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Abstract

The quality achieved by simply scaling a sports video
to the limited display resolution of a mobile device is of-
ten insufficient. As a consequence, small details like the
ball or lines on the playing field become unrecognizable. In
this paper, we present a novel approach to analyzing court-
based ball sports videos. We have developed new tech-
niques to distinguish actual playing frames, to detect play-
ers, and to track the ball. This information is used for ad-
vanced video retargeting, which emphasizes essential con-
tent in the adapted videos. We evaluate the precision and re-
call achieved in the analysis and measure the computational
time taken. In addition, we compare our new approach to
other video retargeting techniques based on scaling, crop-
ping, and seam carving.

1. Introduction
Nowadays, the playback of sport events is highly rele-

vant not only for television but also for small handheld de-
vices or the Web. The quality of video retargeting is es-
pecially important for these events due to fast motion and
small objects. For example, in case of tennis videos, the
court lines and the ball may no longer be perceptible in low
resolution videos. We use tennis videos as an example to
describe our new algorithms. However, the techniques are
also applicable to other sports and are utilized to adapt bad-
minton, soccer, and volleyball.

A general approach to video retargeting is to scale or
crop the frames. Saliency maps, optical flow, or relevant
objects, e.g., faces or moving objects, may be used to iden-
tify regions of interest [1]. In our mobile cinema project [4],
we have presented a video adaptation technique where we
put the focus on the preservation of foreground objects like
general objects, faces and superimposed text. The goal is
the preservation of the aspect ratio, but also to maximize the
visible information of these regions in the adapted video.

∗A major part of this work was performed at Eindhoven University.

Image regions are subject to constraints to preserve a min-
imum perceptible size as well as a maximum reasonable
size. Solving an optimization problem (maximize the visi-
ble content) results in the parameters for scaling and crop-
ping [6]. Algorithms based on scaling and cropping perform
poorly if relevant objects are located at different image bor-
ders. In the case of sports videos, the motion of the players
makes cropping of large borders impractical.

A new video retargeting technique called seam carving
was proposed by Rubinstein et al. [8]. The idea is to detect
and remove connected lines of pixels (seam manifolds) of
low energy. The graph cuts algorithm is used to detect the
next optimal 2D seam manifold. The computational com-
plexity and the memory requirements depend on the number
of pixels in a shot, which makes the technique only appli-
cable to low resolution videos. We proposed an enhanced
seam carving algorithm that overcomes these computational
limitations [5]. By analyzing and compensating camera mo-
tion in each shot, we reduce the complexity of detecting
seams from a 3D minimization problem into a 2D problem.
Another major disadvantage of seam carving is the fact that
straight lines become curved and cause clearly noticeable
errors. We have proposed a technique to reduce these ef-
fects by modifying the energy in the local neighborhood of
the intersection point of a seam and a straight line to pre-
vent other seams from removing adjacent line pixels [3].
Although the noticeable errors in buildings or streets drop
significantly, this technique does not provide acceptable re-
sults for tennis videos due to the large number of court lines.

A general problem of all techniques that change the se-
lection of pixels to be removed or scaled over time (like
seam carving or warping) is the fact that straight lines be-
come curved or that jitter is added to the video. We present
a novel approach which avoids these problems. The basic
idea of our approach is to identify and improve the most
critical regions in a sports video. It is obvious that players,
court lines, and the ball are most relevant in many sports.

Several approaches have been proposed to analyze ball
sports video like tennis [2, 7] or soccer [9]. Most ap-
proaches focus on the detection of court lines and players,



and use this information to derive important semantic events
like goal, foul, service, or rally. In previous work, we also
put our focus on the detection of court lines and players [2].
Automatic ball tracking is used in some approaches to en-
able virtual replays and to derive important game events.
Seo et al. presented a technique to detect and track a soc-
cer ball [9]. This technique is not easily applicable to other
sports like badminton or tennis due to the differences in size
and speed of the ball. In case of tennis ball tracking, most
approaches use high quality cameras or even tracking from
multiple cameras [7]. These approaches are not applicable
to broadcast videos due to noise and compression artifacts.
We do not consider semi-automatic approaches that require
a manual initialization whenever the ball is lost.

In this paper, we present novel techniques to analyze
and adapt court-based sports video. Compared to other ap-
proaches, our framework is applicable to different kinds of
ball sports. The distinct features of our approach are:

1. We propose new algorithms to analyze court-based
ball sports video: a fast algorithm for court scene de-
tection, a novel technique to segment players and ob-
jects, and a robust algorithm to detect and track the ball
(without manual initialization).

2. We present our novel video retargeting application for
sports video. The idea is to enhance the visibility of
court lines and the ball, to identify borders of low im-
portance, and to use a combination of cropping and
scaling to reduce the spatial resolution of the video.

The paper is structured as follows: The following section
focuses on algorithms to analyze sports video. Section 3
describes our adaptation system. In Section 4, we evaluate
the algorithms, and we conclude the paper in Section 5.

2. Analysis of sports video
Our sports video analysis and adaptation system is based

on four modules which analyze a video and one additional
module for video retargeting (see Figure 1). In a first step,
the system distinguishes playing frames from other frames.
Additional modules detect court lines, players, objects, and
the ball. For each frame, the components are run one af-
ter another. Only if a frame is processed successfully in
the current step, it is forwarded to the next module. So,
for example, if the court field is not detected in a frame,
algorithms to locate court lines or players are skipped. Pre-
viously computed data is re-used wherever possible.

The adaptation of a frame depends on the results of the
analysis. A frame is scaled if no semantic information could
be derived. Otherwise, the advanced video retargeting mod-
ule uses all available information to adapt a frame. Figure 1
gives an overview over the components of our system; Fig-
ure 2 shows exemplary intermediate results of the process-
ing steps.

Figure 1. System overview

2.1. Playing Frame Detection

A sports video consists of two types of shots: Those in
which the actual game takes place (playing shots) and other
shots showing audience, display panels, close-up shots of
faces, or advertisement. Only playing shots should be pro-
cessed by our advanced video retargeting algorithm; all
other frames are simply scaled.

We assume that a frame containing large areas of simi-
larly colored pixels depicts a court and is thus considered
to be part of a playing shot. Our algorithm distinguishes
between an initialization phase to detect the dominant court
colors and a playing shot detection phase. In the initializa-
tion phase, a histogram Hi based on the 4 most significant
bits of each color channel in the RGB color space is cal-
culated (4096 bins). A small image border is ignored to
reduce the computational effort and to remove highly tex-
tured regions of playing frames (e.g., the audience). The
values of the histogram bins are sorted in descending order
and stored in H∗i . The minimum number of bins N is cal-
culated, so that the first N bins contain TH percent of all
pixels:

argN

(
N∑

i=1

H∗i > TH ∧
N−1∑
i=1

H∗i ≤ TH

)
(1)

A frame is then labeled playing frame if N is less or
equal than TN percent of the bins. If the current frame
is not a playing frame or no valid court model is detected
(see Section 2.2), the initialization phase is repeated for the
following frame. Otherwise, the N largest bins in the his-
togram are marked. Part of the computational effort is then
saved in the detection phase. Subsampled frames are used
to calculate a histogram for each subsequent frame. If the
sum of pixels in the marked bins exceeds TL percent of all
pixels, the frame is labeled playing frame. The threshold
values were derived empirically. TH = 85, TL = 80, and
TN = 3 provide reliable results for sports videos like tennis,
soccer, or badminton.



Figure 2. Results of the analysis steps: court model, background image, difference image, player and object segmentation

2.2. Court Line Detection

Court lines are highly relevant to understanding a sports
video. Therefore, they should be clearly visible in the final
video and a precise localization is essential for retargeting.
We perform a full court line search consisting of three steps
on the first frame and then a computationally cheaper court
model tracking on the subsequent frames.

The first step is the detection of court line pixels. We do
this by detecting white pixels that fulfill certain constraints
regarding brightness, local structure, and texture. From the
court line pixels, we then estimate a parametric description
of the court lines in the next step. In the third step, a geo-
metric transformation between the parametrized court lines
in a frame and a court model is calculated. Court models
for tennis, badminton, volleyball, and soccer are modeled
in our system.

In all subsequent frames, the transformation matrices
calculated so far are used to perform court model track-
ing, which is considerably faster than the matching. This
court line detection and tracking method was previously
published in [2]. Please refer to the original publication for
more details.

2.3. Player Detection

Knowing which image regions belong to moving objects
(e.g., players or billboards) helps to make the detection of
the ball more robust. We aggregate nine previous frames
into one background image. The frames are chosen from
one shot, so that the temporal distance between the frames
is maximized. The camera motion is compensated by trans-
forming each frame by its respective transformation matrix.
Then, foreground objects are removed from the background
image by applying a median filter to all pixels at one image
position. A difference image is then computed by subtract-
ing the background image from the current motion compen-
sated frame.

In the next step, high pixel values of the difference image
are clustered into regions. First, the pixels in the difference
image belonging to court lines are set to zero and holes are
filled by a morphological closing operation. Then, a verti-
cal projection profile is calculated that sums up the differ-
ences in each column. The maximum peak of this projec-

tion profile is defined as start position. All columns to the
left and right of the start position which exceed 10 percent
of the maximum value are selected. These selected con-
tiguous columns approximate the horizontal position of a
player or an object in the frame very well. This is repeated
with a horizontal projection profile to estimate the vertical
position.

If the bounding box of the selected region is larger than
a set minimum size, it is classified as player/object region.
The algorithm continues to detect regions as long as the
maximum value of the vertical projection profile exceeds
a threshold. This threshold reflects the minimum height of
an object. Figure 2 shows sample results of the individual
steps.

2.4. Ball Detection

The fast motion of a small tennis ball causes blurring,
interlacing artifacts, and disconnected ball pixels that differ
only slightly from background pixels (see Figure 3). Simple
features like color, shape, or contrast are thus unsuitable to
detect the ball. We present a ball tracking algorithm based
on a particle filter which does not assume that the ball can
be detected in all frames. It consists of the following steps:

1. Create probability map for current frame.
2. Initialize particles (only once).
3. Update position and diffuse position of particles.
4. Create new particles.
5. Estimate position of ball and mark ball pixels.

The algorithm starts by calculating a probability map
that describes each pixel’s similarity to the ball. For this
purpose, the last four frames are aligned to the current frame
and a difference imageD(x, y) is calculated. For each pixel
position (x, y), it contains the maximum absolute difference
of the pixels of the current frame I0(x, y) and the aligned
frames Ik(x, y), k = 1 . . . 4:

D(x, y) = max
∀k=0...4

{Ik(x, y)} − min
∀k=0...4

{Ik(x, y)}.

AllD(x, y) for which at least one of the following is true
are set to zero:
• D(x, y) < TD = 30,



Figure 3. Typical visual quality of the ball in the test videos. Top
row: ball in slow motion. Bottom row: fast motion.

• I0(x, y) is darker than the court color,
• (x, y) coincides with a court line, is inside or adjacent

to an object region, or is part of a large region of high
difference values.

The probability map PM is then set to the normalized dif-
ference image (

∑
∀x,y PM(x, y) = 1).

A particle filter (or sequential Monte Carlo method) es-
timates the position of the ball for each frame t based on
observed data, which in our case is the probability map
PMt(x, y). We use a total of 300 particles. Each particle
Si is a triple Si = (xi, yi, pi), consisting of a pixel position
(xi, yi) and a probability pi.

Initialization of the particles is only done once. For each
particle, a pixel position is randomly chosen according to
the probability distribution PM0. It follows that a pixel
with zero probability is never chosen as particle; a pixel
with a high probability may be selected several times.

Step 3 modifies the position of all particles. If a ball was
detected in the last two frames, the direction and speed of
the ball are estimated and the positions of all particles are
updated accordingly. Because the real position of the ball
may vary due to changes in speed and direction, the parti-
cles are additionally scattered by a Gaussian distribution.

In step 4, the probabilities of the particles are updated by
the probability mapPMt of the current frame. Each particle
is substituted by a new particle chosen randomly according
to the probability distribution defined by the current parti-
cles.

In the last step, the position of the ball is estimated from
the current particles. They are divided into 10 clusters by
K-Means using Euclidean distance. The probability of a
cluster is defined as the sum of probabilities of its particles.
We define a relevance score for each cluster, which is the
sum of cluster probability, the inverse cluster size (the ball is
very small in most sports), and the distance to the estimated
position of the ball from previous frames (if available). The
position of the ball is the center of the cluster with the high-
est score. Bright pixels in the local neighborhood of the
cluster center are marked as ball pixels.

3. Adaptation of Sports Videos
If no playing frame was detected, our application uses

simple bi-linear interpolation to scale the frame to the des-
ignated size. Otherwise, the following advanced adaptation
technique is used: First, the court lines are emphasized to
make them easier for users to recognize. This is done by
applying gamma correction to these pixels. Even if the ball
is occluded, the ball detection algorithm selects the most
probable ball region. To avoid false ball detection, the mo-
tion of the ball in the last three frames is analyzed. If the
speed and direction are valid, the ball pixels are dilated to
close gaps caused by interlacing and gamma correction is
applied on the dilated pixels.

After emphasizing ball and lines, borders of low rele-
vance are identified in a frame. The relevance of a border
depends on the location of the ball and the players. Param-
eters to crop a frame are calculated, so that a certain min-
imum distance of players and ball to each border is kept.
The maximum width of the bounding boxes of the players
defines the minimum distance. To avoid camera jitter, the
width of each cropped border may only change by 1 pixel
from frame to frame. In the last adaptation step, we use
bi-linear interpolation to scale the frame to its final size.
Figure 4 shows some results of our algorithm and compares
them to simple scaling.

4. Evaluation
In the following, we present three evaluations: The first

examines the computational effort and the quality of the
analysis steps for tennis. The second evaluation shows the
applicability of the algorithms to other court-based sports,
whereas the third compares the quality of our new video re-
targeting approach to scaling, cropping, and seam carving.

In our first evaluation, we focus on the detection of play-
ing frames, object segmentation, and ball detection. The
quality of line detection was already discussed in previous
work [2]. We selected six test sequences with a total length
of 38 minutes (five in PAL and one in CIF resolution). The
videos were chosen to cover a broad variety of tennis sce-
narios, i.e., singles and doubles, different court surfaces,
and lighting. Figure 4 (left) depicts one of these videos.

Analysis steps Precision Recall
playing frame detection 96.1 % 99.8 %
player detection 90.2 % 91.9 %
ball detection 85.4 % 33.6 %

Table 1. Quality of the analysis steps

Based on the number of correct (C), missed (M), and
false (F ) detections, we compute precision P = C

C+F and
recall R = C

C+M of the individual algorithms (see Table 1).
For this purpose, all six videos were used. For player detec-



Figure 4. Examples of tennis, badminton, and soccer videos adapted to a resolution of 240x192 pixels. Top row: scaled. Bottom row:
adapted with our advanced video retargeting approach (γ = 3.0). Court lines in the background are much easier to see.

tion and ball detection, 200 frames were randomly chosen
from each video and the results were manually inspected.

We consider the detection of playing frames first: False
hits are not as critical as a low recall, because missed frames
will not be processed in the following steps. The missed
frames are typically located at the beginning of new shots,
e.g., in cases of short dissolves. The overall fraction of play-
ing frames is 49.6 %.

Ball detection works much better when all regions
with moving objects (including players) are automatically
marked beforehand. According to our definition, the ob-
ject segmentation is correct if at least all player regions are
marked and if the ball is not part of the selection. Most
false hits occur because the position of the tennis ball is ad-
jacent to the player, so that ball and player regions merge.
Regions are typically missed if the player is stationary for a
long time, e.g., during a serve.

We define a miss in the ball detection phase as having
obtained a ball position that is inconsistent with the pre-
vious frames and thus having discarded it. Based on this
definition, our ball detection has a recall of only 33.6 %.
This is mainly due to the ball being occluded or being too
similar to background pixels like court lines. As a conse-
quence of our implementation, ball detection then also fails
during the next three frames. Oftentimes, this kind of miss
is uncritical, because the ball cannot be recognized in the
original video either. A false hit in ball detection occurs
when the ball is detected in a consistently wrong place for
several frames in a row.

To measure the average computing time of the individ-

ual steps, we used a standard PC (AMD 2.4 GHz, 4 GB
RAM) and only considered the PAL resolution videos (see
Table 2). The frame alignment and calculation of the differ-
ence image is the most expensive step and takes 559.9 ms,
followed by 195.1 ms for the calculation of the difference
image for ball detection.

Analysis step Computational
effort [in ms]

playing frame detection
- initialization 0.9
- detection 0.2
player detection
- frame alignment / difference image 559.9
- selection of pixels 17.3
ball detection
- difference image 195.1
- particle filter 14.9

Table 2. Computational effort

In the second evaluation, we tested the applicability of
the proposed algorithms for other ball sports. Whenever
possible, the parameters and thresholds were not modified.
No modification of parameters was required for playing
frame detection, and the reliability is similar for tennis, bad-
minton, and soccer. In case of volleyball, the recall drops
slightly due to the larger number of players.

Two parameters of the court line detection algorithm
were adjusted: the court model and the color of the court
lines. Precision and recall of court line detection depend



on the total number of visible lines in a frame. The court
modeling usually fails when players occlude large parts of
volleyball lines or when insufficient soccer lines are shown.
Curved lines such as the one next to the penalty spot in Fig-
ure 4 (right) are ignored by our algorithm and will not be
highlighted.

Compared to tennis, ball detection is more reliable for
badminton and soccer. Due to the small size and the speed
of the tennis ball, the amount of blurring and interlacing ar-
tifacts is usually very high. Especially in case of volleyball,
we observed that the particle filter fails when shirt and ball
color are similar. If this is the case, the adaptation of the
ball should be disabled. This is not critical for soccer or
volleyball due to the size of the ball.

We carried out a user study to evaluate the quality of
the adapted sports videos. Several videos were adapted to
a screen resolution of 240x208 pixels using scaling, crop-
ping, seam carving, and our new approach. After an initial
analysis, it became obvious that seam carving is completely
unsuitable for ball sports videos. A video demo compar-
ing the three applicable techniques is available on our web
page1. The user study thus focuses on scaling and our new
approach. The effect of the parameter γ on court lines and
the ball was analyzed in particular. Nine videos with differ-
ent parameters were generated. Ten users graded the quality
of the adapted videos on a scale from 5.0 (excellent) to 1.0
(insufficient). Additional questions regarding the general
quality of the videos were asked. Table 3 summarizes the
results.

Parameter γ Court lines Ball
1.0 (no modification) 2.7 1.2
1.5 3.3 3.1
3.0 3.4 3.7

Table 3. User evaluation: visibility of court lines and ball

A modification of the court lines does only slightly im-
prove the perceptibility. The enhancement of the ball on the
other hand is of higher importance. Even a small modifica-
tion makes it much easier to recognize its location. Users
commented that the ball is lost in some frames and rated
the quality of these videos very low. We also evaluated the
effect of cropping in three categories (none, small, large).
The average values for all categories are very similar, even
though the standard deviation of the grades is very high.
Some users preferred centered views on ball games; others
did not like the additional motion caused by cropping. Still,
some users rated the cropped videos much better. We con-
clude that users need to be able to adjust this value to their
personal preferences.

1http://pi4.informatik.uni-mannheim.de/pi4.data/content/projects/moca/

5. Conclusions and Outlook
The precision of court line, player, and ball detection is

high enough to achieve good adaptation quality of sports
videos. Our approach has advantages over previous semi-
automatic techniques which require user interaction to de-
termine the position of the ball in some frames. The ad-
vanced video retargeting offers significant advantages com-
pared to other approaches: Court lines and especially the
ball are discernible more easily without compromising the
temporal stability of the image.
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