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Abstract: We propose and backtest a multivariate Value-at-Risk model for

financial returns based on Tukey’s g-and-h distribution. This distributional as-

sumption is especially useful if (conditional) asymmetries as well as heavy tails

have to be considered and fast random sampling is of importance. To illus-

trate our methodology, we fit copula GARCH models with g-and-h distributed

residuals to three European stock indices and provide results of out-of-sample

Value-at-Risk backtests. We find that our g-and-h model outperforms models

with less flexible residual distributions and attains similar results as a bench-

mark model based on Hansen’s skewed-t distribution.
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1. Introduction

Accurate Value-at-Risk (VaR) estimates for portfolios are essential for internal risk man-

agement and regulatory frameworks. In the past years, traditional multivariate VaR

models like the variance-covariance method, multivariate GARCH or historical sim-

ulation have been supplemented by more flexible models based on copula functions.

Whereas earlier copula applications focused on the unconditional distribution of risk

factors, more recently a series of papers1 have analyzed the potential of combining time

series techniques with the copula approach to obtain highly flexible time varying mul-

tivariate models. The foundation of these models is Sklar’s theorem for conditional

distributions (Patton, 2004, 2006). Recent applications of this approach to portfolio risk

* Corresponding author. Tel. +49 621 181 16 79. E-mail: huggenberger@bwl.uni-mannheim.de.
1 This approach is e.g. used in Jondeau/Rockinger (2006), Rodriguez (2007), Bartram et al. (2007),

Sun et al. (2009) and Fischer et al. (2009).
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measurement combined GARCH-filtered margins with various copula functions. Huang

et al. (2009), for example, used Student-t distributed marginals in combination with im-

plicit and Archimedean copulas. Ghorbel/Trabelsi (2009) proposed copula VaR models

with EVT margins. Chollette et al. (2009) presented VaR backtests for models with

regime-switching copulas and Skewed-t residuals.

Our main contribution to this literature is the introduction of a residual distribution

that combines a flexible shape with good simulation performance. In particular, we

propose a copula GARCH model using a slight modification of Tukey’s distribution

(Martinez/Iglewicz, 1984). This transformation of the normal distribution introduces

two shape parameters that allow for the calibration of skewness and kurtosis. Due to

this flexibility, Badrinath/Chatterjee (1988), Mills (1995) as well as Dutta/Babbel (2002)

found a good fit of g-and-h models to the univariate unconditional return distributions

of several asset classes. More recent studies by Dutta/Perry (2006) and Degen et al.

(2007) discussed the g-and-h distribution in the context of modeling operational risks.

The application of the g-and-h distribution to copula risk models is very promising for

two reasons: First, recent studies found that the simultaneous capture of shape asym-

metries and fat tails is of high importance for good density forecasts in general and VaR

forecasts in particular (Kuester et al., 2006; Bao et al., 2007). Second, the g-and-h dis-

tribution is defined by transforming the quantiles of a Gaussian random variable, which

makes simulation from this model nearly as fast as drawing normally distributed random

numbers. This is important because integrals with respect to the probability distribu-

tion of multivariate copula models usually do not have closed form solutions. Therefore,

applications – including risk measurement – rely on efficient simulation techniques.

In contrast to simulation, likelihood based parameter estimation in g-and-h based mod-

els is somewhat difficult because calculating the model density involves the numerical

inversion of the g-and-h transformation function. This may be the reason why the g-

and-h distribution has not yet been used in copula or time series models.2 To overcome

or at least ease this problem, we contribute a (semi)-closed form representation of the

score vector of a g-and-h based GARCH model, which can be used in the optimization

of the likelihood.3

In the empirical part of this paper, we compare copula GARCH models based on the

g-and-h distribution and Hansen’s (1994) skewed-t distribution. The latter distribution

provides a similar flexibility and has been used in several copula and VaR studies before.

2 The only multivariate generalization we know about was proposed by Field/Genton (2006) who
described wind speed data. Fischer (2010) used a restricted version of the univariate g-and-h dis-
tribution to model the residuals of a GARCH process.

3 “Semi-closed form”means that the derivatives still contain the inverse of the transformation function.
However, supplying this expression avoids numerical differentiation of the likelihood, which would
require several evaluations of the inversion.
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Moreover, we consider restricted cases of the g-and-h and skewed-t distributions, which

include the Gaussian case. After comparing the in-sample fit to three major European

stock indices, we conduct in- and out-of-sample VaR backtests for all models. In these

backtests, g-and-h and skewed-t based copula GARCH models outperform models with

less flexible residual distributions based on formal statistical tests on VaR accuracy.

The outline of this paper is as follows: In section 2 we describe the construction of our

multivariate g-and-h GARCH model, introducing the univariate g-and-h distribution

and briefly reviewing GARCH and copula theory. Parameter estimation is discussed

in section 3. Section 4 explains how to derive VaR estimates. In section 5, we report

empirical results and section 6 concludes.

2. Model

2.1. Margins

For the marginal return distributions, we suggest the combination of the popular

GARCH-filter (Bollerslev, 1986; Taylor, 1986) with a standardized version of Tukey’s

g-and-h distribution.

According to Martinez/Iglewicz (1984), the g-and-h distribution is derived from a Gaus-

sian random variable using the following transformation function

Tg,h(y) =


exp(gy)−1

g · exp
(
hy2

2

)
if g 6= 0,

y · exp
(
hy2

2

)
if g = 0.

(1)

The continuity of this transformation in g = 0 can be seen by applying L’Hôpital’s

rule or by using the series expansion of the exponential function. Its differentiability is

considered in the appendix. A g-and-h distributed random variable Xg,h is defined by

transforming a standard normal random variable with Tg,h. That is

Xg,h = Tg,h(Y ), where Y ∼ N (0, 1). (2)

This transformation allows for asymmetry and heavy tails. The parameter g determines

the direction and the amount of asymmetry. A positive value of g corresponds to a

positive skewness. The special symmetric case, which is obtained for g = 0, is known

as h distribution. For h > 0 the distribution is leptokurtic with the mass in the tails

increasing in h. If h = 0 and g = 0, Tg,h degenerates to the identity. In this case, Xg,h is

standard normally distributed. If we require h ≥ 0, then Tg,h is strictly monotonically

increasing. Since Tg,h is also continuous in y, its inverse function exists, although it is

not available in closed form. Denoting this inverse by Ig,h, the c.d.f. and p.d.f. of Xg,h
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are

FXg,h(x) = Φ0,1 (Ig,h(x)) , (3)

fXg,h(x) = φ0,1(Ig,h(x)) ·
(
T ′g,h(Ig,h(x))

)−1
, (4)

where Φ0,1 and φ0,1 are the c.d.f. and p.d.f. of the standard normal distribution.

To standardize Xg,h, its first two moments have to be finite, which can be attained by

a further restriction of the parameter space. If h < 0.5, both moments exist and have

closed form expressions (Hoaglin, 1985). In this case, the mean of Xg,h is

µg,h =
1

g
√

1− h

[
exp

(
g2

2(1− h)

)
− 1

]
(5)

if g 6= 0 and µh = 0 otherwise. The variance is given by

σ2g,h =
1

g2
√

1− 2h
·

[
exp

(
2g2

1− 2h

)

− 2 exp

(
g2

2(1− 2h)

)
+ 1

]
− µ2g,h (6)

for g 6= 0. If g = 0, we obtain σ2h = (1− 2h)−
3
2 . With these expressions a standardized

g-and-h distributed random variable Zg,h is defined by

Zg,h =
Xg,h − µg,h

σg,h
. (7)

Obviously, (7) guarantees E [Zg,h] = 0 and var [Zg,h] = 1. The density of Zg,h is

fZg,h(z) = σg,h · fXg,h (µg,h + σg,h · z) . (8)

The effects of different parameter values on the skewness and kurtosis of the standardized

g-and-h distribution are illustrated in Figure 1.4 Illustrations of possible distributions

shapes are given in figure 2, where we compare the g-and-h model and its benchmark,

the skewed-t model. The skewed generalization of the Student’s t distribution that we

use dates back to Hansen (1994). For λ ∈ (−1, 1) and ν ∈ (2,∞), a (standardized)

skewed-t random variable Zst can be defined by its density

fZst(z) =


bc

(
1 + 1

ν−2

(
bz+a
1−λ

)2)− (ν+1)
2

if z < −a
b ,

bc

(
1 + 1

ν−2

(
bz+a
1+λ

)2)− (ν+1)
2

if z ≥ −a
b ,

(9)

4 To derive skewness and kurtosis of a standardized g-and-h distributed random variable, we use the
results from Martinez/Iglewicz (1984) together with the binomial formula.
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where

a = 4λc
ν − 2

ν − 1
, b =

√
1 + 3λ2 − a2 (10)

and

c =
Γ
(
ν+1
2

)√
π(ν − 2)Γ

(
ν
2

) . (11)

For a review of this distribution, see also Jondeau/Rockinger (2003, 2006).

Next, we briefly summarize the time series structure of our marginal model. Let Rt

denote the log return of an investment at time t. We assume that

Rt = µ+ εt, (12)

where µ describes the location of the return distribution5 and (εt)t∈Z is a series of

innovations which follows a GARCH(1,1) process. Hence,

εt = σtZt, t ∈ Z, (13)

σ2t = α0 + α1ε
2
t−1 + β1σ

2
t−1, t ∈ Z, (14)

with (Zt)t∈Z being a white noise process, i.e. a series of independent, identically dis-

tributed random variables that satisfy E [Zt] = 0 and E
[
Z2
t

]
< ∞ for all t ∈ Z. In

particular, we use i.i.d. standardized g-and-h and skewed-t random variables for (Zt)t∈Z.

The property E [Zt] = 0 guarantees that µ corresponds to the unconditional mean of

the return distribution. Requiring that var [Zt] = 1, σ2t corresponds to the conditional

variance of εt, based on the information available until t− 1, denoted by Ft−16.

From (14) it is obvious that α0, α1, β1 > 0 are sufficient conditions for the positivity of the

variance. The second restriction of the parameter space is introduced by the requirement

of stationarity. A basic result for the GARCH(1,1) model with normally distributed

white noise was obtained by Bollerslev (1986), who showed that α1 +β1 < 1 is sufficient

for the weak stationarity of such a process. Nelson (1990) showed that this condition is

also sufficient for strict stationarity in more general settings, including models like the

one presented in this paper. According to He/Teräsvirta (1999), E
[
(β1 + α1Z

2
0 )m

]
< 1

is necessary and sufficient for the existence of E
[
ε2m

]
. Hence, α1 + β1 < 1 implies strict

and weak stationarity of (εt)t∈Z.

5 This model can easily be supplemented by a conditional mean specification.
6 Ft−1 denotes the natural filtration of the return series until t−1, i.e. Ft−1 := σ(Rs; s = 1, . . . , t−1).
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Figure 1: Skewness and kurtosis of the standardized g-and-h distribution
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Figure 2: A comparison between the skewed-t and g-and-h distribution
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The parameters of the g-and-h and skewed-t distributions are chosen such that both distributions have the same

skewness (-1) and kurtosis (7.4).
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2.2. Dependence Structure

Let (Rt)t∈Z be an n-dimensional discrete time stochastic process, which describes the

log returns of n assets. The law of the process is given by the conditional c.d.f.s FRt|Ft−1

for t ∈ Z. The marginal distributions of Rt conditional on Ft−1 are denoted by Ft,i(r) =

FRt,i|Ft−1,i
(r|Ft−1,i) for i = 1, . . . , n.7 Models for these distributions were discussed in

the last subsection. According to Sklar’s theorem for conditional distributions (Patton,

2004, Theorem 1), FRt|Ft−1
can be decomposed into its marginal distributions and a

copula function Ct|Ft−1
:8

FRt|Ft−1
(r1, . . . , rn|Ft−1)

= Ct|Ft−1
(Ft,1(r1), . . . , Ft,n(rn)|Ft−1) . (15)

As our focus is primarily on a new distributional assumption for the margins, we restrict

our attention to unconditional copula models by setting Ct|Ft−1
≡ C. In particular,

we use the very popular Gaussian and Student’s-t copulas. The n-dimensional Gaussian

Copula CnGa is obtained from the standard normal multivariate c.d.f. Φn
P with correlation

matrix P by

CnGa(u1, . . . , un) := Φn
P (Φ−1(u1), . . . ,Φ

−1(un)), (16)

where Φ−1 is the quantile function of the one-dimensional standard normal distribution.

Let tnP ,ν be the c.d.f. of an n-dimensional t distribution and let t−1ν be the quantile

function of a one-dimensional t distribution. The t copula is then defined by

Cnt (u1, . . . , un) = tnP ,ν(t−1ν (u1), . . . , t
−1
ν (un)). (17)

Just like in the case of the Gaussian copula the (n×n)-matrix P is a correlation parame-

ter. The so-called degrees of freedom parameter ν determines the probability of joint ex-

treme realizations. This probability can be measured by λl := limα→0 P (U2 < α|U1 < α)

for the lower tail of a bivariate copula C. If this limit exists, λl is referred to as lower

tail-dependence coefficient. A two-dimensional Gaussian copula cannot exhibit tail de-

pendence and λl is zero if ρ < 1. In contrast, the tail dependence coefficient of a t copula

is increasing in the correlation and decreasing in the degrees of freedom parameter.

Therefore, the t copula is often used to capture the possibility of joint extremes.

7 Here, Ft denotes the natural filtration of the multivariate stochastic process Rt and Ft,i denotes the
filtration generated by the i-th margin of Rt. We assume that the marginal distributions depend
only on their own history, that is FRt,i|Ft−1

(r|Ft−1) := FRt,i|Ft−1,i
(r|Ft−1,i).

8 In the case of absolutely continuous random variables, this decomposition is unique.
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3. Parameter Estimation

Let Θ denote the parameter space of our model and let (rt)t=1,...,T denote the sample of

n-dimensional log returns, which we use for estimation. We assume that (rt)t=1,...,T is

generated by the multivariate conditional density fRt|Ft−1
(rt|Ft−1,θo) with θo ∈ Θ. We

suggest to use a conditional9 maximum likelihood estimator θ̂ that is defined by

θ̂ = argmax
θ∈Θ

T∑
t=1

lt(rt,θ), (18)

where

lt(rt,θ) = log fRt|Ft−1
(rt|Ft−1,θ). (19)

fRt|Ft−1
(rt|Ft−1,θ) is obtained by differentiating the right-hand side of (15). With cθ

denoting the copula density, we see that

fRt|Ft−1
(rt1, . . . , rtn|Ft−1,θ)

=cθ (Ft,1(rt1,θ), . . . , Ft,n(rtn,θ)) ·
n∏
i=1

ft,i(rti,θ). (20)

The marginal p.d.f.s and c.d.f.s in this equation follow from the results presented in

subsection 2.1. We simplify the solution of the optimization problem given in (18),

applying the IFM-method proposed by Joe (1997). For this purpose we partition the

parameter vector θo into (θC ,θR1 , . . . ,θRn). θRi contains the parameters of the i-th

marginal distribution and θC consists of the copula parameters. The IFM-method is a

two step procedure. In the first step,

θ̂Ri = argmax
θRi

T∑
t=1

log ft,i(rit|θRi) (21)

is solved for i = 1, . . . , n. This means that we consecutively estimate the parameters of

the marginal distributions. Given these estimates, we determine the copula parameters

by

θ̂C = argmax
θC

T∑
t=1

log cθC

(
Ft,1(rt1|θ̂Ri), . . . , Ft,n(rtn|θ̂Rn)

)
. (22)

9 We condition on presample values of σ2
t,i and ε2t,i for i = 1, . . . , n. The choice of these values is

detailed in the appendix.
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Asymptotic properties of such IFM estimators were derived by Joe (1997). Patton (2006)

extends these results to a time series context.10 Under the standard regularity conditions

summarized in Patton (2006, Appendix A) the two step estimator θ̂2s is consistent and

asymptotically normal with

√
T (θ̂2s,T − θo)

d−→ N (0,B−1AB−1) for T →∞, (23)

where

B = −E
[

∂2

∂θ ∂θ′
lt(Rt,θo)

]
(24)

and

A = E
[
∂

∂θ
lt(Rt,θo)

∂

∂θ
lt(Rt,θo)

′
]
. (25)

The negative expectation of the Hessian B and the expected outer product of the scores

A are consistently estimated by the corresponding sample averages, evaluated at θ̂2s,T .

Hence,

B̂T = −T−1
T∑
t=1

∂2

∂θ∂θ′
lt(rt, θ̂2s,T ) (26)

and

ÂT = T−1
T∑
t=1

∂

∂θ
lt(rt, θ̂2s,T )

∂

∂θ
lt(rt, θ̂2s,T )′ (27)

can be used to calculate standard errors of the estimated parameters.

For a fast implementation of the proposed estimation algorithm, we derive an analytical

expression of the score vector for the univariate g-and-h model in the appendix. Using

this result avoids numerical differentation in the optimization of the likelihood, which

would require several time consuming inversions of the g-and-h transformation. This

problem is probably the reason why our multistage MLE approach, which is very com-

mon in the field of copula modeling, has very rarely been used for g-and-h based models.11

Nearly all former papers, including Dutta/Perry (2006) as well as Field/Genton (2006),

exclusively use the quantile method proposed by Hoaglin (1985). This approach has the

advantage of easy implementation and low computational cost. However, the application

of this simple method involves a number of disadvantages: First and most important,

this method was designed for unconditional univariate distributions and there is no di-

rect generalization to the time series context presented here. Moreover, the estimation

of g and h proceeds sequentially. Furthermore, the choice of quantiles used for estima-

tion is arbitrary and the restriction of the parameter space (0 < h < 0.5) cannot be

10 Patton (2006) considers a more general setting in which the copula may be time dependent and the
samples used for estimating the margins may be of different lengths.

11 Rayner/MacGillivray (2002) do a Monte Carlo study on the in-sample efficiency of MLE for gen-
eralized g-and-k distributions. To our knowledge, the first applied paper using this methodology
is Fischer (2010), who considers the symmetric case (g ≡ 0).
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implemented.

4. Risk Measurement

In this section, we show how to apply the return model developed so far to risk measure-

ment, where we focus on VaR (Dowd, 1998; Jorion, 2001). Although, this risk measure

is critized due to conceptional deficiencies (Tasche, 2002; Szegö, 2002), it remains the in-

dustry standard for institutional investors. Since we use conditional return distributions

to derive our VaR estimates, these estimates will be time-varying. The relevance of such

estimates for risk management is e.g. discussed in McNeil/Frey (2000). In brief, a VaR

derived from the unconditional return distribution could be used to determine longterm

risk capital requirements, whereas the VaR based on the conditional distribution may

give important indications on reducing risky exposures in times of high volatility.

4.1. Estimation of Value at Risk

Let L denote an absolutely continuous random variable which measures the loss of a

position during the period under consideration. For α ∈ (0, 1), we define VaR by

VaRα,L = QL(1− α) ⇔ FL(VaRα,L) = 1− α, (28)

where QL is the quantile function of L. Hence, the probability of a loss higher than

the VaR is equal to α. To avoid assumptions concerning the initial capital invested, we

set Lt = −Rt, i.e. we consider negative returns as (relative) losses. We are particularly

interested in the one-step ahead predictive loss distribution. This is stressed by writing

VaRα,Lt+1|Ft .

In the univariate case, a closed form expression of VaRα,Lt+1|Ft is easily obtained because

Rt is an increasing, bijective transformation of Zt. Thus,

VaRα,Lt+1|Ft = −µ+ σt+1 ·Q−Z(1− α) = −µ− σt+1 ·QZ(α), (29)

where σt+1 is calculated based on Ft according to the GARCH(1,1) equation.

We now consider a multivariate setting, where we derive the VaR of a portfolio based

on the n-dimensional return density fRt+1|Ft of the assets contained in this portfolio.

If we choose a vector of portfolio weights w, the portfolio return is given by Rp,t+1 :=

g(Rt+1,w) with

g(x,w) := log
(
exp(x′) ·w

)
. (30)
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Its distribution is

FRp,t+1|Ft(rp) = E [1 {g(Rt+1,w) ≤ rp} |Ft] . (31)

In many cases, including the models discussed in section 2, a closed form expression of

this expectation is not available. One way to evaluate the c.d.f. of the portfolio return is

a Monte Carlo simulation, that is generating a sample of m random vectors (rj)j=1,...,m

from the density fRt+1|Ft .
12 By the strong law of large numbers

1

n

m∑
j=1

1 {rp,j ≤ rp} → FRp,t+1|Ft(rp), P-a.s., (32)

where rp,j := g(rj ,w). The α-quantile of the simulated sample (rp,j)j=1,...,m is an esti-

mator of the α-quantile of Rp,t+1. Noting that Q−X(1− α) = −QX(α), we set

V̂aRα,Lp,t+1|Ft = −rp,(bαmc), (33)

where r(i) denotes the i-th oberservation of an ordered sample.

To implement the described method, we must be able to draw random samples from

the presented copula GARCH models. The corresponding simulation procedure works

as follows:

1. Simulate a random vector (u1, . . . , un) from the chosen copula.

2. Transform ui into a corresponding log return ri by applying the quantile functions

of the marginal models for i = 1, . . . , n.

In the case of a Gaussian copula with g-and-h margins, this procedure reduces to the

simulation of a random vector from a multivariate normal distribution13 and the compo-

nentwise application of the appropriate g-and-h as well as location scale transformations

to this vector. This explains why simulation from a g-and-h model is numerically very

similar to simulation from a multivariate normal distribution. Moreover, the discussion

reveals that the Gauss copula case of a g-and-h model can be seen as a CCC-GARCH

model (Bollerslev, 1990) with a more complex residual distribution.14

12 An alternative method would be numerical integration. This alternative is less suitable here because
we are not interested in a direct evaluation of the c.d.f. but in evaluating its inverse function. Thus,
we would have to combine two numerical procedures: inversion and integration.

13 With standardized margins and the estimated correlation matrix.
14 Finally, the connection to the multivariate g-and-h model proposed by Field/Genton (2006) becomes

apparent. These authors propose to transform the uncorrelated vector of standard normal random
variables, whereas we consider correlation first and subsequently apply the g-and-h transformations.
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4.2. Evaluation of Value at Risk

To assess the accuracy of VaR forecasts, we use the ideas developed by Christoffersen

(1998). Given a sequence of losses (Lt)t=1,...,T and VaR forecasts (VaRt|Ft−1
)t=1,...,T , we

define the corresponding hit (violation) series by

Ht = 1
[
Lt > VaRα,t|Ft−1

]
, t = 1, . . . , T. (34)

According to Christoffersen (1998, Definition 2), a VaR series is efficient if

E [Ht|Ht−1, . . . ,H1] = α, for all t = 1, . . . , T. (35)

Thus, efficiency means that the conditional probability of a hit is equal to α for all

t = 1, . . . , T . By the law of iterated expectations, this requirement implies that the

unconditional hit probability corresponds to α as well. Beyond that, (35) ensures that

hits do not occur in clusters. Efficiency, as definied in (35), implies that the hit series is

i.i.d. Bernoulli with parameter α (Christoffersen, 1998, Lemma 1).

This observation is used to design a two step test on VaR-efficiency. In the first step,

we assume independence and test on the parameter of the Bernoulli distribution. This

corresponds to testing the null hypothesis H0 : E [Ht] = α against H1 : E [Ht] 6= α.

Then, the likelihood ratio test statistic LRuc corresponds to the classical proportion of

failure VaR-test proposed by Kupiec (1995). The second step is to test the independence

assumption. Christoffersen (1998) constructs a likelihood ratio test statistic LRind as-

suming an explicit alternative hypothesis, a first order Markov chain. If we ignore the

first observation in the calculation of LRuc, both statistics can be combined to a test

statistic on correct conditional coverage, which is LRcc := LRuc + LRind. LRcc has an

asymptotic χ2 distribution with two degrees of freedom.

5. Empirical Results

5.1. The Data Set

We fit the models proposed in section 2 to three major European stock indices, the

German DAX 30, the British FTSE 100 and the French CAC 40. Our sample covers

a period from January 2000 to May 2010. We collected price data from Datastream to

calculate continuously compounded daily returns. After eliminating observations that

are affected by non-trading days, we are left with a three dimensional return sample of

2638 observations, which is depicted in Figure 3.

Descriptive statistics and standard test results for this sample are summarized in Table 1.
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Figure 3: Return series
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According to the results of Jarque/Bera (1987) tests, the univariate samples are far from

being normally distributed. This is mainly due to the very high sample kurtosis. High

Ljung Box test statistics for the series of squared returns give an indication for the

existence of volatility clusters. The descriptive statistics of the standardized residuals of

a normal GARCH(1,1) model show that a large amount of excess kurtosis is removed by

the GARCH filter. However, sample kurtosis is still significantly larger than three and

sample skewness is distinctively negative. Therefore, the assumption of normality is also

rejected for the residual series at the 1% significance level. This observation motivates the

application of return models that allow for conditional skewness and excess kurtosis.

5.2. Estimation Results

First, we present the estimation results of the marginal return models.15 In particular, we

compare the fit of GARCH(1,1) models with g-and-h and skewed-t distributed residuals.

We also report estimation results for restricted versions of these models, that is for

GARCH(1,1) models with h, t and normally distributed residuals. These specifications

15 We implemented the estimation procedure described in section 3 in Matlab 2010b. The numerical
maximization of the log-likelihood is performed using the Matlab optimizer fmincon (with active
set algorithm and user supplied gradient as described in the appendix). The starting values for
the parameters of the volatility model and residual distributions are determined by pre-estimations.
Matlab codes implementing g-and-h related functions (including the derivatives presented in the
appendix) are available from the authors.
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Table 1: Descriptive statistics

DAX FTSE CAC

data
start 05/01/2000 05/01/2000 05/01/2000
end 31/05/2010 31/05/2010 31/05/2010
T 2638 2638 2638

log returns rt
mean -3.8e-5 -7.4e-5 -6.0e-5
median 7.4e-4 3.6e-4 2.5e-4
min [%] -8.87 -9.48 -9.47
max [%] 10.80 9.65 10.59
std [%] 1.67 1.46 1.59
skew 0.05 -0.06 0.09∗

kurt 7.20∗∗∗ 8.69∗∗∗ 8.07∗∗∗

JB-test 1940∗∗∗ 3557∗∗∗ 2825∗∗∗

LB 1389∗∗∗ 2000∗∗∗ 1350∗∗∗

GARCH(1,1) residuals ẑt
skew ẑ -0.30∗∗∗ -0.21∗∗∗ -0.25∗∗∗

kurt ẑ 3.88∗∗∗ 3.64∗∗∗ 3.92∗∗∗

JB-test 123.5∗∗∗ 63.6∗∗∗ 120.6∗∗∗

Sample correlations
DAX 1.00
FTSE 0.78 1.00
CAC 0.88 0.86 1.00

skew and kurt are sample skewness and kurtosis. JB is the value of the Jarque/Bera (1987) test
statistic. LB is the test statistics proposed in Ljung/Box (1978) applied to the squared log returns for
10 lags.
The marks ∗∗∗, ∗∗ and ∗ denote significance at 1%, 5% and 10% levels. The same marks will be
used in the following tables.



15

are labeled gh-, st-, h-, t- and nv-GARCH. Table 2 summarizes several goodness of fit

statistics for these models. We observe that the likelihoods of the models with skewed-t

and the g-and-h distributed residuals are very close together. Moreover, the full models

are preferred to the restricted versions for all three time series according to likelihood

ratio tests and AIC based model selection.

Table 2: Margins – goodness of fit

DAX FTSE CAC

S1: nv-GARCH L 7581.1 7985.1 7710.7
AIC -15154.2 -15962.2 -15413.4

S2: t-GARCH L 7597.2 7999.1 7729.7
LR(S2/S1) 32.2∗∗∗ 27.9∗∗∗ 38.1∗∗∗

AIC -15184.5 -15988.1 -15449.5

S3: st-GARCH L 7604.3 8002.4 7735.5
LR(S3/S2) 14.1∗∗∗ 6.6∗∗∗ 11.6∗∗∗

AIC -15196.6 -15992.8 -15459.1

S4: h-GARCH L 7597.1 7999.0 7729.5
LR(S4/S1) 32.0∗∗∗ 27.8∗∗∗ 37.6∗∗∗

AIC -15184.2 -15988.0 -15449.0

S5: gh-GARCH L 7604.6 8002.8 7735.2
LR(S5/S4) 15.0∗∗∗ 7.6∗∗∗ 11.5∗∗∗

AIC -15197.2 -15993.6 -15458.5

L is the attainted value of the sample log-likelihood. LR(Si/Sj) is the test statistics of a likelihood
ratio test between the specifications Si and Sj. AIC is the value of the Akaike Information Criterion,
which is defined as AIC = 2k − 2L, where k is the number of model parameters.

Table 3 shows the parameter estimates for the g-and-h and skewed-t models.16 Note

that the mean and variance parameters of both specifications are very similar and that

the estimates of the kurtosis (ν, h) and the skewness (λ, g) parameters are significant

for all indices.

The results of estimating the copula parameters for g-and-h distributed margins are

presented in Table 4.17 For both copula models and all stock index combinations, the

dependency parameters are very high. The low values of ν imply that the European

stock markets exhibit non-negligible tail-dependence. This explains the much better fit

of the t copula according to the attained log-likelihoods and AICs.

5.3. Value-at-Risk Backtests

In this section, we present the results of backtesting one step ahead VaR forecasts based

on our uni- and multivariate models. We apply the formal tests from section 4.2 to assess

16 Estimation results for the restricted models are available from the authors upon request.
17 The results for st-GARCH margins are very similar and can be obtained from the authors upon

request.
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Table 3: Margins – parameter estimates (st- and gh-GARCH)

st-GARCH µ α0 α1 β1 ν λ
DAX 5.8e-4 1.6e-6 0.089 0.906 14.5 -0.102
s.e. (2.2e-4) (0.6e-6) (0.012) (0.011) (4.27) (0.025)
FTSE 4.7e-4 1.4e-6 0.097 0.898 14.3 -0.073
s.e. (1.9e-4) (0.5e-6) (0.014) (0.014) (3.39) (0.028)
CAC 5.1e-4 1.4e-6 0.084 0.912 13.2 -0.097
s.e. (2.1e-4) (0.5e-6) (0.012) (0.011) (3.21) (0.029)

gh-GARCH µ α0 α1 β1 g h
DAX 6.0e-4 1.5e-6 0.090 0.906 -0.071 0.034
s.e. (2.2e-4) (0.6e-6) (0.012) (0.011) (0.018) (0.011)
FTSE 4.6e-4 1.4e-6 0.097 0.898 -0.051 0.036
s.e. (1.9e-4) (0.5e-6) (0.014) (0.014) (0.019) (0.010)
CAC 5.0e-4 1.4e-6 0.085 0.911 -0.063 0.040
s.e. (2.1e-4) (0.5e-6) (0.012) (0.011) (0.019) (0.011)

This table shows parameter estimates that were obtained in the first estimation step of the MLE
approach described in section 3 and the appendix. Moreover, robust standard errors (s.e.) for these
estimates are given.

Table 4: Copula – estimation results (gh-GARCH margins)

Gaussian copula ρ s.e. ν s.e. L cop L # par AIC
DAX/FTSE 0.77 (0.008) - - 1197.6 16805.0 15 -33579.9
DAX/CAC 0.90 (0.004) - - 2013.2 17353.1 15 -34676.2
FTSE/CAC 0.81 (0.007) - - 1581.4 17319.4 15 -34608.9

t copula ρ s.e. ν s.e. L cop L # par AIC
DAX/FTSE 0.78 (0.006) 3.2 (0.1) 1341.9 16949.3 16 -33866.6
DAX/CAC 0.90 (0.003) 2.5 (0.1) 2326.9 17666.7 16 -35301.4
FTSE/CAC 0.84 (0.004) 3.0 (0.1) 1718.5 17456.5 16 -34881.1

This table reports parameter estimates that were obtained in the second step of the MLE approach
described in section 3 and the appendix. Robust standard errors (s.e.) for these estimates are shown.
ρ is the correlation parameter of the bivariate copulas. ν corresponds to the estimated degrees of
freedom for the t copula. L cop and L are the sample log-likelihoods of the copula and the full model.
# par is the number of parameters of the full bivariate specifications.
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the accuracy of in- and out-of-sample VaR-forecasts. For the in-sample tests, we use the

full length time series and the parameter estimates presented in the last subsection. For

the out-of-sample tests, we allow model parameters to change over time by using moving

estimation windows. The size of the estimation windows is 1000 observations, so that the

first window ends on December 16, 2003. Rolling our estimation window forward by one

trading day, we re-estimate the model 1637 times and obtain as many VaR-predictions.

We calculate VaR series for α = 5%, 1%, 0.1%.

We first present the backtest results for the nine VaR-series (3 indices, 3 α-levels) for

each of the five univariate models. In this case, the VaR can be obtained in closed form

using (29). In- and out-of-sample results are summarized in Table 5, where hit ratios and

p-values for tests on correct unconditional and conditional coverage are reported. Large

differences between in- and out-of-sample hit ratios are observed, which emphasizes the

importance of out-of-sample testing. Hit ratios are higher than the target values across

all models and indices, especially the out-of-sample hit ratios.18 The degree of deviation

substantially differs between the tested VaR-models. At the 5% significance level, the

nv-GARCH forecasts have to be rejected for eight of nine combinations according to

the conditional coverage LR-test. VaR-forecasts from models with leptocurtic residuals

(h- and t-GARCH) only fail the test for a third of the VaR series. A further improve-

ment is attained by allowing for conditional kurtosis and skewness. The hypothesis of

correct conditional coverage cannot be rejected in eight of nine times for the gh- and

st-GARCH models. These observations support the findings of Kuester et al. (2006)

and Giot/Laurent (2004), who report a high forecasting performance of GARCH-filtered

skewed-t models. In our case, these findings apply to the g-and-h specification as well.

Next, we report backtest results for VaR-predictions from our multivariate models. We

build three different two-index portfolios from the univariate series by mixing these with

equal weights.19 In this case, the computations are considerably more expensive because

all VaR-forecasts have to be obtained using the Monte Carlo approach described in (33).

The simulations are performed with a sample size of one million random numbers for

each forecast. An illustration of selected VaR series is given in Figure 4. Numerical

results of the backtests are reported in Table 6. We first focus on the impact of the

choice between Gaussian and t copula. Counting rejections of the correct conditional

coverage hypothesis at the 5% significance level, differences due to the copula specifi-

cation are only observed in three cases. These results add to the evidence provided by

Ané/Kharoubi (2003) and Rosenberg/Schuermann (2006), who discovered that the cop-

ula specification has a limited impact on the VaR-estimates compared to the marginal

distribution.20 A comparison of the results from gh- or st-GARCH and nv-GARCH spec-

18 This may be due to extreme stock price movements during the 2008 financial crisis.
19 The relative weights of the indices are kept constant during the testing period.
20 For a recent simulation study on the topic see Fantazzini (2009).
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Table 5: Univariate Value-at-Risk backtest

In-sample Out-of-sample
DAX FTSE CAC DAX FTSE CAC

100α hr puc pcc hr puc pcc hr puc pcc # hr puc pcc hr puc pcc hr puc pcc #

nv-GARCH
5.0 6.7 0.00 0.00 5.5 0.25 0.51 6.1 0.01 0.02 2 6.5 0.01 0.00 5.5 0.36 0.43 6.6 0.00 0.02 2
1.0 1.3 0.15 0.27 1.8 0.00 0.00 1.6 0.01 0.01 2 2.0 0.00 0.00 2.1 0.00 0.00 2.2 0.00 0.00 3
0.1 0.3 0.03 0.08 0.5 0.00 0.00 0.3 0.00 0.01 2 0.5 0.00 0.00 0.6 0.00 0.00 0.5 0.00 0.00 3

6 8
t-GARCH
5.0 6.8 0.00 0.00 5.7 0.11 0.28 6.4 0.00 0.00 2 6.8 0.00 0.00 6.1 0.05 0.10 6.8 0.00 0.00 2
1.0 1.1 0.49 0.51 1.4 0.07 0.12 1.2 0.29 0.40 0 1.6 0.03 0.06 1.8 0.00 0.01 1.6 0.03 0.06 1
0.1 0.1 0.83 0.97 0.2 0.20 0.43 0.2 0.20 0.43 0 0.3 0.03 0.11 0.2 0.12 0.29 0.2 0.12 0.29 0

2 3
st-GARCH
5.0 5.9 0.04 0.04 5.3 0.53 0.79 5.5 0.28 0.28 1 6.1 0.06 0.06 5.7 0.21 0.23 6.5 0.01 0.03 1
1.0 0.9 0.64 0.42 1.0 0.90 0.75 0.8 0.38 0.56 0 1.2 0.38 0.34 1.5 0.05 0.09 1.3 0.27 0.30 0
0.1 0.1 0.83 0.97 0.2 0.20 0.43 0.2 0.44 0.73 0 0.2 0.12 0.29 0.2 0.12 0.29 0.2 0.34 0.63 0

1 1
h-GARCH
5.0 6.8 0.00 0.00 5.7 0.11 0.28 6.4 0.00 0.00 2 6.8 0.00 0.00 6.1 0.05 0.10 6.8 0.00 0.00 2
1.0 1.1 0.49 0.51 1.4 0.07 0.12 1.2 0.29 0.40 0 1.5 0.05 0.10 1.8 0.00 0.01 1.5 0.05 0.10 1
0.1 0.1 0.83 0.97 0.2 0.20 0.43 0.2 0.20 0.43 0 0.3 0.03 0.11 0.3 0.03 0.11 0.2 0.12 0.29 0

2 3
gh-GARCH
5.0 5.9 0.04 0.04 5.3 0.53 0.79 5.5 0.25 0.37 1 6.0 0.07 0.08 5.7 0.21 0.23 6.4 0.01 0.04 1
1.0 0.9 0.50 0.35 1.0 0.94 0.77 0.8 0.28 0.47 0 1.2 0.52 0.38 1.5 0.08 0.14 1.3 0.27 0.30 0
0.1 0.1 0.83 0.97 0.2 0.44 0.73 0.2 0.44 0.73 0 0.2 0.34 0.63 0.2 0.12 0.29 0.2 0.34 0.63 0

1 1

hr denotes the attained hit ratio in percent, i.e. the relative number of VaR violations. puc and pcc are
p-values of tests on correct unconditional and conditional coverage that we discussed in section 5.3. In
the last column, labeled by #, we count the number of rejections of the hypothesis of correct conditional
coverage at a 5% significance level.
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ifications emphasizes that the modeling of conditional skewness and kurtosis distinctively

improves the forecasting performance. The differences between the g-and-h and skewed-t

specifications are only very small.

Figure 4: Value-at-Risk backtest DAX/FTSE (α = 0.1%)
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So far, we have seen that g-and-h and skewed-t models provide a very similar fit to

stock market data and highly comparable VaR forecasts. However, they differ signif-

icantly concerning the computational cost of their implementation. Table 7 provides

the computing times of the different specifications for the out-of-sample VaR-backtest.

These results emphasize that the computational cost of estimating a skewed-t model

is only little higher than in the case of Gaussian residuals, whereas estimating the g-

and-h model takes much longer. This relation turns into the opposite when considering

simulation from the models. In this case, differences between gh- and nv-GARCH mod-

els are negligible, whereas the computational cost for the skewed-t approach is much

higher.

To understand the reported differences, we recall that the inversion of the g-and-h trans-

formation is not available in closed form and thus neither is its density. This is the reason

for which we provide analytical scores of the likelihood. The differences in simulation

performance can be traced back to the time for evaluating the quantile functions of the

margins.21

21 The absolute values of these differences are hardware- and implementation-specific. In our test
setting (bwGRiD (2010), one node, Matlab 2010b) applying the quantile function of the g-and-
h distribution to a 106 × 1 random vector from a uniform distribution takes 0.07 seconds whereas
the same calculations for the skewed-t model take 3.37 seconds.
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Table 6: Multivariate Value-at-Risk backtest

In-sample Out-of-sample
DAX/FTSE DAX/CAC FTSE/CAC DAX/FTSE DAX/CAC FTSE/CAC

100α hr puc pcc hr puc pcc hr puc pcc # hr puc pcc hr puc pcc hr puc pcc #

Gauss copula, nv-GARCH
5.0 6.1 0.01 0.03 6.6 0.00 0.00 5.9 0.04 0.10 2 6.3 0.02 0.06 6.6 0.00 0.01 6.4 0.02 0.03 2
1.0 1.5 0.02 0.06 1.6 0.00 0.02 1.4 0.03 0.09 1 2.4 0.00 0.00 2.2 0.00 0.00 2.2 0.00 0.00 3
0.1 0.3 0.00 0.01 0.3 0.01 0.03 0.4 0.00 0.00 3 0.7 0.00 0.00 0.5 0.00 0.00 0.6 0.00 0.00 3

6 8
Gauss copula, st-GARCH
5.0 5.7 0.09 0.15 5.7 0.09 0.09 5.7 0.11 0.24 0 6.0 0.07 0.19 6.3 0.02 0.04 6.2 0.03 0.05 2
1.0 1.0 0.90 0.55 1.0 0.90 0.55 0.8 0.38 0.56 0 1.3 0.18 0.24 1.5 0.05 0.10 1.4 0.12 0.22 0
0.1 0.2 0.44 0.73 0.2 0.44 0.73 0.2 0.44 0.73 0 0.2 0.12 0.29 0.3 0.03 0.11 0.2 0.12 0.29 0

0 2
Gauss copula, gh-GARCH
5.0 5.7 0.09 0.15 5.9 0.04 0.05 5.7 0.11 0.24 0 5.9 0.09 0.23 6.3 0.02 0.04 6.3 0.02 0.04 2
1.0 1.0 0.94 0.53 1.0 0.94 0.53 0.8 0.38 0.56 0 1.3 0.27 0.30 1.4 0.12 0.19 1.3 0.18 0.31 0
0.1 0.2 0.44 0.73 0.1 0.83 0.97 0.1 0.83 0.97 0 0.2 0.12 0.29 0.3 0.03 0.11 0.2 0.12 0.29 0

0 2
t-copula, nv-GARCH
5.0 6.1 0.01 0.03 6.4 0.00 0.00 5.9 0.04 0.08 2 6.3 0.02 0.06 6.6 0.00 0.01 6.4 0.02 0.03 2
1.0 1.4 0.07 0.16 1.4 0.03 0.09 1.2 0.38 0.47 0 2.1 0.00 0.00 2.2 0.00 0.00 2.1 0.00 0.00 3
0.1 0.3 0.03 0.08 0.3 0.01 0.03 0.3 0.00 0.01 2 0.4 0.00 0.01 0.5 0.00 0.00 0.5 0.00 0.00 3

4 8
t-copula, st-GARCH
5.0 5.8 0.07 0.14 5.6 0.16 0.16 5.8 0.08 0.17 0 6.1 0.06 0.15 6.3 0.02 0.04 6.2 0.03 0.05 2
1.0 0.9 0.79 0.48 0.9 0.64 0.42 0.8 0.28 0.47 0 1.3 0.18 0.24 1.3 0.18 0.24 1.3 0.18 0.31 0
0.1 0.2 0.44 0.73 0.1 0.83 0.97 0.1 0.83 0.97 0 0.2 0.34 0.63 0.3 0.03 0.11 0.2 0.12 0.29 0

0 2
t-copula, gh-GARCH
5.0 5.8 0.08 0.17 5.7 0.09 0.09 5.7 0.09 0.20 0 6.1 0.06 0.15 6.2 0.04 0.07 6.3 0.02 0.04 1
1.0 0.9 0.79 0.48 0.9 0.64 0.42 0.8 0.19 0.37 0 1.2 0.38 0.34 1.3 0.27 0.30 1.3 0.18 0.31 0
0.1 0.2 0.44 0.73 0.1 0.83 0.97 0.1 0.83 0.97 0 0.2 0.34 0.63 0.2 0.34 0.63 0.2 0.12 0.29 0

0 1

See Table 5 for an explanation of the symbols.

Table 7: Computing time – out-of-sample backtests

estimation time [in min] simulation time [in min]

DAX DAX FTSE
DAX FTSE CAC FTSE CAC CAC

nv-GARCH 8 7 8 34 33 33
st-GARCH 13 12 12 316 314 311
gh-GARCH 538 544 575 39 38 38

Columns 2 - 4 report the computing time for the estimation step of the backtests, i.e. the
time for 1638 estimations of the marginal model given a sample size of 1000 observations.
Columns 5-7 show the computing time for the VaR-simulations in the case of the Gaussian
copula. The computations were performed using Matlab 2010b on bwGRiD (2010) with a
single node.
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6. Conclusion

In the first part of this paper, we discussed the usage of the g-and-h distribution in

multivariate VaR models. In particular, we suggested building copula GARCH models

with residuals from the standardized g-and-h distribution. This construction allows

the capture of conditional fat tails and asymmetries, which are important stylized facts

of financial return series. We adressed the problem of parameter estimation for this

distribution and demonstrated that standard likelihood based estimation can be used.

To increase the performance in numerical implementations, we derived the gradient of

the density of a g-and-h GARCH(1,1) model. As an important application of this model,

we discussed how to derive and evaluate risk forecasts.

In the empirical section, we fitted copula models with GARCH filtered margins to the

return series of major European stock indices and compared the model fit for different

residual distributions. Our g-and-h approach and its skewed-t benchmark provided a

similar fit. These models were preferred to restricted versions according to likelihood ra-

tio tests and AIC-based model selection. We presented backtest results for one-day ahead

VaR forecasts based on our bivariate return models. In this context, we found further

evidence for the importance of capturing shape asymmetries. The g-and-h and skewed-

t models clearly outperformed the specifications with symmetric, leptokurtic residuals

according to formal tests on correct conditional coverage in univariate and multivariate

settings. Furthermore, our empirical study confirmed implementation specific advan-

tages of the g-and-h and skewed-t based copula models. The likelihood based fitting of

the latter is faster, the former profits from a better simulation performance.

Further research concerning g-and-h based copula models could address other applica-

tions like integrated risk management (Rosenberg/Schuermann, 2006) or high dimen-

sional portfolio selection problems, which would benefit from the good simulation per-

formance. Finally, we would like to reiterate that it is quite easy to upgrade existing

implementations of Gaussian time series models using the g-and-h approach due to its

definition based on a quantile transformation.

A. Gradient of the log-likelihood

Derivatives of the Inverse g-and-h Transformation: First, we use implicit function arguments to derive

the gradient of the inverse g-and-h transformation I.22 Recall that I is only defined implicitly by

T (I(x, g, h), g, h) = x, (36)

22 In this part text, we adopt a more flexible notation for the g-and-h transformation. Most of the
time, we consider g and h as variables by writing T (y, g, h) and respectively I(x, g, h). We sometimes
suppress the dependence on g and/or h to simplify notation. In those cases, we denote the functions
by T (y) or T (y, τ) and accordingly I(x) or I(x, τ) for τ ∈ { g, h }.
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for x ∈ R, g ∈ R and h ∈ (0, 0.5) with T given in (1). Therefore, we cannot explicitly compute its

derivatives. However, by differentiating (36) with respect to x and rearranging, we obtain the well-

known result
dI

dx
(x) =

1
dT
dy

(I(x))
. (37)

In the same way, we calculate the partial derivatives with respect to g and h. For τ ∈ { g, h }, it follows

that
∂I

∂τ
(x, τ) = −

∂T
∂τ

(I(x, τ), τ)
∂T
∂y

(I(x, τ), τ)
, for τ ∈ { g, h } . (38)

The implementation of (37) and (38) requires the computation of ∂T
∂y

, ∂T
∂g

and ∂T
∂h

, which we provide

in Table 8. Applying L’Hôpital’s rule, it can easily be checked that these derivatives are continuous in

g = 0. Moreover, ∂T
∂y

is positive for h ≥ 0, so that (37) and (38) are always well defined. To derive the

gradient of the density of a g-and-h distributed random variable, we need second order derivatives of

the inverse transformation that are of the form ∂2I
∂τ∂x

for τ ∈ {x, g, h }. By applying the chain rule of

differentiation, we conclude from (37) that

∂2I

∂τ∂x
(x, τ) = −

(
∂T

∂y
(I(x, τ), τ)

)−2

·
(
∂2T

∂y2
(I(x, τ), τ) · ∂I(x, τ)

∂τ
+

∂2T

∂τ∂y
(I(x, τ), τ)

)
, (39)

for τ ∈ { g, h }. The second x-derivative is

∂2I

∂x2
(x) = −

(
1

∂T
∂y

(I(x))

)2

· ∂
2T

∂y2
(I(x)) · ∂I

∂x
(x). (40)

The implementation of these expressions requires the computation of ∂
2T
∂y2

, ∂2T
∂g∂y

and ∂2T
∂h∂y

. These deriva-

tives can also be found in Table 8. Just like the first order derivatives, they are continuous in g = 0,

which can again be seen by an application of L’Hôpital’s rule.

Gradient of the g-and-h Density: Using the notation defined in section 2.1, the first derivative of the

density of a g-and-h distributed random variable Xg,h can be written as

∂fXg,h

∂τ
(x, g, h) = φ′(I(x, τ))·∂I

∂τ
(x, τ) · ∂I

∂x
(x, τ)

+ φ(I(x, τ)) · ∂
2I

∂x∂τ
(x, τ). (41)

For τ = x this yields

∂fXg,h

∂x
(x, g, h) = φ′(I(x)) ·

(
∂I

∂x
(x)

)2

+ φ(I(x)) · ∂
2I

∂x2
(x). (42)

Next, we derive the gradient of a standardized g-and-h distributed random variable Zg,h. From

fZg,h(z, g, h) = σg,h · fXg,h(S(z, g, h), g, h) (43)

with S(z, g, h) := µg,h + σg,h · z, we conclude

∂fZg,h

∂τ
(z, g, h) =

∂σg,h
∂τ

· fXg,h(S(z, g, h), g, h)

+ σg,h ·
[
∂fXg,h

∂τ
(S(z, g, h), g, h)

+
∂fXg,h

∂x
(S(z, g, h), g, h) · ∂S(x, g, h)

∂τ

]
, (44)
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for τ ∈ { g, h } and

∂fZg,h

∂z
(z, g, h) = σg,h ·

∂fXg,h

∂x
(S(z, g, h), g, h) · ∂S

∂z
(z, g, h). (45)

For the implementation of these equations we have to compute the derivatives of the mean and variance of

a g-and-h distributed random variable. The corresponding results are also provided in Table 8. Checking

that these derivatives are continuous is again a L’Hôpital exercise. The combination of these expressions

with ∂σ
∂τ

(τ) = (2σ(τ))−1 · ∂σ
2

∂τ
(τ) completes the derivation of the gradient of the standardized g-and-h

density.

Gradient of the log-Likelihood : As in section 3, lt denotes the log-likelihood of a single observation rt

given Ft−1. By setting zt := rt−µ
σt

, we can write lt := log fZ (zt) − log σt. Collecting the parameters of

the white noise density and the variance model in θZ and respectively θσ, we obtain

∂lt
∂θZ

=
1

fZ(zt)
· ∂fZ
∂θZ

(zt), (57)

∂lt
∂θσ

=
1

fZ(zt)
· ∂fZ
∂z

(zt) ·
∂zt
∂σt
· ∂σt
∂θσ

− 1

σt
· ∂σt
∂θσ

, (58)

∂lt
∂µ

=
1

fZ(zt)
· ∂fZ
∂z

(zt)

·
[
∂zt
∂µ

+
∂zt
∂σt
· ∂σt
∂µ

]
− 1

σt
· ∂σt
∂µ

. (59)

Noting that ∂zt
∂σt

= − rt−µ
σ2 and ∂zt

∂µ
= − 1

σt
, it follows that23

∂lt
∂µ

= − 1

σt
·

[
(fZ(zt))

−1 · ∂fZ
∂z

(zt)

·
(

1 +
rt − µ
2σ2

t

· ∂σ
2
t

∂µ

)
+

1

2σt
· ∂σ

2
t

∂µ

]
, (60)

∂lt
∂θσ

= − 1

2σ2
t

· ∂σ
2
t

∂θσ

·
[
(fZ(zt))

−1 · ∂fZ
∂z

(zt) ·
rt − µ
σt

+ 1

]
. (61)

In the case of the GARCH(1,1) specification, we have

∂σ2
t

∂α0
= 1 + β1 ·

∂σ2
t−1

∂α0
, (62)

∂σ2
t

∂α1
= (rt−1 − µ)2 + β1 ·

∂σ2
t−1

∂α1
, (63)

∂σ2
t

∂β1
= σ2

t−1 + β1 ·
∂σ2

t−1

∂β1
, (64)

∂σ2
t

∂µ
= −2 · α1 · (rt−1 − µ) + β1 ·

∂σ2
t−1

∂µ
. (65)

These derivatives have to be calculated iteratively starting from t = 1. The start values of the iteration

depend on the assumptions on the presample values of σ2
t and ε2t . Following a suggestion in Bollerslev

(1986), we use estimates of the unconditional variance. In particular, we set

h2
0 = ε20 =

1

T − 1

T∑
t=1

(rt − µ̂)2, (66)

23 We prefer to rewrite σt-derivatives in terms of the σ2
t -derivatives because we model the variance

explicitly.
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Table 8: Derivatives of Tg,h, µg,h and σ2
g,h

transformation function:

∂T

∂y
=

exp
(
hy2

2

)
· [g exp(gy) + hy(exp(gy)− 1)] · g−1 if g 6= 0,

exp
(
hy2

2

)
·
(
1 + hy2

)
if g = 0

(46)

∂T

∂g
=

exp
(
hy2

2

)
· [exp(gy)gy − (exp(gy)− 1)] · g−2 if g 6= 0,

exp
(
hy2

2

)
· 1
2
y2 if g = 0

(47)

∂T

∂h
=

exp
(
hy2

2

)
· 1
2
y2 · exp(gy)−1

g
if g 6= 0,

exp
(
hy2

2

)
· 1
2
y3 if g = 0

(48)

∂2T

∂y2
=

hy
∂T
∂y

+ g−1 exp
(
hy2

2

) (
g2 exp(gy) + h (exp(gy)− 1) + hyg exp(gy)

)
if g 6= 0,

exp
(
hy2

2

)
·
(
3hy + h2y3

)
if g = 0

(49)

∂2T

∂g∂y
=

−
1
g
∂T
∂y

+ g−1 exp
(
hy2

2

) (
exp(gy) + gy exp(gy) + hy2 exp (gy)

)
if g 6= 0,

exp
(
hy2

2

)
·
(
y + 1

2
hy3

)
if g = 0

(50)

∂2T

∂h∂y
=


y2

2
∂T
∂y

+ g−1 exp
(
hy2

2

)
(y exp(gy)− y) if g 6= 0,

exp
(
hy2

2

)
·
(
3
2
y2 + 1

2
hy4

)
if g = 0

(51)

mean:

∂µ(g, h)

∂g
=

− 1
g2
√
1−h

[
exp

(
g2

2(1−h)

)
− 1
]
+ 1
g
√
1−h exp

(
g2

2(1−h)

)
g

1−h , g 6= 0,

1
2
(1− h)−

3
2 , g = 0

(52)

∂µ(g, h)

∂h
=

{
1
2g
· (1− h)−

3
2 ·
[
exp

(
g2

2(1−h)

)
− 1
]
+ exp

(
g2

2(1−h)

)
· g
2
· (1− h)−

5
2 , g 6= 0,

0, g = 0
(53)

variance:
g 6= 0:

∂σ2

∂g
=

−2
g3
√
1− 2h

[
exp

(
2g2

1− 2h

)
− 2 exp

(
g2

2(1− 2h)

)
+ 1

]
(54)

+
1

g2
√
1− 2h

[
exp

(
2g2

1− 2h

)(
4g

1− 2h

)
− 2 exp

(
g2

2(1− 2h)

)
2g

2(1− 2h)

]
− 2 · µ(g, h) ·

∂µ(g, h)

∂g

∂σ2

∂h
=

1

g2
(1− 2h)−

3
2

[
exp

(
2g2

1− 2h

)
− 2 exp

(
g2

2(1− 2h)

)
+ 1

]
(55)

+
1

g2
√
1− 2h

[
exp

(
2g2

1− 2h

)
·

4g2

(1− 2h)2
− 2 exp

(
g2

2(1− 2h)

)
·

g2

(1− 2h)2

]
− 2 · µ(g, h) ·

∂µ(g, h)

∂h

g = 0:

∂σ2
g,h

∂h
= 3(1− 2h)−

5
2 ,

∂σ2
g,h

∂g
= 0 (56)
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with µ̂ = 1
T

∑T
t=1 rt

24. In this case, the prevalues are independent of the parameters and thus our

starting values are given by
∂σ2

1
∂α0

= 1,
∂σ2

1
∂α1

= (r0 − µ)2,
∂σ2

1
∂β1

= σ2
0 and

∂σ2
1

∂µ
= −2 · α1 · (r0 − µ).

24 This estimator slighty deviates from the original suggestion in Bollerslev (1986, p. 316), where
1
T

∑T
t=1(rt − µ) is used to estimate the unconditional variance.
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