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Abstract

In dimensions d ≥ 2, the complex Bloch varieties and the associated Fermi curves
of periodic Schrödinger operators with quasi-periodic boundary conditions are
defined as complex analytic varieties. The Schrödinger potentials are taken
from the Lebesgue space Ld/2 in the case d > 2, and from the Lorentz–Fourier
space F`∞,1 in the case d = 2. Then, an asymptotic analysis of the Fermi
curves in the case d = 2 is performed. The decomposition of a Fermi curve into
a compact part, an asymptotically free part, and thin handles, is recovered as
expected. Furthermore, it is shown that the set of potentials whose associated
Fermi curve has finite geometric genus is a dense subset of F`∞,1. Moreover, the
Fourier transforms of the potentials are locally isomorphic to perturbed Fourier
transforms induced by the handles. Finally, an asymptotic family of parameters
describing the sizes of the handles is introduced. These parameters are good
candidates for describing the space of all Fermi curves.

Zusammenfassung

In d ≥ 2 Dimensionen werden die komplexen Blochvarietäten und die zuge-
hörigen Fermikurven periodischer Schrödingeroperatoren mit quasiperiodischen
Randbedingungen als komplex analytische Varietäten definiert. Die Schrödinger-
potentiale entstammen im Fall d > 2 dem Lebesgueraum Ld/2 und im Fall d = 2
dem Lorentz-Fourier-Raum F`∞,1. Danach wird im Fall d = 2 eine asymptoti-
sche Analyse der Fermikurven durchgeführt. Erwartungsgemäß erhält man die
Aufteilung einer Fermikurve in einen kompakten Teil, einen asymptotisch freien
Teil und dünne Henkel. Weiterhin wird gezeigt, dass die Menge der Potentia-
le, deren zugehörige Fermikurve endliches geometrisches Geschlecht hat, eine
dichte Teilmenge von F`∞,1 ist. Überdies sind die Fouriertransformierten der
Potentiale lokal isomorph zu von den Henkeln induzierten, gestörten Fourier-
transformierten. Schließlich wird eine asymptotische Familie von Parametern,
die die Größe der Henkel beschreiben, eingeführt. Diese Parameter sind gute
Kandidaten, den Raum aller Fermikurven zu beschreiben.
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Chapter 1

Introduction

1.1 The inverse problem

The Schrödinger equation in d dimensions, d ∈ Z>0, is given by

(−∆ + u)ψ = λψ.

Here, u and ψ are functions from Rd to C, and λ is a complex scalar. The
function u acts on ψ by left multiplication. The Laplace operator ∆, on the
other hand, acts as the differential operator

∆ =
d∑
i=1

∂2

∂x2
i

,

where x1, . . . , xd are coordinates for Rd with respect to the canonical ordered ba-
sis. Hence, for d ≥ 2, the Schrödinger equation is a partial differential equation.
We call the operator −∆ +u the Schrödinger operator with potential u. In par-
ticular, the Schrödinger equation is an eigenvalue equation for the Schrödinger
operator in which a non-trivial solution ψ is an eigenfunction belonging to the
eigenvalue λ. The set of possible eigenvalues is the spectrum of the Schrödinger
operator.

We are interested in periodic Schrödinger operators. By this, we mean two
things.

Firstly, the potential u must be a periodic function. For d = 1, this condition
has a very simple formalisation. Just pick some b ∈ R, b 6= 0, and let u fulfil the
condition

u(x+ b) = u(x) for all x ∈ R.

Of course, this condition does not in general remain the same if we pick a
different b. In this sense, b becomes a parameter for our locus of discourse. For
general d, periodicity means not just one period, but d independent periods.
It is helpful to put slightly more sophistication into this concept than in the
case d = 1 and express periodicity through a geometric lattice Γ ⊆ Rd of rank d:

u(x+ γ) = u(x) for all x ∈ Rd and all γ ∈ Γ.

1



2 CHAPTER 1. INTRODUCTION

Secondly, a solution of the Schrödinger equation ψ must be a quasi-periodic
function, that is, there is some boundary condition k ∈ Cd such that

ψ(x+ γ) = e2πi(k|γ)ψ(x) for all x ∈ Rd, γ ∈ Γ, (1.1.1)

where (·|·) is the complex extension of the canonical Euclidean bilinear form
on Rd.

This second condition is not entirely independent of the first. The periodicity
of u and the chain rule imply

(−∆ + u(x))ψ(x+ γ) = ((−∆ + u)ψ)(x+ γ) for all x ∈ Rd, γ ∈ Γ.

In other words, the periodic Schrödinger operator commutes with all translation
operators Tγ , γ ∈ Γ, which are defined by

(Tγψ)(x) := ψ(x+ γ).

Hence, assuming the Schrödinger operator and the translation operators are di-
agonalisable in some suitable sense (take, for example, the Schrödinger operator
as a closed operator on L2(Rd) with real-valued potential), they are simultane-
ously so. Therefore, given some fixed solution ψ, there is a function χ : Γ → C
such that the translation operators act on ψ as

Tγψ = χ(γ)ψ for all γ ∈ Γ

in this case. The Z-module structure of Γ then yields

χ(γ1 + γ2) = χ(γ1)χ(γ2) for all γ1, γ2 ∈ Γ.

Since the translation operators do not have zero eigenvalues, we arrive at (1.1.1),
except that we posed this condition independently of the aforementioned pre-
requisites.

Although we introduced k as a boundary condition, we shall consider it
part of an extended spectrum of the Schrödinger operator. That is, for each
Schrödinger operator (identified by its potential u) we define the Bloch variety

B(u) := {(k, λ) ∈ Cd × C : There is a non-trivial solution ψ of the
Schrödinger equation (−∆ + u)ψ = λψ

such that ψ(x+ γ) = exp(2πi(k|γ))ψ(x) for all x ∈ Rd, γ ∈ Γ}.

We can now pose the inverse problem of periodic Schrödinger operators. It
consists of two subproblems.

• The moduli problem. Describe/parameterise the set of all Bloch vari-
eties.

• The isospectral problem. Given a fixed potential u0, describe/para-
meterise the set of all potentials u such that B(u) = B(u0).

As it stands, the inverse problem is somewhat ill-posed. For example, what kind
of “varieties” should the Bloch varieties be, and what space should we choose u
from such that B(u) actually is such a variety? However, for the purposes of this
introduction, we shall use this approximate problem specification, and provide
the necessary additional details later in the work.



1.2. WHAT IS DONE IN THIS WORK 3

1.2 What is done in this work

It turns out that a complete solution of the inverse problem is a very extensive
programme. In this work, we shall solve only a small part of it. For d = 1,
the inverse problem has been solved thoroughly [MO75, MM75, MT76, Kri77,
MO80, Kor08]. We shall specifically concentrate on the case d = 2, for fixed λ.
The latter condition means that we extract a fixed-λ slice from the Bloch variety
(called a Fermi curve). We then solve the moduli problem asymptotically, that
is, for the large-k case, for that slice. Let us explain what we do in the individual
chapters.

In chapter 2, we introduce various function spaces, intended, amongst other
things, for our potentials and solutions to live in. After all, we cannot expect the
Bloch variety to have nice properties for just any distribution u. Nevertheless, we
strive towards a space of potentials as large as possible to make the Bloch variety
a complex variety. It turns out that for the case d = 2, this requires a rather
comprehensive collection of function spaces, including some less standard spaces.
Besides the usual Lebesgue, Bessel potential, and Sobolev spaces, we shall also
delve somewhat into the theory of rearrangement-invariant Banach function
spaces, especially Lorentz–Zygmund spaces. We shall also deal with Fourier
transforms and the spaces they define, as well as the duality of multiplication
and convolution operators. In this context, we shall introduce some interpolation
theory. Furthermore, we shall introduce Bochner spaces and investigate their
relation to tensor products, and also mention some spaces of minor importance.
We close the chapter with the introduction of several localisation techniques for
function space norms. The vast majority of results presented in this chapter is
well-known. Hence, the chapter should be thought of as a gentle exposition for
beginners in the subject. Experts can probably skip the chapter on first reading.

In chapter 3, we execute the standard programme to establish the resolvent
of the Schrödinger operator as a meromorphic, compact operator valued function
on an L2 Hilbert space. We also prove some continuity results with respect to
different topologies. As we intend to do this for a relatively general space of
potentials, we have to employ a small number of new techniques “under the
hood” of the standard programme. Readers interested in these new techniques
are advised to read the whole chapter, while others may content themselves with
section 3.1 and theorem 3.3.24.

Chapter 4, is the heart of this work. With the results from chapter 3, we
are finally able to give a proper definition of the Bloch variety and the Fermi
curve. From then on restricting our attention to the case d = 2, we embark on a
systematic asymptotic analysis of the Fermi curve. First, we calculate the free
(u = 0) Fermi curve explicitly, and then go on to show that general Fermi curves
(or rather, certain reductions of them) consist of three parts: an asymptotically
free part, an at most countable number of handles, and the remainder, which is
contained in a compact set. The remainder of the chapter is concerned with the
handles. Since constant potentials play a special role, we calculate the Fermi
curves of constant potentials explicitly, and then define a special kind of Fourier
transform of the potential, such that the resultant Fourier coefficients have a
rather direct connexion with the geometry of the handles. This enables us to
define potentials of finite type, and show that they are dense in our chosen space
of potentials. Finally, we introduce a set of parameters describing the handles,
thus solving the moduli problem for Fermi curves asymptotically.
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In chapter 5, we give a short summary of our results, discuss some results of
others, and explain what further steps have to be taken to completely solve the
entire inverse problem.

This work contains two appendix chapters. Appendix A is just a prequel
to appendix B. In it, Lorentz–Karamata spaces, a generalisation of Lorentz–
Zygmund spaces due to Neves, are defined. This further scale of spaces is inter-
esting in its own right as it has a certain completeness property (theorem A.1.6)
which the other scales introduced up to that point lack. In appendix B, we
present the remnant of an attempt to achieve our results using Dirac operators
instead of Schrödinger operators. Using Dirac theory instead of Schrödinger
theory seemed quite feasible at first. The Dirac operator is simpler to handle
than the Schrödinger operator, and in physics, the former is the relativistic ver-
sion of the latter. Indeed, for fixed energy, the Dirac spectrum encompasses
the Schrödinger spectrum. The further development may even work for L2-
potentials. However, since we are using more general spaces of potentials, cer-
tain technicalities render the attempt doomed to fail. We have left it in, as far
as it works, as an example that even a very beautiful and promising ansatz may,
even after early successes, turn out to be unusable in the end.

1.3 The inverse problem in physics

Let us make some quick remarks about the connexion of the periodic Schrödinger
operator and the inverse problem in general, with physics. This section high-
lights only a small number of examples. We make no claim of completeness.

The periodic Schrödinger operator has, at least in some cases, deep ties with
physics. Indeed, Schrödinger himself was a physicist and used the Schrödinger
equation to obtain the physical phenomenon of quantisation as an eigenvalue
problem in 1926 [Sch26b, Sch26d, Sch26a, Sch26c]. Already earlier, on the 21st
of April, 1912, Friedrich and Knipping, on a proposal of Laue, demonstrated ex-
perimentally by scattering X-rays on a certain crystalline solid that the atoms
in the solid are quite precisely arranged according to a three-dimensional lat-
tice [MR87, fn. 316]. This leads to the assumption of a periodic effective electric
potential in a crystalline solid1. Furthermore, the squared modulus of the eigen-
function, |ψ|2, has a physical interpretation as observable probability density for
a test particle (electron) in such a potential, giving rise to condition (1.1.1), at
least for k ∈ Rd. Therefore, the Schrödinger operator can serve as a model of
physical reality for a broad class of scattering experiments.

The direct solution of the Schrödinger equation yields a spectrum for some
concrete potential. A solution of the inverse problem, however, is of greater
practical value, for the spectrum can be measured much more easily than the
potential. For example, it is quite natural to ask what potentials can possibly be
responsible for some measured spectrum (the isospectral problem). On the other
hand, one might want to know whether one can create a physical configuration
whose spectrum fulfils certain properties (the moduli problem).

This physical view of the inverse problem generalises beyond the Schrödinger
operator, and is indeed older than the papers of Schrödinger. For example,
H. Weyl writes in the introduction of [Wey12] (a work dated May 7th, 1911):

1Several idealisations enter here, among them the neglection of thermally induced motion
of the atoms and the finite size of the crystal.
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”Methoden von solcher Allgemeinheit wie die Theorie der Integralgleichun-
gen haben, wenn man sie auf physikalische Probleme [. . . ] anwendet, ihre Aufga-
be damit nicht erschöpft, daß sie ermöglichen, in jedem konkreten Einzelfall die
Erscheinungen bis in ihre letzten Details rechnerisch zu verfolgen [. . . ]; vielmehr
sollen diese Methoden [. . . ] vor allem das leisten — was kein spezieller Ansatz zu
leisten vermag —: die einem großen Komplex von Erscheinungen gemeinsamen
Züge ausfindig zu machen.“ 2

Weyl then goes on to show that for linear wave equations (in particular the
case of electromagnetic waves trapped within a thrice differentiable, reflecting
boundary), all spectra are asymptotically equal. This result can be seen as a
partial solution to a moduli problem. Indeed, in chapter 4, we shall prove a
similar statement for Fermi curves.

In any case, Weyl’s “common traits” are not even restricted to one single
kind of equation. In [GGKM67], Gardner, Greene, Kruskal, and Miura found a
connexion between solitary water waves in shallow canals (which are described
by the (non-linear) Korteweg–de Vries equation) and the Schrödinger equation.
Their results in turn prompted new developments on the mathematical side (see
section 5.1 for a selection of the outcomes).

In conclusion, we think it not unwise to view mathematics and physics going
hand in hand as far as the theory is concerned, and thus we shall allow ourselves
the occasional physical remark.
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2“Methods of such generality as the theory of integral equations, when applied to physical
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phenomena of a concrete example to the last detail [. . . ]; rather [. . . ] these methods should
provide for the following foremost — which no concrete ansatz can provide —: to identify the
common traits in a grand complex of phenomena.”
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Chapter 2

Function spaces

Setting out from the standard Lebesgue spaces we shall introduce all the function
spaces necessary for our work.

The results presented in this chapter are, for the most part, well-known.
Since the inception of Lebesgue integrals in 1901, a century of research has
seen the introduction of multiple kinds of Banach function spaces ultimately
derived from Lebesgue spaces. A considerable body of literature has emerged
illuminating many important families of function spaces from many different
angles. Hence, the greatest difficulty to the mere usufructuaries of what can
arguably be called the cementing substance of modern functional analysis is not
so much the adaptation and development of existing theory to their research
specifics (for to be honest, some or other differential equation is often what is
actually in the back of the function space creator’s mind anyway) than, indeed,
the choice of the right tool, which reduces, in effect, to the choice of the right
(family of) function spaces. In the making of the present thesis a nontrivial
amount of time was spent on research which family of function spaces might
yield the desired results in best possible generality.

Naturally enough, we start with Lebesgue Lp-spaces of complex-valued func-
tions defined on σ-finite measure spaces in section 2.1. In fact, the nature of
periodic Schrödinger operators allows us to restrict our attention to but two
kinds of measure spaces, namely flat d-dimensional tori and discrete lattices,
each with their standard σ-algebras and measures.

Since the Schrödinger equation is a partial differential equation, the next
logical step is to consider Sobolev Wm,p-spaces as a straightforward generalisa-
tion of the Lp-spaces. Indeed, there are certain Bessel potential spaces which
are natural candidates for the target space of the free Schrödinger resolvent.
These potential spaces can be identified with certain Sobolev spaces in most
cases. But just in the case of dimension d = 2, the case central to this work,
this identification fails.

The failure of Sobolev spaces in the case d = 2 is only marginal in terms
of Lp-exponents. Therefore, we need a generalisation of Lp-spaces which allows
for finer grained control over function regularity than just the exponent p. The
resulting family of spaces should also be compatible with problems involving
potentials. In particular, multiplication with a potential should be an operation
as controllable as in the case of Lebesgue or Sobolev spaces. These proper-
ties are fulfilled by the rather general class of rearrangement-invariant Banach

7
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function spaces. Of course, derivatives are no longer explicit in the definitions
of these spaces. Therefore, integral kernels of resolvent operators, which are
handled rather implicitly by the Bessel and Sobolev machineries, must now be
given explicit attention. As all occurring operators are translation invariant,
the resulting integrals can be expressed as convolutions. Within certain bounds
(see the remarks about Fourier spaces below) the convolution operation can be
considered dual to the multiplication operation. As long as this duality is valid,
the use of convolutions does not pose any additional difficulties.

The most significant shortcoming of rearrangement-invariant Banach func-
tion spaces, however, is that in their (local or global) regularity properties, they
are constrained by L1- and L∞-spaces. For example, while a sufficiently reg-
ular Sobolev space can easily escape the scale1 of Lebesgue spaces and enter
the scale of continuous or even Hölder continuous functions, a rearrangement-
invariant Banach function space can never escape the bounds set by L1 and L∞.
Even within these bounds, limits of this type sometimes occur on subscales of
Banach function spaces. However, it will be desired to escape these limits in at
least one case. The solution is to drop consideration of Banach function spaces
in favour of quasi-Banach function spaces by requiring only a weak form of the
triangle inequality.

Lorentz–Zygmund spaces are a subclass of rearrangement-invariant quasi-
Banach function spaces amenable to formulation of user-friendly interpolation
results on the one hand, and explicitly containing the Lebesgue Lp-spaces as
a special case on the other. In a greater part of this work, we shall almost
exclusively operate in this family of spaces.

It will turn out that instead working in location space (the compact torus),
a larger class of potentials can be treated by a Fourier transform of the whole
setting to momentum space (a discrete momentum lattice). This necessitates the
introduction of Fourier spaces, i.e. spaces of functions (or, rather, distributions)
whose Fourier transforms belong to certain Lorentz–Zygmund spaces. Such a
transformation adds a layer of indirection to the problem: clearly, a space of
functions whose Fourier transforms have certain properties is less concrete than
a space of functions endowed with the same such properties themselves. It
is therefore appropriate to question whether the gain in generality satisfies the
accompanying loss in concreteness. Luckily, in our case the results from location
space theory combined with the well-understood interpolation properties of the
Fourier transform near L1 with respect to Lorentz–Zygmund spaces thoroughly
alleviate this problem, for they enable us to develop the concrete, less general
version of our theorems alongside the general ones.

Occasionally, we shall encounter multivariate functions. By currying, i.e.
“domain and codomain shuffling”, these functions may be considered as uni-
variate with values in function spaces. As such, they become amenable to
Bochner integration theory. In particular, one can define (quasi-)Banach func-
tion spaces of multivariate functions using Bochner integrals in the usual defini-
tion of Lebesgue spaces. It is possible, in principle, to generalise this scheme to
the case of Lorentz–Zygmund spaces. We shall, however, take a slightly differ-
ent route and start with the representability of Bochner spaces which are based
on separable Lebesgue spaces as tensor products of such spaces. The tensor

1A scale of spaces in the informal sense is best imagined as a family of spaces indexed by
one or more variables running through subintervals of [−∞,∞]. Attempts to formalise the
concept of a scale have been made, see e.g. [KP66].
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product representation, despite being formally equivalent to the Bochner space
representation in many cases, eases the handling of linear operators between
Bochner spaces considerably. Generalisation to the Lorentz–Zygmund case is
straightforward. What remains is the rather subtle question under what cir-
cumstances boundedness of linear operators is hereditary with respect to the
tensor product operation. It turns out that multiplication and convolution are
compatible while the Fourier transform is not. This demonstrates another ad-
vantage of using Fourier spaces, as we need to take tensor products only of
functions which have already been Fourier transformed.

This completes the collection of linear function spaces we work extensively
with. At this point we slide in a small section on two less extensively used
structures. Earlier, we had mentioned the failure of equivalence of Sobolev
and Bessel potential spaces in certain corner cases. In the case of the free
Schrödinger equation the best possible replacement in one such case for the
Lebesgue space L1 is the real Hardy space. Unfortunately, the real Hardy space
exhibits some properties which must be considered pathological when it comes
to multiplication with a function. Nevertheless, the fact that the real Hardy
space is the optimal replacement for L1 in the free case gives important clues as
to which rearrangement-invariant function space is optimal in the non-free case.
Lastly, we shall recall the definition of a Banach manifold, which is the correct
structure to encode the set of Fermi curves.

In the last section of this chapter we introduce two processes by which func-
tion space norms can be localised. When estimating the bound of a linear
operator the only question of interest is usually whether the bound is finite or
infinite. The one important exception is when, for example in the creation of
an inverse, the operator is used in the definition of an infinite series such as a
Neumann series. In this case, a more explicit bound is required, usually smaller
than one. The actual bound of a linear operator is malleable by replacing the
norms of its domain and codomain with equivalent norms or quasi-norms. Lo-
calisation is just such a process. We shall employ localisation on finite and on
discrete measure spaces. Expectably, localisation is only applicable to a single
linear operator, or a small neighbourhood of a single linear operator of a certain
class. It is, in general, not uniform. The failure of uniformness provides an
insight into the internal structure of the relevant spaces.

2.1 Measurable functions and Lebesgue spaces

Let (X,Σ, µ) be a measure space (see [Bor98]2 for the modern concept of mea-
sure; a contemporary survey of pre-Borelian attempts can be found in [Sch00,
II.4]). Furthermore, let C := C∪{∞} with the Riemann sphere standard topol-
ogy. Now, let M((X,Σ, µ),C) be the set of all measurable, essentially finite-
valued extended complex-valued functions on X, that is all functions f : X → C
µ-almost all values of which are finite, and for which f−1(U) ∈ Σ whenever U
is open. As there will be no opportunity for confusion, we shall simply write
M(X,C) for this set.

Sometimes we only consider functions with values in [0,∞], giving rise to

2The author found a yellowed and heavily sunned copy of the fourth (1950) edition of this
work in the department library. Its pages were still uncut! Thus decades worth of students
must have been prevented from perusing this original text on measure theory.
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the set M(X, [0,∞]), where we endow [0,∞] with the relative topology. As a
further abbreviation of notation, we shall write M(X) for M(X,C) and M+(X)
for M(X, [0,∞]).

We shall formulate our statements for generic σ-finite measure spaces X
whenever it is not inconvenient. However, it will often be more convenient to
work directly with the measure spaces inherent to the problem at hand. There-
fore we shall introduce right here the two measure spaces used most commonly
in this work.

Let Rd be the standard d-dimensional real vector space. Unless we say so
otherwise, we shall assume d ≥ 2. Endowed with the standard Euclidean bilinear
form (·|·) with respect to its canonical basis, this space becomes the standard d-
dimensional real geometric vector space. Moreover, it becomes a measure space
with respect to the Lebesgue measure [Leb02].

Now, let B be an arbitrary, ordered basis of Rd and let Γ be the free Z-
module over B. The embedding Z ⊆ R induces a unique embedding Γ ⊆
Rd. Thus Γ inherits the symmetric bilinear form (·|·) from Rd and becomes
a (geometric) lattice. The concept of a lattice is an obvious abstraction from
structures appearing in nature (e.g. in crystallography) and has found its way
into modern mathematics already in the 19th century, if not earlier. A recent
account of lattice theory can be found in [CS88].

The first measure space we shall need regularly is the flat torus F := Rd/Γ.
The torus F may also be identified with a fundamental domain in Rd and thus
F inherits its σ-algebra and its measure from the Lebesgue measure on Rd. The
boundary of the fundamental domain is immaterial in this context. Also note
that without taking the basis B, from which Γ was originally constructed, into
account, the choice of a fundamental domain may not be unique, even modulo
translations. The resulting measure on F , however, is. The most important
additional property of F is that, since B is a generating set, it is a finite measure
space.

Each lattice Γ has its Z-module of linear forms Γ→ Z. The canonical vector
space isomorphism Hom(Rd,R) ∼= Rd induces the representation

Γ∗ := {x ∈ Rn : (x|γ) ∈ Z for all γ ∈ Γ}

for this structure. Clearly, Γ∗ is a lattice. It is called the dual lattice to Γ. The
dual lattice arises naturally when Fourier-transforming a function on F . Hence,
Γ∗ shall be our second common measure space. Since Γ∗ is a discrete space,
we naturally use a counting measure on Γ∗ such that Γ∗ is a completely atomic
measure space, with each atom having measure 1.

In this work, we shall encounter the results of developments and variations on
the general theme of normed spaces, which revolve around a functional ‖·‖ : V →
C on a complex vector space V . We begin with the enumeration of the most
common properties normally required of such a functional [Ban22]:

(F1) Positivity: ‖x‖ ≥ 0 for all x ∈ V (in particular, ‖x‖ ∈ R).

(F2) Regularity: If x ∈ V , then ‖x‖ = 0 if and only if x = 0.

(F3) Absolute linearity: ‖λx‖ = |λ|‖x‖ for all λ ∈ C and for all x ∈ V .

(F4) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .
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(F5) Completeness: If (xn)n∈N is a sequence with xn ∈ V for all n ∈ N and
limn,m→∞ ‖xn− xm‖ = 0, then (xn)n∈N has a limit x ∈ V , i.e. there is an
x ∈ V such that limn→∞ ‖xn − x‖ = 0.

If ‖ · ‖ fulfils (F1), (F3) and (F4), it is called a semi-norm. If, in addition, (F2)
is fulfilled, it is a norm. Finally, if ‖ · ‖ satisfies (F1) through (F5), (V, ‖ · ‖) is
called a complex Banach space. Again, we shall write V instead of (V, ‖ · ‖) if
no confusion is possible. Remember that the limit in (F5) may not be unique
without (F2).

The complex numbers C constitute a valued field which is complete with
respect to its valuation and thus is certainly a Banach space. This property
extends to certain subsets of M(X). The Lebesgue integral [Leb01] allows the
definition of the functional

‖f‖p :=


(∫
X
|f |pdµ

)1/p (0 < p <∞),
inf
N∈Σ
µ(N)=0

sup
x∈X\N

|f(x)| (p =∞),

leading to the definition of the spaces

L̃p(X,C) := {f ∈M(X) : ‖f‖p <∞}.

Note that we omit the bar over C even though the functions in L̃p(X,C) may
have singularities. Obviously, ‖ · ‖p fulfils (F1) and (F3). Generalising a con-
vexity theorem of Minkowski [Min96, IV.40] to Lebesgue integrals yields (F4)
provided that p ≥ 1. Hence, in the case of ‖ · ‖p, (F4) is also called Minkowski’s
inequality. While Minkowski proved his inequality using partial derivatives and
case elimination, modern treatments often hide the convexity information in the
more basic Young’s inequality. The proof Minkowski’s inequality with Young’s
inequality makes use of another Lebesgue adapted variation of an inequality,
which is due to L. J. Rogers [Rog87], this time regarding mean values for prod-
ucts. Nowadays, this inequality bears the name Hölder’s inequality as Hölder
generalised Rogers’s result [Hö89]. Ironically, Rogers’s less general version is all
what would have been necessary for F. Riesz to state Hölder’s inequality in its
modern form [Rie10, §2]3:

Theorem 2.1.1 (Hölder’s inequality for p-integrable functions). Given 0 <
p, q, r ≤ ∞ with r−1 = p−1 + q−1, the inequality

‖fg‖r ≤ ‖f‖p‖g‖q

holds for all f, g ∈M(X) whenever the multiplications make sense.

Riesz stated this inequality only for r = 1 but, being a multiplicative in-
equality, it readily generalises to all positive r by using |f |r and |g|r in place of
f and g.

The spaces L̃p(X,C) also fulfil the completeness property (F5), even for p <
1 [Rie09], a result which bears the name of Fischer and F. Riesz as, after a hint
from Hilbert, these two authors arrived independently at a preliminary result

3Riesz attributed the inequality to Cauchy (p = 2) and Hölder, omitting Rogers. On the
other hand, he correctly attributed (F4) to Minkowski. However, he suggested Minkowski
proved his inequality in 1907, when in fact he did so as early as 1896.
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concerning Fourier transforms of square-integrable functions [Rie07b, Rie07a,
Fis07].

However, the spaces L̃p(X,C) do not necessarily fulfil the regularity prop-
erty (F2). If N ∈ Σ is a non-empty set of zero measure, then the characteristic
function χN is nonzero, but ‖χN‖p = 0. So L̃p(X,C) are not Banach spaces
whenever a set such as N exists in X. The simple solution is to divide out the
kernel of zero measure sets:

Lp(X,C) := L̃p(X,C)/{f ∈ L̃p(X,C) : ‖f‖p = 0}. (2.1.2)

This operation does not hurt the other properties (F1), (F3), (F4) and (F5) and
clearly the functional ‖ · ‖p is well-defined on Lp(X,C). Hence, Lp(X,C) is a
Banach space for 1 ≤ p ≤ ∞. We shall write Lp(X) as a shorthand for Lp(X,C),
and `p(Γ∗) for Lp(Γ∗). Moreover, we will not explicitly distinguish between
measurable functions and equivalence classes of such functions with respect to
the above kernel.

In the remainder of this section, we shall investigate how the Lp-spaces
are interrelated to each other. As ‖ · ‖p is defined via an integral (at least
for p <∞, but the case p =∞ is usually easier anyway), its values are influenced
by both the local (e.g. discontinuities and singularities) and the global (e.g.
decay behaviour) structure of its arguments. Therefore interrelation analysis
is usually done in terms of sums and intersections of Lp-spaces with mutually
dual exponents. In order to simplify things, however, we shall do this analysis
for X = F and X = Γ∗ separately, where there are no global and no local
contributions, respectively.

Proposition 2.1.3. Let 0 < p ≤ q ≤ ∞, then Lq(F ) ⊆ Lp(F ) and the embed-
ding is continuous.

Proof. Since µ(F ) < ∞, ‖1‖r = ‖χF ‖r < ∞ for all 0 < r ≤ ∞. Hence, the
proposition follows immediately from Theorem 2.1.1.

In the case X = Γ∗ it is quite the other way round:

Proposition 2.1.4. Let 0 < p ≤ q ≤ ∞, then `p(Γ∗) ⊆ `q(Γ∗) and the embed-
ding is continuous.

Proof. All but a finite number of values of a p-summable function on Γ∗ must
have modulus smaller than one, so the inclusion is obvious. Continuity follows
from general considerations regarding this type of space, see for example [BS88,
Theorem 1.1.8].

With the inclusion relations among the spaces Lp(F ) and `p(Γ∗), respec-
tively, cleared up, we now turn to the matter of the relations between these two
classes of spaces. As we have mentioned before, the lattice Γ∗ is the natural
dual partner of F . As an illustration, define

ψκ : Rd → C,

x 7→ e2πi(κ|x)

for κ ∈ Cd. Clearly, if κ ∈ Γ∗, then ψκ is Γ-periodic. Therefore, we shall take
F as the domain of ψκ in this case. This is a family of uniformly bounded,
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infinitely differentiable functions. The duality between F and Γ∗ extends, to a
limited degree, to the Lebesgue spaces. We can define the Fourier transform
via the Fourier integral

(Ff)(κ) :=
∫
F

ψ−κ(x)f(x)dx.

We also write f̂ for Ff .
We need to make precise relations between domains and codomains of F .

This is best done in the setting of distribution theory as begun by Sobolev
in [Sob63] and, independently, L. Schwartz, whose life work consists of work
related to distribution theory to a good part. We shall not go into too much
detail and only mention the key results without proof. Let us begin with two
benign metric spaces. In what follows, a multi-index will always be a d-tuple
α ∈ (Z≥0)d and |α| will denote the 1-norm of α. We also assume the reader
knows the standard multi-index operations.

Definition 2.1.5. We define the Schwartz function space4

S(F ) := C∞(F ),

where C∞(F ) is the space of infinitely real differentiable functions on F , and
the Schwartz sequence space

s(Γ∗) :=
{
f : Γ∗ → C : sup

κ∈Γ∗
(1 + κ2)n/2|f(κ)| <∞ for all n ∈ N

}
.

Here, κ2 is just a shorthand for (κ|κ). We topologise these two spaces by defining
two families of Fréchet semi-norms, {Pn}n∈N for S(F ), and {pn}n∈N for s(Γ∗),
by

Pn(f) := sup
x∈F

∑
|α|≤n

|(∂αf)(x)|,

pn(f) := sup
κ∈Γ∗

(1 + κ2)n/2|f(κ)|,

where α is a multi-index, yielding the metric

d(f, g) :=
∑
n∈N

2−n
Pn(f − g)

1 + Pn(f − g)

on S(F ), and likewise on s(Γ∗).

Clearly, the Fourier transform is defined for all f ∈ S(F ). We also have

Proposition 2.1.6. Let f ∈ S(F ) and α be a multi-index. Then

∂̂αf = (2πiκ)αf̂ .

4On an Euclidean space, one would define the Schwartz function space to be the rapidly
decreasing smooth functions. Since F is compact, this is of course unnecessary here.
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Given this proposition, we see that F maps S(F ) continuously into s(Γ∗).
Like the Fourier integral for functions in S(F ), we can define the Fourier series
for sequences in s(Γ∗):

(F ′f)(x) :=
1

µ(F )

∑
κ∈Γ∗

ψκ(x)f(κ). (2.1.7)

We have the following central theorem:

Theorem 2.1.8 (Fourier inversion theorem). The Fourier transform F is a
homeomorphism from S(F ) to s(Γ∗), and its inverse is F ′.

Due to this theorem we sometimes use F instead of F ′ when no confusion
is possible. We also mark Fourier transformations in both directions by ·̂. We
now define the following important operation:

Definition 2.1.9 (convolution). For f, g ∈ S(F ), we define the convolution

(f ∗ g)(x) :=
∫
F

f(x− y)g(y)dy,

and likewise for f, g ∈ s(Γ∗):

(f ∗ g)(κ) :=
∑
λ∈Γ∗

f(κ− λ)g(λ).

The convolution is a bilinear operator on S(F ) and s(Γ∗), respectively. It is
the dual operation to multiplication in the following sense:

Theorem 2.1.10 (convolution theorem). Let f1, g1 ∈ S(F ) and f2, g2 ∈ s(Γ∗),
then

f̂1 ∗ g1 = f̂1ĝ1, f̂1g1 =
1

µ(F )
(f̂1 ∗ ĝ1),

f̂2 ∗ g2 = µ(F )f̂2ĝ2, f̂2g2 = f̂2 ∗ ĝ2.

(2.1.11)

We can greatly expand the scope of the Fourier transform and the convolu-
tion by the following means.

Definition 2.1.12 (tempered distributions). Let S∗(F ) the space of continuous
linear functionals on S(F ). We endow this space with the weak* topology and
call its elements the tempered distributions. We define the Fourier transform
of ω ∈ S∗(F ) to a sequence on Γ∗ by

(Fω)(κ) := ω(ψ−κ) (2.1.13)

(recall that ψκ ∈ S(F ) for all κ ∈ Γ∗).

The next proposition makes the relevance of this definition obvious.

Proposition 2.1.14. For each f ∈ S(F ) the function

ωf : S(F )→ C,

g 7→
∫
F

f(x)g(x)dx (2.1.15)
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is an element of S∗(F ). The mapping f 7→ ωf is continuous, injective, has a
dense image, and in particular

f̂ = Fωf

for all f ∈ S(F ).

This proposition allows us to concretise the “abstract” Fourier transform
defined in (2.1.13) for all kinds of objects for which a construction like (2.1.15)
makes sense. More generally, the embedding S(F ) ↪→ S∗(F ) induced by this
definition allows a domain enlargement of the Fourier integral for locally convex
spaces through Hahn–Banach extensions [Hel12]. We can now deal with the
codomain:

Theorem 2.1.16 (extension of Fourier inversion). Define the space s∗(Γ∗) by

s∗(Γ∗) := {f : Γ∗ → C : There is a C > 0 and an n ∈ N

such that |f(κ)| ≤ C(1 + κ2)n/2 for all κ ∈ Γ∗}.

Let f ∈ s∗(Γ∗), then for every g ∈ s(Γ∗) the product fg is summable. Moreover,
the linear functional

ωf : s(Γ∗)→ C,

g 7→
∑
κ∈Γ∗

f(κ)g(κ)

is continuous. The mapping f 7→ ωf is a bijection from s∗(Γ∗) to the space of
continuous linear functionals on s(Γ∗). In particular, s∗(Γ∗) inherits the weak*
topology. The Fourier transform is a homeomorphism from S∗(F ) to s∗(Γ∗).
Its inverse F ′ is given by

(F ′f)(g) =
1

µ(F )

∑
κ∈Γ∗

f(κ)ĝ(−κ).

In particular, s(Γ∗) ⊆ s∗(Γ∗) densely and

F ′f = ω bf
for all f ∈ s(Γ∗), with ω bf as in (2.1.15).

We first use this theorem to extend the convolution from S(F ) to S∗(F ).
Clearly, s∗(Γ∗) is closed under multiplication, and multiplication is continuous
on this space. In light of the convolution theorem 2.1.10, this allows us to define

ω ∗ χ := F ′((Fω)(Fχ))

for ω, χ ∈ S∗(F ). In particular, the first and the last equation of (2.1.11)
generalise to f1, g1 ∈ S∗(F ) and f2, g2 ∈ s∗(Γ∗). The remaining two equations,
however, do not. Indeed, it is generally impossible to multiply two distributions
from S∗(F ), and, likewise, convolute two distributions from s∗(Γ∗). However,
some less general extensions certainly do exist, which brings us back to our
actual objects of study, the Lebesgue spaces.
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The identification (2.1.15) makes sense for f ∈ L1(F ) and hence, by Propo-
sition 2.1.3, for all f ∈ Lp(F ), 1 ≤ p ≤ ∞. We also clearly have `p(Γ∗) ⊆ s∗(Γ∗)
for 0 < p ≤ ∞, yielding a natural definition of the Fourier transform on these
Lebesgue spaces. As for a suitable codomain, F maps L1(F ) continuously
into `∞(Γ∗) and `1(Γ∗) continuously into L∞(F ) by the triangle inequality. The
counterpoint is provided by Parseval’s theorem which stipulates that L2(F ) and
`2(Γ∗) are isomorphic with the Fourier transforms as isomorphisms. This theo-
rem has found widespread use not only in mathematics but also in physics and
engineering. There are claims that Parseval actually omitted the proof of his
theorem5 but the need to prove this important identity in a modern setting was
clearly recognised. For example, the paper [Ray02] of Rayleigh contains what
is essentially a proof for one-dimensional Gaussians, but the methodology can
(perhaps with a little hindsight) be expanded to much more general classes of
functions. Nowadays, Parseval’s theorem is seen as a special case of Plancherel’s
theorem [Pla10], which works in all locally compact vector spaces.

The usual shorthand to describe the behaviour of the Fourier operators ex-
pounded in the previous paragraph is to say they are of (strong) types (1,∞)
and (2, 2). More generally, any operator is said to be of type (p, q), if it maps a
Lebesgue space with exponent p continuously into a Lebesgue space with expo-
nent q. The domain (i.e. whether we have an Lp- or an `p-space) is omitted when
confusion is not a concern. More general results of the form (2n/(2n − 1), 2n)
(n ∈ Z>0) for the Fourier operator due to W. H. Young [You12b, You13] led to
the following interpolation result by Hausdorff [Hau23].

Theorem 2.1.17 (Hausdorff–Young inequality). Let 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞
such that p−1 + q−1 = 1. Then the Fourier transforms are of type (p, q).

This theorem provides a device to change between Lebesgue spaces Lp and
`q with important restrictions on p and q as stated.

We remark that interpolation results such as the previous theorem can be
acquired for general operators. This theory has been started by M. Riesz [Rie27].
The actual connexion to usual interpolation (convex combination of inverses of
Lebesgue exponents) was made by Thorin [Tho39], leading to the name Riesz–
Thorin interpolation. Interpolation will play an crucial role in our work, but
we shall base its introduction in section 2.3 on a different approach due to
Marcinkiewicz in combination with an extension of Thorin interpolations due
to Calderón.

With the convolution as the natural counterpart of pointwise multiplication,
we need a counterpart to Hölder’s inequality in Lebesgue spaces. The following
inequality holds:

Theorem 2.1.18 (Young’s inequality for p-integrable functions [You12a]). Let
1 ≤ p, q, r ≤ ∞ with r−1 = p−1 + q−1 − 1 ≥ 0. Then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q

for all f, g ∈M(X) whenever the inequality makes sense.

Multiplication, convolution and the Fourier transforms will play an impor-
tant role in other Banach spaces of functions, too. Therefore we shall generalise
some of the results of this section in the following sections.

5Parseval’s original treatment [Par06] has recently been made available on the web. The
author encourages interested readers to verify these claims themselves.
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2.2 Sobolev spaces and potential spaces

Sobolev spaces are spaces of Lp-functions certain derivatives of which are also of
Lp type, with the same p. We shall need Sobolev spaces only over the compact
torus F . Hence, the easiest way for us to arrive at a precise definition of Sobolev
spaces is the strong extension method. The space C0(F ), that is, the space of
continuous functions endowed with the max-norm, is continuously embedded
in L∞(F ) because F is compact. By Proposition 2.1.3, we have C0(F ) ⊆ Lp(F )
continuously for all 1 ≤ p ≤ ∞ (we shall not need the case 0 < p < 1). Therefore,
all spaces Cm(F ) of m-times real continuously differentiable functions on F are
linear subspaces of Lp(F ).

We define the Sobolev norm to be the functional

‖f‖m,p :=
∑
|α|≤m

‖∂αf‖p, (2.2.1)

where m ∈ Z≥0, 1 ≤ p ≤ ∞, α is a d-dimensional non-negative multi-index with
1-norm, and ∂α denotes the α-th partial derivative. With the above consider-
ations, it is clear that, for all 1 ≤ p ≤ ∞, the Sobolev norm is finite on and
makes normed spaces of the spaces Cm(F ). Furthermore, the Sobolev norm
dominates the Lp-norm for the respective p. The Sobolev spaces can now be
defined naturally: the Sobolev space Wm,p(F ) for m ∈ Z≥0 and 1 ≤ p ≤ ∞
is the closure of Cm(F ) ⊆ Lp(F ) with respect to the Sobolev norm ‖ · ‖m,p.
Clearly, Wm,p(F ) is a Banach space.

Of course, if F were not compact, such a simple definition of Sobolev spaces
would not be possible. Indeed, in order to treat the case of domain Rd, Sobolev
introduced a weak extension method [Sob63, §6]. Given a multi-index α ∈ Zd≥0,
the definition of derivative is extended so that ∂αf is the unique distribution
fulfilling ∫

(f∂αg − (−1)|α|g∂αf) = 0

for all C∞ test functions g. The Sobolev space with parameters (m, p) is then
given by those m-times weakly differentiable distributions for which the Sobolev
norm ‖ · ‖m,p is finite.

It is a valid question whether the strong and weak extension method both
lead to the same definition of Sobolev space. Since, locally, weak and strong
extension are equivalent [Fri44], we have equivalence of definitions with respect
to the compact measure space F , provided that the closure of Cm(F ) is taken
in an absolutely continuous Lp-space (see section 2.8 for more information on
absolutely continuous spaces). For 1 ≤ p <∞ the Lp-spaces are absolutely con-
tinuous (as long as they are defined over a σ-finite measure space), so for those p
our spaces Wm,p(F ) satisfy the standard definition. In fact, this equivalence can
be extended to arbitrary domains [MS64], but again only for 1 ≤ p < ∞. In-
deed, for p =∞ equivalence fails. As a counterexample, consider any continuous
function which is not strongly differentiable in only one point. As a single point
has measure zero, such a function is weakly differentiable, but though the graph
of its weak derivative can be exhausted by a sequence of graphs of continu-
ous functions, approximation fails in L∞. Henceforward, we shall consider the
Sobolev space Wm,p(F ) only for 1 ≤ p <∞.

One of the benefits of Sobolev spaces with respect to differential equations is
obvious by now. Sobolev spaces enable us to pose problems involving differential
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operators in the context of Banach spaces. For example, if f ∈ Lp(F ), 1 ≤ p <
∞, the equation

∆ψ = f

is an equation in the Banach space Lp(F ) if we stipulate that ψ ∈W 2,p(F ). In
other words, we can seek for solutions ψ in the Banach space W 2,p(F ).

As such it is worthwhile to investigate the interrelations among the Sobolev
spaces Wm,p(F ) (and hence Lebesgue spaces, as, clearly, W 0,p(F ) = Lp(F ) for
1 ≤ p <∞). Two such interrelations are immediately obvious. For fixed m, an
analogon to Proposition 2.1.3 holds, and for fixed p, Sobolev spaces defined by
higher order derivatives are contained in all lower order spaces. Note that, de-
spite the Sobolev spaces becoming smaller with increasing m, they are all dense
in their respective Lp-space, as already the step functions are dense in these
spaces [Rie10, §4 and §16] and step functions are clearly weakly differentiable.
This can also be seen from the strong viewpoint using approximation through
mollifiers [Fri44] (but see also [Sob63, §8] for a similar technique).

A less obvious observation is the fact that requiring a function f to belong
to some Sobolev space makes it more regular with respect to Lp-spaces (or C0,
in place of L∞) with increasing m. This is a loose description of a set of results
which have collectively become known as Sobolev’s theorem. Recall that we
have defined d to be the dimension of the torus F . Perhaps the most illustrative
result as to what degree regularisation occurs is the following

Theorem 2.2.2 (Sobolev [Sob63, §10]). Let f ∈W d,1(F ), then f is continuous.
Moreover, the embedding W d,1(F ) ⊆ C0(F ) is bounded.

In other words, for an integrable function to be continuous, it is sufficient for
its weak derivatives up to order dim(F ) to be integrable as well. If one doesn’t
want to go all the way from p = 1 to C0 in one step, the following result is
useful.

Theorem 2.2.3 (Sobolev [Sob63, §7 and §10]). Let l ∈ Z≥0, m ∈ Z>0 and 1 ≤
p < q < ∞ with mp < d and q−1 = p−1 −md−1. Then W l+m,p(F ) ⊆ W l,q(F )
and the embedding is continuous.

Sobolev proved this result only for l = 0 but since q <∞, the generalisation
is obvious.

The embeddings in the last two theorems are optimal in the sense that C0(F )
cannot be replaced with Cm(F ) where m > 0, or even with the Hölder space
C0,α(F ) where α > 0, and W l,q(F ) cannot be replaced with a better Sobolev
space. Of the optimal embeddings, we need only the two presented, but there
are others. In particular, we are working only with the torus F , so we can totally
avoid the question of what geometric regularity conditions are necessary on the
measure space used for certain Sobolev embeddings to exist.

For each optimal embedding, there is a whole family of non-optimal ones.
In these cases, the Sobolev embedding may become compact instead of merely
continuous. We use this opportunity to insert a digression on compact oper-
ators and the important role they play with respect to differential equations.
See [Yos95] for a general textbook on functional analysis, including the theory
of compact operators.

Recall that a compact operator is a linear operator which maps the unit ball
into a relatively compact set. In infinite-dimensional vector spaces, the unit
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ball is not compact, so compactness is quite a strong condition. Luckily, the
following properties make compact operators easy to identify:

Proposition 2.2.4. (a) In products of compact operators, the following viral
behaviour is expressed. Let E1, E2, E3 be Banach spaces and let A1 : E1 →
E2 and A2 : E2 → E3 be bounded linear operators. Then the product A2A1

is compact if A1 or A2 is compact.

(b) Let E1, E2 be Banach spaces and denote by L(E1, E2) the Banach space
of bounded linear operators E1 → E2, and by K(E1, E2) the subset of
compact operators. Then K(E1, E2) is a closed subspace of L(E1, E2).
If E := E1 = E2, then K(E,E) is also a two-sided ideal in L(E,E).

(c) Let E be a Banach space and P : E → E a bounded linear operator of finite
rank. Then P is compact. If E has a Schauder basis, then the bounded
linear operators of finite rank are dense in K(E,E).6

We also state the following slight alteration of a lemma due to F. Riesz.

Proposition 2.2.5. Let E be a Banach space and let P : E → E be a compact
projector. Then P has finite rank.

Proof. Let E1 be the image of P and let x ∈ E1 with ‖x‖ ≤ 1, then x lies in
the closed unit ball BE of E, so, due to Px = x, the image PBE contains the
closed unit ball BE1 of E1. Clearly, the space E1 is generated by this unit ball.
Now, PBE is compact because P is compact. Therefore, the closed set BE1 is
compact as well, and thus sequentially compact. It now follows from [Rie16, §1,
Hilfssatz 5] that E1 is finite-dimensional. Hence P has finite rank.

In dealing with differential equations, one often needs to consider the spectral
theory of certain operators. Let E be some Banach space, D ⊆ E a dense
subspace and A : D → E linear, not necessarily bounded operator whose graph
is closed in E × E (that is, A is a closed operator). Typically, A will be some
kind of differential operator. The eigenvalue equation

λx−Ax = 0, (2.2.6)

where the eigenvector x ∈ E, x 6= 0, and the eigenvalue λ ∈ C, is then well-
defined in the sense that if, for some sequence (xn)n∈N in D converging to x,
the sequence (Axn)n∈N actually does converge to λx, then λx ∈ D due to
closedness. Hence, A gives rise to a family of operators λ − A parameterised
by λ ∈ C. Naturally, we are interested in the set of eigenvalues of A. Being in
an analytical setting, it seems apt to describe the eigenvalues as the singularities
of the mapping

λ 7→ (λ−A)−1.

This mapping is called the resolvent of A. To make this work, we need a well-
defined domain for this mapping which induces sufficiently benign analytical
properties. Our domain of choice is the resolvent set

ρ(A) := {λ ∈ C : λ−A has a bounded inverse whose domain is dense in E}.
6See [Enf73] for a Banach space (without a Schauder basis) providing a counterexample.

On the other hand, for most common spaces, especially on Γ∗, it is often not too difficult to
construct an explicit Schauder basis.
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The remaining λ are defined to constitute the spectrum of A,

Spec(A) := C \ ρ(A).

The resolvent is a nice mapping now, but there are several problems with the
spectrum. The definition of eigenvalues through equation (2.2.6) is purely alge-
braic. In particular, λ ∈ C is an eigenvalue of A only if λ−A does not have an
inverse at all. Such elements of Spec(A) constitute the point spectrum SpecP (A).
Another reason why λ might be an element of Spec(A) is that, while an inverse
(λ − A)−1 exists, its domain is not dense in E. Such λ constitute the residual
spectrum SpecR(A). Finally, even if an inverse with dense domain exists, it need
not be bounded, giving rise to the continuous spectrum SpecC(A). We have thus
arrived at a partition of Spec(A) into SpecP (A), SpecR(A) and SpecC(A).

Since there are three types of spectra, in order to make use of the resolvent
method, we need to know somehow, what λ ∈ Spec(A) goes into which spectrum.
This is doable for simple operators7, but difficult in general. This situation sim-
plifies considerably if we restrict ourselves to operators A which have a compact
power, that is, operators from the radical ideal

√
K(E,E) of K(E,E). The

spectral theory of such operators was started by F. Riesz [Rie16, §2] and later
completed by Schauder [Sch30], who provided necessary additions in duality
theory.

Theorem 2.2.7 (Riesz–Schauder). If A ∈
√
K(E,E), then each nonzero eigen-

value of A has finite multiplicity. Conversely, each nonzero λ ∈ Spec(A) is an
eigenvalue of A (i.e. Spec(A) \ {0} ⊆ SpecP (A)). The spectrum of A does not
have any accumulation point, with the possible exception of zero.

It turns out that we shall need this theorem for compact operators only, that
is, work with K(E,E) instead of

√
K(E,E). This theorem can be reversed in

the following sense:

Theorem 2.2.8 (Cauchy–Nagumo [Nag36]). If A is closed and λ0 ∈ Spec(A)
such that λ0 is not an accumulation point of Spec(A), then the resolvent of A
admits a Laurent expansion

(λ−A)−1 =
∞∑

k=−∞

(λ− λ0)kAk

in a small neighbourhood of λ0, where

Ak =
1

2πi

∮
λ0

(λ−A)−1

(λ− λ0)k+1
dλ. (2.2.9)

The residue A−1 is a projector. If λ0 is a pole of the resolvent map, that is,
(λ−λ0)n(λ−A)−1 has a removable singularity at λ0 for sufficiently large n ∈ N,
then λ0 is an eigenvalue of A and the image of A−1 is an A-invariant subspace
of E equal to the kernel of (λ0 −A)n.

7We do not specify the meaning of “simple” in this general setting. Later we shall use the
Laplacian and operators related to the nabla operator as simple operators in the sense of this
section.
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On a technical level, this theorem requires a generalisation of infinitesimal
calculus to operator-valued functions allowing for an extension of the Cauchy
integral in particular. The contour integral (2.2.9) is meant to be along a small,
circular contour anticlockwise around the isolated singularity λ0 such that no
other singularity lies within the contour. Nagumo used a Riemann based integral
calculus for this purpose, which we won’t analyse in detail. The result will hold
for any sufficiently sane integral calculus. Note that, in a different context, we
shall introduce the Lebesgue based Bochner integral in section 2.6.

How do we use Riesz–Schauder theory on differential operators? After all,
differential operators are not normally compact, let alone bounded on Lebesgue
spaces. The solution is to use Riesz–Schauder theory on a compact resolvent of
some simple differential operator to build the resolvent of a more complex oper-
ator. So all we have to ensure is that the initial resolvent is compact. One way
to achieve that goal is to use non-optimal Sobolev embeddings. The following
theorem was proven by Kondrashov [Kon45] building on work by Rellich [Rel30],
who had proven the compactness of a certain sublinear integral operator.

Theorem 2.2.10 (Rellich–Kondrashov). Let l ∈ Z≥0, m ∈ Z>0 and 1 ≤ p <
q < ∞ with mp ≤ d and q−1 > p−1 −md−1. Then W l+m,p(F ) ⊆ W l,q(F ) and
the embedding is compact.

Typically, we will have some simple differential operator A (such as the nabla
or the Laplace operator) which maps some Sobolev space boundedly into some
Lebesgue space. In order to apply the Rellich–Kondrachov theorem, we would
like to have some resolvent (λ − A)−1 which maps the Lebesgue space into a
Sobolev space (which could then be embedded back into a Lebesgue space). As
it will turn out, this is not always possible, and this impossibility is the main
reason why we need more intricate function spaces.

Let us investigate the target space of (λ−A)−1. We shall do so in terms of
the Laplace operator ∆, which has the following beneficial property immediately
derived from Proposition 2.1.6.

Lemma 2.2.11. The application of the Laplace operator on a function defined
on F transforms to a multiplication with the non-positive sequence (−4πκ2)κ∈Γ∗

under the Fourier operator.

We can now get a handle on the resolvent by considering the operator

(id−∆)−m/2, (2.2.12)

which already looks very similar to a resolvent of a simple differential operator.
The following theorem gives a precise meaning to this operator.

Theorem 2.2.13. Let m ∈ Z>0. Then there is a Bessel kernel of m-th order
Gm ∈ L1(F ) such that

Ĝm(κ) = (1 + 4π2κ2)−m/2.

Proof. Aronszajn and Smith introduced Bessel kernels GRd
m ∈ L1(Rd) with the

specified Fourier transform [AS61]. One of the advantages of these kernels is
their exponential decay behaviour near infinity. It enables us to define the
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corresponding Γ-periodic kernels Gm ∈ L1(F ) via the absolutely convergent
series (cf. [GJ87, 7.3])

Gm(x) :=
∑
γ∈Γ

GRd
m (x+ γ).

We have then

Ĝm(κ) =
∫
F

∑
γ∈Γ

GRd
m (x+ γ)ψ−κ(x)dx =

∫
Rd

GRd
m (x)ψ−κ(x)dx = ĜRd

m (κ)

because Γ and Γ∗ are dual.

By this theorem, the operator (2.2.12) can be defined by the convolution
with the Bessel kernel Gm. Since Gm ∈ L1(F ), we can do so in a Lebesgue
space setting. Thus, we can define our desired target spaces by

Bm,p(F ) := {f ∈ Lp(F ) : There is a g ∈ Lp(F ) such that f = Gm ∗ g},

where m ∈ Z>0 and 1 ≤ p ≤ ∞. It can be shown that the function g is unique,
so this definition induces the well-defined norm

‖f‖Bm,p := ‖g‖p,

making Banach spaces of Bm,p(F ). The relationship of the Bessel potential
spaces Bm,p(F ) with the Sobolev spaces Wm,p(F ) for 1 ≤ p <∞ is as follows.

Theorem 2.2.14 ([Cal61]). Let m ∈ Z>0.

1. Equivalence of Bessel and Sobolev spaces. Let either

(a) 1 < p <∞, or

(b) m be even and p = d = 1.

Then Bm,p(F ) = Wm,p(F ) and the norms of both spaces are equivalent.

2. Failure of equivalence. Let m be even, p = 1 and d > 1, then
Wm,p(F ) ( Bm,p(F ) and the embedding is continuous, but the norms
of the two spaces are not equivalent. If m is odd and p = 1, there is no
inclusion in either direction in any dimension d.

In the next few sections, we shall look for ways to circumvent the p = 1
failure of equivalence.

2.3 Rearrangement-invariant function spaces

Rearrangement-invariant function spaces are spaces which are stable under cer-
tain measure-preserving transformations. We shall consider such spaces over
both X = F and X = Γ∗. In the last two sections we have seen that Lebesgue
spaces are not always adequate. We can fit partial differential equations into
Banach space theory through Bessel spaces, but they are only useful to us if
they can be embedded into some Lebesgue space. Therefore, we shall inves-
tigate general function spaces with properties that make them “like” Lebesgue
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spaces. A general reference is [BS88], though we shall attempt to cite original
contributions where it seems appropriate.

Our mode of creation of such function spaces will invariably be through the
norm functional. That is, following the work of Luxemburg [Lux55], we consider
functionals ‖ · ‖ : M(X)→ [0,∞] and define function spaces E by

E := {f ∈M(X) : ‖f‖ <∞}.

In order to arrive at, essentially, Banach spaces, we impose conditions on ‖ · ‖
similar to the conditions (F1) through (F5) from section 2.1, plus some more to
ensure Lebesgue likeness:

(B0) Equiabsoluteness: ‖f‖ = ‖|f |‖ for all f ∈ M(X). In other words, it is
sufficient to specify ‖ · ‖ on M+(X).

(B1) Positivity: ‖f‖ ≥ 0 for all f ∈M+(X) (implied by the range of ‖ · ‖).

(B2) Regularity: If f ∈ M+(X), then ‖f‖ = 0 if and only if f(x) = 0 for
µ-almost all x ∈ X.

(B3) Absolute linearity: ‖λf‖ = |λ|‖f‖ for all λ ∈ C and all f ∈M+(X).

(B4) Triangle inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈M+(X).

(B5) The Fatou property: If f ∈M+(X) and (fn)n∈N is a sequence of functions
in M+(X) such that for µ-almost every x ∈ X, the sequence (fn(x))n∈X
is monotonically increasing and converges to f(x), then the sequence of
norms (‖fn‖)n∈N is monotonically increasing and converges to ‖f‖.

(B6) Monotonicity: For all f, g ∈ M+(X), if f(x) ≤ g(x) for µ-almost all
x ∈ X, then ‖f‖ ≤ ‖g‖.

(B7) Local finiteness: For all A ∈ Σ with µ(A) <∞, ‖χA‖ <∞. In particular,
E contains the constant functions if X is a finite measure space.

(B8) Local integrability: For all A ∈ Σ with µ(A) < ∞ there is a C > 0 such
that ∫

A

fdµ ≤ C‖f‖

for all f ∈M+(X).

We shall call a space E which arises from a functional ‖ · ‖ fulfilling (B0)
through (B8) a Banach function space, and its norm a Banach function norm.
After taking a quotient like in (2.1.2), Banach function spaces become Banach
spaces by virtue of, essentially, (B1) through (B5). Note that the completeness
property has been replaced with the stronger Fatou property (see e.g. [BS88,
Theorem 1.1.6]). The equiabsoluteness property (B0) looks innocuous but im-
plies the important property that |f | ∈ E if f ∈ E. Hence, (B0) is a simple
stability property. The monotonicity property (B6) is implied by the Fatou
property (take fn := g − (g − f)/n) but important enough to state separately.
For example, properties (B1) through (B5) trivially generalise from M+(X) to
the whole M(X) by (B0) with the exception of the triangle inequality (B4),
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which needs (B6) as well. Likewise, monotonicity will enable us to make Ba-
nach spaces of Bochner spaces in section 2.6. Note that monotonicity excludes
the Sobolev and Bessel potential spaces from the family of Banach function
spaces. The local finiteness (B7) property ensures that E contains the com-
pactly supported step functions, allowing for reuse of standard proof techniques
for Lebesgue spaces, such as the frequent use of the uniform convergence theo-
rem. Finally, the local integrability condition (B8) ensures that all f ∈ E are
nowhere infinite except on a set of measure zero.

We stated that we wanted our conditions (B0) through (B8) on Banach
function spaces in order to generalise the Lebesgue Lp-spaces. Clearly, Lp(F )
and `p(Γ∗) are Banach function spaces for 1 ≤ p ≤ ∞. However, for 0 < p < 1
this is no longer the case. For one, p-integrable functions are not necessarily
locally integrable if p < 1. We can, of course, weaken this property to

(B8’) Local p-integrability: For all A ∈ Σ with µ(A) <∞ there is a C > 0 and
a p > 0 such that ∫

A

fpdµ ≤ C‖f‖

for all f ∈M+(F ).

without losing much. In particular, functions are still finite µ-almost everywhere
and convergence in norm still implies convergence in measure. A more serious
problem is the failure of the triangle inequality (B4). In fact, the Lebesgue
spaces are not locally convex for 0 < p < 1, so some things are just not going
to work in them as in Banach spaces. On the other hand, all is not lost, as the
following lemma shows.

Lemma 2.3.1. Let f, g ∈M(X). Then for all 0 < p < 1,

‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp.

In particular, there is a C ≥ 1 depending only on p such that

‖f + g‖p ≤ C(‖f‖p + ‖g‖p).

Proof. Since (B6) holds for all Lebesgue spaces, we may assume that f, g ∈
M+(X). On R+

0 , the mapping a 7→ ar is monotonically increasing for all r > 0,
and concave for 0 < r < 1. Therefore we surely have∫

X

(f + g)pdµ ≤
∫
X

fpdµ+
∫
X

gpdµ.

For the remainder of the statement of the lemma, it is therefore sufficient to
show

(x+ y)r ≤ Cr(xr + yr)

for all x, y ≥ 0 and all r > 0, where Cr ≥ 1 depends only on r. For 0 < r ≤ 1
this is implied by concaveness, with Cr = 1. Assuming the claim to be true for
an arbitrary r > 0, we have

(x+ y)r+1 ≤ Cr(xr + yr)(x+ y)

≤ Cr(xr+1 + yr+1 + 2 max(x, y)r+1) ≤ 3Cr(xr+1 + yr+1),

proving the claim for all r > 0 by induction.
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This lemma entices us to put forth the property

(B4’) Weak triangle inequality: There is a p > 0 such that ‖f+g‖p ≤ ‖f‖p+‖g‖p
for all f, g ∈M+(X). In particular, ‖f +g‖ ≤ C(‖f‖+‖g‖), where C ≥ 1
does not depend on f or g.

We call a functional ‖ · ‖ : M(X)→ [0,∞] which fulfils (B0) through (B8), with
(B4) replaced with (B4’) and (B8) replaced with (B8’), a quasi-norm, and the
space E it defines a quasi-Banach function space. Clearly, all Lebesgue spaces
are quasi-Banach function spaces. Many properties of and theorems for Banach
spaces extend to quasi-Banach spaces. Notable exceptions are theorems requir-
ing the application of the triangle inequality consecutively an arbitrary or even
infinite number of times, theorems involving infinite series in particular. One
victim is the equivalence of completeness with the Riesz–Fischer property, which
is used to show that the Fatou property does in fact imply completeness. Fortu-
nately, it is trivial to augment the standard proof (we use [BS88, Theorem 1.1.6]
as a template) of completeness to quasi-Banach function spaces:

Proposition 2.3.2. Let E be a quasi-Banach function space. Then E is com-
plete.

Proof. Let (fn)n∈N be a Cauchy sequence. From that sequence, choose a Cauchy
subsequence (gn)n∈N such that

∞∑
n=1

‖gn+1 − gn‖p <∞,

where 0 < p ≤ 1 is chosen to be compatible with (B4’). Now, by the mono-
tonicity property and the weak triangle inequality,

‖
N∑
n=1

(gn+1−gn)‖p ≤ ‖
N∑
n=1

|gn+1−gn|p‖ ≤
N∑
n=1

‖gn+1−gn‖p ≤
∞∑
n=1

‖gn+1−gn‖p

for all N ∈ N and p ≤ 1. Hence, as in the standard proof,

∞∑
n=1

(gn+1(x)− gn(x))

converges pointwise µ-almost everywhere to a function f . The remainder fol-
lows, as in the standard proof, from [BS88, Lemma 1.1.5 (ii)], which is also valid
for quasi-Banach function spaces.

Let us now come to rearrangement-invariant function spaces, a subclass of
quasi-Banach function spaces. Let σ : X → X a mapping such that for all
A ∈ Σ, σ−1(A) ∈ Σ and

µ(A) = µ(σ−1(A)),

so σ is a measure-preserving transformation. The Lebesgue spaces have the
property that ‖f‖p = ‖fσ‖p for f ∈M+(X), which is essentially the extension
to infinitesimals of the fact that for a finite sequence (an)Nn=1

N∑
n=1

an =
N∑
n=1

aτ(n)
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for all permutations τ . This property has the advantage that, when we have
some question concerning the norm ‖f‖, we can transform f to a simpler form
without altering the norm. In other words, we rearrange f . The general idea
to rearrange an object to get a simpler form is quite old. In the simple case
of continuous functions f in L1([0, 1],R+) it corresponds to altering the graph
of f without altering the area between the graph and the x-axis, just as if
graph and axis were impermeable membranes containing an incompressible fluid
(though certainly not all rearrangements allowed in this physical picture are
mathematically permissible).

In order to implement this idea with function spaces, we make the following
definition. Let f ∈M(X), then we define the distribution function of f by

δf : (0,∞)→ [0,∞],
λ 7→ µ({x ∈ X : |f(x)| > λ}).

Two measurable functions f, g are called equimeasurable if δf = δg (note that f
and g need not be defined on the same measure space for this definition to make
sense) and a quasi-Banach function space E is called rearrangement-invariant
if any two equimeasurable f, g ∈ E have equal norms: ‖f‖ = ‖g‖. All Lebesgue
spaces are rearrangement-invariant, with δf = δfσ in particular. Moreover, all
rearrangement-invariant Banach spaces are restricted by the Lebesgue scale in
the following sense:

Theorem 2.3.3. Let E be a rearrangement-invariant Banach space. If E is a
Banach space of functions on the torus F , then

L∞(F ) ⊆ E ⊆ L1(F ).

If E is a Banach space of sequences on the lattice Γ∗, then

`1(Γ∗) ⊆ E ⊆ `∞(Γ∗).

In both cases all embeddings are continuous.

These embedding barriers may be broken by going from Banach function
spaces to quasi-Banach function spaces.

In section 2.4 we shall introduce a rearrangement-invariant refinement of
the Lebesgue spaces. Before we do that, we introduce two further important
concepts in the theory of rearrangement-invariant spaces.

First, for f ∈M(X) define the decreasing rearrangement of f by

f? : [0,∞)→ [0,∞]
t 7→ inf{λ ∈ (0,∞) : δf (λ) ≤ t}.

The following monotonicity property follows immediately from the definitions:

Proposition 2.3.4. Let f, g ∈ M(X) such that |f(x)| ≤ |g(x)| for µ-almost
all x ∈ X, then

δf (t) ≤ δg(t), f?(t) ≤ g?(t),

for all t > 0.
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Loosely speaking, the decreasing rearrangement simply orders the values of
|f | in decreasing sequence, in particular f and f? are equimeasurable. In the
case X = Γ∗ it is therefore customary to adopt Z>0 as the domain of f?, i.e. the
original definition is discretised and the domain is shifted by one. If f?(n) tends
to zero for n → ∞, f? indeed enumerates all values of |f | with multiplicity,
except possibly zero, in decreasing order.

As its name suggests, the decreasing rearrangement is monotonically de-
creasing. In connexion with this behaviour, the following result can be useful.

Proposition 2.3.5 (Hardy’s lemma). Let g1, g2 ∈M((0,∞), [0,∞]) such that
t∫

0

g1(x)dx ≤
t∫

0

g2(x)dx

holds for all t > 0. Then
∞∫

0

f(x)g1(x)dx ≤
∞∫

0

f(x)g2(x)dx

for all monotonically decreasing functions f : (0,∞)→ [0,∞].

This proposition allows us to estimate more complex expressions from the
decreasing rearrangement to define new quasi-norms. In view of a generalisa-
tion of Hölder’s inequality with respect to such new norms, the following two
theorems are of utmost importance.

Theorem 2.3.6 (Hardy–Littlewood inequality [HL30]). Let f, g ∈M(X), then∫
X

|fg|dµ ≤
µ(X)∫
0

f?(x)g?(x)dx.

The next theorem shows that the rearrangement-invariant Banach function
norms on X are determined by rearrangement-invariant Banach function norms
for functions on [0,∞).

Theorem 2.3.7 (Luxemburg representation theorem). Let X be a non-atomic
σ-finite measure space (resp. X = Γ∗). Furthermore, let ‖·‖ be a rearrangement-
invariant Banach function norm on M(X). Then there is a rearrangement-
invariant Banach function norm ‖ · ‖′ on M([0,∞), [0,∞]) (or, for X = Γ∗, on
M(Z>0, [0,∞])) such that

‖f‖ = ‖f?‖′

for all f ∈M(X).

We have the following simple corollary to these two theorems:

Corollary 2.3.8. Let f, g ∈M(X) with the property that

lim
t→∞

f?(t) = lim
t→∞

g?(t) = 0, (2.3.9)

then
t∫

0

(fg)?(s)ds ≤
t∫

0

f?(s)g?(s)ds (2.3.10)

for all t > 0 (all t ∈ Z>0 if X is discrete).
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Proof. Consider the case X = F first. Let t > 0. If t > µ(F ), the claim
follows directly from the Hardy–Littlewood inequality (theorem 2.3.6) because
the integration over the decreasing rearrangement in the left hand side of (2.3.10)
is a Luxemburg representation of the L1-norm in the sense of theorem 2.3.7.
Otherwise, there is a measurable set M ⊆ F with µ(M) = t such that

∫
M

|fg|dµ =

t∫
0

(fg)?(s)ds

by [BR80, Lemma 2.2.5]. Now, the Hardy–Littlewood inequality applied on the
measure space M yields

t∫
0

(fg)?(s)ds ≤
µ(M)∫
0

(f |M )?(s)(g|M )?(s)ds =

t∫
0

(f |M )?(s)(g|M )?(s)ds.

Now let f̃ and g̃ be the extensions of f |M and g|M to F , respectively, obtained
by setting them zero off M . Then the distribution functions of f̃ and f |M as
well as of g̃ and g|M are equal. Now clearly, |f̃(x)| ≤ |f(x)| and |g̃(x)| ≤ |g(x)|
for all x ∈ F . Hence, proposition 2.3.4 implies

t∫
0

(f |M )?(s)(g|M )?(s)ds ≤
t∫

0

f?(s)g?(s)ds,

proving the corollary for X = F .
Now, assume X = Γ∗. In this setting, the inequality (2.3.10) becomes, in

accordance with our conventions for the decreasing rearrangement,

N∑
n=1

(fg)?(n) ≤
N∑
n=1

f?(n)g?(n)

for all N ∈ Z>0. Now, due to the property (2.3.9) and since Γ∗ is discrete, for
each N ∈ Z>0 there is a set M ⊆ Γ∗ with N elements such that

∑
κ∈M

|f(κ)g(κ)| =
N∑
n=1

(fg)?(n).

The proof can now proceed as in the case X = F .

Finally, let us introduce the Hardy–Littlewood maximal function. For f ∈
M(X), define the maximal function by

f?? : (0,∞)→ [0,∞]

t 7→ 1
t

t∫
0

f?(x)dx.

The maximal function can be estimated against the decreasing rearrangement
and has the advantage of admitting a triangle inequality.
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Proposition 2.3.11. Let f, g ∈M(X), then f?(t) ≤ f??(t) for all 0 < t <∞,
and

(f + g)??(t) ≤ f??(t) + g??(t)

for all 0 < t <∞.

The maximal function transforms most rearrangement-invariant spaces un-
der our consideration to manifestly the same spaces, with X replaced with a
subset of R, in accordance with the Luxemburg representation theorem. There
are, however, some notable exceptions, which we shall investigate in the next
section.

2.4 Lorentz–Zygmund spaces

Lorentz–Zygmund spaces are rearrangement-invariant function spaces which are
concrete refinements of the Lebesgue spaces. The scale of Lebesgue spaces
has a single parameter, the Lebesgue exponent p, with 0 < p ≤ ∞, while the
scale of Lorentz–Zygmund spaces has two additional parameters, the Lorentz
exponent a, with 0 < a ≤ ∞, and the Zygmund exponent α, with −∞ < α <∞.
The Lorentz–Zygmund spaces Lp,a;α(F ) and `p,a;α(Γ∗) are then defined by the
following quasi-norms.

Definition 2.4.1 (Lorentz–Zygmund quasi-norms). For 0 < p ≤ ∞, 0 < a ≤
∞ and −∞ < α < ∞ we define the Lorentz–Zygmund quasi-norms ‖ · ‖p,a;α

on M(F ) by

‖f‖p,a;α :=


(
µ(F )∫

0

(
t1/p

(
1− log t

µ(F )

)α
f?(t)

)a
t−1dt

)1/a

, if 0 < a <∞,

sup
0<t<µ(F )

t1/p
(

1− log t
µ(F )

)α
f?(t), if a =∞,

and on M(Γ∗) by

‖f‖p,a;α :=


( ∞∑
n=1

(
n1/p(1 + log n)αf?(n)

)a
n−1

)1/a

, if 0 < a <∞,
∞

sup
n=1

n1/p(1 + log n)αf?(n), if a =∞.

We skip the verification that these definitions actually constitute quasi-norms
and direct the reader to [BS88] instead. Using Hardy’s lemma and the Hardy–
Littlewood inequality, it is easy to see that if a 6=∞ they are norms whenever

t 7→ ta/p−1

(
1− log

t

µ(F )

)aα
,

n 7→ na/p−1(1 + log n)aα

are non-increasing (there are more cases than these in which the resulting spaces
can be made Banach spaces, however).

There are two important special cases of Lorentz–Zygmund spaces. Firstly,
if α = 0, we write p, a instead of p, a; 0 and speak of Lorentz spaces. Secondly,
if p = a, we write p;α instead of p, p;α and speak of Zygmund spaces. Special
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cases of Zygmund spaces were first used in [Zyg28, Zyg29], while the Lorentz
spaces were invented in [Lor50, Lor51]. In full generality, Lorentz–Zygmund
spaces were first investigated in [BR80]. The Lebesgue spaces are, of course,
also a special case of Lorentz–Zygmund spaces.

Proposition 2.4.2. Let 0 < p ≤ ∞. Then Lp(F ) = Lp,p;0(F ) and `p(Γ∗) =
`p,p;0(Γ∗) and the quasi-norms are equal.

Proof. For p = a and α = 0, the Lorentz–Zygmund quasi-norms reduce to

( µ(F )∫
0

f?(t)pdt
)1/p

and sup
0<t<µ(F )

f?(t),

and likewise for X = Γ∗. This proves the claim for p = ∞ due to the mono-
tonicity and rearrangement property of f?. For 0 < p <∞, δf (λ1/p) = δ|f |p(λ)
implies (f?)p = (|f |p)?, finishing the proof due to the equimeasurability of f
and f?.

Note that the Lorentz–Zygmund quasi-norm for 1 ≤ p ≤ ∞, a = p and α = 0
is a Luxemburg representation of the standard Lp-norm.

We shall now give the Lorentz–Zygmund spaces a similar treatment than
the Lebesgue spaces in section 2.1. We begin with the inclusion relations. For
X = Γ∗, we need them only in the Lorentz spaces. The conditions for inclusion
are relatively simple in this case.

Proposition 2.4.3. Let 0 < p, q, a, b ≤ ∞. Then

`p,a(Γ∗) ⊆ `q,b(Γ∗)

if one of the following conditions holds:

1. p < q,

2. p = q and a ≤ b.

The inclusions are continuous.

Proof. For p = q and a ≤ b, this is [BS88, Prop. 4.4.2]. Now, let p < q. From
the case p = q we already know that `p,a(Γ∗) ⊆ `p,∞(Γ∗). So, for f ∈ `p,a(Γ∗)
we have

∞
sup
n=1

n1/pf?(n) <∞.

Therefore
∞∑
n=1

n−c(n1/pf?(n))d <∞ (2.4.4)

for all d > 0 and all c > 1. Choose d < min(a, b) and set c = 1 + d/p − d/q.
Since p < q, c > 1. This implies

f ∈ `q,d(Γ∗) ⊆ `q,b(Γ∗),

proving the inclusion. Continuity also follows, since the `p,∞(Γ∗) ⊆ `q,d(Γ∗)
bound implied by our construction (2.4.4) depends only on c and d.
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For X = F , the inclusion relations among Lorentz–Zygmund spaces are
somewhat more complicated as the following proposition shows.

Proposition 2.4.5 ([Sha80, Prop. 3.1]). Let 0 < p, q, a, b ≤ ∞ and −∞ <
α, β <∞. Then

Lp,a;α(F ) ⊆ Lq,b;β(F )

if and only if at least one of the following conditions holds:

1. q < p,

2. q = p <∞, a ≤ b and β ≤ α,

3. q = p <∞, a > b and β + b−1 < α+ a−1,

4. p = ∞, α + a−1 ≥ 0, and either α 6= 0 or a < ∞ or both (in this case,
Lp,a;α(F ) = {0}),

5. q = p =∞, β + b−1 < α+ a−1, and either β + b−1 < 0 or β = b−1 = 0.

6. q = p = ∞, a ≤ b, β + b−1 = α + a−1, and either β + b−1 < 0 or
β = b−1 = 0.

The inclusions are continuous.

Next, we generalise Hölder’s inequality to some of the Lorentz–Zygmund
spaces.

Theorem 2.4.6 (Hölder’s inequality for Lorentz–Zygmund spaces). Let 0 <
p, q, r, a, b, c ≤ ∞ and −∞ < α, β, γ <∞ such that

p−1 + q−1 = r−1,

a−1 + b−1 = c−1,

α+ β = γ.

Let f, g ∈M(X). Then the inequality

‖fg‖r,c;γ ≤ ‖f‖p,a;α‖g‖q,b;β

holds whenever both sides make sense, provided that one of the following condi-
tions is fulfilled:

1. c < r,

2. c = r, γ ≥ 0 and X = F ,

3. c = r, γ ≤ 0 and X = Γ∗.

Proof. If c =∞, then necessarily a = b = r = p = q =∞. Due to monotonicity
we have for X = Γ∗

∞
sup
n=1

(1 + log n)γ(fg)?(n) = (fg)?(1) ≤ f?(1)g?(1)

= (1 + log 1)αf?(1)(1 + log 1)βg?(1)

≤
(
∞

sup
n=1

(1 + log n)αf?(n)
)(

∞
sup
n=1

(1 + log n)βg?(n)
)
.
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For X = F , only the case γ = 0 is relevant as otherwise the supremum is either
zero or infinite. But for γ = 0 we get a special case of the classical Hölder
inequality 2.1.1.

Now, let c <∞. Under the stated prerequisites, the functions

t 7→ tc/r−1

(
1− log

t

µ(F )

)γc
,

n 7→ nc/r−1(1 + log n)γc

are monotonically decreasing. Hence, we can apply Hardy’s lemma 2.3.5 and
the Hardy–Littlewood inequality 2.3.8, to wit (for X = F ):

‖fg‖cr,c;γ =

µ(F )∫
0

tc/r−1

(
1− log

t

µ(F )

)γc
(fg)?(t)cdt

≤
µ(F )∫
0

tc/r−1

(
1− log

t

µ(F )

)γc
(f?(t)g?(t))cdt

=

µ(F )∫
0

tc/pt−c/a
(

1− log
t

µ(F )

)αc
f?(t)c

× tc/qt−c/b
(

1− log
t

µ(F )

)βc
g?(t)cdt

Using the classical Hölder inequality:

≤

 µ(F )∫
0

ta/p−1

(
1− log

t

µ(F )

)αa
f?(t)adt


c/a

×

 µ(F )∫
0

tb/q−1

(
1− log

t

µ(F )

)βb
g?(t)bdt


c/b

= ‖f‖cp,a;α‖g‖cq,b;β .

For X = Γ∗ the argument runs completely analogously.

We remark that the restrictions on r and c can be removed in most, but not
all cases, at the cost of the introduction of a factor (which would depend only
on the exponents) in the inequality. One particular case where the restrictions
cannot be removed is the case r = 1 (cf. proposition 2.4.14).

Before we move on to convolution and Fourier transform on Lorentz–Zyg-
mund spaces, we slip in the promised digression on the generalisation of Riesz–
Thorin interpolation theory. Let us first outline the class of operators we want
to interpolate on.

Definition 2.4.7 (quasi-linear operator). Let X1, X2 be σ-finite measure spaces
and let V ⊆M(X1) be a vector subspace of M(X1). Let T : V →M(X2) be an
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operator for which there is a C ≥ 1, such that for all f, g ∈ V , all λ ∈ C and
µ2-almost all x ∈ X2 the following relations are fulfilled:

|(T (f + g))(x)| ≤ C(|(Tf)(x)|+ |(Tg)(x)|),
|(T (λf))(x)| = |λ||(Tf)(x)|.

Then T is called a quasi-linear operator.

Note that in the cases where C can be chosen equal to one, this definition
reduces to the well-known concept of a sub-linear operator, albeit defined on the
possibly rather large space V . Actual interpolation will be done on subspaces
of V , so T has to be suitably restricted. Another approach, as originally done
by Thorin, would be to define T on dense subsets of all spaces in question.
This situation is somewhat reminiscent of the strong and weak extensions with
Sobolev spaces. However, our “weak” version of operator definition is more
flexible as the conditions on the relationship between operator domains are
relatively mild8. We make the phrase “suitable restriction” concrete as follows:

Definition 2.4.8. Let E1, E2 be quasi-Banach spaces and let T be a quasi-
linear operator. Assume that E1 is contained in the domain of T , and that the
range of the restriction of T to E1 is contained in E2. If

T |E1
: E1 → E2

is bounded, we call T admissible E1 → E2. To simplify notation, we write
T : E1 → E2 to express this admissibility.

In section 2.1, the concept of operator types was introduced. We extend this
definition as follows.

Definition 2.4.9 (operator types). Let T be a quasi-linear operator, X1, X2

two σ-finite measure spaces, and 1 ≤ p, q ≤ ∞. If

T : Lp(X1)→ Lq(X2),

then T is said to be of strong type (p, q). Furthermore, if

T : Lp,1(X1)→ Lq,∞(X2),

then T is said to be of weak type (p, q).

While it is technically possible to define operator types for p, q < 1, it would
not fit with the denominations“strong”and“weak” for the restriction to p, q ≥ 1,
together with Propositions 2.4.3 and 2.4.5, implies that a strong type (p, q)
operator is also weak type (p, q). At any rate, the interpolation theorems we
state are formulated for 1 ≤ p, q ≤ ∞ only, although it is possible to extend the
theory to p, q < 1.

We shall now introduce the precise type of operator we wish to do inter-
polation on. The ideas underlying the following definition are an extension of
Thorin’s ones due to Calderón [Cal66].

8Specifically, the domains on which T is to be defined must be continuously embeddable into
topological subspaces of some common Hausdorff space [BS88, ch. 3]. Since we do interpolation
theory only on Lorentz–Zygmund spaces, we can always find a suitable Lebesgue space to fill
this role.
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Definition 2.4.10. Let 1 ≤ p1 < p2 ≤ ∞ and 1 ≤ q1, q2 ≤ ∞ with q1 < q2

or q2 < q1. Set

m :=
q−1
1 − q−1

2

p−1
1 − p

−1
2

.

This is the slope of the non-horizontal, non-vertical line connecting the pair of
points σ := ((p−1

1 , q−1
1 ), (p−1

2 , q−1
2 )), that is, m ∈ R \ {0}. Define the Calderón

operator Sσ by

Sσ : M((0,∞))→M((0,∞)),

(Sσf)(t) := t−1/q1

tm∫
0

s1/p1−1f(s)ds+ t−1/q2

∞∫
tm

s1/p2−1f(s)ds.

Now let T be a quasi-linear operator such that for all functions f from its domain
(Sσf?)(1) is finite and

(Tf)?(t) ≤ C(Sσf?)(t)

holds for all 0 < t <∞, where C > 0 is independent from f . Then T is said to
be of joint weak type (p1, q1; p2, q2).

Beyond the obvious fact that strong operator type implies weak operator
type, the following proposition describes further how the strong, weak and joint
weak operator types are related to each other.

Proposition 2.4.11 ([BS88, Theorem 4.4.11]). Let 1 ≤ p1 < p2 ≤ ∞ and
1 ≤ q1, q2 ≤ ∞ with q1 < q2 or q2 < q1. Let T be a quasi-linear operator. Then

1. If p2 < ∞, then T is of joint weak type (p1, q1; p2, q2) if and only if it is
of weak types (p1, q1) and (p2, q2).

2. If p2 = ∞ and T is of joint weak type (p1, q1; p2, q2), then it is of weak
type (p1, q1).

3. If p2 = ∞ and T is of weak type (p1, q1) and of strong type (p2, q2), then
it is of joint weak type (p1, q1; p2, q2).

We can now state the interpolation theorem. It was first proven by Józef
Marcinkiewicz [Mar39, Zyg56] for Lebesgue spaces and later generalised by Ben-
nett and Rudnick [BR80].

Theorem 2.4.12 (Marcinkiewicz interpolation theorem for Lorentz–Zygmund
spaces). Let X1, X2 ∈ {F,Γ∗} and T a quasi-linear operator which maps func-
tions on X1 to function on X2. Let 1 ≤ p1 < p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞ with
q1 < q2 or q2 < q1 and suppose T is of joint weak type (p1, q1; p2, q2). Then the
following results hold.

1. Intermediate case. Let 0 < θ < 1 and set

p :=
(

1− θ
p1

+
θ

p2

)−1

, q :=
(

1− θ
q1

+
θ

q2

)−1

.

Then for all 0 < a ≤ ∞ and all −∞ < α <∞,

T : Lp,a;α(X1)→ Lq,a;α(X2),
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with
‖T‖ ≤ C

θ(1− θ)
,

where C ≥ 0 does not depend on p, q or θ.

2. Left endpoint case. Let 1 ≤ a ≤ b ≤ ∞9 and −∞ < α, β < ∞ with
a−1 + α = b−1 + β. Set K := a−1 + α = b−1 + β. Then

T : Lp1,a;α+1(F )→ Lq1,b;β(F ) if (X1, X2) = (F, F ), q1 < q2 and K > 0,

T : Lp1,a;α+1(F )→ `q1,b;β(Γ∗) if (X1, X2) = (F,Γ∗), q2 < q1 and K > 0,

T : `p1,a;α+1(Γ∗)→ Lq1,b;β(F ) if (X1, X2) = (Γ∗, F ), q2 < q1 and K < 0,

T : `p1,a;α+1(Γ∗)→ `q1,b;β(Γ∗) if (X1, X2) = (Γ∗,Γ∗), q1 < q2 and K < 0.

3. Right endpoint case. Let 1 ≤ a ≤ b ≤ ∞ and −∞ < α, β < ∞ with
a−1 + α = b−1 + β. Set K := a−1 + α = b−1 + β. Then

T : Lp2,a;α+1(F )→ Lq2,b;β(F ) if (X1, X2) = (F, F ), q1 < q2 and K < 0,

T : Lp2,a;α+1(F )→ `q2,b;β(Γ∗) if (X1, X2) = (F,Γ∗), q2 < q1 and K < 0,

T : `p2,a;α+1(Γ∗)→ Lq2,b;β(F ) if (X1, X2) = (Γ∗, F ), q2 < q1 and K > 0,

T : `p2,a;α+1(Γ∗)→ `q2,b;β(Γ∗) if (X1, X2) = (Γ∗,Γ∗), q1 < q2 and K > 0.

Let us collect the joint weak type of some standard operators to see how we
can apply the Marcinkiewicz interpolation theorem to them.

Proposition 2.4.13. We have the following operator types:

1. The Fourier operator F is of joint weak type (1,∞; 2, 2).

2. Let f ∈ Lp(X) with 1 ≤ p ≤ ∞, then the operator

g 7→ f ∗ g

is of joint weak type (1, p; p′,∞),

where p′ = p/(p− 1) is the dual exponent to p.

Proof. We have already established that the Fourier operator is both of strong
types (1,∞) and (2, 2). That the operator g 7→ f ∗ g is of strong types (1, p)
and (p′,∞) follows from Young’s inequality for p-integrable functions. Proposi-
tion 2.4.11 now yields the desired result.

Another result directly related to theorem 2.4.12 is the following result for
the maximal function (see [HL30, theorem 12]):

Proposition 2.4.14. For 1 < p ≤ ∞, the Hardy–Littlewood maximal operator
f 7→ f?? maps Lp(F ) boundedly into Lp(R>0). If, however, f ∈ L1(F ), then
f?? ∈ L1(R>0) if and only if f ∈ L1,1;1(F ).

9In their original statement of the theorem [BR80, Theorem C], Bennett and Rudnick have
the additional restriction a 6= b. This restriction is unnecessary, as one can see in their proof
in section 18; see also their remarks 18.2 and [BS88, Theorem 4.6.14].
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In conclusion, let us remark two things. Firstly, a more general version of
Young’s inequality for target spaces Lr with 1 < r <∞ can be found in [O’N63,
Blo72]. However, we shall be more interested in the case r = ∞. We have
presented interpolation theory only for Lorentz–Zygmund spaces but in fact,
more general treatments are possible. In the context of Young’s inequality, let
us just mention the following result.

Proposition 2.4.15. Let E be any rearrangement-invariant function space
over X and let f ∈ L1(X). Then the operator

g 7→ f ∗ g

maps E boundedly into itself, and we have

‖f ∗ g‖E ≤ ‖f‖1‖g‖E .

Proof. Again, for E = L1(X) and E = L∞(X), this follows from the classical
Young’s inequality. Given theorem 2.3.3, the claim now follows from [BS88,
Theorem 3.2.2].

Secondly, the fact that the Fourier operator is actually of strong type (2, 2)
but the Marcinkiewicz theorem assumes only weak type (2, 2) makes the right
endpoint case useless in this case. Sharp right endpoint results apart from
Parseval’s identity, such as [Boc98], appear to be sparse in the literature.

2.5 Fourier spaces

As we have seen in section 2.1, the Fourier transform is valid on the very gen-
eral spaces S∗(F ) and s∗(Γ∗). The drawback of these spaces is that they lack
the analytical properties of (quasi-)Banach function spaces. In addition, the
space S∗(F ) is even algebraically deficient in that it does not have a well-defined
multiplication. Therefore, we generally prefer the Lorentz–Zygmund spaces (or,
more generally, the rearrangement-invariant spaces) of functions on F or Γ∗,
and use the Fourier transform to change between these spaces. This, however,
gives rise to new problems. For one, the Fourier transform is “only” of strong
types (1,∞) and (2, 2) but not, say, (∞, 1). A more serious problem are the
inherent difficulties associated with building bounded linear operators based on
the Fourier transform in Bochner spaces (see section 2.6). We would also like
to avoid problems with summability and norm convergence of Fourier series.
Therefore, we define a kind of space with a Fourier transform already built in.

Definition 2.5.1 (Fourier space). For E ⊆ S∗(F ) set

FE := {f ∈ s∗(Γ∗) : F ′f ∈ E},

and for E ⊆ s∗(Γ∗) set

FE := {f ∈ S∗(F ) : Ff ∈ E}.

If E is a normed space, we call FE the Fourier space of E and define the Fourier
space norm on it by

‖f‖ := ‖Ff‖E .
In the special case where E is a Lorentz–Zygmund space with exponents (p, a;α),
we denote the Fourier space norm by ‖ · ‖Fp,a;α.
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Direct calculation readily shows

Proposition 2.5.2. If E ⊆ S∗(F ) or E ⊆ s∗(Γ∗) fulfils one or more of the
properties (F1) through (F5) from section 2.1, then so does FE.

In particular, if E is a Banach space, then so is its Fourier space. Note,
however, that some of the properties from section 2.3, especially monotonicity
and rearrangement invariance, are generally not preserved.

Arguably, Fourier spaces add a layer of indirection to the concreteness of
rearrangement-invariant spaces (Lorentz–Zygmund spaces in particular). Our
most important standard operations, however, namely pointwise multiplication
and convolution, carry over through the Fourier transform by an appropriate
extension of the convolution theorem 2.1.10. Moreover, the following generali-
sations of Hölder’s and Young’s inequality hold:

Theorem 2.5.3 (Hölder’s inequality for Lorentz–Zygmund–Fourier spaces). Let
1 ≤ p0 ≤ ∞ and f ∈ FLp0(X). Set p′0 := p0/(p0 − 1) and

p1 := 1, q1 := p0,

p2 := p′0, q2 :=∞.

Then the multiplication operator

g 7→ fg

maps FLp,a;α(X) boundedly into FLq,b;β(X), where p, q, a, b, α, β are chosen in
accordance with the Marcinkiewicz interpolation theorem 2.4.12.

Proof. By the convolution theorem we have

‖fg‖Fq,b;β = C‖f̂ ∗ ĝ‖q,b;β

for some C > 0. The claim now follows from proposition 2.4.13.

Theorem 2.5.4 (Young’s inequality for Lorentz–Zygmund–Fourier spaces).
Choose 0 < p, q, r, a, b, c ≤ ∞, −∞ < α, β, γ < ∞ such that they fulfil the
three relations of theorem 2.4.6. Let f ∈ FLp,a;α(X) and g ∈ FLq,b;β(X).
Then

‖f ∗ g‖Fr,c;γ ≤ ‖f‖Fp,a;α‖g‖Fq,b;β

provided the convolution is defined10 and one of the following conditions holds:

1. c < r,

2. c = r, γ ≤ 0 and X = F ,

3. c = r, γ ≥ 0 and X = Γ∗.

Proof. Once again, this follows from Theorem 2.4.6 by using the convolution
theorem. Note that in the case c = r, the inequalities for γ reverse due to the
change of measure space induced by the Fourier transform.

10recall that we did not embed all Lorentz–Zygmund spaces on F into S∗(F )
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2.6 Bochner spaces and tensor products

So far, we have only considered functions with values in the complex numbers
(possibly with infinity). In this section we shall investigate functions taking
values in a Banach space. In our case, this Banach space will usually be a
Banach function space, so that, in essence, we are considering functions of the
form

X1 → (X2 → C). (2.6.1)

By currying11, such a function has the equivalent form

X1 ×X2 → C. (2.6.2)

Therefore, the theory of Banach space valued functions can be used to treat mul-
tivariate complex-valued functions. However, there is an important restriction.
The signature (2.6.2) can be curried again to

X2 → (X1 → C),

giving (2.6.1) with X1 and X2 swapped. But once we add an analytical structure
on spaces of such functions (see below), these two representations will, in general,
be different.

The Bochner integral for Banach space valued functions is defined in a similar
fashion as the Lebesgue integral for complex-valued functions. It was introduced
in [Boc33]. Let (X,Σ, µ) be a σ-finite measure space and E be a complex Banach
space. We first define the Bochner integral for step functions.

Definition 2.6.3 (Bochner integral for step functions). Let f : X → E be a
step function, that is, f has a representation

f(x) =
n∑
k=1

ekχMk
(x), (2.6.4)

where M1, . . . ,Mn ∈ Σ have finite measure, and e1, . . . , en ∈ E. Then we define
the Bochner integral of f by∫

X

fdµ :=
n∑
k=1

ekµ(Mk).

It is easy to see that the Bochner integral is independent of the particular rep-
resentation (2.6.4). We now introduce Bochner-measurable functions through a
limiting process.

Definition 2.6.5 (Bochner-measurable function). A function f : X → E is
called Bochner-measurable if there is a sequence (fn : X → E)n∈N of step func-
tions such that

lim
n→∞

‖fn(x)− f(x)‖ = 0

for µ-almost all x ∈ X. Here, ‖ · ‖ is the norm of E. We denote the space of
Bochner measurable functions X → E by M(X,E).

11so named in honour of Haskell Curry
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A further limiting process now generalises the Bochner integral to all of the
Bochner-measurable functions.

Definition 2.6.6 (Bochner integral). Let f ∈ M(X,E). Then f is said to
be Bochner integrable if there is a sequence of step functions (fn)n∈N as in
definition 2.6.5 such that

lim
n→∞

∫
X

‖fn(x)− f(x)‖dµ = 0.

In this case, the Bochner integral of f is given by∫
X

fdµ := lim
n→∞

∫
X

fndµ.

This definition makes sense due to the Bochner-measurability of f and the
completeness of E. The set of Bochner integrable functions is characterised by
Bochner’s theorem.

Theorem 2.6.7 (Bochner). A function f ∈ M(X,E) is Bochner-integrable if
and only if the function

x 7→ ‖f(x)‖ (2.6.8)

is Lebesgue-integrable. In this case∥∥∥∫
X

f(x)dx
∥∥∥ ≤ ∫

X

‖f(x)‖dx.

Note that in particular, the function (2.6.8) induces a norm on the Bochner-
integrable functions, making them a Banach space. We denote this space
by L1(X,E). This scheme of creating a Banach space of Banach space val-
ued functions can be generalised to all Banach function spaces.

Theorem 2.6.9. Let E1(X) be a Banach function space over the measure
space X and let E2 be another Banach space (not necessarily a Banach function
space). Then the space

E1(X,E2) := {f ∈M(X,E2) : ‖f(·)‖E2 ∈ E1(X)}

is a Banach space with norm

‖f‖ :=
∥∥‖f(·)‖E2

∥∥
E1
.

Proof. Properties (F1) and (F3) from section 2.1 are obvious. If ‖f‖ = 0, then
we have f(x) = 0 for µ-almost all x ∈ X since E1(X) and E2 are Banach
(function) spaces. This shows (F2) (with the usual reservations as in (2.1.2)).
To establish the triangle inequality (F4), let f, g ∈ E1(X,E2). Then

‖f + g‖ =
∥∥‖(f + g)(·)‖E2

∥∥
E1

=
∥∥‖f(·) + g(·)‖E2

∥∥
E1

Due to the triangle inequalities in E2 and E1(X) and the monotonicity prop-
erty (B6) of E1(X):

≤
∥∥‖f(·)‖E2 + ‖g(·)‖E2

∥∥
E1
≤ ‖f‖+ ‖g‖.
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This also shows that E1(X,E2) is a vector space. Finally, let (fn)n∈N be a
sequence in E1(X,E2) such that∑

n∈N
‖fn‖ <∞.

Since E1(X) is complete, there is a g ∈ E1(X) such that

g =
∑
n∈N
‖fn(·)‖E2 , ‖g‖E1 ≤

∑
n∈N
‖fn‖.

Since g is finite-valued µ-almost everywhere,∑
n∈N
‖fn(x)‖E2 <∞

holds for µ-almost all x ∈ X. Since E2 is complete, there exists a µ-almost
everywhere defined function f ∈M(X,E2) such that

f(x) =
∑
n∈N

fn(x), ‖f(x)‖E2 ≤
∑
n∈N
‖fn(x)‖,

for those x ∈ X for which f is defined. Now ‖f(x)‖E2 ≤ g(x) holds µ-almost
everywhere, so ‖f(·)‖E2 ∈ E1 by the monotonicity property (B6). In particular,
f ∈ E1(X,E2) and

‖f‖ ≤
∑
n∈N
‖fn‖.

Therefore, E1(X,E2) is complete.

We have not found the above theorem in the literature, despite the simple
and standard proof. Less general versions (say, with Lebesgue spaces in place
of Banach function spaces) are commonplace, however. Clearly, the same proof
can be used for quasi-Banach function spaces E2 as well, with the Riesz–Fischer
property replaced by a suitable p-summed version of the Riesz–Fischer property,
resulting in E1(X,E2) also being a quasi-Banach space.

Let E1(X) and G1(Y ) be two Banach function spaces over measure spaces X
and Y , respectively, and let E2, G2 be arbitrary Banach spaces. Given bounded
linear operators

A1 : E1(X)→ G1(Y ), A2 : E2 → G2, (2.6.10)

we shall want to define a “combined” linear operator

E1(X,E2)→ G1(Y,G2).

By the local finiteness property (B7), the space E1(X,E2) surely contains all
step functions of the type (2.6.4). It is therefore natural to stipulate that the
combination of A1 and A2 should operate on a step function f as

f =
n∑
k=1

χMk
ek 7→

n∑
k=1

A1(χMk
)A2(ek),

where M1, . . . ,Mn ∈ ΣX have finite measure and e1, . . . , en ∈ E2. In order to
generalise this kind of operation to arbitrary elements of E1(X,E2), we shall
make use of Banach space tensor products. The relevant theory was introduced
by Schatten [Sch50] and Grothendieck [Gro55].
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Definition 2.6.11 (tensor product). Let V1, V2 be complex vector spaces and
let Bil(V1, V2) be the space of bilinear forms on V1×V2. For x1 ∈ V1 and x2 ∈ V2

we define the tensor x1 ⊗ x2 by

x1 ⊗ x2 : Bil(V1, V2)→ C,
A 7→ A(x1, x2).

The subspace V1 ⊗ V2 of Hom(Bil(V1, V2),C) generated by all tensors x1 ⊗ x2,
x1 ∈ V1, x2 ∈ V2 is called the tensor product of V1 and V2.

This concept of a tensor product is purely algebraical. The following propo-
sition provides an analytical construct on the tensor product.

Proposition 2.6.12. Let E1(X) be a Banach function space and E2 be a Ba-
nach space. Define a linear map

J : E1(X)⊗ E2 → E1(X,E2)
by linear extension of f ⊗ e 7→ f(·)e.

Then J is injective, making a normed space of E1(X) ⊗ E2 through the norm
on E1(X,E2). Let E1(X)⊗̂E2 be the completion of E1(X) ⊗ E2 with respect
to this norm, then J extends to an isomorphism from E1(X)⊗̂E2 to a Banach
subspace of E1(X,E2) containing the step functions.

Proof. Let f1, f2 ∈ E1(X) and e1, e2 ∈ E2 and assume f1(·)e1 = f2(·)e2. If
f1 = 0 or e1 = 0 then f2 = 0 or e2 = 0. Otherwise, {e1, e2} is linearly
dependent. Without restriction, e1 = e2 in this case, and thus f1 = f2. It
follows that f1 ⊗ e1 = f2 ⊗ e2 in all cases. The norm of E1(X,E2) can now be
transported back to E1(X) ⊗ E2, naturally making J continuous. The natural
extension of J to the completion then leads to a closed subspace of E1(X,E2)
which contains the step functions because E1(X) contains the step functions
by (B7).

Note that the step functions are dense in many Banach function spaces,
so we shall have E1(X)⊗̂E2

∼= E1(X,E2) very often. In particular, the step
functions are dense in Lp,a;α(X) for 1 ≤ p ≤ ∞, 1 ≤ a <∞ and −∞ < α <∞
(whenever this space is a Banach function space). If a =∞, the step functions
are, in general, not dense. For example, `∞(Γ∗)⊗̂E2 ( `∞(Γ∗, E2) in general.
In this particular case, it is often possible to use the subspace c0(Γ∗) ⊆ `∞(Γ∗)
of sequences vanishing at infinity instead, in which the step functions are dense
again. If it is not possible to somehow withdraw from `∞(Γ∗, E2) to `∞(Γ∗)⊗̂E2,
tensor product theory cannot be used and the Bochner spaces have to be used
directly.

Anyway, coming back to our bounded linear operators A1, A2 from (2.6.10),
the prescription

(A1 ⊗A2)(e1 ⊗ e2) := (A1e1)⊗ (A2e2), e1 ∈ E1(X), e2 ∈ E2,

extends to a linear operator E1(X,E2) → G1(Y,G2) in many cases (at least
when the step functions are dense in E1(X,E2)). One problem with this defi-
nition is that even though A1 and A2 are continuous, A1 ⊗A2 is not always so.
We shall now identify the most important cases when A1 ⊗A2 is continuous.
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Proposition 2.6.13. Let E(X) be a Banach function space, G1, G2 be two
arbitrary Banach spaces and A : G1 → G2 a bounded linear operator. Then

id⊗A : E(X)⊗̂G1 → E(X)⊗̂G2

is bounded with ‖ id⊗A‖ ≤ ‖A‖.

Proof. It is sufficient to prove boundedness on the dense subspace E(X)⊗G1.
Let

n∑
k=1

fk ⊗ xk ∈ E(X)⊗G1,

then, using the isometry J :∥∥∥∥∥(id⊗A)

(
n∑
k=1

fk ⊗ xk

)∥∥∥∥∥ =

∥∥∥∥∥∥
∥∥∥∥∥
n∑
k=1

fk(·)Axk

∥∥∥∥∥
G2

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
∥∥∥∥∥A
(

n∑
k=1

fk(·)xk

)∥∥∥∥∥
G2

∥∥∥∥∥∥
E

By monotonicity:

≤

∥∥∥∥∥∥‖A‖
∥∥∥∥∥
n∑
k=1

fk(·)xk

∥∥∥∥∥
G1

∥∥∥∥∥∥
E

= ‖A‖

∥∥∥∥∥
n∑
k=1

fk ⊗ xk

∥∥∥∥∥ .

For continuity to be inherited by the left factor, we need an additional prop-
erty on the linear operator. We call a linear operator A on a Banach function
space positive, if

|(AχM )(x)| = (AχM )(x)

for all M ∈ Σ of finite measure and µ-almost all x.

Proposition 2.6.14. Let E1(X) be a Banach function space in which the step
functions are dense. Let E2(Y ) be another Banach function space and let
A : E1(X) → E2(Y ) be a continuous linear operator which is positive. Fur-
thermore, let G be an arbitrary Banach space. Then

A⊗ id : E1(X,G)→ E2(Y,G)

is bounded with ‖A⊗ id ‖ ≤ ‖A‖.

Proof. Since the step functions are dense in E1(X), A⊗ id is indeed an operator
on E1(X,G) by proposition 2.6.12, and it is sufficient to prove boundedness for
the step functions. In our representation of the step function

n∑
k=1

χMk
xk
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we may assume that the sets M1, . . . ,Mn are mutually disjoint. We then have:∥∥∥∥∥(A⊗ id)

(
n∑
k=1

χMk
xk

)∥∥∥∥∥ =

∥∥∥∥∥
∥∥∥∥∥
n∑
k=1

(AχMk
)(·)xk

∥∥∥∥∥
G

∥∥∥∥∥
E2

≤

∥∥∥∥∥
n∑
k=1

|(AχMk
)(·)|‖xk‖G

∥∥∥∥∥
E2

=

∥∥∥∥∥
n∑
k=1

(AχMk
)(·)‖xk‖G

∥∥∥∥∥
E2

=

∥∥∥∥∥A
(

n∑
k=1

χMk
(·)‖xk‖G

)∥∥∥∥∥
E2

≤ ‖A‖

∥∥∥∥∥
n∑
k=1

χMk
(·)‖xk‖G

∥∥∥∥∥
E2

Since the Mk are mutually disjoint:

= ‖A‖

∥∥∥∥∥
∥∥∥∥∥
n∑
k=1

χMk
(·)xk

∥∥∥∥∥
G

∥∥∥∥∥
E2

= ‖A‖

∥∥∥∥∥
n∑
k=1

χMk
xk

∥∥∥∥∥ .

Combining the last two propositions, we get

Corollary 2.6.15. Let E1(X) and E2(Y ) be Banach function spaces, where
the step functions are dense in E1(X). Let G1, G2 be arbitrary Banach spaces.
Finally, let A2 : G1 → G2 be a continuous linear operator, and A1 : E1(X) →
E2(Y ) a continuous linear operator that is a linear combination of positive op-
erators. Then

A1 ⊗A2 : E1(X,G1)→ E2(Y,G2)

is continuous, with

‖A1 ⊗A2‖ ≤ ‖A2‖ inf

{
n∑
k=1

|ak|‖A1k‖ :

n ∈ N, a1, . . . , an ∈ C, A11, . . . , A1k positive, A1 =
n∑
k=1

akA1k

}
.

Corollary 2.6.16. Let E1(X) and E2(X) be Banach function spaces, where
the step functions are dense in E1(X). Let G be an arbitrary Banach space.

1. Let g ∈M(X) such that the linear operator

A(f) := gf
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maps E1(X) continuously into E2(X). Then

A⊗ id : E1(X,G)→ E2(X,G)

is continuous with
‖A⊗ id ‖ ≤ 4‖A‖.

2. Let H(X) be a Banach function space such that for all g ∈ H(X) the
operator

Ag(f) := g ∗ f

maps E1(X) continuously into E2(X). Then all the operators

Ag ⊗ id : E1(X,G)→ E2(X,G)

are continuous with
‖Ag ⊗ id ‖ ≤ 4‖A|g|‖.

Proof. 1. Let g1, . . . , g4 ∈M+(X) such that g = g1−g2+i(g3−g4) and |gi| ≤
|g| µ-almost everywhere for i = 1, . . . , 4. Then also |gif | ≤ |gf | µ-almost
everywhere. So by monotonicity, g1, . . . , g4 define positive, continuous
multiplication operators from E1(X) to E2(X) of norm smaller than or
equal to ‖A‖. This implies the claim.

2. By the equiabsoluteness property (B0), g ∈ H(X) implies |g| ∈ H(X).
The operator A|g| is positive, and since |g ∗ f | ≤ |g| ∗ |f | µ-almost every-
where by the triangle inequality for integrals, we have ‖Ag‖ ≤ ‖A|g|‖. The
claim now follows again by decomposing g into g1, . . . , g4 as above.

2.7 Other spaces

In this section we shall very briefly introduce the Hardy spaces and the concept
of Banach manifolds. We shall not work extensively with these structures and
hence do not need to build a lot of theory around them. They are, however,
important for directing this work to its goal. Hardy spaces are subspaces of
L1 but they are not Banach function spaces. Nevertheless, their relation to
Bessel potential spaces will give the crucial hint which rearrangement-invariant
function space is the “correct” one for our Schrödinger potentials. Finally, the
parameter space of our Fermi moduli at the end of this work will be a quasi-
Banach manifold.

2.7.1 Hardy spaces

With respect to the Schrödinger operator, the following question is valid:

Question. For what 1 ≤ p < ∞ do f ∈ Lp(F ) and ∆f ∈ Lp(F ) imply f ∈
W 2,p(F )?

Let us, for a moment, transport this question to functions defined on Rd.
Given the nature of the Sobolev norm and considering one derivative at a
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time, this question generalises by proposition 2.1.6 to whether the operators
R1, . . . , Rd defined via the Fourier transform by

R̂if =
κi
|κ|
f̂ , i = 1, . . . , d,

(here, κ runs through Rd due to our choice of basic measure space) map Lp(Rd)
into itself. This is indeed the case for 1 < p <∞ but not for p = 1. We therefore
define the Hardy space norm

‖f‖H1 := ‖f‖1 +
d∑
i=1

‖Rif‖1

and the Hardy space

H1(Rd) := {f ∈ L1(Rd) : ‖f‖H1 <∞}.

With the Hardy space norm, the Hardy space is a Banach space. By construc-
tion, it is the optimal subspace E of L1(Rd) for which f ∈ E and ∆f ∈ E
imply f ∈W 2,1(Rd).

There is another characterisation of H1(Rd). A general reference for what
follows is the Hardy space primer [Sem94]. Let

T := {g ∈ C∞(Rd) : supp g ⊆ B1(0), ‖∇g‖∞ ≤ 1}.

Then we define the grand maximal function of a distribution f :

f
?
?? : Rd → [0,∞],

x 7→ sup
0<t

sup
g∈T

∣∣∣∫
Rd

t−df(x− y)g(y/t)dy
∣∣∣.

We now have

Theorem 2.7.1 (Maximal characterisation of H1(Rd)). Let f be a distribution
on Rd. Then f ∈ H1(Rd) if and only if f

?
?? ∈ L1(Rd). In fact, the grand

maximal function induces a norm on H1(Rd) which is equivalent to the Hardy
norm.

Note that unlike the decreasing rearrangement f? and the maximal func-
tion f??, the function f

?
?? is defined on Rd instead of on a subset of the real line.

This is because, loosely speaking, that there is no rearrangement-invariance in
the Hardy space, and no Luxemburg representation theorem. The relation be-
tween f?? and f

?
?? will become apparent soon. Also note that the definition

of T is somewhat arbitrary. Other definitions (bounds different from 1, rapidly
decreasing instead of compactly supported functions, other orders of differenti-
ation) lead to an equivalent norm.

Now that we have the Hardy space on Rd, we should define it on F as well.
This is done by truncation of the grand maximal function. We omit the details
(see [Str72, Gol79, Sem94]) and just mention that the norm is

‖f‖H1(F ) :=
∫
F

sup
0<t<ε

sup
g∈T

∣∣∣∫
Rd

t−df(x− y)g(y/t)dy
∣∣∣dx,
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where ε > 0 is sufficiently small and depends only on F , and F is identified with
a fundamental domain in Rd (f is set to zero outside F ).

The Hardy space H1(F ) may be optimal for controlling the inverse of the
Laplace operator, and it also fulfils Lp(F ) ⊆ H1(F ) ⊆ L1(F ) for all 1 < p ≤ ∞,
but it has one serious flaw: if f ∈ H1(F ), then |f | /∈ H1(F ) in general. In partic-
ular, if g ∈ L∞(F ), then the operator f 7→ gf does not necessarily map H1(F )
into itself. This also holds for continuous g. In fact, a true improvement on the
exponent, such as g being Hölder-continuous, is necessary for this simplest case
of the Hölder inequality to hold. Since we are dealing with Schrödinger oper-
ators with potential, this failure of the equiabsoluteness property (B0) makes
the Hardy space unusable for us. However, the following result of Stein [Ste69,
Theorem 2] gives us the crucial hint which space satisfying (B0) is the optimal
replacement for the Hardy space.

Theorem 2.7.2. There is a constant C > 0 depending only on F such that for
all f ∈ L1,1;1(F )

‖f‖H1 ≤ C‖f‖1,1;1

and for all g ∈ H1(F ) with g = |g| µ-almost everywhere

‖g‖1,1;1 ≤ C‖g‖H1 .

In particular, the following inclusion relations hold:

L1,1;1(F ) ⊆ H1(F ), M+(F ) ∩H1(F ) ⊆ L1,1;1(F ).

This immediately gives us the following corollary:

Corollary 2.7.3. Let E be any normed space of measurable functions on F
such that

1. f ∈ E implies |f | ∈ E, and ‖ · ‖ and ‖| · |‖ are equivalent norms on E,

2. E is continuously embedded in the Hardy space H1(F ).

Then E is continuously embedded in the Lorentz–Zygmund space L1,1;1(F ).

Proof. If f ∈ E, then |f | ∈ E by the first condition, so by theorem 2.7.2,
|f | ∈ L1,1;1(F ) and thus f ∈ L1,1;1(F ) since L1,1;1(F ) fulfils (B0). Obviously,
all these mappings are continuous.

This means that in terms of function spaces on F , the Lorentz–Zygmund
space L1,1;1(F ) is the optimal space E fulfilling the following two properties:

1. If f ∈ E and ∆f ∈ E, then f ∈W 2,1(F ).

2. For all g ∈ L∞(F ), the operator f 7→ gf maps E boundedly into itself.

The relation between f?? and f
?
?? promised above now becomes apparent by

comparing proposition 2.4.14 with theorem 2.7.1.
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2.7.2 Banach manifolds

In the course of investigating the asymptotic behaviour of Schrödinger spectra,
we shall, near the end of this thesis, encounter structures which cannot be
identified with a Banach space on a global scale. Locally however, they are,
in an appropriate sense, isomorphic to some open subset of a Banach space.
Therefore, it makes sense to use the manifold concept in order to model these
structures. Hence, Banach manifolds, as we shall introduce them momentarily,
are one possibility of generalising the well-known finite-dimensional manifolds
to an infinite number of dimensions.

Let M be some Hausdorff space and E be some Banach space. Assume that
for each x ∈ M , there is an open neighbourhood Ux ⊆ M and an injective
function ϕx : Ux → E whose image is an open subset of E. Assume further that
for each x, y ∈M , the composition maps

ϕy ◦ ϕ−1
x : ϕx(Ux ∩ Uy)→ ϕy(Ux ∩ Uy)

fulfil some regularity requirement that is to be specified together with the mani-
fold. Typical choices are continuity, differentiability, smoothness, or even analyt-
icity (all of these are possible between two Banach spaces). Then M , together
with the choices Ux and ϕx is called an E-Banach manifold of the specified
regularity.

The choices of Ux and ϕx are not necessarily unique, giving rise to the
well-known concepts of different atlases and atlas equivalence. However, as an
interesting sidenote, we remark that all infinite-dimensional continuous separa-
ble Banach manifolds can be embedded as open subsets into the (unique up to
isomorphism) separable Hilbert space [Hen69].

2.8 Localisation of function space norms

In this section, we shall define new norms for certain classes of Banach function
spaces which are equivalent to the standard norms. These norms will be helpful
in altering the bounds of specific linear operators between Banach function
spaces later on.

2.8.1 Localisation on the torus

Definition 2.8.1. Let E be a quasi-Banach function space and f ∈ E. The
function f is called absolutely continuous in E if

lim
n→∞

‖fχAn‖ = 0

for all decreasing sequences of measurable sets (An)n∈N such that

lim
n→∞

χAn(x) = 0

for µ-almost all x ∈ X. If all f ∈ E are absolutely continuous, then E itself is
called absolutely continuous.

Most Lorentz–Zygmund spaces are absolutely continuous:
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Theorem 2.8.2. The Lorentz–Zygmund space Lp,a;α(X) with 0 < a < ∞ is
absolutely continuous.

Proof. The space L1(X) is clearly absolutely continuous. Now,

lim
n→∞

(fχAn)?(t) = 0

pointwise for t > 0, so ‖fχAn‖p,a;α → 0 for a decreasing sequence of sets
converging to a set of zero measure.

Note that this theorem does not hold for a = ∞ because in this case the
Lorentz–Zygmund norm is defined via a supremum. In particular, L∞(X) is
not absolutely continuous.

Before we can proceed, we need some discrete geometry. In particular, we
shall define a family of geometric coverings of F . Recall the ordered basis B =
(b1, . . . , bd) for the lattice Γ. In the fundamental domain interpretation of F ,
every x ∈ F is uniquely determined as implied by the representation

F =
d⋃
i=1

bi[0, 1).

Clearly,

U∗ :=
d⋃
i=1

bi(−1, 1)

is an open set covering F . Let U0 be the family containing only U∗. Now let
a1 ∈ {0, 1}d and set

Ua1 :=
{ d∑
i=1

bixi ∈ U∗ : 0 < xi + a1
i /2 < 1 for all i = 1, . . . , d

}
.

Again, the family U1 := {Ua1}a1∈{0,1}d covers F with 2d congruent open sets.
We can continue this construction recursively. Assume Un−1 is an open cover
of the 2(n−1)d open sets Ua1a2···an−1 with a1, . . . , an−1 ∈ {0, 1}d, then for an ∈
{0, 1}d we set

Ua1a2···an :=
{ d∑
i=1

bixi ∈ Ua1a2···an−1 :

1− 21−n < xi +
n∑
k=1

aki 2−k < 1 for all i = 1, . . . , d
}
,

creating a new open cover Un containing 2nd congruent sets. The sequence
(Un)n∈N corresponds to a sequence (Fn)n∈N of partitions, where F0 := {F} and
Fn consists of the congruent sets

Fa1a2···an :=
{ d∑
i=1

bixi ∈ Fa1a2···an−1 :

1− 2−n ≤ xi +
n∑
k=1

aki 2−k < 1 for all i = 1, . . . , d
}
.
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In particular, for every n ∈ N and every x ∈ F there are unique a1, . . . , an such
that x ∈ Fa1···an . Hence, x ∈ Ua1···an though the latter set is not unique.

Lemma 2.8.3. Let n ∈ Z≥0, U ∈ Un+1 and U1, U2 ∈ Un such that U ⊆ U1∪U2.
Then U ⊆ U1 or U ⊆ U2.

Proof. Let a1, . . . , an+1, b1, . . . , bn, c1, . . . , cn ∈ {0, 1}d such that U = Ua1···an+1 ,
U1 = Ub1···bn and U2 = Uc1···cn . Then, for all x ∈ U , the inequality

1− 2−n < xi +
n+1∑
k=1

aki 2−k < 1 (2.8.4)

and one of the inequalities

1− 21−n < xi +
n∑
k=1

bki 2−k < 1, 1− 21−n < xi +
n∑
k=1

cki 2−k < 1 (2.8.5)

is fulfilled for all i = 1, . . . , d. (Which one depends only on x, not on i.) Now
assume the lemma is false. Then there exists an x0 ∈ U which fulfils both
inequalities (2.8.5) since U is connected. Since finite binary expansions represent
a unique rational number, (2.8.5) implies |(b1i · · · bni )2 − (c1i · · · cni )2| ≤ 1 for
all i = 1, . . . , d. Now, for an arbitrary i, we can have the following cases: if
(b1i · · · bni )2 = (c1i · · · cni )2 then by (2.8.4), both inequalities (2.8.5) are trivially
fulfilled by all x ∈ U . If (b1i · · · bni )2 < (c1i · · · cni )2, the difference is 1, so we get

1− 2−n < x0
i +

n∑
k=1

cki 2−k < 1.

This implies |(a1
i · · · a

n+1
i )2 − (c1i · · · cni 0)2| ≤ 1. If an+1

i = 0 then necessarily
cki = aki for all k = 1, . . . , n and again, both inequalities (2.8.5) are fulfilled for
all x ∈ U . The same holds for an+1

i = 1 and (a1
i · · · ani )2 + 1 = (c1i · · · cni )2. Now,

if an+1
i = 1 and cki = aki for all k = 1, . . . , n, then all x ∈ U fulfil the second

inequality of (2.8.5). But some x ∈ U , such as the centre point ẋ, that is the
point such that

ẋi +
n+1∑
k=1

aki 2−k = 1− 2−n−1

for all i = 1, . . . , d, do not fulfil the first inequality of (2.8.5). The case
(b1i · · · bni )2 > (c1i · · · cni )2 works similarly, only that b and c are swapped. In
particular, in the problematic case an+1

i = 1 and bki = aki for all k = 1, . . . , n,
this time the centre point ẋ fulfils the first of the equalities (2.8.5) but not
the second. The above case-by-case analysis depends only on a, b, c but not
on x. On the other hand, the centre point must fulfil one or the other inequality
of (2.8.5), independently of i. This means that for any distinct i, j, the case that
an+1
i = an+1

j = 1, (b1i · · · bni )2 < (c1i · · · cni )2, aki = cki , (b1j · · · bnj )2 > (c1j · · · cnj )2

and akj = bkj , for all k = 1, . . . , n, never occurs. In total this implies U ⊆ U1 or
U ⊆ U2, contrary to our assumption. Hence, the lemma must be true.

Lemma 2.8.6. Let n ∈ N, x ∈ F and r > 0 such that the ball Br(x) is contained
in a parallel displacement of one of the congruent sets in Un+1. Furthermore,
let

V ⊆
n⋃
k=0

Uk
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be a cover of F . Then there is a V ∈ V such that Br(x) ⊆ V .

Proof. By construction, each parallel displacement of a set in Un+1 is contained
in a set V ′ ∈ Un, so all we need to show is that there is a V ∈ V such that
V ′ ⊆ V . The set

U :=
n⋃
k=0

Uk

is partially ordered with respect to inclusion. By construction, the order graph
of U is directed, connected, has a unique maximum, namely U∗, which we call
the root, and 2nd minima, namely the elements in Un, which we call the leaves12.
We shall now colour the vertices of this graph in red or black as follows. We
may assume V to be a minimal cover. For each U ∈ V, we colour the respective
vertex red, and all other vertices on a path from the root to a leaf through U
we colour black. Since V is minimal, no vertex ends up with both red and black
colour. Since V is a cover, all leaves (and hence all other vertices) are coloured.
Since V ′ is a leaf, there is a red vertex on some path from U∗ to V ′. This red
vertex corresponds to the V ∈ V we seek.

Now we can prove

Proposition 2.8.7. Let E be a Banach function space on the measure space F
and let f ∈ E be absolutely continuous. Then

lim
r→0

sup
x∈F
‖fχBr(x)‖ = 0.

Proof. Let ε > 0. For each x ∈ F there is a unique sequence (F xn )n∈N with
F xn ∈ Fn for all n ∈ N which is decreasing and converges to {x}. To this
sequence there corresponds a sequence (Uxn )n∈N with Uxn ∈ Un for all n ∈ N
which by construction also converges to {x}. Since µ({x}) = 0 for all x ∈ F and
since f is absolutely continuous, there is an nx ∈ N for each x ∈ F such that
‖fχUxnx‖ < ε. The family {Uxnx}x∈F is an open cover of F . Since F is compact,
there is a finite subcover {Uknk}

N
k=1. Let

n :=
N

min
k=1

nk

and choose r > 0 sufficiently small such that any ball of radius r is contained in
a parallel displacement of a set from Un+1. Then ‖fχBr(x)‖ < ε for all x ∈ F
by lemma 2.8.6. This implies the claim.

Definition 2.8.8. Let r1 > r2 > 0. We denote by νr1,r2 the minimum number
of balls of radius r2 required to cover a single ball of radius r1 in Rd.

Lemma 2.8.9. Let r > 0, then νr,r/2 depends only on d.

Proof. Clearly, ν1,1/2 depends only on d. Scaling does not alter the covering
geometry, so the lemma follows.

We can now define a family of equivalent norms for absolutely continuous
Banach spaces on F . This localisation scheme is a very simple variation on the
idea of Kato classes [Kat72] (cf. proposition 2.8.7).

12Despite this terminology, U is not a tree because a branch may split and then grow back
together again.
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Definition 2.8.10. Let r > 0 and let E be a Banach space of functions on F
with norm ‖ · ‖. For each x ∈ F , denote the characteristic function of Br(x)
by χxr . Then we define the r-localised norm (or sometimes simply the localised
norm) ‖ · ‖r by

‖f‖r := sup
x∈F
‖fχxr‖.

Theorem 2.8.11. Let E be a Banach function space on F with norm ‖ · ‖.
Then for all r > 0, the localised norm ‖ · ‖r is a norm on E. Moreover, for
r1 > r2 > 0 we have

1
νr1,r2

‖f‖r1 ≤ ‖f‖r2 ≤ ‖f‖r1 .

In particular, ‖ · ‖ and ‖ · ‖r are equivalent for all r > 0 and E is complete with
respect to these norms.

Proof. Properties (F1) through (F3) for a norm a clear. For the triangle in-
equality we have

‖f + g‖r = sup
x∈F
‖fχxr + gχxr‖ ≤ sup

x∈F
(‖fχxr‖+ ‖gχxr‖) ≤ ‖f‖r + ‖g‖r.

Therefore, ‖ · ‖r is a norm for all r > 0. Now we prove equivalence. The
second inequality immediately follows from the monotonicity property (B6).
For the first inequality, let x1, . . . , xνr1,r2 ∈ F be such that {Br2(xi)}

νr1,r2
i=1 is

a cover of Br1(0) and let M1, . . . ,Mνr1,r2
be a partition of Br1(0) such that

Mi ⊆ Br2(xi) for all i = 1, . . . , νr1,r2 . Then we have for all x ∈ F

‖fχxr1‖ =
∥∥∥νr1,r2∑
i=1

fχx+Mi
‖ ≤

νr1,r2∑
i=1

‖fχx+Mi
‖

By the monotonicity property (B6):

≤
νr1,r2∑
i=1

‖fχx+xi
r2 ‖ ≤ νr1,r2 sup

x∈F
‖fχxr2‖.

This shows the first inequality and hence the equivalence of ‖ · ‖r1 and ‖ · ‖r2 .
It also shows the equivalence of these norms with ‖ · ‖ as we may choose r > 0
sufficiently large so that F ⊆ Br(x) for all x ∈ F . Completeness now follows
from equivalence.

A few remarks are in order. First, note that generally the constant ν−1
r1,r2 is by

no means optimal. Secondly, note that this theorem holds for all Banach func-
tion spaces on F . However, it is only of interest for us where proposition 2.8.7
holds. For example, on L∞(F ) the resultant norms are all equal. Finally, the
Sobolev spaces Wm,p(F ) are not Banach function spaces but since the Sobolev
norms are defined in terms of Lebesgue norms we can define localised norms for
Sobolev spaces simply by setting

‖f‖m,p;r :=
∑
|α|≤m

‖∂αf‖p;r.
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2.8.2 Localisation on discrete lattices

Now that we have developed a localisation scheme for functions on F , we shall do
likewise for sequences on Γ∗. In analogy with absolute continuity, we introduce
the following concept.

Definition 2.8.12. Let E be a Banach function space and let f ∈ E be such
that f is the limit (in E) of a sequence of step functions. Then f is called simply
generated. If all f ∈ E are simply generated, then E is called simply generated.

Actually, this is a weaker property than absolute continuity.

Theorem 2.8.13. Every absolutely continuous Banach function space is simply
generated.

Proof. [BS88, Theorem 1.3.11].

However, we shall not need simply generated Banach function spaces in
cases where this property is actually strictly weaker than absolute continuity
(in fact, this is never the case when X = Γ∗, see [BS88, Theorem 1.3.13]).
Rather, the need for a different approach stems from the atomicity of Γ∗. In
particular, proposition 2.8.7 does not hold for sequences on Γ∗. Therefore, we
shall introduce a different localisation scheme, for which the concept of simply
generated functions is better suited than absolute continuity. In particular, we
have the following proposition:

Proposition 2.8.14. Let E be a Banach function space on Γ∗ and let f ∈ E be
simply generated. Then for each increasing sequence (An)n∈N of finite subsets
exhausting Γ∗

lim
n→∞

‖fAn‖ = 0,

where fAn is the function defined by

fAn : Γ∗ → C,

κ 7→

{
0, κ ∈ An,
f(κ), κ /∈ An.

Proof. Let (fm)m∈N be a sequence of step functions in E converging to f . We
may assume these step functions have increasing supports Bm. Since these
supports are finite and (An)n∈N exhausts Γ∗, for eachm ∈ N there is someN ∈ N
such that for each n ≥ N , Bm ⊆ An. Hence, ‖fAn‖ ≤ ‖f − fm‖ by the
monotonicity property. Now,

lim
m→∞

‖f − fm‖ = 0

by construction. This proves the claim.

As in the case of absolutely continuous Banach function spaces on F , we
now define a family of equivalent norms on a simply generated Banach function
space on Γ∗.



2.8. LOCALISATION OF FUNCTION SPACE NORMS 53

Definition 2.8.15. Let A ⊆ Γ∗ be finite and let E be a Banach space of
functions on Γ∗ with norm ‖ · ‖. Then we define the A-localised norm (or
sometimes simply the localised norm) ‖ · ‖A by

‖f‖A := ‖fA‖+
1

µ(A)
‖f − fA‖∞.

Theorem 2.8.16. Let E be a Banach function space over Γ∗ with norm ‖ · ‖.
Then for all finite A ⊆ Γ∗, the A-localised norm ‖·‖A is a norm on E. Moreover,
all these norms are equivalent to ‖ · ‖, and E is complete with respect to these
norms.

Proof. Positivity and regularity of ‖ · ‖A are clear. Absolute linearity follows
since (λf)A = λfA for all λ ∈ C. For the triangle inequality, we have

‖f + g‖A = ‖(f + g)A‖+
1

µ(A)
‖(f + g)− (f + g)A‖∞

= ‖fA + gA‖+
1

µ(A)
‖f − fA + g − gA‖∞

≤ ‖fA‖+ ‖gA‖+
1

µ(A)
‖f − fA‖∞ +

1
µ(A)

‖g − gA‖∞ = ‖f‖A + ‖g‖A

for f, g ∈ E. As for equivalence, we have, on the one hand,

‖f‖ = ‖fA + f − fA‖ ≤ ‖fA‖+ ‖f − fA‖.

Now, the support of f − fA is the finite set A, so the underlying vector space of
functions is finite-dimensional. There, the norms ‖ · ‖ and ‖ · ‖∞ are equivalent.
(In particular, the expression ‖f − fA‖∞ always yields a finite value.) On the
other hand, we have due to equivalence in finite dimensions and due to the
monotonicity property

‖f‖A = ‖fA‖+
1

µ(A)
‖f − fA‖∞ ≤ ‖fA‖+ C‖f − fA‖

≤ ‖fA‖+ C‖f‖+ C‖fA‖ ≤ (2C + 1)‖f‖

for some C > 0 depending only on E and µ(A). Hence, all localised norms are
equivalent to ‖ · ‖. This also implies completeness of the localised norms.

Thus we have developed a localisation scheme for certain function spaces on
the measure space Γ∗ in analogy to the r-localised norms on certain function
spaces on F . However, the A-localised norms have a major drawback in compar-
ison with their r-localised counterparts: A-localised norms are not translation
invariant. Since translation invariance will play some role later on, we now
generalise the A-localised norms to a family of quasi-norms which are transla-
tion invariant. For the sake of simplicity, we shall do so only for the Lorentz
space `∞,1(Γ∗), though the principles developed admit easy generalisation to
many other spaces. Recall that the norm for some f ∈ `∞,1(Γ∗) is given by

‖f‖∞,1 =
∞∑
n=1

f?(n)
n

.

We now introduce the following family of quasi-norms on `∞,1(Γ∗):
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Definition 2.8.17. Let f ∈ `∞,1(Γ∗) and N ∈ N. Then we define the N -
localised quasi-norm

‖f‖(∞,1);N :=
f?(1)
N

+
∞∑
n=1

f?(N + n)
n

.

We then have the following analogon of proposition 2.8.7:

Proposition 2.8.18. Let f ∈ `∞,1(Γ∗), then

lim
N→∞

‖f‖(∞,1);N = 0.

Proof. Let AN ⊆ Γ∗ be the support of the N largest absolute values of f . By
consistent choice of the AN and possibly enlarging them with some elements
where f is zero, we can make (AN )N∈N an increasing sequence of finite sets
exhausting Γ∗. The claim now follows from proposition 2.8.14.

So actually, the N -localised quasi-norms are a simple generalisation of the A-
localised norms with suitable A because ‖f‖∞ = f?(1) and we may assume N =
µ(A). The difference here (which also destroys the triangle inequality) is the
dependence of A on f . Note that, again, convergence in proposition 2.8.18 is
not uniform.

We can now prove

Theorem 2.8.19. For all N ∈ N, the functionals ‖ · ‖(∞,1);N are quasi-norms
equivalent to ‖·‖∞,1. Furthermore, the quasi-norms ‖·‖(∞,1);N fulfil the triangle
inequality for those f, g ∈ `∞,1(Γ∗) whose support of the N largest absolute
values may be assumed to be identical.

Proof. The functionals ‖·‖(∞,1);N obviously fulfil (F1) through (F3). In order to
show that they are quasi-norms, it is sufficient to show equivalence with ‖·‖∞,1.
So let f ∈ `∞,1(Γ∗). Then clearly ‖f‖(∞,1);N ≤ ‖f‖∞,1 for all N ∈ N. As for
the reverse inequality, we have

‖f‖∞,1 =
∞∑
n=1

f?(n)
n
≤ Nf?(1) +

∞∑
n=1

f?(N + n)
N + n

≤ N2‖f‖(∞,1);N .

The triangle inequality for suitable f, g ∈ `∞,1(Γ∗) follows as in the proof of
theorem 2.8.16.

2.8.3 Translation and levelling operators

In indirect relationship with localised norms on rearrangement-invariant Banach
function spaces on Γ∗ used together with a certain convolution operation, we
shall later encounter expressions which arise through “levelling” of function val-
ues. Therefore, we shall very briefly investigate the behaviour of the operators
involved.

Definition 2.8.20. Let T be an endomorphism of the space of functions Γ∗ → C
for which there is a ν ∈ Γ∗ such that the equation

(Tf)(κ) = f(ν + κ)

is fulfilled for all f : Γ∗ → C and all κ ∈ Γ∗. Then T is called a translation
operator.
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Proposition 2.8.21. Let E be a rearrangement-invariant function space on Γ∗

and let T be a translation operator. Then T is a continuous linear operator on E
with norm 1.

Proof. It is clear that T is linear. Let f ∈ E. Recall that f? is the sequence
of values of f in decreasing order by absolute value. Now, T is a translation
operator, so (Tf)? = f?. Since E is rearrangement-invariant, it follows that
Tf ∈ E and ‖Tf‖ = ‖f‖. Therefore, ‖T‖ = 1.

Definition 2.8.22. Let T1, . . . , Tn be translation operators. Then the operator

Λ :=
1
n

n∑
k=1

Tk

is called a levelling operator.

The name“levelling operator”may seem somewhat odd and is chosen for lack
of a better one. The term “averaging operator” is already taken for a slightly
different concept, and “mollifier” is inappropriate for the discrete space Γ∗.

Proposition 2.8.23. Let E be a rearrangement-invariant space over Γ∗ and
let Λ be a levelling operator. Then Λ is a continuous linear operator on E with
norm at most one.

Proof. This follows immediately from proposition 2.8.21 and the triangle in-
equality.

Note that for quasi-norms instead of norms, levelling operators are still con-
tinuous, but the bound may be larger than one.
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Chapter 3

Schrödinger operators

In this chapter we shall introduce Schrödinger operators with periodic potentials
and quasi-periodic boundary conditions. In doing so, we will apply a standard
procedure to hide the quasiness of the periodicity, so we need only consider
functions on the torus F .

In order to apply spectral methods to our Schrödinger operators, we need a
good analytical description of their resolvents. We shall develop such a descrip-
tion for the free Schrödinger operator first and then generalise our results to
the remaining Schrödinger operators. Here, the Sobolev and Lorentz–Zygmund
spaces introduced in the previous chapter will be the right tool. The theory
developed in this chapter will enable us to establish the Schrödinger resolvents
in chapter 4 as meromorphic families of compact operators on L2(F ).

3.1 Schrödinger operators on the torus

By the Schrödinger equation we shall mean its time-independent variant

(−∆ + u)ψ = λψ. (3.1.1)

We had already mentioned the Laplace operator ∆ in section 2.2. The poten-
tial u is some function Rd → C, as is the solution ψ. The number λ ∈ C
is called the eigenvalue with respect to a non-zero solution ψ. In the directly
stated (non-inverse) problem, u is generally assumed to be known, while λ and ψ
are sought. The selection of u and ψ should be restricted to spaces where the
Schrödinger equation (3.1.1) is, in a suitable sense, well-defined. We shall be-
come very specific on this topic in the following two sections.

Let us now define our boundary conditions for the Schrödinger equation.
First, we assume the potential u to be periodic, that is, there is a non-degenerate
geometric lattice Γ ⊆ Rd (see section 2.1) such that

u(x+ γ) = u(x) for all x ∈ Rd, γ ∈ Γ. (3.1.2)

We also assume the solution ψ to be quasi-periodic with respect to the same
lattice Γ. That is, there is some boundary condition k ∈ Cd such that

ψ(x+ γ) = e2πi(k|γ)ψ(x) for all x ∈ Rd, γ ∈ Γ. (3.1.3)

57
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Equations (3.1.1), (3.1.2) and (3.1.3) make up the periodic Schrödinger equation
with quasi-periodic boundary conditions. This equation may be used to approx-
imately describe the situation effective in a crystalline solid. Note, however,
that our Schrödinger equation takes neither magnetic fields (in form of a vector
potential) nor relativistic effects into account.

Technically, the periodicity of u is not part of the boundary conditions be-
cause it affects the Schrödinger operator −∆ + u itself. But we shall conflate
these notions now anyhow. The periodicity of u allows us to consider u to be a
function on the torus F = Rd/Γ instead of on Rd. It would be very convenient
to be able to formulate the entire problem on F instead of on Rd. Unfortunately,
the solution ψ makes trouble because in general, it is only quasi-periodic (k = 0
would be an obvious exception). The standard procedure (see e.g. [KT90]) here
is to “hide” the boundary condition in the Laplace operator. To this end, we
define for all k ∈ Cd:

∆k := ∇2
k := (∇+ 2πik)2. (3.1.4)

We use this notation as a shorthand for the the operator f 7→ (∇+ 2πik)((∇+
2πik)f), where the first (∇+2πk) maps the scalar function f to a vector-valued
quantity, while the second one maps it back to a scalar function. A physicist
might baptise the first (rightmost) operator gradk, and the second operator divk.
We shall abuse notation further and extend the Euclidean dot product (·|·) to
any quantity where it makes sense. For example, we write

(k|∇) =
d∑
i=1

ki∂i.

With this notation, we can also express ∆k more directly as a scalar operator:

Lemma 3.1.5. For all k ∈ Cd we have

∆k = ∆ + 4πi(k|∇)− 4π2k2.

Proof. We have (k|∇) = (∇|k) since k does not depend on x ∈ F .

Proposition 3.1.6. For all k ∈ Cd, the operator ∆k formally maps the space
of Γ-periodic functions on Rd into itself.

Proof. This follows because differential operators are local and ∆k does not
depend on x ∈ Rd.

Proposition 3.1.7. For all k ∈ Ck, ∆k is formally a normal operator.

Proof. We have (k|∇)∗ = (k̄|∇) and (k2)∗ = k̄2. The Laplace operator is
formally self-adjoint. The operators ∆, 4πi(k|∇), −4πi(k̄|∇), 4π2k2 and 4π2k̄2

mutually commute. The statement is now implied by lemma 3.1.5.

Proposition 3.1.6 permits us to formulate the following Schrödinger equation
entirely on F :

(−∆k + u)ψ = λψ. (3.1.8)

We now show that the two approaches are equivalent.
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Lemma 3.1.9. Assume ψ fulfils (3.1.3) for some k ∈ Cd. Then

x 7→ e−2πi(k|x)ψ(x)

is Γ-periodic.

Proof. Let γ ∈ Γ, then

e−2πi(k|x+γ)ψ(x+ γ) = e−2πi(k|x)e−2πi(k|γ)e2πi(k|γ)ψ(x) = e−2πi(k|x)ψ(x).

Theorem 3.1.10. The quantities k, u, ψ and λ fulfil the equations (3.1.1),
(3.1.2) and (3.1.3) if and only if

(−∆k + u(x))e−2πi(k|x)ψ(x) = λe−2πi(k|x)ψ(x).

Proof. A simple calculation and lemma 3.1.5 show

∆e2πi(k|x)ψ(x) = e2πi(k|x)∆kψ(x).

Therefore,

(−∆ + u(x))ψ(x) = (−∆ + u(x))e2πi(k|x)e−2πi(k|x)ψ(x)

= e2πi(k|x)(−∆k + u(x))e−2πi(k|x)ψ(x). (3.1.11)

Since multiplication with e2πi(k|·) is a bijective transformation, the theorem
follows.

Due to this theorem, we shall from now on only consider the Schrödinger
equation (3.1.8).

3.2 The resolvent of the free Schrödinger oper-
ator

In this section we investigate the resolvent of the free Schrödinger operator −∆0

(that is, simply −∆). We shall only be interested in the case λ ∈ (−∞,−1] as
this is not only sufficient for treating the general case in the next section, but
also ensures that the resolvent always exists.

We begin with some simple investigations as to what happens if we scale the
domains of functions on F by a constant factor.

Definition 3.2.1. Let f be a function defined on X = F or X = Γ∗ and let
c ∈ C \ {0}. Then we define the scaling operator σc by

(σcf)(x) := f(cx).

The scaling operator maps functions on F to functions on c−1F and functions
on Γ∗ to functions on c−1Γ∗.
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Lemma 3.2.2. Let 1 ≤ q < ∞, m ∈ Z>0 and c ∈ C \ {0}. Then σc is a con-
tinuous operator Lq(F ) → Lq(c−1F ) with norm |c|−d/q, L∞(F ) → L∞(c−1F )
with norm 1, Wm,q(F ) → Wm,q(c−1F ), with norm |c|m−d/q if |c| ≥ 1, and
`q(Γ∗) → `q(c−1Γ∗), or, in fact, any rearrangement-invariant Banach function
space E on Γ∗ into the corresponding rearrangement-invariant Banach function
space E′ on c−1Γ∗, with norm 1.

Proof. Let f ∈ Lq(F ). The substitution y = cx yields

( ∫
c−1F

|(σcf)(x)|qdx
)1/q

=
(∫
F

|f(y)|q|c|−ddy
)1/q

= |c|−d/q‖f‖q.

If q = ∞, it is obvious that ‖σc‖ = 1. By a similar calculation, we get for
f ∈Wm,q(F ):

‖σcf‖Wm,q =
∑
|α|≤m

‖∂ασcf‖q =
∑
|α|≤m

|c||α|‖σc∂αf‖q

=
∑
|α|≤m

|c||α|−d/q‖∂αf‖q ≤ |c|m−d/q‖f‖Wm,q

if |c| ≥ 1. For arbitrary c we can use the upper bound max{|c|−d/q, |c|m−d/q}
to prove continuity. The reverse inequality follows by considering a sequence of
functions (fn)n∈N inWm,q(F ) with ‖∂αfn‖ → 0 for |α| < m and ‖∂αfn‖ = const
for |α| = m. Finally, since, for f ∈ E, f? is just the sequence of absolute values
of f in decreasing order, f? = (σcf)?. The claim now follows since the norms
of f and σcf only depend on their decreasing rearrangement.

Next, let’s see what happens when we apply the free resolvent to various
spaces.

Theorem 3.2.3. For all 1 < q < ∞ and all λ ∈ (−∞,−1], the resolvent
(λ + ∆0)−1 is defined and maps Lq(F ) boundedly into W 2,q(F ). The bound is
independent of λ.

Proof. Since λ is negative, we can choose
√
λ := i

√
|λ|. By theorems 2.2.13

and 2.2.14, (1−∆0)−1 maps Lq(F ) into W 2,q(F ). Now,

1
λ− 4π2κ2

=
λ−1

1 + 4π2(κ/
√
λ)2

,

so the resolvent (λ+∆0)−1 also maps Lq(F ) into W 2,q(F ) by theorem 2.2.13 and
lemma 3.2.2. It remains to show the independence from λ. Denote the integral
kernel of (λ + ∆0)−1 by G(

√
λ, ·). As the proof of theorem 2.2.13 shows, there

corresponds a kernel GRd(
√
λ, ·) to G(

√
λ, ·). It follows from [GJ87, 7.2 and 7.3]

that

GRd(
√
λ, x) = |

√
λ|d−2σ√λG

Rd(1, x).
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Let f ∈ Lq(F ). We now estimate the norm of (λ+ ∆0)−1f :

‖(λ+ ∆0)−1f‖W 2,q =
∥∥∥∥∫
F

G(
√
λ, x− y)f(y)dy

∥∥∥∥
W 2,q

=
∥∥∥∥∫
Rd

GRd(
√
λ, x− y)f(y)dy

∥∥∥∥
W 2,q

= |
√
λ|d−2

∥∥∥∥∫
Rd

(σ√λG
Rd(1, x− y))f(y)dy

∥∥∥∥
W 2,q

= |
√
λ|d−2

∥∥∥∥σ√λ ∫
Rd

GRd(1, x−
√
λy)f(y)dy

∥∥∥∥
W 2,q

By lemma 3.2.2:

= |
√
λ|d−2|

√
λ|2−d/q

∥∥∥∥∫
Rd

GRd(1, x−
√
λy)f(y)dy

∥∥∥∥
W 2,q

Substituting z =
√
λy:

= |
√
λ|d−d/q

∥∥∥∥∫
Rd

GRd(1, x− z)(σ1/
√
λf)(z)|

√
λ|−ddz

∥∥∥∥
W 2,q

≤ |
√
λ|−d/q‖(id−∆)−1‖‖σ1/

√
λf‖q = ‖(id−∆)−1‖‖f‖q.

Hence, ‖(λ+ ∆0)−1‖ does not depend on λ.

The proof of this theorem immediately yields

Corollary 3.2.4. For all 1 < q < ∞, all 1 < r < q and all λ ∈ (−∞,−1], the
resolvent (λ+ ∆0)−1 is defined and maps Lq(F ) boundedly into W 2,r(F ). The
bound becomes arbitrarily small as λ→ −∞.

This theorem does not extend to the case q = 1 due to the equivalence failure
between Bessel potential and Sobolev spaces. It will turn out that this makes
it unusable in the case d = 2. Instead, we need to apply the free resolvent to
different spaces:

Theorem 3.2.5. If d = 2, then for all λ ∈ (−∞,−1], the resolvent (λ+∆0)−1 is
defined and maps F`∞,1(Γ∗) boundedly into F`1(Γ∗). The bound is independent
of λ.

Proof. Since we are using Fourier spaces, all we need to show is that the multi-
plication with

g(κ) :=
1

λ− 4π2κ2
(3.2.6)

maps `∞,1(Γ∗) boundedly into `1(Γ∗). For this purpose, we need to estimate
the decreasing rearrangement g?. Once again, recall our convention that g?(n)
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is simply the n-th largest element (in terms of absolute value) of the image of g.
In other words,

g?(n) =
1

|λ|+ 4π2κ2
n

, (3.2.7)

where (κn)n∈N is an arrangement such that ‖κn‖ ≥ ‖κn′‖ whenever n ≥ n′.
This means that the κ1, . . . , κn lie within concentric balls around the origin
whose radius does not decrease with increasing n. Since d = 2, the number of
lattice points within each such ball is asymptotically proportional to the square
of its radius. This is compensated for by the quadratic nature of κ2. Hence,
there are constants C1, C2 > 0 depending only on Γ∗ such that

1
|λ|+ C1(n− 1)

≤ g?(n) ≤ 1
|λ|+ C2(n− 1)

. (3.2.8)

We may assume that C2 ≤ 1 (in particular C2 ≤ |λ|). Let f ∈ `∞,1(Γ∗). The 1-
norm of gf can now be estimated easily using the Hardy–Littlewood inequality
(theorem 2.3.6):

∑
κ∈Γ∗

|g(κ)f(κ)| ≤
∞∑
n=1

g?(n)f?(n) ≤
∞∑
n=1

f?(n)
|λ|+ C2(n− 1)

≤ C−1
2

∞∑
n=1

f?(n)
n

= C−1
2 ‖f‖∞,1.

This proves the theorem.

The content of the preceding theorem can be weakened to more familiar
functions paces as follows.

Corollary 3.2.9. If d = 2, then for all λ ∈ (−∞,−1], the resolvent (λ+ ∆0)−1

is defined and maps L1,1;1(F ) boundedly into W 2,1(F ) ∩ F`1(Γ∗). The bound
does not depend on λ.

Proof. By construction, the Hardy space (see section 2.7.1) is the optimal Ba-
nach subspace of L1(F ) so that the image of the free resolvent lies in W 2,1(F ).
Now, we have L1,1;1(F ) ⊆ H1(F ) boundedly by theorem 2.7.2, so the resol-
vent is bounded from L1,1;1(F ) into W 2,1(F ). To show the independence of the
bound from λ we prove that the same scaling behaviour as in theorem 3.2.5
is effective: we already know that F and F ′ are of strong type (1,∞). This
shows F`1(Γ∗) ⊆ L∞(F ) and, by the left endpoint case of theorem 2.4.12,
L1,1;1(F ) ⊆ F`∞,1(Γ∗) boundedly. This last embedding also proves that the free
resolvent maps L1,1;1(F ) boundedly into W 2,1(F ) ∩ F`1(Γ∗) by theorem 3.2.5.
Finally, W 2,1(F ) ⊆ C0(F ) ⊆ L∞(F ) by Sobolev’s theorem 2.2.2. All these em-
beddings are sharp with respect to their scaling behaviour (lemma 3.2.2).

Since we do not have a Rellich–Kondrashov theorem for our Fourier spaces,
we need to prove the following compactness results “by hand”.

Theorem 3.2.10. If d = 2, then for all 1 ≤ p, q ≤ ∞ with 1/q − 1/p < 1
and all λ ∈ (−∞,−1], the resolvent (λ+ ∆0)−1 is defined and maps F`p,1(Γ∗)
compactly into F`q,1(Γ∗). The bound vanishes as λ→ −∞.
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Proof. In the given cases, the resolvent is continuous due to theorem 3.2.5, with
vanishing bounds for λ → −∞ due to scale reasons. It remains to show that
the resolvent is compact in all cases.

Let (Pm)m∈N be a sequence of finite-rank projections of functions defined
on Γ∗ such that for each m ∈ N, Pm projects onto the space generated by the
Fourier modes belonging to the m basis vectors κ with lowest norm. It then
follows from (3.2.8) that

1
|λ|+ C1(n+m− 1)

≤ ((1− Pm)g)?(n) ≤ 1
|λ|+ C2(n+m− 1)

.

with the same constants C1, C2 for all m ∈ N. Now let f ∈ `p,1(Γ∗), then
once again by the Hardy–Littlewood inequality (corollary 2.3.8) and, when n 7→
n1/q−1 is decreasing, by Hardy’s lemma (proposition 2.3.5):

‖gf − Pmgf‖q,1 ≤
∞∑
n=1

((1− Pm)g)?(n)f?(n)n1/q−1

≤ sup
n∈N

n1/q−1/p

|λ|+ C2(n+m− 1)
‖f‖p,1. (3.2.11)

The supremum vanishes for m → ∞ whenever 1/q − 1/p < 1. Hence the
free Schrödinger resolvent is, in this case, the limit of a sequence of finite-rank
operators and therefore compact by proposition 2.2.4.

For technical reasons, we shall need the following “halfway” result when
adding boundary conditions in the d = 2 case later on.

Proposition 3.2.12. If d = 2, then for all k ∈ C2 and all λ ∈ (−∞,−1] the
operator

(k|∇)(λ+ ∆0)−1 (3.2.13)

is defined and maps F`∞,1(Γ∗) boundedly into F`2,1(Γ∗). The bound does not
depend on λ. Moreover, for all 1 ≤ p, q ≤ ∞ with 1/q − 1/p < 1/2, the
operator (3.2.13) is defined and maps F`p,1(Γ∗) compactly into F`q,1(Γ∗). In
this case, the bound vanishes as λ→ −∞.

Proof. The proof works along similar lines as the proof of theorem 3.2.5. This
time, we first need to show that the multiplication with

g(κ) :=
2πi(k|κ)
λ− 4π2κ2

maps `∞,1(Γ∗) boundedly into `2,1(Γ∗). In analogy to (3.2.7), we have

g?(n) =
2π|k||κn|
|λ|+ 4π2κ2

n

,

where (κn)n∈N is an arrangement such that |κn| ≥ |κn′ | whenever n ≥ n′. With
similar reasoning with which we arrived at (3.2.8), we have

C1

√
n− 1

|λ|+ C2(n− 1)
≤ g?(n) ≤ C3

√
n− 1

|λ|+ C4(n− 1)
, (3.2.14)
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where C1, C2, C3, C4 > 0, C4 ≤ 1. Let f ∈ `∞,1(Γ∗). The `2,1-norm of gf can
again be estimated with the Hardy–Littlewood inequality, this time in combina-
tion with Hardy’s lemma (proposition 2.3.5 in combination with corollary 2.3.8):

∞∑
n=1

(gf)?(n)√
n

≤
∞∑
n=1

1√
n

f?(n)C3

√
n− 1

|λ|+ C4(n− 1)
≤ C3

C4

∞∑
n=1

f?(n)
n

=
C3

C4
‖f‖∞,1.

This shows the first part of the proposition. It is also clear that for the second
part, this operator is continuous as well, with vanishing bound for λ→ −∞ due
to scale reasons. It remains to prove the compactness claim. Thereto we take
the sequence of finite-rank projectors (Pm)m∈N from the proof of theorem 3.2.10
to gain from (3.2.14) the estimate

C1

√
n+m− 1

|λ|+ C2(n+m− 1)
≤ ((1− Pm)g)?(n) ≤ C3

√
n+m− 1

|λ|+ C4(n+m− 1)
.

For f ∈ `p,1(Γ∗) we now have the following estimate similar to (3.2.11):

‖gf − Pmgf‖q,1 ≤
∞∑
n=1

((1− Pm)g)?(n)f?(n)n1/q−1

≤ sup
n∈N

C3

√
n+m− 1

|λ|+ C4(n+m− 1)
n1/q−1/p‖f‖p,1.

This time, the supremum vanishes for m → ∞ whenever 1/q − 1/p < 1/2,
proving the claim.

Note that the combination of the first-order differential operator (k|∇) with
the second-order resolvent (λ+ ∆0)−1 is crucial here. For example, multiplica-
tion of a generic `1-function with (k|κ) does not necessarily yield an `2,1-function.

We have thus established the free resolvent of the Schrödinger operator as
a continuous or even compact operator on various spaces, for certain λ, but
without boundary conditions. Although we won’t immediately need boundary
conditions in the next section, we remark here that it is possible to include
boundary conditions at this stage. We have

Lemma 3.2.15. Let V ⊆ Cd be bounded. Then

inf
k∈V
κ∈Γ∗

<(κ+ k)2 > −∞.

Proof. Set
S := sup

k∈V
|k|.

Since V is bounded, S <∞. Since Γ∗ ⊆ Rd, we now have

<(κ+ k)2 =
d∑
i=1

(κ2
i + 2κi<ki + (<ki)2 − (=ki)2)

≥
d∑
i=1

(|κi|(|κi| − 2S)− S2) ≥
d∑
i=1

(−4S2 − S2) = −5dS2.
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Therefore, the previous results remain true with boundary conditions from
a bounded set V ⊆ Cd with bound S if one takes λ ∈ (−∞, B] instead of λ ∈
(−∞,−1], where, say, B = −5dS2 − 1 (thus obviously B depends on V ), and,
where applicable, replaces the independence of the resolvent norm of λ with
uniform boundability with respect to k ∈ V .

3.3 Resolvents of general Schrödinger operators

Now that we have established the behaviour of the free resolvent in the previous
section, we shall investigate the resolvent step by step for arbitrary potentials u,
arbitrary boundary conditions k and, eventually, arbitrary λ.

First, we need a simple restatement of the triangle inequality.

Lemma 3.3.1. Let E be any normed space and let δ > ε > 0. Let x, y, z ∈ E
such that ‖z − x‖ ≥ δ. Then ‖y − x‖ ≥ ε or ‖z − y‖ ≥ δ − ε.

Proof. Assume ‖y − x‖ < ε. By the triangle inequality

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖,

so
‖z − y‖ ≥ ‖z − x‖ − ‖y − x‖ ≥ δ − ε.

Next, we introduce some important open subsets of our function spaces.
Recall the definitions of the r-localised norms and the N -localised quasi-norms
from section 2.8.

Definition 3.3.2. Let E be an absolutely continuous quasi-Banach function
space and C, r > 0. Then we denote the open ball around the origin of radius C
with respect to the r-localised norm by BrC . Likewise, if E = `∞,1(Γ∗) and N ∈
N, we denote the open ball around the origin of radius C with respect to the
N -localised quasi-norm by BNC . These definitions extend to Fourier spaces in
the obvious way.

Proposition 3.3.3. The sets BrC and BNC are invariant under translation op-
erators as introduced in definition 2.8.20.

Proof. The invariance of BrC follows immediately from the definition of the r-
localised norm. The invariance of BNC follows because the N -localised quasi-
norm depends only on the decreasing rearrangement.

Now, we shall investigate the operator u(λ+ ∆0)−1.

Lemma 3.3.4. Let d > 2. Then for all 1 < q < d/2 and all u0 ∈ Ld/2(F ) there
are C, r > 0 with u0 ∈ BrC and a λ0 ∈ (−∞,−1] such that the operator u(λ +
∆0)−1 is bounded on Lq(F ) for all u ∈ BrC and all λ ≤ λ0 with a bound smaller
than one with respect to the r-localised norm on Lq(F ).

Proof. By theorem 3.2.3 and Sobolev’s theorem 2.2.3, (λ+ ∆0)−1 maps Lq(F )
boundedly into L(1/q−2/d)−1

(F ), so by Hölder’s inequality, theorem 2.1.1, u(λ+
∆0)−1 maps Lq(F ) boundedly into itself for all u ∈ Ld/2(F ) and all λ ∈
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(−∞,−1]. The interesting part is in which cases the norm of this operator
is smaller than one.

Let G(
√
λ, ·) be the integral kernel of (λ + ∆0)−1 and GRd(

√
λ, ·) the cor-

responding kernel for Rd. Recall our notation conventions for characteristic
functions of balls from definition 2.8.10 and set Gr(

√
λ, x) := GRd(

√
λ, x)χ0

r(x),
and Hr(

√
λ, x) := GRd(

√
λ, x)(1 − χ0

r(x)), for all r > 0. According to propo-
sition 2.8.7, we can choose r > 0 sufficiently small, such that we have for the
r-localised norm

‖u0‖d/2;r <
1

νr,r/2‖(λ−∆0)−1‖
=: C. (3.3.5)

Recall that νr,r/2 is the minimum number of balls of radius r/2 required to
cover a ball of radius r. By lemma 2.8.9, this number does not depend on r.
Furthermore, by theorem 3.2.3, r and C do not depend on λ. Clearly, (3.3.5) is
fulfilled for all u ∈ BrC . Since the kernel GRd(

√
λ, ·) decays exponentially with

decay constant |
√
λ| near infinity [GJ87, 7.2], the norms of the operators

f 7→ u(Hr/2 ∗ f)

can be diminished arbitrarily by making |λ| very large. To estimate the norm
of the operators

f 7→ u(Gr/2 ∗ f),

we use lemma 3.3.1 to gain the inequality

|u(y)
∫
Rd

GRd(
√
λ, y − z)χ0

r/2(y − z)f(z)dzχxr/2(y)|

≤ |u(y)χxr/2(y)
∫
Rd

GRd(
√
λ, y − z)χ0

r/2(y − z)χxr (z)f(z)dz|

for all x, y. Since (λ − 4π2κ2)−1 is strictly negative, the norm of the operator
induced by the Gr/2 kernel is smaller than ‖(λ − ∆0)−1‖. Therefore, we have
shown that u(λ−∆0)−1 (with large |λ|) has, by (3.3.5), operator norm smaller
than ν−1

r,r/2 when considered as an operator from Lq(F ) with r-localised norm
to Lq(F ) with (r/2)-localised norm. A final appeal to theorem 2.8.11 then
shows that the operator norm is smaller than one when using the r-localised
norm on Lq(F ) exclusively.

As in the previous section, this lemma does not extend to the case d = 2.
Instead, we prove the following

Lemma 3.3.6. Let d = 2. Then for all u0 ∈ F`∞,1(Γ∗) there is an N ∈
N and a C > 0 with u0 ∈ BNC as well as a λ0 ∈ (−∞,−1] such that the
operator u(λ + ∆0)−1 is bounded on F`∞,1(Γ∗) for all u ∈ BNC and all λ ≤ λ0

with bound smaller than one.

Proof. Proposition 2.4.15 and theorem 3.2.5 imply that

‖u(λ+ ∆0)−1f‖F∞,1 ≤ ‖u‖F∞,1‖(λ+ ∆0)−1‖‖f‖F∞,1
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for all u, f ∈ F`∞,1(Γ∗) and all λ ∈ (−∞,−1]. So once more, we “only” must
make the operator norm smaller than one.

By proposition 2.8.18, there is an N ∈ N such that

‖û0‖(∞,1);N <
µ(F )

2‖(λ+ ∆0)−1‖
=: C. (3.3.7)

By theorem 3.2.5, N and C do not depend on λ. Clearly, (3.3.7) holds for
all u ∈ BNC . Now, for each such u there exists an Au ⊆ Γ∗ with µ(Au) = N such
that the N -localised quasi-norm of u equals the Au-localised norm. Since BNC
is bounded, it follows that

c := sup
u∈BNC

‖û− ûAu‖∞ <∞.

Let Ĝλ(κ) := (λ− 4π2κ2)−1. We decompose each u ∈ BNC by

û1 := ûAu , û2 := û− ûAu . (3.3.8)

The monotonicity property and (3.3.7) imply that

1
µ(F )

‖û1 ∗ (Ĝλf̂)‖∞,1 <
1
2
‖f̂‖∞,1

for all nonzero f̂ ∈ `∞,1(Γ∗). We now make the analogous estimate for û2. We
have the estimate

|(û2 ∗ (Ĝλf̂))(κ)| =
∣∣∣∣∑
ν∈Γ∗

û2(κ− ν)Ĝλ(ν)f̂(ν)
∣∣∣∣ ≤ ∑

κ−ν∈Au

c|Ĝλ(ν)f̂(ν)|. (3.3.9)

By proposition 2.3.4, this yields

‖û2 ∗ (Ĝλf̂)‖∞,1 ≤ c
∞∑
n=1

1
n

(
κ 7→

∑
κ−ν∈Au

∣∣∣ f̂(ν)
λ− 4π2ν2

∣∣∣)?(n)

≤ c

|λ|

∞∑
n=1

1
n

(
κ 7→

∑
κ−ν∈Au

|f̂(ν)|
)?

(n)

Now, since µ(Au) = N for all u ∈ BNC we have for a suitable levelling operator Λ
(depending on Au):

≤ c

|λ|

∞∑
n=1

1
n

(NΛ|f̂ |)?(n) =
cN

|λ|
‖Λ|f̂ |‖∞,1

By proposition 2.8.23 and the equiabsoluteness property:

≤ cN

|λ|
‖f̂‖∞,1. (3.3.10)

Hence, ‖û2 ∗ (Ĝλf̂)‖∞,1 can be diminished arbitrarily by making |λ| very large.
The lemma now follows due to a suitable extension of the convolution theo-
rem 2.1.10.
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Note that in the proof of this lemma, we did not use localised norm as ex-
plicitly as in lemma 3.3.4. Rather, once (3.3.7) was established, we could with-
draw from the N -localised norm to the usual norm on `∞,1(Γ∗) via Au-localised
norms and then exploit the monotonicity property. Still, the N -localised norm
will continue to accompany us in the guise of the sets BNC .

A weakened version of this lemma using more familiar spaces would be the
following

Lemma 3.3.11. Let d = 2. Then for all u0 ∈ L1,1;1(F ) there are C, r > 0
with u0 ∈ BrC and a λ0 ∈ (−∞,−1] such that the operator u(λ + ∆0)−1 is
bounded on L1,1;1(F ) for all u ∈ BrC and all λ ≤ λ0 with a bound smaller than
one with respect to the r-localised norm on L1,1;1(F ).

Proof. By Sobolev’s theorem 2.2.2, we have W 2,1(F ) ⊆ C0(F ) ⊆ L∞(F ).
Therefore, it follows from corollary 3.2.9 and Hölder’s inequality (theorem 2.4.6)
that u(λ + ∆0)−1 is a bounded operator on L1,1;1(F ) for all u ∈ L1,1;1(F ) and
all λ ∈ (−∞,−1]. The equivalent renorming now proceeds as in the proof of
lemma 3.3.4.

Due to lemma 3.2.15 and the remarks thereafter, it is possible to prove the
previous lemmata with boundary conditions from a bounded set. Yet, we define
the resolvent still without boundary condition for all potentials and negative
λ with sufficiently large absolute value (depending on the potential), and add
boundary conditions later.

Proposition 3.3.12. Let d > 2. Then for all 1 < q < d/2 and all u0 ∈
Ld/2(F ) there are C, r > 0 with u0 ∈ BrC and a λ0 ∈ (−∞,−1] such that the
resolvent (λ+∆0−u)−1 is defined and maps Lq(F ) boundedly into W 2,q(F ) for
all u ∈ BrC and all λ ≤ λ0.

Proof. By lemma 3.3.4, there are C, r > 0 with u0 ∈ BrC and a λ0 ∈ (−∞,−1]
such that u(λ + ∆0)−1 maps Lq(F ) into itself for all u ∈ BrC and all λ ≤ λ0,
and the operator norm can be made smaller than one by equivalent renorming.
Hence, the operator 1 − u(λ + ∆0)−1 is boundedly invertible by the Neumann
theorem. Furthermore, by theorem 3.2.3, the operator (λ+ ∆0)−1 maps Lq(F )
boundedly into W 2,q(F ). Now,

(λ+ ∆0)−1(1− u(λ+ ∆0)−1)−1

= ((1− u(λ+ ∆0)−1)(λ+ ∆0))−1 = (λ+ ∆0 − u)−1, (3.3.13)

concluding the proof.

Corollary 3.3.14. Let d > 2. Then for all 1 < q < d/2, all 1 < s < q
and all u0 ∈ Ld/2(F ) the resolvent (λ + ∆0 − u)−1 is defined and maps Lq(F )
boundedly into W 2,s(F ) for all u ∈ BrC and all λ ≤ λ0, with the same C, r, λ0

as in proposition 3.3.12. The operator norm vanishes as λ→ −∞.

Proof. This follows from corollary 3.2.4 and the construction (3.3.13).

Proposition 3.3.15. Let d = 2. Then for all u0 ∈ F`∞,1(Γ∗) the resolvent (λ+
∆0−u)−1 is defined and maps F`∞,1(Γ∗) boundedly into F`1(Γ∗) for all u ∈ BNC
and all λ ≤ λ0, with the same N,C, λ0 as in lemma 3.3.6.
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Proof. This follows from lemma 3.3.6 and theorem 3.2.5 in the same manner as
in the proof of proposition 3.3.12.

Again, we have in analogy to corollary 3.2.9:

Corollary 3.3.16. Let d = 2. Then for all u0 ∈ L1,1;1(F ) there are C, r > 0
with u0 ∈ BrC λ0 ∈ (−∞,−1] such that the resolvent (λ+∆0−u)−1 is defined and
maps L1,1;1(F ) boundedly into W 2,1(F )∩F`1(Γ∗) for all u ∈ BrC and all λ ≤ λ0.

Proof. This follows from lemma 3.3.11 and corollary 3.2.9 by constructing the
resolvent as in (3.3.13) using the Neumann theorem.

Let us now generalise theorem 3.2.10:

Proposition 3.3.17. If d = 2, then for all 1 ≤ p, q ≤ ∞ with 1/q − 1/p < 1
and all u0 ∈ F`∞,1(Γ∗) the resolvent (λ+ ∆0 − u)−1 is defined for all u ∈ BNC
and all λ ≤ λ0, with the same N,C, λ0 as in lemma 3.3.6 and maps F`p,1(Γ∗)
compactly into F`q,1(Γ∗). The bound vanishes as λ→ −∞.

Proof. Since equation (3.3.13) is due to a Neumann representation, we conclude
that

(λ+ ∆0 − u)−1 = (λ+ ∆0)−1(1− u(λ+ ∆0)−1)−1

= (1− (λ+ ∆0)−1u)−1(λ+ ∆0)−1. (3.3.18)

We can now use lemma 3.3.6 again to construct the sought operator using the-
orem 3.2.10 for the (λ + ∆0)−1-factor. The bound then vanishes as λ → −∞.
Compactness follows due to proposition 2.2.4.

We shall also need the following generalisation of proposition 3.2.12:

Proposition 3.3.19. Let d = 2. Then for all u0 ∈ F`∞,1(Γ∗) the operator

(k|∇)(λ+ ∆0 − u)−1 (3.3.20)

is defined and maps F`∞,1(Γ∗) boundedly into F`2,1(Γ∗) for all k ∈ C2, all u ∈
BNC and all λ ≤ λ0, with the same N,C, λ0 as in lemma 3.3.6. Moreover,
for all 1 ≤ p, q ≤ ∞ with 1/q − 1/p < 1/2, the operator (3.3.20) is defined
and maps F`p,1(Γ∗) compactly into F`q,1(Γ∗). In this case, the bound vanishes
as λ→ −∞.

Proof. By proposition 3.3.15, there are appropriate N , C and λ0 such that the
operator (λ+∆0−u)−1 is defined and maps F`∞,1(Γ∗) boundedly into F`1(Γ∗)
for all u ∈ BNC and all λ ≤ λ0. This operator can be built through the con-
struction (3.3.13). Multiplying this equation with (k|∇) from the left, the claim
now follows from proposition 3.2.12, with the compactness of the entire operator
following from proposition 2.2.4.

Now we finally add boundary conditions.

Proposition 3.3.21. Let d > 2. Then for all 1 < q < d/2 and all u0 ∈ Ld/2(F )
there are C, r > 0 with u0 ∈ BrC such that for all bounded V ⊆ Cd there
is a λ0 ∈ (−∞,−1] such that the resolvent (λ + ∆k − u)−1 is defined and
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maps Lq(F ) boundedly into W 2,q, and also L2(F ) compactly into itself, for
all k ∈ V , u ∈ BrC and all λ ≤ λ0. Moreover, the map

BrC × V → K(L2(F ), L2(F )),

(u, k) 7→ (λ+ ∆k − u)−1

is continuous with respect to the weak topology on BrC and the strong topologies
on V and K(L2(F ), L2(F )), for all λ ≤ λ0. Continuity is uniform with respect
to k.

Proof. Let (q−1 + d−1)−1 < s < q such that s > 1. The operator ∆k − ∆0 =
4πi(k|∇) − 4π2k2 maps W 2,s(F ) boundedly into W 1,s because F is compact.
Since V is bounded, a uniform upper bound for the norm of the ∆k − ∆0

can be found. Now, due to the Rellich–Kondrashov theorem 2.2.10, W 1,s(F )
embeds continuously into Lq(F ). Due to corollary 3.3.14, there are C, r > 0
with u0 ∈ BrC and a λ0 ∈ (−∞,−1] of sufficiently large absolute value such that
(λ+ ∆0 − u)−1 maps Lq(F ) boundedly into W 2,s(F ) with such a bound that

‖(∆k −∆0)(λ+ ∆0 − u)−1‖ < 1

for all u ∈ BrC and all λ ≤ λ0. Therefore, the operator

1 + (∆k −∆0)(λ+ ∆0 − u)−1

is boundedly invertible as an operator on Lq(F ) by the Neumann theorem.
Hence, we have

(λ+ ∆0 − u)−1(1 + (∆k −∆0)(λ+ ∆0 − u)−1)−1

= ((1 + (∆k −∆0)(λ+ ∆0 − u)−1)(λ+ ∆0 − u))−1

= (λ+ ∆0 − u+ ∆k −∆0)−1 = (λ+ ∆k − u)−1, (3.3.22)

by proposition 3.3.12 a bounded operator from Lq(F ) to W 2,q(F ) for all u ∈
BrC , all k ∈ V , and all sufficiently small λ. Choosing q < 2, we can have
this operator act on L2(F ) by proposition 2.1.3. On the other hand, choos-
ing q > (1/2 + 2/d)−1 makes L2(F ) a valid target space for this operator by
the Rellich–Kondrashov theorem 2.2.10. Since this embedding is compact, the
entire operator is compact by proposition 2.2.4.

The Hilbert space L2(F ), and also the other spaces in question have a
Schauder basis, so this compact operator can be approximated by a sequence
of finite-rank operators. We shall develop one such approximation now. Each
Schauder basis induces a sequence (Pl)l∈N of finite-rank projectors with increas-
ing images exhausting a dense, countable subset (cf. the proof of theorem 3.2.10).
We shall let these operators act on different spaces without changing notation,
as a common subset which is dense in all these spaces can be found. Now, the
sequence (Plu)l∈N on Ld/2(F ) converges weakly to u. We can use this fact to
build an approximation using the Neumann representation of the resolvent. By
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construction,

(λ+ ∆k − u)−1 = (λ+ ∆0 − u)−1(1 + (∆k −∆0)(λ+ ∆0 − u)−1)−1

= (λ+ ∆0)−1(1− u(λ+ ∆0)−1)−1

· (1 + (∆k −∆0)(λ+ ∆0)−1(1− u(λ+ ∆0)−1)−1)−1

= (λ+ ∆0)−1
∞∑
n=0

(u(λ+ ∆0)−1)n

·
∞∑
m=0

(−1)m
(

(∆k −∆0)(λ+ ∆0)−1
∞∑
n=0

(u(λ+ ∆0)−1)n
)m

.

Note that due to lemma 3.2.15, it is possible to simplify this representation
(possibly with a different λ) to

(λ+ ∆k − u)−1 = (λ+ ∆k)−1
∞∑
n=0

(u(λ+ ∆k)−1)n.

We shall only use this simpler representation for an exemplary derivation of the
sought approximation. Since (λ+ ∆k)−1 is compact as an operator from Lq(F )
(Ld/2(F ) in particular) to L2(F ), ((λ+∆k)−1Plu)l∈N converges strongly to (λ+
∆k)−1u. Since (λ + ∆k)−1 is also continuous from Lq(F ) to W 2,q(F ), ((λ +
∆k)−1PluPl(λ + ∆k)−1)l∈N converges uniformly to (λ + ∆k)−1u(λ + ∆k)−1 as
a compact operator from Lq(F ) (L2(F ) in particular) to L2(F ). By induction
and Neumann’s theorem, the same is true for

((λ+ ∆k)−1(PluPl(λ+ ∆k)−1)n)l∈N

uniformly for all n ∈ N, provided we take u ∈ BrC . This proves the approxima-
tion claim and hence the weak convergence claim as well. Since V is bounded,
we also have uniformity with respect to k.

Proposition 3.3.23. Let d = 2. Then for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N
and a C > 0 with u0 ∈ BNC such that for all bounded V ⊆ Cd there is a λ0 ∈
(−∞,−1] such that the resolvent (λ+∆k−u)−1 is defined and maps F`∞,1(Γ∗)
boundedly into F`1(Γ∗), and also L2(F ) compactly into itself, for all k ∈ V ,
u ∈ BNC and all λ ≤ λ0. Moreover, the map

BNC × V → K(L2(F ), L2(F ))

(u, k) 7→ (λ+ ∆k − u)−1

is continuous with respect to the weak topology on BNC and the strong topologies
on V and K(L2(F ), L2(F )), for all λ ≤ λ0. Continuity is uniform with respect
to k.

Proof. By propositions 3.3.17 and 3.3.19, there is an N ∈ N and a C > 0
with u0 ∈ BNC such that the operator (∆k−∆0)(λ+∆0−u)−1 maps F`∞,1(Γ∗)
boundedly into itself for all u ∈ BNC , with vanishing bound as λ→ −∞. Hence,
there is a λ0 ∈ (−∞,−1] such that

‖(∆k −∆0)(λ+ ∆0 − u)−1‖ < 1
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for all u ∈ BNC and all λ ≤ λ0. Therefore, the resolvent (λ + ∆k − u)−1 exists
and maps F`∞,1(Γ∗) boundedly into F`1(Γ∗) by the construction (3.3.22) and
proposition 3.3.15 for all u ∈ BNC . Given that F`2(Γ∗) = L2(F ) by Parseval’s
theorem and hence F`1(Γ∗) ⊆ L2(F ) ⊆ F`∞,1(Γ∗) boundedly, this resolvent is
also a compact operator on L2(F ) by a further appeal to propositions 3.3.17
and 2.2.4. The remaining statements follow in the same manner as in the proof
of proposition 3.3.21.

We can now extend the construction of the full resolvent to nearly all λ ∈ C.

Theorem 3.3.24. Let d ≥ 2, then for all u0 ∈ Ld/2(F ) (resp. F`∞,1(Γ∗)
if d = 2) there is an open neighbourhood U of both u0 and 0 which is invariant
under translation operators such that for all (k, u) ∈ Cd × U there is a discrete
set S(k, u) ⊆ C of finite-order singularities of the resolvent. In particular, the
map

{(u, k, λ) ∈ U × Cd × C : λ /∈ S(k, u)} → K(L2(F ), L2(F ))

(u, k, λ) 7→ (λ+ ∆k − u)−1

is defined and continuous with respect to the weak topology on U and the usual
norm topologies otherwise. Continuity is locally uniform in k.

Proof. By propositions 3.3.21 and 3.3.23, there is an open neighbourhood U
of both u0 and 0 which is invariant under translation operators such that for
all bounded V ⊆ Cd the resolvent (λ0 + ∆k − u)−1 has the desired properties
for all (u, k) ∈ U × V and some fixed λ0 ∈ (−∞,−1] depending on V . Due
to the Riesz–Schauder theorem 2.2.7, Spec((λ0 + ∆k − u)−1) contains at most
one accumulation point in C, namely zero. The other points are finite-order
eigenvalues. Therefore, the set

S(k, u) := {λ ∈ C \ {λ0} : (λ0 − λ)−1 ∈ Spec((λ0 + ∆k − u)−1)}

is discrete. Now, for any λ ∈ C \ S(k, u), λ 6= λ0, the number (λ0 − λ)−1 is in
the resolvent set of (λ0 + ∆k − u)−1, so the operator

(λ0 − λ)−1 − (λ0 + ∆k − u)−1

is boundedly invertible. This yields

(λ0 − λ)−1(λ0 + ∆k − u)−1(((λ0 − λ)−1 − (λ0 + ∆k − u)−1)−1

= (((λ0 − λ)−1 − (λ0 + ∆k − u)−1)(λ0 − λ)(λ0 + ∆k − u))−1

= (λ0 + ∆k − u− (λ0 − λ))−1 = (λ+ ∆k − u)−1

This shows that the map (u, k, λ) 7→ (λ+ ∆k − u)−1 is defined. The continuity
statements follow from proposition 3.3.21.

It remains to show that this construction extends from V to the entire Cd.
For this purpose, we cover Cd with bounded sets. It is sufficient to show that
for some bounded Ṽ ⊆ Cd with V ∩ Ṽ 6= ∅, the corresponding construction with

S̃(k, u) := {λ ∈ C \ {λ̃0} : (λ̃0 − λ)−1 ∈ Spec((λ̃0 + ∆k − u)−1},

where λ̃0 serves the role of λ0, only this time for Ṽ , is compatible. Since compact
operators have finite spectral radius, we need only show that S(k, u) = S̃(k, u)
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for all k ∈ V ∩ Ṽ . So let k ∈ V ∩ Ṽ and λ ∈ S(k, u), then (λ0 − λ)−1 is an
eigenvalue of (λ0 + ∆k − u)−1, so we have for an appropriate eigenfunction f :

(λ0 + ∆k − u)−1f =
1

λ0 − λ
f

and hence

(λ0 − λ)f = (λ0 + ∆k − u)f.

We can now simply replace λ0 with λ̃0 on both sides:

(λ̃0 − λ)f = (λ̃0 + ∆k − u)f.

Now, λ̃0 is in the resolvent set of the Schrödinger operator, so λ 6= λ̃0 and

(λ̃0 + ∆k − u)−1f =
1

λ̃0 − λ
f.

Hence, (λ̃0 − λ)−1 ∈ Spec((λ̃0 + ∆k − u)−1) and thus λ ∈ S̃(k, u). This im-
plies S(k, u) ⊆ S̃(k, u). By symmetry, the reverse inclusion also holds.
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Chapter 4

Fermi curves

The pairs (k, λ) ∈ Cd × C (recall that d ≥ 2 denotes the dimension) for which
the Schrödinger equation (−∆k + u)ψ = λψ has a non-trivial solution make up
the Bloch variety1 The results from chapter 3 allow us to locally give a precise
analytical description of the Bloch variety essentially as the “determinant” of
the resolvent of the Schrödinger operator.

For this work, we are especially interested in the fixed-energy subsets of
the Bloch variety, the Fermi curves. We shall perform an asymptotic analysis of
Fermi curve geometry (that is, investigate the large-k behaviour) in the case d =
2.

4.1 Bloch varieties and Fermi curves

For the Schrödinger equation (3.1.8), we tentatively define the Bloch variety

B(u) := {(k, λ) ∈ Cd × C : There is a ψ 6= 0 such that (−∆k + u)ψ = λψ}.

The Bloch variety encodes what might be termed the extended spectrum of the
Schrödinger operator or, if we neglect branch points, the band functions λ(k).
Considering the Bloch variety as a mapping u 7→ B(u), we are interested in the
answers to the following two questions:

• The moduli problem: What values B(u) are possible and how do we pa-
rameterise them when running through all possible potentials u?

• The isospectral problem: How can a fibre B−1(B(u0)) for some fixed po-
tential u0 be parameterised?

While we do not answer these questions in the current thesis, we execute the
analytical groundwork to arrive at an apt definition of the Bloch variety to work
on these problems. The crucial input here is the compactness of the Schrödinger
resolvent on L2(F ) for a certain function space of potentials (depending on d),
as derived in theorem 3.3.24. This theorem also establishes some continuity
statements. This naturally raises the question of how good this continuity is,
that is, how stable the Bloch variety B(u) is under small changes of u. We refer

1Apparently, the term “Bloch variety” was coined by Knörrer and Trubowitz [KT90], prob-
ably as a tribute to the physicist and Nobel laureate Felix Bloch.

75
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the reader to [FKT90] for a precise analysis of this question (albeit for more reg-
ular potentials). However, the following simple statement about perturbations
of the free Schrödinger operator can be proven easily:

Proposition 4.1.1. There is a C > 0 such that for all potentials u ∈ Ld/2(F )
(resp. u ∈ F`∞,1(Γ∗) if d = 2), all boundary conditions k ∈ Cd and all eigen-
values λ (with an eigenvector ψ ∈W 2,q(F ), 1 < q < d/2, if d > 2, ψ ∈ F`1(Γ∗)
if d = 2 as suggested by the results of chapter 3) of the Schrödinger opera-
tor −∆k + u there is an eigenvalue λ0 of the free Schrödinger operator −∆k

satisfying the inequality |λ− λ0| ≤ C‖u‖.

Proof. Let λ be an eigenvalue of the Schrödinger operator −∆k+u with respect
to a normalised eigenvector ψ. If λ is an eigenvalue of the free Schrödinger
operator −∆k, there is nothing to prove. Otherwise, λ is in the resolvent set
of −∆k. In this case, the Schrödinger equation yields the identity

ψ = (λ+ ∆k)−1uψ. (4.1.2)

Now, if d > 2 then
Ld/2(F ) ·W 2,q(F )→ Lq(F )

boundedly by Sobolev’s theorem 2.2.3 and Hölder’s inequality (theorem 2.1.1).
If d = 2 then

F`∞,1(Γ∗) · F`1(Γ∗)→ F`∞,1(Γ∗)

by proposition 2.4.15. Therefore, taking the norm of both sides of (4.1.2) and
using propositions 3.3.21 and 3.3.23 in the case u0 = 0 yields

1 ≤ C ′‖(λ+ ∆k)−1‖‖u‖

for some C ′ > 0. Now, by theorem 3.3.24 (again in the case u0 = 0) there is
some C > 0 such that

1 ≤ C‖(λ+ ∆k)−1‖L2(F )→L2(F )‖u‖.

Here, (λ+ ∆k)−1 is a compact operator on L2(F ). Furthermore, ∆k is normal
by proposition 3.1.7. Hence the spectral theorem for compact, normal operators
on Hilbert spaces together with the discreteness of the spectrum of ∆k implies
that there is an eigenvalue λ0 ∈ C of −∆k such that ‖(λ+ ∆k)−1‖ = |λ−λ0|−1.
Therefore, we have

1 ≤ C ‖u‖
|λ− λ0|

,

proving the proposition.

We shall now locally underlay our tentative definition of Bloch variety using
analytically sound concepts. In particular, we shall identify local parts of the
Bloch variety with the zero locus of the determinant of a Schrödinger operator
which has been appropriately shifted and projected onto a finite-dimensional
space.

Theorem 4.1.3. Let u0 ∈ Ld/2(F ) (resp. u0 ∈ F`∞,1(Γ∗) if d = 2), k0 ∈ Cd
and λ0 ∈ C such that (u0, k0, λ0) ∈ (u0, B(u0)), that is, there is a non-zero
ψ ∈ W 2,q(F ) for some 1 < q < d/2 (resp. ψ ∈ F`1(Γ∗) if d = 2) such that
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(−∆k0 + u0)ψ = λ0ψ. Then there are open neighbourhoods U , V and W of
u0, k0 and λ0, respectively, such that for all (u, k, λ) ∈ U × V ×W there is a
finite-dimensional subspace Σ(k, u) of L2(F ) independent of λ which is invariant
under the Schrödinger operator (−∆k+u), such that the intersection of the graph
of the map u 7→ B(u) with U × V ×W is the zero locus of the determinant

(u, k, λ) 7→ det((λ+ ∆k − u)|Σ(k,u)).

This map is holomorphic in λ and k, and continuous in u, with the weak topology
on U and the usual topologies elsewhere.

Proof. By theorem 3.3.24, λ0 is an isolated pole of the resolvent (λ+∆k0−u0)−1.
By the reverse Riesz–Schauder theorem 2.2.8, the operator

P (k0, u0) :=
1

2πi

∮
λ0

(λ+ ∆k0 − u0)−1dλ

is a (−∆k0 + u0)-invariant projector. Now, since the resolvent is compact,
so is P (k0, u0). By proposition 2.2.5, P (k0, u0) has finite rank, so its im-
age Σ(k0, u0) is finite-dimensional2. Let f1, . . . , fm be a basis of Σ(k0, u0).
Let P ∗(k0, u0) denote the Hermitian adjoint of P (k0, u0), then the determinant
of the matrix defined by the matrix elements

〈P ∗(k0, u0)fi|P (k0, u0)fj〉,

where 〈·|·〉 denotes the Hermitian form of the Hilbert space L2(F ), is nonzero.
Now, theorem 3.3.24 also tells us that if we take some bounded, open neighbour-
hood of k0, there is a certain open neighbourhood of u0 such that the resolvent
is continuous with respect to u and k from these neighbourhoods. The determi-
nant is continuous as well. Therefore, there is a small open neighbourhood U
of u0, a small open neighbourhood V of k0 and an appropriate c > 0 such that
for all u ∈ U and all k ∈ V the operators

P (k, u) :=
1

2πi

∮
|λ−λ0|=c

(λ+ ∆k − u)−1dλ

are (−∆k + u)-invariant projectors of constant rank to finite-dimensional sub-
spaces Σ(k, u) such that the determinants of the matrices defined by

〈P ∗(k, u)fi|P (k, u)fj〉

are also nonzero. In particular, P (k, u)f1, . . . , P (k, u)fm is a basis of Σ(k, u)
for all u ∈ U and all k ∈ V . Note that this does not necessarily mean that
the multiplicity of λ0 is preserved in a single eigenvalue. Rather, the small
open neighbourhood W := Bc(λ0) may contain several eigenvalues split off

2A further, less general but possibly more intuitive, way to see this is as follows. The
image of P (k0, u0) equals the kernel of (λ0 + ∆k0 − u0)n (as an L2-operator) for sufficiently
large n ∈ N. For u0 = 0, proposition 2.1.6 shows that the kernel of (λ0 + ∆k0 ) is at most 2-
dimensional. Furthermore, ∆0 has discrete eigenvalues. Hence, as shown by proposition 4.1.1,
the perturbation on the eigenvalues induced by non-zero potentials u0 is at worst proportional
to ‖u0‖, the kernel of (λ0 + ∆k0 − u0)n remains a finite-dimensional subspace Σ(k0, u0)
of L2(F ). Of course, compactness of the resolvent was a crucial input to proposition 4.1.1.
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from λ0. Due to the invariance of the subspaces Σ(k, u), there are matrix ele-
ments (Aij(u, k, λ))mi,j=1 of λ+ ∆k − u with respect to P (k, u)f1, . . . , P (k, u)fm
defined by

(λ+ ∆k − u)P (k, u)fi =
m∑
j=1

Aij(u, k, λ)P (k, u)fj

for all i = 1, . . . ,m. The matrix A(u, k, λ) defined by these matrix elements is
singular if and only if the triple (u, k, λ) lies in the graph of u 7→ B(u). Now,

〈P ∗(k, u)fl|(λ+ ∆k − u)P (k, u)fi〉 =
m∑
j=1

Aij(u, k, λ)〈P ∗(k, u)fl|P (k, u)fj〉

for all i, l = 1, . . . ,m. Since the matrix defined by the elements

〈P ∗(k, u)fl|P (k, u)fj〉

is regular, the determinant of (λ+ ∆k − u)|Σ(k,u) is zero if and only if the
triple (u, k, λ) lies in the graph of u 7→ B(u).

Note that the matrix A(u, k, λ) in the above proof is not necessarily di-
agonalisable. While this will not really cause trouble, it does lead to certain
differences between the algebraic and the geometric view of the Schrödinger
operator. This theorem is the standard way of describing the Bloch variety,
actually a rather basic one using finite-dimensional linear algebra. See [Kuc93]
for a more sophisticated treatment.

As the title of this thesis suggests, we are mainly interested in a fixed energy
slice of the Bloch variety in the case d = 2. For this purpose, we define

F (u) := {k ∈ C2 : (k, 0) ∈ B(u)}.

By theorem 4.1.3, F (u) is a complex curve embedded into C2, called the Fermi
curve. It is sufficient to consider only the single fixed energy level λ = 0 because
adding a constant to the potential has the effect of subtracting the same constant
from the eigenvalues, so

B(u) =
∐
λ∈C

F (u− λ) (4.1.4)

as a set. We shall now investigate the geometry of Fermi curves for d = 2, first
for u = 0, then asymptotically for general u both away and near certain critical
points.

4.2 The free Fermi curve at d = 2

From now on, we let d = 2. In this section, we construct the free Fermi
curve F (0), that is, the set of those k ∈ C2 for which the free Schrödinger
operator −∆k has a non-trivial kernel. It is convenient to factorise −∆k into
a product of first-order differential operators. To this end, we introduce the
Wirtinger operators

∂ :=
1
2

(
∂

∂x1
− i ∂

∂x2

)
, ∂ :=

1
2

(
∂

∂x1
+ i

∂

∂x2

)
.
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In analogy to (3.1.4), we can add boundary conditions k ∈ C2 to the Wirtinger
operators:

∂k := ∂ + πik1 + πk2, ∂k := ∂ + πik1 − πk2. (4.2.1)

Lemma 4.2.2. For all k ∈ C2, we have the operator identity

∂k∂k = ∂k∂k =
1
4

∆k.

Proof. The operators

∂1 :=
∂

∂x1
and ∂2 :=

∂

∂x2

are commutative in the sense of distributions. Therefore, we have

∂k∂k =
1
4

((∂1 − i∂2 + 2πik1 + 2πk2)(∂1 + i∂2 + 2πik1 − 2πk2))

=
1
4

((∂1 − i∂2)(∂1 + i∂2)− 4π2(k1 − ik2)(k1 + ik2)

+ 2πi(∂1 − i∂2)(k1 + ik2) + 2πi(k1 − ik2)(∂1 + i∂2))

=
1
4

(∂2
1 + ∂2

2 − 4π2(k2
1 + k2

2))

+ 2πi(k1∂1 + ik2∂1 − ik1∂2 + k2∂2 + k1∂1 − ik2∂1 + ik1∂2 + k2∂2)

=
1
4

(∆− 4π2k2 + 4πi(k1∂1 + k2∂2))

=
1
4

(∆− 4π2k2 + 4πi(k|∇)).

The claim now follows from lemma 3.1.5.

Apart from being first-order, these Wirtinger operators with boundary con-
dition have the further advantage of possessing some transformation properties
the operator ∆k does not have.

Definition 4.2.3. For all κ ∈ Γ∗, we set

k∓κ :=
1
2

(±κ1 + iκ2,−iκ1 ± κ2).

Note that k−κ − k+
κ = κ, so k−κ and k+

κ are distinct unless κ = 0, but they
are always congruent modulo Γ∗.

Proposition 4.2.4. For all k ∈ C2 and all κ ∈ Γ∗, we have the following
operator identities:

∂k = ∂k+k−κ
, ∂k+κ = ψ−κ∂kψκ,

∂k = ∂k+k+
κ
, ∂k+κ = ψ−κ∂kψκ.

Proof. It follows from definition 4.2.3 that

ik−κ,1 + k−κ,2 = 0, ik+
κ,1 − k

+
κ,2 = 0,

and thus ∂k = ∂k+k−κ
and ∂k = ∂k+k+

κ
.
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As for the other two identities, we have

ψ−κ∂kψκ = ψ−κ∂ψκ + πik1 + πk2 = ∂ + πi(κ1 − iκ2) + πik1 + πk2

= ∂ + πiκ1 + πκ2 + πik1 + πk2 = ∂k+κ

and, likewise, ψ−κ∂kψκ = ∂k+κ.

It follows from lemma 4.2.2 that the Laplace operator with boundary also
has the transformation property

∆k+κ = ψ−κ∆kψκ,

but it lacks the invariance under shifts by k−κ and k+
κ which ∂k and ∂k, respec-

tively, have. We can now easily prove

Theorem 4.2.5. Let

R := {k ∈ C2 : k2 − ik1 = 0 or k2 + ik1 = 0}, (4.2.6)

then F (0) = R+Γ∗. Furthermore, R is a system of representatives for the quo-
tient F (0)/Γ∗, provided that the pairs of distinct points (k−κ , k

+
κ ) are identified

to double points for all κ ∈ Γ∗, κ 6= 0.

Proof. Let k ∈ F (0). Then there is a function ψ 6= 0 such that, by lemma 4.2.2,

∂k∂kψ = 0. (4.2.7)

Since ψ 6= 0, there is a κ ∈ Γ∗ such that ψ̂(κ) 6= 0. A Fourier transform of (4.2.7)
then yields

(i(κ1 + k1)− (κ2 + k2))(i(κ1 + k1) + (κ2 + k2)) = 0. (4.2.8)

At least one of these factors is zero, so F (0) ⊆ R+ Γ∗.
Now let k ∈ R+ Γ∗. Then there is a κ ∈ Γ∗ such that

(κ1 + k1)− i(κ2 + k2) = 0 or (κ1 + k1) + i(κ2 + k2) = 0, (4.2.9)

that is, equation (4.2.8) is fulfilled with this κ. Now take a function ψ whose
Fourier transform is ψ̂(ν) = δκν , then ψ solves (4.2.7). It follows that F (0) =
R+ Γ∗.

Finally, we need to investigate when k − k′ ∈ Γ∗ for k, k′ ∈ R. Assume first
that k1 − ik2 = 0 and k′1 − ik′2 = 0. This implies (k1 − k′1) − i(k2 − k′2) = 0.
If there is a κ ∈ Γ∗ such that k − k′ = κ then κ1 − iκ2 = 0. Since κ1, κ2 ∈ R,
this can only be the case if κ = 0 and hence k = k′. A similar situation applies
if k1 + ik2 = 0 and k′1 + ik′2 = 0. Without restriction, the only remaining case
to be considered is k1− ik2 = 0 and k′1 + ik′2 = 0. This yields the two equations

(k1 + k′1)− i(k2 − k′2) = 0 and (k1 − k′1)− i(k2 + k′2) = 0

and thus
2k1 − κ1 − iκ2 = 0 and k1 − i(2k2 − κ2) = 0.
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(1,0)

(0,i)

Figure 4.1: Intersection of R with the real plane spanned by (1, 0) and (0, i).

This yields the unique solutions

k1 =
1
2

(κ1 + iκ2), k2 =
1
2

(−iκ1 + κ2),

k′1 =
1
2

(−κ1 + iκ2), k′2 =
1
2

(−iκ1 − κ2),

in accordance with the double points (k−κ , k
+
κ ) purported in the statement of

the theorem.

Subsets of C2 (that’s four real dimensions) are somewhat difficult to visualise.
However, we can provide some intersections of interesting C2-subsets with real
two-dimensional planes. Figure 4.1 shows the intersection of the set of repre-
sentatives R (see (4.2.6)) with the real two-dimensional plane spanned by (1, 0)
and (0, i): two straight lines intersecting at the origin, in accordance with the
equations k1 = ik2 and k1 = −ik2, respectively. Figure 4.2 shows the entire free
Fermi curve F (0) intersected with the same real two-dimensional plane. There
are four pairs of double points (k−κ , k

+
κ ) in the visible part of the intersection as

indicated by the small digits. Note that the double points all reside at inter-
sections in figure 4.2. But this is only due to the fact that the corresponding
eigenspaces are, as the proof of theorem 4.2.5 shows, two-dimensional and gen-
erated by ψ0 and ψκ. In what follows, we shall remain with this view of double
points.
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(1,0)

(0,i)

2 2

3 3

44

1 1

Figure 4.2: Intersection of the free Fermi curve F (0) with respect to the lattice Γ∗ =
4Z⊕4Z with the real plane spanned by (1, 0) and (0, i). All visible double points k∓κ
are indicated with small digits, where equal digits denote the same double point.



4.3. ASYMPTOTIC FREENESS 83

Theorem 4.2.5 in combination with theorem 3.3.24 shows that ∆−1
k exists as

a compact operator on L2(F ) whenever k /∈ F (0). We can also easily prove the
following similar proposition.

Proposition 4.2.10. Let k0 ∈ C2 \ F (0). Then there is a small open neigh-
bourhood V of k0 and a c > 0 such that the resolvent ∆−1

k exists for all k ∈ V
and is bounded from F`∞,1(Γ∗) to F`1(Γ∗) with a bound smaller than c, and
compact from F`∞,1 to L2(F ).

Proof. By theorem 4.2.5, F (0) is a closed subset of C2, so we can find an open
neighbourhood V of k0 bounded away from F (0). The proof of boundedness is
now equal to the proof of theorem 3.2.5, except that we use

g(κ) :=
1

−4π2(k + κ)2

instead of (3.2.6) and, in order to obtain (3.2.8) for suitable C1, C2 > 0, we
take an arrangement (κn)n∈N such that ‖k+ κn‖ ≥ ‖k+ κn′‖ whenever n ≥ n′.
For sufficiently small neighbourhoods V , this arrangement is independent of k.
For the compactness claim, we apply the analogous substitutions to the proof
of theorem 3.2.10. This shows that the resolvent is compact from F`∞,1(Γ∗)
to F`2,1(Γ∗) ⊆ L2(F ).

Naturally, the norm of ∆−1
k becomes arbitrarily large as k0 approaches F (0).

4.3 Asymptotic freeness

In this section, we investigate the large-k behaviour of Fermi curves F (u) for ar-
bitrary u ∈ F`∞,1(Γ∗). From theorem 3.3.24 it is already clear that, locally, the
Fermi curves F (u) will be very similar to the free Fermi curve if the u’s are taken
from the intersection of a small weakly open (i.e., open with respect to the weak
topology) and a large strongly bounded neighbourhood of the zero potential.
It is possible to exploit the transformation behaviour of the Wirtinger opera-
tors with boundary condition to lift this weakly-local property to a strongly-
asymptotic one (with certain reservations) in a purely geometric way. However,
since in the Schrödinger operator not all of the properties proven in proposi-
tion 4.2.4 are exploitable, we need a new operator with an extended set of Fermi
curves containing the Schrödinger theory. One operator which accomplishes this
is the two-dimensional Dirac operator. Unfortunately, for technical reasons the
resolvent theory of the Dirac operator can only be developed in a very slightly
less general setting in terms of available potentials than the resolvent theory of
the Schrödinger operator. Therefore, we shall develop the asymptotic theory
of Schrödinger Fermi curves directly. Nevertheless, the Dirac theory is very
beautiful despite its shortcomings and is therefore presented in appendix B3.

For the direct approach, we first need a proper localisation of the Fermi
curve. First off, we expect a transformation of boundary conditions k 7→ k + κ
to have no effect on the Fermi curve. Indeed, we have

Lemma 4.3.1. For all u ∈ F`∞,1(Γ∗) and all κ ∈ Γ∗ the Bloch variety B(u)
and the Fermi curve F (u) are invariant under the transformation k 7→ k + κ.

3The Dirac operator has other, more serious shortcomings not immediately related to the
coarse asymptotic analysis we are performing in this subsection.
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Proof. Let k ∈ B(u). Then there is a nonzero eigenfunction ψ and an eigen-
value λ ∈ C such that

−∆kψ + uψ = λψ.

This yields
−ψ−κ∆kψκψ−κψ + uψ−κψ = λψ−κψ.

Hence, by proposition 4.2.4, the transformation k 7→ k + κ merely induces a
transformation of the eigenfunction. This proves the statements.

This lemma shows that we can safely restrict our attention to the quo-
tients F (u)/Γ∗. Nevertheless, this transition to the quotient still has reper-
cussions with respect to the weak perturbations alluded to above as soon as one
identifies the set C2/Γ∗ with a closed fundamental domain in C2 (that is, one
takes a fundamental domain and takes the closure of it). Take the free Fermi
curve F (0), for example. As already mentioned, a perturbation of the resolvent
with a small potential u leads to a Fermi curve F (u) which locally deviates only
little from F (0) with respect to any metric which behaves as can be geometri-
cally expected. One such metric is the Hausdorff metric for subsets. Let V ⊆ C2

be bounded, such that

V1 := V ∩ F (0), V2 := V ∩ F (u)

are not empty, then the Hausdorff distance of the parts V1, V2 of these Fermi
curves that lie within V is given by

dH(V1, V2) := max{ sup
k∈V1

inf
k′∈V2

‖k − k′‖, sup
k∈V2

inf
k′∈V1

‖k − k′‖}.

At least for fixed V , the Hausdorff distance becomes arbitrarily small for arbi-
trarily small perturbations of the zero potential. This is no longer true after
the quotients F (0)/Γ∗ and F (u)/Γ∗ have been identified with proper systems
of representatives in a closed fundamental domain in C2. Due to theorem 4.2.5,
we shall take R as the system of representatives for F (0)/Γ∗. Alas, R contains
the double points k∓κ . A perturbation of the zero potential may cause a double
point to “split up”: the corresponding two-dimensional eigenspace of the two
points constituting the double points decays into two distinct one-dimensional
eigenspaces (for sufficiently small perturbations, this is the only mutation that
can happen because the double points are discrete). This motivates the following
definition.

Definition 4.3.2. Let κ ∈ Γ∗. We call a compact set H ⊆ C2 a handle for the
double point k∓κ if H is connected and contains open neighbourhoods of both k−κ
and k+

κ . Furthermore, we call the maximum distance of a point of H from the
free Fermi curve F (0) the thickness of H.

Figure 4.3, which is based on figure 4.2, shows two examples of handles.
So while arbitrarily small perturbations will produce parts of the Fermi curve
quotient F (u)/Γ∗ that fit in arbitrarily thin handles, even the smallest pertur-
bation will, in general, require handles for every double point to contain the
Fermi curve. Of course, not every perturbation will split every double point. In
this section, we are mainly interested in what happens outside the handles. For
the inside, see section 4.5.
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Figure 4.3: Two examples of handles. This figure depicts the representatives R
of the free Fermi curve F (0) (thick lines) with the remainder of the free Fermi
curve as backdrop (thin lines), where two pairs of double points are indicated by the
digits 2 and 3, in accordance with figure 4.2 (Γ∗ = 4Z⊕ 4Z, intersection with the
real two-dimensional plane spanned by (1, 0) and (0, i) in particular). The double
points“2”and“3”are connected by handles as indicated by the doubly-hatched and
singly-hatched areas, respectively. The thickness of the depicted handles is already
relatively small compared with the lattice constant.
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Since C2 has four real dimensions and Γ∗ only two, C2/Γ∗ is not compact.
Therefore, we define

Γ∗C := 〈κ, k−κ 〉κ∈Γ∗ ,

that is, Γ∗C is the lattice generated by all lattice vectors of Γ∗ and all the double
points k∓κ (since k−κ − k+

κ ∈ Γ∗, it does not matter whether we use k−κ or k+
κ in

the definition). This is a real four-dimensional lattice, so C2/Γ∗C is compact. It
follows from theorem 4.2.5 that F (0) is still invariant under any of the trans-
lations k 7→ k∓κ for all κ ∈ Γ∗. For general Fermi curves, however, this is no
longer true. But it is not needed either for the asymptotic analysis. Let us first
make the following basic observation.

Lemma 4.3.3. Let V ⊆ C2 \ F (0) be compact, then we have for lattice vec-
tors ρ, ν ∈ Γ∗:

lim
‖ν‖→∞

inf
ρ∈Γ∗

k∈V

|(ρ+ k + k±ν )2| =∞.

More precisely,

(ν, ρ) 7→ 1
(ρ+ k + k±ν )2

(4.3.4)

defines c0(Γ∗)⊗̂`1,∞(Γ∗)-functions holomorphically dependent on k in the inte-
rior of V .

Proof. Let (νn)n∈N a sequence in Γ∗ with

lim
n→∞

‖νn‖ =∞.

Now,

(ρn + kn + k±νn)2 = (ρn + kn)2 + 2(ρn + kn|k±νn) + (k±νn)2

= (ρn,1 + kn,1)2 + (ρn,2 + kn,2)2

+ (ρn,1 + kn,1)(∓νn,1 + iνn,2)
+ (ρn,2 + kn,2)(∓νn,2 − iνn,1)

= (ρn,1 + kn,1)(ρn,1 + kn,1 ∓ νn,1 + iνn,2)
+ (ρn,2 + kn,2)(ρn,2 + kn,2 ∓ νn,2 − iνn,1).

(4.3.5)

Here, kn and ρn are vectors such that the infimum is attained. They exist
because V is compact, Γ∗ is discrete and ‖ρ‖ → ∞ would imply |(ρ+k+k±ν )2| →
∞. The infimum of |(ρn+kn+k±νn)2| can be determined using standard calculus
if we extend the domain for the ρ. We then obtain the infimum at

ρ+ k = ∓1
2
ν,

yielding a value of ‖ν‖2/4, which approaches infinity as ‖ν‖ → ∞. This be-
haviour remains the same without extending the domain because the imaginary
part of k is bounded.

As for the second claim, ρ appears quadratically in the denominator of
the map (4.3.4). Since Γ∗ is two-dimensional, this makes this function cer-
tainly `1,∞(Γ∗). As for the decreasing rearrangement with respect to ρ, call
it g?(k, ν, n), we have the estimate

ng?(k, ν, n) ≤ C n

n+
√
n‖ν‖+ ‖ν‖2
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for a suitable C > 0. This shows the c0(Γ∗) claim.

Let FC be a fixed compact fundamental domain for C2/Γ∗C. For ε > 0, we
set

F εC := {k ∈ FC : dist(k, F (0)) ≥ ε}.

Clearly, F εC is closed and hence compact. Furthermore, we define for our conve-
nience

Γ∗δ := {κ ∈ Γ∗ : ‖κ‖ > δ−1} (4.3.6)

for all δ > 0. Then we can prove

Lemma 4.3.7. Let u0 ∈ F`∞,1(Γ∗). Then for all sufficiently small ε > 0 there
is an N ∈ N and a C > 0 with u0 ∈ BNC as well as a δ > 0 such that for
all k ∈ F εC, all ν ∈ Γ∗δ and all u ∈ BNC the operator u∆−1

k+k−ν
exists and is

bounded on F`∞,1(Γ∗) with

‖u∆−1

k+k−ν
‖ < ε.

Proof. Let k0 ∈ F εC. By proposition 4.2.10, there is a small open neighbour-
hood V of k0 such that ∆−1

k is bounded from F`∞,1(Γ∗) to F`1(Γ∗) by some
constant cV > 0 for all k ∈ V . We can choose V such that dist(V, F (0)) > ε/2.
Due to translation invariance, the same is true for all k ∈ V +k−ν , for all ν ∈ Γ∗.
The proof now proceeds in a fashion similar to the proof of lemma 3.3.6. The
operator u∆−1

k+kν
is bounded on F`∞,1(Γ∗) for all u ∈ F`∞,1(Γ∗), all k ∈ V and

all ν ∈ Γ∗. Take

CV :=
εµ(F )
2cV

and choose NV ∈ N large enough, so ‖û0‖(∞,1);NV < CV . Let f ∈ F`∞,1(Γ∗).
With a decomposition u = u1 + u2 as in (3.3.8) for all u ∈ BNVC , we have the
estimate

∞∑
n=1

1
n

(
κ 7→

∑
κ−ρ∈Au

∣∣∣ f̂(ρ)
−4π2(k + k−ν + ρ)2

∣∣∣)?(n)

≤ NV

4π2 inf
ρ∈Γ∗

k∈F ε/2C

|(k + k−ν + ρ)2|
‖|f̂ |‖∞,1.

Due to lemma 4.3.3, the factor

NV

4π2 inf
ρ∈Γ∗

k∈F ε/2C

|(k + k−ν + ρ)2|

is bounded by ε/2 for all ν ∈ Γ∗δV with sufficiently small δV > 0. We can
repeat this procedure with all k0 ∈ F εC, gaining the same results for different
V s. Since F εC is compact, only a finite number of V s is required to cover F εC, so
the results uniformly extend to all F εC by choosing N := maxNV , C := minCV
and δ := min δV .

This lemma immediately leads to the following theorem.
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Theorem 4.3.8. Let u0 ∈ F`∞,1(Γ∗). Then for all ε > 0 there is an N ∈ N
and a C > 0 with u0 ∈ BNC as well as a δ > 0 such that for all k ∈ F εC, all ν ∈ Γ∗δ
and all u ∈ BNC the operators ∆−1

k+k−ν
and (∆k+k−ν

− u)−1 exist and are bounded
from F`∞,1(Γ∗) to F`1(Γ∗) with

‖(∆k+k−ν
− u)−1 −∆−1

k+k−ν
‖ < ε.

Proof. By proposition 4.2.10, ∆−1

k+k−ν
exists and is bounded from F`∞,1(Γ∗)

to F`1(Γ∗) for all k ∈ F εC and all ν ∈ Γ∗. By lemma 4.3.7, for all 0 < ε′ ≤ ε
there are N ∈ N, C > 0 and δ′ > 0 such that

‖u∆k+k−ν
‖F`∞,1(Γ∗)→F`∞,1(Γ∗) < ε′

for all u ∈ BNC , k ∈ F εC ⊆ F ε
′

C and all ν ∈ Γ∗δ′ . For a fixed, sufficiently small ε′, we
can express (∆k+k−ν

−u)−1 as a Neumann series (cf. the methods of section 3.3):

(∆k+k−ν
− u)−1 = ∆−1

k+k−ν
(1− u∆−1

k+k−ν
)−1 = ∆−1

k+k−ν

∞∑
n=0

(u∆−1

k+k−ν
)n.

This shows that (∆k+k−ν
− u)−1 is bounded from F`∞,1(Γ∗) to F`1(Γ∗). Fur-

thermore,

‖(∆k+k−ν
− u)−1 −∆−1

k+k−ν
‖ ≤ ‖∆−1

k+k−ν
‖
∥∥∥∥ ∞∑
n=0

(u∆−1

k+k−ν
)n − 1

∥∥∥∥ ≤ ‖∆−1

k+k−ν
‖ ε′

1− ε′
.

Now, ∆−1

k+k−ν
is uniformly bounded because F εC is compact and F (0) is invariant

under translations by k−κ . Therefore, the above norm is smaller than ε for
all k ∈ F εC and all ν ∈ Γ∗δ′ for a sufficiently small ε′.

In geometric terms, the results of this section can be expressed as follows.

Corollary 4.3.9. Let u0 ∈ F`∞,1(Γ∗). Then for all ε > 0 there is an N ∈ N
and a C > 0 with u0 ∈ BNC such the Fermi curves F (u)/Γ∗, u ∈ BNC , consist of
three parts, depending only on ε:

1. A part whose distance from F (0)/Γ∗ is globally less than ε.

2. A part such that the corresponding part in C2 is contained in a union of
handles whose thickness does not exceed ε.

3. The remainder, which is contained in a compact subset of C2/Γ∗.

An even more succinct way to express the geometric behaviour of Fermi
curves is: all Fermi curves are asymptotically free outside the handles, and even
these have asymptotically vanishing thickness.

4.4 The constant potential Fermi curve at d = 2

In section 4.2 we saw that the free Fermi curve F (0)/Γ∗ at d = 2 has a very
simple C2-representation R, consisting of two C-planes intersecting at the ori-
gin. In section 4.3, we saw that for an arbitrary potential u ∈ F`∞,1(Γ∗), the
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Fermi curve F (u)/Γ∗ asymptotically has the same representation, except that
the double points (k−ν , k

+
ν ) inherent in the representation R split up in general,

introducing the necessity of the handles. In the worst (and generic) case, the
two simple planes R mutate to a surface of infinite genus.

If the potential u is constant, the resulting Fermi curve F (u)/Γ∗ is, of course,
still asymptotically free, and furthermore this time no handles are needed be-
cause the double points do not split. To see how this comes about, consider the
formal Fourier series for an arbitrary potential u (cf. (2.1.7)):

u(x) =
1

µ(F )

∑
κ∈Γ∗

ψκ(x)û(κ).

If u is constant, this simply means that the only Fourier coefficient of u allowed
to be nonzero is û(0). In particular, we can write

u(x) = 4π2û0 +
1

µ(F )

∑
κ∈Γ∗\{0}

ψκ(x)û(κ),

where

û0 :=
û(0)

4π2µ(F )
.

This corresponds to a decomposition of F`∞,1(Γ∗) to a direct sum of the space
of constant potentials with the space of potentials with zero average, because
all ψκ except ψ0 have zero average. Hence, we can, by lemma 3.1.5, rewrite the
Schrödinger operator as

−∆k + u = −(∆ + 4πi(k|∇)− 4π2k2) + 4π2û0 +
1

µ(F )

∑
κ∈Γ∗\{0}

ψκ(x)û(κ)

= −(∆ + 4πi(k|∇)− 4π2k2 − 4π2û0) + (u− 4π2û0).

In other words, we may absorb the constant part of u to form an “extended”
boundary condition because it does not depend on x, and then consider only
potentials with zero average. Note that proposition 3.1.7 also generalises to
Schrödinger operators with constant potential. A Schrödinger operator with
constant potential is therefore kind of a free Schrödinger operator with a slightly
more complicated boundary condition.

Theorem 4.4.1. Let 4π2û0 be a constant potential and

R(û0) := {k ∈ C2 : (k2 − ik1)(k2 + ik1) + û0 = 0}.

Then F (4π2û0) = R(û0) + Γ∗. The set R(û0) is a system of representatives
for F (4π2û0)/Γ∗, provided that the pairs of distinct points (k−κ (û0), k+

κ (û0))
given by

k∓κ (û0) :=
1
2

(±κ1 + iκ2ξ(û0, κ),−iκ1ξ(û0, κ)± κ2), ξ(û0, κ) :=

√
1 + 4

û0

κ2
,

(4.4.2)
are identified to double points for all κ ∈ Γ∗, κ 6= 0, and further provided that
the constant potential does not cause double points to coincide4. In particular,

4This can only happen for double points whose norm lies below a bound which depends only
on bu0. Therefore, we can safely ignore this case for our asymptotic analysis. However, it does
become important when passing from the Fermi curve to the Bloch variety. See section 5.4
for a short discussion.
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R(û0) is a continuous deformation of R, and the double points k∓κ of R remain
unsplit and correspond to k∓κ (û0).

Proof. By applying the Fourier transform on the Schrödinger operator, we see,
as in the proof of theorem 4.2.5, that

F (4π2û0) = {k ∈ C2 : There is a κ ∈ Γ∗ such that
((k2 + κ2)− i(k1 + κ1))((k2 + κ2) + i(k1 + κ1)) + û0 = 0.}.

This shows F (4π2û0) = R(û0) + Γ∗. For the double points, we must solve the
equations

(k−κ (û0))2 + û0 = 0, (k+
κ (û0))2 + û0 = 0, k−κ (û0)− k+

κ (û0) = κ (4.4.3)

for k∓κ (û0), κ 6= 0. Using the last equation to eliminate k−κ (û0), subtracting the
second equation from the first, and dividing the second equation by ‖κ‖, we are
left with

‖κ‖+ 2(κ/‖κ‖|k+
κ (û0)) = 0, (k+

κ (û0))2 + û0 = 0.

Hence, the square of k+
κ (û0) is determined by û0, while the Euclidean projection

of k+
κ (û0) onto the direction of κ is determined by the length of κ. This allows

for at most two solutions for k+
κ (û0) and thus at most two solutions for the

equations (4.4.3). Now, one solution of these equations maps into a different
solution by k∓κ (û0) 7→ k±−κ(û0). Since Γ∗ \ {0} is invariant under the transfor-
mation κ 7→ −κ and the proposed solution in the statement of the theorem is
indeed a solution by direct calculation, the entire set of solutions is captured
(note that ξ being the principal square root is an arbitrary choice because the
symmetry operation mentioned above is precisely expressed by a sign change
in ξ).

This theorem shows that the double points do not split for constant potential
Fermi curves (recall that k = 0 is not a double point of F (0) in our sense). As
is expected from corollary 4.3.9, the double points k∓κ (û0) approach k∓κ for κ
far away from the origin because ξ(û0, κ) tends towards 1 in this case. This
immediately yields the following generalisation of lemma 4.3.3:

Lemma 4.4.4. Let 4π2û0 be a constant potential and let V ⊆ C2 \ F (4π2û0)
be compact, then we have for lattice vectors ρ, ν ∈ Γ∗:

lim
‖ν‖→∞

inf
ρ∈Γ∗

k∈V

|(ρ+ k + k±ν (û0))2 + û0| =∞.

More precisely, there is a δ > 0 such that

(ν, ρ) 7→ 1
(ρ+ k + k±ν (û0))2 + û0

(4.4.5)

defines c0(Γ∗δ)⊗̂`1,∞(Γ∗)-functions holomorphically dependent on k in the inte-
rior of V .

Proof. Expanding denominators yields

(ρ+ k + k±ν )2 = (ρ+ k)2 + 2(ρ+ k|k±ν ),

(ρ+ k + k±ν (û0))2 + û0 = (ρ+ k)2 + 2(ρ+ k|k±ν (û0)).
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Since the k∓ν (û0) approach the k∓ν as ‖ν‖ → ∞, lemma 4.3.3 implies the first
claim. The remainder follows as in the proof of lemma 4.3.3 except that we
have to restrict ourselves to sufficiently large ‖ν‖ lest the denominator in (4.4.5)
become zero.

4.5 Asymptotic moduli parameterisation

In sections 4.3 and 4.4, we proved that, asymptotically, a non-zero or a non-
constant potential, respectively, influences the Fermi curve at most near the
handles. In this section, we shall investigate these handles, that is, the parts of
the Fermi curve near a double point (k−ν , k

+
ν ) (which is, for ν with sufficiently

large norm, also near the double points (k−ν (û0), k+
ν (û0))) thoroughly.

4.5.1 A nonlinear perturbation of the Fourier transform

We first define a decomposition of certain Banach spaces.

Definition 4.5.1. For all ν ∈ Γ∗, letKν be the complex Banach space generated
by the Fourier modes ψ0 and ψν . Unless ν = 0, Kν is two-dimensional. Let us
exclude the case ν = 0 from now on. Let E be a Banach space of which Kν is
a closed subspace. Then the canonical projection

πKν : E → Kν ,

f 7→ f̂(0)ψ0 + f̂(ν)ψν

is a bounded linear operator. In particular, this is the case for E = F`p,1(Γ∗),
1 ≤ p ≤ ∞ and for E = L2(F ). The projection 1E−πKν is then bounded as well.
We denote its image by K⊥ν . Of course, K⊥ν depends on E but we shall suppress
this in notation as the implied space E will be clear from context. These two
projections induce a decomposition of E, which we will write as E = Kν ⊕K⊥ν .
It can be viewed as a generalisation of an orthogonal decomposition in a space
with a scalar product (such as L2(F )).

We shall also write π̂Kν for the analogous projection in the Fourier-trans-
formed space, that is,

(π̂Kν f̂)(κ) = π̂Kνf(κ) =

{
f̂(κ) if κ ∈ {0, ν},
0 otherwise.

The relevance of the Kν is that they are the kernels of the free Schrödinger
operators at the double points:

Lemma 4.5.2. Let ν ∈ Γ∗, ν 6= 0. Then the kernel of ∆k±ν
is K±ν .

Proof. Lemma 4.2.2 and proposition 4.2.4 together with the relation ν = k−ν −k+
ν

imply
1
4

∆k−ν
= ∂k−ν ∂k−ν = ∂0∂ν .

A Fourier transform of the free Schrödinger equation then yields (cf. (4.2.8))

(iκ1 − κ2)(i(κ1 + ν1) + (κ2 + ν2))ψ̂(κ) = 0.
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This equation is fulfilled if and only if ψ̂(κ) = 0 whenever κ 6= 0 and κ 6= −ν.
Hence the kernel of ∆k−ν

is K−ν . Analogously, one shows that the kernel of ∆k+
ν

is Kν .

This lemma shows that the singular support of the resolvent ∆−1

k±ν
is given

by K±ν , while on K⊥±ν it is regular. Let us make these notions more precise.

Definition 4.5.3. Let E1, E2 be Banach spaces containing Kν as closed sub-
spaces, with decompositions Kν ⊕K⊥ν as described above, and let T : E1 → E2

be a linear operator. Then we can define the linear operators

A := πKν T |Kν , B := πKν T |K⊥ν ,

C := (1− πKν ) T |Kν , D := (1− πKν ) T |K⊥ν .

Hence, domains and codomains of these operators are given by

A : Kν → Kν , B : K⊥ν → Kν ,

C : Kν → K⊥ν , D : K⊥ν → K⊥ν .

Therefore, the operator T has the matrix representation

T =
(
A B
C D

)
with respect to the decompositions Kν ⊕K⊥ν . Since Kν is closed, A, B, C and
D are bounded if T is bounded. We call the operator A the restriction of T
to Kν and, likewise, the operator D the restriction of T to K⊥ν .

We can now show that the restriction of the free resolvent to K⊥±ν is regular
near k±ν .

Proposition 4.5.4. There is an open neighbourhood V of 0 ∈ C2 which de-
pends only on Γ∗ and on which the free Schrödinger resolvent, either as an
operator on L2(F ) or as an operator F`∞,1(Γ∗)→ F`1(Γ∗), has the Kν ⊕K⊥ν -
decomposition (according to definition 4.5.3)

∆−1

k±ν +k
=
(
S±ν(k±ν + k) 0

0 R±ν(k±ν + k)

)
for all ν ∈ Γ∗, ν 6= 0, where R±ν(k±ν +k) is holomorphic for k ∈ V , in particular,

sup
k∈V

sup
ν∈Γ∗\{0}

‖R±ν(k + k±ν )‖ <∞,

where ‖ · ‖ denotes the respective operator norm, and S±ν is given by

S±ν(k) =
(
−4π2k2 0

0 −4π2(k ± ν)2

)−1

(4.5.5)

with respect to the basis (ψ0, ψ±ν).
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Proof. Let k0 ∈ C2 be a pole of k 7→ ∆−1
k . Then by theorem 4.2.5, there is

a κ ∈ Γ∗ such that one of the following equations holds:

k0,2 + κ2 = i(k0,1 + κ1), k0,2 + κ2 = −i(k0,1 + κ1).

If k0 = k±ν , then this can only happen if κ = 0 or κ = ±ν by lemma 4.5.2.
Therefore, if k0 = k + k±ν where the norm of k is sufficiently small (say, smaller
than half of the minimum distance of distinct vectors in Γ∗C), this can also only
happen for the same κ because κ1, κ2 ∈ R and Γ∗ is discrete. Hence, all possible
poles are contained in the restriction S±ν of ∆−1

k to K±ν in this case, while R±ν ,
the restriction of ∆−1

k to K⊥±ν , is pole-free in a small neighbourhood of k±ν . The
estimate on the norm follows in similar fashion as in the proof of theorem 3.2.5.
We can calculate S±ν explicitly in the usual way by investigating the Fourier
transform, to wit

ψ̂0 7→
1

−4π2(k + k±ν )2
ψ̂0,

ψ̂±ν 7→
1

−4π2(k + k±ν ± ν)2
ψ̂±ν .

This proves the claims.

For ν ∈ Γ∗ with sufficiently large norm, this proposition extends to constant
potentials.

Proposition 4.5.6. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all constant potentials 4π2û0 there is a δ > 0 such that
the Schrödinger resolvent for 4π2û0, either as an operator on L2(F ) or as an
operator F`∞,1(Γ∗) → F`1(Γ∗), has the Kν ⊕K⊥ν -decomposition (according to
definition 4.5.3)

(∆k±ν (bu0)+k − 4π2û0)−1 =
(
S±ν(k±ν (û0) + k, û0) 0

0 R±ν(k±ν (û0) + k, û0)

)
for all ν ∈ Γ∗δ , where R±ν(k±ν (û0) + k, û0) is holomorphic for k ∈ V , in partic-
ular,

sup
k∈V

sup
ν∈Γ∗δ

‖R±ν(k + k±ν (û0), û0)‖ <∞,

where ‖ · ‖ denotes the respective operator norm, and S±ν(·, û0) is given by

S±ν(k, û0) =
(
−4π2(k2 + û0) 0

0 −4π2((k ± ν)2 + û0)

)−1

(4.5.7)

with respect to the basis (ψ0, ψ±ν).

Proof. Since 4π2û0 is constant, the decomposition of (∆k±ν (bu0)+k − 4π2û0)−1 is
diagonal. By theorem 4.4.1, the equation

(k±ν (û0) + κ)2 + û0 = 0

is solved by κ = 0 and κ = ±ν. Furthermore, k±ν (û0) approaches k±ν as ‖ν‖ →
∞. Hence, the claim follows from proposition 4.5.4.
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It may have occurred to the reader that the kernel of ∆k at k−ν equals
the kernel at k+

−ν , namely K−ν , and the kernel at k+
ν equals the kernel at k−−ν ,

namely Kν . Likewise, for constant potential resolvents and sufficiently large ‖ν‖
in dependence of the potential, the singularities both near k = k−ν (û0) and
near k = k+

−ν(û0) are contained in the restriction to K−ν and the singularities
both near k = k+

ν (û0) and near k = k−−ν(û0) are contained in the restriction
to Kν . On the other hand, at the two components k−ν (û0) and k+

ν (û0) of a
double point, the respective spaces K−ν and Kν are different. This latter fact
is not a surprise by now, as the difference k−ν (û0)− k+

ν (û0) = ν produces a shift
by ν in the Fourier transform of the Schrödinger operator, so that we get the
map

K−ν → Kν , ψ−ν 7→ ψ0, ψ0 7→ ψν .

This also explains the former behaviour because k±−ν(û0) = −k±ν (û0), Fermi
curves are invariant under shifts by vectors from Γ∗, and we also have the
identity F (4π2û0) = −F (4π2û0). Interestingly, this latter property is shared by
all Fermi curves:

Proposition 4.5.8. Let u ∈ F`∞,1(Γ∗). Then F (u) = −F (u).

Proof. We may consider the Schrödinger operator −∆k + u a closed operator
on L2(F ). By considering the canonical Euclidean bilinear form on L2(F ) (not
the standard Hermitian form!), we may talk of the transpose of the Schrödinger
operator. Clearly, the transposed Schrödinger operator produces the same Fermi
curve as the untransposed one. Now, a partial integration (recall that we have
periodic boundary conditions) shows that for the Wirtinger operators, we have

∂t = −∂, ∂
t

= −∂.

The transpose of multiplication operators remains invariant, so

∂tk = −∂−k, ∂
t

k = −∂−k,

and, of course, ut = u. By lemma 4.2.2, we therefore have

(−∆k + u)t = −∆−k + u,

proving the proposition.

Note that this proposition is true for d > 2 as well, but it does not extend
to the Bloch varieties because the transpose leaves the eigenvalue invariant. In
proposition 4.5.4 and proposition 4.5.6, we can take V to be point-symmetric,
that is, V = −V , for example when V is a small open ball. Hence we can identify
the Fermi curve around k+

ν (û0) with the Fermi curve around k+
−ν(û0) by a sign

change and thus work on a double point with a single decomposition Kν ⊕K⊥ν .
Next, we shall want to see what happens asymptotically to the fact implied

by proposition 4.5.4 and proposition 4.5.6, namely that the restriction of the
free Schrödinger resolvent to K⊥±ν is regular around k±ν (û0), when we add a
non-constant potential. To this end, we first prove an analogon of lemma 4.3.3
and lemma 4.4.4.
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Lemma 4.5.9. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that

lim
‖ν‖→∞

inf
k∈V
ρ∈Γ∗

ρ6=0,±ν

|(ρ+ k + k±ν )2| =∞.

More precisely,

(ν, ρ) 7→

{
1

(ρ+k+k±ν )2
, ρ 6= 0,±ν

0 otherwise,
(4.5.10)

defines c0(Γ∗)⊗̂`1,∞(Γ∗)-functions holomorphically dependent on k.
Likewise, if 4π2û0 is a constant potential, then

lim
‖ν‖→∞

inf
k∈V
ρ∈Γ∗

ρ6=0,±ν

|(ρ+ k + k±ν (û0))2 + û0| =∞,

and there is a δ > 0 such that

(ν, ρ) 7→

{
1

(ρ+k+k±ν (bu0))2+bu0
, ρ 6= 0,±ν

0 otherwise,
(4.5.11)

defines c0(Γ∗δ)⊗̂`1,∞(Γ∗)-functions holomorphically dependent on k.

Proof. The proof is essentially analogous to the proof of lemma 4.3.3. This
time, the respective factors in the equation analogous to equation (4.3.5) are
bounded away from zero for a sufficiently small neighbourhood V because the
zeros of (ρ+ k±ν )2 are precisely ρ = 0 and ρ = ±ν, and those are excluded from
the infimum. For non-zero constant potentials, this follows from lemma 4.4.4 in
the same way.

An analogon to lemma 4.3.7 is next.

Lemma 4.5.12. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) and all sufficiently small ε > 0
there is an N ∈ N and a C > 0 with u0 ∈ BNC as well as a δ > 0 such that for
all k ∈ V , all ν ∈ Γ∗δ and all u ∈ BNC the restriction of the operator ∆−1

k±ν +k
u

to K⊥ν ⊆ F`1(Γ∗) is bounded with

‖∆−1

k±ν +k
u‖ < ε.

Proof. The proof is similar to the proof of lemma 4.3.7. Nevertheless, we shall
give a full proof because the order of operators has been reversed.

By proposition 2.4.15, multiplication with any u ∈ F`∞,1(Γ∗) maps F`1(Γ∗)
boundedly into F`∞,1(Γ∗). By proposition 4.5.4,

(1− πK±ν )∆−1

k+k±ν
u|K⊥±ν = ∆−1

k+k±ν
(1− πK±ν ) u|K⊥±ν ,

and hence the restriction of ∆−1

k+k±ν
u to K⊥±ν ⊆ F`1(Γ∗) is bounded for all k ∈ V

with a suitable V . Let us now estimate the norm of this operator. Set

C :=
εµ(F )

2 sup
k∈V

sup
ν∈Γ∗\{0}

‖R±ν(k + k±ν )‖
> 0.
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By proposition 2.8.18, there is an N ∈ N such that

‖û0‖(∞,1);N < C.

By definition, this inequality then holds for all u ∈ BNC . For each such u
let Au ⊆ Γ∗ with µ(Au) = N such that the N -localised quasi-norm of u equals
the Au-localised norm and set

c := sup
u∈BNC

‖û− ûAu‖∞ <∞.

We decompose each u ∈ BNC into u1 and u2 such that

û1 := ûAu , û2 := û− ûAu .

Let f ∈ F`1(Γ∗), then

‖∆−1

k+k±ν
(1− πKν )u1f‖F1 <

1
2
‖f‖F1.

To obtain the analogous estimate for u2, we note that∣∣∣∣∣∣ 1
4π2(k + k±ν + κ)2

∑
ρ∈Γ∗

û2(ρ)f̂(κ− ρ)

∣∣∣∣∣∣ ≤ c

4π2|(k + k±ν + κ)2|
∑
ρ∈Au

|f̂(κ− ρ)|.

Then, for a suitable levelling operator Λ:∑
κ∈Γ∗

κ6=0,±ν

c

4π2|(k + k±ν + κ)2|
∑
ρ∈Au

|f̂(κ− ρ)| ≤ cN

inf
k∈V
κ∈Γ∗

κ6=0,±ν

|(k + k±ν + κ)2|
‖Λ|f̂ |‖1.

The claim now follows from lemma 4.5.9.

This lemma is of the same type than lemma 4.3.7 and also lemmata 3.3.4
and 3.3.6. With the “extended” boundary conditions introduced in section 4.4,
we can prove a variation of this lemma where we compose the constant potential
resolvent with a zero-average potential. This last restriction is, at this point,
not strictly necessary. But it will be required later, and is of course the whole
point of section 4.4 in the first place.

Lemma 4.5.13. There is an open neighbourhood of 0 ∈ C2 which depends
only on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) and all sufficiently small ε > 0
there is an N ∈ N and a C > 0 with u0 ∈ BNC as well as a δ > 0 such that for
all k ∈ V , all ν ∈ Γ∗δ and all u ∈ BNC the restriction of the operator (∆k±ν (bu0)+k−
4π2û0)−1ū, where 4π2û0 is the constant part and ū is the zero-average part of u,
to K⊥ν ⊆ F`1(Γ∗) is bounded with

‖(∆k±ν (bu0)+k − 4π2û0)−1ū‖ < ε.

Proof. The proof is analogous to the proof of lemma 4.3.7. We merely need to
use (∆k+k±ν (bu0) − 4π2û0)−1, ū and R±ν(k + k±ν (û0), û0) in place of ∆−1

k+k±ν
, u

and R±(k+ k±ν ), respectively, and use the second half of lemma 4.5.9 instead of
the first one.
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Incidentally, the proof of lemma 4.5.12 and lemma 4.5.13 works not only
for (1 − πK±ν )∆−1

k+k±ν
u|K±ν and (1 − πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1 ū|K±ν but

also for (1 − πK±ν )∆−1

k+k±ν
u and (1 − πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū, allowing

for the application of the Neumann theorem on both K⊥±ν and F`1(Γ∗). We
generalise this simple principle with the following lemma.

Lemma 4.5.14. Let E be a Banach space, E′ a closed subspace of E and
T : E → E′ a bounded linear operator. Let 1E and 1E′ denote the identity
operators on E and E′, respectively. Then 1E′ − T |E′ is boundedly invertible
on E′ if and only if 1E − T is boundedly invertible on E.

Proof. Assume first that 1E−T is boundedly invertible. Since the codomain of T
is E′, we have (1E−T )E′ ⊆ E′ and (1E−T )(E \E′) ⊆ E \E′. These inclusions
become equalities because 1E −T is invertible. Hence, the inverse of 1E′ − T |E′
exists and is given by the restriction of (1E − T )−1 to E′. Boundedness follows
from the boundedness of (1E − T )−1.

Now assume 1E′ − T |E′ to be boundedly invertible. Since (1E − T )E′ ⊆ E′,
we have

(1E − T )(1E′ − T |E′)
−1 = 1E′

and
T (1E − T ) = T1E − TT = 1E′T − T |E′ T = (1E′ − T |E′)T.

Therefore,

(1E − T )(1E + (1E′ − T |E′)
−1T ) = 1E − T + 1E′T = 1E

and

(1E + (1E′ − T |E′)
−1T )(1E − T )

= 1E − T + (1E′ − T |E′)
−1(1E′ − T |E′)T = 1E − T + T = 1E .

Hence, the inverse (1E−T )−1 exists and is given by 1E+(1E′− T |E′)−1T . Since
both T and (1E′ − T |E′)−1 are bounded, the inverse is bounded as well.

We can now begin to develop a criterion determining when k ∈ F (u) for k
near a double point k±ν (û0) with ‖ν‖ sufficiently large. Recall the definition 3.3.2
of the open sets BNC .

Proposition 4.5.15. There is an open neighbourhood V of 0 ∈ C2 which de-
pends only on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and
a C > 0 with u0 ∈ BNC as well as a δ > 0 such that for all k ∈ V , all ν ∈ Γ∗δ
and all u ∈ BNC the restriction of the operator

ū(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1,

where 4π2û0 is the constant part and ū is the zero-average part of u, to K±ν
exists and is bounded. The same holds for the operator

(∆k+k±ν (bu0) − 4π2û0)−1ū(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1
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whenever k+k±ν (û0) /∈ F (4π2û0)5. Furthermore, those k ∈ V ∩ (F (u)−k±ν (û0))
for which k /∈ F (4π2û0), are characterised by the poles of

k + k±ν (û0) 7→
(

1K±ν − πK±ν (∆k+k±ν (bu0) − 4π2û0)−1ū

(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1
∣∣∣
K±ν

)−1

. (4.5.16)

Proof. By lemma 4.5.13, for all ε > 0 there are appropriate V , N , C, δ, such
that for all k ∈ V , u ∈ BNC , ν ∈ Γ∗δ , the restriction of the operator (∆k±ν (bu0)+k−
4π2û0)−1ū is bounded by ε > 0. For sufficiently small ε > 0, the Neumann
theorem implies that

1K⊥±ν − (1− πK±ν )(∆k±ν (bu0)+k − 4π2û0)−1 ū|K⊥±ν

is invertible. Hence, by lemma 4.5.14, the operator

1− (1− πK±ν )(∆k±ν (bu0)+k − 4π2û0)−1ū

is invertible on F`1(Γ∗). Therefore, the operator

ū(1− (1− πK±ν )(∆k±ν (bu0)+k − 4π2û0)−1ū)−1

exists and is bounded from F`1(Γ∗) to F`∞,1(Γ∗). This also holds for the
restriction to K±ν . By proposition 4.5.6, the same holds for the operator

(∆k+k±ν (bu0) − 4π2û0)−1ū(1− (1− πK±ν )(∆k±ν (bu0)+k − 4π2û0)−1ū)−1

on F`1(Γ∗) whenever k+k±ν (û0) /∈ F (4π2û0). By lemma 4.5.14, the map (4.5.16)
has a pole at k0 + k±ν (û0) if and only if

k + k±ν (û0) 7→ (1− πK±ν (∆k+k±ν (bu0) − 4π2û0)−1ū

(1− (1− πK±ν )(∆k±ν (bu0)+k − 4π2û0)−1ū)−1)−1

has a pole there. This expression, in turn, has a pole at k0 + k±ν (û0) if and only
if

k + k±ν (û0) 7→ (1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1

(1− πK±ν (∆k+k±ν (bu0) − 4π2û0)−1ū

(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1)−1

(∆k+k±ν (bu0) − 4π2û0)−1

5In the first case, the operator is the restriction of an operator from F`1(Γ∗) to F`∞,1(Γ∗).
In the second case, the operator is the restriction of an operator on F`1(Γ∗).
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has a pole there. Now,

(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1

(1− πK±ν (∆k+k±ν (bu0) − 4π2û0)−1ū

(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1)−1

(∆k+k±ν (bu0) − 4π2û0)−1

= (1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū

− πK±ν (∆k+k±ν (bu0) − 4π2û0)−1ū)−1(∆k+k±ν (bu0) − 4π2û0)−1

= (1− (∆k+k±ν (bu0) − 4π2û0)−1ū)−1(∆k+k±ν (bu0) − 4π2û0)−1

= (∆k+k±ν (bu0) − u)−1,

(4.5.17)

proving the proposition.

This proposition shows that asymptotically near the double points, the part
of F (u) that does not belong to the constant-potential Fermi curve is described
by the poles of an operator-valued function on a but two-dimensional space.
Therefore, we make the following definition, from now on consistently denoting
the constant and the zero-average part of some potential u by 4π2û0 and ū,
respectively.

Definition 4.5.18. For all k ∈ C2, all u ∈ F`∞,1(Γ∗) and all ν ∈ Γ∗ \ {0} such
that the operator

1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū

exists and is boundedly invertible on F`1(Γ∗), let A±ν(k + k±ν (û0), u) be the
restriction of the operator

ū(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1

to K±ν . Thus, A±ν(k+k±ν (û0), u) may be considered a 2×2-matrix with respect
to the basis (ψ0, ψ±ν) (note that, technically, A±ν(k + k±ν (û0), u) is a bounded
operator from a subspace of F`1(Γ∗) to a subspace of F`∞,1(Γ∗)).

It is clear from the proof of proposition 4.5.15 that A±ν(k + k±ν (û0), u)
measures the deviation from S±ν(k + k±ν (û0), û0) caused by the nonconstant
potential. In particular, A±ν(k + k±ν (û0), u) is holomorphic in k, identically
zero if ū = 0.

Theorem 4.5.19. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0
with u0 ∈ BNC as well as a δ > 0 such that for all k ∈ V , all ν ∈ Γ∗δ and
all u ∈ BNC the local part of the Fermi curve F (u) ∩ (V + k±ν (û0)) is described
by the zero locus of

k 7→ det
((
−4π2((k + k±ν (û0))2 + û0) 0

0 −4π2((k + k∓ν (û0))2 + û0)

)
+A±ν(k + k±ν (û0), u)

)
.

The same holds for all ν ∈ Γ∗, ν 6= 0, provided that u is taken from a sufficiently
small weakly open neighbourhood of the zero potential.
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Proof. Considering (4.5.7), we see that

S±ν(k + k±ν (û0), û0)

=
(
−4π2((k + k±ν (û0))2 + û0) 0

0 −4π2((k + k∓ν (û0))2 + û0)

)−1

because ±ν = k∓ν (û0)− k±ν (û0). By theorem 3.3.24, the singular part of the re-
solvent remains contained in K±ν for potentials from a sufficiently small weakly
open neighbourhood of a constant potential. For generic potentials this remains
true for δ > 0 sufficiently small. Now, consider the case k /∈ F (4π2û0). Then,
by proposition 4.5.15, for all ν ∈ Γ∗δ , the part of the Fermi curve in V + k±ν (û0)
is determined by the equation

det(1K±ν + S±ν(k + k±ν (û0), û0)A±ν(k + k±ν (û0), u)) = 0.

Multiplication with

det
(
πK±ν (∆k+k±ν (bu0) − 4π2û0)

∣∣∣
K±ν

)
now implies the theorem if k + k±ν (û0) /∈ F (4π2û0) because this determinant
is nonzero in this case. For the k ∈ F (4π2û0) case, consider the left hand side
of (4.5.17) as a meromorphic operator in k. The part

(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1

is pole-free. For the remainder, we have

(1− πK±ν (∆k+k±ν (bu0) − 4π2û0)−1ū

(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1)−1(∆k+k±ν (bu0) − 4π2û0)−1

= (∆k+k±ν (bu0) − 4π2û0 − (∆k+k±ν (bu0) − 4π2û0)πK±ν (∆k+k±ν (bu0) − 4π2û0)−1ū

(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1)−1

= (∆k+k±ν (bu0) − 4π2û0 − πK±ν ū(1− (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū)−1)−1.

The theorem now follows because the kernel of ∆k+k±ν (bu0) − 4π2û0 is contained
in K±ν for ν ∈ Γ∗δ .

This theorem greatly simplifies the local description of the Fermi curve we
attained in theorem 4.1.3 in the asymptotic near-double-point case by remaining
within the subspaces K±ν . This enables us to draw our first simple conclusions
about the geometric situation near the double points. Given some potential u ∈
F`∞,1(Γ∗), the matrix(

−4π2((k + k±ν (û0))2 + û0) 0
0 −4π2((k + k∓ν (û0))2 + û0)

)
+A±ν(k + k±ν (û0), u) (4.5.20)

must have, in dependence of k+k±ν (û0), at least one eigenvector with zero eigen-
value for the determinant to be zero and thus k+ k±ν (û0) ∈ F (u). The straight-
forward generalisation of the definition of an unsplit double point at k±ν (û0)
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would be to demand the existence of two linearly independent eigenvectors with
zero eigenvalue. In other words, the matrix would be the zero matrix. How-
ever, a further situation may occur, for proposition 3.1.7 does not generalise to
arbitrary Schrödinger operators. If the matrix (4.5.20) is not normal, it may
happen that zero is its only eigenvalue, yet the matrix itself is nonzero. In
this subsection and subsection 4.5.2, we shall keep this algebraic distinction in
mind, and postpone the question of which definition of unsplit double point is
geometrically the most sensible to subsection 4.5.3.

In order to further our understanding, let us investigate some properties
of A±ν .

Lemma 4.5.21. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0
with u0 ∈ BNC as well as a δ > 0 such that for all k ∈ V , all ν ∈ Γ∗δ and
all u ∈ BNC , the matrix A±ν(k + k±ν (û0), u) is continuously differentiable in k,
and we have

lim
‖ν‖→∞

∥∥∥∥ ∂∂kA±ν(k + k±ν (û0), u)
∥∥∥∥ = 0

uniformly.

Proof. By proposition 4.5.15, A±ν(k+k±ν (û0), u) exists and is holomorphic in k
for suitable V , N , C and δ. Now, set

A := ū, B := (1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1

= (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν ).
(4.5.22)

Denote the derivative with respect to k with a prime. Then A′ = 0 and B′ =
−BCB, where C is the derivative of the restriction of the operator ∆k+k±ν (bu0) −
4π2û0 to K⊥±ν . The Fourier transform of the components of the derivative of
this operator is given by −8π2(ki + k±ν,i(û0) + κi), i ∈ {1, 2}. In particular, the
Fourier transform of BC is uniformly bounded. Now,

(A(1−BA)−1)′ = A((1−BA)−1)′

= −A(1−BA)−1(1−BA)′(1−BA)−1

= A(1−BA)−1B′A(1−BA)−1

= −A(1−BA)−1BCBA(1−BA)−1,

so

∂

∂k
A±ν(k + k±ν (û0), u)

= −πK±ν ū(1− (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū)−1

BC(1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1

ū (1− (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū)−1
∣∣∣
K±ν

.

By lemma 4.5.13 and lemma 4.5.14, the norm of

(1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1ū

vanishes uniformly as ‖ν‖ → ∞. The norm of BC and the remaining operators
is uniformly bounded. This proves the statement.
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Before we go on, let us prove two generic operator identities similar to
lemma 4.5.14.

Lemma 4.5.23. Let E1, E2 be Banach spaces and let A : E1 → E2, B : E2 → E1

be continuous linear operators. Then 1 − AB is boundedly invertible on E2 if
and only if 1−BA is boundedly invertible on E1. If so, we have the two operator
identities

(1−AB)−1 = (1 +A(1−BA)−1B),

B(1−AB)−1 = (1−BA)−1B.

Proof. Assume 1−BA to be boundedly invertible. Then

(1 +A(1−BA)−1B)(1−AB) = 1 +A(1−BA)−1B

−AB −A(1−BA)−1BAB

= 1 +A((1−BA)−1 − 1− (1−BA)−1BA)B

= 1 +A((1−BA)−1(1−BA)− 1)B
= 1 +A(1− 1)B = 1,

(1−AB)(1 +A(1−BA)−1B) = 1−AB +A(1−BA)−1B

−ABA(1−BA)−1B

= 1−A(1− (1−BA)−1 +BA(1−BA)−1)B

= 1−A(1− (1−BA)(1−BA)−1)B
= 1−A(1− 1)B = 1.

Therefore, 1 − AB is boundedly invertible. The reverse statement follows in
the same way. This calculation also shows the first of the stipulated operator
identities. For we second, we have

B(1−AB)−1 = B(1 +A(1−BA)−1B)

= B +BA(1−BA)−1B

= (1 +BA(1−BA)−1)B

= (1 + (1−BA)−1 − (1−BA)−1 +BA(1−BA)−1)B

= (1 + (1−BA)−1 − (1−BA)(1−BA)−1)B

= (1 + (1−BA)−1 − 1)B = (1−BA)−1B.

Proposition 4.5.24. Let u ∈ F`∞,1(Γ∗), ν ∈ Γ∗ and let V ⊆ C2 with V = −V
such that A±ν(k + k±ν (û0), u) is properly defined for all k ∈ V in the sense of
definition 4.5.18. Then

A±ν(k + k±ν (û0), u)t = A∓ν(−k + k±−ν(û0), u),(
0 1
1 0

)
A±ν(k + k±ν (û0), u)

(
0 1
1 0

)
= A∓ν(k + k∓ν (û0), u).
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Proof. The first equation follows from theorem 4.5.19 and proposition 4.5.8. It
can also be seen directly using lemma 4.5.23, for we have πtK±ν = πK∓ν and

(ū(1− (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū)−1)t

= (1− ū(∆−k−k±ν (bu0) − 4π2û0)−1(1− πK∓ν ))−1ū.

For the second equation, consider the lattice shift by ±ν. We have ψ±ν ūψ∓ν = ū
and

ψ±νS±ν(k + k±ν (û0), û0)ψ∓ν = S∓ν(k + k∓ν (û0), û0)

=
(

0 1
1 0

)
S±ν(k + k±ν (û0), û0)

(
0 1
1 0

)
by equation (4.5.7).

Note that in this proposition, the matrices(
0 1
1 0

)
map K±ν into K∓ν and might therefore be more properly denoted by(

0 1
1 0

)
±
.

We shall omit this additional disambiguation, however.

Theorem 4.5.25. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all k ∈ V and all ν ∈ Γ∗, ν 6= 0, the off-diagonal
entries of the functional variation of A±ν around the zero potential (or even
a constant potential for ν with sufficiently large norm) can be regarded as a
nonlinear perturbation of the Fourier transform. More precisely, the variation
of A±ν at u = 0 has the form

f 7→

(
0 f̂(±ν)

f̂(∓ν) 0

)
. (4.5.26)

In general, for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0 with u0 ∈ BNC
as well as a δ > 0 such that the variation of A±ν is defined for all ν ∈ Γ∗δ at
all u ∈ BNC and has the form

f 7→ πK±ν (1− ū(1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1)−1

· ((1− πK0) f |K⊥0 − ū(1− πK±ν )(∆k+k±ν (bu0) − 4π2û0)−1C(f)

· (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū)

· (1− (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū)−1
∣∣∣
K±ν

,

(4.5.27)

where C is a (with respect to ν) uniformly bounded linear operator mapping
(left multiplications with) F`∞,1(Γ∗)-functions into (left multiplications with)
F`∞,1(Γ∗)-functions.
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Proof. As in the proof of lemma 4.5.21, we can define the operators A and B as
in (4.5.22). This time, we use a prime to denote the variation with respect to u.
Then A′ is given by the operation f 7→ (1 − πK0) f |K⊥0 . The derivative of B
again has the form B′ = −BCB, where this time, a simple calculation shows
that the Fourier transform of C at κ 6= 0,±ν is given by

f̂ 7→ −8π2i

‖ν‖2ξ(û0, ν)
(κ+ k + k±ν (û0)|(ν2,−ν1))π̂K0 f̂

∣∣∣
K0

− 4π2π̂K0 f̂
∣∣∣
K0

.

Clearly, this expression is bounded with respect to ν, and shows that C maps
F`∞,1(Γ∗)-functions to F`∞,1(Γ∗)-functions. Now, by lemma 4.5.23, we have

(A(1−BA)−1)′ = A′(1−BA)−1 +A((1−BA)−1)′

= A′(1−BA)−1 −A(1−BA)−1(1−BA)′(1−BA)−1

= A′(1−BA)−1 +A(1−BA)−1(B′A+BA′)(1−BA)−1

= (A′ +A(1−BA)−1B′A+A(1−BA)−1BA′)(1−BA)−1

= ((1 +A(1−BA)−1B)A′ + (1−AB)−1AB′A)(1−BA)−1

= ((1−AB)−1A′ + (1−AB)−1AB′A)(1−BA)−1

= (1−AB)−1(A′ −ABCBA)(1−BA)−1.
(4.5.28)

This shows the general case (4.5.27). At u = 0, A±ν is defined for all ν ∈ Γ∗,
giving the variation

f 7→ πK±ν (1− πK0) f |K⊥0
∣∣∣
K±ν

,

which is precisely (4.5.26) with respect to the bases (ψ0, ψ±ν).

4.5.2 Approximation with potentials of finite type

In theorem 4.5.19 we found a description of the Fermi curves F (u) near the
double points k±ν (û0), for sufficiently large ‖ν‖. In theorem 4.5.25, we found
a variation which essentially generates the Fourier transform operator at the
zero potential. We shall render the description from the former theorem more
explicit by attaching “perturbed” Fourier transforms to variations of A±ν at
nonzero potentials, again for sufficiently large ‖ν‖.

Proposition 4.5.29. There is an open neighbourhood V of 0 ∈ C2 which de-
pends only on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0
with u0 ∈ BNC as well as a δ > 0 such that for all u ∈ BNC and all ν ∈ Γ∗δ there is
a unique k±ν ∈ V such that the diagonal entries of the matrix (4.5.20) become
zero at k = k±ν .

Proof. Consider the system of equations

(k′ + k+
ν (û0))2 + û0 = d1(k), (k′ + k−ν (û0))2 + û0 = d2(k),

where d1(k) and d2(k) are the diagonal entries of −Aν(k+k+
ν (û0), u)/4π2. Alge-

braic considerations show that for each valid k, there are exactly two solutions k′

of this system bounded away from each other if the norm of ν is much larger
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than the norms of d1(k)− û0 and d2(k)− û0. If u = 0, then d1(k) = d2(k) = 0.
In this case, we have the two trivial solutions k′ = 0 and k′ = −k+

ν − k−ν .
For u 6= 0 we get a perturbation of the trivial solutions. By theorem 4.5.25, this
perturbation is arbitrarily small for sufficiently large ν ∈ Γ∗ because `∞,1(Γ∗)
sequences vanish near infinity. In particular, the two solutions are still bounded
away from each other, with increasing distance as ν increases. Expanding the
left hand sides of our system of equations, we get

(k′1)2 + (k′2)2 + k′1(−ν1 + iν2ξ(û0, ν)) + k′2(−iν1ξ(û0, ν)− ν2) = d1(k),

(k′1)2 + (k′2)2 + k′1(ν1 + iν2ξ(û0, ν)) + k′2(−iν1ξ(û0, ν) + ν2) = d2(k).

Define

F : C2 × C2 → C2,

(k, k′) 7→


(k′1)2 + (k′2)2 + k′1(−ν1 + iν2ξ(û0, ν))

+k′2(−iν1ξ(û0, ν)− ν2)− d1(k)

(k′1)2 + (k′2)2 + k′1(ν1 + iν2ξ(û0, ν))
+k′2(−iν1ξ(û0, ν) + ν2)− d2(k)

 .

By lemma 4.5.21, F is continuously differentiable in V × C2 for a suitable V .
Now,

∂F

∂k′
(k, k′) =

(
2k′1 − ν1 + iν2ξ(û0, ν) 2k′2 − iν1ξ(û0, ν)− ν2

2k′1 + ν1 + iν2ξ(û0, ν) 2k′2 − iν1ξ(û0, ν) + ν2

)
.

The determinant of this operator is given by

4k′1ν2 − 4k′2ν1 + 2iν2
1ξ(û0, ν) + 2iν2

2ξ(û0, ν)

= 4(k′1ν2 − k′2ν1) + 2iξ(û0, ν)‖ν‖2. (4.5.30)

Now, the imaginary part of V is bounded and by the considerations above, for
all ν ∈ Γ∗ with sufficiently large norm, the solutions k′ belonging to these k
also have bounded imaginary part. Furthermore, ξ(û0, ν) approaches 1 for
large ν. Therefore, the determinant is nonzero for large ν. Hence, by the
implicit function theorem, we can patch together a unique function f : V → C2

such that F (k, f(k)) = 0 for all k ∈ V . Furthermore,

∂f

∂k
(k) = −

(
∂F

∂k′
(k, f(k))

)−1
∂F

∂k
(k, f(k)).

Now, the derivative of F with respect to k is essentially given by the derivatives
of d1 and d2 (up to sign) and so is small by lemma 4.5.21. By (4.5.30), the
inverse of the derivative of F with respect to k′ is bounded. Hence, by the
mean value theorem, f is Lipschitz continuous with arbitrarily small Lipschitz
constant as ‖ν‖ → ∞. Furthermore, f(0)→ 0 as ‖ν‖ → ∞. Therefore we may
assume that f(V ) ⊆ V , and that the same holds for a slightly smaller closed
subset of V . Hence, f has a unique fixed point which does what we want by
Banach’s fixed point theorem. Analogous statements hold for the other choices
of signs.
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Definition 4.5.31. Given the previous proposition, we denote the off-diagonal
entries of A±ν(k±ν + k±ν (û0), u) by û1(u,±ν)± and û2(u,±ν)±. At first glance,
this looks like four different functions for each eligible u. However, the unique-
ness of k±ν together with proposition 4.5.24 immediately shows that

û1(u, ν)+ = û2(u,−ν)+ = û1(u,−ν)− = û2(u, ν)−

(in particular, all these functions have equal decreasing rearrangement). There-
fore, it is appropriate to set û(u, ν) := û1(u, ν)+ and express the previous four
functions in terms of û(u, ν). The off-diagonalised form of A±ν near k±ν (û0)
then becomes (

0 û(u,±ν)
û(u,∓ν) 0

)
,

which is reminiscent of (4.5.26). In light of subsection 4.5.1, we call û(u, ν) the
perturbed Fourier transform of u.

In particular, û(0, ν) = 0, and for ν with large norm, û(u, ν) approximates
the regular Fourier transform û(ν).

Definition 4.5.32. We say that a potential u ∈ F`∞,1(Γ∗) has finite type if
the perturbed Fourier transform of u fulfils

û(u, ν) = 0 and û(u,−ν) = 0

for all but finitely many of those ν ∈ Γ∗ for which this condition makes sense.

In order to understand the subset of finite-type potentials better, we shall
now determine the function space the perturbed Fourier transform resides in.

Lemma 4.5.33. There is an open neighbourhood V of 0 ∈ C which depends only
on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0 with u0 ∈
BNC as well as a δ > 0 such that for all k ∈ V , all ν ∈ Γ∗ and all u ∈ BNC the
operator (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū maps `∞(Γ∗)⊗̂F`1(Γ∗) boundedly
into c0(Γ∗)⊗̂F`1(Γ∗) (the left tensor factor belonging to the variable ν). The
restriction from Γ∗ to Γ∗δ with respect to ν yields an operator norm smaller than
one.

Proof. This is an extension of lemma 4.5.9. We have c0(Γ∗) · `∞(Γ∗) ⊆ c0(Γ∗).
Continuity now follows from proposition 2.6.13 and corollaries 2.6.15 and 2.6.16.

This lemma is sufficient to prove that the entries of A±ν(k + k±ν (û0), u)
are c0(Γ∗δ) with respect to ν. However, as u ∈ F`∞,1(Γ∗), we would rather
like to have the entries in `∞,1(Γ∗). This will be the case either because u is
sufficiently regular, or because we can derive sufficient regularity from (4.5.11).
In order to avoid a case analysis based on these two options, let us instead
estimate u against a potential with limited decay behaviour.

Definition 4.5.34. Let u ∈ F`∞,1(Γ∗). Then we define the sequence (ũn)n∈N
recursively via

ũ1 := û?(1), ũn+1 := max
{
û?(n+ 1),

√
n

n+ 1
ũn

}
.
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Proposition 4.5.35. Let u ∈ F`∞,1(Γ∗) be not identically zero. Then the
corresponding sequence (ũn)n∈N is decreasing and positive. Moreover, we have

‖(ũn)n∈N‖∞,1 ≤
4

1− 1√
2

‖u‖F∞,1,

where the norm on the left hand side is the norm of the Luxemburg representation
space `∞,1(N). In particular, there is a potential in F`∞,1(Γ∗) whose Fourier
transform has a decreasing rearrangement equal to (ũn)n∈N.

Proof. The sequence is obviously positive. Let n ∈ N. Consider the case

ũn+1 =
√

n

n+ 1
ũn

first. Then

ũn − ũn+1 =
(

1−
√

n

n+ 1

)
ũn ≥ 0.

The other case is ũn+1 = û?(n+ 1). Then

ũn − ũn+1 = ũn − û?(n+ 1) ≥ û?(n)− û?(n+ 1) ≥ 0.

Therefore, (ũn)n∈N is decreasing. Let us now estimate this sequence. Thereto,
we introduce a helper sequence (an)n∈N as follows:

an :=

{
0 if ũn = û?(n),
1 otherwise.

Then the first element of (an)n∈N is a zero, and the entire sequence consists of at
most countably many stretches of zeros and ones. We enumerate these stretches
separately in the canonical order. Now, by Cauchy’s condensation theorem, we
have

∞∑
n=1

ũn
n
≤
∞∑
n=0

ũ2n ≤ 2
∞∑
n=1

ũn
n
.

It is therefore sufficient to estimate the middle expression. In particular, we
may alter (ũn)n∈N between subsequent powers of two as long as the decreasing
property is retained. Thus, for all m1,m2 ∈ N with no power of two in be-
tween (excluding m1 and m2 themselves), such that am1 = am2 = 0, we may
assume am = 0 for all m between m1 and m2. Hence, the positional range of
every stretch of ones includes a power of two. In particular, the n-th stretch of
ones starts beyond the 2n−1-st element of the sequence (an)n∈N. Now, let bn
be the sum of all ũ2m such that a2m belongs to the n-th stretch of zeros (if the
sum is empty or if there is no n-th stretch of zeros, we set bn = 0). Likewise,
let cn be the sum of all ũ2m such that a2m belongs to the n-th stretch of ones
(or cn = 0 if not applicable). That is, we have

bn = û?(2m0) + û?(2m0+1) + · · ·+ û?(2m1)

if the n-th stretch of zeros starts anywhere from the (2m0−1 +1)-st to the 2m0-th
position and ends anywhere from the 2m1 -th to the (2m1+1 − 1)-st position (if
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the stretch does not end, the sum is the limit of an infinite series). Due to the
way we recursively defined ũn, we have likewise

cn = ũ2m0 (1 + 2−1/2 + · · ·+ 2(m1−m0)/2), (4.5.36)

again with the sum becoming the limit of an infinite series if the stretch does
not end. We then have

∞∑
n=1

bn ≤
∞∑
n=0

û?(2n).

Due to our considerations above, we have ũ2m0 ≤ û?(2n−1) in (4.5.36) and thus

∞∑
n=1

cn ≤
1

1− 1√
2

∞∑
n=0

û?(2n).

Now,
∞∑
n=0

ũ2n ≤
∞∑
n=1

(bn + cn) ≤ 4
1− 1√

2

‖u‖F∞,1,

proving the proposition.

Definition 4.5.37. We denote the function (4.5.11) by g(k, ν, ρ). Let g?(k, ν, n)
be the decreasing rearrangement of g with respect to ρ. Since Γ∗ is two-
dimensional, we have the estimate

g?(k, ν, n) ≤ C 1
n+
√
n‖ν‖+ ‖ν‖2

≤ C 1
n+ ‖ν‖2

,

where C does not depend on n, ν, k or û0 (recall that k comes from a bounded
domain, and by monotonicity likewise û0 through u). Likewise, there is also an
enumeration (νm)m∈N of the elements of Γ∗ such that

g?(k, νm, n) ≤ C ′ 1
n+m

with an independent constant C ′ > 0. Let u ∈ F`∞,1(Γ∗). By proposi-
tion 4.5.35, ũn converges to zero. Therefore, for each m ∈ N there exists a
not necessarily unique n ∈ N such that the supremum

sup
n∈N

ũn
n

n+m
(4.5.38)

is attained. Picking one such n arbitrarily defines a sequence n(m) for each u.

Lemma 4.5.39. Let u ∈ F`∞,1(Γ∗) be not identically zero. Then each corre-
sponding sequence n(m) is increasing. This remains true if we replace ũn with
any positive sequence converging to zero.

Proof. Let m ∈ N and set n0 := n(m). Since the supremum in (4.5.38) is
attained at n = n0, we have

ũn0

n0

n0 +m
− ũn0−a

n0 − a
n0 − a+m

≥ 0



4.5. ASYMPTOTIC MODULI PARAMETERISATION 109

for all a ∈ N with 0 < a < n0. This inequality implies

ũn0

ũn0−a
≥ (n0 − a)(n0 +m)

n0(n0 − a+m)
.

Now, a > 0 implies

(n0 − a+m)(n0 +m) + (n0 +m) > (n0 − a+m)(n0 +m) + (n0 − a+m)
⇒ (n0 − a+m+ 1)(n0 +m) > (n0 − a+m)(n0 +m+ 1)

⇒ n0 +m

n0 − a+m
>

n0 +m+ 1
n0 − a+m+ 1

and thus

ũn0

ũn0−a
>

(n0 − a)(n0 +m+ 1)
n0(n0 − a+m+ 1)

⇒ ũn0

n0

n0 +m+ 1
> ũn0−a

n0 − a
n0 − a+m+ 1

.

Hence n(m+ 1) ≥ n0 = n(m), so n(m) is increasing.

Lemma 4.5.40. Let u ∈ F`∞,1(Γ∗) be not identically zero. Then for each
corresponding sequence n(m) we have n(m) ≥ m.

Proof. We prove this by induction. Certainly, n(1) ≥ 1. Let m ∈ N and
assume n(m) ≥ m. We must prove that n(m + 1) ≥ m + 1. If n(m) > m,
then n(m+1) ≥ m+1 by lemma 4.5.39. It remains to investigate the case n0 :=
n(m) = m. We have

m+ 1 > 0

⇒ m2 + 2m+ 1 > n2
0 + n0

⇒ n3
0 + 2n2

0m+ 3n2
0 + n0m

2

+ 4n0m+ 3n0 +m2 + 2m+ 1 > n3
0 + 2n2

0m+ 4n2
0 + n0m

2 + 4n0m+ 4n0

⇒ (n0 + 1)(n0 +m+ 1)2 > n0(n0 +m+ 2)2

⇒ 1 >
n0(n0 + 1 +m+ 1)2

(n0 + 1)(n0 +m+ 1)2

⇒ n0

n0 + 1
>

n2
0(n0 + 1 +m+ 1)2

(n0 + 1)2(n0 +m+ 1)2

⇒
√

n0

n0 + 1
>

n0(n0 + 1 +m+ 1)
(n0 + 1)(n0 +m+ 1)

.

But by construction,

ũn0+1

ũn0

≥
√

n0

n0 + 1
>

n0(n0 + 1 +m+ 1)
(n0 + 1)(n0 +m+ 1)

.

This implies

ũn0+1
n0 + 1

n0 + 1 +m+ 1
> ũn0

n0

n0 +m+ 1
.

Hence, the supremum for m is not attained at n0. Therefore n(m+1) > n(m) =
m, that is, n(m+ 1) ≥ m+ 1.
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Lemma 4.5.41. Let u ∈ F`∞,1(Γ∗). Then the supremum corresponding to u
by (4.5.38) is decreasing with respect to m. This remains true if we replace ũn
with any positive sequence converging to zero.

Proof. Let m ∈ N and set n0 := n(m) and n1 := n(m + 1). By definition
of n(m),

ũn0

n0

n0 +m
≥ ũn1

n1

n1 +m
≥ ũn1

n1

n1 +m+ 1
.

This proves the lemma.

We can now prove

Theorem 4.5.42. There is an open neighbourhood V of 0 ∈ C2 such that
for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0 with u0 ∈ BNC as
well as a δ > 0 such that for all k ∈ V and all u ∈ BNC the entries of the
matrix A±ν(k + k±ν (û0), u) are `∞,1(Γ∗δ) with respect to ν, with a bound which
depends only on u. In particular, the perturbed Fourier transform û(u,±ν)
is `∞,1(Γ∗δ).

Proof. Through lemma 4.5.33, we have already seen that A±ν(k + k±ν (û0), u)
is c0(Γ∗δ) with respect to ν, so this result merely needs to be refined. To this
end, we make the expansion

ū(1− (∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū)−1

= ū+ ū(∆k+k±ν (bu0) − 4π2û0)−1

· (1− πK±ν )ū(1−∆k+k±ν (bu0) − 4π2û0)−1(1− πK±ν )ū)−1

according to lemma 4.5.23. For the restriction to K±ν , we need to examine the
Fourier transform of this expression at κ = 0 and κ = ±ν with respect to ν.
For the first term, we simply get( ̂̄u(0) ̂̄u(±ν)̂̄u(∓ν) ̂̄u(0)

)
=
(

0 û(±ν)
û(∓ν) 0

)
, (4.5.43)

which is certainly `∞,1(Γ∗δ) because û ∈ `∞,1(Γ∗). For the second term, we get
the Fourier transform ∑

ρ∈Γ∗

̂̄u(κ− ρ)g(k, ν, ρ)f(k, ν, ρ), (4.5.44)

where f is the Fourier transform of ū(1−(∆k+k±ν (bu0)−4π2û0)−1(1−πK±ν )ū)−1.
Now ∣∣∣∣∑

ρ∈Γ∗

̂̄u(κ− ρ)g(k, ν, ρ)f(k, ν, ρ)
∣∣∣∣ ≤ ∑

ρ∈Γ∗

|û(κ− ρ)g(k, ν, ρ)f(k, ν, ρ)|.

It is therefore sufficient to prove that

(ν, ρ) 7→ û(κ− ρ)g(k, ν, ρ)f(k, ν, ρ)
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is in `∞,1(Γ∗δ)⊗̂`1(Γ∗) for κ = 0 and κ = ±ν. By the Hardy–Littlewood in-
equality, theorem 2.3.6, and then Hardy’s lemma, proposition 2.3.5, and the
Hardy–Littlewood inequality, we have

∑
ρ∈Γ∗

|û(κ− ρ)g(k, ν, ρ)f(k, ν, ρ)| ≤
∞∑
n=1

û?(n)g?(k, ν, n)f?(k, ν, n),

(where f? is the decreasing rearrangement of f with respect to ρ) because the
decreasing rearrangement of û is invariant under translations. We can estimate
this further by

∞∑
n=1

û?(n)g?(k, ν, n)f?(k, ν, n) ≤
(
sup
n∈N

û?(n)g?(k, ν, n)n
) ∞∑
n=1

f?(k, ν, n)
n

.

Since f(k, ·, ·) ∈ c0(Γ∗δ)⊗̂`∞,1(Γ∗), the sum is bounded by a constant indepen-
dent of ν (and also independent of k). What we need to show now is

∞∑
m=1

1
m

(
ν 7→ sup

n∈N
û?(n)g?(k, ν, n)n

)?
(m) <∞.

By monotonicity, the considerations in definition 4.5.37 and lemma 4.5.41, it is
sufficient to show

∞∑
m=1

1
m
ũn(m)

n(m)
n(m) +m

<∞.

Due to lemma 4.5.40, we can estimate this series as follows:

∞∑
m=1

1
m
ũn(m)

n(m)
n(m) +m

≤
∞∑
m=1

ũn(m)

m
≤
∞∑
m=1

ũm
m
≤ 4

1− 1√
2

‖u‖F∞,1 <∞

due to proposition 4.5.35.
Thus, we have shown that the entries of A±ν(k + k±ν (û0), u) are `∞,1(Γ∗δ)

uniformly for all fixed k ∈ V . In order to establish the same for û(u,±ν), it is,
by definition 4.5.31, sufficient to prove that the entries of A±ν(k±ν + k±ν (û0), u)
are `∞,1(Γ∗δ). Let ‖ · ‖ denote the matrix norm, then we have

‖A±ν(k±ν + k±ν (û0), u)‖
= ‖A±ν(k±ν (û0), u) +A±ν(k±ν + k±ν (û0), u)−A±ν(k±ν (û0), u)‖
≤ ‖A±ν(k±ν (û0), u)‖+ ‖A±ν(k±ν + k±ν (û0), u)−A±ν(k±ν (û0), u)‖.

The first summand is `∞,1(Γ∗δ) by what we have just proven. We can estimate
the second summand using the mean value theorem:

‖A±ν(k±ν + k±ν (û0), u)−A±ν(k±ν (û0), u)‖

≤ sup
k∈V

∥∥∥∥ ∂∂kA±ν(k + k±ν (û0), u)
∥∥∥∥ ‖k±ν‖.

By lemma 4.5.21, the supremum is bounded with respect to ν. Hence, in order
to finish the proof, we must merely show that (‖k±ν‖)ν∈Γ∗δ

∈ `∞,1(Γ∗δ). We do
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so by performing a simple analysis of the diagonal entries of the matrix (4.5.20).
For this purpose, define

K(k) := −4π2((k + k±ν (û0))2 + û0, (k + k∓ν (û0))2 + û0)

and let D(k) be the two-component vector of the diagonal entries of A±ν(k +
k±ν (û0), u). Denote the derivatives with respect to k by a prime. Then we have

0 = K(0) = K(k±ν)−K ′(k±ν)(k±ν) + o(‖k±ν‖),
D(0) = D(k±ν)−D′(k±ν)(k±ν) + o(‖k±ν‖).

By definition 4.5.31, K(k±ν)+D(k±ν) = 0, so adding these two equations yields

D(0) = −((K ′ +D′)(k±ν))(k±ν) + o(‖k±ν‖).

From the proof of proposition 4.5.29, we already know that k±ν vanishes for
large ‖ν‖. Lemma 4.5.21 implies that D′(k±ν) vanishes for large ‖ν‖. Now, we
have

∂

∂k
K(k) = −4π2

(
2k1 − ν1 + iν2ξ(û0, ν) 2k2 − iν1ξ(û0, ν)− ν2

2k1 + ν1 + iν2ξ(û0, ν) 2k2 − iν1ξ(û0, ν) + ν2

)
,

from which we can calculate

detK ′(k±ν) = 32π4(iξ(û0, ν)‖ν‖2 + 2k±ν,1ν2 − 2k±ν,2ν1),

an expression bounded away from zero for large ‖ν‖. Hence, (K ′ + D′)(k±ν)
is invertible with a uniformly bounded inverse for all sufficiently large ‖ν‖. It
follows that

−((K ′ +D′)(k±ν))−1D(0) = k±ν + ((K ′ +D′)(k±ν))−1o(‖k±ν‖).

Since the entries of D(0) are in `∞,1(Γ∗δ), the same must now be true of k±ν ,
concluding the proof of the theorem.

Note that by considering the inverse of K ′(k±ν) in the above proof, we are
actually able to prove much better regularity results for k±ν in certain situations.
We shall investigate this in more detail in subsection 4.5.3.

This theorem also extends to variations of the perturbed Fourier transform
with respect to u:

Lemma 4.5.45. For all u ∈ F`∞,1(Γ∗) there is a δ > 0 such that the variation
of the perturbed Fourier transform of u with respect to u is a bounded operator
mapping functions from F`∞,1(Γ∗) to sequences in `∞,1(Γ∗δ).

Proof. We use the A, B and C notation from the proof of theorem 4.5.25. As
the proof of that theorem shows, we need to investigate two summands:

h 7→ πK±ν (1−AB)−1h̄ (1−BA)−1
∣∣
K±ν

,

h 7→ πK±ν (1−AB)−1ABC(h) BA(1−BA)−1
∣∣
K±ν

,
(4.5.46)

where we write h̄ for (1− πK0) h|K⊥0 . Let’s begin with the first summand. Due
to lemma 4.5.23, we have the expansion

(1−AB)−1h̄(1−BA)−1 = h̄+A(1−BA)−1Bh̄

+ h̄BA(1−BA)−1 +A(1−BA)−1Bh̄BA(1−BA)−1, (4.5.47)
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the Fourier transform of which we must study for κ = 0 and κ = ±ν. The
analysis is very similar to the proof of theorem 4.5.42. The first term yields
`∞,1(Γ∗)-sequences analogous to (4.5.43) because ̂̄h(0) = 0. For the second
term we get (again, we let f denote the A(1−BA)−1-part)∑

ρ∈Γ∗

̂̄h(ρ)g(k, ν, ρ)f(k, ν, κ− ρ),

whose `∞,1(Γ∗)-norm with respect to ν is bounded by C‖h‖F∞,1 with some C >
0 independent of k by an analogous estimate as for (4.5.44) (the fact that the
κ-dependency is in f here does not matter due to the Hardy–Littlewood in-
equality). For the third term we get∑

ρ∈Γ∗

̂̄h(κ− ρ)g(k, ν, ρ)f(k, ν, ρ),

which can be estimated exactly as (4.5.44). The fourth and final term looks a
bit more complicated but is conceptually no more difficult. We get∑

ρ1∈Γ∗

f(k, ν, κ− ρ1)g(k, ν, ρ1)
∑
ρ2∈Γ∗

̂̄h(ρ1 − ρ2)g(k, ν, ρ2)f(k, ν, ρ2). (4.5.48)

The absolute value of the second sum can be estimated as (4.5.44), yielding
as estimate an `∞,1(Γ∗)-sequence h′ whose norm is bounded by C‖h‖F∞,1,
in particular independently of ρ1, so that we can estimate the absolute value
of (4.5.48) against∑
ρ1∈Γ∗

|f(k, ν, κ− ρ1)g(k, ν, ρ1)h′(ν)| = |h′(ν)|
∑
ρ1∈Γ∗

|f(k, ν, κ− ρ1)g(k, ν, ρ1)|.

The sum over ρ1 of an `∞,1(Γ∗)·`1,∞(Γ∗)-product is clearly bounded with respect
to k and ν in this expression.

This shows the sought property for the first expression in (4.5.46). The
second expression we need not expand, as by lemma 4.5.23, we can rewrite it
like

(1−AB)−1ABC(h)BA(1−BA)−1 = A(1−BA)−1BC(h)BA(1−BA)−1.

Given that C boundedly maps `∞,1(Γ∗)-left multiplications to `∞,1(Γ∗)-left mul-
tiplications, we can estimate this expression just as (4.5.48).

In total, we have shown the sought property for the variation of A±ν(k +
k±ν (û0), ·) uniformly for fixed k ∈ V . To prove the theorem, we now need to
show the same for k = k±. In the proof of theorem 4.5.42 we have already
shown that ‖k±‖ ∈ `∞,1(Γ∗δ), so once again, we can use the mean value theorem
to finish the proof. It only remains to show that the k-derivative of (4.5.27)
is uniformly bounded with respect to ν. But looking at (4.5.28), we see that
the k-derivatives of the individual factors of the variation of A±ν(k+ k±ν (û0), ·)
are all bounded with respect to ν, just as the factors themselves. Hence, the
statement follows.
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Lemma 4.5.49. The mapping

`∞,1(Γ∗) F ′ // F`∞,1(Γ∗) // `∞,1(Γ∗δ),

û
� // u � // (û(u, ν))ν∈Γ∗δ

,

(4.5.50)

with sufficiently small δ > 0 depending on u, is locally differentiable in u. Its
derivatives are continuous linear operators from `∞,1(Γ∗) to `∞,1(Γ∗δ) whose
natural restriction to `∞,1(Γ∗δ) is boundedly invertible.

Proof. By theorem 4.5.42, the mapping (4.5.50) exists and is continuous (due
to the u-dependence of δ, it is defined only locally). By lemma 4.5.45 and
since the Fourier transform is an isometry on Fourier spaces, the mapping is, for
sufficiently small δ > 0, differentiable in u, its derivatives being continuous linear
operators from `∞,1(Γ∗) to `∞,1(Γ∗δ). It remains to show that these operators
have boundedly invertible natural restrictions for sufficiently small δ > 0. To
this end, we once more investigate the two summands (4.5.46). The norm of the
second summand vanishes as δ → 0 due to lemma 4.5.13. For the norm of the
first summand, we use lemma 4.5.23 to rewrite the expansion (4.5.47) as

(1−AB)−1h̄(1−BA)−1 = h̄+ (1−AB)−1ABh̄

+ h̄BA(1−BA)−1 +A(1−BA)−1Bh̄BA(1−BA)−1.

Again, due to lemma 4.5.13, the last three terms of this expansion vanish as δ →
0. The restriction of the Fourier transform of the first term, on the other hand,
is clearly boundedly invertible. Hence, the claim follows by continuity.

Corollary 4.5.51. Let u ∈ F`∞,1(Γ∗). Then there is a sequence (un)n∈N of
finite-type potentials in F`∞,1(Γ∗) converging to u. In other words, the finite-
type potentials are dense in F`∞,1(Γ∗).

Proof. Since we want to solve a local question, we can make use of the locally
defined map (4.5.50). The set of Γ∗δ-sequences all but a finite number of whose
elements are zero are dense in `∞,1(Γ∗δ). Hence, there is a sequence (fn)n∈N of
such sequences converging to û(u, ·) in the `∞,1(Γ∗δ)-norm. For each fn which
is the image of a potential u under the second half of (4.5.50), that potential
has finite-type by definition 4.5.32. Now, by lemma 4.5.49, the restriction of
the variation of the mapping (4.5.50) with respect to û is invertible. Therefore,
there are open neighbourhoods U1 and U2 of û and û(u, ·), respectively, on
which (4.5.50) is a local diffeomorphism. All but a finite number of the elements
of the sequence (fn)n∈N lie in U2. Hence, the preimages of these elements yield
the desired sequence converging to u.

As a final remark, we use the proof of lemma 4.5.45 to refine lemma 4.5.21:

Corollary 4.5.52. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗ such that for all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0
with u0 ∈ BCN as well as a δ > 0 such that for all k ∈ V , all ν ∈ Γ∗δ and
all u ∈ BNC , the k-derivative of the matrix A±ν(k+k±ν (û0), u) consists of bounded
linear operators mapping the space F`∞,1(Γ∗δ) (with respect to ν) into itself.
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Proof. Using the A, B and C notation from the proof of lemma 4.5.21, and given
the fact that both AB and CB map F`∞,1(Γ∗δ) into itself, we can estimate the
k-derivative of A±ν(k + k±ν (û0), u) just as the first equation in (4.5.46).

4.5.3 Per-double-point approximation of the Fermi curve

We would like to attach to each Fermi curve a data set which uniquely captures
its asymptotic geometric structure. That is, we would like to construct a pa-
rameter space such that each element from this space asymptotically describes a
Fermi curve, and that two distinct elements from this parameter space describe
distinct Fermi curves.

The potential u provides, through its Fourier transform, a countable number
of parameters defining the corresponding Fermi curve in its entirety. However,
this description of a Fermi curve is not necessarily unique. A space of unique
parameters thus can be said to partially solve the moduli problem outlined in
section 4.1. We shall therefore call our to-be-constructed parameter space the
moduli space. We expect the moduli space to be made up of countably many
parameters with equal or better regularity properties than `∞,1(Γ∗).

Our moduli space should be derived strictly from the geometry of the Fermi
curve. Due to corollary 4.3.9 and by the results of section 4.4, asymptoti-
cally, the only deviation of the Fermi curve from the constant potential Fermi
curves occurs near the double points. In theorem 4.5.19 we established asymp-
totic double-point local descriptions of the Fermi curve through determinants of
2 × 2-matrices. We shall use these descriptions to create simple first-order ap-
proximations of the Fermi curve around each double point sufficiently far away
from the origin. These approximations are good enough to define a very simple
local model of the Fermi curve near each double point which is sufficiently far
away from the origin. Setting out from these models, we can then generalise to
the actual Fermi curves using standard techniques from real and complex anal-
ysis. We also arrive at a geometrically proper definition of a splitting double
point for arbitrary potentials.

Let us begin with an approximation of A±ν near the double points.

Lemma 4.5.53. There is an open neighbourhood V of 0 ∈ C2 such that for
all u0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C > 0 with u0 ∈ BNC , such that
for all ε > 0 there is a δ > 0 and a 2× 2-matrix valued function r such that for
all u ∈ BNC and all ν ∈ Γ∗δ we have

(
−4π2((k + k±ν (û0))2 + û0) 0

0 −4π2((k + k∓ν (û0))2 + û0)

)
+A±ν(k + k±ν (û0), u)

= −4π2

(
2(k − k±ν |k±ν (û0)) 0

0 2(k − k±ν |k∓ν (û0))

)
+
(

0 û(u,±ν)
û(u,∓ν) 0

)
+ r(k − k±ν),

with k±ν as in proposition 4.5.29, k ∈ V with ‖k−k±ν‖ < δ and ‖r(k−k±ν)‖ ≤
ε‖k − k±ν‖.
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Proof. By lemma 4.5.21, there is a suitable V such that A±ν(k + k±ν (û0), u) is
continuously differentiable in k = k±ν . We then have by definition 4.5.31(

−4π2((k + k±ν (û0))2 + û0) 0
0 −4π2((k + k∓ν (û0))2 + û0)

)
+A±ν(k + k±ν (û0), u)

=
(
−4π2((k + k±ν (û0))2 + û0) 0

0 −4π2((k + k∓ν (û0))2 + û0)

)
−
(
−4π2((k±ν + k±ν (û0))2 + û0) 0

0 −4π2((k±ν + k∓ν (û0))2 + û0)

)
+
(
−4π2((k±ν + k±ν (û0))2 + û0) 0

0 −4π2((k±ν + k∓ν (û0))2 + û0)

)
+A±ν(k±ν + k±ν (û0), u) +

(
∂

∂k
A±ν(k±ν + k±ν (û0), u)

)
(k − k±ν)

+O(‖k − k±ν‖2)

=− 4π2

(
2(k − k±ν |k±ν (û0)) 0

0 2(k − k±ν |k∓ν (û0))

)
+
(

0 û(u,±ν)
û(u,∓ν) 0

)
+
(
∂

∂k
A±ν(k±ν + k±ν (û0), u)

)
(k − k±ν)

− 4π2

(
k2 − k2

±ν 0
0 k2 − k2

±ν

)
+O(‖k − k±ν‖2).

Now, by lemma 4.5.21, the norm of the k-derivative of A±ν vanishes for ‖ν‖ →
∞, so for sufficiently small δ, in combination with an application of the Cauchy–
Schwarz inequality to k2 − k2

±ν = (k + k±ν |k − k±ν), we can combine the last
three terms to a function r satisfying the statement of the lemma.

This lemma shows that, by taking the determinant, the Fermi curve near the
double point associated with ν is asymptotically approximated by the equation

(k − k±ν |2k+
ν (û0))(k − k±ν |2k−ν (û0)) =

û(u, ν)û(u,−ν)
−16π4

. (4.5.54)

(In the present case, we might actually perform the shift k 7→ k + k±ν to get
rid of k±ν , but this won’t be possible with the actual Fermi curve, so we leave
it in.) That is, equation (4.5.54) is sufficient to distinguish two asymptotically
distinct Fermi curves from each other. On the other hand, it is not clear whether
this equation does not lead to unwanted distinction in cases where two distinct
potentials have asymptotically identical Fermi curves. Nevertheless, we shall
take this equation as a simple model of the Fermi curve around a single double
point. Let us now define our model moduli, the prototypes of the real moduli
we intend to define later.

Definition 4.5.55. Let (k1, k2) be the canonical coordinates of C2. The sim-
plified model of the Fermi curve near the double point associated with ν ∈ Γ∗δ ,
with suitable δ > 0, defines a relation between k1 and k2. Somewhat arbitrarily,
we define the model modulus of the Fermi curve with respect to ν as

t̃(ν) :=

{
0 if û(u, ν) = 0 or û(u,−ν) = 0,
16π3

∮
k1dk2 otherwise.
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In the second case, the contour to be integrated over is a closed path on the
Fermi curve model which encompasses the model handle, in positive direction,
with a winding number of one (in what follows, the details will become clear).

It is, at this point, not clear whether such a definition actually makes
sense: we have to make sure that the prescribed contour actually exists if nei-
ther û(u, ν) = 0 nor û(u,−ν) = 0, and that the integral of the form k1dk2

is well-defined. In any case, for our model by its inherent structure, and for
the Fermi curve it is based on by theorem 4.1.3, the dependence of k1 on k2

is clearly holomorphic outside a discrete set, and the contour integral, if it ex-
ists, is capable of capturing the asymptotic deviation of the Fermi curve to a
constant-potential Fermi curve. Yet, even for a well-defined collection of mod-
uli (t̃(ν))ν∈Γ∗δ

, we still need to make sure they belong to a structure which
sensibly describes the available parameter space.

Theorem 4.5.56. For all u ∈ F`∞,1(Γ∗) there is a δ > 0 such that the cor-
responding model moduli t̃(ν) are well-defined for all ν ∈ Γ∗δ , with (t̃(ν))ν∈Γ∗δ

∈
`1(Γ∗δ). More precisely, (t̃(ν))ν∈Γ∗δ

belongs to the second-order Bessel potential
space of the quasi-Banach space `∞,1/2(Γ∗δ)e, the even part of the quasi-Banach
space `∞,1/2(Γ∗δ), and the mapping u 7→ t̃ is locally onto.

Proof. Expanding equation (4.5.54) yields

((k1 − k±ν,1)(−ν1 + iν2ξ(û0, ν)) + (k2 − k±ν,2)(−iν1ξ(û0, ν)− ν2))
· ((k1 − k±ν,1)(ν1 + iν2ξ(û0, ν)) + (k2 − k±ν,2)(−iν1ξ(û0, ν) + ν2))

=
û(u, ν)û(u,−ν)
−16π4

. (4.5.57)

Consider the following linear coordinate transformation:

ã1 := i(k1 − k±ν,1)ν2ξ(û0, ν)− i(k2 − k±ν,2)ν1ξ(û0, ν),
ã2 := i(k1 − k±ν,1)ν1 + i(k2 − k±ν,2)ν2.

The corresponding reverse transformation is

k1 − k±ν,1 =
1

i‖ν‖2ξ(û0, ν)
(ã1ν2 + ã2ν1ξ(û0, ν)),

k2 − k±ν,2 =
1

i‖ν‖2ξ(û0, ν)
(−ã1ν1 + ã2ν2ξ(û0, ν)).

(4.5.58)

With the new coordinates ã1, ã2, equation (4.5.57) simplifies to

(ã1 + iã2)(ã1 − iã2) =
û(u, ν)û(u,−ν)
−16π4

.

Setting z̃ := ã1 + iã2 now yields the two equations

z̃(z̃ − 2iã2) =
û(u, ν)û(u,−ν)
−16π4

, z̃(2ã1 − z̃) =
û(u, ν)û(u,−ν)
−16π4

,

giving

ã2 =
z̃

2i
− û(u, ν)û(u,−ν)

−32π4iz̃
, ã1 =

z̃

2
+
û(u, ν)û(u,−ν)
−32π4z̃

.
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These last two equations are just reformulations of (4.5.54). This shows that in
the case û(u, ν)û(u,−ν) 6= 0, z̃ is a holomorphic coordinate for our Fermi curve
model defined on C \ {0}. Hence, for our contour integral, we can integrate
along any circle z̃ = c exp(iϕ), ϕ ∈ [0, 2π) with c > 0, or indeed, c ∈ C \ {0}
because a nonzero argument merely causes a rotation an thus maps a circle into
itself. Since (ã1 + iã2)(ã1 − iã2) = ã2

1 + ã2
2, we may choose

ã1 =
√
c cosϕ, ã2 =

√
c sinϕ

by setting

c =
û(u, ν)û(u,−ν)
−16π4

.

Which branch of
√
c is chosen is immaterial as long as the choice is consistent.

With the matter of the contour settled, we shall now calculate the integrals.
Firstly note that

∮
dk2 =

∮
d(k2 − k±ν,2) = 0 because

2π∫
ϕ=0

d cosϕ = 0,

2π∫
ϕ=0

d sinϕ = 0.

Therefore, the contour integral of k1dk2 does not depend on a branch choice.
Hence, the model moduli t̃(ν) are well-defined. Their value is

t̃(ν) = 16π3

∮
k1dk2 = 16π3

∮
k1d(k2 − k±ν,2)

= 16π3
(∮

(k1 − k±ν,1)d(k2 − k±ν,2) +
∮
k±ν,1d(k2 − k±ν,2)︸ ︷︷ ︸

=0

)

= − 16π3

‖ν‖4ξ(û0, ν)2

∮
(ã1ν2 + ã2ν1ξ(û0, ν))d(−ã1ν1 + ã2ν2ξ(û0, ν))

= − 16π3

‖ν‖4ξ(û0, ν)2

(
−ν1ν2

∮
ã1dã1 + ν2

2ξ(û0, ν)
∮
ã1dã2

− ν2
1ξ(û0, ν)

∮
ã2dã1 + ν1ν2

∮
ã2dã2

)
.

Now, ∮
ã1dã1 = c

2π∫
ϕ=0

cosϕd(cosϕ) = 0,

∮
ã2dã2 = c

2π∫
ϕ=0

sinϕd(sinϕ) = 0,

∮
ã1dã2 = c

2π∫
ϕ=0

cosϕd(sinϕ) = c

2π∫
0

cos2 ϕdϕ = πc,

∮
ã2dã1 = c

2π∫
ϕ=0

sinϕd(cosϕ) = −c
2π∫
0

sin2 ϕdϕ = −πc.
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Therefore,

t̃(ν) = − 16π3

‖ν‖4ξ(û0, ν)2
(πcν2

2ξ(û0, ν) + πcν2
1ξ(û0, ν))

= − 16π4c

‖ν‖2ξ(û0, ν)2
=
û(u, ν)û(u,−ν)
‖ν‖2ξ(û0, ν)

(4.5.59)

There is also a slightly different method of calculating t̃(ν): with the reverse
transformation (4.5.58), we can express k1 and k2 as functions of z̃. Differenti-
ating k2 with respect to z̃ lets us rewrite k1dk2 in the form f(z̃)dz̃, where f is
a function holomorphic in C \ {0}. We can then calculate the contour integral
by applying Cauchy’s residue theorem.

Pick a suitable δ > 0 in dependence of u. By theorem 4.5.42, the se-
quences (û(u,±ν))ν∈Γ∗δ

are in `∞,1(Γ∗δ). Hence, by theorem 2.4.6, the prod-
uct (û(u, ν)û(u,−ν))ν∈Γ∗δ

is in the quasi-Banach space `∞,1/2(Γ∗δ), which is con-
tinuously embedded in `∞,1(Γ∗δ) by propositions 2.4.3 and 2.4.2. Also note
that (t̃(ν))ν∈Γ∗δ

is even since ξ(û0, ν) = ξ(û0,−ν). Furthermore, ξ(û0, ν) con-
verges to one for ‖ν‖ → ∞. Hence, there are constants C1, C2 > 0 such that

C1

n
≤

((
1

‖ν‖2ξ(û0, ν)

)
ν∈Γ∗δ

)?
(n) ≤ C2

n

for all n ∈ N. It therefore follows from the Hardy–Littlewood inequality (theo-
rem 2.3.6) that (t̃(ν))ν∈Γ∗δ

∈ `1(Γ∗δ). With possibly different constants C3, C4 >
0, we also have

C3|û(u, ν)û(u,−ν)| ≤
∣∣∣∣ û(u, ν)û(u,−ν)(1 + 4π2‖ν‖2)

‖ν‖2ξ(û0, ν)

∣∣∣∣ ≤ C4|û(u, ν)û(u,−ν)|

(4.5.60)
for all ν ∈ Γ∗δ . But 1 + 4π2‖ν‖2 is the Fourier transform of the Bessel ker-
nel of second order (cf. theorem 2.2.13). Hence (t̃(ν))ν∈Γ∗δ

lies in the second-
order Bessel space of `∞,1/2(Γ∗δ)e, which we denote by B2`∞,1/2(Γ∗δ)e. Now,
take (aν)ν∈Γ∗δ

∈ `∞,1/2(Γ∗δ)e and set bν :=
√
aν (choose one square root for each

distinct value of (aν)ν∈Γ∗δ
) for all ν ∈ Γ∗δ . Then aν = bνb−ν due to evenness.

Now, since for all sequences the equality
√
a
? =
√
a? holds, we have

∞∑
n=1

b?(n)
n

=
∞∑
n=1

√
a?(n)
n

<∞.

Hence, the mapping from `∞,1(Γ∗δ) to `∞,1/2(Γ∗δ)e is onto.

In the preceding proof, we mentioned an alternate method of calculating
the model moduli, using Cauchy’s residue theorem on a function holomor-
phic in a punctured neighbourhood of zero. This method extends to the case
where û(u, ν) = 0 or û(u,−ν) = 0 and yields zero, just as defined explicitly in
definition 4.5.55. The geometric interpretation of this fact is that the handle
vanishes. Hence, we have arrived at a geometrically sensible definition of an
unsplit double point.

Definition 4.5.61. For u ∈ F`∞,1(Γ∗) we call the double point at k±ν (û0),
ν ∈ Γ∗δ with sufficiently small δ > 0, unsplit if û(u, ν) = 0 or (̂u,−ν) = 0.



120 CHAPTER 4. FERMI CURVES

This definition contrasts with our definition of finite-type potentials 4.5.32.
There, we effectively required the matrix (4.5.20) to become zero at k±, while
here we are satisfied with the matrix being nilpotent. In both cases the eigen-
space of zero is two-dimensional, but for a nilpotent matrix, there need not
exists two linearly independent eigenvectors.

Let us now generalise theorem 4.5.56 to the actual Fermi curve.

Definition 4.5.62. In analogy with definition 4.5.55 we define the modulus of
the Fermi curve with respect to ν ∈ Γ∗δ for a suitable δ > 0 as

t(ν) :=

{
0 if the corresponding double point remains unsplit,
16π3

∮
k1dk2 otherwise.

This is virtually the same definition as definition 4.5.55, except that the
relation between k1 and k2 is different. This difference can be regarded as a
perturbation of the model Fermi curve yielding the actual Fermi curve (at a
single handle). In particular, the results of theorem 4.5.56 carry over.

Theorem 4.5.63. For all u ∈ F`∞,1(Γ∗) there is a δ > 0 such that the corre-
sponding moduli t(ν) are well-defined for all ν ∈ Γ∗δ , with (t(ν))ν∈Γ∗δ

belonging to
the second-order Bessel potential space of the quasi-Banach space `∞,1/2(Γ∗δ)e,
and the mapping u 7→ t is locally onto.

Proof. Let us have a look at (4.5.20) near k = k±ν . Set

K1(k, û0) := −4π2((k+k±ν (û0))2+û0), K2(k, û0) := −4π2((k+k∓ν (û0))2+û0),

and denote the four entries of A±ν(k + k±ν (û0), u) by A11(k, u), A12(k, u),
A21(k, u) and A22(k, u), respectively (in this notation, we have suppressed the
dependence on ν). Then we can rewrite (4.5.20) as(

K1(k, û0) +A11(k, u) A12(k, u)
A21(k, u) K2(k, û0) +A22(k, u)

)

=


K1(k, û0)−K1(k±ν , û0) A12(k±ν , u)

+K1(k±ν , û0) +A11(k, u) +A12(k, u)−A12(k±ν , u)

A21(k±ν , u) K2(k, û0)−K2(k±ν , û0)
+A21(k, u)−A21(k±ν , u) +K2(k±ν , û0) +A22(k, u)


By definition 4.5.31, K1(k±ν , û0) = −A11(k±ν , u), A12(k±ν , u) = û(u,±ν),
A21(k±ν , u) = û(u,∓ν), and K2(k±ν , û0) = −A22(k±ν , u), so

=


K1(k, û0)−K1(k±ν , û0) û(u,±ν)

+A11(k, u)−A11(k±ν , u) +A12(k, u)−A12(k±ν , u)

û(u,∓ν) K2(k, û0)−K2(k±ν , û0)
+A21(k, u)−A21(k±ν , u) +A22(k, u)−A22(k±ν , u)

 .
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Taking the determinant of this matrix and setting it to zero yields

((k1 − k±ν,1)(−ν1 + iν2ξ(û0, ν) + k1 + k±ν,1)
+ (k2 − k±ν,2)(−iν1ξ(û0, ν)− ν2 + k2 + k±ν,2)

+A11(k, u)−A11(k±ν , u))
· ((k1 − k±ν,1)(ν1 + iν2ξ(û0, ν) + k1 + k±ν,1)

+ (k2 − k±ν,2)(−iν1ξ(û0, ν) + ν2 + k2 + k±ν,2)
+A22(k, u)−A22(k±ν , u))

=
(û(u,±ν) +A12(k, u)−A12(k±ν , u))(û(u,∓ν) +A21(k, u)−A21(k±ν , u))

−16π4
.

We can absorb all k-dependent parts of the right hand side of this equation into
the left hand side by writing

((k1 − k±ν,1)(−ν1 + iν2ξ(û0, ν) + k1 + k±ν,1)
+ (k2 − k±ν,2)(−iν1ξ(û0, ν)− ν2 + k2 + k±ν,2)

+A11(k, u)−A11(k±ν , u))
· ((k1 − k±ν,1)(ν1 + iν2ξ(û0, ν) + k1 + k±ν,1)

+ (k2 − k±ν,2)(−iν1ξ(û0, ν) + ν2 + k2 + k±ν,2)
+A22(k, u)−A22(k±ν , u) + P (k, k±ν , u, ν))

=
û(u, ν)û(u,−ν)
−16π4

,

(4.5.64)

where

P (k, k±ν , u, ν) :=(û(u,±ν)(A21(k, u)−A21(k±ν , u))
+ û(u,∓ν)(A12(k, u)−A12(k±ν , u))

+ (A12(k, u)−A12(k±ν , u))(A21(k, u)−A21(k±ν , u)))/
(−16π4((k1 − k±ν,1)(−ν1 + iν2ξ(û0, ν) + k1 + k±ν,1)

+ (k2 − k±ν,2)(−iν1ξ(û0, ν)− ν2 + k2 + k±ν,2)
+A11(k, u)−A11(k±ν , u))).

This expression has a single singularity at k = k±ν and is otherwise holomorphic
for all ν ∈ Γ∗δ for sufficiently small δ > 0 because V is bounded. In fact, this
singularity is removeable because both numerator and denominator have a zero
at k = k±ν , and the zero in the denominator is only of first order. The right
hand side of (4.5.64) now equals c from the proof of theorem 4.5.56. Let us now
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generalise some quantities from this theorem. We set

a1 := i(k1 − k±ν,1)(ν2ξ(û0, ν) + k1 + k±ν,1)
− i(k2 − k±ν,2)(ν1ξ(û0, ν) + k2 + k±ν,2)

+
1
2

(A11(k, u)−A11(k±ν , u)) +
1
2

(A22(k, u)−A22(k±ν , u))

+
1
2
P (k, k±ν , u, ν),

a2 := i(k1 − k±ν,1)ν1 + i(k2 − k±ν,2)ν2

− i

2
(A11(k, u)−A11(k±ν , u)) +

i

2
(A22(k, u)−A22(k±ν , u))

+
i

2
P (k, k±ν , u, ν).

This is a generalisation of the quantities ã1, ã2, and again, equation (4.5.64)
simplifies to (a1 + ia2)(a1 − ia2) = c. Setting z := a1 + ia2, we again get the
equations

a1 :=
1
2

(
z +

c

z

)
, a2 :=

1
2i

(
z − c

z

)
.

We would like to parameterise our integration contour similar to z = c exp(iϕ),
as we did earlier. However, it must be noted that the quantities a1, a2 and z are
not defined in a domain as large as the domain of ã1, ã2 and z̃, respectively, for
the matrices A11, A12, A21 and A22 are not defined for all k. In fact, with respect
to definition 4.5.31 and lemma 4.5.53, we would like to keep k in a neighbourhood
of k±ν . In the case of our Fermi curve model, we can calculate k−k±ν explicitly
using (4.5.58), to wit

k1 − k±ν,1 =
√
c

i‖ν‖2ξ(û0, ν)
(ν2 cosϕ+ ν1ξ(û0, ν) sinϕ),

k2 − k±ν,2 =
√
c

i‖ν‖2ξ(û0, ν)
(−ν1 cosϕ+ ν2ξ(û0, ν) sinϕ).

Since
√
c itself is in `∞,1(Γ∗δ)e by theorem 4.5.42, we see that ‖k − k±ν‖ is

in a space we denote by `∞,1(Γ∗δ)/‖ν‖, that is, ‖ν‖‖k − k±ν‖ is in `∞,1(Γ∗δ)
(in particular, ‖k − k±ν‖ is in `2,1(Γ∗δ)). Note that ‖k − k±ν‖ ≤ |

√
c| for all

sufficiently small δ > 0, so with a small perturbation of the model Fermi curve,
the contour will still encompass the whole handle. Hence, the integral remains
well-defined.

In the case of the actual Fermi curve, we don’t have an explicit inversion
formula. However, by lemma 4.5.21, the derivative of (a1, a2) with respect to k−
k±ν is regular in a neighbourhood of k±ν . Hence, there exists an inverse a−1

such that a−1(a1, a2) = k − k±ν in a neighbourhood of k±ν . In the model case,
a−1 is simply given by (4.5.58). Thus, in order to estimate the perturbation
of k when passing from the model Fermi curve to the actual Fermi curve, it
is sufficient to estimate the variation of a−1 and use the mean value theorem,
because the difference (a1, a2)−(ã1, ã2) is bounded by some constant because V
is bounded. But now,

(a−1)′(ϕ) =
(
∂

∂k
(a1, a2)

)−1
∂

∂ϕ
(a1, a2).
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We can work out the right hand side by explicit calculation. Since sine and
cosine are bounded, the ϕ-derivative of a1 and a2 is in `∞,1(Γ∗δ)e uniformly.
The k-derivative is more complicated. First, note that

∂

∂k1
P (k, k±ν , u, ν) =

(
(û(u,±ν) +A12(k, u)−A12(k±ν , u))

∂

∂k1
A21(k, u)

+ (û(u,∓ν) +A21(k, u)

−A21(k±ν , u))
∂

∂k1
A12(k, u)

)
/

(−16π4((k1 − k±ν,1)(−ν1 + iν2ξ(û0, ν) + k1 + k±ν,1)

+ (k2 − k±ν,2)(−iν1ξ(û0, ν)− ν2 + k2 + k±ν,2)

+A11(k, u)−A11(k±ν , u)))

+
(

(û(u,±ν)(A21(k, u)−A21(k±ν , u))

+ û(u,∓ν)(A12(k, u)−A12(k±ν , u))
+ (A12(k, u)−A12(k±ν , u))
· (A21(k, u)−A21(k±ν , u)))

·
(
−ν1 + iν2ξ(û0, ν) +

∂

∂k1
A11(k, u)

))
/

(16π4((k1 − k±ν,1)(−ν1 + iν2ξ(û0, ν) + k1 + k±ν,1)

+ (k2 − k±ν,2)(−iν1ξ(û0, ν)− ν2 + k2 + k±ν,2)

+A11(k, u)−A11(k±ν , u))2).

The expression for (∂/∂k2)P (k, k±ν , u, ν) is similar. Therefore, it follows from
corollary 4.5.52 and the mean value theorem that these derivatives are in the
same space as ‖k − k±ν‖ with respect to ν as in the model case. By the same
corollary, the derivative of (a1, a2) with respect to k is asymptotically equal to
the linear operator given by

i

(
ν2ξ(û0, ν) + 2k1 −ν1ξ(û0, ν)− 2k2

ν1 ν2

)
,

the inverse of which is given by

i

‖ν‖2ξ(û0, ν) + 2(ν1k2 + ν2k1)

(
−ν2 −ν1ξ(û0, ν)− 2k2

ν1 −ν2ξ(û0, ν)− 2k1

)
.

This expression is of order O(1/‖ν‖), corresponding to the space `2,∞(Γ∗δ),
which encompasses `∞,1(Γ∗δ)/‖ν‖. Hence, taking both terms together, the ϕ-
derivative of a−1 can be expressed by multiplying the components with functions
in `∞,1(Γ∗δ)/‖ν‖. It follows that for the actual Fermi curve, ‖k − k±ν‖ is in the
same space as for the model Fermi curve. This holds uniformly for all ϕ. For
the same reasons, in the form

(k1 − k±ν,1)d(k2 − k±ν,2) = (k1 − k±ν,1)k′2(a1, a2)((∂/∂ϕ)(a1, a2))dϕ,
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the product is, with respect to ν, of the form

(`∞,1(Γ∗δ)/‖ν‖) ·O(1/‖ν‖) · `∞,1(Γ∗δ),

giving B2`∞,1/2(Γ∗δ), uniformly in ϕ. Since the contour is compact, the same
holds for (t(ν))ν∈Γ∗δ

. Furthermore, due to proposition 4.5.8, (t(ν))ν∈Γ∗δ
is even.

By theorem 4.5.56, u 7→ t is locally onto as a regular variation of u 7→ t̃.

Corollary 4.5.65. The moduli space of Fermi curves for F`∞,1(Γ∗)-potentials
can be identified with a B2`

∞,1/2
e quasi-Banach manifold.



Chapter 5

Summary and outlook

5.1 Works with different focus

To a large part, the focus of this work has been on functional analysis. Before
we summarise, let us name just two examples of works with a different focus.

In [NV97] (see also the references therein), two-dimensional Schrödinger op-
erators with and without magnetic field (the latter are dubbed purely potential)
are treated within the context of the theory of integrable systems and solitons. In
this context, a special class of exactly solvable Schrödinger operators is defined.
These operators correspond to Fermi curves with finite genus. For the purely
potential operators, the solution of the inverse problem yields a Baker–Akhiezer
eigenfunction of a Schrödinger operator from a Riemann surface of finite genus
adorned with a divisor and a pair of “infinitely distant” points, that is, an eigen-
function for each k from the surface. The resultant Baker–Akhiezer function is
unique up to multiplication with a k-independent function. This result is some-
what of a counterpoint to our own result because we are not at all interested in
the finite-genus situation (in fact, we hide a finite number of handles away in
the “compact part” of the Fermi curve) but rather in the asymptotics of a Fermi
curve with infinite genus.

In [FKT03], marked Riemann surfaces satisfying certain geometric hypothe-
ses are introduced. The markings and hypotheses correspond to a construction
of a Riemann surface of infinite genus consisting of a finite-genus compact sub-
manifold, a finite number of regular pieces, which are essentially biholomorphic
to C, except that they are glued to the compact submanifold and connected with
an infinite number of separate handles, such that the size of the handles abates
with distance from the origin in a certain way. This setting is compatible with
our results from section 4.3. However, only later are specific examples treated,
among them two-dimensional periodic Schrödinger equations. The potentials
are taken from various subspaces of L2(F ). The Fermi curves are treated in a
setting which is a generalisation to infinite genera of the classical theory of com-
pact (and hence finite-genus) Riemann surfaces. The genericity of this approach
is an asset, as it can also be applied to heat curves (the analogon of the Fermi
curves for the heat equation) and in the context of the Kadomtsev–Petviashvili
(KP) equation. Indeed, for these Riemann surfaces fulfilling the geometric hy-
potheses, the potential of the corresponding KP equation (and thus the potential
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of the one-dimensional Schrödinger equation) is reconstructed through the sur-
face’s theta series (at least for smooth potentials). A similar procedure should
also be possible for our Schrödinger equation.

Let us now summarise and discuss our new results.

5.2 Compact resolvent

The spectral theory of the Schrödinger operator is a classic topic, including the
definition of the resolvent as a meromorphic, operator-valued function yielding
compact operators on L2(F ), as we did in chapter 3. Our goal was to repeat this
feat with Schrödinger potentials as general as possible, at least for d = 2. For d >
2, we didn’t go out of our way to find the largest sensible space, because in this
case, the standard Sobolev and Banach space localisation theory works very well
and also shows that, at least on the Lp-scale, Ld/2(F ) is the limit (for d ≥ 5, this
has been known for some time, see e.g. [RS78, theorem XIII.99]). It should be
possible to do a little better. With the help of the Hardy–Littlewood–Sobolev
theorem [BS88, Theorem 4.4.18] and Hölder’s inequality, theorem 2.4.6, the key
lemma 3.3.4 should be generalisable to potentials from Ld/2,r(F ), with r < ∞
(note that since d > 2, this space becomes a Banach space by passing from
the decreasing rearrangement to the maximal function in the definition of the
Lorentz–Zygmund spaces). It is doubtful whether generalisation to Ld/2,∞(F )
is possible for large potentials, because, while Hölder’s inequality still holds,
theorem 2.8.2 does not apply in this case. If it is not possible, then there is
no largest space of potentials in terms of Lorentz spaces. This would be quite
unsatisfying. In any case, Sobolev theory seems to be the simplest and most
natural way to treat the d > 2 case, as it serves exactly the function it was
created for.

For d = 2, the situation is quite different. Here, L1(F ) is too large a space
of potentials, while all Lp(F ), p > 1, would serve. Hence, an optimal Lebesgue
space of potentials does not exist. In subsection 2.7.1, we already explained
why the Lorentz–Zygmund space L1,1;1(F ) is the optimal subspace of L1(F )
to use for the domain of the resolvent. For the potentials, it turned out that
the optimal subspace of L1(F ) is also L1,1;1(F ) (recall that for d > 2, these
two spaces were different), by a result of Stein. The step from L1,1;1(F ) to the
Fourier space F`∞,1(Γ∗) was inspired by chapter 4, where it is much more nat-
ural to view the potential as a Fourier series than as an ordinary function. The
execution of the spectral theory programme for the resolvent of the Schrödinger
operator for the space of potentials F`∞,1(Γ∗) as done in chapter 3 is a new re-
sult. With respect to the generality of the potential, it improves significantly on
earlier work, where potentials are usually taken from L2(F ) or even less general
spaces (we did, though, publish some preliminary results in [KS09]). By theo-
rem 2.4.12, F`∞,1(Γ∗) not only contains the optimal L1(F )-subspace L1,1;1(F ),
but also some nonintegrable distributions. Calculations with F`∞,1(Γ∗) are
well-suited for our purposes, as can be seen in the proof of the key lemma 3.3.6
as well as in the proof of proposition 4.5.35, where we make use of the fact
that the rearrangements of `1(Γ∗) are precisely the Cauchy condensations of the
rearrangements of `∞,1(Γ∗).

The question remains whether there are spaces different from F`∞,1(Γ∗)
which work better or at least equally well. For example, theorem 2.4.12 yields
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a whole family of possible target spaces for the resolvent domain, namely the
spaces F`∞,b;β(Γ∗), with b−1 + β = 1 and 1 ≤ b ≤ ∞. However, the Fourier
transform of the free resolvent is a multiplier in `1,∞(Γ∗), and the generali-
sation of Hölder’s inequality 2.4.6 does not extend to the case b > 1 in the
instance `1,∞(Γ∗) · `∞,b;β(Γ∗). This would lead to trouble in the proof of
lemma 3.3.6. Furthermore, the multiplier does not belong to the space `1,a;α(Γ∗)
with a−1 + α = 0, a < ∞ either. As a quick calculation shows, attempting to
place the multiplier in one of these spaces always leads to a divergence of type∑ 1

n log n
.

Hence, F`∞,1(Γ∗) is optimal in terms of Lorentz–Zygmund spaces.
On the other hand, we see from the proof of theorem 3.3.24 that, abstractly,

the most general set of potentials is the set of those u for which the operator (λ0+
∆k − u)−1 is a compact endomorphism on L2(F ), for k ∈ V ⊆ C2 bounded and
some λ0 ∈ C. Since this does not directly yield a Banach space of potentials,
we go some steps further back, to the two factorisations (3.3.18). Since the
free resolvent must be defined whenever the general resolvent is, we see that
a necessary condition on the potentials u is that the operators u(λ + ∆0)−1

and (λ + ∆0)−1u are bounded endomorphisms on suitable spaces E1 and E2,
respectively. Since u appears linearly in these operators, it may seem possible
to define norms for u by

‖u‖ := sup
f∈E1
‖f‖E1≤1

‖u(λ+ ∆0)−1f‖E1 and

‖u‖ := sup
f∈E2
‖f‖E2≤1

‖(λ+ ∆0)−1uf‖E2 .

This ansatz is not very fruitful, though. It is a simple generalisation of the con-
cept of associate spaces (see [BS88, 1.2, 2.4]). In the context of Banach function
spaces, well-definedness and completeness of the associate space is automatic,
and rearrangement-invariance is hereditary. With our ansatz, we have to make
sure that the free resolvent maps E1 into E2, and that the multiplication with u
maps E2 into E1. In order to obtain a Banach space, these mappings must also
be bounded. Apart from that, and L2(F ) ⊆ E1 and E2 ⊆ L2(F ), it is also not
clear which Banach spaces we should use for E1 and E2. Simple considerations,
such as [BS88, Lemma 3.1.9], show that E1 and E2 should be chosen as large as
possible in order to not miss out on potentials. On the other hand, E1 and E2

do not have any bearing on the spectrum of the resolvent whatsoever, provided
the resolvent is compact on L2(F ). Attempting to use E2 = L2(F ), anyway,
does not appear to yield new results.

Let us note, however, that the theory of associate spaces of rearrangement-
invariant function spaces gives us a slight hint that there may yet be more poten-
tials to make the resolvent compact. The space `∞,1(Γ∗), being a rearrangement-
invariant function space, has an associate space (`∞,1(Γ∗))′, which is also a
rearrangement-invariant Banach function space. This is the largest space, such
that the Hölder inequality

‖fg‖1 ≤ ‖f‖`∞,1(Γ∗)‖g‖(`∞,1(Γ∗))′
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holds. The Hölder inequality for Lorentz–Zygmund spaces shows that we have
the bounded embedding `1,∞(Γ∗) ⊆ (`∞,1(Γ∗))′. Now, `1,∞(Γ∗) is only a quasi-
Banach function space, but the generalisation of the concept of the associate
space to quasi-Banach function spaces is straightforward. In particular, [BS88,
Proposition 1.2.10] continues to hold. Choose E2 = F`1(Γ∗), then we may
take u ∈ F(`1,∞(Γ∗))′. Since `∞,1(Γ∗) ⊆ (`1,∞(Γ∗))′ boundedly, we may thus
have gained a greater space. Of course, (`1,∞(Γ∗))′ is a priori only a quasi-
Banach space. Furthermore, we have not investigated whether a quasi-norm
localisation is possible, so that we can apply the Neumann theorem (the achieved
bound would have to be smaller than the inverse of the constant on the triangle
inequality in this case).

Another way of looking at this problem is to use the hindsight gained through
the results of subsection 4.5.3. Locally, the moduli reside in a space slightly
smaller than the smallest rearrangement-invariant Banach space `1(Γ∗δ). From
what space would the perturbed Fourier coefficients û(u, ν), ν ∈ Γ∗δ have to
come, so that the moduli locally reside precisely in (the even part of) `1(Γ∗δ)?
A simple calculation shows that this would have to be something like the space√

‖ν‖2 · `1(Γ∗),

(for simplicity, we are leaving out the δ) which is simply the space of `2(Γ∗δ)-
functions multiplied with ‖ν‖. Due to Plancherel’s theorem, this space is the the
Fourier space of the negative Sobolev space W−1,2(F ), that is, the dual space
of W 1,2(F ) [Lax55, section 2]. Unfortunately, this space is definitely too big
for the Fourier transforms of the potentials. The action of the Bessel kernel of
second order is the same as twice the action of the Bessel kernel of first order.
The Bessel kernel of first order maps F`∞,2(Γ∗) into F`2,2(Γ∗) = L2(F ) by the
Hardy–Littlewood inequality, and also L2(F ) into the Sobolev space W 1,2(F ) by
the (now safe) theorem 2.2.14. Therefore, F`∞,1(Γ∗) ( F`∞,2(Γ∗) ⊆W−1,2(F ).

In any case, as long as we use a Neumann series construction of the resolvent,
any Banach space of potentials E ⊇ F`∞,1(Γ∗) for which the resultant resolvent
is compact on L2(F ) will have the property that E ∩ L1(F ) = L1,1;1(F ) due to
the theorem of Stein mentioned above, that is, no new integrable potentials can
be gained without significant change in our analytical toolchain.

On a more technical note, the Neumann series construction requires norm
localisation. In section 2.8, we have generalised the standard approach to all
absolutely continuous Banach function spaces on F . This appears to be a new
result, though such technical matters are seldom spoken about explicitly, and
we may thus have overlooked an instance where it was done before. In our
case, it is somewhat more interesting than normal, for, while the result of the
generalisation is quite straightforward, namely the localisation functionals being
both translation-invariant and norms, we did not succeed in creating a single
suitable localisation for Banach function spaces on Γ∗ with these two properties.
Instead, we developed two localisations. The A-localised norm is a norm, but
it is not translation-invariant. The N -localised quasi-norm is not a norm, but
it has translation-invariance (and is even rearrangement-invariant, something
which is not true for the r-localised norms for spaces on F ). In the proof of
lemma 3.3.6, we were able to use both localisations simultaneously to exploit
their respective properties when necessary.
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5.3 Fermi curve asymptotics

Many results of chapter 4 are new by virtue of chapter 3 alone, that is, they are
straightforward generalisations of well-known theorems to F`∞,1(Γ∗)-potentials,
without any new proof techniques employed, and with, in fact, proofs that are
often vernacularly identical to their standard counterparts. Therefore, we shall
skip those standard generalisations in our discussion, merely mentioning again
that we arrive at the expected asymptotic decomposition of the Fermi curve
into three parts, as in [FKT03].

In section 4.4, we gave Schrödinger operators with constant potentials a
special treatment. The constant part (that is, the zeroth Fourier coefficient) of
the potential plays a special role in the asymptotic theory of the Fermi curve,
as can be seen in section 4.5. In particular, it interferes with the analysis of the
perturbed Fourier transform. Many authors simply assume the zeroth Fourier
coefficient of the potential to be zero. This is acceptable in a setting where
arbitrary eigenvalues λ are allowed, as setting û(0) = 0 merely causes a shift in
the energy spectrum. In our case however, where we set λ = 0, we must provide
for the case û(0) 6= 0. Absorbing û(0) into the boundary condition appears to
be the natural solution to get rid of the Fourier coefficient otherwise. This is
especially true in the context of asymptotic analysis, where the multiplicative
quantity ξ(û0, κ), which is a measure of the influence of û(0) on the Fermi curve
at distance roughly ‖κ‖ from the origin, converges to one as ‖κ‖ → ∞.

Section 4.5 contains a mixture of standard analytic techniques and some new
techniques developed specifically for (quasi-)Banach function spaces, `∞,1(Γ∗)
in particular. For one, we generalised Bochner and tensor product theory to Ba-
nach function spaces. Although simple and straightforward, this result appears
to be new. Furthermore, we introduced some methods of estimation specifi-
cally for the space `∞,1(Γ∗) in proposition 4.5.35 and lemmata 4.5.39, 4.5.40
and 4.5.41. They probably do not generalise well to spaces other than `∞,1(Γ∗).

The principal new results of section 4.5 are as expected: the perturbed
Fourier transform of the potential resides in the same space as the Fourier
transform of the potential itself, namely in the separable space `∞,1(Γ∗δ). In
particular, the finite-type potentials are dense in F`∞,1(Γ∗). Such a density
result is typical in the theory of integrable systems, see for example [MO80]
and [Mar86, chapter 4]. Our final result is the introduction of parameters pro-
portional to the size of the Fermi curve handles, namely the asymptotic moduli
of Fermi curves, which live in a submanifold of an `1-Banach manifold. This
asymptotically solves the moduli problem for Fermi curves of two-dimensional,
periodic Schrödinger operators. For a full solution of the moduli problem in this
case, it is necessary to combine our result with a solution of the moduli problem
for the compact part of the Fermi curve. Given the extant results for Fermi
curves of finite genus, this is not expected to be too complicated.

5.4 Where to go from here

Towards a full solution of the inverse Schrödinger problem, there is still much
to be done.

Now that we have asymptotically solved the Fermi moduli problem, the obvi-
ous next step is to do likewise for the Fermi isospectral problem. For simplicity,
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let us look at our model moduli calculated in (4.5.59)

t̃(ν) =
û(u, ν)û(u,−ν)
‖ν‖2ξ(û0, ν)

.

Let (v̂(u, ν))ν∈Γ∗δ
be a sequence such that the transformation

û(u, ·) 7→ û(u, ·)v̂(v, ·)

does not alter the moduli. For our Fermi curve model, this means that v̂(u, ν)
may be arbitrary at unsplit double points, and v̂(u, ν)v̂(u,−ν) = 1 otherwise. In
the generic case (no unsplit double points), the set of all possible v̂ yields a free
abelian group isomorphic to (C×)Γ∗δ/{±1} which acts freely and continuously on
the perturbed Fourier transform by multiplication. Since the space of perturbed
Fourier transforms of potentials is locally isomorphic to the space of regular
Fourier transforms (see the proof of corollary 4.5.51), we expect the orbits of
the action of this group to yield isospectral sets for our Fermi curve model. The
same should be possible for the actual Fermi curve by passing to it from the
model through a perturbation process as in subsection 4.5.3.

If we restrict ourselves to real-valued potentials, the Fourier transform gains
the property that û(ν) is the complex conjugation of û(−ν). Hence, in this case
we expect that the base group C× appearing above is replaced by its compact
subgroup of phases S1 ≤ C×. By Tychonoff’s theorem, the resulting group is
then also compact. Hence, the resulting isospectral sets should fit into a set of
type BNC .

The next step from solving the inverse problem for Fermi curves would be
the generalisation to Bloch varieties, that is, we no longer fix the eigenvalue λ.
By (4.1.4), the Bloch variety can be seen as a stack of Fermi curves indexed
by λ, or, given section 4.4, by the zeroth Fourier coefficient of a single otherwise
constant potential. Hence locally, the solution of the moduli problem for the
Fermi curves can be used to solve the same problem for the Bloch varieties.
Double points then become “double lines”, etc. However, as the zeroth Fourier
coefficient can grow arbitrary large, we cannot fit the potentials u − λ into a
bounded set like BNC simultaneously for all λ ∈ C. This simply means that,
even asymptotically, we can no longer treat each handle separately when we
try to solve the isospectral problem. Instead, altering λ may cause handles to
run into each other, adding relations to the free abelian isospectral group. For
example, the formula (4.4.2) allows us to calculate for which û0 (and hence
for which λ, given some fixed potential u) the double lines intersect. It turns
out that for generic lattices, each node (intersection) is met by three lines.
For arbitrary potentials, when the double points split, the double lines become
double cylinders (in the S1-case) representing the isospectral flow. Taking the
junction of half-cylinders at each node, we expect the relations added to the
isospectral group per node to be a Kirchhoff type zero sum law. At the same
time, the size of the new junction defines a new modulus.

So far, we have only talked about generalisations of the two-dimensional
theory. Once the inverse Schrödinger problem has been solved in its entirety in
two dimensions, it is natural to ask for a solution in higher dimensions, especially
for the“real world”case d = 3. In [ERT84, KT90, Sch96], methods are developed
to solve the isospectral problem. In particular, a Bloch variety of a potential u
in d dimensions contains, in certain “infinite energy” limits, lower-dimensional
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Bloch varieties for potentials of certain “directional averages” of u. All Bloch
varieties in dimensions lower than d can be recovered this way. In order to give
meaning to the phrase “infinite energy”, the Bloch variety is embedded into a
projective space. For the definition of“directional average”, take a subspace K ≤
Rd that is compatible with the dual period lattice, that is, the dimension of K
equals the rank of Γ∗ ∩K. The restricted Fourier transform û|Γ∗∩K then gives
rise to a potential uK which is the average of u restricted to K⊥, that is, the
directions orthogonal to K. These results should be attempted to be generalised
to larger spaces of potentials.

Of course, being able to extract the lower-dimensional Bloch varieties from
higher dimensional ones does not mean that the same is possible the other
way round. Indeed, there is no reason for the existence of such a “holographic
principle”. Nevertheless, the above method should be helpful in solving the
isospectral problem, at least in the case d > 2, for at larger dimensions the
isospectral sets should already have become so small that the lattice symmetries
completely generate them. In other words, the isospectral sets are minimal,
and with lower-dimensional Bloch varieties contained in the Bloch variety, they
cannot become larger again. The moduli problem, on the other hand, is probably
not as easy.

Finally, a further avenue of generalisation is to solve the inverse problem for
a different system than the time-independent Schrödinger equation, such as the
time-dependent Schrödinger equation, or Schrödinger equations with a vector
potential describing a magnetic field.
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Appendix A

Additional function space
theory

In chapter 2 we already covered the function space theory required for the main
part of this work. In this appendix, we shall only include some further addenda
required for appendix B.

A.1 Lorentz–Karamata spaces

In this section, we shall generalise the Lorentz–Zygmund spaces introduced in
section 2.4 to the Lorentz–Karamata spaces1. We need this generalisation only
for the case X = Γ∗, and there only to remove the slight constraints on conver-
gence speed that Lorentz–Zygmund spaces still impose. To keep things simple,
we shall therefore introduce Lorentz–Karamata spaces only for X = Γ∗. We
begin with a generalisation of the logarithmic-power sequences encountered in
the Lorentz–Zygmund quasi-norms.

Definition A.1.1 (Karamata sequences). A positively-valued sequence (bn)n∈N
is called a Karamata sequence if it is varying more slowly than a power, that is,
for all ε > 0 there are constants C1, C2 > 0, a non-increasing sequence (an)n∈N,
and a non-decreasing sequence (cn)n∈N, both with values in R>0, such that

C1an ≤ n−εbn ≤ C2an, C1cn ≤ nεbn ≤ C2cn

for all n ∈ N.

The generalisation of the Lorentz–Zygmund quasi-norms is now straightfor-
ward:

Definition A.1.2 (Lorentz–Karamata quasi-norms). For 0 < p ≤ ∞, 0 < a ≤
∞ and Karamata sequences (bn)n∈N, we define the Lorentz–Karamata quasi-

1Lorentz–Karamata spaces are named in honour of J. Karamata, whose research included
function growth. They appear to have been introduced by J. S. Neves in his doctoral dis-
sertation. Unfortunately, neither this dissertation nor the resulting publication [Nev02] were
available to us. Therefore, our account follows [EE04, 3.4.3].
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norms ‖ · ‖p,a;b on M(Γ∗) by

‖f‖p,a;b :=


( ∞∑
n=1

(
n1/pbnf

?(n)
)a
n−1

)1/a

, if 0 < a <∞,
∞

sup
n=1

n1/pbnf
?(n), if a =∞.

For bn = (1 + log n)α, one obtains the Lorentz–Zygmund spaces. Again, it
is easy to see that for a 6=∞, the resulting Lorentz–Karamata spaces `p,a;b(Γ∗)
are Banach spaces whenever na/p−1ban is non-increasing. In fact, we have

Theorem A.1.3. Let 1 < q < p ≤ ∞ and let b be a non-decreasing, divergent
Karamata sequence. Then `p,1;b(Γ∗) is, possibly after switching to an equivalent
quasi-norm, a Banach space and we have the continuous embeddings

`q(Γ∗) ⊆ `p,1;b(Γ∗) ⊆ `p,1(Γ∗).

Proof. The continuity of the embeddings follows immediately from the definition
of the Lorentz–Zygmund, resp. Lorentz–Karamata quasi-norms. Now, [EE04,
Lemma 3.4.34 (i)] together with the integral convergence criterion implies that
the quasi-norm of `p,1;b(Γ∗) is equivalent to

f 7→ b1‖f‖∞ +
∞∑
n=1

n1/pbnf
??(n)n−1.

Since `p,1;b(Γ∗) ⊆ `∞(Γ∗) continuously, this is in turn equivalent to

f 7→
∞∑
n=1

n1/pbnf
??(n)n−1.

But this is a Banach function norm by proposition 2.3.11.

Let us now state two stability statements for Karamata sequences.

Proposition A.1.4 ([EE04, 3.4.33 (i)]). If b is a Karamata sequence, so is br,
for all r ∈ R.

Proposition A.1.5. Let f ∈ `∞,1(Γ∗) such that f? is a Karamata sequence.
Then the sequence (bn)n∈N defined by

bn :=
∞∑
k=n

f?(k)
k

is a non-increasing Karamata sequence with limn→∞ bn = 0.

Proof. That (bn)n∈N is a Karamata sequence follows from [EE04, 3.4.33 (iv)].
Since f? is non-negative, that sequence is non-increasing. The limit of zero is
obvious.

The following theorem is the main reason why we introduced the Lorentz–
Karamata spaces in the first place. It will become important in appendix B.
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Theorem A.1.6. As a set, the Lorentz space `∞,1(Γ∗) is given by

`∞,1(Γ∗) =
⋃
b

`∞,1;b(Γ∗),

where the union runs over all non-decreasing, divergent Karamata sequences.

Proof. The inclusion “⊇” follows from theorem A.1.3. Now let f ∈ `∞,1(Γ∗).
The rearrangement f? is non-increasing, so if f? is not a Karamata sequence,
then f? falls, at times, faster than some power, and can thus be majorised by a
Karamata sequence. It is therefore sufficient to investigate the case where f? is
a Karamata sequence. In this case, proposition A.1.5 implies that

bn :=
∞∑
k=n

f?(k)
k

defines a non-increasing Karamata sequence b converging to zero. Hence, by
proposition A.1.4, 1/

√
b is a non-decreasing, divergent Karamata sequence.

Now,
∞∑
n=1

f?(n)
n
√
bn

<∞

by a classical convergence test due to Dini (see e.g. [Kno64, Satz 175.4]). Hence,
f ∈ `∞,1;1/

√
b(Γ∗).
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Appendix B

Extension of the
Schrödinger theory to Dirac
operators — a failed
attempt

The Dirac equation is the relativistic counterpart of the Schrödinger equation.
In this work, we shall treat only the two-dimensional Dirac equation, that is,
d = 2, corresponding to one time and one space coordinate1. Physicists use
the (four-dimensional) Dirac equation to describe high-energy behaviour such
as that of electrons bound to highly charged atomic nuclei more accurately than
with the Schrödinger equation. Since this is a work about Schrödinger operators,
we are rather interested in the zero energy case λ = 0. In section B.2, we
shall prove the physically expected result that the spectral data of Schrödinger
and Dirac operators coincide at λ = 0 for each fixed Schrödinger potential
and corresponding Dirac potentials. Initially, Dirac operators appeared to be
preferable over Schrödinger operators due to their slightly higher flexibility in
choice of potential and boundary conditions, and the fact that Dirac operators
are first-order differential operators, while the Schrödinger operator is second
order. The former point in particular leads to a symmetry in the Fermi curves
of Dirac operators which the corresponding Schrödinger Fermi curves do not
have. (On the other hand, Dirac Fermi curves generally do not have the point
symmetry of Schrödinger Fermi curves.)

In order to truly generalise the Schrödinger case, it is necessary to introduce
a certain symmetry breaking in the Dirac potentials. While this works quite
well at first, it causes problems later. Namely at the point where the perturbed
Fourier transform (the analog of û(u,±ν) from the Schrödinger case) is defined,
the dissimilar spaces of the potentials mix in an apparently irreconcilable way.
Therefore, we feel compelled to brand this attempt at arriving at a partial

1While it is customary in relativistic physics to to denote the time coordinate by x0 and
the space coordinate by x1 in a Minkowski space, we shall remain in an a priori Euclidean
picture and use the indices 1 and 2. These two coordinates are not to be confused with the
two components of a solution of the Dirac equation, for which we shall use the same indices.
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solution of the moduli problem as failed. Without the symmetry breaking, when
the spaces of potentials are equal, the theory works quite well (see [Sch02]).

Since there is a certain aesthetic beauty to the Dirac theory, we would like
to present it here as an appendix, at least to the point of failure, if only to serve
as an example that even late in a mathematical development, an impasse may
occur.

B.1 Dirac operators

In this section we shall derive properties of Dirac operators and their resolvents
just as we did in chapter 3 for Schrödinger operators. However, it must be noted
that passing to the Dirac operator introduces certain technical problems as re-
gards Riesz–Schauder theory which destroy the uniformness of some results from
the Schrödinger theory. In what follows, we shall explain these shortcomings in
detail whenever they arise.

B.1.1 Dirac operators on the torus

By the Dirac equation, we mean the matrix equation(
v ∂

−∂ w

)(
ψ1

ψ2

)
= λ

(
ψ1

ψ2

)
. (B.1.1)

Recall that the two differential operators ∂ and ∂ occurring here are the Wirt-
inger operators, which we introduced in section 4.2. Unlike the Schrödinger
equation (3.1.1), the Dirac equation contains two potentials v, w : R2 → C. The
solution ψ := (ψ1, ψ2)t also has two components. As in the Schrödinger case, λ
denotes the eigenvalue.

The boundary conditions for the Dirac equation (B.1.1) are similar to the
Schrödinger case. Again, let Γ ⊆ R2 be a non-degenerate geometric lattice, then
we demand that

v(x+ γ) = v(x), w(x+ γ) = w(x), for all x ∈ R2, γ ∈ Γ. (B.1.2)

For the solution ψ, we demand, in complete analogy to (3.1.3), that for the
boundary condition k ∈ C2, we have

ψ(x+ γ) = e2πi(k|γ)ψ(x) for all x ∈ R2, γ ∈ Γ. (B.1.3)

As is the case for the Schrödinger equation, we shall want to hide the boundary
condition within the operator and formulate a single Dirac equation on F :=
R2/Γ. The Wirtinger operators with boundary conditions ∂k and ∂k introduced
in (4.2.1) accomplish just that, as we presently shall see: again, we have (cf.
proposition 3.1.6)

Proposition B.1.4. For all k ∈ C2, the operators ∂k and ∂k formally map the
space of Γ-periodic functions on R2 into itself.

For convenience, we introduce the notation

D(k, v, w) :=
(

v ∂k
−∂k w

)
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for the Dirac operator. We then have the Dirac equation

D(k, v, w)ψ = λψ (B.1.5)

entirely on F . Lemma 3.1.9 also holds in the Dirac case as its truth only depends
on (3.1.3) and not on the operator itself. Therefore, we can prove in analogy to
theorem 3.1.10:

Theorem B.1.6. The quantities k, v, w, ψ and λ fulfil the equations (B.1.1),
(B.1.2) and (B.1.3) if and only if

D(k, v, w)e2πi(k|x)ψ(x) = λe2πi(k|x)ψ(x).

Proof. From (4.2.1), we derive

∂e2πi(k|x)ψ2(x) = e2πi(k|x)∂kψ2(x),

−∂e2πi(k|x)ψ1(x) = e2πi(k|x)(−∂kψ1(x)).

Hence, the claim follows as in (3.1.11).

Therefore, we need, as in the Schrödinger case, only consider the Dirac equa-
tion (B.1.5). Note that much more obviously than the Schrödinger equation,
(B.1.5) readily admits the generalisation(

v ∂k
−∂k′ w

)
ψ = λψ,

where k, k′ ∈ C2 are distinct in general. We shall investigate this possibility
later in order to derive a certain translation symmetry.

B.1.2 Resolvents of free Dirac operators

For convenience, we denote the general resolvent of the Dirac operator by

R(λ, k, v, w) :=
(
λ−

(
v ∂k
−∂k w

))−1

.

In this subsection, we would like to define the free resolvent

R(λ, 0, 0, 0) =
(

λ −∂0

∂0 λ

)−1

for λ ∈ (−∞,−1]i. For technical reasons, however, it will be convenient to in-
clude boundary conditions right away. The initial domain for λ in the resolvents
with boundary conditions will then be dependent on set of boundary conditions
given.

Theorem B.1.7. For all bounded V ⊆ C2 there is a λ0 ∈ (−∞,−1]i such that
the resolvent R(λ, k, 0, 0) is defined and maps F`∞,1(Γ∗)×F`2,1(Γ∗) boundedly
into F`1(Γ∗) × F`2,1(Γ∗) for all λ/i ≤ λ0/i and all k ∈ V . While the choice
of λ0 depends on V , the bound on the resolvent can be chosen independently
of V and λ.
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Proof. Since we are using Fourier spaces, we need to examine the Fourier trans-
form of R(λ, k, 0, 0). The operator(

λ −∂k
∂k λ

)
is defined on S(F )×S(F ) and its Fourier transform x 7→ κ is the multiplication
with (

λ −πi(κ1 + k1)− π(κ2 + k2)
πi(κ1 + k1)− π(κ2 + k2) λ

)
.

Therefore, the Fourier transform of R(λ, k, 0, 0) is the multiplication with(
λ

λ2−π2(κ+k)2
πi(κ1+k1)+π(κ2+k2)

λ2−π2(κ+k)2

−πi(κ1+k1)+π(κ2+k2)
λ2−π2(κ+k)2

λ
λ2−π2(κ+k)2

)
. (B.1.8)

The diagonal entry λ/(λ2−π2(κ+k)2) maps `∞,1(Γ∗) boundedly into `1(Γ∗) as
in the proof of theorem 3.2.5 if we choose λ0 such that |λ2−π2(κ+ k)2| ≥ 1 for
all λ/i ≤ λ0/i, all k ∈ V and all κ ∈ Γ∗. This is possible due to lemma 3.2.15.
The same diagonal entry maps `2,1(Γ∗) into an obviously much better space
than `2,1(Γ∗). Since |λ|/|λ2 − π2(κ − k)2| (with proper choice of λ0) decreases
monotonously as |λ| ↗ ∞, no λ-dependence is introduced into the bound. Now,
let g(κ) be one of the off-diagonal entries, then

g?(n) = π
|κn|

|λ2 − π2(κn + k)2|
,

where (κn)n∈N is an arrangement such that |(κn + k)2| ≥ |(κn′ + k)2| whenever
n ≥ n′, just as in (3.2.7). Given that |g(κ)| decreases monotonously as |κ| ↗ ∞,
and by our choice of λ0, by similar reasoning as in the proof of theorem 3.2.5,
we arrive at the estimate

C1

√
n− 1

|(λ− λ0)2|+ C2(n− 1)
≤ g?(n) ≤ C3

√
n− 1

|(λ− λ0)2|+ C4(n− 1)

where C1, C2, C3, C4 > 0 with C4 < 1 are constants depending only on Γ∗. Now
let f ∈ `2,1(Γ∗), then by the Hardy–Littlewood inequality (theorem 2.3.6):

∑
κ∈Γ∗

|g(κ)f(κ)| ≤
∞∑
n=1

g?(n)f?(n) ≤
∞∑
n=1

f?(n)C3

√
n− 1

|(λ− λ0)2|+ C4(n− 1)

≤ C3

C4

∞∑
n=1

f?(n)√
n

=
C3

C4
‖f‖2,1,

so multiplication with g maps `2,1(Γ∗) boundedly into `1(Γ∗), with a bound
independent of λ. Since n 7→ 1/

√
n is monotonically decreasing, we can make

a similar calculation for the case f ∈ `∞,1(Γ∗) due to Hardy’s lemma (proposi-
tion 2.3.5):

∞∑
n=1

(gf)?(n)√
n

≤
∞∑
n=1

g?(n)f?(n)√
n

≤ C3

C4

∞∑
n=1

f?(n)√
n
√
n

=
C3

C4
‖f‖∞,1,

so multiplication with g also maps `∞,1(Γ∗) boundedly into `2,1(Γ∗), with a
bound independent of λ. This proves the theorem.
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The choice of spaces F`∞,1(Γ∗) × F`2,1(Γ∗) → F`1(Γ∗) × F`2,1(Γ∗) may
seem somewhat odd at first glance but is (almost) right on tune with the spaces
we shall choose for our potentials v, w in the next subsection, at least as far
as the possible range of rearrangement-invariant Banach spaces is concerned
(cf. theorem 2.3.3). But let us prove the following compactness result first.

Theorem B.1.9. Let 1 ≤ p1, q1, p2, q2 ≤ ∞ such that
1
p2
− 1
p1

< 1,
1
q2
− 1
q1
< 1,

1
p2
− 1
q1
<

1
2
,

1
q2
− 1
p1

<
1
2
.

Then for all bounded V ⊆ C2 there is a λ0 ∈ (−∞,−1]i such that the resol-
vent R(λ, k, 0, 0) is defined and maps F`p1,1(Γ∗) × F`q1,1(Γ∗) compactly into
the space F`p2,1(Γ∗) × F`q2,1(Γ∗), for all λ/i ≤ λ0/i and all k ∈ V . More-
over, let b be a non-decreasing, divergent Karamata sequence, then R(λ, k, 0, 0)
maps F`∞,1;b(Γ∗)×F`2,1;

√
b(Γ∗) compactly into F`1(Γ∗)×F`2,1;

√
b(Γ∗). In all

these cases, the bound on R(λ, k, 0, 0) vanishes as |λ| → ∞.

Proof. The proof of the first part is similar to the proof of theorem 3.2.10. Using
the sequence of finite-rank operators (Pm)m∈N from that proof, we get, for

g1(κ) :=
λ

λ2 − π2(κ+ k)2
,

the estimate

‖g1f − Pmg1f‖s,1 ≤ sup
n∈N

|λ− λ0|n1/s−1/r

|λ− λ0|2 + C(n+m− 1)
‖f‖r,1

for a suitable C > 0 and all 1 ≤ r, s ≤ ∞. This supremum vanishes for m→∞
whenever 1/s−1/r < 1. This is the case for (r, s) = (p1, q1) and (r, s) = (p2, q2).
For

g2(κ) :=
±πi(κ1 + k1) + π(κ2 + k2)

λ2 − (κ+ k)2
,

we get the estimate

‖g2f − Pmg2f‖s,1 ≤ sup
n∈N

C ′
√
n+m− 1n1/s−1/r

|λ− λ0|2 + C(n+m− 1)
‖f‖r,1

for suitable C,C ′ > 0 and all 1 ≤ r, s ≤ ∞. This time, the supremum vanishes
for m → ∞ whenever 1/s − 1/r < 1/2, which is the case for (r, s) = (p1, q2)
and (r, s) = (q1, p2).

Let’s turn to the cases where Lorentz–Karamata spaces are involved. We
get

‖g1f − Pmg1f‖1 ≤ sup
n∈N

|λ− λ0|n
(|λ− λ0|2 + C(n+m− 1))bn

‖f‖∞,1;b,

‖g2f − Pmg2f‖1 ≤ sup
n∈N

C ′
√
n+m− 1

√
n

(|λ− λ0|2 + C(n+m− 1))
√
bn
‖f‖2,1;

√
b,

‖g2f − Pmg2f‖2,1;
√
b ≤ sup

n∈N

C ′
√
n+m− 1

√
n

(|λ− λ0|2 + C(n+m− 1))
√
bn
‖f‖∞,1;b,

‖g2f − Pmg2f‖2,1;
√
b ≤ sup

n∈N

|λ− λ0|
(|λ− λ0|2 + C(n+m− 1))

‖f‖2,1;
√
b.
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The last of these suprema clearly vanishes as m → ∞. For the remainder, we
prove in a model calculation that

lim
m→∞

sup
n∈N

ann

n+m
= 0

for all non-increasing sequences (an)n∈N converging to zero. But this already
follows from lemma 4.5.39 and lemma 4.5.41. The above suprema can be es-
timated against the model calculation. For similar reasons, the norms vanish
as |λ| → ∞.

B.1.3 Resolvents of general Dirac operators

In this subsection, we shall add potentials v, w and arbitrary λ in close analogy
to section 3.3. Recall that it was our goal to use the Dirac equation to describe
aspects of the Schrödinger case. Therefore, we shall not take the potentials v, w
from one space. Instead, we will use the potential v to essentially fill the role
of the Schrödinger potential u, that is, we choose v ∈ F`∞,1(Γ∗). On the
other hand, it will be sufficient (and, for our purposes, necessary) to choose
the potential w from the much smaller space F`1(Γ∗), with an upper bound
on the potential at that. Occasionally, it will be necessary to make use of
the fact proven in theorem A.1.6 that each v ∈ F`∞,1(Γ∗) is also element of
some Lorentz–Karamata Fourier space F`∞,1;b(Γ∗), where b is a non-decreasing,
divergent Karamata sequence.

Lemma B.1.10. Let V ⊆ C2 be bounded. Then there is a C2 > 0 such that for
all v0 ∈ F`∞,1(Γ∗) there is an N ∈ N and a C1 > 0 with v0 ∈ BNC1

as well as
a λ0 ∈ (−∞,−1]i such that the operator(

v 0
0 w

)
R(λ, k, 0, 0) (B.1.11)

is bounded on F`∞,1(Γ∗)×F`2,1(Γ∗) for all v ∈ BNC1
, w ∈ F`1(Γ∗) with ‖w‖F1 <

C2, k ∈ V and all λ ∈ (−∞,−1]i with λ/i ≤ λ0/i. There is a norm equivalent
to the standard norm on F`∞,1(Γ∗)×F`2,1(Γ∗) such that∥∥∥∥( v 0

0 w

)
R(λ, k, 0, 0)

∥∥∥∥ < 1.

The same statement, possibly with different constants N , C1, C2, λ0, holds if
one replaces F`∞,1(Γ∗) × F`2,1(Γ∗) with F`∞,1;b(Γ∗) × F`2,1;

√
b(Γ∗) for v ∈

BNC1
∩ F`∞,1;b(Γ∗) where b is a non-decreasing, divergent Karamata sequence.

Proof. By theorem B.1.7, R(λ, k, 0, 0) maps F`∞,1(Γ∗) × F`2,1(Γ∗) boundedly
into F`1(Γ∗)×F`2,1(Γ∗), and by theorem B.1.9, R(λ, k, 0, 0) maps F`∞,1;b(Γ∗)×
F`2,1;

√
b(Γ∗) boundedly into F`1(Γ∗) × F`2,1;

√
b(Γ∗). Therefore the opera-

tor (B.1.11) maps both F`∞,1(Γ∗)×F`2,1(Γ∗) and F`∞,1;b(Γ∗)×F`2,1;
√
b(Γ∗)

boundedly into themselves, since by proposition 2.4.15, we have the bounded
operations

`∞,1(Γ∗) ∗ `1(Γ∗)→ `∞,1(Γ∗), `1(Γ∗) ∗ `2,1(Γ∗)→ `2,1(Γ∗),

`∞,1;b(Γ∗) ∗ `1(Γ∗)→ `∞,1;b(Γ∗), `1(Γ∗) ∗ `2,1;
√
b(Γ∗)→ `2,1;

√
b(Γ∗).
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We now need to find equivalent norms on F`∞,1(Γ∗) and F`∞,1;b(Γ∗) to make
the norm of (B.1.11) smaller than one for suitable v, w, λ. Recall (B.1.8),
the Fourier transform of R(λ, k, 0, 0). It follows that the Fourier transform
of (B.1.11) is given by

(
f1

f2

)
7→ 1

µ(F )



v̂ ∗
(

λ
λ2−π2(κ+k)2 f1

)
+v̂ ∗

(
πi(κ1+k1)+π(κ2+k2)

λ2−π2(κ+k)2 f2

)
ŵ ∗

(
−πi(κ1+k1)+π(κ2+k2)

λ2−π2(κ+k)2 f1

)
+ŵ ∗

(
λ

λ2−π2(κ+k)2 f2

)


.

Assuming f1 ∈ `∞,1(Γ∗) (resp. f1 ∈ `∞,1;b(Γ∗)) and f2 ∈ `2,1(Γ∗) (resp. f2 ∈
`2,1;

√
b(Γ∗)), we shall now estimate the norm of this operator. The ŵ-terms

certainly have norm smaller than one for ‖w‖F1 < C2 if C2 is chosen small
enough (in fact, C2 can be chosen independently of b). As for the v̂-terms, the
norm of

v̂ ∗
(

λ

λ2 − π2(κ+ k)2
f1

)
is diminishable using N -localised quasi-norms and levelling operators quite pre-
cisely as in the proof of lemma 3.3.6 (with C replaced by C1) since λ appears
quadratically in the denominator but only linearly in the numerator. The same
is possible with

v̂ ∗
(
πi(κ1 + k1) + π(κ2 + k2)

λ2 − π2(κ+ k)2
f2

)
.

Decompose v̂ = v̂1 + v̂2 as before. Here, we can gratuitously estimate f2 with
the `∞,1(Γ∗)-norm for the v̂2 part. The expression

|πi(κ1 + k1) + π(κ2 + k2)|√
|λ2 − π2(κ+ k)2|

is bounded, leaving a |λ| for diminishing. The use of Lorentz–Karamata spaces
is relevant only for the v̂1-part, where the diminishing occurs through choice of
suitable constants.

Proposition B.1.12. For all bounded V ⊆ C2 and all v0 ∈ F`∞,1(Γ∗) there is
a λ0 ∈ (−∞,−1]i such that the resolvent R(λ, k, v, w) is defined and maps the
space F`∞,1(Γ∗)× F`2,1(Γ∗) boundedly into F`1(Γ∗)× F`2,1(Γ∗) for all λ/i ≤
λ0/i, k ∈ V , v ∈ BNC1

and all w ∈ F`1(Γ∗) with ‖w‖F1 < C2, with the same N ,
C1, C2 as in lemma B.1.10. Moreover, denote the set of applicable pairs of
potentials above by U , then there is a non-decreasing, divergent Karamata se-
quence b with v0 ∈ F`∞,1;b(Γ∗) such that the map

(U ∩ F`∞,1;b(Γ∗)×F`1(Γ∗))× V

→ K(F`2,1;
√
b(Γ∗)×F`2,1;

√
b(Γ∗),F`2,1;

√
b(Γ∗)×F`2,1;

√
b(Γ∗))

(v, w, k) 7→ R(λ, k, v, w)

is compact with respect to the weak topology on U and the strong topologies
on V and K(F`2,1;

√
b(Γ∗)×F`2,1;

√
b(Γ∗),F`2,1;

√
b(Γ∗)×F`2,1;

√
b(Γ∗)) for all λ ∈

(−∞,−1]i with λ/i ≤ λ0/i. Continuity is uniform with respect to k.
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Proof. Due to theorem A.1.6, we can find a suitable Karamata sequence b
with v0 ∈ F`∞,1;b(Γ∗). The proof is now similar to the proof of proposi-
tion 3.3.21. By lemma B.1.10 and the Neumann theorem,

1−
(
v 0
0 w

)
R(λ, k, 0, 0)

is boundedly invertible on F`∞,1(Γ∗)×F2,1(Γ∗) (resp. F`∞,1;b(Γ∗)×F2,1;b(Γ∗))
for those v, w, λ and k as implied by the statement of the proposition. Hence,
we obtain

R(λ, k, 0, 0)
(

1−
(
v 0
0 w

)
R(λ, k, 0, 0)

)−1

=
(
D(λ, k, 0, 0) +

(
v 0
0 w

))−1

= R(λ, k, v, w).

Therefore, by theorem B.1.7, R(λ, k, v, w) maps F`∞,1(Γ∗)×F`2,1(Γ∗) bound-
edly into F`1(Γ∗) × F`2,1(Γ∗). Furthermore, by theorem B.1.9 and proposi-
tion 2.2.4, R(λ, k, v, w) maps F`∞,1;b(Γ∗) × F`2,1;

√
b(Γ∗) compactly into the

space F`1(Γ∗) × F`2,1;
√
b(Γ∗). This restricts/embeds to a compact mapping

on F`2,1;
√
b(Γ∗) × F`2,1;

√
b(Γ∗). Since this space has a Schauder basis, the re-

maining statements follow as in proposition 3.3.21.

Theorem B.1.13. For all w0 ∈ F`1(Γ∗) of sufficiently small norm, and all v0 ∈
F`∞,1(Γ∗) there is a nondecreasing, divergent Karamata sequence b with v0 ∈
F`∞,1;b(Γ∗), and an open neighbourhood of both (v0, w0) and (0, 0) in the func-
tion space F`∞,1;b(Γ∗)×F`1(Γ∗) which is invariant under translation operators
such that for all (k, v, w) ∈ C2 × U there is a discrete set S(k, v, w) ⊆ C of
finite-order singularities of the resolvent. In particular, the map

{(v, w, k, λ) ∈ U × C2 × C : λ /∈ S(k, u)}

7→ K(F`2,1;
√
b(Γ∗)×F`2,1;

√
b(Γ∗),F`2,1;

√
b(Γ∗)×F`2,1;

√
b(Γ∗))

(v, w, k, λ) 7→ R(λ, k, v, w)

is defined and continuous with respect to the weak topology on U and the usual
norm topologies otherwise. Continuity is locally uniform in k.

Proof. The proof is analogous to the proof of theorem 3.3.24, except that we
use F`2,1;

√
b(Γ∗) instead of L2(F ). Proposition B.1.12 yields an open neigh-

bourhood U of potential pairs and, for each bounded V ⊆ C2, compact resol-
vents R(λ0, k, v, w) with a suitable λ0 ∈ (−∞,−1]i, k ∈ V and (v, w) ∈ U , so
that by the Riesz–Schauder theorem 2.2.7, the set

S(k, v, w) := {λ ∈ C \ {λ0} : (λ0 − λ)−1 ∈ SpecR(λ0, k, v, w)}

is discrete. For λ ∈ C \ S(k, v, w), λ 6= λ0, the operator

(λ0 − λ)−1 −R(λ0, k, v, w)

is boundedly invertible. This yields

(λ0 − λ)−1R(λ0, k, v, w)((λ− λ0)−1 −R(λ0, k, v, w))−1 = R(λ, k, v, w).

The remainder of the theorem (extension from V to C2 and the continuity
statements) follow as in theorem 3.3.24.
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B.2 Fermi curves of Dirac operators

B.2.1 Bloch varieties and Fermi curves

With theorem B.1.13, we are now in a position which enables us to execute
basically the same programme as in section 4.1. That is, we can define the
Bloch variety of the Dirac operator

BD(v, w) := {(k, λ) ∈ C2 × C : There is a ψ 6= 0 such that D(k, v, w)ψ = λψ}

and the Fermi curve of the Dirac operator

FD(v, w) := {k ∈ C2 : (k, 0) ∈ BD(v, w)}.

Again, these definitions must be viewed as tentative, as we need a result similar
to theorem 4.1.3 in order to establish a sound analytical footing. Before we do
so, let us first expose the similarities of, and differences between Schrödinger
and Dirac Fermi curves. First off, we have, as in the Schrödinger case,

BD(v, w) =
∐
λ∈C

FD(v − λ,w − λ),

so the restriction to λ = 0 in the Fermi curve has, per se, the same effect as
the restriction to any other constant value for λ. It has to be noted, however,
that in subsection B.1.3 we developed the general Dirac theory for potentials w
with a certain bound on the norm, which will not be satisfied for all λ in w−λ.
Luckily, in case of Fermi curves, we can prove the following scaling behaviour.

Proposition B.2.1. Let v, w be potentials from vector spaces for which the
Dirac equation (B.1.5) makes sense, and let c ∈ C with c 6= 0. Then FD(v, w) =
FD(c−1v, cw).

Proof. We have k ∈ FD(v, w) if and only if there is a nonzero ψ := (ψ1, ψ2)t

such that D(k, v, w)ψ = 0. A simple calculation shows that this is the case
if and only if D(k, ṽ, w̃)ψ̃ = 0, where ṽ = c−1v, w̃ = cw and ψ̃ = (ψ̃1, ψ̃2)t

with ψ̃1 = ψ1 and ψ̃2 = c−1ψ2.

This proposition allows us to identify Fermi curves for arbitrary poten-
tials v ∈ F`∞,1(Γ∗) and w ∈ F`1(Γ∗) with Fermi curves of potentials within
the domain of validity of theorem B.1.13.

Understandably, the Schrödinger Fermi curve, dependent on only one po-
tential, has no such scaling behaviour. On the other hand, in proposition 4.5.8
we proved the symmetry F (u) = −F (u), which is not shared with the Dirac
Fermi curves. The same methods used to prove this proposition would de-
rive FD(v, w) = −FD(w, v), but since we take our potentials from different
spaces, this merely shows once more that whether we take v or w to be the
potential with Schrödinger characteristics is of no consequence. Rather, we now
show the connexion between the Schrödinger and the Dirac theory in the guise
of the following identity.

Theorem B.2.2. Let u ∈ F`∞,1(Γ∗). Then we have the identity of Schrödinger
and Dirac Fermi curves

F (u) = FD(u/(4c), c)

for all c ∈ C, c 6= 0.
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Proof. Let k ∈ F (u). Then there exists some non-zero solution of the Schröd-
inger equation ψ2, whose second derivatives are in F`∞,1(Γ∗):

(−∆k + u)ψ2 = 0. (B.2.3)

It then follows from a calculation similar to that in the proof of proposition 3.2.12
that the function ψ1 defined by the equation

ψ1 = −1
c
∂kψ2 (B.2.4)

is in F`2,1(Γ∗). Now, solving (B.2.4) for −∂kψ2 and dividing (B.2.3) by 4c
yields, using lemma 4.2.2, the system of equations

∂kψ1 +
u

4c
ψ2 = 0,

cψ1 + ∂kψ2 = 0.
(B.2.5)

Therefore, the tuple (ψ1, ψ2)t is in the kernel of D(0, k, u/(4c), c), and thus k ∈
FD(u/(4c), c).

If, on the other hand, k ∈ FD(u/(4c), c), there is a ψ1 ∈ F`2,1(Γ∗) whose
first derivatives are in F`∞,1(Γ∗) and a ψ2 ∈ F`1(Γ∗) not both of which are
zero such that the system (B.2.5) is fulfilled. From the second equation, we can
infer (B.2.4). This shows that the second derivatives of ψ2 are in F`∞,1(Γ∗).
By plugging (B.2.4) into the first equation, we arrive at (B.2.3) with the help
of lemma 4.2.2. Therefore, k ∈ F (u).

In total, this shows that F (u) = FD(u/(4c), c).

Note that it might seem that the previous theorem can be generalised by
replacing c with a nonvanishing holomorphic function w because the multi-
plication with a holomorphic function commutes with ∂k. However, the con-
dition w ∈ F`1(Γ∗) implies that such a w would be constant by Liouville’s
theorem for entire elliptic functions.

In any case, we see that the set of our Dirac Fermi curves is strictly larger
than our set of Schrödinger Fermi curves. We have already seen with propo-
sition B.2.1 that this provides us with a wider array of useful transformation
behaviours. As already mentioned at the end of subsection B.1.1, we can use
the freedom of having different boundary conditions for both ∂ and ∂ in an
intermediate step to elicit the following translation behaviour.

Proposition B.2.6. For suitable potentials v, w we have, at least formally,

FD(v, w) = FD(ψ−κv, ψκw) + k−κ

for all κ ∈ Γ∗.

Proof. Let k ∈ FD(v, w). Then, there exist ψ1, ψ2 such that

vψ1 + ∂kψ2 = 0, −∂kψ1 + wψ2 = 0.

Using proposition 4.2.4, and due to k±−κ = −k±κ , we see that this is equivalent
to

ψ−κvψκψ1 + ∂k−k−κ ψ2 = 0, −∂k−k+
κ
ψ1 + ψ−κψκwψ2 = 0,
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which is, due to k−κ − k+
κ = κ, in turn equivalent to

ψ−κv(ψκψ1) + ∂k−k−κ ψ2 = 0, ψ−κ(−∂k−k−κ (ψκψ1) + ψκwψ2) = 0.

Hence k ∈ FD(v, w) if and only if k ∈ FD(ψ−κv, ψκw) + k−κ . An eigenfunction
in the latter case is given by ψκψ1 and ψ2.

Since Dirac Fermi curves are a generalisation of Schrödinger Fermi curves, it
makes sense to prove a generalisation of theorem 4.1.3. That generalisation will
not have quite the same quality as this theorem, because we are no longer in a
Hilbert space setting. Nevertheless, we obtain a sound local analytic description
of Dirac Bloch varieties.

Theorem B.2.7. Let w0 ∈ F`1(Γ∗) have norm that is sufficiently small, v0 ∈
F`∞,1(Γ∗), k0 ∈ C2 and λ0 ∈ C. Furthermore, let b be a nondecreasing, di-
vergent Karamata sequence b with v0 ∈ F`∞,1;b(Γ∗) and assume there is a
nonzero ψ ∈ F`1(Γ∗)×F`2,1;

√
b(Γ∗) with D(k0, v0, w0)ψ = λ0ψ. Then there are

open neighbourhoods U , V and W of (v0, w0) (in F`∞,1;b(Γ∗) × F`2,1;
√
b(Γ∗)),

k0 and λ0, respectively, such that for all (v, w, k, λ) ∈ U × V ×W there is a
finite-dimensional subspace Σ(k, v, w) of F`2,1;

√
b(Γ∗) × F`2,1;

√
b(Γ∗) indepen-

dent of λ which is invariant under the Dirac operator D(k, v, w), such that the
intersection of the graph of the map (v, w) 7→ BD(v, w) with U × V ×W is the
zero locus of the determinant

(v, w, k, λ) 7→ det D(k, v, w)|Σ(k,v,w) .

This map is holomorphic in λ and k, and continuous in u, with the weak topology
on U and the usual topologies elsewhere.

Proof. By theorem B.1.13, λ0 is an isolated pole of the resolvent R(λ, k0, v0, w0).
By the reverse Riesz–Schauder theorem 2.2.8, the operator

P (k0, v0, w0) :=
1

2πi

∮
λ0

R(λ, k0, v0, w0)dλ

is a D(k0, v0, w0)-invariant projector. Since the resolvent is compact, the pro-
jector P (k0, v0, w0) has finite rank by proposition 2.2.5. Hence, the image of
this projector Σ(k0, v0, w0) is finite-dimensional. Let f1, . . . , fm be a basis
of Σ(k0, v0, w0). At this point in the proof of theorem 4.1.3, we considered
the Hermitian adjoint of the projector. But alas, F`2,1;

√
b(Γ∗) is not a Hilbert

space. Therefore, let f∗1 , . . . , f
∗
m be the dual basis to f1, . . . , fm and define a

partial operator on the dual space (F`2,1;
√
b(Γ∗)×F`2,1;

√
b(Γ∗))∗ by

(P ∗(k0, v0, w0)f∗i )(fj) := f∗i (P (k0, v0, w0)fj)

for all i, j = 1, . . . ,m. Hence, P ∗(k0, v0, w0) may be thought of as a finite-rank
projector to the space generated by f∗1 , . . . , f

∗
m (which is, of course, identical

to Σ(k0, v0, w0) due to finite-dimensionality). The matrix defined by the matrix
elements

(P ∗(k0, v0, w0)f∗i )(P (k0, v0, w0)fj)
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for i, j = 1, . . . ,m is simply the unity matrix and thus has nonzero determi-
nant. Due to continuity, there are small open neighbourhoods U , V and W :=
Bc(λ0) of (v0, w0), k0 and for an appropriate c > 0, respectively, such that for
all (v, w) ∈ U , k ∈ V the operators

P (k, v, w) :=
∮

|λ−λ0|<c

R(λ, k, v, w)dλ

are D(k, v, w)-invariant projectors of constant rank to finite-dimensional sub-
spaces Σ(k, v, w), and, with operators P ∗(k, v, w) as above, the matrices defined
by the matrix elements

(P ∗(k, v, w)f∗i )(P (k, v, w)fj),

i, j = 1, . . . ,m, have nonzero determinant. Due to the Σ(k, v, w)-invariance of
the Dirac operator, the matrix elements Aij(k, v, w) can be defined by

(λ−D(k, v, w))P (k, v, w)fi =
m∑
j=1

Aij(k, v, w)P (k, v, w)fj .

The matrix A(k, v, w) defined by these matrix elements is singular if and only
if (v, w, k, λ) lies in the graph of (v, w) 7→ BD(v, w). Now,

(P ∗(k, v, w)f∗l )((λ−D(k, v, w))P (k, v, w)fi)

=
m∑
j=1

Aij(k, v, w)(P ∗(k, v, w)f∗l )(P (k, v, w)fj)

for all i, l = 1, . . . ,m, proving the theorem just as in the proof of theorem 4.1.3.

B.2.2 Free and asymptotically free Dirac Fermi curves

In sections 4.2 and 4.3, we explicitly calculated the free Schrödinger Fermi
curve F (0) and also proved the asymptotic freeness of general Schrödinger Fermi
curves outside the handles. We shall now generalise these results to Fermi curves
of Dirac operators. As we shall see, the first-order nature of the Dirac opera-
tor, in particular the translation behaviour proved in proposition B.2.6, greatly
simplify this task in comparison with the Schrödinger case.

Proposition B.2.8. Recall the definition of R in (4.2.6). The free Fermi curve
is given by FD(0, 0) = R + Γ∗. Furthermore, R is a system of representatives
for the quotient FD(0, 0)/Γ∗, provided that the pairs of distinct points (k−κ , k

+
κ )

are identified to double points for all κ ∈ Γ∗, κ 6= 0.

Proof. Let k ∈ FD(0, 0). Then there are functions ψ1, ψ2 not both of which are
zero such that

∂kψ1 = 0, ∂kψ2 = 0.

A Fourier transform yields the equations

πi((κ1 + k1)− i(κ2 + k2))ψ̂1(κ) = 0,

πi((κ1 + k1) + i(κ2 + k2))ψ̂2(κ) = 0.
(B.2.9)
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Since not both ψ1, ψ2 are zero, there is a κ ∈ Γ∗ such that (4.2.9) holds. The
remainder of the proof is now identical to the remainder of the proof of theo-
rem 4.2.5.

This proposition shows that FD(0, 0) = F (0) (see figure 4.2). We already
know from theorem B.2.2 that F (0) = FD(0, c) for all c ∈ C, c 6= 0. Indeed, it
is possible to show that F (0) = FD(v, 0) = FD(0, w) for all v, w ∈ F`∞,1(Γ∗).

Recall that the free Fermi curve FD(0, 0) = F (0) is invariant under trans-
lations by lattice vectors from the lattice Γ∗C. Furthermore, general Fermi
curves FD(v, w) are invariant under translations by lattice vectors from the
lattice Γ∗: this can be shown exactly as in lemma 4.3.1.

In theorems 3.3.24 and B.1.13, we proved strong continuity statements,
namely that the resolvent is continuous with respect to the potentials even with
only the weak topology on the (strongly bounded) set of potentials under con-
sideration. Essentially, this was an additional upshot from the compactness of
the resolvent. In terms of Dirac Fermi curves, it implies the following behaviour.

Proposition B.2.10. Let b be a nondecreasing, divergent Karamata sequence,
(vn)n∈N a sequence of F`∞,1;b(Γ∗)-potentials in BNC1

and (wn)n∈N a sequence of
F`1(Γ∗)-potentials whose norm does not exceed C2, where N , C1, and C2 are
constants compatible with the prerequisites of proposition B.1.12. Assume fur-
ther that the sequence (vn, wn)n∈N converges weakly to the zero potentials (0, 0).
Then for any bounded V ⊆ C2, the sequence (V ∩ FD(vn, wn))n∈N converges to
the respective part of the free Fermi curve, namely V ∩ FD(0, 0) with respect to
the Hausdorff distance (see section 4.3).

Proof. With our choices for N , C1, and C2, FD(vn, wn) converges pointwise
to FD(0, 0) by theorem B.1.13. Since the resolvent R(λ, k, v, w) is locally uni-
formly continuous in k, the proposition follows because V is bounded.

Of course, an analogous convergence property holds for Schrödinger Fermi
curves, due to theorem 3.3.24. The Dirac version, however, has the advantage
of being quite directly usable to derive the asymptotic freeness of Dirac Fermi
curves in analogy to corollary 4.3.9. Just as in the Schrödinger case, the above
continuity statement fails near the double points of the free Fermi curve when
one passes from FD(v, w) to FD(v, w)/Γ∗. Therefore, we defined the handles in
definition 4.3.2 and, in order to investigate the behaviour of Fermi curves outside
the handles, we made a size estimate in lemma 4.3.3 based on the fact that the
eigenvalues of the Schrödinger operator become sparser for large k. The Dirac
operator, being a first-order differential operator, has no such sparsity behaviour,
nor is it needed. Instead, we can use a combination of proposition B.2.6 and
proposition B.2.10.

For ε, δ > 0, define

U±ε,δ := {k ∈ C2 : ‖ik1±k2‖ < ε, ‖k‖ > δ−1, ‖k−k±κ ‖ > ε for all κ ∈ Γ∗, κ 6= 0}.

For small ε and δ (where the latter may depend on the former), these sets contain
points near the free Fermi curve FD(0, 0) sufficiently far removed from the origin,
and away from the double points. If ε is small enough, we may take U±ε,δ to be
a subset of C2/Γ∗ by choosing an appropriate fundamental domain (remember
that this fundamental domain is not bounded). For such ε, v ∈ F`∞,1(Γ∗), and
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w ∈ F`1(Γ∗) with sufficiently small norm, we define the parts of FD(v, w)/Γ∗

meeting U±ε,δ:
V ±ε,δ(v, w) := U±ε,δ ∩ FD(v, w)/Γ∗

(here, an appropriate choice of a Lorentz–Karamata space for v is implicit).
Recall the definition of Γ∗δ from (4.3.6), as well as the definitions of FC and F εC.
We can now state the following decomposition theorem for our Dirac Fermi
curves FD(v, w)/Γ∗:

Theorem B.2.11. Let v ∈ F`∞,1(Γ∗), and let w ∈ F`1(Γ∗) have sufficiently
small norm. Then for all sufficiently small ε > 0 there is a δ > 0 and a compact
set

K ⊆ {k ∈ FD(v, w)/Γ∗ ⊆ C2/Γ∗ : ‖k‖ ≤ δ−1}
along with a set of handles (Hκ)κ∈Γ∗δ

of thickness not exceeding ε such that we
have the following disjoint decomposition of FD(v, w)/Γ∗:

FD(v, w)/Γ∗ = V +
ε,δ(v, w) ∪ V −ε,δ(v, w) ∪K ∪

⋃
κ∈Γ∗δ

(Hκ ∩ FD(v, w))/Γ∗.

Proof. By theorem A.1.3, we may assume v ∈ F`∞,1;b(Γ∗) for a suitable nonde-
creasing, divergent Karamata sequence b. Then ψ−κv ∈ F`∞,1;b(Γ∗) as well, for
all κ ∈ Γ∗. Now, the sequence (ψ−κv, ψκw)κ∈Γ∗ converges weakly to the zero
potentials (0, 0) as ‖κ‖ → ∞ because the Fourier coefficients of v and w vanish
in this limit. This sequence is obviously bounded, so there is a δ > 0 such that
for all κ ∈ Γ∗δ , the Hausdorff distance from FD(ψ−κv, ψκw)∩F εC to FD(0, 0)∩F εC
is smaller than ε by proposition B.2.10. Due to proposition B.2.6, this is also
true for all k ∈ FD(v, w) of the form k = k′ + k+

κ with k′ ∈ F εC and κ ∈ Γ∗δ ,
i.e. k + Γ∗ ∈ V ±ε,δ(v, w). By construction, the remaining k + Γ∗ are either in K
or in Hκ/Γ∗ for a suitable κ ∈ Γ∗.

This theorem directly yields the result analogous to corollary 4.3.9 for Dirac
Fermi curves (and reproduces the Schrödinger result due to theorem B.2.2).

B.3 Asymptotic analysis of Dirac Fermi curves

Now that we know the asymptotic behaviour of Dirac Fermi curves outside the
handles, we shall now investigate the handles, just as we did with the Schrödinger
Fermi curve in section 4.5. In the end, we will fail to reproduce the results from
the Schrödinger case, which is all the more irksome, because initially, this task
will, in places, turn out to be much simpler than in the Schrödinger case. For
one, we can use proposition B.2.6 to move the double point in question into the
origin. This means that instead of a family of spaces {Kν}ν∈Γ∗ , we need only
consider a single space K corresponding to the zeroth Fourier mode (note that
since the Dirac operator is a 2× 2-matrix operator, K is still a two-dimensional
space). Furthermore, since the Dirac operator is only of first order, some of the
arithmetic in section 4.5 is simplified. Finally, we do not need to take special
care of the constant parts of the potentials v and w.

However, our deliberate breaking of the symmetry between v and w by choos-
ing different spaces for the potentials does not reconcile with the Dirac analogon
of the nonlinear perturbation of the Fourier transform which we developed for
the Schrödinger operator. The details are laid out in what follows.
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B.3.1 A nonlinear perturbation of the Fourier transform

Let E be a Banach space some rearrangement-invariant Banach function space
on Γ∗. Furthermore, let K denote the subspace of E corresponding to κ = 0
(that is, the image of the operator of multiplication with δκ0), and let K⊥ denote
the canonical complement of K, such that E = K ⊕K⊥ (cf. definition 4.5.1).
This carries over to the Fourier space of E. Since ψ0 = 1, K simply corresponds
to the constant functions in this case. For example, if E = F`2,1;b(Γ∗)×F`1(Γ∗),
then K ∼= C × C. The projection πK onto K is given by the zeroth Fourier
coefficient. In cases where the identification (2.1.15) from proposition 2.1.14
makes sense, this projection is a simple integration:

πK : E → K, f 7→
∫
F

fdµ.

Otherwise, one must rely on the abstract rendition (2.1.13) of the Fourier trans-
form. We shall always denote these subspaces by K and K⊥, respectively,
regardless of the underlying space. The relevance of K here is that it is the
kernel of the free Dirac operator D(0, 0, 0):

Lemma B.3.1. The kernel of D(0, 0, 0) is K.

Proof. The equation D(0, 0, 0)ψ = 0 implies

−∂ψ1 = 0, ∂ψ2 = 0.

A Fourier transform yields

−π(iκ1 + κ2)ψ̂1(κ) = 0, π(iκ1 − κ2)ψ̂2(κ) = 0

by proposition 2.1.6. Since κ1, κ2 ∈ R for all κ ∈ Γ∗, these equations can only
be fulfilled if ψ̂1(κ) = ψ̂2(κ) = 0 for all κ ∈ Γ∗, κ 6= 0.

This lemma shows that K is the singular support of the resolvent R(0, 0, 0, 0)
(as is expected from proposition B.2.8). In order to gain an explicit local descrip-
tion of the Fermi curve, we shall determine the singular support of R(0, k, v, w)
for k in a small open neighbourhood of zero and v, w from small weakly open
neighbourhoods of the zero potentials.

Warning. As in section 4.5, we shall want to investigate K ⊕ K⊥-decomp-
ositions of operators, yielding 2 × 2-matrix operators, as suggested by defini-
tion 4.5.3. This rendition of operators in 2 × 2-matrix form has nothing to do
with the natural 2× 2-matrix form which arises when the underlying spaces are
product spaces, such as the Dirac operator introduced in section B.1. Indeed,
if the underlying spaces are product spaces, the entries of the 2 × 2 operator
matrices with respect to K ⊕ K⊥ will be 2 × 2-matrices with respect to the
product.

Proposition B.3.2. There is an open neighbourhood V of 0 ∈ C2 which depends
only on Γ∗, and on which the free resolvent k 7→ R(0, k, 0, 0) has the K ⊕K⊥-
decomposition

R(0, k, 0, 0) =
(
S(k) 0

0 Rr(k)

)
,
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where Rr is holomorphic on V (that is, the singular support of Rr is empty)2

and S(k) is given by

S(k) =
(

0 πik1 + πk2

−πik1 + πk2 0

)−1

with respect to the canonical basis of K ∼= C× C.

Proof. The proof is similar to the proof of proposition 4.5.4. Let k ∈ C2 be a
pole of k 7→ R(0, k, 0, 0). Then by theorem B.2.8, there is a κ ∈ Γ∗ such that
one of the following equations holds:

k2 + κ2 = i(k1 + κ1), k2 + κ2 = −i(k1 + κ1).

If the norm of k is sufficiently small (as in subsection 4.5.1, smaller than half
the minimum distance of lattice vectors in Γ∗C), this can only happen if κ =
0 because κ1, κ2 ∈ R. All possible poles are contained in S(k) in this case.
Hence, Rr is pole-free. The form of S(k) follows by considering the Fourier
transform of the Dirac operator at κ = 0, in an analogous way to the proof of
proposition 4.5.4.

This proposition shows that the entire information about the Dirac Fermi
curve FD(0, 0) near the origin is contained in the restriction of the opera-
tor R(0, k, 0, 0) to K, that is, the singular part S(k). Indeed, as theorem B.2.8
tells us, this Fermi curve is determined by the equation

det
(

0 πik1 + πk2

−πik1 + πk2 0

)
= 0,

that is, k2 = 0 near the origin. From now on, we always let V be as in the
previous proposition. In the remainder of this section, we shall generalise this
result to small weakly open neighbourhoods of the zero potentials.

Instead of proving an analogon of lemma 4.5.12 and working from there, we
shall exploit the weak continuity properties of the resolvent. For this purpose,
we first need three simple lemmata concerning operator inverses.

Lemma B.3.3. There is a λ0 ∈ (−∞,−1]i such that for all λ with λ/i ≤
λ0/i and all k ∈ V the operator R(λ, k, 0, 0)D(k, 0, 0) maps K⊥ ⊆ F`1(Γ∗) ×
F`2,1(Γ∗) boundedly into itself. Furthermore, this operator is boundedly invert-
ible on K⊥ ⊆ F`1(Γ∗)×F`2,1(Γ∗). The inverse is given by

Rr(k)(λ−D(k, 0, 0))|K⊥ .

Proof. The Fourier transform of D(k, 0, 0) is the multiplication with the matrix(
0 πi(κ1 + k1) + π(κ2 + k2)

−πi(κ1 + k1) + π(κ2 + k2) 0

)
. (B.3.4)

The Fourier transform of R(λ, k, 0, 0) is given by (B.1.8). For a suitable choice
of λ0 (see theorem B.1.7) the Fourier transform of R(λ, k, 0, 0)D(k, 0, 0) is a

2Here, the subscript r stands for “reduced,” and is added to avoid confusion with the
resolvent of the Dirac operator.



B.3. ASYMPTOTIC ANALYSIS OF DIRAC FERMI CURVES 153

simple matrix multiplication with a matrix whose entries are bounded with re-
spect to the Fourier transform variable κ. Hence, K⊥ ⊆ F`1(Γ∗) × F`2,1(Γ∗)
is mapped boundedly into itself. For κ 6= 0, the determinants of the matri-
ces (B.1.8) and (B.3.4) are nonzero. Therefore, R(λ, k, 0, 0)D(k, 0, 0) is bound-
edly invertible on K⊥, and the inverse is given by

(R(λ, k, 0, 0)D(k, 0, 0)|K⊥)−1 = Rr(k)(λ−D(k, 0, 0)).

Lemma B.3.5. Let v0 ∈ F`∞,1(Γ∗). Then for all λ/i ≤ λ0/i, all k ∈ V ,
all v ∈ BNC1

and all w ∈ F`1(Γ∗) with ‖w‖F1 < C2, where the constants λ0, N ,
C1 and C2 are compatible with lemma B.1.10, the operator Rr(k)(1− πK)(λ−
D(k, v, w)) is boundedly invertible on K⊥ ⊆ F`1(Γ∗)×F`2,1(Γ∗).

Proof. By proposition 2.4.15, the operator(
v 0
0 w

)
maps F`1(Γ∗) × F`2,1(Γ∗) boundedly into F`∞,1(Γ∗) × F`2,1(Γ∗). By theo-
rem B.1.7, R(λ, k, 0, 0) maps F`∞,1(Γ∗)×F`2,1(Γ∗) boundedly into F`1(Γ∗)×
F`2,1(Γ∗). By lemma B.1.10, the operator(

v 0
0 w

)
R(λ, k, 0, 0)

maps F`∞,1(Γ∗)×F`2,1(Γ∗) boundedly into itself, and a norm equivalent to the
standard norm of this space can be found such that the norm of this operator
is smaller than one. The same holds for the operator

(1− πK)
(
v 0
0 w

)
R(λ, k, 0, 0)

because the monotonicity property of the standard norm of the space `∞,1(Γ∗)×
`2,1(Γ∗) passes to the equivalent norm which we introduced in the proof of
lemma B.1.10. It follows from the Neumann theorem that

1− (1− πK)
(
v 0
0 w

)
R(λ, k, 0, 0)

is boundedly invertible on F`∞,1(Γ∗)×F`2,1(Γ∗). Hence, by lemma 4.5.23, the
operator

1−R(λ, k, 0, 0)(1− πK)
(
v 0
0 w

)
is boundedly invertible on F`1(Γ∗) × F`2,1(Γ∗). The Fourier transform of the
resolvent R(λ, k, 0, 0) shows that it leaves K⊥ invariant. Therefore, we can apply
lemma 4.5.14 and deduce that

1K⊥ −R(λ, k, 0, 0)(1− πK)
(
v 0
0 w

)∣∣∣∣
K⊥
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is boundedly invertible on K⊥ ⊆ F`1(Γ∗)× F`2,1(Γ∗). Applying lemma B.3.3,
we obtain(

1K⊥ −R(λ, k, 0, 0)(1− πK)
(
v 0
0 w

)∣∣∣∣
K⊥

)−1

R(λ, k, 0, 0)D(k, 0, 0)|K⊥

=
(
Rr(k)( (λ−D(k, 0, 0))|K⊥ − (1− πK)

(
v 0
0 w

)∣∣∣∣
K⊥

)−1

= (Rr(k)(1− πK) (λ−D(k, v, w))|K⊥)−1.

This proves the lemma.

Lemma B.3.6. Let v0 ∈ F`∞,1(Γ∗). Then for all v ∈ BNC1
∩ F`∞,1;b(Γ∗) and

all w ∈ F`1(Γ∗) with ‖w‖F1 < C2, where the constants N , C1 and C2 and the
Karamata sequence b are compatible with proposition B.1.12, the operator

1−R(0, k, 0, 0)(1− πK)
(
v 0
0 w

)
is boundedly invertible on F`1(Γ∗)×F`2,1;

√
b(Γ∗) for all those k ∈ V for which

the restriction of k 7→ R(0, k, v, w) to K⊥ does not have a pole in the sense of
theorem B.1.13, that is, zero is in the resolvent set of said restriction.

Proof. By proposition B.1.12, the resolventR(λ, k, v, w) maps the function space
F`1(Γ∗) × F`2,1;

√
b(Γ∗) compactly into itself for a suitable λ. This is also true

of the restriction of this operator to K⊥. If zero is in the resolvent set of the
restriction of R(0, k, v, w) to K⊥, then

1K⊥ − (1− πK)λ R(λ, k, v, w)|K⊥

is boundedly invertible on K⊥ ⊆ F`1(Γ∗) × F`2,1;
√
b(Γ∗). Hence, lemma B.3.5

implies

(1K⊥ − (1− πK)λ R(λ, k, v, w)|K⊥)−1(Rr(k)(1− πK) (λ−D(k, v, w))|K⊥)−1

= (Rr(k)(1− πK) (λ−D(k, v, w))|K⊥ − Rr(k)(1− πK)λ|K⊥)−1

=
(
−Rr(k)(1− πK)

(
D(k, 0, 0)|K⊥ +

(
v 0
0 w

)∣∣∣∣
K⊥

))−1

=
(
−1K⊥ +Rr(k)(1− πK)

(
v 0
0 w

)∣∣∣∣
K⊥

)−1

.

The lemma now follows from lemma 4.5.14.

We can now prove a proposition similar to proposition 4.5.15.

Proposition B.3.7. Let v0 ∈ F`∞,1(Γ∗). Then for all v ∈ BNC1
∩ F`∞,1;b(Γ∗)

and all w ∈ F`1(Γ∗) with ‖w‖F1 < C2, where the constants N , C1 and C2 and
the Karamata sequence b are compatible with proposition B.1.12, the intersection
of the Fermi curve FD(v, w) with V is characterised by the poles of

k 7→

(
1−R(0, k, 0, 0)πK

(
v 0
0 w

)

·
(

1−R(0, k, 0, 0)(1− πK)
(
v 0
0 w

))−1
)−1



B.3. ASYMPTOTIC ANALYSIS OF DIRAC FERMI CURVES 155

for those k ∈ V for which k /∈ FD(0, 0).

Proof. Set

U :=
(
v 0
0 w

)
.

From now on, we shall write operators in K ⊕K⊥ matrix from. Lemma B.3.6
ensures that the operator

1−
(

0 0
0 Rr(k)

)
U

is boundedly invertible on F`1(Γ∗)×F`2,1;
√
b(Γ∗) for all those k ∈ V for which

the restriction of R(0, k, v, w) to K⊥ does not have a pole. Now, R(0, k, 0, 0)
has a pole at k ∈ V if and only if k ∈ FD(0, 0). Hence we have the operator
equation(

1−
(

0 0
0 Rr(k)

)
U

)−1

·

(
1−

(
S(k) 0

0 0

)
U

(
1−

(
0 0
0 Rr(k)

)
U

)−1
)−1

R(0, k, 0, 0)

=
(

1−
(

0 0
0 Rr(k)

)
U −

(
S(k) 0

0 0

)
U

)−1

R(0, k, 0, 0)

= (1−R(0, k, 0, 0)U)−1R(0, k, 0, 0) = R(0, k, v, w).

This proves the claim.

With this proposition, we can now define a 2 × 2-matrix just as in defini-
tion 4.5.18.

Definition B.3.8. For all k ∈ C2, all v ∈ F`∞,1(Γ∗) and all w ∈ F`1(Γ∗) such
that the operator

1− (1− πK)R(0, k, 0, 0)
(
v 0
0 w

)
exists and is boundedly invertible on F`1(Γ∗) × F`2,1;

√
b(Γ∗) (for a suitable

Karamata sequence b), let A(k, v, w) be the restriction of the operator(
v 0
0 w

)(
1− (1− πK)R(0, k, 0, 0)

(
v 0
0 w

))−1

to K, that is, a 2×2-matrix with respect to the basis generated by the two zero
modes of the Fourier transform.

As of yet, we still haven’t introduced the parameter ν from section 4.5.
This will change in the following analogon of theorem 4.5.19. Nevertheless, the
following theorem will still be conceptually slightly simpler than theorem 4.5.19
because both the weak continuity properties and the fact that the Dirac operator
is a first-order (instead of a second-order) differential operator can be exploited.
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Theorem B.3.9. Let v0 ∈ F`∞,1(Γ∗). Then there is a δ > 0 such that for all
ν ∈ Γ∗δ , v ∈ BNC1

∩ F`∞,1;b(Γ∗) and all w ∈ F`1(Γ∗) with ‖w‖F1 < C2, where
the constants N , C1 and C2 and the Karamata sequence b are compatible with
proposition B.1.12, the intersection of the Fermi curve FD(ψ−νv, ψνw) with V
is described by the zero locus of

k 7→ det
((

0 πik1 + πk2

−πik1 + πk2 0

)
+A(k, ψ−νv, ψνw)

)
. (B.3.10)

For v, w of sufficiently small norm, the same statement holds for all ν ∈ Γ∗.

Proof. The k ∈ FD(0, 0) part follows in a similar fashion as in the proof of theo-
rem 4.5.19 (consider the Fourier transform of D(k, 0, 0)). Now let k /∈ FD(0, 0).
The resolvent R(0, k, 0, 0) is pole-free on K⊥. By theorem B.1.13, this resol-
vent is continuous with the weak topology on the potentials and the usual
topologies elsewhere. Therefore, k 7→ R(0, k, v, w) is also pole-free on K⊥

for v, w with sufficiently small norm or for v, w from a sufficiently small weakly
open neighbourhood of zero. In the latter case, we arrive at the pole-free
map k 7→ R(0, k, ψ−νv, ψνw) on K⊥ for all ν ∈ Γ∗δ for sufficiently small δ.
Hence, we may apply proposition 4.5.15, that is, the operator

1−R(0, k, 0, 0)πK

(
ψ−νv 0

0 ψνw

)
·
(

1−R(0, k, 0, 0)(1− πK)
(
ψ−νv 0

0 ψνw

))−1

has a pole at k if and only if k ∈ FD(ψ−νv, ψνw). Hence, by lemma 4.5.14, the
Fermi curve FD(ψ−κv, ψκw) is locally determined by the equation

det(1K − S(k)A(k, ψ−κv, ψκw)) = 0

in this case. Multiplication with

det(πKD(0, k, 0, 0)|K)

now implies the theorem because this determinant is nonzero if k /∈ FD(0, 0).

As in subsection 4.5.1, the form of the matrix(
0 πik1 + πk2

−πik1 + πk2 0

)
+A(k, ψ−νv, ψνw) (B.3.11)

decides the fates of the double points when potentials are switched on. Let us
now derive properties for A as we did in subsection 4.5.1.

Lemma B.3.12. For all v0 ∈ F`∞,1(Γ∗) there is a δ > 0 such that the ma-
trix A(k, ψ−νv, ψνw) is continuously differentiable in k for all ν ∈ Γ∗δ , and we
have

lim
‖ν‖→∞

∥∥∥∥ ∂∂kA(k, ψ−νv, ψνw)
∥∥∥∥ = 0

uniformly in k ∈ V , for all v ∈ F`∞,1;b(Γ∗) ∩ BNC1
and all w ∈ F`1(Γ∗)

with ‖w‖F1 < C2, with N , C1, C2 and the Karamata sequence b as in theo-
rem B.3.9.
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Proof. In a way analogous to the proof of lemma 4.5.21, we deduce

∂

∂k
A(k, ψ−νv, ψνw)

= −πK
(
ψ−νv 0

0 ψνw

)(
1−R(0, k, 0, 0)(1− πK)

(
ψ−νv 0

0 ψνw

))−1

·R(0, k, 0, 0)CR(0, k, 0, 0)(1− πK)
(
ψ−νv 0

0 ψνw

)
·
(

1−R(0, k, 0, 0)(1− πK)
(
ψ−νv 0

0 ψνw

))−1
∣∣∣∣∣
K

.

Here, C is the k-derivative of D(k, 0, 0), which is a bounded operator since the
Dirac operator is a first-order differential operator. The lemma now follows due
to the weak convergence properties of the expressions involved.

Theorem B.3.13. The functional variation of A(k, ψ−κv, ψκw) with respect
to (v, w) around the zero potentials is a nonlinear perturbation of the Fourier
transform. More precisely, the variation of A at (v, w) = (0, 0) has the form

(f, g) 7→
(
f̂(ν) 0

0 ĝ(−ν)

)
ν∈Γ∗

.

In general, the variation has the form

(f, g) 7→ πK

(
1−

(
ψ−νv 0

0 ψνw

)
Rr(k)(1− πK)

)−1(
ψ−νf 0

0 ψνg

)
·
(

1−Rr(k)(1− πK)
(
ψ−νv 0

0 ψνw

))−1
∣∣∣∣∣
K

.

Proof. The general variation can be calculated exactly as in the proof of theo-
rem 4.5.25 (this time, not even a second summand appears in the final result
because we did not incorporate the constant parts of v or w into the boundary
conditions as we did with u in the Schrödinger case). The Fourier transform
property comes from the fact that the zeroth Fourier mode of ψ−νf is precisely
the ν-th Fourier mode of f .

B.3.2 Approximation with finite-type Dirac Fermi curves

In theorem B.3.9 we found a description of the Fermi curve FD(ψ−νv, ψνw)
in V , a subset of C2 containing the origin of Γ∗C but sufficiently bounded away
from the other lattice vectors, which translates to a description of the Fermi
curve FD(v, w) near the double points k±ν ∈ C2/Γ∗ by proposition B.2.6. We
shall render this description even more explicit by attaching, as in subsec-
tion 4.5.2, perturbed Fourier coefficients v̂(v, w, ν) and ŵ(v, w, ν), whose de-
viation from the unperturbed Fourier coefficients v̂(ν) and ŵ(ν) depends on the
size of v and w.

However, we shall find ourselves to be unable to prove that these perturbed
Fourier coefficients are in the same spaces as the perturbed Fourier coefficients,
that is, `∞,1(Γ∗) and `1(Γ∗), respectively.
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Proposition B.3.14. For all v0 ∈ F`∞,1(Γ∗) there is a δ > 0 such that for
all ν ∈ Γ∗δ , all v ∈ BNC1

∩ F`∞,1;b(Γ∗) and all w ∈ F`1(Γ∗) with ‖w‖F1 < C2,
where the constants N , C1 and C2 and the Karamata sequence b are chosen as
in lemma B.3.12, there is a unique kν ∈ V such that the matrix(

0 πikν,1 + πkν,2
−πikν,1 + πkν,2 0

)
+A(kν , ψ−νv, ψνw) (B.3.15)

is diagonal.

Proof. We shall use the Banach fixed point theorem as in the proof of proposi-
tion 4.5.29, only this time, we don’t need the implicit function theorem, as all
equations involved are linear and hence uniquely solvable.

By lemma B.3.12, we can choose δ such that for all ν ∈ Γ∗δ the norm of
the k-derivative of A(k, ψ−νv, ψνw) is sufficiently small for an application of the
Banach fixed point theorem through the mean value theorem later on. Let d1(k)
and d2(k) be the off-diagonal entries of A(k, ψ−νv, ψνw). Now, let k ∈ V
and k′ ∈ C2 and consider the system of equations

πik′1 + πk′2 + d1(k) = 0,
−πik′1 + πk′2 + d2(k) = 0.

(B.3.16)

Obviously, this system has a unique solution k′ for each k ∈ V . Thus, it defines
a map

f : V → C2, k 7→ k′.

Now let k, k̃ ∈ V be arbitrary. Then (B.3.16) implies

πif1(k) + πf2(k) + d1(k) = 0, πif1(k̃) + πf2(k̃) + d1(k̃) = 0,

−πif1(k) + πf2(k) + d2(k) = 0, −πif1(k̃) + πf2(k̃) + d2(k̃) = 0,

and thus

πif1(k) + πf2(k)− (πif1(k̃) + πf2(k̃)) + d1(k)− d1(k̃) = 0,

−πif1(k) + πf2(k)− (−πif1(k̃) + πf2(k̃)) + d2(k)− d2(k̃) = 0.
(B.3.17)

Now, lemma B.3.12 and the mean value theorem imply for sufficiently small δ:

‖d1(k)− d1(k̃)‖ ≤ ε‖k − k̃‖,

‖d2(k)− d2(k̃)‖ ≤ ε‖k − k̃‖,

where ε > 0 can be chosen arbitrarily small in dependence of δ. The equation
system (B.3.17) can be solved for f1(k) − f1(k̃) and f2(k) − f2(k̃) in the same
way (B.3.16) can be solved for k′1 and k′2, yielding the inequality

‖f(k)− f(k̃)‖ ≤ 1
2
‖k − k̃‖

for all sufficiently small ε. Domain and codomain of f can be altered to be
a closed subset slightly smaller than V by the same reasoning as in proposi-
tion 4.5.29 for sufficiently small δ. Hence, for all ν ∈ Γ∗δ , there is a kν ∈ V such
that f(kν) = kν by Banach’s fixed point theorem. This fixed point precisely
fulfils the requirements of (B.3.15).
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Given this proposition, we denote the diagonal entries of A(kν , ψ−νv, ψνw)
by v̂(v, w, ν) and ŵ(v, w, ν). In analogy to û(u, ν), we call them the perturbed
Fourier transforms of v and w, respectively.

Definition B.3.18. Let v0 ∈ F`∞,1(Γ∗) and w0 ∈ F`1(Γ∗), then we say,
in analogy to definition 4.5.32, that the pair of potentials (v0, w0) has finite
type if there are appropriate potentials v ∈ F`∞,1(Γ∗) and w ∈ F`1(Γ∗) for
which the perturbed Fourier transform is defined for almost all ν ∈ Γ∗, such
that FD(v0, w0) = FD(v, w) and for which

v̂(v, w, ν) = 0 and ŵ(v, w, ν) = 0

for all but finitely many of those ν ∈ Γ∗ for which this condition makes sense.

Recall that, in the above definition, the passing from FD(v0, w0) to FD(v, w)
can be considered a mere technicality since by theorem A.1.6 and proposi-
tion B.2.1, it is always possible to switch to a set of potentials covered by
previous analysis.

B.3.3 Failure to estimate the perturbed Fourier trans-
forms

At this point, it should be our goal to estimate the perturbed Fourier trans-
forms (v̂(v, w, ν))ν∈Γ∗δ

and (ŵ(v, w, ν))ν∈Γ∗δ
, or, more generally, the (diagonal)

entries of A(k, ψ−νv, ψνw), as we did in the proof of theorem 4.5.42. For this
purpose, we should investigate the action of the operator(

ψ−νv 0
0 ψνw

)(
1− (1− πK)R(0, k, 0, 0)

(
ψ−νv 0

0 ψνw

))−1

(B.3.19)

on the constant functions. It is easy to see that (B.3.19) uniformly maps
the Bochner space `∞(Γ∗δ ,F`1(Γ∗)) × `∞(Γ∗δ ,F`2,1;

√
b(Γ∗)) boundedly into the

Bochner space `∞(Γ∗δ ,F`∞,1;b(Γ∗)) × `∞(Γ∗δ ,F`2,1;
√
b(Γ∗)) for suitable δ > 0

and Karamata sequence b: consider the operator

(1− πK)R(0, k, 0, 0)
(
ψ−νv 0

0 ψνw

)
,

use weak convergence properties to invert it for ν ∈ Γ∗δ , then use proposi-
tion 2.4.15 to build the full operator (B.3.19). Unfortunately, we can’t seem
to achieve much more than this rather preliminary result. Let us see what fails
to work when we try anyway.

We should work out the diagonal entries of A(k, ψ−νv, ψνw), that is, the
first and the second component, respectively, of the Fourier transform of the
operator (B.3.19) applied to (δκ0, 0)t and (0, δκ0)t, evaluated at κ = 0. For this
purpose, we can first expand (B.3.19) as in the proof of theorem 4.5.42:(

ψ−νv 0
0 ψνw

)(
1− (1− πK)R(0, k, 0, 0)

(
ψ−νv 0

0 ψνw

))−1

=
(
ψ−νv 0

0 ψνw

)
+
(
ψ−νv 0

0 ψνw

)
(1− πK)R(0, k, 0, 0)

·
(
ψ−νv 0

0 ψνw

)(
1− (1− πK)R(0, k, 0, 0)

(
ψ−νv 0

0 ψνw

))−1

(B.3.20)
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The restriction of the first term to K yields(
v̂(ν) 0

0 ŵ(−ν)

)
,

which is certainly `∞,1;b(Γ∗δ) and `1(Γ∗δ), respectively.
But the second term gives us trouble. Since λ = 0, the Fourier transform

of R(0, k, 0, 0) only has off-diagonal entries, to wit(
0 1

πi(k1+κ1)−π(k2+κ2)
1

−πi(k1+κ1)−π(k2+κ2) 0

)
by (B.1.8). Hence, we can write the restricted free resolvent as

(1− πK)R(0, k, 0, 0) =
(

0 R1(k)
R2(k) 0

)
,

where R1(k) and R2(k) are compact operators from F`2,1;
√
b(Γ∗) to F`1(Γ∗) and

from F`∞,1;b(Γ∗) to F`2,1;
√
b(Γ∗), respectively (these operators are, up to sign,

simply the restrictions of the inverses of the Wirtinger operators with boundary
condition k). Letting (B.3.19) act on the constant functions, we can define(

f1(k, ν, x)
f2(k, ν, x)

)
:=
(
ψ−νv 0

0 ψνw

)
·
(

1− (1− πK)R(0, k, 0, 0)
(
ψ−νv 0

0 ψνw

))−1( 1
0

)
,(

f3(k, ν, x)
f4(k, ν, x)

)
:=
(
ψ−νv 0

0 ψνw

)
·
(

1− (1− πK)R(0, k, 0, 0)
(
ψ−νv 0

0 ψνw

))−1( 0
1

)
.

Considering the expansion (B.3.20), we see the following recursive interdepen-
dencies between f1, . . . , f4:

f1 = ψ−νv + ψ−νvR1f2, f3 = ψ−νvR1f4,

f2 = ψνwR2f1, f4 = ψνw + ψνwR2f3.
(B.3.21)

Let us see what happens when we try to estimate f1 and f4. We already showed
that the first summand of f4 yields an `1(Γ∗δ)-term for the lower diagonal entry
of A. To do the same for the second summand, we consider, up to a constant
factor, the `1(Γ∗)-norm of the Fourier transform with respect to x (denoted by
a hat) at κ = 0. It looks like this:∑

ν∈Γ∗δ

∣∣∣∣∑
ρ∈Γ∗

ρ6=0

ŵ(−ν − ρ)
1

−πi(k1 + ρ1)− π(k2 + ρ2)
f̂3(k, ν, ρ)

∣∣∣∣.
It is possible to make this expression similar to (4.5.44), via

i(k1 + ρ1) + (k2 + ρ2) = i(k1 + ρ1 + k−ν,1) + (k2 + ρ2 + k−ν,2),

i(k1 + ρ1 + k−ν,1)− (k2 + ρ2 + k−ν,2) = i(k1 + ρ1 + ν1)− (k2 + ρ2 + ν2).
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Hence, we can rewrite the above expression, using the function g defined by
(4.5.10) (with sign choice −), by∑
ν∈Γ∗δ

∣∣∣∣∑
ρ∈Γ∗

ŵ(−ν − ρ)(−πi(k1 + ρ1 + ν1) + π(k2 + ρ2 + ν2))g(k, ν, ρ)f̂3(k, ν, ρ)
∣∣∣∣,

but by proposition 2.1.6 this is of course equal to∑
ν∈Γ∗δ

∣∣∣∣∑
ρ∈Γ∗

∂̂kw(−ν − ρ)g(k, ν, ρ)f̂3(k, ν, ρ)
∣∣∣∣.

Now, the potential w being differentiable is not among our prerequisites. With
differentiable w, with ∂k being in F`1(Γ∗), one might think to prove the above
expression to be finite with an application of analogs of proposition 4.5.35 and
lemmata 4.5.39 and 4.5.40, by transforming these statements about `∞,1(Γ∗)-
sequences to statements about `1(Γ∗)-sequences using the Cauchy condensation
theorem. Unfortunately, it turns out that this doesn’t work with lemma 4.5.40.
It turns out that a straightforward generalisation of these statements works
down to `2,∞ on the Lorentz scale of spaces, whereas a coarse analysis of the
proof of lemma 4.5.40 shows that it is not applicable for `p with p < 2.

One might seek the reason for this failure in the fact that we assumed very
little of f3 to begin with. Maybe the situation improves if we first show that f3

is from some much smaller space than `∞(Γ∗δ , `
∞,1(Γ∗))? In order to investigate

this avenue of thought, it is instructive to develop f3 recursively into its first
few terms according to (B.3.21):

ψνw,

ψνwR2ψ−νvR1ψνw,

ψνwR2ψ−νvR1ψνwR2ψ−νvR1ψνw,

. . . .

While for the first two terms, it is not difficult to show that their Fourier trans-
forms at κ = 0 are in `1(Γ∗δ), already in the third term, the convolutions induced
by the Fourier transform become so entangled that making an estimate with the
usual means appears to be impossible. This is on account of the ν in ψ±ν appear-
ing with alternating signs, which in turn is caused by the symmetry established
in proposition B.2.6. Loosely put, the influence of v and w to the perturbed
Fourier transform mixes badly.

If v and w were from the same space of potentials, that space would neces-
sarily have to be L2(F ) or better. In this case, the above problems would not
occur (see [Sch02, section 3.5]), and one can legitimately call v̂(v, w, ν) the per-
turbed Fourier transform of v, and ŵ(v, w, ν) the perturbed Fourier transform
of w, for both v̂ and ŵ are the leading terms of a series expansion of f1 and f4,
respectively. In our case, however, it can be viewed to be somewhat mislead-
ing to call ŵ(v, w, ν) the perturbed Fourier transform of w just because of the
leading term when the subsequent terms contain contributions from v, which
is from a space with much less regular potentials than the space of w. Rather,
v̂(v, w, ν) and ŵ(v, w, ν) should be viewed as the outcome of the perturbation
of (v, w), and unfortunately, they have lost the connexion to the original spaces
of v and w.
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