. The settings screen gathers configuration options from installed ser-

vices. To improve personalization, the user has the possibility to specify some

user attributes, as the preferences towards special food or whether he prefers

credit cards or cash. The dynamic preferences screen can be seen in figure 6.3.

More options can be added dynamically via downloadable components linking

into this dialog.

Context and Privacy Settings. On the screen in Figure 6.4, the context at-

tributes available to the application are shown together with their privacy status.

The user has the possibility to mark each attribute as “public”, “blurred”, or

“private”. It is then set in the context manager so that the access of the other

components’ access will be denied or degraded. “Private” data may only be used

locally to improve search results or the graphical user interface.

In the shown example, the user’s position is blurred and therefore its accuracy

is degraded artificically.

116

6. Examples Validating the Utility of the Framework

Figure 6.3.: User Preferences

Figure 6.4.: Context Attributes Visibility

117

6. Examples Validating the Utility of the Framework

Figure 6.5.: Service Selection

Service Discovery. The invocation of the service discovery function in the main

menu sends the implicitly gathered public context attributes together with the

explicitly entered attributes in the serialized format to the discovery server of

chapter 3. All services in the database are compared to the set of context at-

tributes and those which contradict the attributes are eliminated. The remaining

services are sent back to the client and the private attributes are used to refine

the search. If the number of services (which should be) sent over the network is

too large, a warning is sent to the user instead. The user also receives a notice on

which additional context attributes can limit the number to a reasonable amount.

Using this information the user may decide to resubmit the request giving out

additional data or using the truncated result set.

In the next dialog, the user is offered a list of services suitable for his current

situation. A choice to get additional information about each service or to use

one of them is given. Upon selection, potentially needed components are down-

loaded, instantiated, and executed within the isolating virtual machine pictured

in chapter 5.

118

6. Examples Validating the Utility of the Framework

For the sample application developed during this thesis, four services were

implemented. Each of them used the service discovery, the UI toolkit, and was

downloaded executed within the MixVM.

6.1.1.1. Gastronomy Guide

A gastronomy recommendation guide is a typical information service which is

highly dependent on the current context of the user. First of all the choice of

restaurant depends on the location, but also on available time for lunch or pre-

vious choices. Thus a guide was developed enabling its users to find restaurants

and bars in the vicinity. Following the selection of the service, the application

downloads a component which contains the user interface elements and further

required components like the routing component and a security module if not

already available on the device. Furthermore a restaurant may offer additional

services such as table reservation or special prices.

On the initial screen of the guide, the user may choose additional criteria for his

restaurant search, like the maximum distance or the preferred cuisine (figure 6.6).

Afterwards, those are sent with the context attributes to the service provider. The

server uses the same search concept as in the service search above, but implements

a different mapping between the restaurant description and the applicable context

attributes. On the device, the same type of filtering is performed. Mappings

include, amongst others, those from the address to coordinates, indoor/outdoor

facilities, and opening times to time restrictions.

Restaurant Details A click on a list item in the results page leads to the details

of the restaurant or bar. Anything included in the restaurant descriptions, besides

the context rules, is displayed. Furthermore, a button to calculate a route to the

place from the current position is offered.

Routing to Place of Interest. Depending on the privacy settings of the user’s

position, two types of routing are possible. In the case of private coordinates, the

routing is performed as described in section 3.5. Otherwise, the service providers

do provide a map from the user’s current position to the destination in order to

save processing time and bandwidth (figure 6.8).

119

6. Examples Validating the Utility of the Framework

Figure 6.6.: Gastronomy Guide Settings

Figure 6.7.: Gastro Details

120

6. Examples Validating the Utility of the Framework

Figure 6.8.: Navigation to Restaurant

6.1.1.2. Bargain Hunter

The service “bargain hunter” enables the user to find bargains matching his

personal preferences in his vicinity. The local component on the device allows the

search for coupons and storing them in order to show them to the collector later.

The coupons’ personalization or adding barcodes for scanning is also possible.

6.1.1.3. Event Guide

Using the event guide, a mobile user may find relevant and interesting events in his

current neighborhood available to his profile. Amongst the explicit preferences,

other attributes like the current time, the position, and the available free time in

the calendar are used to find suitable events. On the server, the current weather

is added to further refine the results.

121

6. Examples Validating the Utility of the Framework

6.1.1.4. Tourist Guide

Additionally, a tourist guide was implemented. Resembling the gastro guide,

places of interest in the city the user currently resides are shown. Besides the

routing to one destination, the tourist guide is able to calculate routes including

all places.

6.1.2. Conclusions

The services shown in this chapter proves the feasibility of implementing typical

context-aware systems using the presented framework. Other projects2 always

limit either functionality or privacy protection for these types of services. All

services used only the inference capabilities of the service discovery (cf. chapter

3) for any context based decisions.

All components shown in the chapters 3, 4, and 5 were used and the effort to

develop the services was mainly in the design of the user interface using XUL

and the transformations of the service descriptions. Only a very small amount of

actual Java code had to be implemented for each service (in the range of 100-200

lines of code per service).

Each of the services was tested on multiple devices with different input and

output capabilities and could be used without any modifications which shows the

capabilities of the UI framework.

6.2. Mobile Support Application in the

Construction Industry

The usage of new mobile applications for mobile workers is still quite low. While

technological problems decreased, in recent years, the overall benefit of using

mobile technologies is not clear in most cases (Gebauer, Shaw, and Zhao 2002).

In the project, GEM, methodologies to measure the possible benefit of different

mobile solutions and technologies were searched. Therefore, different variations of

technologies and improved processes had to be tested. The construction industry

was chosen as an example since it is inherently mobile and very labor-intensive.

2cf. the respective sections in the chapters 2, 3, and 4.

122

6. Examples Validating the Utility of the Framework

Figure 6.9.: Laboratory Setting

A research model was constructed including the constructs of information gath-

ering and information access costs (Deibert, Heinzl, and Rothlauf 2008). This

model needs to be tested using a combined experimental and simulational ap-

proach.

To validate this model, it is necessary to be able to easily test many varia-

tions of the same process. It is hard to find a controlled environment offering the

possibility to change the setting often. Especially the integration of the mobile

application in the backend information systems is not possible for many different

variation. Therefore, a system is needed which allows easy creation of mobile

applications. Furthermore, different levels of sensoring support should be eval-

uated. It is nearly impossible to build and access those in a real construction

site environment because of technical and legal hurdles. Additionally, it is hard

to test different process variations on-site in a real environment, so a laboratory

to gather empirical data which can later be used in a simulation model to pre-

dict the benefits of different mobile technologies had to be built. The laboratory

123

6. Examples Validating the Utility of the Framework

combines a virtual 3D view of the construction site with a mobile application.

Context data is transferred from the coupled virtual environment.

The mobile applications were built using the framework presented in this thesis.

Two important aspects were demonstrated. First of all the usage in the context

of B2B applications instead of consumer applications. Secondly, it shows the

plugability and exchangeability within the context management.

In this section, the development of the laboratory using the framework in-

troduced in this work is presented. Firstly the scenario and outline the mobile

applications is explained. Afterwards, the process of modelling a construction site

and importing it into the system is shown. Finally, the applications’ prototyping

and the development of the virtual sensors are explained.

6.2.1. Scenario

The scenario is about discovering available machines and optimal order of tasks in

a dynamic work plan. A static plan is opposed to a dynamic plan which always has

the accurate data about every construction stage. While the dynamic planning

obviously reduces the waiting times, it increases the information gathering effort

needed to fill the databases with suitable data. The laboratory experiment is

used to acquire the time for the following tasks:

• Finding a suitable next location to work if the currently scheduled tasks

dependencies are not fulfilled (manually or using mobile technology).

• Walking through the whole construction site to gather the status of each

craft, activity, or room.

• Entering the information about completed tasks.

• Finding idle physical resources.

The dynamic planning approach always (re-)optimizes the plan for the next

task for the lowest overall waiting time using current data. The static approach

does the same using work plans generated in advance.

124

6. Examples Validating the Utility of the Framework

6.2.2. Virtual Environment

To test the model in different scenarios, three different construction sites were

modeled in a 3D editor. As a basis for the models, blueprints of three houses were

used. One was of a small one-family house, one of a multi-family house, and one

of a multilevel office building. Since the scenario is located in the interior work,

the rooms are not equally completed but are in a different stage of construction.

Those models are then exported into a Collada model. In this stage of the

laboratory construction, it is essential to carefully adhere to the right sizes of

the rooms and to follow a floor plan which can later be used in the simulated

application.

Furthermore, all movable elements, such as machines or building materials,

need to be designed. The models are then exported into the XML-based Collada

file format, which is an open standard for 3D model exchange (Arnaud and Barnes

2006).

Test persons walk in a virtual environment recreating a construction site.

Therefore, a 3D model viewer was built on a desktop PC. The model previ-

ously exported to the Collada format is then imported into an application which

uses the JMonkeyEngine3 for 3D vizualisation. Thus, it is converted into a more

light-weight format which allows faster reading and smaller file size.

The application uses a first-person-shooter like navigation technique that allows

the test subjects to move in a similar speed as on a real construction site. It tries

to mimic human movement by having a similar height for the point of view and

does only allow normal walking on normal stairs or ladders.

6.2.3. User Interface Design

To foster the creation of many variations, a UI framework was used which allows

easy creation and manipulation of user interfaces. The best fit for this task was

the UI toolkit shown in 4. Each screen visible to the user can easily be adapted

to different devices with multiple display sizes, such as a phone or a PDA. To

reduce the Java source code which has to be written for different experiments

was one of the primary objectives when building the laboratory. So, most of

3http://www.jmonkeyengine.com

125

6. Examples Validating the Utility of the Framework

the application logic was omitted and the multi-screen dialog rules were used to

simulate the workflow.

6.2.4. Searching Tools/Machines

Machine resources discovery is done using the service discovery component. Which

machines are available is determined by the simulation. The results are then put

out into an XML file containing machines’ the location and the tasks they are

utilizable for. These were used as the input for the service discovery server.

Using the framework on the mobile client, only the XUL designs and 20 lines

of Java code, to get the results from the service discovery to feed them into the

shown list, were needed.

6.2.5. Virtual Sensors

The virtual environment enables us to easily add context sensors which would be

hard to build as a prototype in the real world to assess the benefit of having such

a sensor.

Positioning System. To emulate the 802.11 indoor positioning approach (King,

Haenselmann, Kopf, and Effelsberg 2007) used in SALSA project, a wrapper for

JSR-179 which uses the positions of the virtual construction site and selectively

reduces the precision by adding a random value which represents the real world

precision was implemented. Two positioning systems were implemented. First of

all, a GPS service. This service outputs user’s the position within the simulated

site with an accuracy similar to that of the GPS system. It only works if there is

a direct line of sight to the sky (i.e. no ceiling above the worker) for at least the

last 15 seconds.

The other one simulates a WLAN (802.11) based positioning system (King,

Haenselmann, Kopf, and Effelsberg 2007). It has a good indoor accuracy, but

only works within a predefined area. The accuracy is user-definable to be able

to match the infrastructure of the site and the work to build the fingerprinting

database.

126

6. Examples Validating the Utility of the Framework

Machine Status. If a machine is in use, it may be a valuable information for

the planning of the next tasks. The “machine status” sensor sends the flag “in

use” and the room the machine currently is in.

6.2.6. Collecting Data

To validate the model which predicts the benefit of the introduction of mobile

applications in different shapes, all available data has to be captured. Therefore,

the system captures the following data:

• Position and movement of the virtual person at any time;

• Screen of the mobile device;

• Each “Click” of the user.

Furthermore, the experiment including the user’s reaction is filmed and later

on synchronized with the simulated environment using a time stamp displayed

on the user’s screen.

6.2.7. Conclusions

Two important aspects were demonstrated. First of all the framework is easy

to integrate into a virtual environment because of the loosely coupled sensor

interfaces. The GPS components were simply exchanged to reflect the coordinates

of the virtual environment.

Furthermore the system allows rapid prototyping of the application and the en-

vironment. All user interfaces were created without any programming knowledge

and tailored for two different mobile terminals. Java code had only be written

for the virtual sensors and to access the service discovery.

The whole system could be easily used on a real construction site just by

exchanging the context sensors with real one, e.g. those from the consumer

example above.

6.3. Summary

The two case studies showed the utility and feasibility of the framework in dif-

ferent scenarios. Especially the following features where demonstrated:

127

6. Examples Validating the Utility of the Framework

• Context sensors: The sensors could easily be plugged in and exchanged for

a simulation in the second case. This shows the flexibility of the framework

for any sensor. Several context data sources where implemented in the

consumer application. The simulation environment added several more

sensors for business data.

• Context evaluation and service discovery was used in different ways. The

construction site application showed the next working place for workers

using the context evaluation logic. In the consumer application the same

component could be reused in several places: The service discovery in the

first place used the same component, from the same codebase as the recom-

mendation of the tourist guide or the restaurant guide without any changes.

All these use cases were possible with the same set of operations.

• Responsiveness of the UI components was shown in the user tests of both

applications.

• Downloaded components and Virtual Machine: Each scenario involved mul-

tiple components which were downloaded at runtime and executed within

the virtual machine showed in chapter 5. None of the components was

specially tailored for the VM and all together had a very large coverage

of the Java VM opcodes (¿95 percent). All results were compared to the

execution on a standard Java VM and no differences could be found.

• Rapid development: of services and user interfaces was extensively used

to implement the variations needed in the simulation environment. The

construction UI was designed by non-developers without problems.

128

7. Conclusions

This chapter offers a summary of the thesis. The major results and their scientific

and practical implications are outlined. Finally, an outlook for possible future

research will be provided.

7.1. Summary

Privacy in context-aware systems is an important issue. This work improves

the state of the art in three distinct areas. First of all, a distributed discovery

architecture is outlined in chapter 3. Using this method, it is possible to find

suitable services for the current task of a user without sacrificing privacy. Service

providers do only get degraded data which is not usable to track and analyze

the user’s behaviour. The full data is only used for processing on the client side.

A prototypical implementation using a transformation from service descriptions

is implemented and tested. Furthermore, the concept is applied to routing and

navigation and is shown to offer a feasible trade-off between computation time,

used bandwidth, and privacy protection.

Chapter 4 deals with automatic adaptation of user interfaces to varying devices

and usage contexts. The adaptation mechanism needs a vast amount of context

attributes and benefits of a large amount of usable information. By shifting the

adaptation away from the application logic, the data can be used without leak-

ing data to untrustworthy components. One of the biggest hurdles in developing

mobile applications is the adaptation to many different devices having varying

input and output capabilities. Using this UI toolkit, the adaption to these het-

erogeneous devices happens through rules specified within the UI description and

does not require any changes to business logic.

The third part is about isolation of untrusted components and protection of

data. A novel runtime environment, tracing data paths through components

129

7. Conclusions

at runtime and isolating sensitive information from outgoing network channels

is built using a virtual machine prototype. Its usage fosters the download of

untrusted components while still being able to use all sensitive data. These

components are still able to use the network to communicate with the servers of

the service provider, but will not be able to send private information.

All three parts are then put together into an easy to use framework for mobile

application development. The suitability for this task is shown with the prototyp-

ical implementation of a typical consumer example application and a prototype

for worker management at construction sites.

7.2. Contribution and Conclusions

It is known that privacy is an important aspect in mobile applications, especially

when they are using context-aware features. Previous work was performed in

two directions: First, data was classified as private or public and only the public

attributes were used for decisions based on context and, second, different types

of anonymization were used.

It is important to note that privacy aspects do need a holistic approach since

discovering services under provisions for personal data are not reasonable if a

service of an untrusted provider leaks the data at a later time. Therefore, the user

interface adaption and service isolation has been analyzed and improved. Using

these new concepts, a component downloaded from a service provider needs less

data for the same amount of personalization and will be denied the right to send

sensitive data to a server of the provider.

This thesis showed that an increased usage of context data, even with many,

previously unknown service providers, is possible through a different distribu-

tion of the context processing between server and client or between components.

Combining the chapters 3, 4, and 5 into a framework for mobile context-aware

applications allows to create applications in short development time and an easy

separation of design and logic. Developers do not need to care about the privacy

aspect of a context-based search anymore, since the search can be used transpar-

ently, solely based on a transformation to the context rules outlined in chapter

3. Combined with existing approaches for anonymization, an even greater level

of privacy protection is possible.

130

7. Conclusions

Together, these individual parts enable new and easy ways to develop context-

aware applications. The implementation of demo-applications shows the feasabil-

ity of the framework not only for the development of end-user applications, but

also for easy and rapid prototyping of new user interfaces.

As more and more scientific publications in the last few years found an in-

creased need for privacy aware architecture, this work shows a different direction

for securing sensitive data. It can be combined with empirical results of rela-

tive importance of context attributes for the perceived protection of user privacy

paired with anonymization to further decrease bandwith usage. While compa-

nies generally want to know more about the behaviour and preferences of the

customers recent uproar about the data retention of search engines, advertising

networks and social networks increases the importance of trustworthy privacy

enhancing techniques to strengthen the customer relationship.

Another practical implication is the easier development of user interfaces for

varying contexts and many heterogenous mobile devices. Using a widely known

interface description language increases the number of available designers. This

is paired with an easy to use rule language in order to adapt to different contexts.

In many economic sectors, there is a trend to alliances and there are emerging

ecosystems around the mobile platforms. While some infrastructure providers

do have trust problems with their open platform, some others do certify every

application and, therefore, do not offer such a wide choice of applications. Using

the framework presented in this thesis, this problem could be solved by opening

the platform and still increasing the trust into applications.

7.3. Future Research

The scope of this work did not include the classification of context attributes.

It is important for a user to have the ability to easily decide which attributes

are sensitive or not. With an increasing number of context sensors and inferred

context attributes, a new way to group them is needed to put them in the pub-

lic/private group. This would require empirical research with a large number of

real services and context sensors, not available today.

131

7. Conclusions

The impact of hiding an attribute on the bandwidth is currently based on

historical data of one user. Some empirical data with a larger number of users

and services would help to forecast the influence of each decision.

Traditional context-aware systems use servers which aggregate the context of

a multitude of users to decide, based on the context of social groups (e.g. “what

activities are possible with whom?”). Hence, some advanced P2P context sharing

is needed to combine these group decisions with the aforementioned concepts. A

first step in this direction is done by Leiner (Leiner 2006).

132

A. Context Serialized Format

The serialization of context data in all chapters uses the following schema:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<xsd:schema xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>

<xsd :e l ement name=”ContextBundle”>
<xsd:complexType>

<xs s : g roup r e f=” contextgroup ” maxOccurs=”unbounded”/>
</xsd:complexType>

</ xsd :e l ement>
</xsd:schema>

<xsd:group name=” contextgroup ”>
<x sd : cho i c e>
<xsd :e l ement name=” C i r c l e ”>
<xsd:complexType>
<xsd : sequence>

<xsd :e l ement r e f=”Point ”/>
<xsd :e l ement name=”Radius” xsd :dec ima l />

</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>

<xsd :e l ement name=”Point ”>
<xsd:complexType>

<xsd :e l ement name=”Coordinate ”/>
<xsd:complexType>

<xsd :e l ement name=”Lat i tude ” xsd :dec ima l />
<xsd :e l ement name=”Longitude ” xsd :dec ima l />
<xsd :e l ement name=”Al t i tude ” xsd :dec ima l />

</xsd:complexType>
</ xsd :e l ement>
</xsd:complexType>
</ xsd :e l ement>

<xsd :e l ement name=”Polygon”>
<xsd :e l ement r e f=”Coordinate ”>

</ xsd :e l ement>
<xsd :e l ement name=”Number”>

133

A. Context Serialized Format

<xsd:complexType><xsd : sequence>
<xsd :e l ement name=”Value” xsd :dec ima l />

</ xsd : s equence></xsd:complexType>
</ xsd :e l ement>
<xsd :e l ement name=”NumberRange”>

<xsd:complexType>
<xsd :e l ement name=”LowerBound” xsd :dec ima l />
<xsd :e l ement name=”UpperBound” xsd :dec ima l />

</xsd:complexType>
</ xsd :e l ement>
<xsd :e l ement name=”Sing leDate ”>

<xsd:complexType>
<xsd :e l ement name=”Date”>
<xsd:complexType>
<xsd : sequence>

<xsd :e l ement name=”Hour” x s d : i n t />
<xsd :e l ement name=”Minute” x s d : i n t />
<xsd :e l ement name=”Second” x s d : i n t />

</ xsd : s equence>
</xsd:complexType>

</ xsd :e l ement>
<xsd :e l ement name=”Time”>

<xsd:complexType>
<xsd : sequence>

<xsd :e l ement name=”Hour” x s d : i n t />
<xsd :e l ement name=”Minute” x s d : i n t />
<xsd :e l ement name=”Second” x s d : i n t />

</ xsd : s equence>
</xsd:complexType>

</ xsd :e l ement>
</xsd:complexType>
</ xsd :e l ement>

<xsd :e l ement r e f=”Time”/>
<xsd :e l ement name=”Dai lyTimeInterva l ”>
<xsd:complexType>

<xsd : sequence>
<xsd :e l ement r e f=”Date”/>
<xsd :e l ement type=”Time” name=” Star t ”/>
<xsd :e l ement type=”Time” name=”Element”/>

</ xsd : s equence>
</xsd:complexType>

</ xsd :e l ement>
</ x sd : cho i c e>

134

A. Context Serialized Format

</ xsd:group>

135

References

Ackerman, M., T. Darrell, and D. J. Weitzner (2001). Privacy in context.
Human-Computer Interaction 16 (2/4), 167–176.

Aleksy, M., C. Atkinson, P. Bostan, T. Butter, and M. Schader (2006). Inter-
action styles for service discovery in mobile business applications. In 9th In-
ternational Workshop on Network-Based Information Systems (NBiS2006).

Aleksy, M. and R. Gitzel (2002). Design and implementation of a leasing service
for corba-based applications. In CW ’02: Proceedings of the First Interna-
tional Symposium on Cyber Worlds (CW’02), Washington, DC, USA, pp.
0054. IEEE Computer Society.

Alexander, C., S. Ishikawa, M. Silverstein, et al. (1977). A Pattern Language.
New York: Oxford University Press.

Anderson, R. (2008). Security Engineering: A guide to building dependable
distributed systems. Wiley.

Andrade, R. and L. Logrippo (2000). A pattern language for mobility manage-
ment. In Andrade, R., Logrippo, L., et al, A Pattern Language for Mobility
Management, Proc. of the Conference on Pattern Languages of Program-
ming (PLoP), 2000.

Arnaud, R. and M. Barnes (2006). Collada: Sailing the Gulf of 3d Digital
Content Creation. AK Peters Ltd.

Barkhuus, L. and A. Dey (2003). Location-based services for mobile telephony:
a study of users’ privacy concerns. In Proceedings of INTERACT 2003, 9th
IFIP TC 13 International Conference on Human-Computer Interaction.

Bauer, H., T. Reichardt, S. Exler, and E. Tranka (2007). Utility-based design of
mobile ticketing applications–a conjoint-analytical approach. International
Journal of Mobile Communications 5 (4), 457–473.

Bauer, H., T. Reichardt, and A. Schuele (2005). User requirements for location-
based services - an analysis on the basis of literature. Wissenschaftliches
Arbeitspapier Nr. W94, Institut fr Marktorientierte Unternehmensfhrung,
Universitt Mannheim.

Berghel, H. (2000). Identity theft, social security numbers, and the Web. Com-
munications of the ACM 43 (2), 17–21.

136

REFERENCES

Bostan, P., T. Butter, and C. Atkinson (2008). SALSA a framework for
context-sensitive service discovery in mobile commerce services. Technical
report, University of Mannheim.

Broens, T., S. Pokraev, M. van Sinderen, J. Koolwaaij, and P. Costa (2004).
Context-Aware, Ontology-Based Service Discovery. Ambient Intelligence:
Second European Symposium, EUSAI 2004, Eindhoven, The Netherlands,
November 8-11, 2004: Proceedings .

Buchholz, T., A. Küpper, and M. Schiffers (2003). Quality of context: What
it is and why we need it. In Workshop of the HP OpenView University
Association 2003 (HPOVUA 2003).

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996).
Pattern-oriented software architecture: a system of patterns. New York,
NY, USA: John Wiley & Sons, Inc.

Butter, T., M. Aleksy, P. Bostan, and M. Schader (2007). Context-aware user
interface framework for mobile applications. In Proceedings of the 27th
International Conference on Distributed Computing Systems - Workshops
(ICDCS Workshops 2007), Toronto, Ontario, Canada.

Butter, T., S. Deibert, and F. Rothlauf (2006). Using private and public con-
text - an approach for mobile discovery and search services. In T. Kirste,
B. Koenig-Ries, K. Pousttchi, and K. Turowski (Eds.), Mobile Information-
ssysteme - Potentiale, Hindernisse, Einsatz im Rahmen der Multikonferenz
Wirtschaftsinformatik (MKWI) 2006, pp. 144–155.

Butter, T., I. Duda, M. Aleksy, and M. Schader (2006). A framework for
context-sensitive mobile applications. In Proceedings of the IADIS Inter-
national Conference e-Commerce 2006, Barcelona, Spain, pp. 308–312.

Chen, G. and D. Kotz (2000, November). A survey of context-aware mobile
computing research. Technical Report TR2000-381, Dartmouth College,
Computer Science, Hanover, NH.

Cheverst, K., N. Davies, K. Mitchell, A. Friday, and C. Efstratiou (2000).
Developing a context-aware electronic tourist guide: some issues and expe-
riences. Proceedings of the SIGCHI conference on Human factors in com-
puting systems , 17–24.

Clarke, E. (1999). Model Checking. MIT Press.

Corsaro, A., D. Schmidt, R. Klefstad, and C. ORyan (2002). Virtual compo-
nent: A design pattern for memory-constrained embedded applications. In
Proc. 9th Conf. on Pattern Language of Programs (PLoP 2002), Monticello,
USA.

137

REFERENCES

Czajkowski, G. (2000). Application isolation in the Java Virtual Machine. Pro-
ceedings of the 15th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications , 354–366.

D’Amorim, M. and K. Havelund (2005). Jeagle: A java runtime verification
tool.

Deibert, S., A. Heinzl, and F. Rothlauf (2008). The impact logic of mobile
technology usage on job production. In Proceedings of the 14th Americas
Conference on Information Systems.

Dey, A. K. (2001). Understanding and using context. Personal Ubiquitous Com-
puting 5 (1), 4–7.

Dimitrakos, T., D. Golby, and P. Kearney (2004). Towards a Trust and Con-
tract Management Framework for Dynamic Virtual Organisations. Proceed-
ings of the eChallenges Conference (eChallenges 2004).

Eisenstein, J., J. Vanderdonckt, and A. Puerta (2001). Applying model-based
techniques to the development of UIs for mobile computers. Proceedings of
the 6th international conference on Intelligent user interfaces , 69–76.

Fahy, P. and S. Clarke (2004). CASS–a middleware for mobile context-aware
applications. In Workshop on Context Awareness, MobiSys. Citeseer.

Flanagan, D. (2002). JavaScript: the definitive guide. Éditions O’Reilly.

Floridi, L. (2003). The Blackwell Guide to the Philosophy of Computing and
Information. Blackwell Publishing.

Fowler, M. (1997). Analysis patterns: reusable objects models. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns,
Elements of Reusable Object-Oriented Software. Professional Computing
Series. Addison-Wesley.

Garfinkel, T., B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh (2003). Terra:
a virtual machine-based platform for trusted computing. Proceedings of the
nineteenth ACM symposium on Operating systems principles , 193–206.

Garud, R. and A. Kumaraswamy (2002). Technological and Organizational
Designs for Realizing Economies of Substitution. The Strategic Management
of Intellectual Capital and Organizational Knowledge.

Gebauer, J., M. Shaw, and K. Zhao (2002). Assessing the Value of Emerging
Technologies: The Case of Mobile Technologies to Enhance Business-to-
Business Applications. Proceedings of the 15 thBled Electronic Commerce
Conference.

Geihs, K. (2001). Middleware Challenges Ahead.

138

REFERENCES

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and ma-
chine learning. Reading, MA: Addison-Wesley.

Golle, P. (2006). Revisiting the uniqueness of simple demographics in the us
population. InWPES ’06: Proceedings of the 5th ACM workshop on Privacy
in electronic society, New York, NY, USA, pp. 77–80. ACM.

Gong, L. (1997). Java security: present and near future. Micro, IEEE 17 (3),
14–19.

Gong, L., M. Mueller, H. Prafullchandra, and R. Schemers (1997). Going be-
yond the sandbox: An overview of the new security architecture in the java
development kit 1.2. In Proceedings of the USENIX Symposium.

Gray, P. D. and D. Salber (2001). Modelling and using sensed context infor-
mation in the design of interactive applications. In EHCI, pp. 317–336.

Gross, R. and A. Acquisti (2005). Information revelation and privacy in on-
line social networks (the Facebook case). Proceedings of the Workshop on
Privacy in the Electronic Society .

Grossmann, M., M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, and
T. Schwarz (2005, März). Efficiently managing context information for
large-scale scenarios. In Proceedings of the 3rd IEEE Conference on Perva-
sive Computing and Communications: PerCom2005; Kauai Island, Hawaii,
March 8-12, 2005. IEEE Computer Society.

Guarino, N. (1998). Formal ontology in information systems. IOS Press.

Harrison, R. and M. Shackman (2007). Symbian OS C++ for mobile phones.
Wiley.

Hart, P., N. Nilsson, and B. Raphael (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. Systems Science and Cybernetics,
IEEE Transactions on 4 (2), 100–107.

Henning, M. and S. Vinoski (1999). Advanced CORBA programming with C++.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Henricksen, K., J. Indulska, and A. Rakotonirainy (2003). Generating Context
Management Infrastructure from Context Models. 4th International Con-
ference on Mobile Data Management (MDM), Industrial Track Proceedings ,
1–6.

Hevner, A. R., S. T. March, J. Park, and S. Ram (2004). Design science in
information systems research. MIS Quarterly 28 (1).

Hinze, A. and A. Voisard (2003). Locations- and time-based information de-
livery in tourism. In SSTD, pp. 489–507.

Ho, S. Y. and S. H. Kwok (2003, January). The attraction of personalized
service for users in mobile commerce: An empirical study. ACM SIGecom
Exchanges 3 (4), 10–18.

139

REFERENCES

Hull, R., B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadara-
jan, and A. Vyas (2004). Enabling context-aware and privacy-conscious user
data sharing. Mobile Data Management, 2004. Proceedings. 2004 IEEE In-
ternational Conference on, 187–198.

Inc., S. M. (2003). Jinitm architecture specificationversion 2.0.

Indulska, J., R. Robinson, A. Rakotonirainy, and K. Henricksen (2003). Ex-
periences in Using CC/PP in Context-Aware Systems. Mobile Data Man-
agement: 4th International Conference, Mdm 2003, Melbourne, Australia,
January 21-24, 2003: Proceedings .

Jacobson, I., G. Booch, and J. Rumbaugh (1999). The unified software de-
velopment process. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA.

Jain, P. (2001). Evictor. Proceedings of 8 thPatterns Languages of Programs
Conference (PloP 2001), 11–15.

Jain, P. and M. Kircher (2000a). Leasing. Proceedings of 7 thPatterns Lan-
guages of Programs Conference (PloP 2000), 13–16.

Jain, P. and M. Kircher (2000b). Lookup Pattern. Submitted to European Pat-
tern Language of Programs conference, July , 5–9.

Jain, P. and D. C. Schmidt (1997). Service configurator: A pattern for dynamic
configuration of services. In COOTS, pp. 209–220.

Jarvenpaa, S. L., K. R. Lang, Y. Takeda, and V. K. Tuunainen (2003). Mobile
commerce at crossroads. Commun. ACM 46 (12), 41–44.

Kaasinen, E. (2003). User needs for location-aware mobile services. Personal
and Ubiquitous Computing 7 (1), 70–79.

Kafka, F. (1925). Der Process. Adamant Media Corporation.

Kao, T.-H., S.-P. Shen, S.-M. Yuan, and P.-W. Cheng (2003). An xml-
based context-aware transformation framework for mobile execution en-
vironments. In X. Zhou, Y. Zhang, and M. E. Orlowska (Eds.), APWeb,
Volume 2642 of Lecture Notes in Computer Science, pp. 132–143. Springer.

Kaplan, E. and C. Hegarty (2005). Understanding GPS: Principles and Appli-
cations Second Edition. Artech House 680.

King, T., T. Haenselmann, and W. Effelsberg (2007, September). Deployment,
Calibration, and Measurement Factors for Position Errors in 802.11-based
Indoor Positioning Systems. In J. Hightower, B. Schiele, and T. Strang
(Eds.), Proceedings of the Third International Symposium on Location- and
Context-Awareness (LoCA), Volume 4718 of Lecture Notes in Computer
Science, Oberpfaffenhofen, Germany, pp. 17–34. Springer.

140

REFERENCES

King, T., T. Haenselmann, S. Kopf, and W. Effelsberg (2007, 03). Overhearing
the Wireless Interface for 802.11-based Positioning Systems. In Proceedings
of the Fifth IEEE International Conference on Pervasive Computing and
Communications, pp. 145–150.

Kircher, M. (2001). Lazy Acquisition. Proceedings of EuroPlop.

Köchy, V. (2008). Evaluierung von Plattformen und Frameworks für die mobile
Anwendungsentwicklung. GRIN Verlag.

Kuck, J. and F. Reichartz (2005). A collaborative and feature-based approach
to Context-Sensitive Service Discovery.

Lee, S., S. Ko, and G. Fox (2003). Adapting content for mobile devices in
heterogeneous collaboration environments. Proceedings of the International
Conference on Wireless Networks 2003 , 23–26.

Lee, Y. E. and I. Benbasat (2003). Interface design for mobile commerce. Com-
mun. ACM 46 (12), 48–52.

Leiner, C. (2006). Privacy-Aware Context Data Sharing on Mobile Devices via
SIP/SIMPLE. Diploma Thesis. University of Mannheim.

Lin, T. (2006). Chinese Wall Security Policy Model: Granular Computing.
Web and Information Security , 196.

Lindholm, T. and F. Yellin (1999). The Java(tm) Virtual Machine Specification
- Second Edition. SUN.

Lopes, C. and W. Hursch (1995). Separation of Concerns. College of Computer
Science, Northeastern University, Boston, February 1995.

Lutz, M. (2006). Programming Python. O’Reilly Media, Inc.

March, S. and G. Smith (1995). Design and natural science research on infor-
mation technology. Decision Support Systems 15 (4), 251–266.

May, H. and G. Hearn (2005). The mobile phone as media. International Jour-
nal of Cultural Studies 8 (2), 195.

Mitchem, T., R. Lu, and R. OBrien (1997). Using kernel hypervisors to secure
applications. In Proceedings of the Annual Computer Security Applications
Conference.

Mitrovic, N. and E. Mena (2002). Adaptive user interface for mobile devices. In
P. Forbrig, Q. Limbourg, B. Urban, and J. Vanderdonckt (Eds.), DSV-IS,
Volume 2545 of Lecture Notes in Computer Science, pp. 29–43. Springer.

Moore, G. E. (1965, April). Cramming more components onto integrated cir-
cuits. Electronics 38.

Mostefaoui, S. and B. Hirsbrunner (2004). Context Aware Service Provision-
ing. Proceedings of the IEEE/ACS International Conference on Pervasive
Services (ICPS 2004), IEEE , 71–80.

141

REFERENCES

Muchow, J. (2001). Core J2ME technology and MIDP. Prentice Hall PTR
Upper Saddle River, NJ, USA.

Nichols, J., Z. Hua, and J. Barton (2008). Highlight: a system for creating and
deploying mobile web applications. In Proceedings of the 21st annual ACM
symposium on User interface software and technology, pp. 249–258. ACM
New York, NY, USA.

OMG (1995). The Common Object Request Broker: Architecture and Specifi-
cation.

Orwell, G. (1949). Nineteen Eighty-Four.

Ousterhout, J. (1994). Tcl and the Tk toolkit. Addison-Wesley Reading, Mass.

Pärssinen, J., K. Teemu, and P. Eronen (2005). Pattern Language for Service
Discovery. Europlop - Ninth european conference on pattern languages of
programs, July 7-11 2004, Irsee, Germany 2004.

Pokraev, S., J. Koolwaaij, M. van Setten, T. Broens, P. Costa, M. Wibbels,
P. Ebben, and P. Strating (2005). Service platform for rapid development
and deployment of context-aware, mobile applications. Web Services, 2005.
ICWS 2005. Proceedings. 2005 IEEE International Conference on, 646.

Rayport, J. and B. Jaworski (2001). E-commerce. McGraw-Hill/Irwin Mar-
ketspaceU Boston.

Razzaque, M., S. Dobson, and P. Nixon (2005). Categorization and Modelling
of Quality in Context Information. Proceedings of the IJCAI 2005 Workshop
on AI and Autonomic Communications .

Römer, K., T. Schoch, F. Mattern, and T. Düben-dorfer (2003). Smart identi-
fication frameworks for ubiquitous computing applications. In PerCom, pp.
253–. IEEE Computer Society.

Rubin, A. and D. Geer Jr (1998). Mobile code security. Internet Computing,
IEEE 2 (6), 30–34.

Satyanarayanan, M. (1996). Fundamental challenges in mobile computing.
ACM Press New York, NY, USA.

Schilit, B., M. Theimer, and B. Welch (1993). Customizing Mobile Appli-
cations. Proceedings USENIX Symposiumon Mobile & Location-indendent
Computing , 2.

Schiller, J. H. (2004). Location-Based Services. Morgan Kaufmann.

Schmidt, A., M. Beigl, and H.-W. Gellersen (1999). There is more to context
than location. Computers & Graphics 23 (6), 893–901.

Schmidt, D. C., H. Rohnert, M. Stal, and D. Schultz (2000). Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects.
John Wiley & Sons, Inc.

142

REFERENCES

Schöning, U. (2000). Logik für Informatiker. BI Wissenschaftsverlag.

Shehzad, A., H. Q. Ngo, K. A. Pham, and S. Lee (2004). Formal modeling in
context aware systems. In Workshop on Modeling and Retrieval of Context,
CEUR.

Slominski, A. (2007). XMLPullParser. Website: http://www.xmlpull.org/.

Solove, D. (2007). ”i’ve got nothing to hide” and other misunderstandings of
privacy. San Diego Law Review 44.

Stal, M. (99). ”des knaben wunderhorn”, kommentare des fachbeirats
komponenten-forum. OBJEKTspektrum 1, 18–20.

Strang, T. and C. Linnhoff-Popien (2004). A Context Modeling Survey. Work-
shop on Advanced Context Modelling, Reasoning and Management, Ubi-
Comp, 34–41.

Stremersch, S. and G. Tellis (2002). Strategic Bundling of Products and Prices:
A New Synthesis for Marketing. Journal of Marketing 66 (1), 55–72.

Sun (2004). J2ME Connected Limited Device Configuration.

Sun (2005). JSR218: J2ME Connected Device Configuration.

Sweeney, L. (2000). Uniqueness of simple demographics in the us population.
LIDAP-WP4. Carnegie Mellon University, Laboratory for International
Data Privacy, Pittsburgh, PA.

Szekely, P., P. Luo, and R. Neches (1993). Beyond interface builders: model-
based interface tools. Proceedings of the SIGCHI conference on Human
factors in computing systems , 383–390.

Tatli, E. I., D. Stegemann, and S. Lucks (2005). Security challenges of location-
aware mobile business.

Tatli, E. I., D. Stegemann, and S. Lucks (2006). Dynamic mobile anonymity
with mixing. Technical report, University of Mannheim.

Tolia, N., D. Andersen, and M. Satyanarayanan (2006). Quantifying Interactive
User Experience on Thin Clients. COMPUTER, 46–52.

Traynor, C. (2008). Swing and AWT. Newport House Books, LLC Whitehouse
Station, NJ, USA, USA.

Tsalgatidou, A., J. Veijalainen, and E. Pitoura (2000). Challenges in Mobile
Electronic Commerce. Proc. of 3rd International Conference on Innovation
through E-Commerce, UK .

van Setten, M., S. Pokraev, and J. Koolwaaij (2004). Context-aware recom-
mendations in the mobile tourist application compass. In AH, Volume 3137
of Lecture Notes in Computer Science, pp. 235–244. Springer.

143

REFERENCES

Varian, H. (2002). Economic aspects of personal privacy. Cyber Policy and
Economics in an Internet Age.

Varshavsky, A., M. Chen, E. de Lara, J. Froehlich, D. Haehnel, J. Hightower,
A. LaMarca, F. Potter, T. Sohn, K. Tang, , and I. Smith (2006, April). Are
gsm phones the solution for localization? In IEEE Workshop on Mobile
Computing Systems and Applications.

Varshney, U., R. Vetter, and R. Kalakota (Oct 2000). Mobile commerce: a new
frontier. Computer 33 (10), 32–38.

Vogel, O. (2001). Service abstraction layer. In Proceedings of the 6th European
Conference on Pattern Languages of Programs (EuroPLoP 2001), Irsee,
Germany.

Vlter, M. (2001). Server-side components — a pattern language. In Proceed-
ings of the 6th European Conference on Pattern Languages of Programs
(EuroPLoP 2001), Irsee, Germany.

Vlter, M., M. Kircher, and U. Zdun (2000). Object-oriented remoting – basic
infrastructure patterns. In Proceedings of the 5th European Conference on
Pattern Languages of Programs (EuroPLoP 2000), Irsee, Germany.

W3C (2005). Document Object Model (DOM) Level 3 Events Specification.
http://ww.w3.org/TR/DOM-Level-3-Events/.

Wang, X., D. Zhang, T. Gu, and H. Pung (2004). Ontology based context mod-
eling and reasoning using OWL. In Pervasive Computing and Communica-
tions Workshops, 2004. Proceedings of the Second IEEE Annual Conference
on, pp. 18–22.

Welch, L. R., T. Marinucci, M. W. Masters, and P. V. Werme (2002). Dynamic
resource management architecture patterns. In Proceedings of the 9th Con-
ference on Pattern Languages of Programs (PLoP 2002), Monticello, USA.

Westin, A. (1967). Privacy and Freedom. Atheneum New York.

Wind, R., C. Jensen, and K. Torp (2007). Windows Mobile Programming.
Mobile Phone Programming and Its Application to Wireless Networking 1,
207.

Wirfs-Brock, R. J. and R. E. Johnson (1990). Surveying current research in
object-oriented design. Commun. ACM 33 (9), 104–124.

XUL Tutorial (2006). http://www.xulplanet.com/tutorials/xultu/.

Ye, J. and J. Herbert (2004). Interface Tailoring for Mobile Computing Devices.
In User-Centered Interaction Paradigms for Universal Access in the Infor-
mation Society: 8th ERCIM Workshop on User Interfaces for All, Vienna,
Austria, June 28-29, 2004: Revised Selected Papers. Springer.

Zdziarski, J. (2008). Iphone open application development. O’Reilly.

144

Zhang, X. (1997). Secure code distribution. Computer 30 (6), 76–79.

���������	

����������

���� ������	
����

�������� ���������

���������

������������������ �������

������

���������

��	�	 �!�	"	�#	�	 ��! $����$��������%�������&	��������	

'(��������	(����)

 �	�	 ���	"	�*	�	+��*	 �������&	,��-����.�	��������	'(��������	

/�0���	1������2����2�������)

�!	�	+��*	"	�3	�	+��! 1���������2������	���������&	4�������	25	

(
14	���	1������2����2������

'$�26	/6	(���	����7�)	���	4�������	25	

1������2����2������	888

'$�26	/6	�����	������)&

,��-����.�	��������

