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Abstract

Scalability is the key ingredient to further increase the performance of today’s supercom-
puters. As other approaches like frequency scaling reach their limits, parallelization is the
only feasible way to further improve the performance. The time required for communica-
tion needs to be kept as small as possible to increase the scalability, in order to be able to
further parallelize such systems.

In the first part of this thesis ways to reduce the inflicted latency in packet based inter-
connection networks are analyzed and several new architectural solutions are proposed to
solve these issues. These solutions have been tested and proven in a field programmable
gate array (FPGA) environment. In addition, a hardware (HW) structure is presented that
enables low latency packet processing for financial markets.

The second part and the main contribution of this thesis is the newly designed crossbar
architecture. It introduces a novel way to integrate the ability to multicast in a crossbar
design. Furthermore, an efficient implementation of adaptive routing to reduce the
congestion vulnerability in packet based interconnection networks is shown. The low
latency of the design is demonstrated through simulation and its scalability is proven with
synthesis results.

The third part concentrates on the improvements and modifications made to EXTOLL, a
high performance interconnection network specifically designed for low latency and high
throughput applications. Contributions are modules enabling an efficient integration of
multiple host interfaces as well as the integration of the on-chip interconnect. Additionally,
some of the already existing functionality has been revised and improved to reach better
performance and a lower latency. Micro-benchmark results are presented to underline the
contribution of the made modifications.
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Zusammenfassung

Der wichtigste Faktor, um die Leistung heutiger Supercomputer weiter steigern zu können,
ist Skalierbarkeit. Da andere Ansätze, wie zum Beispiel Frequenzskalierung, ihre Grenzen
erreicht haben, ist Parallelisierung der einzig mögliche Weg um die Leistung solcher
Systeme weiter steigern zu können. Damit ein System skalierbar ist, muss die Zeit, welche
für die Kommunikation zwischen einzelnen Knoten benötigt wird, so klein wie möglich
gehalten werden.

Der erste Teil dieser Dissertation analysiert Möglichkeiten und zeigt neue architektoni-
sche Lösungen, welche die Latenz reduzieren und somit die Skalierbarkeit verbessern. Die
Wirksamkeit dieser Lösungen wurden in einer FPGA (Field Programmable Gate Array)
Umgebung getestet und bewiesen. Zudem wird eine Hardware-Struktur vorgestellt, wel-
che das Dekodieren von Datenpaketen, wie sie beim Wertpapierhandel an Finanzmärkten
verwendet werden, mit besonders niedriger Latenz und hohem Durchsatz ermöglicht.

Den zweiten und Hauptbestandteil dieser Dissertation stellt die neu entworfene Cross-
bar Architektur dar. Darin wird eine Lösung vorgestellt, wie die Fähigkeit Multicasts
in einem Netzwerk zu senden, effizient in einen Crossbar integriert werden kann. Des
Weiteren wird eine effiziente Implementierung von adaptivem Routing dargelegt, welche
die Empfindlichkeit gegenüber Blockierungen in paketbasierten Netzwerken reduziert.
Die niedrige Latenz des Designs wird durch Simulation und seine Skalierbarkeit durch
Syntheseergebnisse gezeigt.

Der dritte Teil konzentriert sich auf die Verbesserungen und Erweiterungen, die an
Extended ATOLL (EXTOLL) gemacht wurden. EXTOLL ist ein Hochgeschwindigkeits-
netzwerk, das speziell für Anwendungen mit den Anforderungen niedrige Latenz und
hoher Durchsatz entwickelt wurde. Im Rahmen dieser Arbeit wurden Module zur effizi-
enten Integration mehrerer Host Interfaces sowie des On-Chip Netzwerks entworfen und
implementiert. Zudem wurde bereits existierende Funktionalität nochmals durchleuchtet
und verbessert, um höhere Performanzwerte und eine niedrigere Latenz zu erreichen. Um
den Beitrag der gemachten Veränderungen zu unterstreichen, werden Micro-Benchmark
Ergebnisse präsentiert.
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1 Introduction

Researches always have the need for more computing power. To satisfy this thirst, a
great amount of work is done trying to increase the performance of supercomputers.
This performance is measured in floating point operations per second (FLOPS) using a
standard benchmark called Linpack [1]. Today’s fastest supercomputer, Japan’s K-Computer
[2], is capable of performing around 10 Peta-FLOPS, a ten with 16 zeros. The next big step
for such machines is to reach the exascale era.

1.1 Motivation

Supercomputers need to be a hundred times faster as the K-Computer in order to achieve
an Exa-FLOP. It is unfeasible to further increase the frequency with which the individual
processors run as they hit the power wall, because the power consumption increases
quadratically with increasing frequencies. Thus, the only solution to increase the overall
performance is seen in parallelization.

While increasing the number of processors is a valid approach, the performance does
not scale with the same rate due to limiting factors. These limiting factors are again power-,
area consumption and most importantly communication overhead. It is common sense
that with an increasing amount of processors, both power and area consumption increase
linear. Increasing the performance of a supercomputer, equipped with currently available
technology, by a factor of hundred thus increases the power and area consumption by
at least the same factor. While the two problems power and area can be solved with
pure force, the limiting factor communication overhead remains. When parallelizing
a given problem to solve it on a large cluster of processing nodes, the problem size
that each individual node has to process decreases in the same degree. Consequently
the time required to calculate the result also decreases. In an ideal environment with a
problem that can be partitioned into an endless number of sub-problems and without
any communication overhead, the performance increases linear with the parallelization
degree.
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1 Introduction

However, communication overhead between the nodes increases as the problem has to
be transferred to all nodes. Furthermore each node needs to synchronize their results more
often with other nodes. The time required for this communication overhead unfortunately
does not decrease for smaller sub-problem sizes and due to the increased amount of
messages the overall time for communication increases significantly. At a certain degree
of parallelization the time spent for communication is larger than the time spent for actual
computation. This leads to an overall performance drop as it is illustrated in figure 1.1.
This effect is known as Amdahls Law [3].

Degree of Parallelization

Pe
rf

or
m

an
ce

G
ai

n
zero latency interconnect
low latency interconnect
standard interconnect

Figure 1.1: Performance Gain when Parallelizing a Computational Task [3]

To reduce the amount of time spent for communication is therefore an important re-
search topic. There are three criteria to characterize the performance of an interconnection
network. Bandwidth or throughput is the most common term to describe the performance
of networks in high performance computing (HPC) and describes the amount of data
that can pass through the network in a period of time. Latency is the time required to
send a minimum sized packet from one node to another including all software (SW) and
hardware (HW) overhead. The message rate describes the amount of messages that can be
injected into or received from the network by a single node in a period of time, effectively
describing how good the processing of independent messages can be overlapped. The
higher the overlapping, the more messages can be processed in a certain period of time.

Latency is an important factor due to the above mentioned percental increase in time
spent for communication compared to computation when parallelizing tasks. The lower
the latency, the less time is spent in communication. Furthermore the scalability of the
network increases as illustrated in figure 1.1. Compared to a standard interconnect the
performance decrease due to communication of a low latency interconnect is at a higher
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1.1 Motivation

parallelization rate. The gap between the two gray lines represents the increased scalability
of the network due to the lower latency. Here the performance gain decreases at a higher
rate of parallelization improving the overall efficiency of the cluster.

The three fastest supercomputers according to the Top500 list of June 2011 [4] all use a
custom built interconnection network to leverage the increased processor count without
decreasing the overall performance. Such extreme scale computing will always have a
need for custom interconnects, like the TOFU Interconnect from Japan’s K Computer [2]
which ranked first in the June and November 2011 Top500 lists or Cray’s Gemini Interconnect
[5], which is used in Cray’s XE6 and XK6 series systems. Custom interconnects have the
advantage of being able to be designed to exactly meet the customers needs and therefore
remove bottlenecks that occur with commodity interconnect technology.

But not only the HPC sector strives for low latency, also financial companies require it
to be able to participate in high frequency trading (HFT) or low latency trading. In low
latency trading information from the exchanges are received through a common network,
need to be processed and then a decision has to be made whether to buy or sell a stock
based on the received information. Subsequently an order has to be sent back to the
exchange. Consequently low latency is the key for making money, as only the fastest
company is able to buy or sell the most profitable opportunities. For HFT however not
only latency, but also throughput is of essence to be able to process all incoming information
provided by the exchanges. If the system is not capable of processing all arriving data,
packets need to be dropped. The result is an inconsistent view of the current market
situation, which can then result in wrongful trades.

The latency of a HW structure is determined by two factors, first the amount of pipeline
stages and second the frequency at which the module is able to operate. While a deeper
pipeline, i.e. a high amount of pipeline stages, enables the designer to increase the opera-
tion frequency, it also increases the latency as each pipeline stage requires a clock cycle. A
trade off between number of pipeline stages and clock frequency has to be made in order
to get the best latency result for a certain module.

Therefore the aim of this thesis is to find ways to reduce latency required for communica-
tion and at the same time increase the throughput. This thesis presents HW structures that
enable the reduction of latency for different communication types in particular and also
shows structures that enable lower latencies and a high throughput for packet processing
in general.

3



1 Introduction

1.2 Graphical Representations

Figure 1.2: An Example Design Space Analysis

An important part of this work is to analyze options and aspects to solve a given
problem. Design space diagrams have been introduced by [6] and are a common way to
illustrate all different aspects that need to be taken into account and their design choices.
Figure 1.2 shows an example diagram where a given problem is divided into multiple
orthogonal aspects which are connected using also orthogonal lines. For each aspect all
possible options are connected using direct arrows. A third level is used, if an option can
be further divided. The option chosen for an implementation is highlighted using a darker
blue tone.

Figure 1.3: An Example Block Diagram

HW is always described in modules, which include the desired functionality. If a
problem is very complex, these modules are often divided into multiple sub-modules,
which are connected to each other. A block diagram is then used as an abstraction layer
to illustrate the connectivity of these sub-modules within such a top level module. In
figure 1.3 an example for such a block diagram is given. Interfaces to other modules are
illustrated using arrows at the edges of modules, the direction of the internal data flow

4



1.3 Outline

is also illustrated using arrows. The actual wiring required between modules and sub
modules is often not fully displayed, as the diagram is otherwise unclear.

Figure 1.4: An Example Timing Diagram

The third used diagram in this thesis is a timing diagram. It illustrates a cycle accurate
behavior of a module, unit or interface. The timing of each signal is given in dependency
to a common clock. Using such diagrams enables to illustrate the latency of a module or
the correct interaction between modules.

In figure 1.4 an example for such a timing diagram is given. In this example the interface
between a module and a first-in-first-out (FIFO) buffer is illustrated. It shows a fall-
through FIFO implementation, meaning the first data word stored inside is already visible
at the output before data has actually been shifted out.

1.3 Outline

This thesis is divided into four main chapters. The first chapter introduces mechanisms
and building blocks that reduce latency, enable an increase of the throughput, offload
processing intensive tasks to specialized HW or ease the HW-designers work. They
can be used in various environments that require high throughput and low latency
processing. Additionally a low latency, high-throughput decode unit for the financial
market is introduced.

The second chapter concentrates on crossbars in general and on Extended ATOLL
(EXTOLL)’s crossbar design in particular. It discusses all made design decisions and
explains their implementation. Performance is compared to a previous design and an
outlook for future extensions is given.

The third chapter explains the functionality of EXTOLL with all its functional units
(FUs) that facilitate EXTOLL achieve its outstanding performance values. All involved

5



1 Introduction

units are explained and those which are part of this thesis are introduced in detail. Micro-
benchmark results of the complete design are given to underline the made contributions
of the crossbar as well as the EXTOLL Network Interface Controller (NIC).

The final chapter closes this thesis with a reflection on the achievements and the impact
of this work.
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2 Efficient Packet Processing

All communication intensive computing tasks like Internet services, cloud computing,
HFT or HPC require a lot of computing resources just handling incoming and outgoing
packets due to the fact that the network gets faster with every new generation. However,
the protocols themselves or the SW handling those networks often do not improve with
the same rate. Ethernet for example is a network standard that has been introduced in 1980.
More than 30 years later it is still the most often used protocol without any improvements.
It requires a lot of processing power just to encode and decode the various framing layers.

The Internet is driven by Transmission Control Protocol (TCP) or User Datagram Pro-
tocol (UDP), both protocols work on top of Ethernet and are also widely used in HFT or
HPC. The standard use case is kernel level communication, which always involves the
operating system (OS). Kernel-level communication means that a SW thread hands over
a packet to the OS and the system then issues the packet at the network adapter. This
makes it necessary to copy packets to be sent at least one time inside main memory of the
host system and involves at least one thread change from the user application to the OS.
The same of course also applies for the reception of packets. All this makes kernel level
communication very inefficient because resources are used for protocol handling which
can otherwise be used to solve the actual workload.

Latency is often an issue, especially in timing critical applications like HFT, where
every spared microsecond can be turned into possibly more profit. Reducing latency
also increases the scalability of a network as the time required to traverse the network
decreases making it possible to build larger networks. Efficient mechanisms are therefore
necessary to reduce the workload of a single machine and reduce the latency.

The latency of a packet can be reduced using two mechanisms. Either it can be avoided
by minimizing the required processing steps a packet as to pass, or it can be hidden by
overlapping the processing of multiple packets. Both mechanisms can of course also be
combined to get the best results.

Sometimes a change to a new type of interconnection network like switching from

7
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Ethernet based systems to InfiniBand [7] or other high performance networks already
increases the scalability by an order of magnitude. However, in some cases this might
not be possible. The infrastructure at exchanges for example are a given and cannot be
changed by companies actively trading there. But improving the performance in this
environment is very critical for the longterm survival of companies involved in HFT on
such exchanges.

One commonly employed mechanism when improving performance of a network is
to bypass the kernel of the OS and therefore do everything, including communication
at the user-level. I/O devices must be virtualized in order to be able to handle them
on the user-level. The virtualization is required so that devices can safely be mapped
into the user-level address space, otherwise multiple applications can intervene each
other when accessing devices or act as another process and therefore hijack a connection.
Sophisticated Ethernet adapters like the ones offered by Solarflare [8] or the QLogic [9]
InfiniBand adapters can be configured to bypass the kernel. This reduces the latency
significantly, the computation and handling of packets on the other hand remains in the
host Central Processing Unit (CPU).

To further improve the performance of a network two approaches are used, either
onloading and offloading. Onloading tries to keep the HW as simple, and therefore fast, as
possible and do most of the computation on the host CPU. The above mentioned QLogic
InfiniBand adapter for example is very lean and QLogic promotes onloading [10] as the
way to improve performance in the multi-core era.

Offloading is the exact opposite. It tries to put as much logic and packet processing tasks
as possible into specialized HW as it often can process those tasks faster than a general
purpose CPU, even if the CPU runs a lot faster than the HW.

Both approaches have their positive and negative sides and care has to be taken which
approach is more beneficial for which task. There is no general rule that onloading or
offloading is always better, it depends a lot on the task and the actual implementation
whether or not it really is beneficial at the end. A trade-off has therefore to be made for
every problem that has to be solved in order to get the best performing HW-SW co-design.

This chapter introduces two of the most often leveraged building blocks in chip designs,
arbiters and FIFOs. Subsequently more sophisticated new HW structures are introduced
that help to reduce the SW effort required for packet processing. In section 2.3 on page 22
the Write Combining Buffer is presented, a unit capable of reducing network traffic and
simplifying both SW and HW for packet processing. In section 2.4 on page 24 a new HW
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structure is introduced that is capable of efficiently maintaining large virtual ring buffers
in main memory.

Section 2.5 on page 33 presents a module to parallelize the search of a communication
partner when using Message Passing Interface (MPI) [11].

Finally in section 2.6 on page 42 an application of HW acceleration for HFT is shown.
In contrast to section 2.5 on page 33, the proposed structure leverages the advantages of
HW acceleration not by parallelizing independent tasks, but decoding a protocol which is
highly serial in nature, using a specialized structure to process packets consecutively.

2.1 Arbiter Generator

Every chip design has some resources that are shared by several other resources. This is
done for modules that are not performance critical or too complex, i.e. too large. Repli-
cating them requires additional or too much area on the chip or field programmable gate
array (FPGA). Thus, arbiters are a common building block required in almost every design.
They are utilized to equally share that single structure whenever multiple units require
access to it. In this case the arbiter makes sure that only one unit has access to the unique
resource at a given time, but all units receive access sometime. Another scenario where
arbiters are often deployed is to equally distribute elements generated by one instance to
a number of units. This can for example be utilized to parallelize work and make sure all
units have similar workloads.

Consumed area and maximum achievable clock frequency are the most important
criteria for such arbiters. While being fast and small, they however also need to be fair.
Fairness means two things, first there must be no starvation, i.e. no requesting unit has to
wait for an indefinite time for the resource. Secondly, there must be no order or priority in
any way, all units must be treated the same and receive access to the resource in the same
amount.

The most commonly implemented arbiter is a round-robin arbiter. It selects the next
grant by going through all set requests either clockwise or counterclockwise starting at
the last given grant.
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2 Efficient Packet Processing

2.1.1 State of the Art

An arbiter generator has been developed at the Computer Architecture Group of the
University of Heidelberg (CAG) by [12] which can be depicted using a finite state machine
(FSM). Its size grows exponentially and its performance decreases accordingly with
growing input numbers as it is shown in figure 2.1.
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Figure 2.1: FSM based Arbiter Resource and Performance Evaluation

A good overview of other possible implementations is given in [13]. One particularly
interesting is the one introduced in [14]. The arbiter proposed in this paper is based on
a binary tree search (BTS) [15] to find the next request to be granted. It can be described
best as two fixed priority arbiters that have been merged into a single one. A fixed priority
arbiter is an arbiter which always finds the first request in the input vector. Thus, the first
arbiter of these two finds the first request always starting at the very first bit position. The
inputs of the other arbiter are masked by the last given grant and therefore finds the first
request starting at the position of that last given grant. If the second arbiter finds a request,
then its result is used, otherwise the result from the first arbiter is used.

The resulting block diagram is illustrated in figure 2.2 on the next page. Internally the
arbiter leverages a thermo code to implement the arbitration algorithm. This thermo code
is then looped back to be used as mask and a thermo-to-one-hot code logic generates the
one-hot coded output.
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2.1 Arbiter Generator

Figure 2.2: Simplified Block Diagram of the BTS Arbiter [14]

2.1.2 Implementation

To prove the claims made in [14] a Perl [16] based script has been implemented to be able
to generate arbiters with various variables. Configurable upon generation are not only
the number of desired requests, but also which output encoding is to be used. Selectable
are either binary, one-hot or both encodings. Further it can be decided whether or not
an any grant signal is to be generated and whether or not a stop input is to be taken into
account. Additionally all outputs of the generated arbiter can be either synchronous
or asynchronous to a given clock. This feature can be used if one of the outputs is
required for further logic within the instantiating module. However, these asynchronous
outputs should only be used if very little additional logic is to be added before registering
the results, as otherwise the clock frequency at which the design can operate decreases
significantly.

Finally a rich set of SystemVerilog verification and coverage code [17] can be generated,
making it easy to verify the correct functionality of the arbiter during simulation.

The BTS based arbiter design from [14] performs well in both area as well as timing.
When comparing the results given in figure 2.1 on the facing page and figure 2.3 on the
next page it can be seen that it scales significantly better as the previously used FSM based
arbiter and achieves higher clock rates in any of the tested configurations. Its size increases
only linear with growing input numbers. The increase is therefore significantly smaller
than the one from the FSM based arbiter as it can be seen on both diagrams for look-up
table (LUT) as well as register consumption.
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Figure 2.3: BTS based Arbiter Resource and Performance Evaluation

2.2 FIFO Implementations

One of the most common building blocks in HW designs are FIFO buffers. The applica-
tions for FIFOs are versatile. They can for example be used to synchronize data between
two clock domains, store data until an event happens or to decouple two modules. Often,
additional logic is needed around these FIFOs to implement the required behavior. There-
fore it is beneficial to have a set of different FIFOs with additional features at hand that
can improve performance, simplify or reduce the latency of a design.

Figure 2.4: FIFO Block Diagram [18]

A FIFO is a HW storage structure where data can be pushed into or pulled from. The
order of data is maintained while pushing data into or pulling data out of a FIFO. There are
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two possible implementations to realize the FIFO functionality. It can either be described
using a ring buffer or using shift registers.

The ring buffer approach is realized using a random access memory (RAM) or a sea of
registers for data storage and a set of a write- and a read pointer. The write pointer points
to the next address to write data to and is thus incremented with every shift-in operation.
The read pointer on the other hand points to the next data value that can be read and is
incremented upon every shift-out operation. A block diagram of such a FIFO is shown in
figure 2.4 on the facing page.

empty = (wp == rp) (2.1)

It can be distinguished whether a FIFO is full or empty by comparing the write- and
read pointers. The buffer is considered empty if both pointers are equal as indicated in
equation (2.1) and full if the write pointer plus one equals the read pointer as shown in
equation (2.2). Upon initialization both pointers are zero, consequently the FIFO is empty.
The FIFO always has one free element left when using the equation for the full condition
given in equation (2.2). This has to be done in order to be able to differentiate between the
full and empty condition.

f ull = ((wp + 1) == rp) (2.2)

To completely fill a FIFO up to its last cell a more complex equation and an one bit wider
register is required for the read- and the write pointer to be able to distinguish whether
the pointers both wrapped around or not as indicated in equation (2.3).

f ull =((wp[WIDTH − 1 : 0] == rp[WIDTH − 1 : 0])&

(wp[WIDTH]! = rp[WIDTH]))
(2.3)

A shift register implementation uses a series of registers, that are connected in a line.
Each register additionally has a state assigned to indicate whether it is full or not. The first
empty register is used to write data into. Upon every read all data is shifted by one to the
right and the most right value is the output value for the read port.
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Shift register based FIFO implementations are usually used for very small buffers, as
they are fast but require more resources with increasing size. RAM based FIFOs are then
leveraged for larger buffers.

2.2.1 Multi-Queue FIFO

In applications where multiple threads access a resource, it is often required to have
multiple FIFOs in parallel to store information for each thread independently. However,
only one of these FIFOs is accessed at a time, as the HW itself is not multi-threaded. Each
of these FIFOs requires a discrete RAM for the data, one set of read- and write pointer
registers and all the logic required to calculate the full and empty condition. Having a
lot of parallel FIFOs is not very resource efficient in both FPGA and application specific
integrated circuit (ASIC) implementations as it results in the usage of a lot of small RAMs
and a lot of redundant logic that is only used consecutively.

A set of small RAMs usually requires more space in an ASIC as a single RAM with
the accumulated size of all small RAMs. Additionally, the design of the power grid for a
chip with lots of RAMs is more difficult as each cell requires its power supply, making it
complicated to find a regular structure where all cells fit into. In a FPGA environment,
each small RAM is implemented using a single RAM resource of the device, resulting
in a lot of unused buffer space. A Multi-Queue FIFO can be used to replace such a stack
of FIFOs. Multiple FIFOs are merged, sharing a single RAM, thus using resources more
efficiently. However, each queue remains logically separated and also keeps its order.
Thus, set of pointers is required for each queue is still required. The logic to generate the
full and empty condition for each queue however can be shared.

State of the Art

An US patent claims a FIFO with the capability to store data for multiple independent
threads [19]. Its implementation however is very complex, as the plurality of FIFOs is
realized using linked lists storing the data in a shared buffer. The free addresses of the
buffer are also managed using a linked list.

Linked lists are always hard to handle in HW as it requires a start-, an end pointer as
well as an intermediate pointer which points to the address of the next value until the end
is reached. Whenever an item is added to the list, the end pointer and the intermediate
mapping has to be updated resulting in two RAM write accesses. Removing an item
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requires only a single write access as it is sufficient to update the start pointer. However,
for every update, all RAMs need to read. The advantage of this approach is, that the size
of the different queues can be dynamically adapted as long as buffer space is available.
Another implementation has been introduced by Tamir et. al. [20] which also uses linked
lists to manage the independent queues as well as a free block list.

Implementation

In contrast to [19] the here proposed approach does not use linked lists for the management,
it uses a set of read- and write pointer per queue. This has the advantage of being a lot
simpler and therefore resulting in less and faster logic. The complete pointer structure
is stored in a single RAM making this solution scalable. The resulting block diagram is
shown in figure 2.5. Additional R-Queue Select and W-Queue Select signals are added to the
interface. They are used to select the queue to be accessed. Upon every write or read, a
lookup of the corresponding set of pointers needs to be done before the actual data value
can be written or read.

Figure 2.5: Multi-Queue-FIFO Block Diagram

The address for the data RAM results from the concatenation of queue select and the
current pointer. The upper part selects the queue to write to or read from and the lower
part selects the position inside this selected queue. This is beneficial as no additional logic
is required to isolate the different queues. Consequently all queues have the same size.

To be able to dynamically select the size and amount of queues inside the Multi-Queue-
FIFO an additional mask input has been added. Mask has the width of the data ram address
and selects which part of the address is to be used as queue length and which as queue select.
The partition of the address can then be changed dynamically to either less, but larger
queues or more queues with less elements. However, changing the mask and therefore
the size of the queues can only be done if all queues are empty, as otherwise data integrity
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cannot be guaranteed. Possible values for the amount of queues are 2n whereas n ≤ m so
that 2m equals maximum number of supported queues.

In figure 2.6 the size of the write pointer and the queue selection are determined by the mask.
A complex shift and merge logic makes sure that the queue selection is correctly positioned
in the resulting address, avoiding overwriting parts of the write pointer. The queue selection
register is shifted by the amount of bits necessary, i.e. the amount of set bits in the mask.

Figure 2.6: Address Generation Using a Complex Logic

In figure 2.7 the address generation is much simpler. Queue selection is bitwise reversed
and then masked, resulting in less complex logic, as it has no longer to be determined at
which position the queue selection has to be placed. Reversing the order of bits is just a
matter of wiring without any logic requirements. The reversed order can be used safely
without the risk of data corruption, as the result is also unique and thus always points to
the same location inside the RAM.

Figure 2.7: Address Generation Using a Reversed Queue Selection
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Evaluation

A comparison with a conventional FIFO has been made to evaluate the resource consump-
tion. The conventional FIFO has been instantiated multiple times to put the resource
consumption into perspective with the Multi-Queue-FIFO. The results of the conventional
FIFO can be seen in figure 2.8.
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Figure 2.8: Resource Requirements of N conventional FIFOs

The Multi-Queue-FIFO requires only a fraction of the resources as the diagrams shown
in figure 2.9 on the next page indicate. A Multi-Queue-FIFO with 128 queues of size M
requires a comparable amount of resources as 32 discrete FIFOs.

This FIFO has successfully been integrated in the EXTOLL crossbar, described in chap-
ter 3 on page 63, substantially supporting the scalability of the crossbar design.

2.2.2 Speculative FIFO

Packet processing often requires the checking of a cyclic redundancy check (CRC) or in
the Ethernet Protocol (ETH) context a checksum. The result of such checks is only known
after all data has been stored in some kind of buffer as the whole packet needs to be
considered for the check. If this buffer is a conventional FIFO removing data again is a
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Figure 2.9: Resource Requirements of a Multi-Queue FIFO with N Queues

tedious task as all data not belonging to the erroneous packet need to be kept inside the
buffer. In addition, removing an erroneous packet from a FIFO again requires N clock
cycles, whereas N is the length of the packet in data words.

A solution for that problem is to add speculative writing capabilities to the FIFO. This
means that data is written into it, but the read side of the buffer sees the data only if
the write logic has committed them. Once an erroneous packet is detected, the already
written words are revoked in a single clock cycle and the next packet can be written at
that position instead.

The same mechanism can of course also be used for the read side of a FIFO. Here
the feature can for example be leveraged to realize a retransmission buffer for packets.
By resetting the read pointer, all data can be read again starting at the selected position
without the need of an additional RAM or complex logic.

State of the Art

[21] claims in its US patent a FIFO with a push back function, enabling it to put the last data
word back into the FIFO. The drawback in this implementation is that it is only capable of
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repeating the very last word, making it only feasible for very specific applications. [19]
claims to have speculative shift-in and -out logic. However it does not explain how this
mechanism is realized. Another US patent describing similar functionality is [22]. It is a
FIFO with a retransmit mode. Thus it is only capable speculatively shifting data out of the
buffer, but not into it. The retransmission is realized using a shadow register which can be
used to reset the actual read address. The FIFO has to be put in retransmit mode and back
to set new retransmission positions. Consequently it requires additional clock cycles to be
able to reset the read address.

Implementation

In contrast to [21] and [22] the here proposed architecture is less complex and can be
applied for both, read and write side of a FIFO. For simplicity reasons only the write side
will be explained, the read side works analog. It is capable of speculatively writing data
to the FIFO without any idle cycles as long as there is buffer space available. Reverting
or committing data takes only a single cycle, whereas committing can even be done in
parallel to writing data.

The implementation uses two pointers instead of only one, a speculative- and a committed
pointer. Only the committed pointer is handed over to the read logic to calculate whether
data is stored in the FIFO or not. The speculative pointer on the other hand is used as write
address and to compute the full condition. Consequently it can happen that the buffer is
full and empty at the same time. A block diagram of that FIFO is shown in figure 2.10.

Figure 2.10: Speculative FIFO Block Diagram

Only the speculative pointer is incremented, whenever a word is written into the FIFO.
A separate interface containing an increment pointer, a decrement pointer and a value signal
realizes the pointer manipulation. Value gives the amount of words to commit or revert,

19



2 Efficient Packet Processing

increment pointer indicates a commit of words and decrement pointer indicates that the
pointer needs to be reverted.

Once increment pointer is pulsed the committed pointer is incremented by the value given
on the value bus. However, it is taken care that the committed pointer can at maximum
reach the speculative pointer and therefore never overtake, which otherwise causes data
corruption. Whenever decrement pointer is pulsed the speculative pointer will be subtracted
by the value given on the value bus. Additional logic makes sure that the speculative
pointer can be decremented only to the value of the committed pointer and therefore never
be smaller.

The proposed architecture results in an efficient implementation where only an addi-
tional set of pointers and some logic are necessary to feature speculative read- and write
capabilities. Table 2.1 shows the synthesis results of a conventional FIFO in comparison
with the speculative FIFO.

LUTs Registers Cycle Time
(in ns)

Conventional FIFO 197 23 2.533
Speculative FIFO 237 41 2.777

Table 2.1: Cost Comparison of a Conventional and a Speculative FIFO

As it can be seen, the amount of LUTs increases by around 20 percent for the extra logic
required to manipulate the pointers and the register count almost doubles due to the
required second set of pointers. Performance in respect of achievable cycle time however
decreases by less than 10 percent. The required RAM resources remain the same for both
implementations and are therefore not shown in table 2.1.

This FIFO implementation is leveraged in the EXTOLL’s Network Port (NP) to imple-
ment an efficient store-and-forward mechanism with error checking capabilities.

2.2.3 Double Shift-Out FIFO

Usually a FIFO is only capable of shifting out a single word per clock cycle following
the first-in first-out directive. In some cases it might however be beneficial to be able to
increment the internal read pointer not only by one, but by two and therefore jump over
one entry.
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This can be needed if there are data dependencies. For example a certain condition
is encoded in the first word of a two word command. After processing the first part it
became clear that the second part of the command is not required. With a conventional
FIFO this second part needs to be shifted out in a second clock cycle, requiring a total of
two cycles. The double shift-out capability removes the necessity of the second clock cycle
as both parts can be shifted out in one cycle, thus cutting the required time to process the
stored values in half. These saved clock cycles reduce the latency of a FU considerably as
it will be shown in section 2.6.6 on page 58.

State of the Art

An US patent that has been filed in 2004 [23] claims similar functionality. The differences
to the here proposed architecture is that the patented FIFO implements two independent
interfaces to either shift-in or -out one or two words. Thus either a single RAM with two
independent read- and two independent write interfaces, or multiple RAMs are necessary,
resulting in a complex RAM structure. No further publications have been found on this
type of FIFO.

Implementation

The double shift-out feature is implemented by adding a double shift out control signal
indicating that the next value inside the FIFO is to be skipped. Internal logic prevents that
incrementing the read pointer by two does corrupt data. This can occur if only a single
word is stored inside the FIFO and the connected unit does not take that information into
account. Whenever only one entry is stored in the FIFO incrementing by two causes the
read pointer to overtake the write pointer which has to be avoided at all times since then
the FIFO appears full instead of empty. If only one entry is stored and the double shift out
control signal is set, then the read pointer is only incremented by one instead of two. An
additional control output notifies the unit leveraging this capability of this condition to
avoid flow control issues.

LUTs Registers Cycle Time
(in ns)

Conventional FIFO 197 23 2.533
Double-shift FIFO 213 28 3.220

Table 2.2: Cost Comparison of an Conventional and a Double-Shift-FIFO
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As it can be seen in table 2.2 on the previous page the FIFO with integrated double shift
out feature only requires little additional resources. The amount of RAMs required for the
two different implementations are the same and therefore not shown in table 2.2 on the
preceding page. The improvement impact however can be significant as it is later shown
in section 2.6.6 on page 58.

2.3 Write Combining Buffer

Today’s host CPUs are able to split, reorder or combine memory read response- as well as
write packets for performance purposes. This poses no problem for devices that work
purely with addresses like memory controllers. However, devices that rely on the correct
ordering of packets need to be able either reorder and combine these packets again or be
able to work with the split parts directly.

Such functionalities are better encapsulated in a separate module instead of integrating
it directly in each unit capable of receiving data from the host CPU. Encapsulating it and
reusing the same functional block multiple times, not only simplifies the implementation
of the actual FU, it also reduces the risk of failure due to wrongful implementation. This
single module can be verified extensively and then integrated into FUs knowing its proper
functionality.

To solve such split and reordered packet the Write Combining Buffer has been developed.
It is capable of combining and reordering such split packets. Additionally it is capable
of combining packets that are larger than a single maximum transfer unit (MTU) of the
host interface to one single packet, making it possible to leverage the full potential of the
EXTOLL network, which is described later. Thereafter the now combined packets are
forwarded as a whole to the connected FUs.

When merging packets a buffer is required in the Write Combining Buffer to store the
separate parts and forward the packet once it has been received completely. Each thread
accessing a FU requires an exclusive part of that buffer, as split parts of different packets
can also be reordered and interleave each other. As this buffer increases with the number
of supported threads and supported packets per thread, a trade-off must be made to
use the available real estate on an FPGA or ASIC efficiently. The minimum requirement
however is that at least one network MTU fits into each part of the buffer, so that an
assembly of a complete packet is possible. This minimum requirement can only achieve a
throughput rate of less than 50 percent, as a packet first has to be written completely, then
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the whole packet needs to be read by the FU before the reassembly of the next packet can
begin.

This bottleneck can be reduced by adding a shared buffer behind the actual combining
buffer, in which complete packets are streamed into as soon as it is ready to be processed,
at least reducing the amount of idle cycles to a bare minimum. However, this improves
the performance only to a maximum throughput rate of 50 percent, for more performance
multiple slots per thread are required.

To achieve full performance double buffering is required for each thread, meaning that
at least two maximum sized network packets need to fit into the reassembly buffer. For
the FPGA implementation supporting multiple network MTUs per thread is unfeasible,
due to RAM limitations on the device, therefore only one packet is supported. If there are
less than the maximum amount of threads currently running on a host, one thread can
also use two such slots to improve its performance and then leverage the full bandwidth.

Figure 2.11: Write Combining Buffer Block Diagram

For flow-control reasons the fill-level of the shared FIFO is periodically reflected back
to main-memory. The sending SW has to check that level before inserting new packets
through the host interface, otherwise this interface can get blocked until progress can be
made on the network. Back-pressure can occur in HyperTransport (HT) based systems if
the SW does not observe the number of injected packets, effectively creating a possible
deadlock and stalling the whole system. Write requests to non-coherent devices can only
made using the posted virtual channel. A required updates to the register file then cannot
be completed as the posted channel is occupied due to above mentioned back-pressure.

Only the first part of every message contains a header with the length of the complete
message. Once this part arrives1 the remaining words are calculated taking into account
the words that have already been written and the words of the current packet. The

1the first part does not necessarily arrive first.
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position of each split part within a message can be extracted from the address offset that is
transmitted with each part.

The block diagram of the resulting unit can be seen in figure 2.11 on the preceding
page. The Write Combining Buffer is successfully integrated in the FUs of EXTOLL, namely
Virtualized Engine for Low Overhead (VELO) and Remote Memory Access (RMA). Both
units are described in more detail in chapter 4 on page 133.

2.4 Virtual Ring Buffer Handler

Ring buffers are a common construct to receive data or notifications whenever a SW
communicates with a device like a network card, a general purpose graphics processing
unit (GPGPU) or a FPGA accelerator. Essentially, a ring buffer is a FIFO, handled and
maintained by SW and located in main memory. Such a ring buffer has the same full and
empty criteria as a FIFO, described in section 2.2 on page 12. These ring buffers can be
used to avoid kernel level communication. When using kernel level communication, the
HW works on its given task independently and sends an interrupt to the OS when it is
done. Thereafter the OS wakes up the user application and informs it that the HW has
completed its task. This lacks efficiency due to the required OS involvement, resulting in a
high latency. Moreover, a lot of jitter is introduced, as the required thread change from
the kernel to the user application results in indeterministic latencies. This jitter is to be
avoided at all times whenever parallelizing a task as it constrains the scalability. Jitter
wastes processing time, as multiple threads are finished processing their given problem at
different times and therefore need to wait for others.

A higher performance can be achieved if only user-level communication can be used. A
main memory region needs to be mapped into the virtual address space of the SW thread,
which can be leveraged as a ring buffer by the HW to write into and by the SW to read
from it. However, in addition to a write- and read pointer, the main memory ring buffer
requires a base address and the size of the memory region to be fully defined. Given these
information, the HW writes into the memory with an ascending write pointer starting
from the base address and once the upper bound, i.e. the size of the memory region, has
been reached starts again at the base address. Instead of passively waiting to be woken up,
an application can then actively poll on the next value in its ring buffer to check whether
new data arrived or not.

Some FUs like VELO, which is described in section 4.6 on page 153 in more detail, also
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use such a ring buffer in main memory to not only write notifications, but also write
data directly in line with the notification. The advantage of writing data in line is that no
second main memory access from the SW side is necessary to receive a complete message.
The larger such a region is, the less frequent a SW thread has to check whether new data
or notifications have been received and can use the CPU time to process its actual task
as the buffer is more elastic. Additionally, the latency for credit updates2 can be hidden
efficiently.

Figure 2.12: Memory Mapping of Segments to User Space

The limit for continuous memory segments that can be requested in today’s Linux [24]
based systems is four MegaByte (MB). This is due to the implementation of the memory
allocator in the Linux kernel. The largest chunk that can be requested is the mentioned
four MB, but it cannot be guaranteed that even these are granted under all conditions
as the allocator separates the whole main memory in four MB slots and bisects such a
slot if less than the maximum size is requested. The main memory is fragmented in a
way that no maximum sized slot is available anymore, if a system does not have a large
memory or is already running for a while. Larger consecutive areas of main memory are
only available if they are either isolated (hidden from the Linux kernel) during the booting
process of the complete machine or one can request many fragments and hope that some
of them lie next to each other so that a larger chunk can be formed afterwards.

Figure 2.12 illustrates a typical memory allocation in a host system. The physical address

2update of read pointer in HW
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space of the complete system is parted into segments. Each time the user application
requests memory one such segment is mapped to the address space of an application.

Today’s host interfaces like HT [25] [26], QuickPath Interconnect (QPI) [27] [28] or PCI
Express (PCIe) [29] have a very high bandwidth well above five GigaByte (GB)/s and
those four MB are therefore written in a split of a second, hence having larger segments is
desired to avoid stalling the CPU due to credit problems or interrupt the working thread
too often in order to free up parts of the receive buffer. To get a larger queue, restarting all
machines to isolate memory is of course not feasible in large scale clusters with multiple
running applications and it also cannot be guaranteed that requesting memory segments
and checking whether or not they are consecutive results in the desired segment size.

Hence a unit which can utilize a plurality of memory segments and form one large
virtual main memory ring buffer is desired. A building block called the Virtual Ring
Buffer Handler (VHRD) has been developed which serves as a an administrator for main
memory ring buffers, enabling the hardware designer of FUs to focus on the development
of the core functionality of the serving unit.

2.4.1 State of the Art

In 1999 an US patent [30] has been filed by IBM [31] that claims a plurality of ring buffers
in a main ring buffer. Main memory was very limited in that time3, therefore this patent is
targeted to synchronize a write and a read task with minimizing the need to swap to hard
disk drives. A set of main read- and write-pointers point to the current sub-ring buffer
and for each sub-ring a second set of pointers indicate the location within the current
sub-ring. The whole buffer management for reading and writing is handled using SW as
both users of the ring buffer are also SW threads.

There has been no further publications in the recent years regarding multi-segment ring
buffers management in HW to the best of the writers knowledge.

2.4.2 Design Space Analysis

The VHRD needs to be capable of handling an arbitrary number of main memory segments
to form one large virtual ring buffer and manage all necessary information to do so. Having
this variability enables upper layer protocols (UPLs) to manage buffer space efficiently,

3around 16 MB
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threads requiring large buffers can use multiple segments for their ring buffer, others can
use only a single segment. In order to be able to reserve these main memory segments at
any time during operation it shall not be required to have any alignment or size restrictions
between different segments.

A plurality of FUs need to be supported, as well as multiple ring buffer for each FU in
order to be able to fully support a virtualized device. In order to handle a large amount
of memory segments and virtual ring buffers, an interface to read from main memory to
reduce the required on-chip RAM is necessary as it is described in section 2.4.3 on the next
page.

To reduce the on-chip memory requirements for the administration of these segments,
only a few entries are to be cached on the device, the rest is stored in main memory. In
order to read these administration information a main memory read interface is required.

Design decisions have to be made before developing such a building block concerning
the location of the unit itself as well as the location of the memory read interface. Fig-
ure 2.13 shows a design space diagram with all possibilities regarding these two aspects.

Figure 2.13: VRHD Design Space Analysis

A centralized location of the unit has the advantage that the interface to read from main
memory exists only once, thus making good use of the read interface resources. The main
drawback however is that only one single unit can request an address at a time, which
limits the performance of the whole system, as some arbitration mechanism is necessary
in case requests of different FUs overlap.

A distributed location increases the performance of the system as each FU is assigned to
its own unit and can issue requests concurrently, removing the probability of overlapping
requests. On the other hand, also distributing the read interface has the consequence that
it will not be used very often and therefore requiring a lot poorly used resources.

To get the best performance and area results a hybrid approach with a plurality of
distributed units which however share a single main memory read interface is to be
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Figure 2.14: VRHD Block Diagram

favored. Each FU can request addresses with minimum latency, the not timing critical
main memory read can share its interface. The necessary arbitration for reading from
main memory of the different VHRD modules can be done using a round-robin arbiter.
Memory read requests are not timing critical in this case. Their latency can be hidden
completely, if at least two segments are locally stored.

Figure 2.14 illustrates a coarse block diagram of the VHRD as all design decisions have
been made.

2.4.3 Implementation

The implementation of the unit is split into two parts. First part is the module handling all
virtual ring buffers for one FU, the second part is handling a plurality of these modules.

As already stated, the VHRD module is able to handle multiple virtual ring buffers,
each consisting of an arbitrary number of main memory segments. All of these segments
however are separated into slots of fixed size to simplify address calculation as well as
the interface to FUs. Having a fixed slot size ensures an efficient HW implementation
of the VHRD module itself as well as serving FUs, due to the fact that this is the only
way to ensure that a packet that will be generated for the currently requested address fits
into the current segment. Thus, there are a few constraints for main memory segments.
The first being its size has to be a multiple of the slot size as otherwise a support to
split and span one packet over multiple memory regions is required, the second being
that its base address starts aligned with the slot size. Latter constraint does not restrict
the acquisition of memory segments in any way, since allocated memory space always
starts at a four KiloByte (kB) border, as a page, i.e. four kB, is the minimum size of
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allocatable memory. In the current implementation slot sizes of 16, 32, 64 and 128 Byte are
supported. These values have been chosen since they represent commonly used message
sizes for completion notifications of devices, HT or PCIe packets. There is no technological
restriction to increase the number or size of supported slot sizes. However, the larger the
slot size is, the higher is the chance of not using the buffer efficiently.

Each segment is described by a descriptor element containing its base address, the number
of slots in this segment and the slot size itself as it is illustrated in figure 2.15. The width
of the slot size field is two bit, as this is sufficient to encode the four supported slot sizes.
Segment Size is 16 bit wide to be able to fully describe a maximum sized segment using
64 byte sized slots. Individual segments need to be smaller than four MB if smaller slot
sizes are to be used. The last field inside a descriptor element is the base address of the
segment. It is sufficient to only store the upper part of this address, as the lowest 12 bit are
always zero due to the page alignment of such elements. The most upper 12 bit of the base
address are not stored either, as today’s CPUs only support physical addresses of up to
48 bit anyway, making this solution fit for the near future. As there are still some reserved
bits left, the width of the base address field as well as the slot size field can be increased at
later implementations. The alignment of the fields inside these elements have been chosen
arbitrarily.

Figure 2.15: VRHD Descriptor Queue Element

These descriptor elements are again handled using multiple ring buffer structures, one for
each served process. This structure, called the descriptor queue, is stored in main memory
in order to minimize the on-chip RAM footprint of a single VHRD module. Only the
descriptor elements for the currently used and the next segment of each ring buffer are
cached locally to hide the latency that incurs to read the next valid segment from main
memory. All address requests from the serving FU will be processed using the current
segment. A new segment descriptor will be read from main memory once the end of the
current segment has been reached. The locally cached next segment then becomes the
new current segment and the read descriptor will be the new cached next segment once
the read response arrives. Queue full will be returned in case a read response arrives too
late and also the next segment has already been used completely. This has to be done in
order to avoid packets being sent to an illegal address. In this case a second read request
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will be issued immediately and the first arriving read response will be directly used as
the new current segment. FUs have to repeat requests until they get a response with a
valid address. Insisting on repetition of requests makes it possible to implement a stateless
VHRD module. Statelessness is in general a desired feature for modules as it simplifies
HW significantly due to the fact that no contexts have to be stored and recovered.

The module itself is stateless, the queues on the other hand of course require registers
to store the state of each queue. All these state registers exist for each ring buffer and are
stored in a RAM to avoid a large sea of registers. To handle the descriptor queue itself
it is necessary to know its base address, its size and the read pointer which points to the
next segment to read as it is illustrated in figure 2.16. Size gives the number of available
segments. It is more HW resource efficient to use a mask instead of a segment count for
the size. However, this requires a power of two amount of segments and therefore looses
a lot of the flexibility compared to using a count field, which can realize any number of
segments. Once the descriptor queue read pointer reaches the number of segments it is
reseted to zero and the first segment will again be used, thus closing the virtual ring.

Figure 2.16: VRHD Queue State RAM

In addition to the fields required to handle the descriptor queue itself, the following
information, also shown in figure 2.16, are required for each virtual ring buffer.

The logical upper bound field is the sum of slots over all segments. It is necessary to be
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able to reset the logical write pointer to zero once it reached the end of the last segment. The
logical write pointer is used to calculate the full condition of each queue, i.e. the flow control.
It is incremented with each successful address request, spans over all segments and will
be reseted once the logical upper bound has been reached. The logical read pointer has the
same functionality as the logical write pointer mentioned above. This pointer will only be
set by SW and is used in combination with the logical write pointer to realize flow control,
which is required to avoid a buffer overflow. The local write pointer points to the next free
slot inside the current segment, is also incremented with every successful address request
and will be reset every time a new segment is started.

The current descriptor element in quadword 0 describes the main memory region which is
currently being used for writing. It includes all fields shown in figure 2.15 on page 29. VA
indicates that the current descriptor element is valid and can be used. The VHRD module
returns full if an address is requested and valid is not set, to avoid illegal memory writes
sent from the requesting FUs. The next descriptor element in quadword 1 holds a pointer to
the main memory region which will be used once the end of the current segment has been
reached. VA is again an indicator that this descriptor element is valid and can be used.

As an additional feature enabling serving FUs to hide latency, it is possible to request
addresses speculatively. This has the positive affect that an address can be requested as
soon as an target is known and then revoke or commit the request at a later time when it is
clear whether the address is required or not. To avoid data inconsistencies, every request
has to be explicitly committed, otherwise it will be assumed as revoked after a timeout
occurred.

A mailbox full indicator will be returned in case the logical read- and write pointer indicate
a full condition (i.e. the SW has not read a buffer for a while) or the read responses for the
segment caching has not yet arrived.

A simple interface is used to request an address for the next free slot of a specific
queue/virtual process identification (VPID). The FU only has to inform its VHRD module
for which VPID an address is required and later has to commit that the address has been
used. The ring buffer management is fully transparent for FUs, they only need to be able
to request an address again in case the virtual ring is full for the above described reasons.

The following example in figure 2.17 on the following page illustrates the usage of all
fields and the functionality of a single VHRD module. It shows how the buffer is put
together and what is stored in the different fields inside the Internal State RAM. The colors
used for all fields in this example are the same as in figure 2.16 on the preceding page.
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Figure 2.17: Example 1 for a Single Virtual Ring Buffer

An unit is requesting an address for VPID 1. The logical read pointer, who’s value is two
(in orange) and logical write pointer, its value is five (light blue) are more than one apart,
so the virtual ring is not full at the moment. The current segment is not yet full either,
since the local write pointer value is five (dark blue) and therefore not the same as segment
size, which has a value of six (light brown). Consequently no new descriptor element
will be requested and both, logical- and local write pointer, will be incremented after the
request has successfully been responded. The returned address value for this request is
64’h2000_0000_0000_0028.

The second example, illustrated in figure 2.18 on the facing page, shows the state of a
virtual ring as an unit is again requesting an address for VPID 1. Only this time, the local
write pointer has a value of six (dark blue) and therefore has the same value as segment size
(light brown). A new descriptor element is required and will be requested as the current
element will be completely filled after this request has been processed. The logical write
pointer is incremented, the local write pointer on the other hand is reset. All current descriptor
element fields are overwritten by the next descriptor element fields (first two lines in the
Internal State RAM) and the new next descriptor values are written as soon as the response
arrives. The new internal state is illustrated in figure 2.19 on page 34.
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Figure 2.18: Example 2 for a Single Virtual Ring Buffer, View Before Request

2.4.4 Performance

Each VHRD module is capable of responding a new address requests every four clock
cycles. Performance is limited as a complete read-modify-write access cycle is required for
each address request. The second performance limiter are the RAMs themselves, as they
have a read latency of one cycle, thus adding to the above mentioned four cycles.

Nevertheless, this is sufficient to fully utilize the HyperTransport Advanced Crossbar
(HTAX) and completely satisfy the host interface bandwidth in the FPGA implementation
of EXTOLL, even with minimum sized packets. In the ASIC implementation however, a
minimum sized HTAX packet is only two clock cycles long due to the wider internally
used interface at the host side. Therefore a single unit is no longer capable of fully utilizing
the offered bandwidth. To resolve this issue, application SW needs to either utilize more
than a single FU of EXTOLL or send larger packets.

2.5 Tag Matching Unit

Tag matching is an often required capability in high performance computing. All MPI [11]
based communication requires the tagging of messages in order to be able to uniquely
identify the communication partners. Until now, this task is handled using only SW.
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Figure 2.19: Example 2 for a Single Virtual Ring Buffer, View after new Descriptor Element
has been stored

Essentially tag matching can be split in two parts, storing and maintaining a list of tags
that have not yet been matched and comparing new arriving tags of messages against
all stored tags. Both tasks are time consuming on a standard host CPU. Matching in SW
requires either to go through all entries in a list sequentially or matching the entries in
parallel. A sequential walk through the list is very time consuming and thus increases
the latency of a packet significantly. The parallel approach on the other hand requires
multiple CPUs, which are better utilized for solving the actual given task than work on
communication tasks.

A specialized HW unit is required in order to be able to offload this task to an accelerator
or into the NIC and therefore freeing the host CPU. The here proposed Tag Matching Unit
(TMU) is a structure with very fast and efficient header matching capabilities in hardware,
which is beneficial to improve such MPI based communication. Another advantage is
the reduced amount of memory copy operations as messages can be delivered into main
memory directly using a zero copy approach.

2.5.1 State of the Art

One paper that explains the problem of progress and computation/communication over-
lap in terms of MPI implementations for InfiniBand is [32]. In particular the problematics
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of rendezvous protocols, both pipelined and true remote direct memory access (RDMA)
based, in conjunction with synchronous progress are shown.

Myrinet MX implements matching on the LanAI processor on their NICs, so this is a
firmware implementation [33]. Another firmware based (or at least possibly in firmware)
implementation is based on the Portals interface [34] and Cray’s SeaStar interconnect
[35]. Quadrics used to implement matching on their NIC, it is believed that this was also
firmware and embedded processor based [36]. Unclear is, how Infinipath’s matching is
performed [37].

On the research side, a number of papers have been published by the same group that
is also responsible for Portals, which address the MPI matching problem. In [38] some
interesting examination of the lengths of posted receive and unexpected queues can be
found. In [39] an embedded processor implementation4 is presented. It is augmented by
some hardware assistance for list traversing and management, which is used to implement
the posted receive queue and the unexpected queue. Finally, in [40] a hardware archi-
tecture for tag matching is described that is based on an associative data structure, i.e. a
modified TCAM structure. A prototype has been implemented in an FPGA. While a good
performance in certain respects is shown in simulation, the hardware is very resource
intensive and again geared towards the SeaStar chip.

Most current MPI implementations provide for synchronous progress (i.e. in-band
polling) and host CPU based matching for networks like Ethernet, InfiniBand and shared
memory transports (like MPICH [41], MVAPICH [42], OpenMPI [43]). A resource efficient,
yet high performing HW structure however has not yet been published.

2.5.2 Implementation

To increase performance the proposed module is highly parallelized and implements a
large number of matching elements. Arriving MPI messages can be categorized as either
unexpected receive (UE) or posted send request (PR). UE messages are receive requests
that have not yet been matched with a received message and PR are the exact opposite, a
received message for a not yet posted receive request. By distributing the headers which
are to be matched against a specific UE or PR over a large number of match units, the
match latency and match rate are significantly improved compared to a software based
approach. The overall structure of the TMU is shown in figure 2.20 on the following page.

4based on Cray’s SeaStar interconnect
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Figure 2.20: TMU Block Diagram

All incoming messages as well as outgoing matches are handled using the HTAX
interface, which is described in section 4.1.2 on page 137. The functionality of each module
depicted in figure 2.20 is described in the following sections.

Broadcast Stage

The Broadcast Stage receives all incoming headers and buffers them in a small FIFO to
avoid blocking the HTAX. If there currently is no matching in process it forwards the first
received message header to the Match Units and awaits the results. Only one match is
processed at a time to avoid race conditions that otherwise can occur. Once the match is
finished and a match has been found, then this match is sent back using again the HTAX
interface. If there has not been a match, then the processed header is either an UE or PR
and needs to be stored in the Distributed Header Store (DHS) using the Load Balancer. The
next received header can be processed once the previously unmatched header has been
stored properly. It has to be waited until the previous header has been stored to again
avoid race conditions.
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Distributed Header Store

A large Header Store is used to hold UE and PR headers. The Header Store is distributed over
several queues implemented by a set of memory based FIFOs to improve the throughput
of the Tag Matching Unit. Each single queue belongs to a specific Match Unit and each
Match Unit’s access is restricted to the headers in its dedicated Header Store queue. This
approach avoids read and write conflicts as it does not allow several match units to access
the same item of the DHS.

The number of Match Units and associated Header Store Units is easily scalable, a FPGA
based implementation will probably have less queues as an ASIC implementation. The
Distributed Header Store module itself does not contain any logic, it is just a container for
all instantiated Header Store Units.

Header Store Unit

Each Header Store Unit is partitioned into two parts whereas one part stores all unmatched
PRs, the Posted Send Request Queue (PRQ) and the other stores unmatched UEs, the Un-
expected Receive Queue (UEQ). These parts are then further subdivided for the different
processes, i.e. VPIDs. While it is easily possible to support a different number of processes
and in case of fewer processes increase the queue size per process, the division in PRQ
and UEQ is static as this differentiation as always to be made even for only one or two
processes.

The two queues and their sub-queues are realized using a RAM, where the address is
split into three parts. The first part, starting at the highest order bit, separates the two
main queues, with the second part the queues per process can be distinguished and the
third part is used for the entries of a single queue.

Alongside the actual header, additional information of configurable length can be stored
in the queues which are required by units leveraging the TMU. The header itself contains
all information required for the matching itself and is shown in figure 2.21 on the next
page.

The Tag field is a user specified tag for the message and is compared between PRs and
PRQ during matching. Context can be used to identify for example the used communicator
type in MPI. WC is the wild-card field. One bit is used to mask the Tag field to enable
matching of any tag. The second bit is used to mask the Context field to enable matching
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Figure 2.21: TMU Header Format

of any used context. The VPID field identifies the process at the sending or receiving node
and Node field identifies said node.

As already stated, the header supports a variable amount of queues for applications that
require fewer than the maximum supported number of ranks per node. When reducing
the amount of supported ranks, the depth of each queue increases accordingly. The
amount of needed queues can be set during configuration of the unit. Possible values are
2n whereas n ≤ m so that 2m equals maximum number of supported ranks. A change of
the queue partitioning is only allowed while all queues are empty and idle, otherwise data
corruption is imminent. The applied scheme for changing the size of the queues inside the
RAM is the same as in section 2.2.1 on page 14.

All queues are organized as self compacting queues as it is also described in [44]. Values
are added at the end of the queue in a chronological order and can be removed from
anywhere inside the queue. Consequently, the first entry in a queue is always the oldest
and a search can be stopped as soon as one match has been found.

To avoid gaps in the queue after a value has been removed from it, the queue is
concurrently and permanently compacted. This can be realized with a dual ported
memory where the values, which are inspected during a linear search within a match
process, are permanently copied to the correct location via the second write port. The
process of compacting the queue can be carried out in parallel while searching the queue.
Compacting the queue has the advantage that there is no fragmentation and therefore the
maximum amount of entries are always available. Otherwise gaps cannot be used as each
queue itself has to be in correct chronological order at all times. Doing this compacting
while searching ensures that there is at maximum a gap of one entry, the one that just
matched. This gap of one will be removed upon the next search. Compared to [44]
the self compacting mechanism is less complex, as each queue is accessed atomically.
Consequently the queues are either read and compacted or written to.

During a search, all header stores are locked to avoid insertion of new headers, thus
to maintain the order and avoid race conditions. While the result of the search can be
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returned as soon as there is a match (which can occur at any location inside a queue), the
search operations needs to look all entries to perform the compaction operation. In this
course, the age field of each and every entry is incremented by one. The concept of age
field is described later in section 2.5.2 on the next page.

Matching Units

Parallel matching of a single message provides several advantages. All Match Units
operate on a single header simultaneously. By searching in parallel the search space is
reduced by a factor of N whereas N is the number of Match Units. The search space
is further reduced as only the queue corresponding to the active destination MPI rank
is analyzed. The match rate or match bandwidth is equal to an approach that matches
different messages in parallel. However, the match latency is improved significantly.
Furthermore, memory conflicts and race conditions are avoided as the UEQ or the PRQ
are only accessed by a single match unit. The crossbar in between the match units and
the memory block is avoided as well and scaling the amount of match units is facilitated.
Using self compacting FIFO data structures instead of linked lists allows for an easy
pipelined, linear walk through the memory and fewer management logic.

For each match, all fields of the header and the communication type are taken into
account. It is possible that an incoming request matches multiple headers from different
Match Units. In this case the oldest entry is the correct match, the oldest entry being the
first matched entry. Inside a Match Unit the order is ensured by the FIFO characteristics of
the data structure.

Timestamp Matcher

The Timestamp Matcher compares the sequence- as well as age numbers added to each header
by the Load Balancer of several successful matches. It determines the oldest match and
notifies the corresponding match unit to remove and forward the entry to the Broadcast
Stage. This unit then forwards the matched entry using the HTAX interface.
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Load Balancer

The Load Balancer distributes UEs and PRs to the different match units and their corre-
sponding header stores. To store a header the Load Balancer analyzes the MPI rank, i.e.
the VPID of an incoming header and checks the full signals of the appropriate queues in
the various header stores. The header is distributed following a round-robin like policy if
multiple header stores have buffer space available.

In addition it maintains a sequence counter for each MPI rank. Each forwarded header
is appended with the sequence number and the sequence counter is incremented after-
wards. This sequence number allows to define a chronological order between the headers
distributed over the various header stores. The sequence counter is reset whenever a
match occurred, the age on the other hand is incremented for all entries that did not match
and are still stored in the queues. As already mentioned, the age is directly managed
by each Matching Unit itself. In summary, the age is used to maintain the order within a
queue and the sequence number is to maintain the order across all queues. There are several
scenarios that can occur when using a sequence number, age number scheme that need to be
covered.

Sequence Overflow — The chronological order is not guaranteed anymore as soon as a
sequence number overflow appears. Therefore, an overflow of the sequence counter has to
be strictly avoided. If the sequence counter has reached its maximum value, all matching
units are locked and a dummy match is run on the corresponding queues. This match
operation will not return any actual result, but will increment all aging counters of the
entries and the sequence counter can be safely reset to zero afterwards.

Age Overflow — When headers of one rank ever reach the maximum age, an exception
occurs. This can, unfortunately not be handled gracefully by HW alone. All entries are
then dumped to main memory and the host CPU is interrupted. At the same time, HW
matching is disabled and handed over to SW, which may enable it again at any time.

Header Queue Overflow — A queue overflow will occur, when all header queues are full
and another header arrives. Whenever this happens, further packet processing is stopped
for incoming packets that target the overflowing queue and a host CPU is interrupted
and informed with the overflowing queue descriptor. Incoming packets are blocked
respectively forwarded to main memory. The host SW treats header queue overflows as a
slow case. Hardware matching for the MPI rank is turned off automatically by HW, all
headers are dumped to main memory and operation reverts to a SW header matching
algorithm. This is actually the exact same mechanism as in the age overflow case. SW
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may choose to enable matching again at a later time. Since the SW knows the size of the
queues, it may also be possible to try to prevent this case using clever scheduling and
flow-control during normal operation.

Disabled HW Matching — All headers are forwarded to a main memory queue where
SW-based matching can be performed, if HW matching has been disabled for some reason,
either because SW turned it off or one of the above mentioned exceptions occurred. This
mode of operation is called bypass mode. The SW may choose to reinsert headers again
into the queues and re-enable HW matching at any time. In this case, headers are inserted
by the local host while matching is still disabled and the unit is locked. Incoming network
traffic is blocked for that time to ensure that all SW headers are inserted first. After all
headers have been inserted in chronological order, host SW can enable matching, and the
unit resumes normal operation and the lock is reset.

When the HW dumps entries to main memory, they are not ordered as this makes the
HW a lot simpler. The queues in each Header Store can be read one after the other without
taking into account the sequence- and age numbers. The SW has to inspect all entries with
respect to their sequence- and age numbers to reorder them accordingly. New entries that
result from bypass mode will specify that in a special field and will not contain valid
sequence/aging information any more.

In main memory, each entry requires the size of the actual header, which is eight bytes
plus the size of the unit specific values. Additionally sequence- and age information are
required to enable SW to reorder all entries.

2.5.3 General Operation Description

This section summarizes the general operation of the TMU. Incoming posted receives
or posted send messages are forwarded to the TMU. The Broadcast Stage determines the
type of the header and forwards it to the Match Units. The match of the incoming header
versus all headers in the specific Header Store Queues is performed in parallel. Each match
unit traverses its headers of the specific MPI rank and reports the first (chronological)
match of that header by presenting the age- and sequence numbers of it to the Timestamp
Matcher. After all Match Units have finished searching their queues the Timestamp Matcher
determines the match with the oldest entry. The according Match Unit is informed and
forwards its entry to the Broadcast Stage.

If no successful match exists the header is forwarded to the Load Balancer which inserts
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the header into a Header Store Queue. During insertion no new headers are distributed by
the Broadcast Stage to make the insertion atomic.

2.6 FAST Decoder

Another area where the reduction of latency is essential for the user is electronic trading.
In today’s major stock exchanges well beyond 90 % of all trades are executed electronically,
while the traditional floor trading is in the meantime almost non-existent. The automation
of trading services through electronic means provides significant advantages in terms of
increased speed and reduced cost of transactions. Recently, not only the trading process,
but also the trading decision making process has been automated in the form of algorithmic
trading or HFT. According to the Aite Group, the impact of HFT on the financial markets
is substantial, accounting for more than 50 % of all trades in 2010 on the US-equity market
with a growth rate of 70 % in 2009 [45]. HFT describes a set of techniques within electronic
trading of stocks and derivatives, where a large number of orders are injected into the
market at sub-millisecond round-trip execution times [46]. HFT is particularly interesting
for so-called Market Makers whose responsibility is to provide liquidity to the markets by
providing quotes for buying and selling stocks. Thereby, they enable valuation of stocks at
all times, even if there are currently no interested buyers or sellers, by providing liquidity
in times of low volatility. High frequency traders aim to end the trading day ’flat’ without
holding any significant positions and utilize several strategies to generate revenue, by
buying and selling stock at very high speed. In fact, studies show that a high frequency
trader holds stocks for only 22 seconds in average [47].

In electronic trading, all interested parties receive a feed of stock related information
from a so called feed handler which is usually the exchange itself. These information then
need to be received and processed with minimum latency, a decision whether to buy or
sell something has to be made and a trade request has to be posted back at the exchange.

To enable minimal round-trip latencies, a HFT engine needs to be optimized on all
levels, beginning from the packet reception to the end, at the order transmission. The
required low latency connection to the feed handler can be achieved through collocation,
which allows servers to be deployed very close to the stock exchange. In addition, the feed
needs to be internally distributed with minimum latency to the servers of the HFT firm.

One commonly used protocol in HFT is FIX Adapted for Streaming (FAST) [48], a
standard based on the Financial Information Exchange Protocol (FIX), which has been
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defined by the FIX Protocol Ltd. [49]. It is used by various exchanges worldwide to
distribute stock information to all subscribing financial firms. The carrying network for
FAST most commonly is Ethernet, which supports packet multicasting by leveraging
Internet Group Management Protocol (IGMP).

FAST is very complex to decode in commodity CPUs and therefore predestined for a
special purpose decoding HW. Section 2.6.1 describes the protocol itself and its pitfalls in
order to be able to see why HW acceleration is beneficial.

2.6.1 FAST Protocol

FAST has been released in 2006. By then bandwidth has been very limited. Its purpose
is therefore to reduce the required bandwidth of messages by dynamically reducing the
size of transmitted fields using compression mechanisms and supporting some functions
that are triggered after data decoding to avoid sending redundant data. Each transmitted
message is encoded using predefined underlying templates, which have to be known both
at the encoder and decoder side. These templates are formally defined using an Extensible
Markup Language (XML) based syntax and are provided by the exchanges. Templates are
a compilation of fields, sequences and groups, whereas groups are a compilation of fields that
only occur once in a stream and sequences are a compilation of fields that can occur multiple
times. All fields have a type assigned, which defines the decoding and handling of the field.
Valid types are:

• 32 Bit wide signed integer (sint32)
• 32 Bit wide unsigned integer (uint32)
• 64 Bit wide signed integer (sint64)
• 64 Bit wide unsigned integer (uint64)
• decimal -

sint64 mantissa
sint32 exponent

• ASCII string
• unicode string
• byte vector

An example template is given in figure 2.22 on the next page. This template consists of
four fields, whereas two of the fields are grouped together in a group.
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<template name=" This_ i s_a_template " id ="1" >
<uInt32 name=" f i r s t _ f i e l d "/>
<group name=" f i r s t _ g r o u p " presence =" opt iona l ">

< s i n t 6 4 name=" second_f ie ld "/>
<decimal name=" t h i r d _ f i e l d "/>

</group>
< s t r i n g name=" f o u r t h _ f i e l d " presence =" opt iona l "/>

</template >

Figure 2.22: FAST Example Template

Data compression is achieved by removing leading zeros or ones within each data word.
For example only one byte is transmitted for a 64 bit singed integer with value 1 even if
the actual value of course is 64 bit wide on the host CPU. All types except byte vectors use
a so called stop bit encoding. There is no length information or prefix for fields using the
stop bit encoding. The length is solely encoded using the eighth bit of each byte to mark
the end of a field. Consequently only seven bit can be used for actual data transmission
and fields have to be spread across multiple bytes if its value is larger than the coding space
allows. Upon decoding, the stop bit needs to be removed for every byte and the remaining
seven bit need to be shifted to the right. The shift operation however only applies if a
field is larger than one byte and is not of type string. Byte vectors on the other hand are the
exception. They have a length prefix and make use of the full eight bit of each byte.

Consider the following incoming binary stream: 10000111 00101010 10111111. Two fields
are encoded in these three byte as it can be seen at the underlined stop bits. In order to
decode the actual value of the first field it is sufficient to replace the eighth bit with a zero
bit. The result is a binary value of 00111111, its hexadecimal value therefore is 0x3F. The
second field however spans over two byte. Lets assume that this field is of type uint32, an
unsigned integer with a length of 32 bit. To get the actual value of this integer, the stop
bits need to be removed and the remaining bits of the two byte need to be shifted together
and padded with two zero bits. The result is 00000011 10101010 binary or 0x03 0xAA
hexadecimal. However, all stop bits only have to be replaced by zero bits in case the field
type is a string, the result then is 0x07 0x2A hexadecimal.

Integer and decimal values have size restrictions by there given width definition. An
uint64 for example which is eight byte long after decoding can however span over 1 to
10 byte in FAST, thus making decoding complex. Strings on the other hand have no
restrictions regarding their length.

Additionally, all fields also have an operator and a presence attribute. Operators are
functions that can be applied after a field has been decoded.
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The following list shows all available operators, which are used to reduce the required
bandwidth by only transmitting some parts of the field and composing the actual value at
the receiver using the currently and previously transmitted values.

• Constant
• Default
• Copy
• Increment
• Delta
• Tail

The delta operator for instance can be used to only transmit the difference between the
previous and the current value for integers. Not all operators can be used in combination
with all field types, explaining their purpose in more detail however is out of the scope of
this work.

The presence attribute can either be mandatory or optional. Depending on this attribute,
the field is always present in a data stream or may also be absent. The presence or absence
of optional fields is described using a Presence Map (PMAP). Each transmitted message
starts with such a PMAP followed by an unique identifier called the Template Identifier
(TID), as it is shown in figure 2.23.

Figure 2.23: Fast Messages Encapsulated in UDP Frame

The PMAP is a mask and used to specify which of the defined fields, sequences or groups
are actually present in the current stream. The usage of the PMAP is dynamic and depends
on the combination of operator and presence attribute, therefore not every field occupies a
bit in the PMAP. A field with applied delta operator for example never occupies a bit in the
PMAP, whereas it depends on the presence attribute for fields with the constant operator.

If the presence attribute for a field has the value optional, then the field type also defines
whether or not the transmitted value is nullable. This means, that a single byte with a
certain value is present in the stream for this field, but its value is supposed to be not
present. Zero is used as the NULL value and consequently all other values need to be
decremented in order to get the actual field value in case the field type is a number.
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Figure 2.23 on the previous page also shows that multiple FAST messages can be
clumped together into a single UDP frame, which is the commonly used protocol in the
transport layer. Care has to be taken as a single decoding mistake requires dropping the
entire UDP frame, since there is no way of finding the start of the next message until the
next frame starts.

While these techniques enable to keep up with the increasing data rates that are provided
by the exchanges, it increases processing complexity significantly. To transform the
compressed FAST data stream into processable data, the complete stream needs to be
decoded and interpreted in real time. If at any time the processing system cannot keep up
with the data rate, critical information is lost. Furthermore, by decompressing the data
stream, the bandwidth that needs to be processed effectively increases. Hence, to develop a
high performance fast decoder, two different goals need to be achieved. First, the decoding
of the protocol need to be performed with the lowest possible latency. Second, it must be
guaranteed that the arriving data rate can be processed at all times.

2.6.2 Related Work

An increasing volume of work has recently appeared in literature, though probably the
largest part of work done by institutions is not published. A very good overview about
the acceleration of high frequency trading is given in [50]. Furthermore, a system for
accelerating Options Price Reporting Authority (OPRA) FAST feed decoding using Myrinet
MX [51] hardware is presented. A multi- threaded faster FAST processing engine using
multiprocessor machines is presented in [52]. While both approaches focus on accelerating
FAST decoding, to the best of writers knowledge the following approach is the first one
that deploys FPGA hardware for this purpose. Morris [53] presented an FPGA assisted
HFT engine that accelerates UDP/IP stream handling similar to [54]. Sadoghi et. al. present
an FPGA based matching engine [55], it however focuses on the latency improvement
for matching algorithms, not the decoding of FAST. Finally, Pasetto et. al. also present
an OPRA FAST decoder [56] using the IBM PowerEN Chip [57]. This is also a pure SW
solution, based on [52] ported to the IBM PowerEN Chip.

2.6.3 Design Space Analysis

The FAST protocol is highly (bit-) serial in nature, as section 2.6.1 on page 43 shows.
It makes bit manipulations, like masking and shifting necessary in order to decode it
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properly. In addition to the complex decoding mechanisms itself, the protocol also offers a
huge number of field combinations, thus requiring a highly flexible decoding structure.

There are a number of possibilities when designing a decoder for such complex protocols,
as it is shown in figure 2.24. The general approach is to decode it using SW with its
numerous options of programming languages, examples here are Java [58] or C [59].
Numerous SW solutions already exist for FAST all suffering in performance, due to the
nature of the protocol.

A number of design possibilities also exist for a HW based decoder. One option is to
write a full case decoder, which is usually very fast in respect to latency. Though, it will
not reach a high clock rate, due to the complexity of the protocol. There are just too many
possibilities of field combinations.

Figure 2.24: Design Space for FAST Decoding

The second option is to develop a FSM based decoder. The advantages are that FSMs
can be designed using a higher abstraction layer tool like the FSMDesigner [60] [61], which
already optimizes the register transfer level (RTL) code and checks for errors making the
implementation a lot simpler and less prone to errors. Drawbacks are that, due to the
complexity of the protocol, the resulting FSM requires a lot of states and transitions making
it very hard to read and design. In addition it will not reach the desired performance
values as well.

This leaves only one opportunity, a microcode engine. Microcode engines can be seen as
a hybrid approach between SW and HW based decoding. It is a highly specialized and
optimized CPU with only a very small set of instructions, therefore being able to decode
the protocol much faster than a conventional CPU, even at lower clock rates. Compared to
the first two approaches, the microcode engine requires a few more clock cycles to decode
the protocol, but due to its simplicity is able to run at higher clock speeds as the other
options and is more flexible.

However it also requires a program to be able to do so. These programs are called

47



2 Efficient Packet Processing

firmware and are programmed into the engine upon initialization and are written in an
higher abstraction layer protocol. Having this flexibility improves the ability to debug, as
errors in the control- or data flow can easily be removed by changing only the firmware.
Additionally, changes in the protocol itself, like template modifications, can be carried out
in a short period of time. These template modifications actually appear twice a year in
various stock exchanges.

2.6.4 Baseline Implementation

The first step has been to get a working prototype to see whether it is even possible to
design an efficient enough decoding structure. This baseline implementation of the FAST
decoder is split into three modules as shown in figure 2.25. These modules are decoupled
using a FIFO buffer to be able to cope variable processing times, which depend on the
input data.

Figure 2.25: FAST Processor Block Diagram

The first module aligns all incoming fields to a multiple of a fixed word size. In most
cases a single field fits into a single word, but some fields like strings require multiple such
words. Fields are detected using the stop bits as described in section 2.6.1 on page 43. This
is the first restriction for this decoder since byte vectors use a different encoding. However,
this poses no real restriction since they are rarely used5. There are no information on the

5In Eurex, there is only one template with a byte vector defined. It is of fixed size and position and can
therefore be removed before the actual decoding takes place.
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type of the field necessary in this first step, all decoding of the fields themselves takes place
in the microcode engine.

The FAST Microcode Engine uses pipelining to achieve a high throughput, i.e. high clock
frequencies. The unit itself is again split into two logical paths, data- and control path. The
control path uses only one pipeline stage to be able to take branches in the control flow
with lowest costs. A low stage count is desired as each additional pipeline stage increases
the branch penalty for such engines. Branches require two independent instructions or
no operations (NOPs) after them to accommodate the program counter change and the
command RAM read latency. The data path however uses four pipeline stages for an
efficient decoding of the fields and its assigned operators. With the very short control path
and the relatively long data path this design ensures a high issue rate of instructions and
at the same time can reach a high clock rate.

Each cycle a new decoding request can be issued although it takes four clock cycles to
decode a single value. In the first stage of the pipeline the type of the field, and in case it is
an integer the sign of the value, is determined. The second stage removes the stop bits
and pads the values with zeros or ones, depending on the sign and type of the current
field. The third stage applies the operator using a previously stored value of the same
field. Currently only operators that manipulate decimals and integers are supported6.
If required, support to manipulate strings can easily be added in SW since all necessary
information are known there as well. The last stage increments the value by one in case it
is an optional, non negative integer to accommodate nullable fields.

Figure 2.26 illustrates an example data flow through the FAST decoder. First the UDP
frame passes the FAST Decompresser were each data word is split in multiple words, in
this example five. Thereafter, the FAST Microcode Engine decodes the field according to the
microcode and the given template. All decoded fields are tagged with an unique identifier
after passing the FAST Microcode Engine so that SW can process the data efficiently.

Figure 2.26: FAST Data Flow

6Again this poses no restrictions, as Eurex never uses operators on any other field types
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In order to process decoded data it is also necessary to write it to main memory where a
SW thread can read it. This is done in the last stage of the decoder, the direct memory access
(DMA) Engine. Reducing the latency of HW-SW synchronization is best done using user-
level communication as already discussed in section 2.4 on page 24. The same mechanism,
a ring buffer in the user-level address space, is used in this case. Data is written using
64 byte packets, as it is the commonly used size for a modern CPU’s cache line.

Every packet written to the ring buffer consists of seven decoded words, each 64 bit
wide and an eighth word containing the corresponding unique IDs of the seven words.
The eighth byte of the last word is used for error detection and as an indicator whether the
ring buffer has wrapped around or not. The highest order bit is inverted once the write
pointer of the ring buffer reaches its maximum value. This enables SW to easily detect new
data without the need to overwrite old values reducing the amount of required memory
writes from the SW side significantly.

Figure 2.27: FAST Ring Buffer Usage

An example message dump is given in figure 2.27. For performance evaluation some
additional values like the arrival timestamp or parsing time of the template can also be
written to main memory.

The arrival time for example is a 40 bit clock cycle counter started after reset. It shows
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the time a packet arrived at the Ethernet Frame Decoder. This counter will approximately
overflow every 1.5 hours and has an accuracy of 6.4 nanoseconds. Parsing time is a 16 bit
value which counts the clock cycles between start and end of decoding a template.

This first implementation is a fully functional FAST decoder that already increases the
overall performance of FAST decoding significantly as it is shown in section 2.6.5 on the
next page. Restrictions of the current design are that it does not fully support all possible
operators and that there is no support for byte vectors.

Additional features have been added in section 2.6.6 on page 54 which again improve
performance.

FAST Microcode Engine Firmware

In order to work properly, the FAST Microcode Engine requires a firmware, i.e. a sequence
of commands. A small set of instructions have been specified which are sufficient to
decode FAST templates and an assembler tool has been written which transforms the
higher abstraction level programming language into binary code for the engine. Upon
system initialization this microcode is then loaded into the program RAM of the engine. It
is fairly easy to adapt the program whenever template changes are specified or decoding
errors have been detected, using this dynamic programming approach.

Figure 2.28 on the next page shows an example code for the example template given
in figure 2.22 on page 44. The program is divided into four columns, the first one is the
command for the data path, the second column is the unique identifier each field is tagged
with, the third column is the command for the control path and the fourth column is
used for conditional or unconditional branch targets. Both relative or absolute targets
are supported for these branch targets. Absolute branch targets can be identified using
a name of choice as it has been done in the example with START and TID1. The code
lines between these two identifiers is a part that is required for each template to first
identify the correct sub-routine. The code lines starting from TID1 are then the actual
decoding sub-routine for the example template. Further explaining each command and its
function is getting too much into the details of FAST and the decoder. The given example
template however shows the dependencies that occur when decoding FAST. It has a lot of
conditional branches and therefore requires a lot of NOPs. Optimizing and reducing these
is part of section 2.6.6 on page 54.
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1 : START
2 SET_TIME 253 STORE_PRES
3 SET_TID 1 STORE_TEMP
4 NOP INCR_PC
5 NOP INCR_PC
6 NOP JUMP_TEMP
7 NOP INCR_PC
8 NOP INCR_PC
9 : TID1

10 CON_U32_MAN 2 INCR_PC_DATA
11 NOP JUMP_PRES +8
12 NOP INCR_PC
13 NOP INCR_PC
14 CON_S32_MAN 3 INCR_PC_DATA
15 CON_DEXP_MAN 4 INCR_PC_DATA
16 CON_DMAN_MAN 5 JUMP_EOFIELD_DATA
17 NOP INCR_PC
18 NOP INCR_PC
19 NOP JUMP_PRES +6
20 NOP INCR_PC
21 NOP INCR_PC
22 CON_ASCII_MAN 6 JUMP_EOFIELD_DATA
23 NOP INCR_PC
24 NOP INCR_PC
25 SET_EOT 255 JUMP_UNC START
26 NOP INCR_PC
27 NOP INCR_PC

Figure 2.28: FAST Example Assembler

2.6.5 Baseline Performance

In order to measure the performance of the decoder efficiently a theoretical model that
describes an upper bound for the data rate has been developed, taking into account the
different compression mechanisms and processing overhead of the FAST protocol and its
carrier protocol UDP.

D f ast = D f eed ∗
1

overhead
∗ comp (2.4)

Equation (2.4) shows the sustained FAST data rate that is provided by the exchange.
Note, that although peak data rates can be higher, only the sustained data rate is of interest
as peak data rates can be absorbed with a buffer of sufficient size between the ETH core
and the FAST decoder.
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Comp is the compression factor of the FAST protocol, and overhead the overhead of the
ETH- and UDP protocol. D f eed is the data rate of the incoming Ethernet data stream.
Accordingly the maximum data rate that can be supported by the FAST decoder can be
denoted as shown in equation (2.5).

Dmax = CF ∗ 1
CPI

∗ f ieldsize (2.5)

Wherein CF is the clock frequency, cycles per instruction (CPI) denotes the amount of
cycles required to decode a single field or instruction and field size represent the number of
bytes per field and instruction. An upper bound for D f ast can be given by choosing the
theoretical maximum for the values D f eed which is currently the maximum data rate an
Ethernet device can offer - 10 Gbit/s, and the maximum compression rate which is eight,
as fields with a maximum width of 64 bit can be compressed to the size of a single byte.
To provide a realistic estimation of the overhead an analysis of several GBs of market data
feeds has been performed. While the overhead of UDP and ETH depends on the size of
the packets a median overhead of about 10% for the ETH, IP, UDP headers and framing
have been determined.

D f ast,upper = 10Gbit/s ∗ 1
1.1

∗ 8 ≈ 72Gbit/s (2.6)

This results in a upper bound for the decompressed data stream of 72 Gbit/s as shown
in equation (2.6). Measurements of real market feed data however show that current data
rates for D f eed are closer to 2 Gbit/s and that the median compression rate is approximately
four. Please note that in the baseline implementation every field is decompressed using
64 bit, even if the original data is only specified to be 32 bits wide. Hence a realistic
sustained bandwidth can be calculated using equation (2.7).

D f ast,realistic = 2Gbit/s ∗ 1
1.1

∗ 4 ≈ 7.2Gbit/s (2.7)

In the same way, the sustained data rate Dmax that can be processed by the FAST decoder
can be calculated. In the baseline implementation field size equals 64 bits and CF equals
200 MHz. One might suggest to increase one or both of these values to increase throughput.
However, both appears to be difficult as FAST is a truly sequential protocol, processing
of a field depends on the previous field, which renders it impossible to increase the data
width by processing multiple fields in parallel. The operating frequency already represents
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nearly the maximum that can be achieved with the current pipeline stage design of data-
and control path and the deployed FPGA technology. While a deeper pipeline allows a
further increase of the clock rate, the sequential nature of FAST ensures that there are only
a very limited amount of instructions that can be executed independently. Furthermore,
performance is mainly limited due to branches in the microcode. A deeper pipeline in the
control path therefore is even counterproductive, as it increases the branch penalty.

The last parameter that can be analyzed is CPI. In particular, the analysis of the baseline
architecture revealed that the FAST decoder in average requires 2.66 cycles to process a
field, which leads to a maximum data rate of 4.8 Gbit/s as shown in table 2.3.

As Dmax is smaller than D f ast,realistic it is obvious that in periods of high volatility the
proposed engine might not be able to cope the incoming data rate. As discussed, the
only parameter that can be improved is CPI. Therefore, the following sections propose
numerous different optimizations for improving this factor.

CPI Bandwidth
(in GBit/s)

Baseline Implementation 2.66 4.8

Table 2.3: Performance of Baseline Implementation

The Cost of a performance enhancement can best be measured using the register and
LUT usage of the decoder. The baseline implementation uses 2233 registers and 3695 LUTs
for a single instance on the targeted Virtex-6 device as shown in table 2.4.

Registers LUTs

Baseline Implementation 2233 3695

Table 2.4: Costs of Baseline Implementation

2.6.6 FAST Decoder Improvements

As already mentioned, the performance analysis of the baseline implementation revealed
that the proposed architecture is not capable of coping a real market stream under all
conditions. A few bottlenecks have been discovered and the following subsections explain
the improvements that have been implemented in order to increase data throughput and
reduce the decoding latency.
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Template Profiling

After analyzing the decoded data itself, it has been recognized that a large amount of the
incoming FAST messages with the same TID also have the same PMAP. Figure 2.29 shows
the distribution of incoming PMAPs over all messages for the reference data stream also
used for the performance analysis.
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Figure 2.29: FAST Message Distribution

As it can be seen there are very few TID-PMAP tuples that occur considerably more often
than others. Making the common case fast, which is the one with the most occurrences can
therefore significantly improve performance. The PMAP uniquely identifies the whole
path to take through a program of a template including all branches since it is a mask that
shows the presence of each field. This can be accounted for when writing the firmware
code. Adding a few optimized programs for certain TID-PMAP tuples and a general case
for each template does not increase the required program space by much, but can improve
performance. The HW has to be modified in a way that upon jumping to the template
specific program, not only the TID, but also the PMAP is taken into account. If a program
for the current tuple has been found, then the optimized version, otherwise the general
version for this TID is used to decode the message.

The performance increased by around 13 percent by adding four of these optimized
programs as it is shown in table 2.5 on the next page. With four slots for specialized
templates all significant tuples can be covered, which is more than 87 percent of all
messages. Adding more does not increase the percentage significantly in this use case. The
fifth and largest bar on the far right in figure 2.29 is a template which cannot be optimized
due to its definition without any branches or fields and has therefore not been considered
in the calculation. Adding more specialized templates makes the branch condition more
complex, making it difficult to meet the targeted timing constraint on a FPGA and has
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therefore not been considered in the current implementation. However it is possible to
add more if other exchanges have wider distributions.

CPI Bandwidth Increase
(in GBit/s) (in %)

Baseline Implementation 2.66 4.8 -
Template Profiling 2.35 5.4 13

Table 2.5: Performance of Template Profiling Implementation

The main drawback of this optimization is that it requires the engineers hand optimized
microcode in order to work, which has to be developed for every tuple and does not work
anymore if any changes in the template definition occurs.

The cost of this improvement only increases by 1.8 percent for registers and 4.2 percent
for LUTs as shown in table 2.6, thus making this optimization profitable.

Registers Increase LUTs Increase
(in %) (in %)

Baseline Implementation 2233 - 3695 -
Template Profiling 2275 1.8 3851 4.2

Table 2.6: Costs of Template Profiling Implementation

Pointer Prefetching

Another optimization is to reduce the time it takes to jump to the actual program by
speculatively pre-fetching the next program counter between the first two submodules
of the FAST Decoder. This does not improve the latency for the first message, but all
following messages benefit hereof because the lookup latency can then be hidden due to
the fact that the first of the two units, the FAST Decompresser, is able to process new fields
every 1.1 cycles and is therefore faster than the microcode engine which currently requires
2.35 cycles per field.

The performance increases by another 12 percent in respect to the performance of
section 2.6.6 on the preceding page as shown in table 2.7 on the next page.

Costs however increase significantly as illustrated in table 2.8 on the facing page. This
large increase is not due to the rather simple pointer pre-fetching itself, but due to the
combination with the template profiling optimization. This optimization requires to not
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CPI Bandwidth Increase
(in GBit/s) (in %)

Baseline Implementation 2.66 4.8 -
Template Profiling 2.35 5.4 13
Pointer Prefetching 2.10 6.1 12

Table 2.7: Performance of Pointer Prefetching

only address a RAM every cycle, but also requires the PMAP and the TID to be present
in the same clock cycle. This is required in order to be able to create the tuple and check
whether one of the special templates is to be taken or not. Since the PMAP occurs in
front of the TID in the data stream and there is the possibility of having a gap between
the two fields7 as described in section 2.6.1 on page 43, it is difficult to store these two
values without a complex additional logic. To avoid such complex logic between the two
units, it is beneficial to modify the FAST Decompresser to ensure that both values can be
interpreted in the same cycle at all times. Moreover, these changes can also be leveraged
in the optimization described in the following section.

Registers Increase LUTs Increase
(in %) (in %)

Baseline Implementation 2233 - 3695 -
Template Profiling 2275 1.8 3851 4.2
Pointer Pre-fetching 2882 26.7 4924 27.9

Table 2.8: Costs of Pointer Pre-fetching

Immediate Integer Decoding

Due to the stop bit encoding, sint64 and uint64 can span over ten byte on the wire, which
is wider than the data bus width of the FAST decoder. In the current design the internal
data bus width of the FAST decoder is balanced with the width of the main memory write-
and the 10G-Ethernet receive data bus widths, which is eight byte. This makes it necessary
to process 64 bit integers in more than one cycle. In fact at least three cycles are necessary
since the end of the field has to be detected and a branch is required if the field is not
finished yet, resulting in a six cycle delay for large numbers.

The third optimization targets this issue by increasing the data bus between FAST
Decompresser and FAST Microcode Engine to ten byte, making it possible to decode integers

7in case the forward flow control issues a stop condition or the FAST Decompresser requires a gap
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in a single cycle. The FAST Decompresser adds the first three byte of the next field to the
current field and repeats these three byte in the next cycle in case it was not an integer with
more than eight byte. Replicating these three byte has the advantage that no byte shift
operations have to be done in the microcode engine in order to form the next valid field
and all fields start without an offset, also making decoding less complex. This optimization
still makes it necessary to remove the second word from the FIFO, however it avoids the
otherwise required branch, thus reducing the three to six clock cycle penalty (branch taken
or not taken) for integers to deterministic two cycles.

Since integers are the most common field in the template definitions this optimization
has a great impact on the performance. Another 24 percent increase compared to the
previous optimization can be achieved as shown in table 2.9.

CPI Bandwidth Increase
(in GBit/s) (in %)

Baseline Implementation 2.66 4.8 -
Template Profiling 2.35 5.4 13
Pointer Pre-fetching 2.10 6.1 12
Immediate Integer Decoding 1.70 7.5 24

Table 2.9: Performance of Immediate Integer Decoding

The consumed resources however only increase insignificantly as some of the required
logic for this feature has already been implemented for the previous improvement. The
amount of required LUTs actually dropped by 0.6 percent, as the FAST Microcode Engine is
now less complicated, since less corner cases for the integer handling are required. The
required amount of registers increases by 4.3 percent as shown in table 2.10.

Registers Increase LUTs Increase
(in %) (in %)

Baseline Implementation 2233 - 3695 -
Template Profiling 2275 1.8 3851 4.2
Pointer Pre-fetching 2882 26.7 4924 27.9
Immediate Integer Decoding 3007 4.3 4894 -0.6

Table 2.10: Costs of Immediate Integer Decoding

Using a Two Shift-Out FIFO

The penalty of requiring two cycles to process integers instead of only one cycle can be
avoided by using the FIFO implementation described in section 2.2.3 on page 20 in front
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of the FAST Microcode Engine. An input that signals to increment the read pointer by two
instead of the usual one makes it possible to jump over the unnecessary word inside the
FIFO, thus avoiding the otherwise required second shift out cycle. This can of course only
be done if the second word actually is stored in the FIFO, otherwise data corruption of the
FAST message is imminent.

CPI Bandwidth Increase
(in GBit/s) (in %)

Baseline Implementation 2.66 4.8 -
Template Profiling 2.35 5.4 13
Pointer Pre-fetching 2.10 6.1 12
Immediate Integer Decoding 1.70 7.5 24
Two Shift-Out FIFO 1.54 8.25 10

Table 2.11: Performance of Using a Two Shift-Out FIFO

The CPI can be reduced to 1.54 resulting in a bandwidth capability of 8.25 GBit/s
as shown in table 2.11. Costs however only increase by 0.5 percent for registers and
actually drops for LUTs as illustrated in table 2.12, again due to less corner case handling
requirements.

Registers Increase LUTs Increase
(in %) (in %)

Baseline Implementation 2233 - 3695 -
Template Profiling 2275 1.8 3851 4.2
Pointer Pre-fetching 2882 26.7 4924 27.9
Immediate Integer Decoding 3007 4.3 4894 -0.6
Two Shift-Out FIFO 3025 0.5 4789 -2.1

Table 2.12: Costs of Using a Two Shift-Out FIFO

All optimizations combined achieve a performance gain of over 72 percent compared
to the baseline implementation and only require around 35 percent more registers and
30 percent more LUTs. The achievable bandwidth can be increased to 8.25 GBit/s, thus
achieving the required throughput for today’s sustained bandwidth requirements.

A few more optimizations where thought of, but not implemented and are discussed in
the following sections.
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Speculative String Decoding with EOF Lookahead

Strings have no length limitation as already mentioned in section 2.6.1 on page 43. There-
fore decoding them always requires a branch to detect the end of the field and repeat the
current operation in case it is not completed. The example assembler code for decoding a
string can be seen in figure 2.28 on page 52 in the lines 22–24. There are always two NOP
commands required in order to decode strings properly. Adding a look ahead function to
detect not only the end of the field in the current word, but also the end of the field in the
next word and adding a command to speculatively decode the next word as a string, but
be able to revoke the result in case it was not part of the string, removes one of the two
NOP operations, thus reducing the required branches by a factor of two.

Adding even a three cycle lookahead and therefore removing all NOPs can improve the
overall performance even more. However, it adds more complexity to the FAST Microcode
Engine and the FAST Decompresser. In addition, most strings are smaller than 16 characters,
hence they fit into two words and therefore make the possible gain smaller than the
additional effort.

Sequence Length Pre-decoding

Analogue to the integer decoding, the additional bytes of the next field can also be used
to pre-decode the length of a sequence. At the beginning of each sequence, the amount
of repetitions have to be checked resulting in a branch and two NOPs afterwards to
accommodate the branch penalty. By interpreting the length one cycle earlier this penalty
can be reduced to one cycle giving a improvement of 33 percent for sequences.

Overall Performance

The plot given in figure 2.30 on the next page summarizes the bandwidth capabilities of
the above presented FAST decoder implementation. A performance improvement of over
70 percent has been achieved compared to the results of the first implementation (baseline).
The data rate D f ast,realistic of around 7.2 Gbit/s can now be achieved, thus ensuring that
even in times of high volatility, all arriving packets can be decoded properly without the
risk of loosing data.

To put the presented results in perspective, a comparison of the FPGA based FAST
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Figure 2.30: FAST Decoding Bandwidth Capabilities

decoder to conventional software based CPU approaches has been made. As reference,
performance results from [53] that have been measured on an Intel Xeon E5472 and an
IBM Power6, as well as results from [57] measured on an IBM PowerEN are used. All
these implementations have in common that they are software based FAST decoders. An
average message size of 21 byte is assumed as it is done in [53].

Intel Xeon E5472 IBM Power6 IBM PowerEN FPGA
0

10

20

30

40

50

M
es

sa
ge

R
at

e
[M

io
./

s]

Single Threaded
Multi Threaded

Figure 2.31: FAST Bandwidth Comparison [53][57]

Figure 2.31 shows the maximum message throughput that can be achieved on the
three different architectures. The figure shows a single thread and a multi-threaded
performance for all four architectures. The multi-threaded performance values for the
different architectures are based on four threads on a Intel Xeon E5472 and FPGA as well
as 16 threads on a IBM Power6 and IBM PowerEN.
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The CPU based approaches benefit from multi threading by processing multiple, but
independent FAST streams in parallel as a single stream cannot be processed in paral-
lel. Nevertheless, the proposed FPGA based decoder outperforms the software based
approaches significantly. The single thread performance is about one order of magnitude
higher than the CPU approaches and is still twice as fast as the IBM implementation
with 16 threads. Furthermore, the multi-core approach can also be leveraged for the
FPGA design to further increase performance, by instantiating the proposed FAST decoder
multiple times.
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Figure 2.32: FAST Message Decoding Latency Comparison [53][57]

The limiting factors for this approach is first the size of the FPGA and the timing that
can be achieved using multiple of these units. Putting four of these decoders in a single
FPGA however is possible, still reaching the targeted timing of 200 MHz. In addition,
the host interface bandwidth soon becomes the limiting bottleneck, since the decoded
FAST stream is significantly larger than the incoming UDP stream. Nevertheless, again
the FPGA is almost twice as fast using only four threads compared to the IBM Power6
implementation leveraging 16 threads.

Latency wise the proposed architecture also is considerably faster than the other two
SW based approaches as shown in figure 2.32. Decoding a single FAST message of 21 byte
with an average compression rate of three takes around 120 ns in the here proposed FAST
decoder compared to 261 ns on an Intel Xeon E5472, 476 ns on an IBM Power6 or 500 ns on
an IBM PowerEN.
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An interconnection network is the key element for every supercomputer as it is required
to connect multiple nodes to form the complete computer. Each interconnect requires
some form of switching fabric, a module which is capable of selecting multiple inputs at
each output. The fabric itself again is composed of switching elements.

3.1 Switching Elements

Switching elements are the central component for every interconnection network. Inde-
pendent of the topology, protocol or application, at some point in the network a routing
module, i.e. a switching element is required to connect multiple hosts, CPUs or any other
type of communication engines or units. According to [62] these elements can be classified
as depicted in figure 3.1.

Figure 3.1: Design Space Diagram for Switching Elements [62]

3.1.1 Time Division Switching Elements

When using time division switching elements all units send packets on different times, but
use the same resource.
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This resource can either be a memory or a common medium. Multiple units accessing
the same memory makes it necessary to either have a RAM with N ports, whereas N
is the number of units or this RAM must be clocked at a N times higher clock rate to
ensure that all write- and read accesses can be processed without blocking each other.
Both possibilities cannot be realized using standard CMOS technology.

Bus

The most common shared medium switching element is a bus. Figure 3.2 depicts an
example configuration for such a bus based switching element. All connected units share
a common connection which is used for both sending and receiving data. Only one unit
can transmit at a time and all units receive all transmitted packets. Whenever multiple
units want to transmit data, either conflict avoidance or detection has to be implemented.
For conflict avoidance a bus master can either assign fixed time slots to each unit where it
is allowed to send packets or units can explicitly request a transmit and the bus master
notifies the units when to send.

Figure 3.2: Connecting Multiple Units Using a Bus

When using conflict detection, every unit starts transmitting whenever it has packets to
be sent. An initiation sequence is sent before the actual packet to detect whether the bus is
currently in use or not. If a conflict occurred, the transmission is aborted and started again
after a random period of time.

The advantage of a bus is the low complexity and effort required to connect a series of
units. New units are simply added to the bus at one end.

The drawbacks on the other hand are that with every added unit or node the length of
the bus, and with it its capacity, increases. This lowers the frequency at which the bus can
be operated, thus reducing the achievable bandwidth and increasing the latency. Conse-
quently, the bandwidth is reduced and latency is increased. In addition, the bandwidth is
effectively reduced for every added unit, as it has to be divided for all connected units or
nodes.
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An example of an interconnection element that leverages a bus is the hub. It basically
is a packet replicator where incoming packets on every inport are sent to all outports
without analyzing the actual target. This leads to a lot of traffic on the connected units and
consequently to an inefficient use of bandwidth. If packets cannot be transmitted due to a
congested link, they are dropped and retransmitted after a timeout. Hubs were popular in
the early days of ETH switching, but no recent interconnection network use this kind of
interconnection elements anymore due to its obvious drawbacks.

3.1.2 Space Division Switching Elements

In space division switching elements units have multiple paths from its input to the various
outputs. Therefore all internal logic of the switching element can run at the same clock
rate as the unit itself.

This class of switching elements can be further divided into single path elements, if only
one path between an input output pair exists and multi paths elements if multiple paths
exist.

Crossbar Switching Element

One particularly interesting element in the single path element class is the crossbar switching
element, also known as crossbar fabric.

Figure 3.3: Connecting Multiple Units Using a Crossbar

Each unit has a bidirectional interface to the switching element as depicted in figure 3.3.
This switching element is capable of simultaneously connecting pairwise any inport and
outport of an unit under the constraint, that every port can only be connected once at any
given time. Therefore multiple packets can be sent simultaneously over the crossbar fabric
as long as connected units do not require transmitting packets to the same outport.

The crossbar element uses multiplexing structures to establish those connections as
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depicted in the outport part of figure 3.4. This type of switching element offers a high
bandwidth that does not decrease with each added unit due to the various connections
that can be established and the resulting independent packet flows and at the same time is
more resource efficient than fully interconnected units.

Figure 3.4: Detailed View of a Crossbar

3.2 Crossbars as Interconnect Switches

Due to its characteristics, the crossbar switching element lends itself to be used as a basic
element for interconnection networks.

To avoid confusion as many definitions for the term crossbar exist [63] [62], the whole
unit as depicted in figure 3.4 including its multiplexing structure is meant whenever the
term crossbar is used in this thesis.

3.2.1 Crossbar Buffering

Crossbars are generally characterized by their buffering scheme and can be divided into
five types as depicted in figure 3.5 on the next page.

The first possibility is to use no buffering at all. When there is no buffering in the
crossbar it must be ensured that all arriving packets can be forwarded to the appropriate
outport under all circumstances, otherwise packet loss is inevitable. This of course cannot
be ensured as all inports can send packets to the same outport at the same time making it
necessary to clock the outports and the unit behind at N times the frequency, whereas N is
the number of inports, in order to be able to cope the incoming packet stream. The ratio of
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Figure 3.5: Crossbar Buffering Design Space Analysis

the required higher clock frequency in regards to the normal operation frequency is called
speedup.

Output buffered crossbars suffer from the same problem as unbuffered crossbars where
N packets can arrive simultaneously. However due to the inserted buffers at the outport
only the fabric itself and the buffer must be clocked faster, the connected unit itself can
run at its normal clock rate. There are no examples of solely output buffered crossbars as
the required internal speedup is hard to realize.

Crosspoint buffered crossbars have small buffers at each crosspoint inside the fabric.
Such a fabric is depicted in figure 3.6. Instead of having only the enable logic of the
multiplexer, each crosspoint has an additional buffer. This buffer avoids the necessity of
an internal speedup requirement as packets can be buffered in front of each output if it is
blocked.

Figure 3.6: Detailed View of a Crosspoint Fabric

[64] for example implemented such a crosspoint buffered crossbar called CICQ. The
drawback of such implementations is the amount of buffers required. N times M buffers
are required for a crossbar with N inputs and M outputs.
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The most common type of crossbars are input buffered crossbars like Tiny Tera [65]. All
incoming packets are buffered at the input first and transmitted to the corresponding
output only if it is idle. This has the advantage that no speedup is required inside the fabric
and only N buffers are necessary, whereas N is again the number of inports.

Finally all the above mentioned buffering schemes can be mixed forming a hybrid type.
Examples for such crossbars are [66] and [67].

3.2.2 Crossbar Scheduling

The second and third criteria crossbars are classified by is the applied scheduling algorithm
and the packet length.

Figure 3.7: Scheduling and Packet Length Design Space Diagram

As figure 3.7 indicates, the packet length can either be of fixed or variable size. Schedul-
ing on the other hand can either be centralized or distributed.

In centralized arbitration a single unit is responsible for matching all incoming requests
to the appropriate outports. Therefore it is only applicable if the packet size is fixed, so
that arbitration can be done in fixed time slots. Otherwise the centralized arbitration gets
very complicated, as it has to start every time a transmission to any outport is complete,
making it necessary to not only take the source and target of the upcoming transaction
into account, but also the current status of all units. Consequently, centralized arbitration
algorithms are more complex, as not one, but all outports need to be taken into account
[68]. Examples for a centralized algorithms are iLPF [69] or 2DRR [70]
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In distributed arbitration every outport has its own arbiter, all working independently.
Consequently this allows a fixed as well as a variable packet size. Distributed arbitration
allows simpler and therefore faster logic for the individual arbiter. Examples here are
DRRM [71] or iSLIP [72].

A good overview of scheduling algorithms including a complexity comparison is done
in [68]. Another survey of available algorithms is given in [73].

3.3 Topologies

Only a short introduction to topologies is given, as it is not the scope of this thesis to
evaluate the best suited topology for a network. To find a topology that works best for
a network is highly dependent on the workload and use case of the resulting cluster.
Nevertheless, a basic knowledge is required to understand some design decisions that
will be made later. Figure 3.8 gives a coarse overview of available topologies. Basically
two classes of topologies exist, direct or indirect connected networks.

Figure 3.8: Topology Design Space Diagram

In Indirect connected networks central or multi-level switching units are present con-
necting each host. The star or fat-tree topology are examples for that type, illustrated in
figure 3.9 on the next page.

In direct connected networks the switching element is distributed and integrated among
all nodes. Examples are the 2D-torus or a ring as shown in figure 3.10 on the following
page.

For more information about topologies please refer to [63].
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(a) (b)

Figure 3.9: Examples for Indirect Topologies (a) Star, (b) Fat-Tree

(a) (b)

Figure 3.10: Examples for Direct Topologies (a) Ring, (b) 2D-Torus

3.4 Terminology

The following definitions and descriptions of terms are beneficial to fully understand
the analysis of crossbars, as well as the design space exploration and implementation of
EXTOLL crossbar done in the upcoming sections.

3.4.1 Deadlocks

A deadlock is a state in the network where two or more packets form a circular dependency
where each packet waits for the others to release the physical resources. An example for
such a condition is given in figure 3.11 on the next page where packet 1, 2, 3 and 4 all wait
for the availability of the shared resource, which is blocked by other packets respectively
[74]. Without external interference the network itself is not capable of resolving this state.
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Figure 3.11: An Example for a Deadlock Condition

3.4.2 Virtual Channels

The virtual channel (VC) concept has been introduced by Dally et. al. [75] to be able to
avoid deadlocks in interconnection networks. Each packet traversing the same physical
channel is assigned to a specific VC. This assignment can for example be realized using a
tag in the packet header. Each VC is assigned to a separate buffer, so that each channel can
be read independently without having the need to read packets of other VCs first. With this
tag, packets traversing the network on different VCs can share the same physical resources
concurrently without blocking each other, thus using bandwidth that is otherwise unused.
If one VC gets blocked, other VCs still can use the physical resources and therefore make
progress eventually dissolving the blockage. As [76] and [77] depict, it is sufficient to have
two VCs in order to be able to avoid deadlocks, even in tori topologies.

Figure 3.12: An Example for Virtual Channels

En example configuration is given in figure 3.12, where host 1 sends packets using N
VCs to host 2 using only one physical connection.
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3.4.3 Head-of-Line Blocking

head-of-line blocking (HOL) is a phenomenon that can only occur in input buffered
crossbars, which use a FIFO based buffering scheme [78]. Packets are stored in the order
of arrival and also handled in that same order. If the destination outport of the first packet
in the FIFO is blocked, then also this whole inport is blocked as well, as all following
packets, which might be destined for other outports, cannot be transmitted as well due
to the blocked first packet. The VC concept reduces HOL but does not resolve it, as each
added VC, and with it each added buffer, reduces the chance of blocking other packets in
said buffers. Nevertheless, a chance that packets are blocked always remains.

Figure 3.13: An Example for Head-of-Line Blocking

Figure 3.13 shows an example for HOL. Inport 0 is currently transmitting packet P0 to
outport 0. In inport 1 are two packets stored at the same time, the first one is destined for
outport 0 and the second one for outport 1. Outport 0 is currently busy, consequently inport
1 has to wait until it is ready again as the first packet in the FIFO cannot be transmitted.
Thus, the second packet P2 stored in inport 1 could be processed as outport 1 is idle, but is
blocked as it is buffered in the same FIFO.

3.4.4 Virtual Output Queuing

One way to completely resolve HOL is the use of virtual output queuing (VOQ) [79]. In
VOQ the buffering still resides in each inport, but all packets are sorted into multiple
buffers according to their destination port. Whenever an outport is blocked, only packets
destined for that outport are blocked. All other packets can be processed without any
restrictions. Figure 3.14 on the facing page illustrates the same example as in figure 3.13.
However this time the two packets in inport 1 are stored in two separate FIFOs. Thus,
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packet P2 can be transmitted while P1 is waiting for the availability of the resource outport
0.

Figure 3.14: An Example for Virtual Output Queuing

The drawback of VOQ, according to [78], is that it does not scale, as the required buffer
space increases quadratically with the number of ports.

3.4.5 Credit Based Flow Control

Flow control is an important issue in lossless networks. It has to be ensured that no packet
is lost due to a full buffer at any point during the transmission. When using a credit based
flow control all buffers are partitioned into slots of fixed size, each slot equates one credit.
In the same way packets are rationed into flow control units (flits), equal to the slot size,
whereas one flit also equates to one credit.

At power-up, each unit informs its connected unit from which packets are received
about the amount of available credits. Packets can only be sent if a credit is available.
Consequently, whenever a flit is sent to one of the buffers it consumes one such credit and
the internal credit counter is decremented. Once the flit is read from the buffer, the credit
can be freed again and sent back to the originating unit, which then increments its credit
counter again.

This way the sending unit is always up-to-date on how many flits it is allowed to send
before it needs to wait. If the buffer space is chosen wisely, the latency inflicted upon
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sending a credit back to the sender can completely be hidden. For this calculation, the
maximum length of the cable, the propagation delay of the signal in the cable and the time
required to send and receive the credit on chip have to be taken into account.

3.4.6 Wormhole Switching

In wormhole-switching packets are split into multiple flits [63]. All flits of a packet are sent
independently, however only the first flit of each packet contains the routing information.
The path through all switching stages is determined with the first flit and then stored at
each intersection for all following flits, creating a wormhole through the network. This
path is closed with the last part of a packet. Wormhole-switching enables the design of
low latency networks as the routing information can be interpreted as soon as the first flit
arrives. The buffer requirements are relatively small, as each flit is small compared to the
complete packet.

3.4.7 Virtual-Cut-Through Switching

In virtual cut-through switching (VCT) packets are not split into multiple flits, but sent
as a whole. Consequently each packet is a flit. As a result there is no need to store the
routing information along the way through the network. The routing information can
be interpreted as soon as they arrived, thus not the complete packet needs to be received
first in order to be able to start forwarding. VCT can reach comparable latency results as
wormhole-switching, as packets can also be forwarded before they have been received
completely. However, VCT requires more buffer space. The additional required buffer
space is due to the increased flit size.

3.4.8 Adaptive Routing

Packets from one host to another always traverse a standard network using the exact same
path. This keeps all packets in order. However, this can lead to congestions or hot-spots,
paths that are heavily used, in the network.

Adaptive routing routing is a way to reduce these hot-spots. Instead of following a
strict path, packets can be forwarded adaptively along a set of paths depending on the
current load of the network. Using links with a lower utilization reduces the chance
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for congestions or at least avoids that more packets are sent to the already congested
area. Thus, this relaxes the heavily loaded areas of the network, improves the throughput
significantly and can reduce the latency of packets. The broader the view of the network
load is, the better is the adaptive routing decision that can be made.

3.5 Requirements for an Interconnection Network

After describing the most important terms it is important to understand what the require-
ments on a state of the art network and its switch are in today’s HPC.

Low latency — As already discussed in section 1 on page 1, latency is the key to be able
to scale a cluster. Therefore it is required that the network is able to send packets from one
host to another with the minimum possible latency. The lower this latency is, the larger
can the cluster be before the total performance decreases again according to Amdahl’s
Law[3]. In HW latency can be reduced by a combination of increasing the frequency and
reducing the amount of pipeline stages. Ideally both methods are applied. However, the
less pipeline stages are available, the more needs to be calculated within a single clock
cycle, thus lowering the achievable frequency. A good trade-off needs to be found to get
the best performance results.

High throughput — The larger a network of nodes is, the more small messages need
to be passed from one host to another. As a consequence, the network needs to be able
to issue these small messages efficiently. In best case, the design is capable of sending
minimal sized packets back-to-back, so without any gap.

High availability — A high availability is required in order to keep the complete system
operational. It is not desirable to shut down the complete system, if only a single node
inside a large cluster fails. High availability can be achieved by implementing the ability
to dynamically route around defective nodes.

Lossless — A packet that has been injected into the network needs to be received under
all conditions at the target. Thus it is required that it is ensured that no packet is lost
during its traversal of the network. This can be achieved by implementing some sort of
flow control mechanism, ensuring that packet can always be buffered.

Reliability — In addition to the ensured reception of a packet, the packet also needs
to be received correctly. A strong packet error detection and retransmission is therefore
mandatory. The best performance can be achieved if the retransmission is done in HW
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on a link level, instead of a end-to-end retransmission. The link level retransmission
ensures that defects in a packet are recognized as early as possible, immediately sending
the correct version.

In order delivery — The ability to receive packets in the same order as they have been
received enables applications to be less complex and therefore a lot faster. Thus the
network needs to be able to keep the order of packets belonging to a logical stream from
each source-destination tuple. Packets belonging to other tuples may pass each other, only
the sequence within a tuple is of importance.

Congestion management — Keeping the order of all packets requires the use of a
deterministic route through the network. However, this route is then used by all packets,
increasing the chance of a congestion. On the other hand, for some applications it is not
necessary to keep the order of packets. For those applications an even distribution of the
traffic, depending on the current load of the network, allows to reduce the chance for
congestions. Thus it is beneficial if the network supports some sort of adaptivity in the
routing process for applications that do not rely on the correct order.

Support for multicasting — The communication patterns in HPC often require the
transmission of packets to multiple recipients. This communication scheme is called
multicasting. Consequently it is beneficial if the network has an efficient support for
multicasting, as a HW support can significantly reduce the time required to complete a
multicast.

3.6 State of the Art

The following sections describe state of the art interconnection networks and their crossbar
based switches. All these networks are leveraged in the top ten of the current Top 500
[4] list. The most important features are mentioned and at the end, a comparison of all
networks is given.

3.6.1 Cray Gemini

Cray’s most up-to-date interconnect is implemented in their ASIC Gemini [5] [80]. It
features two independent HT links, each connected to one NIC. Thereby two host CPUs
can be connected to a single Gemini chip. These two NICs are then connected to a crossbar
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using eight of the 48 in total available crossbar ports. Four of these ports are always
grouped together forming a physical link to connect outside hosts, however each of the
four ports is arbitrated separately while packets always only use one of these four ports.
The resulting block diagram is illustrated in figure 3.15.

Figure 3.15: Gemini Block Diagram [5]

This results in a total of ten links, each providing an unidirectional bandwidth of
75 GBit/s. These ten links are used to form a 3D-torus with two links in each direction for
the x- and y-dimension and one link per direction for the z-dimension. The crossbar itself,
called the Gemini Router, is composed of 48 identical tiles, each containing all required
logic and buffers for one input- and output port combination including a small eight by
eight switching fabric. These tiles are placed in a fashion that they form a six by eight mesh
on chip. This tile-based approach simplifies the chip development as it forms a regular
structure. The tiles use input- and output buffers as well as row-buffers. Functionality of
each tile is best described using a packet flow example. Arriving packets are first stored in
the input buffer of the incoming tile. The input port determines the row of the tiles the
packet needs to be forwarded when they reach the head of this buffer. Subsequently the
packet is stored in the according row buffer at the input of the fabric. Once the packet
reaches the head of this buffer, the routing decision to which column the packet needs to
be forwarded has to be made, thus enabling the switch fabric to forward the packet to
the according tile. Upon arrival, packets are stored in an output buffer associated to the
originating tile and an arbiter multiplexes these buffers onto the output port. Consequently
there is no centralized arbitration, but distributed arbitration is used.

Packets have a header of 24 byte and can have up 72 byte of payload, resulting in a
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maximum bandwidth efficiency of only 75 percent. An eight byte sized packet results in
an efficiency of 25 percent.

The chip is parted into two clock domains, the crossbar itself runs at 800 MHz, the NIC
operates at 650 MHz. The minimum half round-trip latency that can be achieved is 0.7
µs for a remote put. Each additional hop typically adds 105 ns to the above mentioned
latency.

Switching is done using VCT, consequently all packets are composed of only one flit.
Furthermore packets can be forwarded as soon as the head of the packet is available on
link level. Internally wormhole-switching is used due to small internal buffers. A 16 bit
unique identifier is used to specify the target chip, two additional bits are used to identify
the node connected to this chip. Deterministic routing for in-order delivery of packets as
well as adaptive routing for load balancing of the network is supported. For diagnostics a
source-path routing algorithm can be used, otherwise a hash function reduces the 18 bit
combined identifier and table-based routing is used.

Only two VCs are supported, one is used for requests, the other one for responses.

3.6.2 Tofu

Japan’s K-Computer [2] with its 705 024 cores requires an efficient interconnect to reduce the
jitter inflicted by communication and leverage the massively parallel computing resources.
Therefore it uses a proprietary interconnect called Tofu [81] [82], which stands for TOrus
FUsion, specially developed to fit the needs of such a large system. The interconnect chip
itself is called InterConnect Controller (ICC). In contrast to Gemini it only offers one host
interface, but four independent NICs, called Tofu Network Interface (TNI) as indicated in
figure 3.16 on the facing page. Switching is done using the Tofu Network Router (TNR).
It provides ten links to connect other nodes, each offering 40 GBit/s raw unidirectional
bandwidth. All three units of the ICC operate at 312.5 MHz.

The applied topology is quite unique. Two channels are used to connect four ICCs in a
mesh, these four ICCs are all suited on a single mainboard. Two additional links are used
to connect three of those boards, forming the so called Tofu Unit and the six remaining
links are used to form a 3D-torus topology to connect multiple Tofu Units.

The network offers four VCs, two are used to separate requests and responses, the other
two are used for deadlock avoidance during routing in the 3D-torus topology. To increase
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Figure 3.16: ICC Block Diagram [81]

the effective switching throughput, a VC is not only changed upon the alteration of an axis
inside the 3D-torus, but already one hop prior to the change of direction. This lookahead
allows packets of different targets to overtake blocked packets already in the stage before
the turn, thus reducing HOL.

A three stage delta routing is used in the network, the first stage relies inside the source
Tofu Unit, the second stage refers to the 3D-torus and the final stage again relies inside the
destination Tofu Unit. Two alternative paths are encoded in each packet to balance the
traffic inside the Tofu Units. This fact in combination with the fact that the four independent
TNIs can be used in parallel by one thread leads to the conclusion that the network does
not support in-order delivery of packets.

The crossbar or TNR itself is composed of 15 smaller five by three crossbars aligned in a
five by three matrix. So again, just as in Gemini, a tile based approach has been chosen to
ease the chip design. VCT is used inside each 5x3 crossbar to reduce the hop latency.

A single packet has a 40 byte large header and can have up to 1920 byte of payload,
resulting in maximum bandwidth efficiency of 98 percent. The efficiency for a minimum
sized packet of eight byte however is only 17 percent. The lowest achievable latency for a
direct descriptor message, i.e. a Programmed Input/Output (PIO) transfer is 0.91 µs.
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3.6.3 TianHE-1A Interconnect

TianHE-1A is China’s first supercomputer that was listed at position one of the Top500 list
in November 2010 [83]. Its interconnect [84] [85] uses a different approach as the first two
mentioned interconnects. In contrast to the others, it is composed of two chips, a NIC
chip and a Network Routing Chip (NRC). Consequently instead of using direct connections
between hosts a central switch is utilized. The topology is a hybrid fat-tree consisting of
two layers. The first layer connects each node within a rack, the second layer connects all
racks using a series of 11 384 port switches. The switches again are composed of a number
of NRCs. The NRC itself is a 16 by 16 tile-based crossbar with 16 tiles, each implementing
a four by four crossbar. Each of NRCs 16 ports offers a unidirectional bandwidth of
80 GBit/s and the internal operation frequency is 312.25 MHz. Inside the NRC wormhole
switching is used to reduce the communication latency.

To avoid deadlocks, again four VCs are offered. The routing algorithm used is source-
path routing. Thus, the required routing string is added to each packet by the NIC chip
and only deterministic routing is available.

The maximum packet size is 128 byte of payload plus 32 byte for the packet header,
therefore resulting in a minimum bandwidth efficiency of 20 percent and a maximum
bandwidth efficiency of 80 percent. Using immediate RDMA writes, the TianHE-1A
Interconnect achieves a latency of 1.57 µs.

3.6.4 Blue Gene/Q

Blue Gene/Q [86] is the third generation of IBM’s Blue Gene supercomputer family. It
combines not only the NIC and the crossbar on a single chip, but also integrates the
CPU and its cache memory. Having everything on a single chip provides the possibility
to achieve lowest latencies for communication between two nodes. The network part
supports 11 links, ten are used to build a 5D-torus topology, whereas the 11th link is only
used as an I/O interconnect. Each link offers 16 GBit/s unidirectional bandwidth.

Packets have a 32 byte header already including the command of the NIC, with a size
of 20 byte and an eight byte trailer including the packet CRC. The MTU is 512 byte, thus
resulting in a minimum bandwidth efficiency of 50 percent and a maximum efficiency of
96 percent, taking the command into account into both calculations.

The crossbar suited in the network part of the chip is composed of receivers and senders

80



3.6 State of the Art

for the 11 links and additional FIFOs to send and receive packets to the local NIC. Each
receiver has an exclusive FIFO to send data to the NIC. Multiple FIFOs also exist in the
opposite directions, i.e. from the host. However these FIFOs are not exclusive for one
sender, thus each FIFO can send data to every link. The block diagram is shown in
figure 3.17, the internal connectivity however is not shown for clarity reasons.

Figure 3.17: BlueGene/Q Network Device Block Diagram [86]

A total of five VCs exist to avoid deadlocks and ensure quality-of-service. HOL is
avoided through VOQ, hence packets destined for different links do not block each other.
VCT is used to reduce the packet latency, a packet is forwarded as soon as the routing
information has been received. Routing supports both deterministic and adaptive paths
and is table-based with coordinates as look-up address in the table.

Table 3.1 on page 83 summarizes the most important features of the presented intercon-
nects. It can be seen that all crossbars share some features. Currently the most powerful
systems have direct connect networks, but switch based networks are also present in the
11/2010 Top500 list [83], starting at position four.

The last column of the table gives a preview of EXTOLL’s features, a more detailed
description of this interconnect is given in the following sections. Notable is that all
interconnects are realized using ASIC technology, whereas EXTOLL currently uses FPGA
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technology. Nevertheless EXTOLL reaches competitive performance results, as it is shown
in section 4.6.5 on page 166. Most interesting are the efficiency numbers, as these numbers
cannot be improved by implementing the design with newer technology. These numbers
can only be improved by changing the design and the packet specification. EXTOLL offers
the best efficiency when it comes to a typical payload size of a single cache line, which is
64 byte in size.

3.7 State of EXTOLL R1 Crossbar

The EXTOLL Revision 1 (R1) crossbar has been developed over various stages in [87], [88],
[89] and [90].

Multiple research projects at the University of Valencia in Spain, for example Memscale
[91], use this design successfully. The testbed in Heidelberg and Valencia is a Hyper-
Transport expansion slot (HTX) based Virtex-4 [92] board, designed and manufactured
at the CAG. The cluster in Valencia currently uses 64 nodes, each featuring one of said
boards. An overview over the complete EXTOLL project and its realization on the above
mentioned FPGA testbed is given in [93].

Figure 3.18: The HTX Testbed in the 4th Revision

The EXTOLL crossbar uses input buffering to avoid the necessity of an internal speedup,
making it scalable and implementable on FPGA technology. In addition, it uses wormhole
switching to reduce the route-through latency of packets and minimize the buffer require-
ments. As already mentioned, wormhole switching crossbars are prone to deadlocks. To
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Interconnect Gemini Tofu TianHE-1A Blue Gene/Q EXTOLL R2

Technology ASIC ASIC ASIC Full Custom FPGA

# Lanes
12 8 8 4 4

(per link)

raw Bandwidth
6.25 6.25 10 4 4

[GBit/s, per lane]

total Bandwidth
75 50 80 16 16

[GBit/s]

Ports
10 12 1 11 6

(per node)

Latency
0.7 0.91 1.57 0.72 0.99

[µs]

Routing
Table- Source- Source- Source- Table-
Based Path Path Path Based

Switching VCT VCT Wormhole VCT VCT

Type
direct direct switch direct direct

connect connect based connect connect

Topology
3D- 6D- hybrid 5D-

arbitrary
Torus Torus Fat-Tree Torus

Header Size
24 40 32 40 16

[byte]

Max. Payload
72 1920 128 512 256

[byte]

Max. Efficiency
75 98 80 96 94

[%]

Min. Efficiency
25 17 20 50 33

[%]

64 B Efficiency
72 62 76 76 80

[%]

Table 3.1: Overview Over Different Interconnect Families
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resolve the possibility of deadlocks, the EXTOLL crossbar implements the VC concept
using the minimum of two channels to enable deadlock free routings [76] [77].

A problem which can occur in input buffered crossbars is HOL. As [94] states from the
experiences of the EXTOLL predecessor ATOmic Low Latency (ATOLL):

The network layer of ATOLL offers high performance, but as the experiments
with SWORDFISH [95] have shown the lack of any provisioning against head-
of-line blocking in the network layer is a problem when scaling to larger
networks.

EXTOLL therefore uses VOQ on switch level, which completely solves the HOL problem
by sorting all packets with different destinations into different queues [79], making it
possible to not only read packets of independent VCs concurrently, but also packets for
the same VC but for different outports as destination in that node.

As an additional feature, the EXTOLL crossbar offers four different traffic class (TC) to
provide a quality-of-service mechanism. The sending SW threads decide on which TC
a packet shall traverse the network. This can be used to separate request packets from
response packets or send storage or management packets on their own TC. Changing the
TC during the transmission in the network is not possible. Further discussing this feature
is out of the scope of this work, as the allocation of TCs is solely a SW matter.

The four TC together with the VC form the flow control channel (FCC), which are used
to separate independent packet streams inside the network.

For a low latency communication it is desired to avoid the necessity of reordering
packets at the receiver side. Reordering requires at least a second memory copy from the
reorder area of the main memory to the user space memory region. Therefore the crossbar
needs to maintain a logical order of all packet from one transmitter to a specific receiver.
Packets from other transmitters or to different receivers do not need to be in any order
in respect to other data streams. The EXTOLL crossbar enforces the order of packets by
design due to the used VOQ mechanism, where packets are stored in a first-in, first-out
manner.
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3.7.1 Packet Format

Each packet is generated at the network layer, i.e. the FUs of EXTOLL and is not restricted
regarding its size, as the units themselves are not aware of the MTU of the network. Since
EXTOLL uses wormhole based switching, packets are split into multiple flits with a size
restriction. This splitting is desired to reduce the buffer requirements, be able to ensure
that buffer space is available and to ensure a strong and reliable error detection. The
MTU is 32 physical units (phits) or 128 byte and each flit additionally has a start- and
an end-control character as well as a CRC. A phit is a single word transmitted over the
link and consists of 32 bit of data and four control bit, one for each byte within the 32 bit
data word. These four control bit are used to determine whether the byte is a control or
payload word. The total size of a flit therefore is 128 byte payload plus 12 byte for control
characters. The maximum size of 32 phits has been chosen to be able to implement a
simple and robust buffering scheme and still be able to fit a complete cache line of today’s
most commonly used CPUs into a single flit.

A greedy approach is used for packet fragmentation if a packet exceeds the MTU of one
flit, which leads to the fact that each flit of a packet has the maximum length, except the
last one. Figure 3.19 shows an example EXTOLL packet including its fragmentation. In
this example only two flits are used to transmit the whole packet. However, the number
of flits can vary.

Figure 3.19: EXTOLL Crossbar R1 Packet Format

The start- and end-characters are special k-characters from the 8B/10B coding space
[96] of the link layer, which have been selected to ensure the largest possible Hamming
distance in order to have the highest possible link reliability [97].

As it can be seen in figure 3.19, each packet consists of three frames — Routing-, Command-
and Data frame, whereas the data frame is optional and does not necessarily need to be
appended. The routing frame is used to determine the way through the network. It is
appended at the source, consequently the whole route is predetermined. The command
frame holds the information on how to process the appended data and is specific for every
FU. The packet closes with the data frame which includes the actual payload of the packet.
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Frames are separated using again control characters from the 8B/10B coding space. The
command frame always starts with the start of command (SOC) character and is also not
limited in size. The same applies to the data frame, which starts with a start of data (SOD)
character. As the routing frame is always required and is the first part of a packet, it has
no additional control character.

For the EXTOLL crossbar itself, only the routing frame is of importance, the rest of the
packet is treated as payload inside the crossbar.

3.7.2 Routing

Every routing phit contains two routing words which are again divided into four fields, as
it is depicted in figure 3.20. The first field defines the direction, i.e. the crossbar outport, in
which the packet shall be transmitted. The second field defines the TC the packet belongs
to.

Figure 3.20: EXTOLL Crossbar Routing Phit

The last two fields define how many hops the packet shall take in that same direction,
i.e. use the same outport at following stages, one field for VC0 and one field for VC1. VC0
is always used first in case both counters are unequal to zero. Consequently a new routing
word is required if a packet has to start at VC1 and switches down to VC0, even if the
destination remains the same. Moreover, each change of direction requires another word
as the destination field then has a different value.

Every time a packet passes a crossbar stage in the network, one of the two counters is
decremented and if both counters are zero the whole word is set to zero including the
TC and destination field. The phit will be removed from the flit once both routing words
inside that phit are zero. As a result the routing frame has been completely consumed
when the packet arrives at its destination. The routing frame in EXTOLL is limited to the
size of one flit minus one phit, thus 31. This is due to the fact that the crossbar design
does not support the extraction of whole flits from a packet if there is no more usable data
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inside. Thus at least a single phit of other data needs to remain in the first flit. However as
a single flit is up to 32 phits long this is sufficient to send packets through a network with
a maximum hop count of 1952 with a single VC change.

3.7.3 Architecture

The architecture of the crossbar can be divided into two main modules — inport and
outport. These two modules can be used to form an N by M crossbar, whereas N is the
number of inports and M the number of outports as it can be seen in figure 3.21.

Figure 3.21: EXTOLL Crossbar Top Block Diagram

As already mentioned, VOQ is used as buffering scheme. Therefore packets are not only
divided into the target outports but also for the target FCC on this outport. This results
in number of outports times number of FCCs queues per inport. To address the issue
of scalability, which arises with having multiple buffers in each inport, all packets of an
inport are stored in a single shared buffer and only the meta-data information are stored
in separate buffers. These meta-data buffers are significantly smaller than the actual data
buffer, therefore improving the scalability of the design. Meta-data is organized using a
FIFO structure for each destination-FCC tuple. Since only one packet can arrive at a time,
it is not required to be able to store a packet for every possible destination at the same
cycle. Thus, a single RAM is sufficient to store all meta-data, further improving scalability.
The Multi-Queue-FIFO, described in section 2.2.1 on page 14, is leveraged for that purpose.

A credit based flow control is used to avoid buffer overflows and therefore ensure a
reliable transmission of flits. A request-grant-acknowledge scheme is used to arbitrate the
physical crossbar fabric, where each inport requests the medium for all FCCs and outports
it has flits stored for. The arbitration is done in a distributed manner, so each outport has
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an own arbiter to grant its resources. A round-robin arbitration is used to avoid starvation
of packets and to equally divide the resource among all sending inports. Grants are only
given if a credit for the requested FCC is available and the current requesting inport has
started this packet or there is no other packet pending for this FCC from another inport.
This is necessary to ensure packet integrity, as packets can only be distinguished by the
FCC they traverse through the network. Otherwise there is no way of separating two
packets again once packets of the same FCC, but from different inports intersect each
other.

This arbitration scheme has similarities with iSlip [72], but is not exactly the same as
it is even simpler. The here used arbitration updates the priority in the grant generation
logic every time a grant is given, whereas iSlip only updates the priority when the given
grant is accepted.

Crossbar Inport

The most complex logic of the whole crossbar lies within the inport. It includes multiple
modules to handle all functionality. The first function is routing interpretation, second
is buffering all incoming data and finally the third is to request destination outports and
forward packets accordingly.

Figure 3.22: EXTOLL Crossbar R1 Inport Block Diagram

Figure 3.22 depicts the block diagram of an inport. The Routing Interpreter handles all
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routing related tasks. A destination port is calculated whenever the first flit of a packet
arrives at the crossbar and the destination is stored in a small buffer for all following flits
of said packet.

All payload related storage including command- and data frame is handled in the Flit
Store. As already mentioned, the crossbar uses a shared buffer for all incoming flits, as it
is also used in the ComCoBB chip introduced in [79]. The buffer is divided into slots of
fixed size, in a way that a maximum sized flit without start- and end characters fits into
a single slot. This ensures that flits are always stored en bloc, which results in a simple
buffer management, as it does not require handling fragmented flits. The CRC value is
never stored, since it is invalid after the modification of the routing frame anyway and
will be recalculated in the Link Port [98] before leaving the chip. Start- and end characters
are stored in a separate buffer using an efficient coding, so that not the complete 64 bit
of both characters combined need to be stored. Since both characters have static values
it is sufficient to only store which kind of character occurred. The length of every flit
is counted during the storage operation, in order to be able to overlap arbitration and
transmission of flits, which is desired to be able to hide the arbitration latency.

In contrast to [79], the buffer slots are not managed using linked lists, but a Multi-
Queue-FIFO stores the slot in which each flit has been written to, in order to be able to
read them once a grant has been given by the targeted outport. The order of packets is
maintained through the nature of the FIFO. The inverted empty signals can directly be
used to generate the according requests.

Last, the Request Unit is responsible for generating all requests and selecting one of
the received grants. Requests will be made to all outports and for all FCCs. One of the
received grants is selected in case more than one has been received. Again a round-robin
scheme is applied. Round-robin arbitration ensures fairness under all condition, equally
distributing the available bandwidth over all outports and FCCs. The chosen outport is
informed of its selection and the transmission is initiated. A credit is sent to the connected
unit every time a flit has been sent completely.

Crossbar Outport

The outport itself is a fairly simple. Figure 3.23 on the following page depicts the block
diagram of that unit. Only three modules are required to handle all outport functionality.

Din Mux is connected to all inports, multiplexes the selected inport data stream and sets
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Figure 3.23: EXTOLL Crossbar Outport Block Diagram

the data output accordingly. Essentially, this unit with its multiplexing structures forms the
actual fabric of the crossbar. The Credit Administration keeps track of all available credits
and informs the Port Arbiter which of the FCCs are eligible to send flits. The Port Arbiter as
the last unit uses a round-robin arbitration scheme to grant one of the incoming requests
according to the information provided by the Credit Administration. The arbitration cycle
is repeated, if no grant has been received for a certain period of time from the currently
granted inport.

3.7.4 Performance

The Performance numbers of the crossbar have been extracted from simulation and are
based on the Virtex-4 design, used in the testbed shown in figure 3.18 on page 82. The
complete design runs at 156.25 MHz. The interface width is 32 bit and therefore has a
peak bandwidth of 540 MB/s per direction and port. The complete design is a full duplex
nine by nine crossbar and thus has an aggregated peak bandwidth of 11.52 GB/s.

The crossbar is capable of sending more than 15 million messages per second for very
small messages as shown in figure 3.24 on the facing page.

The bandwidth efficiency almost grows linear with the length of flits and has its peak
at around 84 % as illustrated in figure 3.26 on page 92 or 540 MB/s per port as depicted
in figure 3.25 on the facing page. Please note that these values are without any routing
information or SOC, SOD characters and this is therefore the theoretical peak performance
of the crossbar itself. A minimum sized network packet has 16 bytes of payload including
routing, CRC and control characters which results in a message rate of 15.6 million
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Figure 3.24: EXTOLL R1 Crossbar Message Rate

messages per second and a peak bandwidth of around 250 MB/s. Measured values may
vary as the performance is also affected by surrounding units, like the host interface or the
FU and is not necessarily limited by the crossbar.
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Figure 3.25: EXTOLL R1 Crossbar Bandwidth

Figure 3.27 on the next page shows the route-through latency in a quite network. Shown
is a timing diagram, retrieved from simulation that indicates the pipeline stages that
have to be passed from reception of a packet until the packet reached the output of the
targeted outport. The difference is 13 clock cycles which results in 83.2 ns at 156.25 MHz.
Route-through latency can of course be higher if other flits are stored in the inport buffer.

Cost

The cost of the design can best be measured in the used resources on the FPGA of the
testbed platform shown in figure 3.18 on page 82. In this case it is a Xilinx Virtex-4 FX100
[99] device. Table 3.2 on the next page shows the resources utilization. The consumed
resources correspond to around 35 percent of all available logic on the device.
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Figure 3.26: EXTOLL R1 Crossbar Bandwidth Efficiency

Figure 3.27: EXTOLL Crossbar R1 Route-Through Latency

For a comparison with the results of the upcoming redesign, a run on a Xilinx Virtex-6
LX240T [100] device has been made, which is the target testbed for the Revision 2 (R2)
implementation. The results are also shown in table 3.2. The LUT usage has dropped
around 40 percent, which can be explained by the new technology of the FPGA. Virtex-4
devices use LUTs with four input values, whereas Virtex-6 devices use LUTs with six
input values. Thus more complex logical equations can be mapped into a single LUT. In
addition, the RAM usage has dropped by almost exactly 50 percent. This is also due to
the new FPGA technology. The RAM block size has been increased by 50 percent in the
new FPGA family. The decrease in the register count can be explained by less register

LUTs Registers RAMs

Virtex-4 25287 9312 63
Virtex-6 15639 9087 32

Table 3.2: EXTOLL Crossbar R1 Synthesis Result
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duplication, which is a technique to improve timing on critical paths. It reduces the load
on a single register by duplicating it.

3.8 Implementation of R2 Crossbar

Based on the experiences gained in earlier developments in [87], [88], [89] and [90], a
completely new crossbar architecture has been developed. This development has then
successfully been tested and in an FPGA implementation and an ASIC implementation is
currently under development at the EXTOLL GmbH [101].

A thorough evaluation of all features and bottlenecks of the previous design has been
made to improve its performance. The main criteria for this evaluation are the desire to
achieve a higher bandwidth efficiency, a hundred percent throughput and maintain its
good route-through latency.

3.8.1 Routing

As already mentioned, the R1 crossbar uses a source-path routing algorithm. The routing
capabilities are limited due to the required on-chip look-up table for the complete path
which supported only up to four phits per entry and only 64 entries in total. The amount
of entries as well as each entry size is not enough to support a large scale cluster. With
each routing phit a packet is capable of traversing 64 nodes in one direction, taking into
account that a single VC switch is possible. Thus, with four phits a maximum of 192 hops
with a total of up to three changes in direction are possible, since the last phit is required
to send the packet to its destination FU.

Table 3.3 on the next page illustrates the amount of RAM required in each FU, in order
to increase the number of supported target nodes as well as the routing capabilities by
increasing the length of each routing string.

Having a routing table of two MB in each FU is not possible, neither in a FPGA nor in an
ASIC implementation. A solution is to use a caching algorithm to only store a small part of
the table on chip. However, this adds a source for non-uniform latency of packets, requires
additional main memory read logic in each FU and thus adds a lot of complexity to the
design. In addition, prepending every packet with 256 bit of routing even if not completely
necessary, due to a very short path, adds additional latency and reduces the efficiency
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Number of nodes 128-bit entries 256-bit entries
[kB] [kB]

1024 16 32
2048 32 64
4096 64 128
8192 128 256
64 k 1024 2048

Table 3.3: EXTOLL R1 Source-Path Routing Table Size

as the overhead increases. This seems counter-productive since one of the design goals
is to reduce latency as much as possible. The more hops are necessary, i.e. the larger the
network, less bandwidth is available for the actual data transmission.

Another problem with the current source-path algorithm is that it only supports grids
and tori efficiently and that it does not support arbitrary routings in case of malfunctioning
links between two nodes, as the path is already determined at the source. Currently there
is no support for exchanging the routing string in a packet. Thus, remote management
is difficult, as it cannot be guaranteed that a response will be received. A solution to
the problem with defective links in source-path routed networks is given in [90]. The
resource requirements however cannot be underestimated. Due to all the above mentioned
drawbacks, it has been decided to rethink the choice of routing algorithm with the goal
to achieve a simple and efficient routing algorithm which supports a high node count, a
low and deterministic latency and support for arbitrary topologies. Figure 3.28 shows all
options that are available for routing.

Figure 3.28: EXTOLL R2 Routing Design Space Diagram

Delta Routing

A node identifier (ID) can be seen as a tuple stating the position of the node in a three
dimensional grid; X, Y, and Z. The router knows its own position in the grid and the
outgoing target port can be computed from this information.
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The advantages of this algorithm are that it requires no memory resources on chip
and the target can be computed in a single clock cycle. Thus, it is as a low latency and
deterministic algorithm. The main drawback however is that it only supports grids and
tori, non k-ary n-cube topologies cannot be supported using delta routing. In addition, it
is not possible to route around defective parts of a network.

Source-Path Routing

In source-path routing the path to the destination is pre-calculated at the source. It has
already been introduced in section 3.7.3 on page 87. The problems that occur when using
this routing scheme have been laid out. As a consequence this option renders no option.

Table-Based Routing

Table-based routing has been introduced by Kermani et. al. [102]. In table-based routing
every node is assigned an unique identifier and the target of packets is determined by
these IDs. Upon reception of a packet this identifier is used as lookup address inside
a table, which holds all target information. One of the advantages is that the overhead
inside each packet is reduced to a minimum, as only the target ID is required. The same
applies when using delta routing. In contrast to delta routing however, table-based routing
supports arbitrary routing algorithms. It has not to be decided on implementation which
algorithm to use, but it can be chosen on initialization of the network, making table-based
routing also interesting to do hands-on research on routing algorithms in a network. There
are also no restrictions whatsoever regarding the topology of the network or regarding its
diameter. The only restriction that applies to table-based routing is given by the size of
the used ID. The width of this field determines how many nodes can be addressed in the
whole network.

The possibility to reroute packets in case of defective links or nodes is easily possible,
as the route is not predetermined and the method allows arbitrary routes. However, SW
has to take care that no deadlocks can occur due to modified routes. Adding support for
adaptive routing, which allows packets to decide from hop to hop which path to take is
also possible in a simple matter. Only the information which of the outports are valid
destinations for the adaptive paths have to be added to the routing tables. Adaptive
routing allows packets to travel along less busy paths and therefore reduces the possibility
of congestions.
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The drawback of table-based routing is the need to have a large table in each inport of
the crossbar, in order to be able to make a routing decision, which has a number of entries
equal to the number of supported nodes.

The minimum requirements for each entry is, that at least a destination port as well as
the target VC is present to enable the management SW to calculate deadlock free paths.
Therefore the minimum size requirements for a single table entry of an EXTOLL design
with six links and a number of network ports is therefore four bit to encode the destination
port and two bit to encode the VC. Table 3.4 shows the size of the required table in each
inport and the resulting accumulated size of all tables for a ten by ten crossbar design.

Number of nodes 4+2 Bit Entry Accumulated Table Size
[kB] [kB]

1024 0,75 7,5
2048 1,5 15
4096 3 30
8192 6 60
64k 192 1920

Table 3.4: Minimum Size Requirements for Table-Based Routing

As it can be seen, even with a direct-mapped table, where every destination node
has a single entry, the accumulated RAM requirements are lower than the ones from
the previously used source-path routing in a single FU. For example, a single Virtex-6
block-RAM can support the routing table for a network with 4096 nodes as the size of
such a RAM is 4.5 kB. This approach eliminates routing caching and reduces the routing
interpreter to a local table look-up with the destination ID as read address to the RAM.

To support a larger amount of nodes or reduce the RAM requirements for a certain
number of nodes, a hierarchical approach for the routing is also possible, as it is also done
for example in Cray’s Gemini interconnect [5]. Therefore the network is partitioned into
several segments and the IDs are separated into a local and a global part, as it is depicted
in figure 3.29 on the next page. There is no drawback due to higher frequented links if
using this partitioned approach, as each inport has its own routing table and can thus
choose different paths to reach another partition.

The routing interpreter then uses two tables, one for the segments, i.e. the global routing,
and one for routing inside a segment, i.e. local routing. A check whether the target node of
a packet lies within the same partition as the own ID or not is performed while accessing
both RAMs. If the global part matches, then the routing entry of the local routing table
is used, otherwise the routing entry of the global table is used. The advantage of this

96



3.8 Implementation of R2 Crossbar

Figure 3.29: Network Partitioning

approach is, that the size of both hierarchical tables combined is smaller than a single
direct-mapped table to support the same amount of nodes.

Supporting again 64k nodes and using for example a partition of four bit for the global
and 12 bit for the local table, i.e. having 16 segments each hosting 4096 nodes reduces the
required RAM space to 16 × 6 + 4096 × 6 = 3084 byte for a single crossbar port and 3084
byte×10 = 30 kB for the whole crossbar with again ten outports. Comparing this value to
the requirements for a direct-mapped table, the hierarchical approach reduces the RAM
usage by an order of magnitude without adding latency or reducing the functionality
significantly. Using other apportionments can further reduce these requirements.

To further reduce the required RAM resources it is possible to share tables among
multiple inports. However, this makes arbitration for the read accesses necessary and
thus results in additional and indeterministic latencies for each access. The advantages
of table-based routing outweigh its drawbacks by far. Hence, the new design leverages
table-based routing with a hierarchy of two.

As figure 3.33 on page 101 depicts a 16 bit wide field has been chosen for the target
node, hence supporting 64k nodes in the network. For the FPGA implementation a width
of six bit for the global node ID, thus supporting up to 64 segments and a width of ten bit
for the local node ID, supporting up to 1024 nodes inside a single segment, have been
chosen. These values are however arbitrary and can easily be changed. Investigating a
better local-global tuple is part of the routing algorithm SW and therefore out of the scope
of this work.

Once a packet arrives at a crossbar inport, the routing interpreter compares the incoming
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target node ID with the ID of the local node. If the global part does not match its own
ID then the global table entry is used for the routing decision. If the global part is the
same but the local part does not match, then the local table entry is used. The packet is
directly forwarded to a FU if both parts are the same. Then the packet has reached its
target destination. Partitioning of the network can be chosen freely, nodes do not need
to be next to each other to be part of the same segment. Only the node IDs need to be
arranged properly by the management SW.

As already mentioned, also an adaptive routing support is desired and thus added to the
R2 design. Therefore, according to Duato et. al., a third VC is required to ensure deadlock
freeness [103]. A bit-mask in each routing entry depicts to which outports packets can
be forwarded to at each crossbar stage. The almost full signals of the VOQs are used to
detect the ports with the least traffic. If a certain amount of packets are already stored in
one of the queues, then this outport is not selected on this hop, thus using less populated
connections. If multiple ports are eligible, then a round-robin arbitration is used to select
one of them, equally distributing the traffic among all possible links. A fall-back to a
deterministic route is used in case none of the selectable ports seems feasible. Packets
using adaptive routing can arrive out of order at the recipient, since they have paths of
unequal length and latencies. In this case receiving SW has to take care of reordering
packets if necessary.

The crossbar ports of the complete design are split into two logical parts, where the
lower port IDs are used to connect FUs on chip and the upper ones are used to connect
the physical links to external hosts. However, the ports itself are all the same, only the
addressing scheme is different. This partition avoids that packets sent from one FU can
be received by a different unit type. The network ports are only reachable if the target
node ID matches the ID of the current node. Using this addressing scheme removes the
possibility to loop traffic back to the same host using the external links. On the other hand,
this is only useful for benchmarking or debugging of the complete design, a productive
system rather sends packets directly from one CPU to another without involving the NIC.

Figure 3.30: EXTOLL R2 Routing Table Entry

The crossbar supports four TC as already mentioned in section 3.7 on page 82. Each
of the TC shall be able to use different paths in the network, to balance the network
load. Therefore each table entry offers separate fields for each TC. To keep the RAM
requirements within a limit, only two of the four TC however support adaptive and
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deterministic routing, as the adaptive part of an entry is considerably larger than the
deterministic part. These two TCs can i.e. be used for storage traffic or any other kind of
traffic where ordering requirements are not strictly necessary.

This results in a 32 bit wide routing table entry which is used both for the local- and the
global table as depicted in figure 3.30 on the facing page.

Only TC0 and TC1 support adaptive routing. Therefore the lowest part of the according
entries offer the bit mask used to choose the allowed outports, where only link ports are
selectable, as it needs to be impossible to forward packets to FUs adaptively. The two bits
of the VC field are used to determine the outgoing VC in case of deterministic routing
and the three bit wide Det. Port field is used to determine the outgoing link port in case of
deterministic routing. The number of network ports is added to the value written inside
this field to calculate the actual crossbar port ID. The entries for TC2 and TC3 are identical
to the deterministic part of TC0 and TC1. FUs are targeted solely by the target unit field
which is suited in the start cell of each packet.

A RAM with a size of 4.25 kB is required in each crossbar inport using the above
described routing entry with a six–ten split of the target unit ID for the global- and local
table. The resulting RAM requirements for a complete ten by ten crossbar is therefore
42.5 kB.

3.8.2 Ordering of Packets

A problem that arose during the testing of EXTOLL R1 was the possible mixture of packets.
This occurred if two independent packet streams of the same TC arrived at an inport on
separate VCs and one of them changed its VC due to the applied routing algorithm.

Figure 3.31: EXTOLL R1 Routing Problem (1)
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Figure 3.31 on the previous page shows a section of a network with six nodes. In this
example the applied routing algorithm is a simple dimension-order routing, meaning that
first packets traverse along the x-axis, followed by the y-axis. Source 0 (green) and source 1
(blue) are both sending packets to the same destination (red). When changing directions
on the top right node both packets are forced to VC 0 due to the routing algorithm.

Figure 3.32 illustrates the internals of the receiving inport of the top right node where
1 and 2 are flits from source 0 and A and B are flits from source 1. Both streams will be
merged in the same queue of the inport, if both streams concurrently send flits, as it will
be the case due to the used round robin arbitration. This results in corrupted packets, as
they cannot be kept apart anymore.

Figure 3.32: EXTOLL R1 Routing Problem (2)

There are three possible solutions to resolve this issue. First, all packets going from
one inport to the same outport except the currently transmitting one can be blocked.
This however increases latency for all other packets, even if they are not related to the
excepted one. All packets have to wait until the current prioritized packet has been
transmitted completely and this of course can result in deadlocks, as it is required to be
able to send packets of different VCs independently. Blocking these packets therefore
makes the concept of VCs obsolete. As a result, the network will no longer be deadlock
free, which is of course not an option.

The second possibility is to add a second arbitration level, which arbitrates first an
available VC and then with the second phase the actual physical medium. This however
increases the route-through latency for packets which is not desired.

The third option is to move from wormhole-switching to VCT, which by design avoids
the merging of packets, as each packet is only one flit long. VCT has a higher buffer
requirement as packets now traverse the network as a whole. On the other hand, with the
advancing technology, buffer space becomes more and more affordable for both FPGA, as
well as ASIC technology. By removing the necessity of flit handling, the crossbar internals
are actually less complex, increasing the potential for a better performance.
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3.8.3 Packet Format

The packet format itself has not been part of this work, but has been developed in [104].
Nevertheless, a short introduction is given, as the new crossbar leverages from the new
format.

Due to various changes, for example in the switching and routing method, the need
for a new packet format arose. This new format is shown in figure 3.33. Packet are now
defined in cells instead of phits, making the specification independent from the actual
data bus width. These cells are the smallest unit in the specification, a single cell is a
64 bit word. The data bus width is therefore changeable in a multiple of cells, called lanes.
Actual data bus width can be calculated when multiplying lanes times cell width. Each
packet consequently begins with a start cell and ends with an end cell.

Figure 3.33: EXTOLL R2 Packet Format

Packets are now no longer split into multiple flits due to the applied VCT. Start- and
end cells are therefore reduced to start of packet (SOP), end of packet (EOP) and end of
erroneous packet (EOP_E) respectively. There no longer exists a routing frame inside each
packet, since routing is now table based as explained in section 3.8.1 on page 93. A target
node ID, included in the start cell, is the only required routing information, thus increasing
the bandwidth efficiency.

SOC and SOD characters have also been removed, as the target FU is also encoded
inside the start cell and each unit knows its command length. The concepts of TC and VC
have been maintained as it proved to be beneficial. A description of the different fields
inside the start cell is given in table 3.5 on the next page.

The packet CRC has been moved into the end cell. Thus a packet now consists of a single
start cell, an arbitrary number of cells and an end cell. For the FPGA implementation a cell
count of 32 has been chosen, as this has been the previous flit length. These modifications
of the link level protocol increase the bandwidth efficiency for the FPGA implementation
from 14.3 to 33.3 percent using minimum payload packets and in the best case (maximum
payload) from 85.7 to 94.1 percent.
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Field Width Description

CRC 16 A CRC-16 Checksum used to protect the SOP-Cell
VPID 10 VPID of target thread

NodeID 16 NodeID of target node
TU 3 ID of target functional unit on target node
TC 2 Traffic Class packet belongs to
VC 2 Current Virtual Channel ID
MC 1 Indicator that packet is part of a multicast
SOP 12 Indicator that this cell is a Start of Packet

Table 3.5: EXTOLL R2 SOP Field Definitions

3.8.4 Multicast

As Nüssle [94] states from the experiences of the EXTOLL predecessor ATOLL:

ATOLL suffers from a lack of support of multicast and barrier operation.

The design space and implementation for barriers and fast synchronization support is
discussed in [98].

Multicasts are packets that are injected into the network only once, but can have multiple
recipients. All recipients can be grouped together and multicasts are distinguished by
applying a multicast group ID. A logical tree is spanned over the network connecting all
multicast members. This is always done by SW due to its complexity and the fact that this
is only necessary once during initialization and therefore not timing critical.

In general every network is capable to support multicasts using a modified driver
that replicates packets and exchanges the target node ID accordingly. The same effect
can be achieved by sending the packet multiple times directly from the user application.
Obviously this is not very efficient, since all packets are replicated at the earliest possible
stage. Thus, each replication has to pass through the host interface, the whole NIC and
the complete network to its destination.

More efficiency can be achieved when replicating the packet as late as possible, at a
point in the network where they do not share the same path to their target anymore, thus
following a logically spanned tree. This however can only be achieved with HW support.
An example of a SW based and a HW based multicast is given in figure 3.34 on the facing
page.
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(a) (b)

Figure 3.34: Multicast Example Using a SW- (a) and Using a HW Approach (b)

The figure depicts a network with nine nodes. In this example node 0 (green) wants
to send a multicast packet to the nodes 1, 2, 4, and 8. Numbers on the links between the
nodes depict the number of packets that need to traverse this link for this multicast. The
accumulated number of link traversals for the SW approach is nine, the required amount
for the HW approach however is only four, when spanning an ideal tree. Consequently
the load in the network can be reduced and is now less than 50 % when using a HW
supported multicast instead of the SW solution. The red nodes in figure 3.34 replicate and
forwarded the packet multiple times. Reducing the network load also has a positive effect
on the latency of packets and reduces the possibility of congestions. Hence it is desirable
to also have this feature in the next revision of EXTOLL.

In general, multiple ways to support multicasts in HW are possible as illustrated in the
design space diagram in figure 3.35.

Figure 3.35: Multicast Design Space Analysis
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Multiple aspects have to be considered when designing multicast capabilities. The first
is where to add these capabilities. Adding them to the FU that injects packets or to the NP,
which is the conjunction between NIC and network, is not a good solution. The replication
takes place right at the beginning of the network path and therefore requires the maximum
amount of buffer space and link traversals in the network. Nevertheless, this solution is
still faster than a pure SW approach, as the message is replicated in the NIC instead of the
host CPU.

Adding it to the Link Port (LP) already improves buffer space requirements, as the
packets can be replicated at later stages. However, this is a violation of the layer paradigm,
which states that the LP is only responsible for a reliable data transmission across one
link. Additionally, the buffer requirements are not optimal, as packets are present multiple
times in the directly connected crossbar inport buffer connected to the link. This leaves
only one option left — inside the crossbar. A multicast packet is stored only once and
replicated upon transmission to the next stage, therefore requiring no additional buffer
space compared to an unicast packet. Hence, the multiplication of packets is done at the
latest possible stage in the network, avoiding that replicas of packets traverse the same
link.

The second aspect is to where store multicast packets. Two implementations are con-
siderable, storing it in a separate buffer or reusing the existing buffer. McKeown et. al.
propose the usage of separate buffers in [105]. However, this not only increases the amount
of buffers per inport, but also the scheduling algorithm complexity increases as a second
level of priority is required in the proposed ESlip algorithm to switch between unicast
and multicast. Reusing the existing buffer, as it is also proposed in [106], is to be favored,
due to the better buffer usage, resulting in a smaller memory footprint of the design.
Multicasts are treated the same as unicasts in respect to requesting the outport, keeping
the arbitration simple and the buffer space requirement low.

The last aspect is how to transmit the multicast packet from the inport to all receiving
outports. The fastest way is to send the multicast in parallel to all outports. This however
requires that the multicast must be first in line for transmission at all outport queues,
which is quite unlikely in a network that is not idle all the time. Thus, all outports need to
grant in the exact same clock cycle or already granted outports need to be blocked until all
targeted outports of the multicast have been acquired. This introduces HOL which has to
be avoided for an efficient bandwidth usage and a low packet latency.
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Sending all replicas sequentially is the easiest way, since no changes in the arbitration
algorithm is necessary and they can be sent whenever the corresponding outport is
available. This solution has been favored due to its simplicity.

An hybrid approach is to send all replicas sequentially, however whenever outports of
the same multicast packet have been granted in the same cycle, then send it to all of them
in parallel. In the best case this results in the same performance as the parallel approach,
but without the restrictions of the latter. Worst case is a complete sequential transmission,
as it is with the second solution. The difficulty in this approach is that data structures
have to be maintained that indicate whether a request has been issued for one or multiple
multicasts or unicasts and once the grants have been received these information have to
be considered when selecting one or more grants. Due to the complexity this approach
has not been chosen for the first implementation, but left for future improvements. A
more detailed analysis of the requirements of a hybrid approach is given in section 3.9.1
on page 125.

Implementation

Quite a few changes in the Crossbar Inport are necessary to realize the above made design
decisions. First the Routing Interpreter needs to be adapted, in order to be able to make
routing decisions for unicasts as well as multicasts. Thus a multicast routing table has
to be added. As already mentioned, multicasts can be distinguished by their ID. This ID
is best suited in the same field as target node ID in the start cell. A single bit separates
unicasts from multicasts. Using the same field for both, unicast and multicast avoids an
additional field as either one of them will be unused anyway.

Consequently the Routing Interpreter now has to look at this bit and depending on its
value interpret either the global- and local- or the multicast routing table. For the FPGA
prototype a fairly small number of 256 multicasts are supported to keep this table small,
for an ASIC implementation on the other hand up to 64k IDs are possible, as this is the
size of the target node ID field. Each entry of the multicast routing table is 26 bit long
as illustrated in figure 3.36 on the following page. The field Destination Ports is six bit
wide, one bit for every available LP of EXTOLL. If this bit is set then the multicast shall
be forwarded to this port. The next two fields, namely VC-0 and VC-1 determine the
outgoing VC for every destination port, depending on the incoming VC. The two fields
H and VC-H determine whether the packet shall also be sent to the FU of this host and
on which VC it shall do it. Repetitions is a redundant information as it counts the number
of times the packet shall be forwarded using binary encoding. However this results in a
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more efficient HW, as it will be shown later on. Finally, the field V is used to mark the
routing table entry as valid. Packets arriving for an invalid routing entry are discarded
and the used credits are freed.

Figure 3.36: EXTOLL R2 Multicast Routing Table Entry

After the routing decision has been made, the Crossbar Inport needs to be able to store
and read the contents as well as the meta data of the received multicast. Storing the actual
contents of the multicast packet is simple, as multicasts only differ in the header and can
therefore be handled the same way as unicasts. They are only stored once in the shared
data buffer and read each time one repetition of the multicast is sent.

A modification is required in order to be able to store the meta information, as they are
stored in a shared queue structure. There exists one queue for each outport-FCC tuple and
only a single queue can be written at a time. Multicasts are destined for multiple outports,
therefore it is required to either sequentially write into the shared queue structure or
modify it in a way that it can write into multiple queues at once. It is required to store
these information in each target queue as the empty signals from each queue are used as
indicators to which outports requests need to be made.

As minimum sized packets require only four clock cycles to be sent in the FPGA
implementation1, writing sequentially is not possible due to the seven possible targets,
which requires seven clock cycles. Writing in parallel to a single RAM is not possible
either, as there is only a single write port available. Thus the shared queue structure needs
to be split. It is however sufficient to part it by the amount of outports as each multicast
can only be sent to each outport once and not to multiple FCCs at each outport. As a result
now N Multi-Queue-FIFOs are instantiated with each M queues instead of one FIFO with
N times M queues, whereas N is the number of ports and M the number of FCCs. The
Routing Interpreter selects all Multi-Queue-FIFOs that are targeted by incoming packets and
shifts the required information in all of them at once. During transmission only one of the
FIFOs can be read, making a multiplexing structure on the read side necessary, adding a
clock cycle to the route-through latency.

The Routing Interpreter also informs the following units on how often a multicast needs
to be replicated, i.e. how often it shifted the meta-data into the queues. This information is
required by the read logic of the shared data buffer in order to be able to free the occupied

1and only two cycles in the planned ASIC implementation, due to the wider data bus
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slot properly. An additional look-up table counting the amount of repetitions required for
each slot is added to the shared buffer structure. Each time a packet is sent to one outport
this counter is decremented and if it reached the value zero the slot is freed, i.e. the used
credit is sent.

Three implementations are possible to realize this counting functionality. Either the
shift-in signals from the Multi-Queue-FIFOs directly or a binary encoding can be used. The
binary encoding again can be either computed in HW from the above mentioned signals
or set by SW in the multicast routing table.

Using the one-hot encoded shift-in signals has the advantage that no RAM resources are
required inside the routing table for redundant information. However one has to either
count the amount of set bits, which results in a large multiplexing structure or directly
use the one-hot encoded signals and clear one of the set bits every time a repetition has
been sent. Once all bits are cleared, all repetitions have been sent and the packet can be
removed from the buffer.

Using the binary encoding has the advantage that a simple decrement logic can be used
to subtract by one upon each transmission. In addition this information has to be stored
somewhere, again requiring a RAM. As the binary encoding is the most efficient in respect
to RAM usage, the decision has been made to store the repetition count that way.

The multicast routing table is not as large as the tables for unicasts, as already shown
in figure 3.36 on the preceding page. Due to the fact that only a small set of RAMs are
available in the planned ASIC implementation, all having a fixed data width2, these free
bits can be used to encode the (redundant) information on how often a multicast has to
be replicated to reduce the required logic resources. The same applies also for the FPGA
design. A Block-RAM resource in the Xilinx device is required to implement the multicast
routing table anyway. Whether it is used as a 22 or a 26 bit wide RAM does not matter, as
a single Block-RAM resource can either be used as two 32 bit wide RAMs or a single 64 bit
wide RAM [107].

3.8.5 Request Allocation and Grant Generation

Every time an inport of the crossbar has multiple packets for different outports stored,
it requests all destination ports according to the iSlip algorithm [72]. There are two
possibilities for an inport regarding the remaining requests after a grant has been received

2to ease the chip layout
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from any of the requested outports. One can either keep not granted requests set or
revoke all requests. The first approach reduces the required overlap time by one clock
cycle for concurrent packets as all requests are already set once the currently transmitted
packet reaches its end. On the other hand, this approach introduces a lot of false grants.
Outports grant a set request and wait for the acknowledge, despite the fact that the inport
actually is busy transmitting to another inport and cannot process the given grant. These
false grants introduce bubbles in the outport data stream, a throughput of one hundred
percent can therefore not be reached. This waste of bandwidth has to be avoided at all
times. Consequently all inports have to revoke their requests as soon as they received a
grant. The required additional clock cycle however requires a longer overlap period of
transmission and requesting, thus requiring longer packets to fully leverage the available
bandwidth.

In the R1 version of the crossbar all requests remained set until they received a grant,
R2 now only sets requests if a new arbitration round is required, reducing false grants to a
minimum and thus leveraging the full bandwidth capabilities at the outports.

In addition, the R1 implementation used a request-grant-acknowledge scheme similar,
but not exactly like iSlip [72]. The difference is that in R1 the grant generating arbiter,
suited in the outport, adjusts its priority with each given grant. However, not every given
grant is selected by the inport. iSlip adjusts its priority only if the grant is also selected.
According to [72] this desynchronizes the arbiters and thus increases throughput. As a
very high throughput is one of the design goals, the Port Arbiter inside the crossbar outport
is adapted accordingly. More complex arbitration algorithms like [108] or [109] have been
reviewed and discarded due to their complexity.

3.8.6 Fine Grain Credits

EXTOLL in its R1 state uses a rather coarse grained credit scheme. All available buffer
slots were as large as a maximum sized packet, i.e. 128 byte. This results in a rather
inefficient buffer usage as each packet consumes one credit, thus blocking 128 bytes of
buffer space, not taking into account how large the packet actually is. Additionally, if a lot
of small packets are traversing the network, back-pressure is applied rapidly through the
credit based flow control, even if most of the buffer space is still unused. As bandwidth is
increased, the available 32 slots are all consumed faster than credits can be freed again,
thus inserting bubbles into the packet stream. This poses an even stronger problem in R1,
as the MTU is increased to 256 byte.
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To improve the buffer usage and therefore also increase the amount of packets in the
network, it is beneficial to have finer grained credits. Hence, each packet is logically split
into multiple smaller parts, but nevertheless transmitted as a whole. The available buffer
is separated into smaller slots and a packet hence consumes more than one credit and
buffer slot.

With these fine grained credit scheme it is possible that a packet consumes up to N
credits depending on its length, N being the divider of the maximum length. The total
buffer space however stays the same as it is when using the coarse grained credit scheme.
However, now up to N times more packets can be stored in each crossbar inport before
back-pressure has to be applied, therefore increasing the amount of packets in the network
and improving the buffer efficiency.

Since packets do not include size information, the crossbar outport can only grant the
physical line if at least N credits are available, but can release unused credits again after
the transmission of a granted packet is complete. The 32 available slots of the R1 design are
now parted into 32×N slots, therefore making it possible to store up to 32×(N–1) packets.
Figure 3.37 compares the buffer usage of a classic credit based buffer management where
each packet requires a single credit (a) and the fine grained credit scheme (b). As it can be
seen, the stored packets in R2 use less buffer space as in R1, thus the buffer is used more
efficient.

(a) (b)

Figure 3.37: Crossbar Buffer Usage in R1 (a) and in R2 (b)

Only 32×(N–1) packets can be stored since a grant is only given if N credits are available.
After 32×(N–1) minimum sized packets, only N–1 credits are left, therefore leaving N–1
slots unused, if the last packet is of minimum size.
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Figure 3.38: Crossbar Buffer Usage when Storing the last Packet

Figure 3.38 on the next page depicts how the last packet that fits into the buffer is
arbitrated with N equals four as an example value. Before Packet M has arrived, there
were four slots left inside the buffer. After Packet M has been stored, only three slots
are free and remain unused until more slots become available again. The crossbar will
no longer arbitrate, as it is not known how large a packet actually is in advance and the
maximum packet size is four slots in this example. Not stopping the crossbar at this point
can lead to a buffer overflow which has to be strictly avoided.

Since a packet can now be stored in multiple slots, it is necessary to have some sort
of administration to know which slot to read next until the packet is complete. One
solution is to leverage the VOQ FIFO for that purpose. However, this requires some sort of
arbitration as multiple sources need to write and read from it at the same time. Therefore it
is more efficient to use a separate administration. A small RAM is sufficient to implement
a linked list where the current read slot can be used as address and the corresponding
read value is the next slot to be processed.

As credits also have to be sent over a link, thus requiring bandwidth, the packet division
factor may not be too high, otherwise too many credits need to be sent over the link,
effectively increasing the per packet overhead.

For a FPGA implementation a factor of four is a good value, increasing the amount of
packets by said factor and thus defining a credit to be 64 byte3. With that factor the linked
list needs to be read every eight clock cycles to get the next slot to know where the packet
continuous inside the shared buffer. The amount of in flight packets is increased from 32 to
125 and the buffer efficiency is thus increased from 3.1 to 12.2 percent for minimum sized
packets with a size of eight bytes. For packets with a payload of 64 byte the efficiency is
even increased from to 25 to 97.6 percent.

3The maximum packet size has increased to 256 byte in the R2 implementation due to the wider data
interface, 256/4 = 64
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Figure 3.39 on the facing page depicts the efficiency for packets ranging from eight byte
to 256 byte. As it can be seen, the fine grain credits allows a much more efficient usage of
the available buffer space, even for small packets. This scheme of fine grain credits can of
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Figure 3.39: Crossbar Buffer Efficiency for a Segmentation of Four

course also be used with an even finer fragmentation, thus splitting the packet into eight,
16 or even more parts. However, the smaller the single credit is, the more complicated is
the administration of the buffer itself and the required overlapped reading and arbitration,
making four a good compromise between increased complexity and performance gain.

3.8.7 Debug-Ability and Maintainability

One large problem during the bring-up phase of the R2 design has been the changes that
are required throughout all top-level files, whenever more debug information is to be
added. These debug information need to be passed through all hierarchy levels to the
Register File, so that it can be read during operation. Hence, the timing of these paths is
always critical as they have a large routing delay in order to reach the Register File.

The Register File has been split into multiple sub-modules which are connected to the
top level using registered read and write interfaces. These sub-modules are directly
instantiated in each FU, including the crossbar, which not only reduces the amount of
signals from or to each unit, but it also improves timing by splitting, thus pipelining the
address decoder of the Register File. If a change in one part of the Register File concerning
only one of connected units is necessary, then it is now no longer necessary to change all
top level files, but only the unit involved. This improvement of course not only concerns
the crossbar itself, but can be applied to all modules of EXTOLL. As a consequence, the
SW readable debug information of the crossbar during runtime can be increased, while
keeping the same timing budget. For more information on the Register File modifications,
the reader is kindly referred to [110].
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3.8.8 Early Arbitration

In R1 the crossbar detected the end of a flit solely due to the amount of data words written
into the buffer. This limited the performance for small packets, as they require less clock
cycles to be sent as the round trip time for a single arbitration round. This round trip time,
from the detection that a new arbitration needs to be initiated, until the grant has been
given and selected, is the performance limiting factor. Reducing this time increases the
message rate and effectively increases the useful bandwidth for very small packets.

(a)

(b)

Figure 3.40: Timing Diagram without early Arbitration Detection (a) and including early
Arbitration Detection (b)

The early arbitration mechanism targets to reduce this critical path. As already indicated,
the crossbar stores data in a shared buffer and uses VOQ only on the meta-data of packets.
These meta-data are written into the VOQ buffer as soon as the routing decision has been
made. An additional bit has been added to these meta-data indicating that the packet
has already been received completely when the routing decision has been made. This
information can be leveraged to start a new arbitration round as soon as a packet has been
granted by the targeted outport, avoiding the need to first check the length of the packet
stored in the slot of the shared data buffer. Figure 3.40 shows two timing diagrams. Figure
(a) depicts all required clock cycles, from the shift out of the meta-data until the end of the
packet is detected. Figure (b) shows the resulting timing diagram if an indicator that a
short packet is now being processed is directly stored in the meta-data-FIFO. As it can be
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seen, this mechanism reduces the arbitration round trip time from six down to three clock
cycles, effectively reducing it by 50 percent. These three clock cycles allow the crossbar to
fully utilize its theoretical bandwidth with packets that have a payload of only 48 bytes
instead of 72 byte and increases the peak message rate from 25 to over 33 million messages
per second.

3.8.9 Further Optimizations

Other than the architectural and functional changes of the crossbar, a lot of smaller
improvements, both architectural and in the hardware description language (HDL) coding
style have been done as well, which either increase the performance in terms of latency,
achievable clock frequency, or decrease the required area of the crossbar. The following
sections shortly introduce those changes.

Credit Counting Scheme

The available credits in EXTOLL are divided into small subsets that are exclusively usable
by each FCC and a larger subset that is shared over all FCCs. This has been done in [89]
to be able to use the whole available bandwidth with a single FCC without having the
need for large buffers. Until now, the credits that are exclusively available for each FCC
have been counted independently and only if the exclusive pool has been depleted, the
shared credit pool has been modified. This results in a rather complicated control logic
as the exclusive and shared counters need to be both interpreted and depending on its
values only one of them needs to be updated.

Keeping this counting method becomes complicated, especially with the new fine
grained credit scheme, as there are various possibilities the four required credits can be
combined from the exclusive and the shared credit pools. In addition, the possibility that
a credit is freed again at the same time has to be considered, making it unfeasible to keep
this counting scheme.

LUTs Registers

Using a shared count 54 28
Using a total count 24 18

Percental Improvement 55 % 35 %

Table 3.6: Cost of different Credit Administration Techniques
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In R2 the exclusively assigned credits still have to be counted independently of course,
as it is otherwise not possible to check how many credits a particular FCC consumed.
However, instead of counting only the credits of the shared pool, now a counter for all
available credits is used. This new counter needs to be wider as the previous shared
credits counter, as now not only the shared credits but all credits have to be counted.
Though, the logic for incrementing and decrementing the total and exclusive counters is
now completely independent of each other and therefore a lot simpler.

The results of this optimization can be seen in table 3.6 on the preceding page. Xilinx
ISE [111] has been utilized to obtain the values with a Virtex-6 LXT [100] as a reference
device. Both, the register count as well as the LUT count have dropped by almost a factor
of two using a total credit count instead of a shared credit count. This effectively reduces
the required area of the complete design, as the Credit Administration is required in each
outport.

Case Coding Style

Furthermore, some code optimizations have been done improving both, area and timing
of the Credit Administration in a Xilinx FPGA environment. The first change is to remove
unnecessary default cases as figure 3.41 depicts. The default condition in the case environ-
ment does not contain any code. The Xilinx tool chain however is not able to fully detect
that the default condition is unused and nevertheless implements an address decoder
covering all cases, resulting in a larger area requirement as it is actually necessary.

case ( a )
1 : b <= c + 1 ;
2 : b <= b + 2 ;
3 : b <= b + c ;
d e f a u l t : ;

endcase

(a)

case ( a )
1 : b <= c + 1 ;
2 : b <= b + 2 ;
3 : b <= b + c ;

endcase

(b)

Figure 3.41: Code Example where (a) Generates less Efficient Code as (b)

The performance and area improvements can be seen in table 3.7 on the facing page. The
first row in this table represents the baseline implementation after the count optimizations
from above, but with the full functionality of R2, meaning the support for the fine grain
credits introduced in section 3.8.6 on page 108. In row two the resources have dropped by
around 35 percent, only commenting out a few lines of code.
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Removing the reset condition of some registers, that are set to a valid state after reset
anyway, reduces the resource consumption further and also decreases the required cycle
time. Not resetting registers can be done without any risk in a FPGA environment, as the
architecture of a FPGA forces all registers to zero after power-up anyway, if not declared
otherwise. However, not resetting registers must be avoided in an ASIC environment, as
it results in an unknown state of the register. It can thus either be one or zero, which can
then generate unwanted behavior of the HW.

LUTs Registers Cycle Time
[ns]

Baseline 476 114 3.730
no empty default cases 302 89 3.573
removed unused reset 259 81 3.261

Table 3.7: Costs of Free Slot Management Implementations

Both changes, removing unnecessary default statements as well as resets can of course
be applied to the whole design, not only to this single unit, this unit has only been chosen
as an example. The results can again be seen in table 3.7. Both, the LUT, as well as the
register count dropped. The achievable clock frequency on the other hand increased, as
the cycle time also decreased.

RAM Pipelining

RAMs are always a timing critical part in both, FPGA and ASIC designs. Most of the
times the path to or from a RAM defines the achievable clock frequency. A register
has been added at the data outputs of all RAMs, in order to make the crossbar design
feasible for an ASIC implementation and improving the clock frequency for the FPGA.
This however made it necessary to adapt all RAM read-out logic parts so that they can
cope the additional cycle of read latency.

All units accessing a RAM inside the crossbar need to be able to hide this additional
clock cycle, in order to avoid bubbles in the data stream. The implementation of these
modules have therefore been adapted. Despite the additional clock cycle, all modules are
capable of sending a data stream without interruption.
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Free Slot Management

An efficient hardware structure has been developed in [90] that is capable of handling
the management of free slots of the shared data buffer using a four clock cycle search
algorithm. Due to the optimized network packet specification and increased bandwidth,
the minimum packet sized dropped to one up to three phits, depending on the data bus
width, making this structure unfeasible for R2.

Several choices are available to adapt this management structure. The first implementa-
tion choice that can be applied is an arbiter without any priority, resulting in a first free
slot search in a single clock cycle. The arbiter required less LUTs, however the register
count almost doubled compared to the search algorithm.

LUTs Registers

Search Algorithm 169 80
Arbiter based 143 151
FIFO based 92 59

Table 3.8: Costs of Free Slot Management Implementations

The second implementation uses a simple FIFO that is initialized with the addresses,
i.e. the numbers, of all slots after each reset of the design. Results are shown in table 3.8,
both values for the register as well as the LUT count dropped by using a FIFO. The results
again have been obtained using Xilinx ISE [111] and are all based on the same amount of
available slots, namely 32.

3.8.10 Multi-Queue-FIFO Optimizations

Until now, a generic FIFO implementation, which supports the concept of multiple queues
in a single data RAM, has been utilized in the crossbar to store all meta-data. However,
this generic Multi-Queue-FIFO offers more functionality as the crossbar inport actually
requires. Removing some of these features further reduces the resource consumption and
improves timing, despite the fact that it is already more efficient that having multiple
discrete FIFO instantiations.

Since this module is instantiated N times in each inport, whereas N is the number of
outports, even a very small optimization can have a large impact on the whole design. To
get a better feeling of the required resources, all optimization steps have been evaluated
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not only using synthesis, but running a complete tool flow through Xilinx ISE [111]. The
results are listed in table 3.9.

LUTs RAMs Registers Cycle Time
[ns]

Generic Multi-Queue-FIFO 323 0 121 3.667
Using RAMs for Pointers 151 24 76 2.890
Exclusive Read or Write 129 12 74 3.714

Using ’if’ instead of in-line 122 12 71 3.621
Pipelining ’almost empty’ 116 12 87 2.472

Table 3.9: Costs of Multi-Queue-FIFO Implementations

As it turned out, most of the resources where required to manage all the read- and write
pointers necessary for the different queues. The first optimization therefore has the target
of a more efficient pointer structure. Line one of table 3.9 depicts the starting point before
the various optimization steps have been deployed. In line two, all pointers are stored
using RAMs instead of registers. The amount of memory elements rises from zero to
24 and the amount of required LUTs dropped by more than 50 percent. This of course
increases the read-out latency of the FIFO, as now first the pointer-RAM has to be read
before the data-RAM can be read. But the smaller resource utilization and the lowered
cycle time make it worth the additional clock cycle latency.

Since shifting-in and -out of the FIFO can occur at the same time, one RAM for the read-
and write pointers is not sufficient, due to the fact that shifting-in and -out can be meant
for different queues and therefore require different pointer sets. Each of the pointer-RAMs
therefore needs to be replicated, in order to be able to read both independently in case of
simultaneous shift-in and -out of different queues occurs.

This replication can be avoided, if it can be ensured that both accesses to the FIFO never
happen at the same time, or if at least it can be ensured that shifting-in and -out never
occurs consecutively. In the crossbar use case, it can be ensured that this is the case, as
this FIFO is used for meta-data storage only and a minimum sized packet (in an ASIC
implementation) is two clock cycles long. Even under ideal conditions, both read and
write can therefore only occur every second clock cycle. Thus, the FIFO can be modified
in a way that, whenever both events occur simultaneously, shift-in is delayed for one
cycle making the access to the pointer-RAM atomically. Delaying the shift-in operation is
beneficial because the time required to shift-out the meta-data is the performance critical
path in the crossbar design and the crossbar is currently initiating a transmission when
reading, making it possible to delay shift-in operation without any performance loss.
Results can be seen in table 3.9. The required memory elements dropped by 50 percent,
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due to fact that each pointer now only exist once. This also reduced the required logic
elements, as compare logic can now be shared. Unfortunately the timing improvements
that have been made so far are lost completely.

Further optimizations have been done to again reduce the cycle time. One change
has been incredibly simple but improves timing by around 0.1 ns and also reduces the
required resources. The timing improvement may not sound much, but at 200 MHz, this
is a two percent improvement with almost no effort and as this unit is instantiated over a
hundred times, even a very little resource consumption makes a difference. Xilinx XST,
the synthesis tool of Xilinx ISE, is able to generate more efficient designs when a Boolean
expression is used in an if clause instead of a direct assignment if the developer only
wishes to set or reset a variable. Figure 3.42 depicts a code example for this optimization.
The code snippet given in (a) requires more resources and results in worse timing as the
code given in (b).

c <= ( a < b ) ;

(a)

i f ( a < b )
c <= 1 ;

(b)

Figure 3.42: Code Example where (a) Generates less Efficient Code as (b)

The last optimization that led to an acceptable resource utilization, further draws the
optimized Multi-Queue-FIFO away from a general purpose FIFO. The most timing critical
path inside this module is the generation of the almost empty signal, which is required
for the adaptive routing support of the crossbar. Pipelining the calculation of this signal
improves timing by more than a nanosecond as shown in the last row of table 3.9 on
the preceding page. The consequence of this optimization however is that in a common
use case this leads to data corruption, as usually FUs depend on the correct setting and
resetting of the control signals of a FIFO. In the crossbar use case however this is tolerable,
as these signals are only used for the decision making of adaptive routing. The worst case
scenario is that a non-optimal path is selected, but there is no possibility that packets can
get lost due to an overflowing FIFO.

The results of all these improvements are, that each Multi-Queue-FIFO instance now
requires around one third of the LUTs, around 30 register less and also has a timing
improvement of around 30 percent compared to the first implementation. This is a great
improvement, keeping in mind that the crossbar as it is used in EXTOLL requires one
hundred of these instances.
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Multicast Counter Optimizations

The Multicast Counter is used to count how often a packet has to be replicated before it
can be removed from the shared buffer inside the crossbar inport. Essentially it is a RAM
which holds a count value for each slot. This value is decremented with each transmission
and once it reached zero the packet can be removed. The baseline implementation uses
only registers instead of a RAM making it quite large. By rearranging the code without
changing the functionality or the timing of the interface, the unit can be reduced by a
factor of 30 for LUTs and a factor of almost ten for registers as it is illustrated in table 3.10
on the next page.

always @( posedge c l k )
begin

i f ( wen_a )
mem[ a ] <= data_a ;

e l s e i f ( wen_b )
mem[ b ] <= data_b ;

end

(a)

always @( * )
begin

i f ( wen_a )
begin

address = a ;
data = data_a ;

end
e l s e
begin

address = b ;
data = data_b ;

end
end

always @( posedge c l k )
begin

i f ( wen_a || wen_b )
mem[ address ] <= data ;

end

(b)

Figure 3.43: Code Example where (a) Generates less Efficient Code as (b)

The reason that caused the inefficient result after synthesis is that Xilinx XST is not to be
capable of combining a register array to a RAM if there are multiple addresses as a source,
even if the write access is exclusive. The solution is to asynchronously assign the resulting
address to an intermediate signal and register this signal afterwards. The code examples
given in figure 3.43 illustrate this problem. The code in (a) results in a sea of registers. The
code in (b) however results in a single RAM. The first always block in the second example
asynchronously selects the address and the second block uses a clock to actually write the
data into the memory.

The results of the different coding style can be seen in table 3.10 on the next page. The
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LUTs Registers RAMs

Synchronous Logic 693 408 0
Asynchronous Logic 23 42 2

Percental Improvement 97 % 89 % -

Table 3.10: EXTOLL R2 Multicast Counter Code Optimization

required amount for both LUTs as well as registers dropped by around 90 percent for the
cost of two additional RAMs.

3.8.11 Overall Architecture

After all design changes have been applied, it appears as if the crossbar itself did not
change that much, seeing it from a top-level point of view. Nevertheless, the code basis
for the crossbar changed significantly. The resulting block diagram for the crossbar inport
can be seen in figure 3.44.

Figure 3.44: EXTOLL R2 Crossbar Inport Block Diagram

The interfaces to and from the crossbar are now less complex, due to the simpler packet
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format. Inside the crossbar, only a few architectural changes were necessary to add
above described functionality. The Routing Interpreter has been changed from source-
path to table-based routing, making only internal changes. Largest change involves the
Multi-Queue-FIFO, which is now split into multiple smaller units to be able to support
multicasting. The Packet Store now supports 128 slots instead of only 32 and features an
additional Multicast Counter that counts how many times a multicast packet still needs to
be replicated. The last modification is required for the fine-grain credit scheme. A Next
Slot Lookup table has been added to the Packet Store implementing the linked list. Added
Register File modules are not illustrated in figure 3.44 on the preceding page.

The crossbar outport remained rather unchanged in its functionality, the only added
feature is the increased credit counter width and the feature to internally free credits again
in case transmitted packets did not consume all granted credits.

3.8.12 Evaluation

Multiple configurations have been synthesized in order to see the scalability of the crossbar.
In all configurations, the register file has been neglected, to get only the results of the
crossbar itself, despite the fact that the register file is partitioned and included in R2 of the
crossbar.
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Figure 3.45: EXTOLL R2 Crossbar Resource Utilization
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LUTs Registers RAMs

2x2 3 846 2 726 17
3x3 6 552 4 532 27
4x4 10 211 6 599 38
5x5 14 853 8 999 50
6x6 19 187 11 636 63
7x7 24 819 14 558 77
8x8 31 134 17 775 92
9x9 39 519 21 959 108

10x10 45 642 25 852 125
11x11 54 442 30 311 143
12x12 60 351 34 785 162
13x13 73 536 39 827 182
14x14 83 981 44 807 203
15x15 90 573 50 171 225
16x16 99 776 56 078 248

Table 3.11: EXTOLL R2 Crossbar Resource Utilization

The amount of NPs have been kept the same for all configurations, so only the amount
of ports reachable using adaptive routing increases. This is more resource intensive as
adding multiple NPs, but shows the scalability even when increasing the logic required to
calculate the destinations for adaptive routing. The results are shown in table 3.11 and
figure 3.45 on the previous page. As it can be seen, the size increases slightly more than
linear with growing port numbers, but not quadratically or even exponential as claimed
by [78].

Performance

The Performance numbers of the crossbar design have been extracted from simulation
and are based on the Virtex-6 [100] design of EXTOLL, which runs at 200 MHz. The data
interface of this design is 64 bit wide and therefore has a peak bandwidth of 1.6 GB/s per
direction and port. The complete design is a full duplex ten by ten crossbar and therefore
offers an aggregated peak bandwidth of 32 GB/s.

As indicated in figure 3.46 on the facing page, the crossbar is capable of sending more
than 33 million messages per second for small messages with a size of up to 24 byte. The
efficiency almost grows linear with the length of the packets and has its peak at around
98 % as illustrated in figure 3.48 on page 124. As shown in figure 3.47 on the facing page
analogue to the efficiency, also the bandwidth increases with its peak at 1505 MB/s per
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Figure 3.46: EXTOLL R2 Crossbar Message Rate

port. Measured values can vary significantly, as the performance is also affected by all
surrounding units, like the host interface, the FU or the LP.
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Figure 3.47: EXTOLL R2 Crossbar Bandwidth

Figure 3.49 on the next page shows the route-through latency in a quite network. Shown
is a timing diagram with all required pipeline stages from reception a packet at the inport
to the transmission to another outport. The difference is 16 cycles, which is 80 ns at
200 MHz. Compared to the R1 crossbar, three more cycles are necessary. However, due to
the higher achievable clock frequency the route-through latency is nevertheless smaller,
although only by 3.2 ns. The crossbar is targeted for 750 MHz in the ASIC design, which
results in a route-through latency of only 22 ns. Adding the same amount of clock cycles
to let the packet pass through the LP and serialization, results in a hop latency of less than
44 ns. Compared to the 105 ns of Cray’s Gemini interconnect, this is an outstanding value.
The hop latency can of course be higher if other packets are stored in the inport buffer.

However, achieved latency is three cycles more than the R1 version of the crossbar. The
additional clock cycles can be explained through the changed routing algorithm, which
now requires a RAM access, due to the multiplexing structure added at the VOQ and
the pipelined RAM accesses. The remaining modules of the crossbar actually reduced or
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Figure 3.48: EXTOLL R2 Crossbar Bandwidth Efficiency

kept their latencies. As a result, the design achieves higher clock rates and includes more
functionality than before.

Figure 3.49: EXTOLL R2 Crossbar Route-Through Latency

Cost

The cost of the design can best be measured in the required resources on the FPGA,
used in the testbed platform shown in figure 3.50 on the facing page. In this case it is
a Xilinx Virtex-6 LX240T [100] device. Table 3.12 on the next page shows the resources
utilization. The required resources correspond to around 34 percent of the available
resources. Compared to the R1 resource utilization, which can be seen in table 3.2 on
page 92, the size increased almost by a factor of three. This is mostly due the now included
control and status register file, which alone consumes around 5 700 registers and 6 100
LUTs, as the difference between the first two rows in table 3.12 on the next page indicate.
Without the register file modules the crossbar only consumes around 29 percent of the
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Figure 3.50: EXTOLL Ventoux

targeted FPGA. Further, the increase of the buffer space from 128 byte to 256 byte, the
relatively large routing table in each inport, the added support for adaptive routing, the
additional inport and outport and the added multicast feature increase its size. Compared
to the previous platform utilized in R1, the resource consumption stayed rather constant
in respect to the total available amount of resources.

LUTs Registers RAMs

including Register File 51 415 32 018 125
without Register File 45 642 25 852 125

Difference 5 773 6 166 0

Table 3.12: Virtex-6 Synthesis Results for a 10x10 EXTOLL R2 Crossbar

3.9 Outlook and Future Improvements

The current design of the crossbar performs very well both in simulation and in EXTOLL
R2, as it is shown in section 4.6.5 on page 166. Nevertheless there is still room for
improvement. Most of the following improvements require a very high hardware effort
and are therefore unfeasible to be tested in a FPGA. Nevertheless these optimizations are
interesting in a research point of view and are therefore worth mentioning.

3.9.1 Multicast Optimization

The current implementation of multicast support is completely sequential, as described in
section 3.8.4 on page 102. This is the slowest, but most simple way to integrate multicasting
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in the crossbar design. Consequently this offers a lot of room for optimization. To improve
the performance of multicast transmission only an hybrid approach is feasible, as the
parallel transmission requires the stalling of other transmission.

The hybrid approach works as follows. Whenever multiple multicast targets are ready
at the same time, transmit to all of them. However, if only one destination is available,
send it only to this one. This does not require that all targeted outports of the multicast are
ready to initiate a transfer at the same clock cycle and thus avoids HOL, but at the same
time has the potential to speed up the transmission of the multicast. In the best case, a
multicast packet is transmitted completely in parallel, in the worst case it is transmitted
completely sequential.

In order to implement this properly, it is required to compare all slot numbers that
currently request an outport, as the slot number uniquely identifies a packet and can
therefore also be used to identify whether requests are set for the same packet or not.
This is currently not possible, as the instantiated Multi-Queue-FIFO has only a single data
output shared for all queues, which does not provide a lookahead feature for the next item
in a queue. Moreover, the logic to compare all slot IDs does not scale, as there are N times
M queues to compare, whereas N is the number of outports and M is the number of FCCs.

In addition, a decision has to be made which multicast to send, if there are multiple
different packets requesting at the same time and a subset of them receives grants. The
most efficient solution is to select the multicast which received the most grants. However,
this requires even more comparison logic, as the one-hot coded grants have to be counted
per multicast first and then all results of the different packets must be compared. All this
is impossible to do in a single clock cycle and pipelining this decision process adds latency
to the performance limiting path. Adding multiple clock cycles requires to further overlap
transmission and arbitration, resulting in a lower achievable message rate and making it
more difficult to fully utilize the available bandwidth.

3.9.2 Read Slot Lookahead

The performance limiting path inside the crossbar in respect to achievable message rate is
from the point a request is set until the transmission starts. Essentially this path limits the
message rate and achievable bandwidth for very small packets as bubbles are introduced
due to delays introduced here.

One way to improve the timing at this path is to reduce the time required for slot lookup
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of a granted request. This can be achieved by adding a look-ahead functionality to the
Multi-Queue-FIFO, which is leveraged for the meta-data storage. As a shift-out at the
Multi-Queue-FIFO first triggers a read of the current read pointer and then a read of the
actual data, it has a latency of three clock cycles until the actual FIFO value can be read
at the output side. This read latency can be completely hidden using a register for each
queue containing the next value of the corresponding queue. Whenever this value is read,
the next value will be read from the FIFO and stored again in said register, requiring again
three cycles. This read latency for the next value however does not affect the performance,
as the crossbar is currently busy processing the current packet.

LUTs Registers BlockRams

Baseline 9x9 39519 21959 108
Lookahead FIFO 62529 31898 108

Percental Increase 58 % 45 % 0 %

Table 3.13: Read Slot Look-Ahead Resource Utilization for an Example Size

Theoretically this removes two cycles read latency which improves the message rate
from 33 to 50 million messages per second and allows a bandwidth of 400 instead of
only 267 MB/s for eight byte sized packets. The drawback however is that this latency
improvement requires a lot of resources. This Multi-Queue-FIFO is instantiated N times in
each inport and each instance has M queues, whereas N is the number of outports and M
is the number of FCCs, therefore requiring N times M times data width registers per inport.
In addition, the logic to implement the lookahead is quite complex. Table 3.13 shows the
increased area requirements for a nine by nine crossbar. As it can be seen the amount of
LUTs and Registers both increase by around 50 percent, which is an unacceptable increase.
Thus, this improvement is not feasible for the current design. The increase of more than
50 percent is simply not acceptable, taking into account that this FIFO is required in each
inport.

3.9.3 Removal of Erroneous Packets

Until now packets are forwarded to its recipient not taken into account whether the
packet is tagged erroneous or not. The reason for that is that the error tag is located at
the very end of each packet to avoid the need to store and forward the packet at each
hop through the network to check and tag it accordingly. However, if a packet has been
received completely at the crossbar inport before the transmission to the outport started, it
is theoretically possible to drop the packet and therefore reduce the load of the network.
The retransmission of the LP makes sure that an error free version of this packet will arrive

127



3 High Performance Switching

directly after the erroneous version. If a packet is dropped, several control structures need
to be updated. First of all, the credits that the packet consumed need to be sent back.
Otherwise the crossbar runs out of credits after some time and that port will be stalled
until the management SW resolves this situation. Secondly, the meta-data structure needs
to be updated and finally the occupied slots need to be marked as free again.

Basically there are three possible times when a packet can be extracted, as illustrated in
figure 3.51.

Figure 3.51: Dropping Erroneous Packets Design Space Diagram

The first option can only be applied to very short packets, where the end character
arrives before the routing look-up is complete. Then the meta-data do not need to be
stored, the used slot in the shared buffer however needs to be freed again and also the
used credits of this packet must be sent to the connected unit to avoid loosing credits.

The second possibility is to drop the packet right before the request to the outport is set.
This option has the advantage that, at least for unicasts, the meta-data can be accessed
easily as it is the next value to be shifted out of the VOQ and for multicasts at least the
transmission to the current target can be avoided. Additionally, the extraction occurs on
the ’correct’ side if the Multi-Queue-FIFO, as the request side is responsible for shifting
data out of said FIFO. The problem however is that there must be some sort of structure
that stores the information, whether the current transmission is for an erroneous packet or
not. This structure then must be checked before a request is set without actually knowing
the slot number it is stored in. Alternatively the slot can be read first, inflicting additional
latency. This can be avoided with the read slot lookahead as introduced in section 3.9.2 on
page 126. However, putting that feature in place introduces a lot of additionally required
resources. Multicasts need to be specifically tagged inside the Multi-Queue-FIFO in order
to be able to identify them as such and it has to be made sure that the control logic counting
the number of required repetitions is changed properly to again avoid credit loss.

The third and last option is to remove the packet once it has been received completely,
avoiding the need to have additional structures which store the packet integrity. However,
currently the shift-in side of the FIFO has no support to remove words again. A support
to decrement the write pointer inside the FIFO is required to support this feature, as well
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as the above mentioned necessity to send the correct amount of credits. The required logic
to revoke already stored data is introduced in section 2.2.2 on page 17. This third option
can only be applied if the transmission of the erroneous packet to the targeted outport
has not yet started. Nevertheless this option is the most efficient way to reduce erroneous
traffic through the crossbar. Due to its complexity however, it has not yet been integrated.

3.9.4 Balance Packet Travel Time

Balancing the time a packet requires to traverse the network has the advantage that
communication jitter is reduced, making it possible for applications to better hide latency.
In order to balance the travel time of packets a more sophisticated arbitration algorithm
than the currently used iSlip algorithm in the crossbar is required.

Adaptive routing also balances the travel time of packets by using paths that are
potentially least congested. Potentially because the view of the network is only local at
the current node in the used implementation, whereas the network can be congested at
a later stage of the path. In contrast to the already implemented adaptive routing, this
mechanism keeps packets in order, avoiding the requirement of a reorder buffer in SW.

To be able to assign a priority to packets according to their age over all VOQs requires
some sort of aging information. The simplest way to implement aging is a counter that
is always incremented with each packet that is written to the data buffer. This however
requires a corner case conditioning whenever a counter overflow is imminent. All currently
stored packets require a new age, still maintaining their order. Doing this requires to go
through all parallel queues and assign a new age to all values in respect to the previous
age. The width of this counter decides on how often this time consuming re-aging has
to be done, general functionality must be turned off in that time to maintain the order
of packets. This of course has a bad influence on latency and also increases jitter again.
Moreover, the administration of the age information requires a structure with a size of
counter width times available credits. A RAM cannot be used, as all aging information,
at least for all packets first in line at each queue, need to be available in one clock cycle
in order to be able to compare them. The required real estate for that structure and the
compare logic alone renders this functionality unfeasible.
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3.9.5 Split Inport Into Smaller Units

To increase the performance of the crossbar it is possible to split the inport into multiple
smaller units which can then work independently of one another. A splitting can be done
after the Routing Interpreter, using not one, but N data buffers and Port Request Units,
whereas N is the number of outports. Data has to be delayed until the routing decision
has been made in order to be able to store the data into the correct buffer instead of simply
storing it in a single shared buffer as it is done now. This on the other hand increases the
route through latency for packets. The advantage is that the required arbiter inside the
Port Request Units is smaller by a factor of N, increasing its potential for higher clock rates.
The integration of a multicast support without any latency drawbacks, as introduced in
section 3.9.1 on page 125 using the parallel approach, is then also done by design, as all
sub-inports work independently.

The network can recoup faster from back-pressure, as there is a very high read band-
width. This however is also the main drawback as write bandwidth is a factor if N smaller,
it is not balanced and the available read bandwidth cannot be used most of the time. In
addition, the increased resources are not to be underestimated. As credits are assigned per
FCC and not per target outport, each data buffer must be large enough to hold the maxi-
mum amount of packets. Essentially this results into a N times larger buffer requirement
for each inport without benefiting from it, effectively reducing the buffer efficiency by a
factor of N.

As the crossbar is already a RAM centric design, requiring a high percentage of the die
area solely for said RAMs, this approach will not be implementable in the near future, the
resulting design does not scale.

3.10 Crossbar Summary

The new EXTOLL crossbar has been improved in many aspects compared to R1. The
design is now capable of running at higher clock rates. The message rate has increased
by over a hundred percent from around 15 million to 33 million messages per second.
Bandwidth has been improved due to the wider data bus and increased clock rate as well.
The overall bandwidth efficiency has been improved leveraging the new packet format
and reducing the unused clock cycles between small packets.

The change with the most impact is the added capabilities for multicasting. It enables
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EXTOLL to implement an efficient support for collective operations. The routing algorithm
has been changed from source-path routing to table-based routing, now supporting
arbitrary topologies and up to 64k nodes without any path length restrictions. Adaptive
routing has been added to be able to distribute traffic equally over multiple paths, reducing
the possibility of congestions. All this has been achieved still maintaining the small
memory footprint of R1 with very limited routing capabilities. Despite all these changes
the route-through latency of the crossbar has been maintained at around 80 ns for a FPGA
design and an astonishing 23 ns in an ASIC implementation.
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EXTOLL [101] is an interconnection network that has been developed at the CAG for large
scale clusters. During its development process, special care has been taken to achieve
a very low latency, a high bandwidth, a good fault tolerance and a high availability. In
large scale clusters it is important to have as little communication overhead as possible to
increase its scalability. This has been achieved by developing a lean protocol and reducing
the amount of protocol changes to a bare minimum. Additionally, every pipeline stage
throughout the whole design has been revised to keep the time required for a single
message as low as possible.

A high fault tolerance and availability is required to be able to get a cluster up and
running and keep it operational. It is simply unfeasible to halt a complete cluster every
time a single node has a malfunction, which occurs often for example due to failed cooling.

During the design phase of EXTOLL all available levels form the link level in HW up
to the user application in SW have been analyzed in respect to these aspects. An FPGA
prototype has been developed to prove that all made design decisions not only work in
theory, but can actually be realized as [93] shows. With this prototype a half round trip
latency has been achieved that has never been reached at the time being, even with ASIC
implementations.

This work focuses on some of the module implementations of EXTOLL. However to
understand the basic functionality an overview of all available units and their roles is
given. For a more detailed view of other parts, the reader is kindly referred to [112], [94],
[97] and [113], which explain the functionality of the other modules and the corresponding
SW in greater detail.
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4.1 HW Overview

The HW part of EXTOLL can be parted into three main blocks as shown in figure 4.1. The
first block is the host interface which is used to communicate with the host CPU, enabling
communication of EXTOLL with the rest of the node.

Figure 4.1: EXTOLL Block Diagram

The second block offers the actual NIC functionality. It is used to transform the
command- and data packets sent through the host interface to network packets and
vice versa. The NIC features the VELO unit for a low latency transfer of small messages
using two sided communication, which will be described in more detail in section 4.6
on page 153. For larger block transfers the RMA unit is leveraged, featuring one sided
communication. The Address Translation Unit (ATU) offers fast address translations from
virtual to physical addresses for the RMA. The Shared Memory Functional Unit (SMFU)
enables multiple nodes to share their main memory without special SW requirements. The
last unit in this block is the control and status register file required to configure EXTOLL as
well as acquire debug and status information.

The last block is the network itself including the crossbar described in chapter 3 on
page 63. The connection between the network and the NIC is done using NPs, described
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in more detail in section 4.5 on page 151. The LPs are used for the physical connection
between nodes.

The following sections first describe all modules of EXTOLL that have been implemented
in a team effort at the CAG and have thus not been part of this thesis. Nevertheless, as
EXTOLL only works as a whole, each unit and individual contribution is important to be
able to achieve the outstanding performance values.

4.1.1 Host Interface

The host interface, which is depicted green in figure 4.1 on the preceding page, is used to
connect EXTOLL to the host system. Today’s mainstream CPU architectures offer three
different peripheral interfaces: HT [25], PCIe [29] or QPI [27]. The preferred host interface
of EXTOLL is HT, as it offers a very low latency through a direct connection to Advanced
Micro Devices (AMD) Opteron processors [114] [115] without intermediate switch- or bridge
chips. In addition, it has explicitly been developed to not only connect multiple CPUs
in a multi socket system, but also support peripheral connections through an expansion
slot called HTX. The specification is openly available and may also be used freely for
research purposes. EXTOLL uses an HT-core that has been developed at the CAG as
part of a diploma thesis [26]. The core offers a high throughput and low latency interface
leveraging all advantages of HT.

As alternative interface QPI is also of interest. It offers comparable performance and
functionality as HT, directly connecting Intel CPUs [116] with each other. It has been de-
veloped for the same purpose as HT. The main drawback however is, that the specification
is not open and freely available and it is hard to obtain a license and thus the right to use
this interface. In addition, an explicit specification of an expansion slot is missing, making
it necessary to adapt a CPU socket connection for that matter.

To be able to target a more wide spread environment and not be limited solely to the
AMD ecosystem, the choice to not only integrate HT but also PCIe has been made. PCIe
offers less performance than HT due to its protocol overhead and the fact that in most
available machines PCIe is not directly connected to the host CPU, but requires either
one or multiple switch- or bridge chips. The latter drawback is likely to change, since
more and more CPUs offer or will offer a direct PCIe interface, thus reducing the latency
penalty to a minimum. Examples for such processors are Intel’s MIC (Many Integrated
Cores) architecture [116] [117] or their Ivy Bridge generation of server CPUs.
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PCIe is the quasi standard for adapter cards and therefore it is required to also have
PCIe as host interface in EXTOLL, in order to be fully compatible with now available and
future systems. Therefore it has been added as a second option in EXTOLL.

Other host interfaces are no longer existent in today’s ecosystems and therefore not
discussed here. Examples are Industry Standard Architecture (ISA), Peripheral Compo-
nent Interconnect (PCI) or PCI-eXtended (PCI-X). All these interfaces no longer offer a
competitive latency or bandwidth for any application.

Figure 4.2: EXTOLL Host Interface Connectivity Design Space

The difficulty when designing a chip with multiple and incompatible host interfaces
is the question how to connect these with the internal FUs in an efficient way. Figure 4.2
depicts the design decisions that have to be made in that case. Essentially there are
two options, the first option is to use a dynamic approach. Dynamic means in that case
that the interfaces can either be used concurrently or that SW can switch between them
during runtime. However, changing the interfaces dynamically during runtime causes
various problems. One is that the order of packets sent from EXTOLL to the host cannot
be maintained during the transition, as the interfaces have different latencies and no
synchronization mechanism. This can cause problems for some applications.

Another and more serious problem are outstanding read requests which can occur in
both directions. It has to be made sure that the receiving part can complete transactions if
an interface switch between two or more requests is done. Both problems can be avoided
when it is made sure that EXTOLL is idle during the switching process. A physical
problem however occurs when connecting two or more host interfaces to a chip. The
connectivity required to and from the chip, due to the high bandwidth offered by modern
interfaces, is tremendous. This can be resolved when designing a new mainboard for a
system and directly placing the chip on that printed circuit board (PCB). This however
is very cost intensive and has to be repeated with every processor generation or family.
When using EXTOLL on an add-in card, that problem cannot be resolved as PCIe and
HT have interfering physical constraints for their add-in cards, making it impossible to
comply to both constraint sets at the same time.
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The second option is to statically switch between the interfaces. This means that a
multiplexer is used to switch between the interfaces at a point where both have a common
interface. That multiplexer can only be changed either on power-up, i.e. before the system
has booted or is fixed for all time. Consequently only one of these two interfaces can be
used during operation. This keeps the HW simpler, as no support for multiple interfaces
is required in the FUs.

As HT does not support hot-plugging1 and due to the fact that designing a new PCB
for a host system is too expensive, the static approach is to be favored for the first version
of EXTOLL. The concept of using two interfaces however remains interesting for future
implementations, once the bandwidth offered on the network side exceeds the host
interface capabilities. In this case it might be interesting to use HT only for latency
sensitive applications and PCIe for other communication types, like storage or control
applications. Another possibility is of course to implement the same host interface twice
and leverage the increased bandwidth in the same way.

As EXTOLL started as a development solely for HT, the internally used HyperTransport
on-chip Protocol (HToC) packet specification has been developed to reduce the packet
translation to a minimum when translating the packet from HT to HToC. This translation
is required to add information needed for the routing of packets through the on-chip
crossbar HTAX described in section 4.1.2.

Thus, a bridge unit is necessary to map the PCIe protocol to HToC, this unit is described
in detail in section 4.4 on page 147.

4.1.2 HTAX

Some sort of switching is required to be able to connect multiple FUs to a single host
interface. In EXTOLL, this role is fulfilled by the HTAX. It connects all FUs present in
the NIC part of EXTOLL to the host interface. It is a protocol agnostic on-chip network
specified and developed by Dr. Heiner Litz [113] [118]. It is capable to send packets as
short as two phits back to back, ensuring the highest possible bandwidth one can achieve
on chip. In contrast to an off-chip network, the focus of this crossbar design is to be
able to send small packets, based on the host interface MTU very efficiently and to avoid
buffering. Additionally, the design does not require a complex flow control or features

1according to the specification hot-plugging is supported, but has never actually been implemented in the
AMD Opteron processors, thus making it unusable.
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like multicasting. Thus, the arbitration needs to be faster than in off-chip networks, to be
able to efficiently use the available bandwidth.

The HToC protocol is utilized on top of the HTAX by all FUs. It has also been developed
by Dr. Heiner Litz [119] as part of an internal work paper. It is kept close to the HT specifi-
cation to avoid latency inflicting protocol translation layers between the host interface and
the FUs.

4.1.3 Register File

The Register File (RF) is used to control all functionality offered by EXTOLL. Additionally,
all debug information are collected here and can be read by SW. The RF is automatically
generated using the Register File Surrogate (RFS) tool chain. RFS is also an internal
development at the CAG [110].

Figure 4.3: EXTOLL Register File Tool Flow

This tool chain reads a XML based description, describing all required registers defined
by the designers of each module, and generates the whole environment required for a
successful implementation, from the RTL code over the Linux kernel driver, the verification
environment to the documentation as illustrated in figure 4.3. Using RFS ensures the
integrity of all four important blocks at all time, reducing the risk of inconsistencies
between one of these blocks.

138



4.1 HW Overview

4.1.4 ATU

The ATU supports the RMA unit with the translation of virtual addresses from a thread to
physical addresses [120]. Usually this task requires the infliction of the OS, resulting in a
scheduling of processing threads on the host CPUs and therefore adding a lot of latency.
With the help of ATU however this time can be significantly reduced, without loosing
the needed separation of threads and security. Essentially it can be seen as a Memory
Management Unit (MMU) featuring a Translation Look-Aside Buffer (TLB). For more
information about the ATU, the reader is kindly referred to [120].

4.1.5 RMA

The RMA unit has been developed to directly access main memory of remote nodes using
DMA methods and put and get style communication [120]. It is specialized to write or
read larger chunks of data without interfering the application during the whole operation.
The SW only has to write a descriptor to the unit with either a virtual- or physical address
from where to where data has to be written or read. The RMA then works independently
on this task and notifies the application once it has finished the operation, thus offering
complete asynchronous communication.

An address translation is necessary in case virtual addresses are used to communicate,
as RMA needs to apprehend the physical addresses to read from or write to. This required
address translation is done leveraging the supporting unit ATU, described in section 4.1.4.

Compared to VELO, the start-up latency of the RMA is higher. As the message size
increases, the latency gap between these two units decreases and at some point it is
more effective to use RMA instead of VELO, as illustrated in figure 4.4 on the next
page. The given figure shows results of the first revision of EXTOLL, where both units
where implemented less pipelined and have now been redesigned completely, but the
relation between the two will remain roughly the same. [120] and [94] offer more detailed
information on the RMA unit.

4.1.6 SMFU

The SMFU is the third sending and receiving unit in the NIC part of EXTOLL. It provides
a way to forward load and store operations to remote memory locations without SW
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Figure 4.4: Ping-Pong Latency Results for RMA and VELO in EXTOLL R1 [94]

interference by directly forwarding HT or PCIe transactions over the EXTOLL network
[121]. It therefore offers an efficient HW support for the Partitioned Global Address Space
(PGAS) programming paradigm [122]. It transparently forwards packets from one node
to another. Applications can thus access remote memory in the exact same way as local
memory.

4.1.7 LP

The LP ensures an error free transmission of packets through the EXTOLL network [98].
Every packet is protected using a strong CRC before it is sent on the physical connection
between two systems. Upon reception, the integrity of each packet is checked and in case
an error is detected it is marked as erroneous. Additionally a retransmission is triggered
on the link level and the erroneous packet and all following are retransmitted, ensuring the
packet order and integrity with the lowest possible latency. This is done fully transparent
to all other modules inside EXTOLL. The link level retransmission is faster and results in
lower latencies compared to an end-to-end correction approach, due to the fact that errors
are already detected at the physical medium and packets are immediately corrected at the
earliest stage, avoiding a complete round-trip.

Figure 4.5 on the facing page again depicts the block diagram of EXTOLL. All modules
that have been introduced so far, where developed by other team members, as such a large
design cannot be implemented by a single person, but requires a team effort These units
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Figure 4.5: EXTOLL R2 Block Diagram with highlighted Modules

are marked gray. The other modules where developed during the course of this thesis and
are now described in depth in the following sections.

4.2 Crossbar

The crossbar forms the backbone of the EXTOLL network. It is introduced in depth in
section 3.8 on page 93.

4.3 HTAX Bridge

The HT-Core as well as PCIe-Cores offer only a single, FIFO-based interface to connect a
single module. These FIFOs are required to handle the clock domain crossing, as these
cores can operate on different clock speeds depending on the host CPU and the bios
implementation. However, EXTOLL requires the connection of multiple units to these
interfaces, which is why the HTAX has been integrated. The interfaces on host side and
the HTAX are incompatible. Hence a bridging module is required that adapts the FIFO-
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based interface of the host side to the HTAX interface. The following sections analyze the
required functionality and describe the implementation of this bridging module.

4.3.1 Design Space Analysis

To avoid HOL and deadlocks, both phenomenons are described in section 3.4 on page 70,
the HT-Core offers not one, but three independent FIFO interfaces, one for each VC that
is defined in the HT specification for non-coherent devices. These three VCs are: Posted,
for all write commands that do not require a completion notification, nonposted, for read
requests and write commands that do require a completion and response, for read responses
and write completion notifications.

EXTOLL includes the on-chip crossbar HTAX with its protocol HToC, as already dis-
cussed in section 4.1.2 on page 137, to not only enable multiple FUs to communicate with
each other, but also to connect them to the host interface. In addition to the protocol
conversion from HT to HToC, some sort of routing is required for packets from the host
side, to be able to address the correct FU inside EXTOLL. Finally a source tag administration
is required.

Source tags are used in both HT and PCIe to uniquely match packets from the response
channel to the originating request from the nonposted channel. For that purpose, HT offers
32 tags. It has to be ensured that each tag is only used once at a time, to be able to do the
matching uniquely upon reception of responses.

Figure 4.6: HTAX Bridge Design Space Diagram

Figure 4.6 summarizes the different aspects of design decisions and requirements that
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have to be made, when designing a bridging module from the HT packet format to the
HToC format. The first requirement is to handle the VCs properly, so that no deadlocks
can occur. This can be done either by a single unit that is able to handle multiple streams
independently without blocking other packets once one VC is blocked, or by using
multiple independent units, one for each VC. The second option is deadlock free by
design, as each unit is connected to a single FIFO interface. Since the HTAX specification
only allows a single outport to be requested at a time, it is not possible to implement a
bridging module that connects all three FIFO interfaces with a single HTAX port. The
specification only allows to request multiple VCs to be requested to the same outport, but
not multiple outports at the same time. This has been done to avoid a more complex and
time consuming request-grant-acknowledge scheme to be used in the on-chip crossbar
in favor for a more simple and faster request-grant scheme. A scenario can easily be
generated where a FU is waiting for a packet which cannot be delivered due to another
packet from a different VC that blocks the crossbar, if only one module of the bridge is
responsible for all VCs. Consequently, deadlocks and HOL can only be avoided, if discrete
ports for each VC are utilized.

The second task that needs to be handled is the management of the available source tags.
Since there are multiple units connected to the host, either a centralized administration of
these tags is necessary or the available tags need to be distributed among all units. The
statical distribution of tags is not very efficient, as there are phases where a single unit
requires a lot of tags in order to be able to achieve its full capabilities and there are phases
where another unit requires more tags. This leaves only the dynamic distribution, the
question where this administration resides remains. An exclusive unit that is responsible
solely for tag arbitration between all FUs requires a lot of connectivity across the chip as
all FUs need to be connected to it. In addition, each FU then requires an extra interface
to request a tag, which adds additional latency. The most efficient way is to implement
the tag administration, somewhere along the path from the FU to the HT-Core — in the
HTAX Bridge. This unit is the central and single connection between the host and HTAX.
Each and every packet has to traverse it anyway, making it an ideal candidate for the
job. Available tags can however only be granted in a first-come-first-serve manner, as the
HTAX interface does not reveal the sender of a request in advance.

It is not only beneficial to do this in the bridge, but in order to be able to route responses
back to its originating unit, some sort of mapping is required anyway, as responses to
nonposted packets do not contain any target information. They aree routed using said
source tags, making it necessary to store the information to which port a response needs to
be forwarded anyway.
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As just explained, responses from host to EXTOLL are routed through an unique source
tag assigned and administered by the HTAX Bridge. However read- and write requests
from the host side also need to be forwarded to their target FU. Hence some sort of routing
is required. The only usable field within the packet header is the address. The PCIe
configuration space, which is also used for HT, allows in theory the setup of up to six
32 bit address ranges or up to three 64 bit address ranges, the so called base address
registers (BARs). These can be used to route packets to different targets, as they are
pre-decoded by the host interface cores, if six small or any combination of small and large
BARs are sufficient. In reality however, it is often not possible to set up multiple large
BARs, due to an erroneous BIOS implementation of vendors. This restriction can change
with every BIOS version or vendor. In order to be less dependent on the functionality of
the BARs it is desired to have some alternative at hand. As one can only use the address of
packets, interval routing is the only alternative that can be implemented to enable routing
capabilities.

4.3.2 Implementation

The overall block diagram of the HTAX Bridge can be seen in figure 4.7 on the next page. To
avoid deadlocks and HOL the direction towards the crossbar is split into three units, one
for each VC. Each of these units is connected to one of the FIFO interfaces of the HT-Core
and works independently.

The ID Map in the center of the block diagram is a combination of a RAM, used for the
mapping of tags and additional information, and a FIFO, which holds all available source
tags. This FIFO is initialized after reset with all available tags. One tag is removed every
time a request occurs. A tag is added again when a response returns. Consequently, there
are no tags left and no further nonposted packets can be processed when this FIFO is empty.

As it has been decided to use a centralized tag administration in the bridge, each FU
uses and manages its own tag domain. It has to ensure that each tag of its own domain is
only used once at a time when sending requests. HToC nonposted packet therefore do not
only contain a source tag field, but also a field with an ID for the originating unit, making
it possible to separate the domains.

A mapping is done in the bridge for each nonposted packet traversing the unit from
HTAX to the host. The tag assigned by the FU is replaced with a source tag from the host
domain and the originating FU as well as the original tag are stored in a look-up-table.
The originating unit is required to be able to route the response upon arrival, the tag on
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Figure 4.7: HTAX Bridge Block Diagram

the other hand is required by the targeted unit to be able to match the response to its own
requests. Once the response from the host arrives, this tag is freed again and the response
can be forwarded to the correct unit. Figure 4.8 on the following page shows an example
where functional unit 0 sets a request in the EXTOLL tag domain to main memory with tag B.
This request get mapped to tag 1 in the Host tag domain and once the response is received,
mapped back to its original value B and forwarded to the originating unit.

Units for posted and nonposted VC in the direction towards the HTAX are equipped with
an interval router to be able to target multiple ports. It compares in parallel the incoming
address with upper- and lower bound registers, one set for each interval. These intervals
are initialized by the management SW. Each interval can be set up to an arbitrary target
outport and also supports an arbitrary interval size. Additionally, the allowed VCs for
that outport can be set using a mask to avoid unsupported traffic at a FU. SW has to take
care that these intervals do not overlap. The appropriate target port will be requested if
an incoming address is larger than the lower- but smaller than the upper bound of an
interval. Packets not matching any of the intervals are forwarded to the register file and
tagged as erroneous. There, they are discarded and an error response is generated in case
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Figure 4.8: HTAX Bridge Tag Mapping Example

of nonposted packets. This ensures that no requests stay pending, occupying source tags
and at some point stalling the whole system, due to run out tags. The Register File has
been chosen for dropping and responding erroneous packets instead of the HTAX-Bridge,
as the required logic and paths for response generation already exists there, making it
more resource efficient, although these packets of course consume some bandwidth on
the HTAX. This case however is considered to be occurring rarely, thus the bandwidth
consumption can be neglected.

The path from HTAX to HT is also split in three independent units as it is done in the
opposing direction. This is not really a requirement in this direction, as the HTAX offers
the possibility to grant multiple VCs to avoid deadlocks, but since the HTAX ports are
available and required for the path towards the crossbar, there is no drawback to also
doing the separation in this direction. In contrast, as the HT-Core might run at a higher
clock rate as the rest of the chip, the additional bandwidth offered through the multiple
ports can be leveraged to balance the bandwidths capabilities of both clock domains.

The resulting design requires only two clock cycles to interpret packets and their route
and requesting the corresponding target port at the HTAX interface, making it a true low
latency design. In order to be able to send packets back-to-back, the routing interpretation
and target requesting is decoupled and can thus be overlapped.
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4.4 PCI Express Bridge

Using HT as host interface in EXTOLL for Intel [116] based systems is not possible, as Intel
CPUs only support QPI or PCIe. PCIe lends itself as an addition for HT, as it is currently
very difficult to obtain a license for QPI and the fact that PCIe is also available in AMD
[114] based systems2. In order to be able to use the same FUs in EXTOLL for PCIe and HT
a bridging module is required, as all units use the HToC packet specification derived from
HT. Without such a bridging module a redesign of all units connected to the host interface
is required, doubling the implementation and especially the verification effort to ensure
a working design also for PCIe. Consequently, the costs for an ASIC implementation
increase as two independent chips have to be produced, one for HT and one for PCIe.
Such an error prone, time as well as money consuming second chip is to be avoided, thus
making a bridging module desirable.

PCIe and HT use different terms for the same matter. To avoid confusions only the
nomenclature of HT is used in this work. Table 4.1 gives an overview of the most common
terms used and their corresponding substitute in both specifications.

HT PCIe

Packet Transaction Layer Packet (TLP)
Read Response Completion

Write Packet Write Request Packet

Table 4.1: HT and corresponding PCIe Nomenclatures

Although both interfaces share some common features, they differ in others. Both
interfaces use a credit based flow control and use packets to transmit data, the flow control
however is completely handled in the cores, transparent for the user. Additionally both
use VCs to avoid deadlocks, PCIe however only uses two, one for requests and one for
responses, whereas HT has three and distinguishes not only writes from reads, but also
writes or reads that require a response (nonposted channel) and writes that do not require a
response (posted channel).

The second difference that has to be taken into account is the MTU. HT is capable of
sending 64 byte of payload in a single packet, whereas PCIe can be configured to support
a payload of up to 256 byte.

This increased payload capability can be leveraged to increase the bandwidth efficiency,
as the amount of required headers can be reduced in comparison to the payload. Making

2The future of HT as a peripheral interconnect is unclear for upcoming AMD CPUs
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HT 3.1 PCIe 2.0

VCs 3 2
MTU 64 byte up to 256 byte

Source Tags 32 up to 256
max. Bandwidth 51.2 GB/s 15 GB/s

Read Latency 147 ns 240 ns
Number of Lanes 8 or 16 1, 4, 8 or 16

Table 4.2: HT and PCIe Comparison [123]

use of this larger MTU for packets towards the host however cannot be done solely in
the PCIe Bridge, but must already be supported in the FUs that generate the transmitted
packets. In the opposite direction, from the host to EXTOLL, it is also not required to check
the length as the SW driver can either make sure that no packet sizes are sent that the
receiving FU cannot handle or the PCIe-Core can be configured to only support the same
MTU as HT offers.

All packets that require a response are again tagged with a source tag, in order to be able
to map received responses back to their originating read requests. HT offers 32 such tags
whereas PCIe can again be configured to support up to 256 tags.

There are some more differences concerning the physical specification, these however
are transparent to the user and therefore not explicitly mentioned. [123] gives a good
overview of these differences, which are also summarized in table 4.2. Noteable is the
read latency of both interfaces.

4.4.1 Requirements

The target for this implementation is not to implement a fully compatible bridging module
that is capable of mapping all possible packet types in both directions, but to implement a
fast and lean protocol converter that is specialized for the EXTOLL environment.

The bridge itself must be designed in a way that it is either an add-in replacement for
the HT-Core or can be instantiated in a way that both I/O interfaces, PCIe and HT can be
used with the capability to switch between these two at power-up or with a fuse upon
assembly. Therefore it is beneficial to have the same interface on the host side as the
HT-Core to ease the connection to the HTAX Bridge.

As it is not the target to implement a fully functional PCIe-Core, the bridge must be
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as vendor unspecific as possible to ease the adaption to any new PCIe Core vendor. A
mapping of source tags, which has until now been handled in the HTAX Bridge, described
in section 4.3 on page 141, needs to be handled in the PCIe Bridge when leveraging PCIe,
in order to be able to leverage the possibility of more outstanding read requests.

During the implementation of the HTAX Bridge the decision to use a centralized source
tag management and implement separate paths for the different VCs has been made. The
design space for the PCIe Bridge looks exactly the same, without the routing decision
aspect, as this is still done in the HTAX Bridge. The resulting design space diagram is
illustrated in figure 4.9.

Figure 4.9: PCIe Bridge Design Space Diagram

Due to the decisions made earlier, the same design choices are also applied for the PCIe
Bridge. Furthermore, it must be made sure that unsupported packet types are not dropped
silently, but handled in a way that the sending unit (or host) remains intact and the normal
operation is not disturbed.

4.4.2 Implementation

In order to be able to use one of two host interfaces in the same device a multiplexer-
demultiplexer structure is located between the host interfaces and the HTAX Bridge as
figure 4.1 on page 134 depicts, making it possible to switch between the two interfaces.

The bridge can be divided into the two directions packets can pass through and within
each direction split into three independent sub-modules, one for each VC of the HT
domain as depicted in figure 4.10 on page 151. The same internal layout has been chosen
to leverage the high bandwidth capabilities of the HTAX Bridge and to have a common
interface for both, PCIe and HT in the direction towards EXTOLL. The block diagram
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therefore looks almost identical as the one from the HTAX Bridge with an additional Vendor
Layer and a second Tag Map.

The Vendor Layer inside the bridge has been added in order to be as independent as
possible from the PCIe-Core vendor specific interface. Only this module has to be adapted
in case a different FPGA vendor with its own PCIe-Core or another ASIC implementation
is to be chosen in future designs. This layer is also responsible for splitting up the two
VCs of PCIe to the three VCs used in EXTOLL and HT. This splitting is done according
to the arriving packet type and the HT VC usage. Memory writes, atomic operations and
messages are forwarded to the posted channel, memory reads, I/O reads, I/O writes, config reads
and config writes are all forwarded to the nonposted channel and responses are forwarded to
the response channel.

In contrast to the HTAX Bridge a tag mapping is now required in both directions. In HT
a mapping is only required for nonposted packets leaving EXTOLL in order to be able to
forward the response properly to its originating HTAX port. Other than that, only the tag
itself needs to be replaced as described in the example given in figure 4.8 on page 146. The
exact same functionality is also required in the PCIe case. In addtion, a second Tag Map is
required for read requests arriving from the host CPU, as PCIe response packets require
additional information that are suited in the corresponding read request and cannot be
mapped to any of the available HToC fields. Storing these fields in the Tag Map makes it
possible to retrieve them again once the response needs to be mapped back to PCIe.

Packets arriving at the bridge in direction towards the PCIe Core can be mapped without
any error handling requirements, as all packets coming from any EXTOLL FU are known
and well defined and can therefore be mapped to a corresponding PCIe packet. These
Packets only differ in the header encoding itself and the already mentioned source tag. The
increased amount of tags can be leveraged to effectively increase the amount of pending
read request by doing the mapping of the source tags in the PCIe Bridge instead in the
HTAX Bridge in the PCIe case.

The opposite direction, from PCIe to HToC however has more complexity as not only
packets that can be generated by EXTOLL have to be taken into account, but all specified
packet types need to be handled somehow. PCIe has multiple different packet types; PCIe
messages, memory write- and read requests, I/O write- and read requests, configuration write-
and read requests and atomic operations. Whereas memory-, I/O and configuration request
packets can be uniquely mapped to apposite HToC packets, it is more difficult to map
messages and atomic operations. Messages can contain anything, as this is a container format
for proprietary packets. All arriving messages are discarded or forwarded to a special

150



4.5 Network Port

Figure 4.10: PCIe Bridge Block Diagram

debugging interface, as EXTOLL cannot decode such packets and the HToC specification
does not support proprietary packets. The same applies for atomic operations, they are also
either discarded or extracted from the packet stream to the debugging interface. Although
HT supports atomic operations, not all atomics can be mapped uniquely, as there are more
operations specified in PCIe as in HT. In addition, EXTOLL currently does not support
atomics, so forwarding them makes no sense for the time being.

The above described implementation results in an efficient bridging module with a very
low latency of only a few cycles. The exact amount of cycles depends on the vendor layer,
the translation itself requires only three clock cycles.

4.5 Network Port

The NP is the entry and exit point to and from the network part of EXTOLL. Hence, its
main purpose is to enable communication between the network crossbar and the FUs. This
communication can be seen as two independent data streams, which is best implemented

151



4 EXTOLL

also using two separate units as shown in the block diagram, illustrated in figure 4.11.
The Network Port Sender handles all communication from the FU to the crossbar. The
Network Port Receiver handles all traffic from the crossbar to the FU. As already mentioned
in section 3.8.3 on page 101, the target FU of a packet is encoded in the header and is
addressable through the network only if packets reached their target node. Consequently,
each FU has an exclusive connection to a single NP.

Figure 4.11: NP Block Diagram

FUs in EXTOLL are part of the NIC, which is separated from the actual network.
Consequently these units are not aware of the credit based flow control, the concept of
FCCs and the packet framing used in the network. The concept of FCCs is described in
section 3.7 on page 82. The NP ensures that flow control and framing are maintained and
assigns all packets to an outgoing FCC.

The Network Port Sender ensures that enough credits are available before injecting packets
into the network and frames all data according to the EXTOLL network specification. In
order to be able to do that it has to check the SOP cell, that has already been added by the
FU3, for a correct encoding and pads the payload of the packet with an EOP cell where
the packet CRC is suited. This CRC will be added by the LP at a later stage. A small send
buffer is used to store outgoing packets in case no credits are available and to buffer data
while streaming to compensate the required additional cycle for EOP padding.

The Network Port Receiver retrieves packets from the network. It is equipped with a
buffer, as it has to be able to accept as many packets as credits are available. Framing
information that are not required anymore are removed during packet reception and the

3the SOP cell includes the target node and VPID as well as the TC of the packet and has therefore to be
added by the FU
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interface is adapted to the requirements of the connected FU. Credits are freed again after
the FU has read the part of a packet that occupied a single credit to ensure a seamless
packet stream. This way, always the maximum amount of credits are available in the
network.

As it is ensured by the specification that packets arrive en bloc from the network, a
cut-through approach is used in the Network Port Receiver, enabling the lowest possible
latency for packet reception. However, as packets can be corrupted during transmission,
packet errors are signaled, but forwarded to the FU and have to be resolved there. If a FU
is not capable of handling such errors, the NP also offers a store-and-forward mode. In this
mode packets are buffered until it is known whether a transmission error occurred or not.
Once the faultless reception of the packet has been detected, it is forwarded to the FU. A
FIFO with speculative shift-in capabilities, as it has been introduced in section 2.2.2 on
page 17, is leveraged to realize this feature. Once an erroneous packet has been detected,
the write pointer of the FIFO is set back to the value it had before the packet started.
Enabling store-and-forward of course adds additional latency to the packet transmission,
but simplifies the logic of FUs, as no error handling has to be implemented there. As
a result, the traffic on the host-interface can be reduced, as only validated packets are
written to main memory, freeing a valuable resource.

Finally a point to inject and extract packets from the network for debugging purposes is
preferred. This enables the SW engineer to inject packets byte by byte into the network,
making it possible to, for example, force error conditions and check the resulting behavior
in a real system instead of only in simulation. The extraction of packets can be helpful in
case the connected FU is for some reason blocked and consequently no progress is made.
Packets can then safely be extracted without a loss of packets, ensuring integrity of all
messages. For this purpose, the NP offers an interface to the register file, making it possible
to shift-in and -out single quadwords. As every shift-in requires a RF-write, shift-outs a
RF-read respectively, this interface does not offer a high-performance. But as it is only
used in faulty states or for debugging purposes, it forms no performance bottleneck for
everyday workloads.

4.6 VELO

VELO is one of the three key FUs enabling communication in EXTOLL. First an introduc-
tion of the unit itself and its status is given, followed by a section describing the redesign
towards the R2 implementation.
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4.6.1 Introduction

VELO has specifically been designed to enable the transmission of small messages with a
size of up to one cache line, i.e. 64 byte, with the lowest possible latency [124], including
not only the transmission through the network, but also taking the SW overhead into
account. Therefore it combines the advantages of PIO and DMA data transmission. A
sender writes the command and data in-line to VELO using PIO in a single write access
to the device, which has less overhead compared to DMA upon message start-up. The
reception of messages however is handled using a circular buffer in main memory, called
mailbox, where applications can use polling to check for new messages. Polling blocks
the host CPU as it continuously reads a memory address, but for low latency applications
there is no mechanism to receive data faster. Traditional message reception involves the
OS and uses interrupts, which requires at least two context switches in the host CPU, thus
adding latency.

Meanwhile, the unit is stateless and fully virtualized, allowing secure user-level com-
munication without kernel involvement for multiple threads. The upper bound of 64 byte
has been chosen as it is the largest data chunk that can be written atomically using PIO.

Figure 4.12: VELO R1 Block Diagram

The two tasks of message transmission and reception are completely independent of
each other. VELO is therefore split in two units, as it is depicted in figure 4.12. Both units
share a single NP- and HTAX port respectively. However, they require only the receive- or
send- part of each port, as each part of the unit itself is only unidirectional. In addition,
both units are single stage based and are thus only able to sequentially process packets.

The VELO Requester is responsible for receiving messages from the host and injecting
these into the network. Messages are received over the HTAX, prepend with routing
information and a status word before they are forwarded to the NP.

The status word encodes all information required to be able to write the message in the
main memory on the target side. Figure 4.13 on the next page illustrates the layout of this
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Figure 4.13: VELO R1 Status Word

status word. This word is formed using information provided in the address of incoming
HToC packets, which is illustrated in figure 4.14. The source node ID information is a static
information provided by the RF. The function of target-, source VPID as well as source node
fields are quite obvious. Length field gives the amount of quadwords of the complete
message. Count on the other hand is used by the receiving SW to detect whether the
current message is part of a split message or not, the problem of split messages has been
laid out in section 2.3 on page 22. The Message Type Tag (MTT) can be used by applications
to distinguish different types of messages, this field is just passed through the unit without
triggering any functionality. The target node field in the address is used to look up the
routing string that is added to the network packet required to reach this node.

Figure 4.14: VELO R1 Address Encoding

The VELO Completer on the other side receives messages from the network and writes
them into the hosts main memory. All necessary steps from receiving the network packet
to writing into the main memory circular buffer are processed sequentially. There is a small
segment of continuously allocated and pinned main memory for each process which can
be mapped in the user address space, so that no kernel-level communication is necessary
for data reception. This memory segment is used as a circular buffer with a fixed slot size
of one cache line, which is 64 byte. The first quadword written into this slot is always
the above mentioned status word, therefore only 56 byte can be used for actual payload
in each slot. This way however, the receiving SW always knows whether the next slot
contains valid data or not. Once it has read the slot completely, at least the status word
needs to be reset to zero in order not to read it as a valid message upon the next iteration
of the circular buffer. A second slot is used for the remaining bytes in case a message is
larger than 56 byte. In this case the status word is repeated in the next slot.

An example of the slot usage is given in figure 4.15 on the following page. As it can be
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Figure 4.15: VELO R1 Ring Buffer Usage

seen the first message spans over two slots, whereas the second and third message fit into
a single slot.

4.6.2 VELO Evaluation

The VELO R1 implementation works and performs well as shown in [124]. Nevertheless,
there are a number of shortcomings that can be improved to achieve a higher packet
throughput and increase the overall usability. The following sections explain the short-
comings of the R1 implementation, followed by an description on how these restrictions
have been resolved.

First of all, VELO depends on a certain behavior of the write combining buffer. Larger
messages can be split into multiple smaller parts by the host CPU. Current Intel CPUs
generally never combine writes unless they fill a complete cache line. AMD CPUs may
also split combining buffers. Both leads to, more or less serious problems, as introduced
in section 2.3 on page 22.

The current implementation treats these split messages as independent messages on
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the VELO Requester side and resolves this issue in SW upon reception, thus reducing
bandwidth efficiency of both, the network and the host interface by adding more overhead
and increasing the SW overhead. In addition, this behavior is likely to change with new
CPUs generations or host interconnects and can thus become a problem.

While it is acceptable that the size of messages is limited, a payload that is larger than
64 bytes can be extremely useful. For example, 64 byte are not enough to carry a maximum
sized Active Message for GASnet [125]. 64 byte are very small if a MPI header including
some payload has to be transported. A maximum size of two to 16 cache lines can be
considered useful, which results in a message size of 128 to 1024 byte.

All size and destination information required for a packet are encoded via address
mapping due to the possibility of split packets. This causes a few problems, the first
problem is in relation to the usage of address space itself. A large address space is required
for this encoding, since every destination node, source VPID and target VPID combination
requires its own page to ensure that VPIDs can only reach permitted destinations. This
may be a problem if a platform firmware or HW does not support large address mappings,
which is very probably the case with commercial off the shelf bridges and firmwares.
Obviously supporting more than 64 nodes or 32 sending VPIDs increases the required
address space as it can be seen in figure 4.14 on page 155. All required bits cannot be
mapped into the available address bits once any of the fields grows to large. The encoding
space in the status word on the other hand is large enough to cover a large number of target
nodes and processes.

Secondly, certain CPUs may not even have a large enough physical address space to
scale to large networks, i.e. current AMD based systems only provide a 48 bit address
space, whereas the address space of Intel based systems is even smaller, only providing
32 bit.

The large address space requirements also have an effect in relation to TLB misses.
Every transmission of a messages causes a virtual to physical address translation to occur
in the host CPU. If every destination has its own page, sending to a number of different
destination causes the same number of translations. This may either be slow, i.e. a TLB
miss, or waste TLB entries which are also direly needed for actual computation. A design
that works with only a few pages per source VPID is therefore beneficial.

In addition, it is important to be able to set the TC when sending a message in order to
be able to separate different message flows for I/O, inter process communication (IPC),
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et cetera, avoiding deadlocks through the network on the application level. Thus, the
allowed TCs for each VPID must be selectable by supervisor software only.

On the VELO Completer side tests have shown that the unit is not able to send HToC
packets utilizing all of the available bandwidth due to its sequential design. Hence, this
part forms the bottleneck when using VELO as communication engine. By pipelining the
design more bandwidth can be achieved.

The current implementation also lacks an efficient support of interrupts, which enable
better asynchronous protocols. Additionally it is necessary to support large enough receive
buffers. In the current implementation only a single continuous main memory area is
used as reception mailbox, limiting its size tremendously.

Another problem is that messages that are blocked at the VELO Completer due to a
full mailbox are currently dropped after a timeout without any notification mechanism.
Dropping of packets however requires some sort of notification generation to inform the
supervisor SW.

All these considerations lead to a redesign of the VELO Requester and -Completer.

4.6.3 VELO Requester R2

The following shortcomings have been identified in section 4.6.2 on page 156 on the
VELO Requester side. First the possibility of split messages, second the lack of support for
message sizes larger than 64 byte, third the required large address space and fourth the
lack of security. While the VELO Requester is a rather simple unit and is already capable of
sending network packets at full line rate in R1, most of these shortcomings address the
usability of VELO. The new R2 design is targeted to resolve these issues.

The introduction of a Write Combining Buffer within the device is used to remedy most
of the problems at the cost of an additional RAM buffer and some additional cycles of
latency. The main function of this buffer is to collect split messages, store them until all
parts have been received and only then forward them to the VELO Requester. This unit is
described in more detail in section 2.3 on page 22.

When combining host packets in front of VELO the amount of network packets that
are required to send trough the network can be reduced. Each split part of a host packet
is transmitted as a single network packet in R1 of VELO. Thus, removing all split parts
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from the network and only transmit the packet as a whole makes combining of packets
on the receiver side obsolete, making the reception SW simpler and therefore faster, thus
reducing latency as well as the memory footprint.

Adding the Write Combining Buffer also allows a flow control to be added, which ensures
that a host CPU cannot be stalled due to back-pressure of HToC packets, which as well
has been an issue in R1 of EXTOLL. In R1 it has been possible that a read pointer update
cannot not be completed, which is necessary to be able to make progress due to other
outstanding messages and therefore causing a deadlock.

In addition, the buffer also reduces the required address space considerably. Since it
can now be ensured that a message arrives as a whole at the VELO Requester, it is no
longer necessary to encode all information in the address of the HToC packet, which is
transmitted with every part of the message. Only the source VPID and the TC need to be
encoded in the address for security reasons, as only this way it can be ensured that the
transmitting VPID has the privilege to actually use VELO. Instead a status word, as it is
also transmitted through the network, can be used on chip, thus reducing the required
address space considerably. It is now no longer necessary to reserve a page for every
target node and encode the size of packets inside the address.

Figure 4.16 shows the new address encoding. As it can be seen, the amount of fields
is reduced to two and the required address space is smaller nonetheless more VPIDs are
now supported. This solution therefore solves the address space pollution as well as the
TLB problem, as now only one page per process is used compared to the the requirement
of one page per process and target node in R1.

Figure 4.16: VELO R2 Address Encoding

In contrast to the status word used in R1, this new word has wider fields and offers more
functionality. It is illustrated in figure 4.17 on the following page. The target node field is
now 16 bit, thus matching the capabilities of the EXTOLL network. Additionally this field
can be leveraged to encode not the target node, but also a multicast group, enabling VELO
to make use of an EXTOLL crossbar feature, described in section 3.8.4 on page 102. A
single bit is sufficient to distinguish between unicast and multicast addressing. The target
node field is interpreted as multicast ID if this bit is set. The width of the target VPID has
also been increased to ten bit supporting up to 1024 threads on each host making VELO
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fit for the foreseeable future. The Message Type Tag field has been reduced to two bits,
but an additional User Tag is introduced, which more than compensates this restriction.
Interrupts can now be requested on the VELO Completer side with an additional interrupt
bit. An interrupt will be generated once the whole message has been written into main
memory if this bit is set.

Finally, a single field is now used for the length of the message. The value of this field
no longer counts the quadwords of the message, instead a byte count is used and the size
is increased to support messages with a length of up to 2048 byte. Counting bytes has the
advantage that arbitrary messages sizes are possible simplifying the reception SW.

Figure 4.17: VELO R2 Status Word as the Requester receives it from SW

Due to the move of the target node ID field from the address to the status word it is
now no longer possible for system SW to guarantee safety and security in regard to the
destination of a message, as this is now completely handled in the user-level. Therefore
some sort of mechanism has to be put in place to ensure that only privileged processes are
actually writing data to a main memory region through VELO.

A table in the RF with one entry per VPID contains a Protection Domain Identifier
(PDID), which only supervisor SW can change. This PDID is transmitted only through
the network and does not leave the chip to the host side, ensuring that the user-level has
no chance to obtain or change it in the network packet. The VELO Completer checks the
transmitted PDID with its own local table and forwards the message to main memory
only if the source VPID is member of the same Protection Domain as the target VPID.

This PDID is added to the status word in the VELO Requester, therefore this status word
used in the network is different from the one the sending application has issued. The
status word as it is transmitted on the wire is illustrated in figure 4.18 on the facing page.
The PDID has been chosen to be 16 bit wide, to ensure a certain safety and security against
outside attacks. Its width is a trade-off between addressing space in the status word and
security, because choosing it to large requires reducing other functionalities or increasing
the status word, thus increasing overhead.

As it can be seen, the length field is now one bit smaller as it is in the status word sent
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Figure 4.18: VELO R2 Status Word as it is Transmitted Inside the Network

from the application, illustrated in figure 4.17 on the preceding page. This is achieved
without a loss of information by using a different encoding for the length. The value
0 now means that the message is actually one byte long. Due to this recoding it is not
possible to send messages with zero length, but this restriction is not of importance as a
message of zero length only contains the status word without any usable data and will
never be actually transmitted. This recoding is done as there is otherwise not enough bit
space available to encode all fields. Both transformations of this value are done in HW to
avoid the need for the application to do the subtraction upon transmission and addition
upon reception of each message. In HW the clock cycles required for this recoding can be
completely hidden, whereas in SW these cycles are always in the critical path.

4.6.4 VELO Completer R2

In order to improve the bandwidth utilization, it is necessary to split the VELO Completer
into multiple units, i.e. pipelining it, so that the processing of the different sub-tasks can
overlap each other.

As the two main tasks of the VELO Completer is to first fetch and check incoming network
packets and then write them into main memory, leveraging the HTAX, it renders obvious
to realize these two functions in separate units. To ease the flow control and be able to let
both units process messages independently, it is beneficial to decouple these two units
using FIFO buffers, as the HTAX can sometimes stall VELO due to other transmitting
units or an otherwise blocked host interface.

The resulting block diagram is illustrated in figure 4.19 on the following page. The first
unit, called Fetch Unit, is responsible for reading the data from the NP, checking whether
the content of the network packet is a valid VELO message and storing addresses to where
the message has to be written to. There are multiple checks a message has to pass in order
to be forwarded to the next unit. The first one is that, in case of an unicast, the target node
ID field must match the own host ID. In case of multicasts this check is not possible, since
the same field that is used for the target node ID is also used to encode the multicast ID. The
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Figure 4.19: VELO R2 Block Diagram

next check is that the target unit field must also match the ID of VELO. As a third check,
the protection descriptor introduced in section 4.6.3 on page 158 needs to match the value
set in the local table. The final check is that the targeted VPID needs to be enabled, which
means it is initialized and ready to receive data. If one of those checks fail, the message
is discarded and an interrupt is generated, informing the supervisor SW that an error
occurred.

One of the desired optimizations is to be able to have a larger receive buffer per VPID.
The spliced buffer implementation presented in section 2.4 on page 24 can be leveraged to
achieve this. VELO Completer requests a new addresses by using a dedicated interface to
the VHRD. The first address is speculatively requested as soon as a new packet is available
in the NP receive buffer to hide latency, since the VHRD requires a few cycles to respond
with a new address. These cycles are used to perform the above mentioned checks. The
request can then be revoked in case one of the above mentioned checks fails, otherwise the
request is committed and the next request is set as soon as one slot in the mailbox is filled
and the current message requires another slot. Additionally to the larger mailbox support
and exploit of the VHRD, VELO is now able to use not only slots with a size of 64 byte byte,
but also 128 byte, leveraging the larger MTU of PCIe. However this cannot be changed
dynamically from message to message, but can only be enabled upon initialization, as not
only VELO, but also the VHRD and the reception SW needs to be properly initialized.

Valid addresses are stored in a separate FIFO next to the data FIFO, as it is illustrated in
figure 4.19. A timeout option can be enabled if in any case no valid address is returned for
a period of time, again dropping the packet and informing supervisor SW.

The next unit, called Dump Unit, starts generating HToC packets as soon as the first
address is available in the address FIFO. Due to the latency of the VHRD it can be ensured
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that enough data is present in the data FIFO once an address is present in the address
FIFO.

The interrupt bit in the status word on the wire tells the Dump Unit whether to generate
an interrupt or not, once it finished sending a message to main memory. Additionally a
local bitmap disables the possibility to generate an interrupt on a VPID basis.

Due to the support for larger message sizes, messages can now span not only over
two, but over several slots in a queue. To increase the performance of message reception,
this part has also to be revised. Figure 4.20 illustrates the design space concerning the
main memory circular buffer usage. As already described, the previous implementation
repeated the status word, which is also the indicator of the arrival of new data in each slot,
thus wasting one eighth of the available buffer space and bandwidth, but ensuring data
integrity under all conditions.

Figure 4.20: Main Memory Queue Design Space Diagram

The first alternative approach is to use two queues per receiving VPID, one possibly
larger queue for the payload of messages, which is 64 byte aligned, and one for the status
words, which is only 64 bit aligned, the exact size of a single status word. The advantages
of this approach are that there is no need to do a realignment of the data, as all data is
written continuously to the data queue and that the SW only needs to invalidate the status
queue. Disadvantages however are that the receiving SW always has to read at least two
cache lines, which increases the latency for small messages. In addition, the HW has to
monitor not only one, but two queues for their full status. Due to the two queues, read
pointer updates are now required for both queues as well, doubling the RAM usage for
pointer structures and doubling the amount of required RF accesses.
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The above mentioned approach can be improved concerning the latency for small
messages by also aligning the status queue to 64 byte and writing messages with a
payload smaller than 56 byte in-line with the status word to the status queue. This reduces
the latency of the first approach and still keeping its advantages. However it doubles the
main memory usage in respect to the original approach, still has all disadvantages of the
first approach and adds even more complexity to the HW, as it now has to decide where
to store messages. In addition, there is no clean separation of the purpose for the two
queues.

Using only one queue as it is already done in R1 and writing the status word in-line
keeps the memory footprint lower compared to the previously mentioned methods. The
buffer space usage can be improved by writing the status word only in the first slot and
writing an end marker or repeating the status word only in the last slot of the message.
However this requires to read the first slot, interpret the size of the message, then read the
last slot until the end marker is seen and only then can the rest of the message be read,
otherwise it cannot be guaranteed that all data has already been written properly. This
jumping around in the memory thrashes the cache, making an efficient use impossible
and requiring a lot of memory reads.

Another possibility is to keep the scheme of repeating the status word in every slot of
the ring buffer, thus reusing a well known and proven to be working approach. However,
the status word can be moved from the first to the last word of the slot. This has the
advantage that only this way it can be ensured that the slot has been completely written
before SW starts reading it, in case an intermediate bridging device or the host CPU splits
the packets sent from VELO to the main memory. This can be the case when using PCIe as
host interface. Additionally, erroneous packets can now be tagged easily, which has not
been possible in R1, since the error indicator in a network packet resides in the very last
phit, in the EOP cell.

To ensure the minimum amount and size of packets on the host interface, smaller
messages than the slot size minus the status word are written in a way that they do not
start at the beginning of the slot, but at a point that makes it possible to write the data and
the status word in a single HToC packet without having to send a maximum sized packet
just to align the status word to the end of the slot.

Due to its simplicity and the fact that it proved to be working, this last option has
been chosen, keeping a well working scheme, nevertheless improving it considerably.
Figure 4.21 on the next page shows the slot usage of the optimized VELO Completer. The
figure also shows that it is now possible to write into slots with a size of 64 or 128 byte
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(a) (b)

Figure 4.21: VELO Memory Slot Usage for 64 (a) and 128 Byte (b) Slots

leveraging the possibility of larger main memory writes when using PCIe. 64 byte slots
are advantageous when writing a lot of small messages due to the fact that the buffer is
then used more efficiently, as there are not too many unused quadwords between two
messages. However, 128 byte slots are advantageous for larger messages as the need to
repeat the status word can be reduced.

Figure 4.22: VELO R2 Status Word as the Completer writes it into Main Memory

Figure 4.22 shows the status word as it is written into main memory. It is again different
from the other two words used on the wire or sent to the VELO Requester. Target node
and target VPID fields have been removed, as they are obvious to the receiving SW
and therefore redundant. Instead, the according sources have been added to enable
the receiving SW identifying its communication partner without sending additional
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information in the payload section of messages. The protection descriptor has also been
removed, to ensure that malicious SW cannot use it to inject unapproved traffic. Length,
MTT and user tag are the same as in the VELO Requester status word shown in figure 4.17
on page 160. The field EOM is used to indicate that the current slot is the last part of a
message, EOR indicates an error during the transmission through the network. Messages
tagged with EOR can be ignored as the link level retransmission of the LP ensures that the
correct version of this message is received in the next slot. Note that the 1 next the MTT is
used to indicate a valid status word, as it is possible that all fields inside the status word
have a value of zero.

4.6.5 VELO Performance

The performance of VELO can best be measured using micro-benchmarking. For these
tests the FPGA testbed shown in figure 3.50 on page 125 has been utilized. The design
runs at 200 MHz in the NIC and network clock domain and at 300 MHz in the host
interface clock domain. The used hosts are a set of Hewlett-Packard DL-165 machines,
each equipped with two quad-core 2380 Opterons, running at 2.5 GHz, and 8 GB of main
memory.
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Figure 4.23: EXTOLL VELO Latency Comparison

For the first test two hosts are utilized where each one is initialized with a single thread.
These two threads send messages to each other in a ping-pong manner. This test effectively
shows the latency that can be achieved using VELO and the EXTOLL network. Figure 4.23
shows the results, the numbers show the time required for a half-round-trip, including all
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required SW layers. Compared to R1 the latency is smaller in every case. The minimum
latency that can be achieved for a message with a payload of up to eight byte is 0.99 µs
compared to 1.15 µs in R1, a 16 percent improvement. In addition, the gradient of the
curve is smaller as in R1, especially for larger packets.
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Figure 4.24: EXTOLL VELO Bandwidth Comparison

In a second test one thread is initialized solely as a sender, another one as a receiver,
streaming messages from one host to the other. Figure 4.24 shows the achievable band-
width in that configuration. The Write Combining Buffer forms the performance limiting
factor due to its single slot per VPID implementation, as explained in section 2.3 on
page 22. The achievable bandwidth is 891 MB/s. To remove this bottleneck the sender
thread can be set up to utilize two VPIDs of the Write Combining Buffer, thus using two
slots, effectively removing said bottleneck. This improves the bandwidth performance to
921 MB/s. Compared to R1 this is an improvement of 259 percent. This can be explained
with the wider network data interface on the one side, but also the pipelining of the VELO
Completer plays an important role in that matter.

The two performance drops in the R2 plot of both, figure 4.23 on the facing page and
figure 4.24, can be explained through the cache line usage. Exceeding a payload size of
56 byte requires a second cache line on both, the sender and the receiver, requiring two
write- and two read accesses. When more than 112 byte are transmitted a third cache line
is required, again adding another write- and read access.

Table 4.3 on the following page summarizes the collected results and compares them
with results obtained from an InfiniBand QDR adapter [126]. Already the FPGA imple-
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Latency Message Rate Bandwidth
[µ s] [mio. messages/s] [MB/s]

EXTOLL R1 1.15 5 355
EXTOLL R2 0.99 25 921
InfiniBand QDR 1.0 9 3400
EXTOLL ASIC

0.6 100 10000
(estimated)

Table 4.3: EXTOLL R2 VELO Performance

mentation of EXTOLL R2 can compete with current ASIC InfiniBand solutions in respect
to latency and message rate. The bandwidth results are limited due to the relatively low
clock speeds of the FPGA. Estimated values for an ASIC implementation, targeted to be
running at 750 MHz, are even competitive at bandwidth tests.
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5 Conclusion

The goal of this thesis has been to design and develop Hardware Support for Efficient Packet
Processing, thus showing ways to improve the overall performance of packet processing
tasks by improving the key issues, throughput and latency, in today’s packet processing.
These goals have been achieved by identifying bottlenecks and describing solutions to
remove or at least reduce them by using hardware (HW) structures.

All introduced HW structures have been implemented using synthesizable Verilog code
and tested in real world applications using field programmable gate array (FPGA) tech-
nology. These tests are far more reliable as synthetic system level simulations. The results
proof that the proposed architectures are capable of delivering performance improvements
while keeping the resource consumptions in line.

Individual contributions in the first part of this thesis are the arbiter generator and the
first-in-first-outs (FIFOs) implementations with additional features. These implementa-
tions can be leveraged by many applications introduced in chapter 2 on page 7 as well
as in Extended ATOLL (EXTOLL). Their additional capabilities enables the designer for
example to efficiently implement a packet store-and-forward mechanism, as it is done in
EXTOLL’s Network Port.

The introduced Virtual Ring Buffer Handler (VHRD) enables the realization of a plurality
of large main memory ring buffers that can be leveraged by multiple HW modules. The
four MegaByte (MB) restriction imposed by the Linux operating system (OS) for memory
allocation can be circumvented efficiently. HW modules leveraging the VHRD are offered
with a simple address request interface and no longer need to handle address generation
and flow control issues, thus simplifying all modules requiring main memory write access.

The Tag Matching Unit offers an efficient way to accelerate Message Passing Interface
(MPI)-based communication, by offloading the time consuming matching task to spe-
cialized hardware. The HW is capable of distributing the search for a tag to an arbitrary
number of matching engines using a round-robin scheme, significantly reducing the latency
required to find a match. A patent is pending, covering the above described functionality.
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5 Conclusion

The FIX Adapted for Streaming (FAST) Decoder introduced in section 2.6 on page 42
delivers outstanding decoding and filtering performance. FAST is a protocol widely
deployed in stock exchanges worldwide. Even with the limitations inflicted when using
FPGA technology, the proposed architecture is capable of outperforming all currently
known software (SW) alternatives. The FAST decoder requires only 1.54 cycles to decode
a single field inside a data stream. The time consuming task of decoding the highly
serial protocol is efficiently solved in a specialized HW structure, freeing viable Central
Processing Unit (CPU) cycles for actual trading algorithms. In addition, its capabilities
to write normalized data directly to the user-level address space, enables kernel bypass
streaming with the lowest possible latency.

In the EXTOLL context the main contributions are the two bridging modules. The PCI
Express (PCIe)-Bridge is capable of translating PCIe packets to HyperTransport on-chip
Protocol (HToC) packets and vice versa with minimal latency. This enables EXTOLL to
leverage both, PCIe and HyperTransport (HT) as a host interface without the need to
modify any unit of the Network Interface Controller (NIC) part of EXTOLL.

After translating packets from the two independent host interfaces to a common packet
specification, the HyperTransport Advanced Crossbar (HTAX)-Bridge can be leveraged to
forward arriving packets to their targeted functional unit (FU) with a high flexibility and
again a very low latency of only two clock cycles. In the opposing direction the unit is
capable of receiving multiple independent packet streams from the HTAX and forwarding
them to the according host interface.

The optimizations applied to the Virtualized Engine for Low Overhead (VELO) unit
enable EXTOLL to leverage its low latency host interface with larger message- and cluster
sizes. Pipelining the design made it capable of fully leveraging the offered bandwidth
on both, the network as well as the host side, again keeping the latency at a minimum.
Additionally, the receive buffers have been increased significantly deploying the VHRD
unit. The cache usage inside the host CPU has been improved by reducing the required
address space to communicate using VELO, effectively reducing cache trashing, despite
the fact that now up to 1024 virtual process identifications (VPIDs) are supported. As
a result of the restructuring, VELO now supports two orders of magnitude more target
nodes and 32 times more VPIDs as the previous version. The maximum message size on
the network side has been increased to 2048 bytes, to increase the usability. These changes
improved the bandwidth by more than 259 percent from 355 to 921 MB/s. The latency of
VELO has been reduced by 16 percent, from 1.14 to 0.99 µs, breaking the µs barrier.

The contribution with the most impact however, is the newly designed EXTOLL cross-
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bar. Its feature rich design supports HW based multicasting, effectively improving the
collective operations performance of EXTOLL. The introduced credit scheme enables the
network to support more in-flight packets, improving the buffer utilization from 25 to
97.7 percent for a typical packet size. This allows more in-flight packets in the network
without the need to increase the internal buffers. In addition, adaptive routing has been
introduced to the crossbar design to reduce the probability of congestions in EXTOLL
powered networks. All these features have been added without a negative impact on the
route-through latency of the crossbar. Although the number of pipeline stages increased
from 13 to 16, the latency has been reduced to 80 ns. This has been enabled through a
higher achievable clock frequency due to the revised pipeline structure. The crossbar
design will offer a very good performance with a latency as low as 22 ns in the upcoming
application specific integrated circuit (ASIC) implementation.

The current FPGA implementation of EXTOLL already proves that it is capable of
competing with other high performance interconnection networks. The upcoming ASIC
implementation will show that the herein proposed concepts and modules are capable of
delivering unreached performance values.
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Acronyms

AMD Advanced Micro Devices.
ASIC application specific integrated circuit.
ATOLL ATOmic Low Latency.
ATU Address Translation Unit.

BAR base address register.
BTS binary tree search.

CAG Computer Architecture Group of the University of
Heidelberg.

CPI cycles per instruction.
CPU Central Processing Unit.
CRC cyclic redundancy check.

DHS Distributed Header Store.
DMA direct memory access.

EOP end of packet.
EOP_E end of erroneous packet.
ETH Ethernet Protocol.
EXTOLL Extended ATOLL.

FAST FIX Adapted for Streaming.
FCC flow control channel.
FIFO first-in-first-out.
FIX Financial Information Exchange Protocol.
flit flow control unit.
FLOPS floating point operations per second.
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Acronyms

FPGA field programmable gate array.
FSM finite state machine.
FU functional unit.

GB GigaByte.
GPGPU general purpose graphics processing unit.

HDL hardware description language.
HFT high frequency trading.
HOL head-of-line blocking.
HPC high performance computing.
HT HyperTransport.
HTAX HyperTransport Advanced Crossbar.
HToC HyperTransport on-chip Protocol.
HTX HyperTransport expansion slot.
HW hardware.

ICC InterConnect Controller.
ID identifier.
IGMP Internet Group Management Protocol.
IPC inter process communication.
ISA Industry Standard Architecture.

kB KiloByte.

LP Link Port.
LUT look-up table.

MB MegaByte.
MMU Memory Management Unit.
MPI Message Passing Interface.
MTT Message Type Tag.
MTU maximum transfer unit.

NIC Network Interface Controller.
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Acronyms

NOP no operation.
NP Network Port.
NRC Network Routing Chip.

OPRA Options Price Reporting Authority.
OS operating system.

PCB printed circuit board.
PCI Peripheral Component Interconnect.
PCI-X PCI-eXtended.
PCIe PCI Express.
PDID Protection Domain Identifier.
PGAS Partitioned Global Address Space.
phit physical unit.
PIO Programmed Input/Output.
PMAP Presence Map.
PR posted send request.
PRQ Posted Send Request Queue.

QPI QuickPath Interconnect.

R1 Revision 1.
R2 Revision 2.
RAM random access memory.
RDMA remote direct memory access.
RF Register File.
RFS Register File Surrogate.
RMA Remote Memory Access.
RTL register transfer level.

sint32 32 Bit wide signed integer.
sint64 64 Bit wide signed integer.
SMFU Shared Memory Functional Unit.
SOC start of command.
SOD start of data.
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Acronyms

SOP start of packet.
SW software.

TC traffic class.
TCP Transmission Control Protocol.
TID Template Identifier.
TLB Translation Look-Aside Buffer.
TMU Tag Matching Unit.
TNI Tofu Network Interface.
TNR Tofu Network Router.

UDP User Datagram Protocol.
UE unexpected receive.
UEQ Unexpected Receive Queue.
uint32 32 Bit wide unsigned integer.
uint64 64 Bit wide unsigned integer.
UPL upper layer protocol.

VC virtual channel.
VCT virtual cut-through switching.
VELO Virtualized Engine for Low Overhead.
VHRD Virtual Ring Buffer Handler.
VOQ virtual output queuing.
VPID virtual process identification.

XML Extensible Markup Language.
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