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Chapter 1

General Introduction

Generally, people don’t like to change their consumption habits abruptly or frequently.

Once you are used to driving a luxury car, you typically would not want to have to trade

it for a second-hand, low-quality alternative. In order to avoid such unplanned swings in

consumption, individuals try to insure themselves against adverse events that would reduce

their purchasing capacity. For example, a car-owner might want to buy an auto liability

insurance, because accidents can happen suddenly and be very costly.

However, there are many risks for which individuals can’t directly buy insurance. One

intuitive example, which is at the heart of this dissertation, is an unforeseen reduction in

your income. This might come about because your company has been hit by bad luck while

its competitors are doing well. Or it might be that the whole economy is in a downturn and

wages and returns fall for everybody. Individuals might want to purchase insurance against

these risks, but we do not see insurance companies offering widely available contracts to

that end. When such insurance contracts are not available, economists speak of incomplete

markets. The question why markets are incomplete is interesting, but not the topic of this

dissertation. Rather, I take this incompleteness as given, and ask how households or the

government can react to it.

One way to react to missing insurance markets is to build up private savings. This way,

households can use their financial wealth to partially compensate a drop in income, be

it due to job loss, negative capital returns, or retirement. In chapter 2, I evaluate how

efficient this type of self-insurance is in various settings. Chapter 3 looks at a specific

government policy, namely an expansion of the social security system, and asks how much

1



2 CHAPTER 1. GENERAL INTRODUCTION

households value this form of mandatory insurance. Finally, in chapter 4, households have

an additional insurance channel, in that they can default on their loans when they face

hard times. All three chapters have in common that households face idiosyncratic, i.e.

individual-specific, labor income risk, and that insurance markets against this risk are

missing by assumption. Households can self-insure with a bond and have a finite lifetime.

In addition, chapters 2 and 3 also feature aggregate , i.e. economy-wide, business-cycle risk.

Markets for aggregate risk are incomplete, too, but now agents can self-insure by investing

in stock in addition to bonds. Another difference to chapter 4 is that the model in these

two chapters contains a production sector. In the remainder of this introduction, I discuss

the three chapters and their findings in more detail.

In Chapter 2 of this dissertation, I analyze how the combination of borrowing constraints

and uninsurable, idiosyncratic income risk affects the equity premium, i.e. the expected

difference in the returns of stock and bonds. These are two forms of market incompleteness

that have received ample attention in the literature. In standard economies with infinitely-

lived households, this kind of incompleteness doesn’t affect the equity premium much,

implying that consumers achieve a large degree of self-insurance (see, e.g., Lucas (1994),

Krueger and Lustig (2010)). For life-cycle economies, on the other hand, the picture is less

clear cut.

I build a large-scale, overlapping generations model that is calibrated to U.S. statistics

and use it to conduct the following experiments. I first ask whether the large effect of the

zero-borrowing constraint in Constantinides, Donaldson, and Mehra (2002) quantitatively

survives in a richer environment with a large number of generations, production, and social

security. These features should dampen their mechanism, but to what extent is an open,

quantitative question. I then add idiosyncratic labor income risk that does not depend on

aggregate risk. Given that the zero-borrowing constraint by itself can have a notable impact

on the equity premium, the presence of idiosyncratic risk might or might not reinforce that.

I find that introducing a zero-borrowing constraint in an economy without idiosyncratic

risk increases the equity premium by 70 percent, which means that the mechanism de-

scribed in Constantinides, Donaldson, and Mehra (2002) is dampened because of the large

number of generations and production. With social security the effect of the zero-borrowing

constraint is a lot weaker, because the retirement income allows retirement consumption

to be less correlated with stock returns, thereby directly undoing the mechanism behind
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the borrowing constraint. In the next experiment, I introduce idiosyncratic labor income

risk in an economy without a zero-borrowing constraint. I find that this increases the

equity premium by 50 percent, even though the income shocks are independent of aggre-

gate risk and are not permanent. The reason for this surprisingly strong increase is that

idiosyncratic risk makes the implied natural borrowing limits much tighter, so that they

have an effect similar to an exogenously imposed zero-borrowing constraint. This intuition

is confirmed in the last experiment, where I add idiosyncratic risk in an economy with a

zero-borrowing constraint. Here, neither the equity premium nor the Sharpe ratio change,

because the zero-borrowing constraint is already tighter than the natural borrowing limits

that result when idiosyncratic risk is added.

The finding that idiosyncratic risk with a homoscedastic variance increases the equity

premium seems to oppose several irrelevance results, like Constantinides and Duffie (1996)

or Krueger and Lustig (2010). However, the present setup differs in several respects.

Probably the most important difference is the life-cycle, which gives rise to asset trading

that results in a subgroup of the population holding most of the stock.

Chapter 3, which is joint work with Alexander Ludwig, studies the welfare effects of ex-

panding a pay-as-you-go social security system. Like in the previous chapter, we consider

an overlapping generations economy with aggregate and idiosyncratic risk, where markets

against both risks are incomplete. In such a setting social security can increase economic

efficiency by partially substituting for missing markets. The analysis is embedded in a

general equilibrium framework to account for the costs of crowding out.

Prior research on social security has only considered either aggregate or idiosyncratic risk.

Social security can partially substitute for incomplete markets against aggregate risk, be-

cause it enables the young to insure the old by pooling aggregate wage and return risks. It

can partially substitute for incomplete markets against idiosyncratic risk, because in this

model it pays the same benefits to everybody, which means that there is a lot of redistri-

bution. By including both types of risk in one model, we can assess the contribution of

each risk to the total insurance provided by the system. But more importantly, we can

analyze the role played by interactions between the two risks.

We show analytically that aggregate and idiosyncratic risks interact due to the life-cycle

structure of the economy. This interaction increases the welfare gains of a marginal in-

troduction of an unfunded social security system. Adding a second interaction by making
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the variance of idiosyncratic risk countercyclical further increases the welfare gains. In our

quantitative experiment, raising the contribution rate from zero to two percent leads to

long-run welfare gains of 3.5% of life-time consumption on average, even though the econ-

omy experiences substantial crowding out of capital. In contrast to the previous literature,

this is a large, positive number. Approximately one third of these insurance gains can be

attributed to the interactions between idiosyncratic and aggregate risk.

When compared to the cost of the business cycle as calculated by Lucas (1987), this welfare

gain seems extraordinarily large. One reason is that we have idiosyncratic risk, which is

substantially larger than the fluctuations considered by Lucas (see Krebs (2007)). Another

reason is that the introduction of social security means that agents can achieve a higher

life-time consumption on average, an effect that is not present in the Lucas analysis.

In Chapter 4, I look at an economy where households can default on their loans. This

provides them with an additional channel to insure against idiosyncratic labor income

risk that was not available in the previous two chapters. In contrast to the previous two

chapters, I focus on an economy in partial equilibrium and derive results analytically rather

than numerically.

Default is modeled as a full discharge of unsecured consumer debt like in Chapter 7 of the

U.S. bankruptcy code. The market for loans is competitive and financial intermediaries

adjust the price for loans so as to account for the probability of not being repaid. I show

how the savings policy depends on the default punishment. Specifically, I look at a simple

3-period case with a quadratic utility function, where the agent can default only in the

second period. If the punishment consists of a linear monetary cost, then the savings policy

will be continuous, asymptotically approach a lower, endogenous bound, and it will have

a flat section ’in the middle’. If, on the other hand, the punishment consists of exclusion

from credit markets, then it will have a single discontinuity in addition.

More generally speaking, this paper addresses the question whether we can put enough

structure on a model with a discrete default choice so that we can derive the properties of

the policy functions analytically. The problem is that a discrete default decision will typi-

cally introduce points at which the value function is not differentiable. To overcome this,

applied work frequently uses stochastic shocks to smooth out any kinks in the value func-

tion. However, I show that this approach may introduce new kinks in the value function,

if the shock support is bounded.



Chapter 2

Asset Pricing in OLG Economies

with Borrowing Constraints and

Idiosyncratic Income Risk

2.1 Introduction

Asset prices are subject to large fluctuations that directly change a household’s wealth.

To what extent the fluctuations translate into consumption and welfare depends on the

extent to which households can insure against them. The degree of insurance in turn is a

main determinant for the average return that agents require to hold an asset. The study of

asset prices, and the equity premium, is of continued interest, because it helps economists

understand to what degree households are exposed to risks, to what degree they can insure

against them, and what the mechanisms behind it are.

More specifically, much of the applied and theoretical literature studies under what cir-

cumstances agents can or can’t efficiently self-insure when markets are incomplete. Two

forms of incompleteness that have received much attention are missing insurance markets

for labor income risk and borrowing constraints. In standard economies with infinitely-

lived households, they typically do not affect asset prices much, implying that consumers

achieve a large degree of self-insurance. For life-cycle economies, on the other hand, an

exogenous borrowing constraint (Constantinides, Donaldson, and Mehra (2002), hereafter

CDM) and idiosyncratic income risk (Storesletten, Telmer, and Yaron (2007)) can each

5



6 CHAPTER 2. ASSET PRICING IN OLG ECONOMIES

individually increase the equity premium by a potentially large amount.

This paper analyzes how the combination of these two forms of market incompleteness

affect asset prices in an overlapping generations (OLG) economy. I first ask whether the

large effect of the zero-borrowing constraint in CDM quantitatively survives in a richer

environment with a large number of generations, production, and social security. These

features should dampen their mechanism, but to what extent is an open, quantitative

question. I then add idiosyncratic labor income risk that does not depend on aggregate

risk. Given that the zero-borrowing constraint by itself can have a notable impact on the

equity premium, the presence of idiosyncratic risk might or might not reinforce that.

The intuition for why the CDM mechanism should be mitigated by a large number of gen-

erations, production, and social security is straight-forward. CDM analyze a model with

only three generations: the young, the middle-aged, and the retired. This limits intertem-

poral consumption smoothing, as any capital income shock to the retired directly translates

into a consumption shock for a third of the population. Similarly, the introduction of a

zero-borrowing constraint immediately affects a third of the population, namely the young.

A larger number of generations means that agents can smooth the capital income shocks

during retirement, and that a potentially much smaller fraction is affected by the borrowing

constraint. Essentially, increasing the number of generations means that we approach the

irrelevance results of infinitely-lived agent economies. Introducing production allows for an

endogenous response of aggregate capital to shocks. As a consequence, the supply of assets

is not fixed to an exogenous amount like in CDM, which provides an additional margin

along which the economy can respond to the introduction of a borrowing constraint. The

third dampening force, social security, directly counteracts the high covariance of retire-

ment consumption with stock returns, which is the crucial feature of the three-generations

economy. The first question of the paper is by how much the three factors will mitigate

the large increase in the equity premium that CDM find in their quantitative exercise.

The second question asks how the results change when households face uninsurable id-

iosyncratic labor income risk. Contrary to what might be expected, idiosyncratic risk in

the present model increases the equity premium, even if there are no exogenous borrowing

constraints. This is somewhat surprising given that the idiosyncratic risk is independent

of aggregate risk. I show that this is due to tight natural borrowing limits which arise

endogenously and act in a similar fashion as the exogenous borrowing limit. These natural
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borrowing limits arise because the household is not allowed to die in debt, which is similar

to the No-Ponzi-scheme condition for infinitely-lived agents. Thus, when the exogenous

borrowing constraint is introduced in an economy with idiosyncratic risk, the impact on

the equity premium is not clear ex-ante. Given that both increase the equity premium

individually, it could be that the combination of idiosyncratic risk and the exogenous bor-

rowing constraint drive it even higher. On the other hand, one could offset the other,

because they both prevent the young from holding stock.

To address the two questions, I build a large-scale OLG model with production and ag-

gregate uncertainty. At every point in time, there are 65 generations, which differ due

to a deterministic life-cycle profile for labor productivity. Households within a generation

are identical ex-ante. In economies with idiosyncratic uncertainty there will be ex-post

intragenerational heterogeneity caused by idiosyncratic shocks to labor income. House-

holds choose how much to consume and how much to save in bonds and stock. The bond

is one-period risk free, while the stock return depends on the realization of next period’s

aggregate shock. Trade is limited to these two assets by assumption and markets against

aggregate risk are incomplete. Agents retire at the age of 65 and are not allowed to die

in debt. In economies with a zero-borrowing constraint, agents cannot borrow in either

asset. The social security system, if present, is a pure Pay-As-You-Go system with a fixed

contribution rate. As an extension, I also look at an economy where the idiosyncratic labor

income risk has a countercyclical variance (CCV).

There is a single consumption good produced by a representative firm with a Cobb-Douglas

production function. The firm issues bonds and stock at an exogenously fixed debt-equity

ratio to finance its capital requirements. The reason for modeling the firm’s capital struc-

ture in this very simple way is that I want an exogenous supply of both assets so that

there will be trade in both assets even with a zero-borrowing constraint.1 Each period,

the production function is hit by a TFP shock which directly affects the aggregate wage

and the marginal product of capital. The latter is also affected by stochastic depreciation,

which is a well-known mechanism to increase the variance of asset returns.

The model is parameterized in a similar way as the related literature and calibrated to

1An additional effect is that the stock return will be leveraged, which increases its mean and variance.
The more standard case where the bond is in zero net supply and only the stock constitutes a claim on the
firm’s capital is nested for a debt-equity ratio of zero. Cf. e. g. Boldrin, Christiano, and Fisher (1995), or
Croce (2010).
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match key asset pricing statistics in the U. S., in particular the covariance of aggregate

consumption growth with stock returns. The baseline economy, which has production and

a large number of generations, but no idiosyncratic risk and no zero-borrowing constraint,

features an equity premium of 1.6 percent. When the borrowing constraint is introduced,

this increases to 2.7 percent. At the same time, the Sharpe ratio, which measures the

market price per unit of risk, goes up from 0.14 to 0.23. While, as expected, this is is less

than the increase that Constantinides, Donaldson, and Mehra (2002) report, it is more than

the typical finding with infinitely-lived agents. However, when social security is added, the

equity premium drops again to 2.0 percent. Thus our intuition that social security directly

counteracts the asset pricing effect of borrowing constraints is confirmed.

When I introduce idiosyncratic labor income risk in the economy without a zero-borrowing

constraint, I find that the equity premium increases to 2.4 percent, slightly less than when

the zero-borrowing limit is introduced. In view of the fact that the shocks are neither per-

manent nor correlated with the aggregate shock, this seems surprisingly much.2 I elaborate

on this by showing that the natural borrowing limits, which are implied by the requirement

that agents can’t die in debt, are tight and act in a similar manner to the exogenous zero-

borrowing limit. This claim is further substantiated when I look at an economy with both a

zero-borrowing constraint and idiosyncratic risk: here, the equity premium and the Sharpe

ratio are exactly the same as in the economy with only the exogenous borrowing con-

straint (and without idiosyncratic risk). The reason is that the zero-borrowing constraint

is tighter than the natural borrowing limit, so the latter is ineffective. Consequently, we

get an irrelevance result like in the case with infinitely-lived agents.

Finally, I perform the same experiment for labor income risk with a countercyclical variance

(CCV). I find that the results are essentially the same as for idiosyncratic risk with a

homoscedastic variance. This might seem like a stark difference to Storesletten, Telmer,

and Yaron (2007). However, that paper and the companion papers do not explicitly analyze

the difference between idiosyncratic risk with CCV and with a homoscedastic variance. One

reason that CCV adds so little in the present setup is that the process does not contain a

unit root, and the mapping of CCV to the aggregate state is different, as is detailed in the

section 2.5.4.

2One table in Storesletten, Telmer, and Yaron (2008) seems to show something similar, but their
numbers are inconclusive and they don’t comment on it.
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Related literature. The quantitative irrelevance of borrowing constraints and idiosyncratic

risk in models with infinitely-lived agents has been documented by e. g. Lucas (1994),

Telmer (1993), Heaton and Lucas (1996), and more recently Krusell, Mukoyama, and

Smith (2011).3 Krueger and Lustig (2010) obtain analytical results for the irrelevance of

idiosyncratic risk for asset pricing with general borrowing constraints that cover those that

I consider. In contrast to their setup, the present model has production, aggregate shocks

that are not i.i.d., and a productivity life-cycle.

Constantinides and Duffie (1996) show that if idiosyncratic income follows a unit root pro-

cess with a countercyclical variance, then it can have a large impact on asset prices. Krebs

and Wilson (2004) extend their results to an endogenous growth model with production,

and Storesletten, Telmer, and Yaron (2007) add the life-cycle. Krusell, Mukoyama, and

Smith (2011) provide analytical and quantitative results confirming a large impact of CCV

on the equity premium. Note that in the present paper, equilibria will not be autarkic.

Turning to OLG economies, Ŕıos-Rull (1994) and Ŕıos-Rull (1996) find that incompleteness

of markets against aggregate risk do not matter much for asset prices and business cycles.

Gomes and Michaelides (2008) have a very similar setup to the present one, but they focus

on the impact of limited participation on the equity premium.

Finally, the present paper is related to the literature on endogenous borrowing limits. For

the case without aggregate uncertainty, Aiyagari (1994) discusses the natural borrowing

limit arising from a no-Ponzi-scheme condition. Magill and Quinzii (1994), Levine and

Zame (1996), and Levine and Zame (2002) do this for economies with incomplete markets

against aggregate risk. Their theoretical results are relevant for the present paper, but

the approach here is a quantitative one similar to Aiyagari. Another strand of literature

looks at endogenous borrowing limits arising from the possibility of default, or limited

enforceability of debt contracts. Zhang (1997) and Alvarez and Jermann (2001) find that

the asset pricing implications of such borrowing limits are large, which is very similar in

spirit to the findings in the present paper. Alvarez and Jermann (2000) prove existence

of competitive equilibrium in such economies, and Ábrahám and Cárceles-Poveda (2010)

extend the setup to include production and an infinite number of agents, making it closer

to the present paper, but they focus on taxation.

3In contrast, Krusell and Smith (1997) find a large effect of introducing borrowing constraints. This
might be due to the zero net supply of the bond.
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The next section presents the model. Section three gives details on the computation and

the implementation of the natural borrowing limits. Section four presents the calibration.

In section five the results are discussed, and in section six I conclude.

2.2 The Model

2.2.1 Demographics and Uncertainty

Time is discrete and runs from t = 0, . . . ,∞. At the beginning of each period t, an aggre-

gate shock zt hits the economy. For a given initial z0, a date-event is uniquely identified by

the history of shocks zt = (z0, z1, . . . , zt). The shocks zt follow a Markov chain with finite

support Z and nonnegative transition matrix πz. So πz(zt+1|zt) represents the probability

of the shock next period given the current shock, and πz(z
t|zt0) represents the probability

of reaching date-event zt from a given date-event zt0 .

At every point in time t, the economy is populated by J overlapping generations indexed

by j = 1, . . . , J . Each generation consists of a continuum of households of unit mass.4

Agents within a cohort are ex-ante identical but receive an idiosyncratic shock sj each

period so that there is (ex-post) intragenerational heterogeneity with respect to the history

of idiosyncratic shocks sj. Like the aggregate shock, sj follows a Markov chain with

finite support S and strictly positive transition matrix πs. The transition probabilities

are πs(sj+1|sj) and the probability of a specific idiosyncratic shock history is πs(s
j). I

assume that a Law of Large Numbers holds, so that πs(s
j) represents both the individual

probability for sj as well as the fraction of the population with that shock history; the same

obtains for the transition probabilities πs(sj+1|sj). Finally, πs(sj) denotes the unconditional

probability of shock sj.

2.2.2 Households

At any date-event zt, a household is fully characterized by their age j and their history

of idiosyncratic shocks sj. Preferences over consumption c are represented by a recursive

4In contrast to the previous chapter, there is no population growth or survival risk.
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utility Uj(c, ·) of the Epstein-Zin form (Epstein and Zin (1989), Kreps and Porteus (1978)):

Uj(c, s
j, zt) =

[cj(sj, zt)] 1−θ
γ (2.2.1)

+β

∑
zt+1

∑
sj+1

πz(zt+1|zt)πs(sj+1|sj)
[
Uj+1(c, sj+1, zt+1)

]1−θ 1
γ


γ

1−θ

,

UJ(c, sJ , zt) = cJ(sJ , zt) ,

c > 0 ,

where β is the discount factor and θ controls risk aversion. The parameter γ is defined as

γ = 1−θ
1− 1

φ

with φ denoting the elasticity of intertemporal substitution. The CRRA utility

specification is nested for θ = 1
φ

which gives γ = 1.

Households inelastically supply one unit of labor until they retire at the fixed retirement

age jr. They are endowed with a deterministic life-cycle productivity profile ej. Every

period, each household receives an income shock η, which depends on his realization of sj

and may also depend on the current aggregate shock zt. Labor income yj(sj, z
t) is then

given as

yj(sj, z
t) = w(zt)ejη(sj, zt) , (2.2.2)

where w(zt) is the real, aggregate wage in terms of the consumption good at zt. By

construction, the unconditional expectation of idiosyncratic income shocks is equal to one,

i.e. letting Π(st) be the stationary distribution of st, we have that
∑

st
Π(st)η(st, zt) = 1

for all zt. The idiosyncratic income shock η(sj, zt) is the only channel through which st

affects the household. Insurance markets against this risk are closed by assumption.

There are two assets that agents can trade to transfer wealth from one period to the next,

called stocks and bonds. Since by assumption the cardinality of Z is greater than two,

markets against aggregate risk are incomplete. Both the stock and the bond constitute

a claim on the firm’s capital in the following period. They only differ in their returns:

the stock has a risky return rσ(zt+1) that depends on the realization of the aggregate

uncertainty in the following period, whereas the bond pays an interest rate rb(z
t) that is
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one period risk-free. Households buy amounts σj(s
j, zt) of stock and bj(s

j, zt) of bonds by

selling the consumption good to the firm. The firm transforms the consumption good into

next period capital. The sequential budget constraint is standard:

cj(s
j, zt) + σj(s

j, zt) + bj(s
j, zt) = (1 + rσ(zt))σj−1(sj−1, zt−1) (2.2.3)

+ (1 + rb(z
t−1))bj−1(sj−1, zt−1)

+ (1− τ)yj(sj, z
t)I(j) + yss(z

t)(1− I(j)) ,

where τ is a fixed social security contribution rate, yss(z
t) is pension income from social

security, and I(j) is an indicator function which takes the value 1 if j < jr and 0 else

(recall that jr is the retirement age and that the process for labor income yj(sj, z
t) is given

in eq. 2.2.2). All households are born with zero assets, i.e. σ0(s0, zt) = b0(s0, zt) = 0.

In addition to the budget constraint, households face one of two borrowing constraints,

which both are very common in the literature. The first constraint requires that households

can not die with debt, or more precisely, with a negative net asset position:

σJ(sJ , zt) + bJ(sJ , zt) ≥ 0. (NNB)

This is a standard constraint to rule out Ponzi-schemes in economies with finite lifetimes.

Together with the requirement of positive consumption c > 0∀zt, it implies a sequence of

endogenous borrowing constraints on the net value the household can borrow at each date

event.5 Somewhat loosely, we can say that the household cannot borrow more than the

present value of his worst future income stream. The second constraint an exogenously

imposed zero-borrowing limit:

σj(s
j, zt) ≥ 0

bj(s
j, zt) ≥ 0

(ZB)

Households will face either the nonnegative bequest (NNB) constraint or the tighter zero-

borrowing (ZB) constraint.

5Of course, we also need full enforceability of contracts, so that default is precluded.
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2.2.3 Firms

There is a representative firm that uses capital K(zt) and labor L(zt) to produce the

consumption good Y (zt). The production technology is Cobb-Douglas with capital share

α and deterministic, labor-augmenting productivity growth λ. At each date-event, it is

subject to a multiplicative shock to total factor productivity ζ(zt) which depends only on

the current aggregate shock:

Y (zt) = ζ(zt)K(zt)α((1 + λ)tL(zt))1−α. (2.2.4)

Households purchase the produced goods to satisfy their consumption needs. Alternatively,

the firm can use the goods to invest in capital. Assuming zero capital adjustment costs

and a stochastic depreciation rate δ(zt), the capital stock evolves according to:

K(zt+1) = I(zt) +K(zt)(1− δ(zt)) (2.2.5)

The firm finances its capital requirements K(zt+1) by issuing stock and bonds. Both one

share of stock and a bond give the holder a claim on one unit of tomorrow’s capital stock.

The capital structure of the firm is exogenous and determined by a constant debt-equity

ratio d̄:

K(zt+1) = Σ(zt+1) +B(zt+1) = Σ(zt+1)(1 + d̄) , (2.2.6)

where Σ and B are the amount of stock and bond issued by the firm.6 The return on

capital has to equal

r(zt+1)K(zt+1) = r(zt+1)Σ(zt+1)(1 + d̄).

Out of this, bondholders receive

rb(z
t)B(zt+1) = rb(z

t)d̄Σ(zt+1)

6See, for example, Boldrin, Christiano, and Fisher (1995) or Croce (2010) for modeling capital structure
this way.



14 CHAPTER 2. ASSET PRICING IN OLG ECONOMIES

and stock holders receive the rest, which is

rσ(zt+1)Σ(zt+1) = r(zt+1)Σ(zt+1)(1 + d̄)− rb(zt)d̄Σ(zt+1).

Consequently, the bond and stock returns can be calculated directly from the return on

capital as

rb(z
t) =

1

d̄
E
[
r(zt+1)(1 + d̄)− rσ(zt+1)|zt

]
(2.2.7)

rσ(zt+1) = r(zt+1)(1 + d̄)− d̄rb(zt) (2.2.8)

As one can see, the stock return is leveraged. This increases both its expected value as well

as its variance. For d̄ = 0 we are back to the standard case where the return on capital

equals the return on the risky asset.

2.2.4 Social Security

Social security is a pay-as-you-go system with a fixed contribution rate τ that is levied on

labor income. Pension income yss(z
t) adjusts to ensure that the social security budget is

balanced in every date-event. By assumption yss(z
t) does not depend on the idiosyncratic

history, which means that every household receives the same pension income.7 The case

τ = 0.0, i.e. an economy without a social security system, will be the baseline case.

2.2.5 Equilibrium

I will first define a competitive equilibrium, because it is economically intuitive and directly

refers to the model as it has been set up. Also, we know that such equilibria exist. Then

I will define the special case of a recursive competitive equilibrium, which is used in the

quantitative experiments. There, I will restate all model elements in recursive form.

Definition 2.1. For an initial aggregate state z0, an initial distribution {Π0(sj)}j and as-

sociated initial stock and bond positions {σj(sj, z0), bj(s
j, z0)}j, a competitive general equi-

librium consists of sequences for household choices {cj(sj, zt), σj(sj, zt), bj(sj, zt)}j, firm

7As discussed in the previous chapter, one can argue that this is a reasonable approximation to the
U.S. pension system.
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choices {K(zt), L(zt)}, social security settings {τ, yss(zt)}, factor prices {w(zt), r(zt)}, and

asset returns {rb(zt), rσ(zt)} such that for all (sj, zt):

a) given prices and returns, household choices solve the households’ problem of maximiz-

ing (2.2.1) subject to (2.2.2), (2.2.3), and either (NNB) or (ZB)

b) factor prices and firm choices are related by

w(zt) = (1− α)(1 + λ)tζ(zt)

(
K(zt)

L(zt)

)α
(2.2.9)

r(zt) = αζ(zt)

(
K(zt)

L(zt)

)α−1

− δ(zt) (2.2.10)

c) asset returns are given by (2.2.7) and (2.2.8)

d) the social security budget is balanced, i.e.

jr−1∑
j=1

∑
sj

(1− τ)yj(sj, z
t)πs(sj) = (J − (jr − 1))yss(z

t) (2.2.11)

e) all markets clear:

Y (zt) + (1− δ(zt))K(zt)

=
J∑
j=1

∑
sj

cj(s
j, zt)πs(s

j) +K(zt+1) (2.2.12)

K(zt) =
J∑
j=1

∑
sj

(
σj(s

j−1, zt−1) + bj(s
j−1, zt−1)

)
πs(s

j−1) (2.2.13)

1

(1 + d̄)
K(zt) =

J∑
j=1

∑
sj

σj(s
j−1, zt−1)πs(s

j−1) (2.2.14)

L(zt) =

jr−1∑
j=1

ej (2.2.15)

Recall that by the law of large numbers, πs(s
j) represents the fraction of of households

with that specific idiosyncratic shock history, and that each generation has unit mass. The

capital market clearing equation (2.2.13) shows that next period’s capital is financed by
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both stocks and bonds, and the following stock market clearing equation (2.2.14) states

that total stock is always a constant fraction of aggregate capital, with bonds making up

the remainder. This follows from our assumption of a constant debt-equity-ratio d̄.

While we know that such competitive equilibria exist, we generally can’t compute them.8

To make the solution computationally feasible, the literature usually defines a recursive

competitive equilibrium. I first de-trend the economy by dividing all aggregate and indi-

vidual variables by the level of technology (1 + λ)t. Since in a recursive equilibrium all

endogenous variables are functions of the current state, one needs to define a state space

that is sufficient for solving the households’ maximization problem. I follow the applied

literature and use the current asset distribution, together with current idiosyncratic and

aggregate shocks as the state.9 Let the current probability distribution over current stock

and bond holdings, current idiosyncratic shocks, and age be denoted by Φ.10 The set of

measures Φ is defined over M, which is a family of subsets of {[σ,∞]× [b,∞]× S × J },
where σ and b are implied by (NNB) or (ZB). In addition to Φ, each household needs

to know their own current idiosyncratic state (σ, b, s) and the current aggregate shock z.

Since a recursive equilibrium does not depend on the date-event, I drop the time index t,

and use a prime for next period’s variables.

Definition 2.2. A recursive competitive equilibrium consists of a distribution Φ, measur-

able functions for household choices {cj(σ, b, s; Φ, z), σ′j(σ, b, s; Φ, z), b′j(σ, b, s; Φ, z) and an

associated value function U(σ, b, s; Φ, z), firm choices {K(Φ, z), L(Φ, z)}, social security

settings {τ, yss(Φ, z)}, factor prices {w(Φ, z), r(Φ, z)}, asset returns {rb(Φ), rσ(Φ, z)}, and

a law of motion H(Φ, z) such that:

a) given functions for prices and returns and the law of motion, the households’ policy

8See Kubler and Polemarchakis (2004) for an existence proof in an OLG economy with stochastic
production and a finite number of heterogeneous households. Miao (2006) considers the case of a continuum
of infinitely-lived heterogeneous households subject to the zero-borrowing constraint zero borrowing (ZB),
also with stochastic production. Alvarez and Jermann (2000) provide an existence proof for an economy
with endogenous, state-dependent borrowing constraints that are similar in spirit to (NNB).

9See, e. g. Ŕıos-Rull (1996) or Krusell and Smith (1998). In general, only the existence of ’generalized
Markov equilibria’ can be proven, see e. g. Kubler and Polemarchakis (2004). However, Cao (2012) proves
the existence of recursive equilibria with such a minimal state space consisting of the current distribution
of wealth and shocks.

10We need a distribution which is continuous over (b, σ) because there is a continuum of agents in each
generation. If there was a finite number of households, we could instead track each households’ current
asset holdings.
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functions {cj(σ, b, s; Φ, z), σ′j(σ, b, s; Φ, z), b′j(σ, b, s; Φ, z) solve

max
c>0,σ′,b′

Uj(σ, b, s; Φ, z)

=


(
c

1−θ
γ + β̃

(∑
z′
∑

s′ πz(z
′|z)πs(s

′|s)U1−θ
j+1 (σ′, b′, s′;H(Φ, z), z′)

) 1
γ

) γ
1−θ

c if j = J

s. t. c+ σ′ + b′ = (1 + rσ(Φ, z))σ + (1 + rb(Φ))b

+ (1− τ)yj(s,Φ, z)I(j) + yss(Φ, z)(1− I(j)) ,

yj(s,Φ, z) = w(Φ, z)ejη(s, z) ,

σ′ + b′ ≥ 0 if j = J. (NNB’)

b) functions for prices and for firm choices are related by

w(Φ, z) = (1− α)ζ(z)

(
K(Φ)

L(Φ)

)α
r(Φ, z) = αζ(z)

(
K(Φ)

L(Φ)

)α−1

− δ(z)

c) functions for asset returns are given by

rb(Φ) =
1

d̄
E
[
r(Φ, z)(1 + d̄)− rσ(Φ, z)|z

]
rσ(Φ, z) = r(Φ, z)(1 + d̄)− d̄rb(Φ)

d) the function for social security settings ensures a balanced budget, i.e.

jr−1∑
j=1

∑
s

(1− τ)yj(s,Φ, z)πs(s) = (J − (jr − 1))yss(Φ, z)
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e) all markets clear:

ζ(z)K(Φ)α(L(Φ))1−α + (1− δ(z))K(Φ)

=
J∑
j=1

∑
s

∫
b

∫
σ

cj(σ, b, s; Φ, z)Φ(σ, b, s, j) db dσ +K(H(Φ, z))

K(Φ) =
J∑
j=1

∑
s

∫
b

∫
σ

(σ + b)Φ(σ, b, s, j) db dσ

K(Φ)

(1 + d̄)
=

J∑
j=1

∑
s

∫
b

∫
σ

σΦ(σ, b, s, j) db dσ

L(Φ) =

jr−1∑
j=1

ej

f) the law of motion H is generated by the policy functions and the Markov transition

matrix πs so that

Φ′ = H(Φ, z)

In the households’ utility, β̃ = β(1+λ)
1−θ
γ because of the normalization with the determin-

istic trend. As before, agents are born with zero assets, so that for j = 1, σ = 0 and b = 0.

The condition of nonnegative bequests in the recursive equilibrium is (NNB’); recall that

either this or the stricter zero-borrowing constraint (ZB’) will be imposed:

σ′j(σ, b, s; Φ, z) ≥ 0

b′j(σ, b, s; Φ, z) ≥ 0
(ZB’)

By the law of large numbers, unconditional probability of receiving shock s, πs(s), is equal

to the corresponding marginal distribution of Φ, i.e. πs(s) =
∫
b

∫
σ

Φ(σ, b, s, j) db dσ ∀s, j.
This equilibrium is not stationary in the sense that Φ is not time-invariant.
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2.3 Computation

2.3.1 Computational Solution

The computational procedure is the same as in the previous chapter. I restate the main

elements with a focus on the application at hand, because the model notation differs. I

compute the recursive equilibrium using global solution methods.11 I follow the recent,

applied literature and use the Krusell and Smith (1998) procedure to approximate the

distribution Φ with a finite number of moments, and to approximate the law of motion

H(·) by a specific functional form Ĥ.12 Intuitively, households need to know next period’s

prices w′, r′σ, r
′
b in order to solve their maximization problem, and the approximate law of

motion Ĥ(·) should enable them to forecast these prices. Let the expected equity premium

be µ(Φ, z) = E [rσ(H(Φ, z), z′)− rb(H(Φ, z))|z]. The laws of motion households use are

linear forecasts of next period’s capital K ′ and next periods expected equity premium µ′:

K̂ ′ = ψK0 (z) + ψK1 (z) ln(K) + ψK2 (z) ln(K)2 , (2.3.16)

µ̂′(z′) = ψµ0 (z′) + ψµ1 (z′) ln(K̂ ′) + ψµ2 (z′) ln(K̂ ′)2 , (2.3.17)

where {ψ(z)}K,µ0,1,2 are state-contingent coefficients. By forecasting K ′ households can calcu-

late tomorrow’s marginal productivity of capital and labor. Combining this with a forecast

of µ′ enables them to calculate the expected stock and bond returns.13 The approximate

law of motion (2.3.16-2.3.17) is close to the ones employed by Gomes and Michaelides

(2008) Storesletten, Telmer, and Yaron (2007), and Krusell and Smith (1997). Note that

one µ′ is forecast for each z′, and that the forecast depends on K̂ ′. This mirrors the true

equity premium one period ahead µ′(H(Φ, z), z′), which also depends on the the transition

of Φ and on z′.

The coefficients {ψ(z)}K,µ0,1,2 are estimated from simulations. Like Gomes and Michaelides

(2008), I simulate the economy for T = 5000 periods and discard the first 500 to avoid the

11To be precise, all one can do is to approximate the recursive equilibrium numerically. So in general
we compute ε-equilibria as defined by Kubler and Polemarchakis (2004). These are known to exist.

12Krueger and Kubler (2004) show that this method can yield a bad approximation if the number of
generations J is not large. However, in a model with a large number of generations, like the present one,
the method should perform better, since the model is more similar to an infinite horizon model.

13Using the equity premium instead of the bond return has two advantages: the equity premium
fluctuates less, and we can prevent it from becoming negative.
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impact of initial values. The initial distribution and the aggregate grids are initialized with

the help of a degenerate equilibrium, which I call ’mean-shock’ equilibrium and describe

in the appendix 2.A. In each simulation period, I explicitly solve for the equity premium

that clears bond and stock markets. While this is a time-consuming step, it improves

the regressions. I use the quasi-Newton method described in Ludwig (2007) to find the

fixed-point of
(
{ψ(z)}K,µ0,1,2

)
i+1

= Ψ
((
{ψ(z)}K,µ0,1,2

)
i

)
. The goodness of fit for the final

approximation is R2 ≥ 0.99 for all experiments computed, which is in the usual range in

the literature.14

For the solution of the household problem, I first transform the model so that the in-

dividual state space consists of cash-at-hand instead of stocks and bonds. This reduces

the dimension of the state by one. The details on the transformations and the resulting

equilibrium definitions can be found in chapter 2.A. I apply the endogenous grid method

of Carroll (2006) when solving the household problem backwards. The well-known ad-

vantage is that Carroll’s method avoids expensive root-finding steps in the consumption

Euler equation. In the case of two assets, it has the additional advantage that instead of

solving simultaneously for the optimal amount of two assets, which is a two-dimensional

root-finding problem, I can keep the total savings amount fixed and solve for the optimal

share invested in stock, which is only a one-dimensional problem. See appendix 2.A for

details. The Fortran 2003 code and compiled binaries will be published on-line under the

GNU General Public license, because its full object-orientation and parallelization contains

some originality.

2.3.2 Implementation of Borrowing Constraints

Two types of borrowing constraints are central to this paper, and in general they are

not trivial to implement computationally. The baseline economy requires the condition

of nonnegative bequests (NNB’) to hold. Together with c > 0, this condition implies

a sequence of age- and state-dependent endogenous borrowing constraints, the natural

borrowing limits Mj(s,Φ, z). They can be interpreted as the capitalized value of the worst

future income stream and have to be calculated explicitly to guarantee that during the

14While this is the usual measure reported in the literature, it is not necessarily a good one to evaluate
how close the solution is to a true equilibrium. Two complementary measures are the N-step-ahead forecast
error Den Haan (2010), and the average and maximum Euler equation errors (see Judd (1992)).
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simulations there are no negative bequests. The reason that agents might want to take

more debt than Mj(s,Φ, z) is that the worst labor income may be very small, and agents

expect high income at later ages due to the deterministic life-cycle component ej. So if the

Mj(s,Φ, z) are not explicitly calculated, then during the simulations it could happen that

agents die in debt or have implicit negative consumption. However, the Mj(s,Φ, z) are

endogenous objects, since they are a combined restriction on asset positions, asset returns,

and labor income. To calculate them, I make the following assumption.

Assumption 2.1. ∀ (j, σ, b, s,Φ, z) :

(
σ′j(σ, b, s; Φ, z) + b′j(σ, b, s; Φ, z)

)
→ −Mj(s,Φ, z)⇒ σ′j(σ, b, s; Φ, z)→ 0

This does not seem a strong assumption, since all it says is that as the agent approaches

his maximum borrowing capacity, he will reduce his investment in the risky asset. This

is plausible, because the agent only takes up so much debt to keep consumption positive.

Also, if he was borrowing using the risky asset, he would reduce this short position, because

in expectation borrowing in stock is much costlier than in bond. I check this assumption

both in the household solution as well as in the simulations and never find it violated.

Under assumption 2.1, the natural borrowing limits can be calculated recursively as

MJ(s,Φ, z) = 0

Mj(s,Φ, z) =
1

1 + rb(Φ)

[
Mj+1(s,H(Φ, z), z) (2.3.18)

−(1− τ)yj+1(s,H(Φ, z), z)I(j + 1)− yss(H(Φ, z), z)(1− I(j + 1))
]
,

where s is the smallest element of S, which by construction yields the smallest value of

the stochastic income component η(s, z). Likewise, z is the smallest element of Z and by

construction yields the smallest value for ζ(z). The equation formalizes the notion of the

capitalized value of the worst future income stream: for every state today, I calculate the

endogenous borrowing limit by subtracting the worst possible income realization tomorrow

from the tightest possible borrowing constraint tomorrow and discounting that at the one-

period risk-free rate rb(Φ).15 Assumption 2.1 essentially ensures that I can use rb(Φ) for

15Agents are allowed to borrow against future pension income, if there is any. This does not correspond
to the law in the U.S., which prohibits pension income to be pledged for debt. However, since in the model
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discounting. Of course, in the computation I replace Φ and H(·) by their approximations

given in (2.3.16-2.3.17). The natural borrowing limits are never binding, because a binding

constraint would imply zero consumption at some date-event. Since they never bind, they

do not affect the Euler equations in the solution, and during the simulations, I check that

the fraction of agents at this lower bound of the distribution Φ is tiny.

When implementing the zero-borrowing constraint (ZB’), one usually faces the numerical

difficulty of finding the ’kink point’, i. e. the line in the state space where the constraint just

binds. This is particularly problematic for high-dimensional state spaces like the present

one. However, another advantage of Carroll’s method of endogenous gridpoints is that it

can deal well with exogenous constraints. We can simply set the lower bound of the grid

for total savings a′ = σ′ + b′ to zero. More interestingly, note that we can deal with the

lower bounds {Mj(s,Φ, z)} in a very similar manner, by setting the lowest gridpoint of a′

slightly above the corresponding natural borrowing limit (see Hintermaier and Koeniger

(2010) for a similar argument).

In the following, whenever I talk of an economy without an exogenous borrowing constraint,

it means that (ZB’) is not imposed, but the nonnegativity of bequests (NNB’) is. On the

other hand, note that (ZB’) implies (NNB’).

2.3.3 Computational Experiments

The experiments are designed to expose the effects of idiosyncratic risk and borrowing

constraints on the equity premium and to explain the mechanisms behind it. Markets

against aggregate risk are incomplete in all economies, so that we have an explicit market

price of risk. All economies are recalibrated to have the same capital-output ratio, which

implies that the exogenous supply of stocks and bonds remains constant. The details of

the (re-)calibrations are described in the next section.

The conceptual sequence of experiments is the following. The baseline economy features

complete insurance markets against idiosyncratic risk and no exogenous borrowing con-

straint. Then I first impose the exogenous zero-borrowing-constraint, and in the tables I

call it the ZB economy. This is the thought experiment carried out by Constantinides,

Donaldson, and Mehra (2002), so the results can be understood as a quantitative eval-

there is perfect enforcement of contracts, there is no reason to distinguish labor income from pension
income. Kubler, Davis, and Willen (2006) have a similar specification.



2.4. PARAMETRIZATION 23

uation of their mechanism in a large-scale model. Next, I look at an economy without

an exogenous borrowing constraint and without insurance markets against idiosyncratic

risk. I will say that idiosyncratic risk is present and call it the IR economy. Note that the

nonnegativity of bequests (NNB’) has to hold and that the implied endogenous borrowing

constraints will differ from the baseline economy. The third economy features both an

exogenous zero-borrowing constraint and idiosyncratic risk. So insurance markets against

idiosyncratic risk are closed, and I call it the ZB,IR economy.

Then, all the exercises are repeated with a social security system. The corresponding

economy names will have an SS attached. As discussed in the introduction, the reason

for this specific extension is that social security directly counteracts the forces underlying

the mechanism of Constantinides, Donaldson, and Mehra (2002). As can be seen from

the equilibrium description, I limit attention to a defined contribution system with a flat

pension scheme.

Finally, I will also analyze the effect of a counter-cyclical variance of the idiosyncratic

income risk. The experiments will be analogous to the cases where I allow for idiosyncratic

risk, and I call the economies the CCV economy and the ZB,CCV economy, respectively.

Note that in the model description, the possibility CCV was included as the idiosyncratic

income shock η(s, z) was allowed to also depend on z.

2.4 Parametrization

2.4.1 Parametrization and Calibration Strategy

Most of the model parameters are directly set to the values in Gomes and Michaelides

(2008) (GM) and Storesletten, Telmer, and Yaron (2007) (STY) to stay comparable to

them, since both papers analyze similar asset pricing questions in a large-scale OLG econ-

omy with idiosyncratic and aggregate uncertainty. I then calibrate the model to match

three statistics in the data that are crucial for asset pricing: the variance of aggregate

consumption growth var(Ct+1

Ct
), the covariance of aggregate consumption growth with the

stock return cov(Ct+1

Ct
, rσ,t), and the capital-to-output ratio E(K

Y
).16 The variance and co-

variance of aggregate consumption growth are at the heart of the equity premium puzzle as

16STY also match var
(
Ct+1

Ct

)
and E

(
K
Y

)
, but not cov(Ct+1

Ct
, rσ,t).
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originally stated by Mehra and Prescott (1985). In section 2.4.3, I describe how I calibrate

the model to match them.

The capital-to-output ratio has a strong impact on the level of returns: when it increases,

the stock and the bond return decrease by roughly the same amount. The ratio also

determines average aggregate output and the exogenous supply of stocks and bonds, as is

clear from eq. (2.2.6). Therefore, I keep this ratio constant at the value of 3.3 across all

economies. This is achieved by varying the discount factor β as shown in table 2.1.

Table 2.1: Values for discount factor β for all economies

baseline ZB IR ZB,IR SS ZB,SS CCV ZB,CCV
β 0.97 0.96 0.91 0.90 0.99 0.99 0.90 0.90

Notes: The names for the different economies are explained in section 2.3.3 and as
well as in the results section.

2.4.2 Demographics, Technology, and Preferences

A model period corresponds to one year. Households enter the model at biological age

22, retire at the age of 65, and die at 85. The deterministic life-cycle productivity profile

{ej}J1 is estimated from PSID data and displayed in figure 2.1. The remaining parameters

are standard and their value is shown in table 2.2 together with the source where they are

taken from.

Table 2.2: Values for preference and technology parameters

Parameter Value Source
Discount factor, β cf. table 2.1 –
Coefficient of relative risk aversion, θ 8.0 STY
Elasticity of intertemporal substitution, φ 0.5 GM
Capital share, α 0.36 STY
Debt-equity-ratio, d̄ 0.66 Croce (2010)
Technological growth, λ 0.00 GM

Notes: These parameters are directly set for all economies. If not stated otherwise,
the values are taken from Gomes and Michaelides (2008) (GM) and Storesletten,
Telmer, and Yaron (2007) (STY).
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Figure 2.1: Deterministic life-cycle productivity profile {ej}J1 estimated from PSID data.

2.4.3 Aggregate Shocks

There are two types of aggregate shocks: the TFP shock ζ(z) and the depreciation shock

δ(z). Each can take on two values. I specify a symmetric 2x2 transition matrix for each,

πζ and πδ, and from this construct the 4x4 transition matrix for the aggregate shocks πz.
17

This allows me to match the autocorrelation of TFP shocks together with the covariance of

TFP and depreciation shocks. I jointly calibrate πζ , πδ, and the variance of the depreciation

shocks σδ to match the autocorrelation of TFP shocks, the variance of consumption growth

var(Ct+1

Ct
), and cov(Ct+1

Ct
, rσ,t). The target values for var(Ct+1

Ct
) = 0.00127 (corresponding to

a a standard deviation of 0.036), and cov(Ct+1

Ct
, rσ,t) = 0.00219 are those from Mehra and

Prescott (1985).18 The autocorrelation for TFP cor(ζt, ζt−1) = 0.43 is estimated from NIPA

data after linearly detrending the the Solow residual. The values are shown in table 2.3.

2.4.4 Idiosyncratic Shocks

An idiosyncratic shock s affects the household only through the stochastic idiosyncratic

component of income η. Consequently, use estimates of the empirical income process to

17Details on the construction of the transition matrices can be found in section 2.A.
18See also the values in Kocherlakota (1996).
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Table 2.3: Parametrization of aggregate uncertainty

Parameter Value Target/ Source
Mean of TFP shocks, ζ̄ 1.00 GM
Std. dev. of TFP shocks, σζ 0.02 GM
Mean of depreciation shocks, δ̄ 0.08 GM

Std. dev. of depreciation shocks, σδ 0.07 var(Ct+1

Ct
) = 0.00127

Transition prob. TFP, πζ(1, 1) 0.66 cor(ζt, ζt−1) = 0.43

Cond. prob. depreciation, πδ(1|ζ) 0.50 cov(Ct+1

Ct
, rσ,t) = 0.00219

Notes: The first three parameters are taken from Gomes and Michaelides (2008)
(GM); the last three parameters are jointly calibrated to match the three targets.

set the transition matrix for idiosyncratic shocks, πs. Specifically, I take the estimates

from Storesletten, Telmer, and Yaron (2004), because as an extension, I analyze the case

of a countercyclical variance of the income risk CCV (see section 2.5.4). They estimate an

income process of the following kind:

ln(η)i,t = ρ ln(η)i,t + εi,t , εi,t ∼ N (0, σ2
ε,t) (2.4.19)

The CCV enters through the time-dependence of the variance of the innovations, σ2
ε,t.

However, note that in all experiments but the CCV extension, ε will be homoscedastic.19

Their estimates are displayed in table 2.4. I then use the Rouwenhorst method to create

the transition matrix πs and the values for η(s, z).20 It is important to point how the CCV

maps into the aggregate state of the economy: a high TFP shock is associated with the low

CCV and v. v. Thus, the booms in Storesletten, Telmer, and Yaron (2004) are mapped

to TFP shocks, not to depreciation shocks. However, I calibrate the correlation between

TFP and depreciation shocks explicitly.

19The homoscedastic variance for ε is calculated as σε = (σε(1) + σε(2))/2.
20Kopecky and Suen (2010) show that the Rouwenhorst method usually yields a better approximation

to the continuous process than traditional methods like Tauchen. More importantly, it fits the CCV case
very well, because it will yield different the values for η(s, z) for each z, but will leave πs unchanged.
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Table 2.4: Parametrization of idiosyncratic uncertainty

Parameter Value Source
Autocorrelation of ln(η), ρ 0.95 STY
Std. dev. of idios. income shock, σε 0.17 STY
Std. dev. of idios. income shock with CCV, σε(z) {0.21, 0.13} STY
Mean of idios. income shock, η̄ 1.00 –

Notes: These parameters are directly set for all economies. The values are taken
from Storesletten, Telmer, and Yaron (2007) (STY).

2.5 Results

2.5.1 Asset Prices

The asset pricing effects of zero-borrowing constraints and of idiosyncratic risk are displayed

in table 2.5. The third column shows the data for the U. S. (1970-1998) as reported by

Campbell (2003). There, one can see the well known stylized facts of a low risk-free rate -

which here is the bond return rb,t- and a high equity premium E(rσ,t − rb,t). The Sharpe

ratio, defined as
E(rσ,t−rb,t)√
V ar(rσ,t)

, is a measure of the market price of risk and amounts to 0.31 in

the U. S. over this period. Since consumption-based asset pricing models typically can’t

generate a high equity premium, the Sharpe ratio is helpful in understanding to what

extent this is a failure of generating a high price of risk (as opposed to having a too small

amount of risk in the economy). Finally, the standard deviation of the bond return much

smaller than the standard deviation of the stock return (by a factor of about 10). The

table does not report the values for the calibration targets, specifically var(Ct+1

Ct
) = 0.00127,

cov(Ct+1

Ct
, rσ,t) = 0.00219, and E(K

Y
) = 3.3, because all model versions match them very

closely. These and other aggregate statistics are relegated to appendix 2.B.

The model-generated moments of the baseline economy are shown in the second column.

The mean and standard deviation of the bond return at 1.63 percent and 1.13 percent,

respectively, are reasonably close to the data. The mean stock return, on the other hand,

amounts to less than half the empirical value of 6.93 percent, and the standard deviation

of stock returns is about two thirds that of the data. The classic ’equity premium puzzle’

is apparent: the model-value of 1.60 percent is far below the empirical 5.44 percent. The

Sharpe-ratio of the baseline economy of 0.14 is also far below its empirical counterpart,

which implies that even if the standard deviation of stock returns did match the data, the
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Table 2.5: Asset pricing moments

Variable Moment Data Baseline ZB IR ZB, IR
Bond return, rb,t Mean 1.49 1.63 1.31 1.51 1.17

Std. Dev. 1.69 1.13 1.13 1.05 1.03
AR(1) 0.57 0.92 0.91 0.90 0.90

Stock return, rσ,t Mean 6.93 3.23 4.05 3.86 3.91
Std. Dev. 17.5 11.7 11.7 11.7 11.7

AR(1) 0.05 0.03 0.03 0.03 0.03
Equity premium Mean 5.44 1.60 2.74 2.38 2.74
Sharpe ratio Mean 0.31 0.14 0.23 0.20 0.23

Notes: The empirical moments for the U. S. (1970-1998) are from Campbell (2003).

The model equity premium is E(rσ,t−rb,t), and the model Sharpe ratio is
E(rσ,t−rb,t)√
V ar(rσ,t)

.

model wouldn’t get close to the empirical equity premium.

The picture changes when a zero-borrowing constraint is introduced. The equity premium

goes up by more than one percentage point, which represents an increase of 71 percent.

This translates into a substantial increase in the Sharpe ratio: at a value of 0.23, the

distance to the empirical value is half that of the baseline economy. Consequently, the

mechanisms laid down by Constantinides, Donaldson, and Mehra (2002) in their stylized

model survive to this much richer environment. Due to the large number of generations and

production with physical capital accumulation, the impact of zero-borrowing constraints

on the equity premium is somewhat more moderate than in their quantitative exercise.

However, the impact on the Sharpe ratio is similar.

The sixth column shows the numbers for the economy with only idiosyncratic risk (IR), but

no exogenous zero-borrowing constraint. Compared to the baseline, the equity premium

increases by 0.8 percentage points, which represents an increase of 50 percent, somewhat

less than the increase in the ZB case. The same goes for the Sharpe ratio. This result

opposes the many studies with infinitely-lived agents that report basically zero changes in

the equity premium (see, e. g. Lucas (1994), and Heaton and Lucas (1996)). Storesletten,

Telmer, and Yaron (2008) find very similar numbers for the equity premium, but in their

case, the Sharpe ratio actually decreases.21 Before analyzing the reasons, let’s look at

the last column, which shows the economy with both a zero-borrowing-constraint and

21Note that this is a different paper from the better known Storesletten, Telmer, and Yaron (2007), in
which they only look at the asset pricing implications of CCV. I elaborate on the reasons for my different
finding in section 2.5.4.
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idiosyncratic risk (ZB,IR). The equity premium and the Sharpe ratio are essentially the

same as in the economy with only the zero-borrowing constraint (ZB). This is the most

striking finding and a crucial stepping stone to understanding the mechanisms at work. To

this aim, I will next show the effect that the exogenous zero-borrowing limit (ZB) and the

endogenous natural borrowing limit have on portfolio choices.

2.5.2 Borrowing Limits and Portfolio Choices

Recall that in all economies households are subject to the nonnegative bequest constraint.

In the baseline and IR case, it leads to state-dependent, endogenous natural borrowing

limits, which are computed according to (2.3.18). Figure 2.2 shows these natural borrowing

limits for the baseline and the IR case, together with the zero-borrowing limit and a natural

borrowing limit for an infinitely-lived agent. Note that the limits are defined on total

savings, i. e. b′j + σ′j ≥Mj, and that the graph shows the average over all states, i. e. the

mean of state-dependent limits. The dotted line for the infinitely-lived agent is calculated

like in Aiyagari (1994), using the idiosyncratic income shocks, the average wage, and the

average bond return from the IR economy.22 The three lines for the baseline, the IR,

and the ZB case meet at zero when the agent retires, since he does not have retirement

income. Before retirement, the natural borrowing limit in the IR economy is much tighter,

because the worst possible income realization is much closer to zero, due to the presence of

idiosyncratic shocks. Indeed it is closer to the ZB line, which could help explain why the

equity premium in the IR case increases not quite as much as in the ZB case. The (ZB,IR)

case is not shown in the figure, because its line corresponds to the ZB line. As was just

discussed, the equity premium and the Sharpe ratio are also the same for ZB and (ZB,IR).

Finally, the line for the infinitely-lived agent looks like a lower bound. It is, but only to

the IR line, not necessarily to the ZB line. The reason that ZB lies above the line for the

infinitely-lived agent is the numerical calibration. This sheds light on why idiosyncratic

risk in infinitely-lived economies does not have an impact on the equity premium: even

with idiosyncratic risk, the Aiyagari-style natural borrowing limit is very lax (see, e.g.

Zhang (1997)).

The essence of figure 2.2 and the preceding paragraph is that it seems as if the endogenous,

22It is correct to take the average, aggregate wage and bond return, instead of the worst realizations,
because in the graph we average over all states.
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Figure 2.2: Natural borrowing limits Mj for the baseline economy, the economy with a
zero-borrowing-constraint (ZB), the economy with idiosyncratic risk (IR), and an economy
with infinitely-lived agents and idiosyncratic risk (IR, Inf.lived).

natural borrowing limit is responsible for the high equity premium and Sharpe ratio in the

IR case. This is supported by the fact that the ZB case and the (ZB,IR) case have the

same borrowing limit and the same equity premium and Sharpe ratio. To understand how

the borrowing constraints affect the household, I now turn to portfolio choices.

Figure 2.3 shows the average total savings, b′j +σ′j, and the average share invested in stock,
σ′j

b′j+σ
′
j
, over the life-cycle.23 Negative total savings mean that the agent is borrowing to

increase consumption. But he can also borrow to invest in stock, which is the case whenever

the share invested in stock is larger than one. Generally speaking, both total savings

and the share invested in stock correspond to the typical life-cycle profile. Households

accumulate savings until retirement, then they dissave and reach zero in the final period.

The young invest heavily in stock, because their life-time expected income is relatively safe

and they want to benefit from the large returns on equity. As their capitalized value of

labor income diminishes over age, they reduce their share in stock.

First, I want to highlight that in the baseline economy, the households do have negative

23Averages are taken over the distribution Φ.



2.5. RESULTS 31

total savings, i. e. net debt positions. Recall that only the average is plotted, so individual

households might be taking up much more debt. They can do so because the natural

borrowing limit in this economy is very lax. They want to do so in order to smooth

consumption, both in response to aggregate income fluctuations, and in view of the larger

future income due to the steeply increasing deterministic productivity profile.

Turning to the economy with a zero-borrowing constraint, we see in figure 2.3 that the

young now are stuck at zero total savings. They would like to borrow by short-selling the

bond and invest in stock, but are not allowed to. Consequently, the share invested in stock

is flat at one until the age of 50, and only then starts decreasing. After the age of 45,

households in the ZB economy hold a substantially larger fraction of their assets in stock

than in the baseline economy. The reason is the following: since the young can’t hold as

much stock as in the baseline, but the stock supply remains constant, the equity premium

has to rise to induce the middle aged and old to hold the stock. In fact, it has to rise

substantially, because the middle-aged and old households do not like stock as an asset to

save for retirement. Since they have no social security income, their consumption growth

will covary strongly with returns, thus the large equity premium. This is the essence of

Constantinides, Donaldson, and Mehra (2002).

Now we come to the most interesting part of figure 2.3, the economy with idiosyncratic risk

(and no zero-borrowing constraint). The total savings graph shows only very few negative

total savings. This is in line with the much tighter natural borrowing limit displayed in

figure 2.2. At the same time, the young invest less in stock and the old more than in

the baseline case. In other words, the share invested in stock in the IR case is right in

between the baseline and the ZB case. This highlights the similarity of introducing a zero-

borrowing constraint to introducing idiosyncratic risk. The tight endogenous borrowing

limits not only prevent the young households from borrowing, but also shift the life-cycle

of portfolios in a fashion similar to that of the zero-borrowing constraint. The young hold

less stock to avoid being pushed to the endogenous borrowing limit by bad returns. This

means that they accumulate assets less quickly, so that the older households have to hold

a larger share of equity to realize enough consumption in retirement. However, this means

that the covariance of consumption growth of the households facing or being in retirement

with stock returns increases. This increases the equity premium. Obviously, the channel

is basically the same as with the zero-borrowing-constraint.
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Figure 2.3: Life-cycle profiles for total savings, b′j + σ′j, and the share invested in stock,
σ′j

b′j+σ
′
j
; baseline economy, economy with zero-borrowing constraint (ZB), and economy with

idiosyncratic risk (IR).
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Figure 2.4: Life-cycle profiles for total savings, b′j + σ′j, and the share invested in stock,
σ′j

b′j+σ
′
j
; zero-borrowing economy (ZB) and zero-borrowing economy with idiosyncratic risk

(ZB,IR).
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Figure 2.4 displays the average life-cycle profiles for the economy with both a zero-borrowing

constraint and idiosyncratic risk. The lines for the ZB economy are plotted as a reference,

because the two economies yield the same equity premium and Sharpe ratio. When house-

holds face both idiosyncratic risk and a zero-borrowing constraint, they start to accumulate

positive savings immediately. The reason is that they want to avoid a binding borrowing

constraint, because then a sequence of bad idiosyncratic shocks will directly translate into

diminishing consumption. As a consequence, the (ZB,IR) line runs above the (ZB) line

until the age of 55. On first glance, it might seem surprising that the life-cycle profiles of

the share invested in stock differ so much, given that the two economies yield the same

results for the equity premium and the Sharpe ratio. Specifically, households reduce their

share invested in stock quickly when they also have idiosyncratic risk, which can be ex-

plained again by their desire to avoid the borrowing constraint. Thus the prefer the safer

bond. However, from the age of 60 onward, the two curves differ only very slightly, which

is not surprising, since there is no more idiosyncratic labor income risk after retirement at

65.24 The drop in the relative demand for stock of the households aged 30 to 60 puts an

upward pressure on the equity premium, even if the drop is smaller than those observed

in 2.3. The fact that the premium doesn’t move means that it is still the households aged

60 and over who price the stock. Therefore, the mechanisms laid down by Constantinides,

Donaldson, and Mehra (2002) are robust to the introduction of idiosyncratic risk.

2.5.3 Social Security

The previous section has shown that the mechanism of Constantinides, Donaldson, and

Mehra (2002), namely that the households facing retirement price the stock, survives to

richer environments with production, long life-spans, and idiosyncratic risk. Their argu-

ment seems to crucially depend on the absence of social security, because only then does

the consumption growth of the retired covary strongly with stock returns. If, on the other

hand, the retired receive social security benefits, then they have a potentially very efficient

way of smoothing their consumption, because the shocks to stock returns display a very

low persistence in both the data and the model, as was shown in table 2.5.

24In the graph for the share invested in stock, one line seems to lie below the other everywhere. At the
same time the total savings curve shifts, so that the aggregate demand for both assets doesn’t change and
is equal to the constant aggregate supply for each.
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The results in table 2.6 confirm this intuition. The value for the social security contribution

rate τ is set to the current value in the U. S. of 12 percent. Social security strongly

decreases the equity premium if a zero-borrowing constraint is present, but it has basically

no effect on the premium in the baseline economy. In the baseline economy, there are two

Table 2.6: Asset pricing moments with social security

Variable Moment Baseline SS ZB ZB,SS
Bond return, rb,t Mean 1.63 1.93 1.31 1.56
Equity premium Mean 1.60 1.58 2.74 2.07
Sharpe ratio Mean 0.14 0.14 0.23 0.17

Notes: The numbers in columns 3 and 5 are the same as in table 2.5. Columns 4
and 6 show the baseline economy with social security (SS) and with a zero-borrowing
constraint and social security (ZB,SS). The social security contribution rate is set to
the U. S. value of 12 percent. See table 2.5 for further explanations.

opposing forces: the older households don’t require such a high equity premium, because

their retirement consumption covaries less with stock returns if they receive social security

income. This decreases the equity premium. On the other side, the young invest a smaller

share in stock, because they do not need to accumulate as much savings for retirement. This

increases the equity premium. The net effect in the present calibration is zero. However,

with zero borrowing constraints, only the first channel is at work, while the second is

basically shut down. As can be seen in figure 2.5, the reduction of the share invested in

stock is small, because both in (ZB) and (ZB,SS) the upper bound is binding. Figure 2.5

shows that households save less for retirement in the SS economy. However, they start

saving much earlier because of the higher average returns, whereby they achieve a much

flatter lifetime consumption profile. It is worth pointing out that figures 2.4 and 2.5 look

qualitatively very similar, but lead to opposing effects on the equity premium. The reason

for the different results is of course the differing effects on the consumption growth of the

retired: idiosyncratic risk does not affect its covariance with stock returns, whereas social

security does.

In order to evaluate whether the tight natural borrowing limits in an economy with id-

iosyncratic risk again play a similar role to the zero-borrowing constraints, I repeat the

same comparison for the IR economy and the (IR,SS) economy. I find results similar, but

less strong than the once just reported. The equity premium decreases by 0.4 percentage

points (as opposed to 0.67 in table 2.6), and the life-cycle profiles shift in a similar way as
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Figure 2.5: Life-cycle profiles for total savings, b′j+σ
′
j, and the share invested in stock,

σ′j
b′j+σ

′
j
;

zero-borrowing economy (ZB) and zero-borrowing economy with social security (ZB,SS).
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in figure 2.5. This again lends support to the hypothesis that the natural borrowing limits

play an important role.

2.5.4 Countercyclical Variance of Income Risk

As an extension, I analyze how the results change when the idiosyncratic income risk has

a countercyclical variance (CCV). This is very similar to Storesletten, Telmer, and Yaron

(2007) and Storesletten, Telmer, and Yaron (2008), but they do not look at zero-borrowing

constraints. Table 2.7 compares the economy with homoscedastic idiosyncratic risk (IR)

to the one with a countercyclical variance (CCV), and then compares these two cases with

borrowing constraints present, i. e. (ZB,IR) to (ZB,CCV). I find that the equity premium

and the Sharpe ratio don’t change much in the first comparison, and even less in the second.

The result that CCV does not have a strong impact in this model is also reflected in the

portfolio choices of the household in figure 2.6, which barely change.

Table 2.7: Asset pricing moments with CCV

Variable Moment IR CCV ZB,IR ZB,CCV
Bond return, rb,t Mean 1.51 1.74 1.17 1.06
Equity premium Mean 2.38 2.49 2.74 2.78
Sharpe ratio Mean 0.20 0.21 0.23 0.23

Notes: The numbers in columns 3 and 5 are the same as in columns 6 and 7 of
table 2.5; economy with countercyclical variance of idiosyncratic income risk (CCV),
and economy with a zero-borrowing constraint and CCV (ZB,CCV). See table 2.5 for
further explanations.

The reason I find a smaller effect of CCV than Storesletten, Telmer, and Yaron (2008)

lies in a slightly different calibration.25 They have two aggregate states: the economic

expansion features a ’good’ TFP shock together with a small depreciation shock, and v.

v. for the recession. The variance of idiosyncratic income shocks is larger in a recession.

In contrast, I calibrate the co-movements of TFP and depreciation shocks to match the

covariance of consumption growth with stock returns in the data. Like in STY, the variance

25Note that table 3 in Storesletten, Telmer, and Yaron (2008) shows results that are similar to the ones
presented here for a risk aversion coefficient of 3. Specifically, in that case, they find that idiosyncratic
risk without CCV accounts for most of the increase in the equity premium and the Sharpe ratio. Their
results are qualitatively different for a risk aversion of 8, but in that case adding idiosyncratic risk actually
decreases the equity premium and the Sharpe ratio. So overall their evidence is inconclusive. The better
known paper Storesletten, Telmer, and Yaron (2007) does not report the case with homoscedastic variance.
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Figure 2.6: Life-cycle profiles for total savings, b′j + σ′j, and the share invested in stock,
σ′j

b′j+σ
′
j
; economy with idiosyncratic risk (IR) and economy with idiosyncratic risk and a

countercyclical variance of the idiosyncratic income shocks (CCV).
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of the income risk is high when the TFP shock is ’bad’, but this does not necessarily imply

a large depreciation shock in my case. It is then clear that the effect of CCV must be

stronger in STY, because households can receive a larger, adverse idiosyncratic income

shock if and only if the aggregate wage and stock returns are low. To sum up this section,

the main new finding regarding CCV is that it does not increase the equity premium if

there is an exogenous zero borrowing constraint. This should not be too surprising given

the previous results on homoscedastic, idiosyncratic risk.

2.6 Conclusion

This paper has shown that in an overlapping generations economy, idiosyncratic risk has

a similar effect to an exogenous borrowing constraint, because it tightens the natural

borrowing limit. As a consequence, idiosyncratic risk increases the equity premium by a

similar amount like an exogenously imposed zero-borrowing-limit. This seems to oppose

several irrelevance results, like Constantinides and Duffie (1996) or Krueger and Lustig

(2010), which state that a countercyclical variance is necessary for idiosyncratic risk to

have asset pricing effects. However, the present setup differs in several respects. Probably

the most important difference the life-cycle, which gives rise to asset trading that results

in a subgroup of the population holding most of the stock. Another interesting finding was

that when idiosyncratic risk is added in an economy with a zero-borrowing constraint, then

the equity premium does not increase. This is so because the zero-borrowing constraint is

tighter than the natural borrowing limit, so that the latter is ineffective, and only the first

affects the pricing of the assets.

I also looked at the case with an idiosyncratic variance of the income risk. In contrast to

most of the quantitative literature, I find that it does not add much on top of the case of

a homoscedastic variance. The reason is that I calibrate the depreciation and TFP shocks

to match the covariance of aggregate consumption growth with stock returns. However,

this implies that aggregate wages and returns are not perfectly negatively correlated like in

Storesletten, Telmer, and Yaron (2007), but instead are closer to the empirical correlation.

As a consequence, it can happen that in a recession, i. e. when an adverse TFP shock

hits the economy, the stock return goes up. Then, agents do not mind the countercyclical

variance as much, because they are somewhat hedged by the less-than-perfect correlation of
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wages with stock returns. In future work, it would be interesting to analyze the sensitivity

of the countercyclical variance of income risk quantitatively in a structured way.

Finally, I have shown that the equity-premium effect of the borrowing constraint largely

disappears when the retired receive social security income. However, I looked only at one

specific system, namely a Pay-As-You-Go system with a constant contribution rate and full

redistribution. While a constant benefits system should yield similar results, a system that

does not fully redistribute and instead ties benefits to contributions might yield different

results. If, for example, benefits are tied only to very few income realizations, then the

system might even increase the equity premium. This is left for future research.
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2.A Appendix: Computational Solution

Aggregate Problem

Mean Shock Equilibrium

As an initialization step, I solve for a degenerate path of the economy where the realizations

of all aggregate shocks are at their respective means. I accordingly set z = z̄ = Ez
and δ = δ̄ = Eδ. I assume that households accurately solve their forecasting problem

for each realization of the aggregate state. This means that I approximate the above

approximate law of motion as

(k′, µ′) =
ˆ̂
H(k, µ, z̄, z̄′) (2.A.20)

Observe that in the two stationary equilibria of the model, I have that fixed point relation

(k′, µ′) =
ˆ̂
H(k, µ, z̄, z̄′) = (k, µ) (2.A.21)

With these assumptions, I can solve the mean shock path by standard Gauss-Seidel it-

erations as, e.g., described in Auerbach and Kotlikoff (1987). I adopt the modifications

described in Ludwig (2007). While the numerical methods are the same as in the solution

to a deterministic economy, the actual behavior of households fully takes into account the

stochastic nature of the model. This also means that I solve the household problem using

recursive methods and store the solutions to the household problem on grids of the idiosyn-

cratic state x. The fixed-point computed in this auxiliary equilibrium gives kms and µms

as aggregate moments and cross-sectional distributions of agents as induced by the mean

shock path. I denote these distributions by Φms.

Recursive Equilibrium

In order to solve for the stochastic recursive equilibria of the model, I use simulation

methods. To this end, I specify the approximate law of motion as:

ln(kt+1) = ψk0(z) + ψk1(z) ln(kt) + ψk2(z) ln(kt+1) (2.A.22a)

ln(µt+1) = ψµ0 (z′) + ψµ1 (z′) ln(kt+1) + ψµ2 (z′) ln(kt+1) (2.A.22b)
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Like in Krusell and Smith (1997), the forecast for kt+1 is used to forecast µt+1. Intuitively,

kt+1 contains a lot of information on the savings choice of the agent and therefore on the

returns next period. Note that, in each period, µt is an “endogenous state”, the realization

of which has to be pinned down in that particular period (in contrast to kt which is given

in period t from decisions t− 1). As in the standard application of the Krusell and Smith

(1998) method, the coefficients also depend on the realization of the aggregate state, z.

To construct the grids for the the aggregate states k and µ, Gk, Gµ, define scaling factors

sk and sµ and the number of grid points, n. I set sk = 0.8 sµ = 0.6, and n = 7. Using

these factors, I construct symmetric grids around kms, µms.

I assume that aggregate risk is driven by a four state Markov chain with support Z =

{z1, . . . , z4} and transition matrix π = (πij). Each aggregate state maps into a combination

of low or high technology shocks and low or high physical capital depreciation. To be

concrete, I let

ζ(z) =

1− ζ̄ for z ∈ z1, z2

1 + ζ̄ for z ∈ z3, z4

and δ(z) =

δ0 + δ̄ for z ∈ z1, z3

δ0 − δ̄ for z ∈ z2, z4.
(2.A.23)

With this setup, z1 corresponds to a low wage and a low return, while z4 corresponds to a

high wage and a high return.

To calibrate the entries of the transition matrix, denote by πζ = π(ζ ′ = 1− ζ̄ | ζ = 1− ζ̄)

the transition probability of remaining in the low technology state. Assuming that the

transition of technology shocks is symmetric, I then also that π(ζ ′ = 1+ ζ̄ | ζ = 1+ ζ̄) = πζ

and, accordingly 1− πζ = π(ζ ′ = 1− ζ̄ | ζ = 1 + ζ̄) = π(ζ ′ = 1 + ζ̄ | ζ = 1− ζ̄).

To govern the correlation between technology and depreciation shocks, let the probability of

being in the high (low) depreciation state conditional on being in the low (high) technology

state, assuming symmetry, be πδ = π(δ′ = δ0 + δ̄ | ζ ′ = 1− ζ̄) = π(δ′ = δ0− δ̄ | ζ ′ = 1 + ζ̄).

I then have that the transition matrix of aggregate states follows from the corresponding
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assignment of states in (2.A.23) as

πz =


πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ


In sum, the Markov chain process of aggregate shocks is characterized by four parameters,

(ζ̄ , δ̄, πζ , πδ). All of these parameters are second stage parameters which I calibrate jointly

to match the following targets: (i) an average variance of the cyclical component of TFP,

again estimated from NIPA data, (ii) the average fluctuation of the risky return which

features a standard deviation in the data of 0.16, (iii) the autocorrelation of the cyclical

component of TFP in the data and (iv) the estimated correlation of the cyclical component

of TFP with risky returns.

Household Problem

To define equilibrium I adopt a de-trended version of the household model. I therefore first

describe transformations of the household problem and then proceed with the equilibrium

definition.

Transformations

Following Deaton (1991), define cash-on-hand by Xi,j,t = Ai,j,t(1+rft +κi,j−1,t−1(rt−rft ))+

Yi,j,t. The dynamic budget constraint then rewrites as

Xi,j+1,t+1 = (Xi,j,t − Ci,j,t)(1 + rft+1 + κi,j,t(rt+1 − rft+1)) + Yi,j+1,t+1 (2.A.24)

I next transform the problem to de-trend the model and work with stationary variables

throughout. That is, I de-trend with the deterministic trend component induced by tech-

nological progress. Along this line, define by xi,j,t =
Xi,j,t

Υt
transformed cash-on-hand and
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all other variables accordingly. Using ωt = wt
Υt

to denote wages per efficiency unit I have

yi,j,t =

(1− τ)εjωtηi,j,t for j < jr

bt for j ≥ jr.

Now divide the dynamic budget constraint (2.A.24) by Υt and rewrite to get

xi,j+1,t+1 = (xi,j,t − ci,j,t)R̃i,j+1,t+1 + yi,j+1,t+1. (2.A.25)

where R̃i,j+1,t+1 =
(1+rft+1+κi,j,t(rt+1−rft+1))

1+g
.

Transform the per period utility function accordingly and take an additional monotone

transformation to get

ui,j,t =

[
c

1−θ
γ

i,j,t + β̃j+1

(
Ei,j,t

[
(ui,j+1,t+1)1−θ]) 1

γ

] γ
1−θ

(2.A.26)

where β̃j+1 = β (1 + g)
1−θ
γ .

Recursive Solution

I iterate on the Euler equation, using ideas developed in Carroll (2006). The transformed

dynamic programming problem of the household reads as

u(j, ·) = max
c,κ

{[
c

1−θ
γ + β̃

(
E
[
u(j + 1, (x− c)R̃′ + y′, ·)1−θ

]) 1
γ

] γ
1−θ
}

(2.A.27)

where x′ = a′R̃′ + y′, with R̃′ = (1+rf
′
+κ(r′−rf ′))
(1+g)

, and β̃ = βςj+1 ((1 + g))
1−θ
γ .

The first-order conditions can be rewritten as

c : c
1−θ−γ
γ − β̃

(
E
[
u(j + 1, ·)1−θ]) 1−γ

γ . . .

· E
[
u(j + 1, ·)

(1−θ)(γ−1)
γ (c′)

1−θ−γ
γ R̃′

]
= 0 (2.A.28a)

κ : E
[
u(j + 1, ·)

(1−θ)(γ−1)
γ (c′)

1−θ−γ
γ

(
r′ − rf ′

)]
= 0 (2.A.28b)

With respect to the numerical solution, I interpolate the functions u(j, ·) and c(j, ·). Note
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that I can expect u(j, ·) to be approximately linear, since in period J it is simply given by

u(J) = cJ = xJ .

Next, notice that u(j + 1, ·) and c′ are functions of (x − c) so that c shows up on both

sides of the equation in (2.A.28a). This would require calling a non-linear solver whenever

I solve optimal consumption and portfolio shares. To alleviate this computational burden

I employ the endogenous grid method of Carroll (2006). So instead of the usual exogenous

grid for x (and the usual endogenous grid for savings, s = x − c), the exogenous grid is

s = x− c and the endogenous grid is x.

2.B Appendix: Additional Tables

Moments of Endogenous Variables

In the following tables, the equity premium is the average of the excess returns, E(ERt) =

E(rσ,t − rb,t).

Table 2.8: Aggregate statistics, baseline economy

Variable AVG STD CV AR(1)
Capital, Kt 6.94E+00 1.20E+00 1.73E-01 9.27E-01
Output, Yt 2.00E+00 1.26E-01 6.29E-02 8.72E-01
Investment It 6.25E-01 5.94E-02 9.50E-02 1.91E-01
Excess return, (rσ,t − rb,t) 1.60E-02 1.16E-01 7.25E+00 -5.36E-03
Stock return, rσ,t 3.23E-02 1.17E-01 3.62E+00 3.15E-02
Bond return, rb,t 1.63E-02 1.13E-02 6.96E-01 9.20E-01
Consumption, Ct 1.38E+00 1.07E-01 7.76E-02 9.27E-01

Cons. growth, (Ct+1

Ct
− 1) 4.72E-04 3.15E-02 6.25E+01 -3.84E-02

Wage rate, wt 1.28E+00 8.06E-02 6.29E-02 8.72E-01
TFP shocks, zeta 1.00E+00 2.00E-02 2.00E-02 4.38E-01
Capital-output-ratio, K

Y
3.44E+00 3.74E-01 1.09E-01 9.26E-01

Notes: AVG: average, STD: standard deviation, CV: coefficient of variation, AR(1):
autocorrelation coefficient.
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Table 2.9: Variance-covariance matrix, baseline economy

rσ,t wt ζt Yt It ERt

rσ,t 1.37E-02
wt -8.62E-04 6.50E-03
ζt 6.87E-05 4.63E-04 4.00E-04
Yt -1.35E-03 1.00E-02 7.23E-04 1.59E-02
It -4.78E-03 2.49E-03 7.23E-04 3.89E-03 3.52E-03
Ct 3.43E-03 7.55E-03 5.57E-07 1.18E-02 4.91E-04 4.53E-03
cg,t 2.53E-03 -3.64E-04 5.24E-05 -5.69E-04 -1.18E-03 -2.41E-04
δt -8.15E-03 7.61E-05 2.84E-06 1.19E-04 2.82E-03 -8.14E-03

Notes: δt is the depreciation shock, cg,t = (Ct+1

Ct
− 1), ERt = (rσ,t − rb,t), all other

variables explained in table 2.8.

Table 2.10: Aggregate statistics, zero-borrowing (ZB) economy

Variable AVG STD CV AR(1)
Capital, Kt 6.56E+00 1.06E+00 1.62E-01 9.16E-01
Output, Yt 1.96E+00 1.17E-01 5.97E-02 8.57E-01
Investment It 5.91E-01 5.19E-02 8.79E-02 1.67E-01
Excess return, (rσ,t − rb,t) 2.74E-02 1.16E-01 4.25E+00 -5.41E-03
Stock return, rσ,t 4.05E-02 1.17E-01 2.89E+00 -3.37E-02
Bond return, rb,t 1.32E-02 1.13E-02 8.62E-01 9.14E-01
Consumption, Ct 1.37E+00 1.10E-01 8.00E-02 9.39E-01

Cons. growth, (Ct+1

Ct
− 1) 4.21E-04 3.05E-02 6.59E+01 1.02E-01

Wage rate, wt 1.26E+00 7.50E-02 5.97E-02 8.57E-01
TFP shocks, zeta 1.00E+00 2.00E-02 2.00E-02 4.38E-01
Capital-output-ratio, K

Y
3.32E+00 3.39E-01 1.02E-01 9.15E-01

Notes: AVG: average, STD: standard deviation, CV: coefficient of variation, AR(1):
autocorrelation coefficient.
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Table 2.11: Variance-covariance matrix, zero-borrowing (ZB) economy

rσ,t wt ζt Yt It ERt

rσ,t 1.37E-02
wt -7.88E-04 5.62E-03
ζt 6.88E-05 4.61E-04 4.00E-04
Yt -1.23E-03 8.55E-03 7.21E-04 1.37E-02
It -4.22E-03 1.35E-03 6.30E-04 2.10E-03 2.69E-03
Ct 2.98E-03 7.21E-03 9.11E-05 1.13E-02 -3.63E-04 4.11E-03
cg,t 2.53E-03 -1.83E-04 9.34E-05 -2.86E-04 -8.42E-04 2.85E-04
δt -8.15E-03 9.04E-05 3.45E-06 1.41E-04 2.55E-03 -8.14E-03

Notes: δt is the depreciation shock, cg,t = (Ct+1

Ct
− 1), ERt = (rσ,t − rb,t), all other

variables explained in table 2.10.

Table 2.12: Aggregate statistics, idiosyncratic risk (IR) economy

Variable AVG STD CV AR(1)
Capital, Kt 6.58E+00 9.92E-01 1.51E-01 9.08E-01
Output, Yt 1.97E+00 1.11E-01 5.63E-02 8.43E-01
Investment It 5.92E-01 5.91E-02 9.97E-02 1.39E-01
Excess return, (rσ,t − rb,t) 2.36E-02 1.16E-01 4.93E+00 -4.75E-03
Stock return, rσ,t 3.86E-02 1.17E-01 3.03E+00 -3.36E-02
Bond return, rb,t 1.51E-02 1.05E-02 7.00E-01 9.02E-01
Consumption, Ct 1.37E+00 1.14E-01 8.32E-02 9.10E-01

Cons. growth, (Ct+1

Ct
− 1) 6.54E-04 3.52E-02 5.37E+01 -4.66E-02

Wage rate, wt 1.26E+00 7.08E-02 5.63E-02 8.43E-01
TFP shocks, zeta 1.00E+00 2.00E-02 2.00E-02 4.38E-01
Capital-output-ratio, K

Y
3.33E+00 3.18E-01 9.54E-02 9.07E-01

Notes: AVG: average, STD: standard deviation, CV: coefficient of variation, AR(1):
autocorrelation coefficient.
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Table 2.13: Variance-covariance matrix, idiosyncratic risk (IR) economy

rσ,t wt ζt Yt It ERt

rσ,t 1.37E-02
wt -6.85E-04 5.02E-03
ζt 6.93E-05 4.70E-04 4.00E-04
Yt -1.07E-03 7.84E-03 7.34E-04 1.23E-02
It -5.37E-03 8.57E-04 6.98E-04 1.34E-03 3.49E-03
Ct 4.30E-03 6.99E-03 3.61E-05 1.09E-02 -2.15E-03 5.38E-03
cg,t 3.07E-03 -4.16E-04 6.85E-05 -6.49E-04 -1.50E-03 -3.52E-04
δt -8.15E-03 7.25E-05 2.52E-06 1.13E-04 3.30E-03 -8.14E-03

Notes: δt is the depreciation shock, cg,t = (Ct+1

Ct
− 1), ERt = (rσ,t − rb,t), all other

variables explained in table 2.12.

Table 2.14: Aggregate statistics, zero-borrowing and idiosyncratic risk (ZB,IR)

Variable AVG STD CV AR(1)
Capital, Kt 6.67E+00 9.86E-01 1.48E-01 9.05E-01
Output, Yt 1.98E+00 1.09E-01 5.54E-02 8.38E-01
Investment It 6.00E-01 6.02E-02 1.00E-01 1.49E-01
Excess return, (rσ,t − rb,t) 2.74E-02 1.16E-01 4.24E+00 -5.07E-03
Stock return, rσ,t 3.91E-02 1.17E-01 2.99E+00 -3.37E-02
Bond return, rb,t 1.17E-02 1.03E-02 8.74E-01 9.00E-01
Consumption, Ct 1.38E+00 1.17E-01 8.48E-02 9.06E-01

Cons. growth, (Ct+1

Ct
− 1) 7.07E-04 3.66E-02 5.18E+01 -4.69E-02

Wage rate, wt 1.26E+00 7.00E-02 5.54E-02 8.38E-01
TFP shocks, zeta 1.00E+00 2.00E-02 2.00E-02 4.38E-01
Capital-output-ratio, K

Y
3.36E+00 3.14E-01 9.35E-02 9.04E-01

Notes: AVG: average, STD: standard deviation, CV: coefficient of variation, AR(1):
autocorrelation coefficient.
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Table 2.15: Variance-covariance matrix, zero-borrowing and idiosyncratic risk

rσ,t wt ζt Yt It ERt

rσ,t 1.37E-02
wt -6.58E-04 4.91E-03
ζt 6.85E-05 4.73E-04 4.00E-04
Yt -1.03E-03 7.66E-03 7.39E-04 1.20E-02
It -5.56E-03 6.44E-04 6.82E-04 1.01E-03 3.62E-03
Ct 4.53E-03 7.02E-03 5.70E-05 1.10E-02 -2.62E-03 5.60E-03
cg,t 3.23E-03 -4.27E-04 7.89E-05 -6.67E-04 -1.60E-03 -3.74E-04
δt -8.15E-03 7.14E-05 2.52E-06 1.12E-04 3.43E-03 -8.14E-03

Notes: δt is the depreciation shock, cg,t = (Ct+1

Ct
− 1), ERt = (rσ,t − rb,t), all other

variables explained in table 2.14.
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Estimates of the Approximate Law of Motion

Table 2.16: Coefficients of law of motion, baseline economy

Dependent variable: log(K ′)
z constant log(K) log(K)2 R2

1 1.86E-01 8.10E-01 2.97E-02 0.9999
2 2.37E-01 8.76E-01 1.59E-02 1.0000
3 1.84E-01 8.30E-01 2.31E-02 1.0000
4 2.47E-01 8.82E-01 1.31E-02 1.0000

Dependent variable: µ′

z′ constant log(K ′) log(K ′)2 R2

1 1.28E-02 1.61E-04 6.60E-04 0.9965
2 1.34E-02 -2.87E-04 8.24E-04 0.9970
3 1.26E-02 3.05E-04 6.21E-04 0.9969
4 1.39E-02 -8.62E-04 9.74E-04 0.9963

Table 2.17: Coefficients of laws of motion, zero-borrowing (ZB) economy

Dependent variable: log(K ′)
z constant log(K) log(K)2 R2

1 2.02E-01 7.95E-01 3.20E-02 0.9998
2 2.43E-01 8.75E-01 1.39E-02 0.9999
3 2.41E-01 7.68E-01 3.78E-02 0.9998
4 2.25E-01 9.11E-01 2.98E-03 0.9998

Dependent variable: µ′

z′ constant log(K ′) log(K ′)2 R2

1 4.29E-02 -2.15E-02 6.90E-03 0.9127
2 4.44E-02 -2.45E-02 8.19E-03 0.9028
3 3.90E-02 -1.79E-02 6.06E-03 0.9117
4 4.46E-02 -2.53E-02 8.45E-03 0.8939
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Table 2.18: Coefficients of law of motion, idiosyncratic risk (IR) economy

Dependent variable: log(K ′)
z constant log(K) log(K)2 R2

1 1.95E-01 8.12E-01 2.49E-02 1.0000
2 2.82E-01 8.39E-01 2.19E-02 1.0000
3 2.24E-01 8.00E-01 2.68E-02 1.0000
4 3.06E-01 8.29E-01 2.32E-02 1.0000

Dependent variable: µ′

z′ constant log(K ′) log(K ′)2 R2

1 1.73E-02 1.66E-03 7.69E-04 0.9981
2 1.82E-02 9.64E-04 1.03E-03 0.9983
3 1.71E-02 1.66E-03 7.81E-04 0.9980
4 1.88E-02 1.33E-04 1.25E-03 0.9981

Table 2.19: Coefficients of law of motion, zero-borrowing and idiosyncratic risk

Dependent variable: log(K ′)
z constant log(K) log(K)2 R2

1 2.09E-01 8.04E-01 2.61E-02 1.0000
2 2.93E-01 8.31E-01 2.28E-02 1.0000
3 2.36E-01 7.92E-01 2.79E-02 1.0000
4 3.16E-01 8.22E-01 2.41E-02 1.0000

Dependent variable: µ′

z′ constant log(K ′) log(K ′)2 R2

1 2.21E-02 4.90E-04 1.10E-03 0.9587
2 2.30E-02 -2.90E-04 1.38E-03 0.9708
3 2.07E-02 1.70E-03 8.08E-04 0.9576
4 2.33E-02 -7.76E-04 1.51E-03 0.9694
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Chapter 3

The Welfare Effects of Social

Security in a Model with Aggregate

and Idiosyncratic Risk

3.1 Introduction

Many countries operate large social security systems. One reason is that social security

can provide insurance against risks for which there are no private markets. However, these

systems also impose costs by distorting prices and decisions. The question arises whether

the benefits of social security outweigh the costs.

We address this question in a model which features both aggregate and idiosyncratic risk.

We follow the literature and assume that insurance markets for both forms of risk are

incomplete. In such a setting social security can increase economic efficiency by partially

substituting for missing markets. The analysis is embedded in a general equilibrium frame-

work to account for the costs of crowding out. The difference to the previous literature is

that, so far, only models with one kind of risk were examined. One strand of the literature

has looked at social security when only aggregate risk is present (e.g. Krueger and Kubler

(2006)). There, social security can improve the intergenerational sharing of aggregate

risks. The other strand included only idiosyncratic risk (e.g. Imrohoroğlu, Imrohoroğlu,

and Joines (1995, 1998)). There, social security is valuable because of intragenerational

insurance. However, households face both kinds of risk over their lifetime. To get a more

53
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complete picture of how much insurance social security can provide, the different risks need

to be included in one model. By doing that, we can assess the contribution of each risk to

total insurance. More importantly, we can analyze the role played by interactions between

the two types of risk.

The first interaction is an interaction over the life-cycle and accordingly we call it the life-

cycle interaction (LCI). To better understand this new effect, consider a standard model

in which idiosyncratic wage risk is statistically independent of aggregate risk. Due to the

nature of a life-cycle economy, aggregate and idiosyncratic risks directly interact despite

their statistical independence. The reason is that when retired, consumption is mainly

financed out of private savings. The level of private savings depends on the realizations of

idiosyncratic wage risk and aggregate return risk during working life. As a consequence,

the variance of private savings contains an interaction term between idiosyncratic and

aggregate risk. Because households face these risks for many years before they go into

retirement, this interaction term becomes large.

The second interaction operates via the so-called counter-cyclical cross-sectional variance

of idiosyncratic productivity shocks (CCV). This means that the variance of idiosyncratic

shocks is higher in a downturn than in a boom. The CCV has been documented in the

data (Storesletten, Telmer, and Yaron (2004)), and has been analyzed with respect to asset

pricing (Mankiw (1986), Constantinides and Duffie (1996), Storesletten, Telmer, and Yaron

(2007)). We want to understand whether social security can provide insurance against this

interaction.

In order to evaluate how much these interactions matter quantitatively, we build a large-

scale overlapping generations (OLG) model in the tradition of Auerbach and Kotlikoff

(1987), extended by various forms of risk. Aggregate wage risk is introduced through a

standard shock to total factor productivity (TFP). Aggregate return risk is introduced

through a depreciation shock. The two shocks enable us to calibrate the model in such a

way that it produces realistic fluctuations of wages and returns, both of which are central

to the welfare implications of social security.

The social security system is a pure pay-as-you-go (PAYG) system. Every period, all the

contributions are paid out as a lump-sum to all the retirees. Households can also save

privately by investing in a risk-free bond and risky stock. Having this portfolio choice

in the quantitative model is important, because social security can be seen as an asset



3.1. INTRODUCTION 55

with a low risk and a low return. Therefore, the risk-return structure of the bond and the

stock directly affect the value of social security. In order to match a high expected risky

return and a low risk-free rate at the same time we need Epstein-Zin-preferences. Finally,

households also face survival risk. Therefore, they value social security because it partially

substitutes for missing annuity markets.

Our experiment consists of a marginal introduction of social security. We use a two-period

model to expose the new life-cycle interaction LCI. We show analytically that social security

provides insurance against both LCI and against the countercyclical variance CCV. We

also show analytically that the benefit of the insurance against CCV becomes larger when

aggregate risk in the economy increases.

When we calibrate the model to the U.S. economy, we find that the introduction of social

security leads to a strong welfare gain. This stands in contrast to the previous literature,

because social security in our model provides insurance against both idiosyncratic and ag-

gregate risk, as well as their interactions. To be precise, increasing the contribution rate

from zero to two percent leads to welfare gains of 3.5% in terms of consumption equiva-

lent variation. This welfare improvement is obtained even though we observe substantial

crowding out of capital. About one third of the welfare gains is attributed to the two

interactions LCI and CCV.

The welfare gains are not caused by reducing an inefficient overaccumulation of capital in

the sense of Samuelson (1958) or Diamond (1965). To control for that, we ensure in our

calibration that the economy is dynamically efficient. The welfare numbers do not hinge

on the specific experiment: when we increase the contribution rate from 12% to 14%,

the welfare gains are still positive, though smaller. When we follow different calibration

strategies, the welfare numbers also retain the same sign and relative magnitude.

Related Literature. The idea that social security can insure against aggregate risks goes

back to Diamond (1977) and Merton (1983). They show how it can partially complete

financial markets and thereby increase economic efficiency. Building on these insights,

Shiller (1999) and Bohn (2001, 2009) show that social security can reduce consumption

risk of all generations by pooling labor income and capital income risks across generations

if labor income and capital returns are imperfectly correlated.

Gordon and Varian (1988), Ball and Mankiw (2007), Matsen and Thogersen (2004) and

Krueger and Kubler (2006) use a two-period partial equilibrium model where households



56 CHAPTER 3. WELFARE EFFECTS OF SOCIAL SECURITY

consume only in the second period of life, i.e. during retirement. For our analytical results,

we extend the model by adding idiosyncratic risk. In our companion paper Harenberg and

Ludwig (2011) we relax the assumption of zero first-period consumption and conclude

that one of the results breaks down: a smaller or negative covariance between wages and

risky returns does not necessarily improve intergenerational risk-sharing. In the present

paper, we address this insight by analyzing two calibrations which differ with respect to

this covariance.

Quantitative papers with aggregate uncertainty and social security are scarce. Krueger

and Kubler (2006) is the closest to us.1 They also look at a marginal introduction of a

PAYG system and find that it does not constitute a Pareto-improvement. The concept of a

Pareto-improvement requires that they take an ex-interim welfare perspective, whereas we

calculate welfare from an ex-ante perspective. Our paper differs in that it adds idiosyncratic

risks and analyzes the interactions.

Quantitative papers with idiosyncratic uncertainty and social security, on the other hand,

are plenty (e.g. Conesa and Krueger (1999), Imrohoroğlu, Imrohoroğlu, and Joines (1995,

1998), Huggett and Ventura (1999) and Storesletten, Telmer, and Yaron (1999)). On a

general level, a conclusion from this literature is that welfare in a stationary economy

without social security is higher than in one with a PAYG system. That is, the losses from

crowding out dominate the gains from completing insurance markets. The more recent

work by Nishiyama and Smetters (2007) and Fehr and Habermann (2008) are examples of

papers which focus on modeling institutional features of existing social security systems in

detail. Our approach is less policy oriented than theirs and we abstract from such details.

Our results show the benefits of a flat pension scheme without additionally optimizing over

the exact design of the pension benefit formula.

Huggett and Parra (2010) argue that it is important to look at a simultaneous reform of

both the social security system and of the general tax system. They report strong welfare

gains from joint reforms of both systems. We instead follow the more standard approach

and take the general income tax system as given. Consequently, we calibrate our model to

income processes after taxation.

1Ludwig and Reiter (2010) ask how pension systems should optimally adjust to demographic shocks.
Olovsson (2010) claims that pension payments should be very risky because this increases precautionary
savings and thereby welfare improving capital formation.
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The remainder of this paper is structured as follows. We derive our analytical results

in section 3.2. Section 3.3 develops the quantitative model and section 3.4 presents the

calibration. The main results of our quantitative analysis are presented in section 3.5,

where we make much use of our analytical results. We conclude in section 3.6. Proofs,

computational details, and robustness checks are relegated to separate appendices.

3.2 A Two-Generations Model

We first develop an analytical model that provides useful insights for our quantitative anal-

ysis. We develop our model in several steps. We start by adopting the partial equilibrium

framework of Gordon and Varian (1988), Ball and Mankiw (2007), Matsen and Thogersen

(2004), Krueger and Kubler (2006) and others who assume that members of each generation

consume only in the second period of life. We show that the aforementioned literature—

which focuses on aggregate risk only—misses important interaction mechanisms between

idiosyncratic and aggregate risk. Furthermore, as shown in Harenberg and Ludwig (2011)

a two period model misses an important aspect of the inter-temporal nature of the savings

problem which biases results against social security if wages and returns are positively cor-

related. To avoid this discussion here—which would in any case lead us on a sidetrack—,

we simply shut down the correlation between wages and returns.

We argue that this simple setup can only provide a partial characterization of the total

welfare effects of social security. It misses the effects of taxation on reallocation of consump-

tion and savings as well as the welfare losses induced by crowding out. To accommodate

both channels at once we extend our model to a standard Diamond (1965) model with

risk. Hence, consumption and savings decisions take place in the first period and wages

and returns are determined in general equilibrium.2

3.2.1 Households

Each period t, a continuum of households is born. A household has preferences over

consumption in two periods whereby second period consumption is discounted with the raw

2Without explicitly acknowledging how prices are determined in general equilibrium we cannot derive
the effect of taxation on first period consumption. The reason is that a human capital wealth effect—
caused by the discounted value of future pension income—inhibits closed form solutions in the partial
equilibrium setup. Hence, moving to general equilibrium “kills two birds with one stone”.
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time discount factor β. In the first period of life, the household experiences an idiosyncratic

productivity shock which we denote by η. This shock induces heterogeneity by household

type which we denote by i. In addition, we index age by j = 1, 2. Consequently, all

variables at the individual level carry indices i, j, t. The expected utility function of a

household born in period t is given by

EtUt = Et [v(ci,1,t) + βu(ci,2,t+1)] ,

where the per period Bernoulli utility functions are (weakly) increasing and concave,

i.e., v′ ≥ 0, u′ > 0, v′′ ≤ 0, u′′ < 0.

Consumption in the two periods is given by

ci,1,t + si,1,t = (1− τ)ηi,1,twt (3.2.1a)

ci,2,t+1 = si,1,t(1 + rt+1) + bt+1 (3.2.1b)

where ηi,1,t is an idiosyncratic shock to wages in the first period of life. We assume

that Eηi,1,t = 1 for all i, t. bt+1 are social security benefits to be specified next and τ

is the contribution rate to social security.

3.2.2 Government

The government organizes a PAYG financed social security system. Pension benefits are

lump-sum. Then the social security budget constraint writes as

btN2,t = τwt+1N1,t

where Nj,t is the population in period t of age j, i.e., Nj,t =
∫
Ni,j,tdi. We ignore population

growth, hence

bt = τwt.

We can therefore rewrite consumption in the second period as

ci,2,t+1 = si,1,t(1 + rt+1) + wt+1τ.
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3.2.3 Welfare

We take an ex-ante Rawlsian perspective and hence specify the social welfare function

(SWF) of a cohort born in period t as the expected utility of a generation from the per-

spective of period t− 1:

SWFt ≡ Et−1Ut = Et−1 [v(ci,1,t) + βu(ci,2,t+1)] .

3.2.4 Partial Equilibrium Analysis

We start by looking at a degenerate version of our model where first-period utility is zero.

We assume that utility from consumption in the second period is CCRA with a coefficient

of relative risk aversion of θ:

Assumption 3.1. Let v(ci,1,t) = 0 and u(ci,2,t+1) =
c1−θi,2,t+1−1

1−θ .

Stochastic Processes

Wages and interest rates are stochastic. We denote by ζt the shock on wages and by %̃t

the shock on returns. We further assume that wages grow deterministically at rate g. We

therefore have:

wt = w̄tζt = w̄t−1(1 + g)ζt

Rt = R̄%̃t

To simplify the analysis we assume that both ζt and %̃t are not serially correlated. Despite

the observed positive serial correlation of wages and asset returns in annual data, this

assumption can be justified on the grounds of the long factual periodicity of each period

in a two-period OLG model which is about 30 to 40 years. We also assume that ζt and %̃t

are statistically independent. We do so because, as we point out in Harenberg and Ludwig

(2011), any conclusion from such a simple and inherently a-temporal model on the effects

of the correlation structure between wages and returns is misleading. The idiosyncratic

shock ηi,1,t is not correlated with either of the two aggregate shocks. We relax this as-

sumption once we introduce the CCV mechanism below. All shocks are assumed to have

bounded support. We now summarize these assumptions:
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Assumption 3.2. a) Bounded support: ζt > 0, %̃t > 0 for all t, ηi,1,t > 0 for all i, t.

b) Means: Eζt = E%̃t = Eηi,1,t = 1, for all i, t.

c) Statistical independence of (ζt+1, ζt) and (%̃t+1, %̃t). Therefore: E(ζt+1ζt) = Eζt+1Eζt for

all t and, correspondingly, E(%̃t+1%̃t) = E%̃t+1E%̃t for all t.

d) Statistical independence of (ζt, %̃t). Therefore: E(ζt%̃t) = EζtE%̃t for all t.

e) Statistical independence of (ζt, ηi,1,t). Therefore: E(ηi,1,tζt) = Eηi,1,tEζt for all i, t.

f) Statistical independence of (%̃t, ηi,1,t). Therefore: E(ηi,1,t%t) = Eηi,1,tE%t for all i, t.

Life-Cycle Interaction

Under assumption 3.1, utility maximization implies that ci,1,t = 0 and si,1,t = (1 −
τ)ηi,1,tw̄ζt. Consumption in the second period can accordingly be rewritten as

ci,2,t+1 = w̄
(
ηi,1,tζtR̄%̃t+1 + τ

(
(1 + g)ζt+1 − ηi,1,tζtR̄%̃t+1

))
. (3.2.3)

We then have:

Proposition 3.1. Under assumptions 3.1 and 3.2, a marginal introduction of social secu-

rity increases ex-ante expected utility if

(1 + g)
Et−1

[
ζt+1

%̃θt+1

]
Et−1

[
1
ζθt

]
Et−1

[
1

ηθi,1,t

]
Et−1

[
%̃1−θ
t+1

]
Et−1

[
ζ1−θ
t

]
Et−1

[
η1−θ
i,1,t

] > R̄. (3.2.4)

The RHS of equation (3.2.4) reflects the costs of introducing social security represented

here by the ex-risk return on savings. We speak of the LHS of equation (3.2.4) as the risk-

adjusted implicit return of social security which reflects the value (or benefit) of introducing

social security. Obviously, the implicit return increases if g increases. This is the standard

Aaron condition.

To interpret the risk adjustment, we next assume that all stochastic variables are jointly

distributed as log-normal.
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Assumption 3.3. Joint log-normality: ηi,1,t, ζt, ζt+1, %̃t+1 are jointly distributed as log-

normal with parameters µln η, µln ζ, µln %̃, σ
2
ln(η), σ

2
ln(ζ), σ

2
ln(%̃) for means and variances, re-

spectively.

We then have:

Proposition 3.2. Under assumptions 3.1 through 3.3, a marginal introduction of social

security increases ex-ante expected utility if

(1 + g) · (1 + TR)θ > R̄, (3.2.5)

where

TR ≡ var(ηi,1,tζt%̃t+1) = σ2
η︸︷︷︸

IR

+σ2
ζ + σ2

%̃ + σ2
ζσ

2
%̃︸ ︷︷ ︸

AR

+σ2
η

(
σ2
ζ + σ2

%̃ + σ2
ζσ

2
%̃

)︸ ︷︷ ︸
LCI=IR·AR

. (3.2.6)

To interpret this condition, observe that, according to equation (3.2.6), term TR – standing

in for ”total risk” – consists of three components, reflecting the effect of idiosyncratic

risk in term IR, total aggregate risk in term AR and a mechanical interaction between

idiosyncratic and aggregate risk in term LCI. To understand the nature of these terms

notice that, in absence of social security, savings cum interest in our simple model is given

by si,1,tRt+1 = w̄tR̄ηi,1,tζt%̃t+1. Hence, from the ex-ante perspective, the product of three

sources of risk are relevant, idiosyncratic wage risk, ηi,1,t, aggregate wage risk, ζt, and

aggregate return risk, %̃t+1. Term TR is the variance of the product of these stochastic

elements. It can be derived by applying the exact product formula of variances presented

in Goodman (1960).

For standard random variables, an interaction term involving products of variances—such

as LCI in our context—would be small. However, we here deal with long horizons so that

the single variance terms might be quite large. Illustration 1 in the appendix gives a simple

numerical example which uses parameters of our calibrated income processes. Based on

this example we conclude that LCI adds about 40 percent times AR. Whatever the exact

size of AR is, this interaction is clearly a non-negligible increase in overall income risk.

We next address how the utility consequences of a marginal introduction of social security—

by a percentage point increase of dτ—translate into utility. To measure this we compute

the consumption equivalent variation (CEV). That is, we express utility gains from in-
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troducing social security at rate dτ > 0 as the compensation in a policy regime with-

out social security (τ = 0) in units of a percent increase of consumption gc. We de-

note by gc(AR, IR) the CEV required if both risks, idiosyncratic and aggregate, are

present. We decompose this total CEV into various components. We accordingly de-

note the CEV in a deterministic setting by gc(0, 0), with only aggregate risk by gc(AR, 0)

and with only idiosyncratic risk by gc(0, IR), respectively. Observe from these definitions

that gc(AR, 0) = gc(0, 0) + dgc(AR), where dgc(AR) denotes the additional CEV due to

aggregate risk. Correspondingly, we have gc(0, IR) = gc(0, 0) + dgc(IR). With these

definitions, it is also straightforward to define the additional effects, in terms of CEV,

of the interaction between idiosyncratic and aggregate risks. It is given as the residual,

namely, dgc(LCI) = gc(AR, IR)−(g(0, 0)+dgc(AR)+dgc(IR)). In the appendix, we show

that gc(AR, IR) can be expressed—in a logarithmic approximation—as

gc =

(
1 + g

R̄
(1 + V )θ − 1

)
dτ (3.2.7)

Taking a first-order Taylor series expansion of the above around V = 0 gives

gc(AR, IR) ≈

1 + g

R̄
− 1︸ ︷︷ ︸

gc(0,0)/dτ

+ θ
1 + g

R̄
AR︸ ︷︷ ︸

dgc(AR)/dτ

+ θ
1 + g

R̄
IR︸ ︷︷ ︸

dgc(IR)/dτ

+ θ
1 + g

R̄
LCI︸ ︷︷ ︸

dgc(LCI)/dτ

 dτ (3.2.8)

These equations have a straightforward interpretation. First, utility losses in a dynamically

efficient economy—where R̄ > 1 + g—are approximately linear in the size of the social

security system, dτ . Additional gains due to insurance against risk—the risk components

being AR, IR and LCI, respectively—increase in the size of risk whereby this increase is

exponentially in risk aversion, cf. equation (3.2.7). Finally, the proportional increase of risk

via the interaction translates—in a first-order approximation given by equation (3.2.8)—

into corresponding utility consequences as measured by CEV because dgc(LCI) = IR ·
dgc(AR).

Modification: Counter-Cyclical Conditional Variance

We now return to condition (3.2.4) and modify assumption 3.3 slightly in order to reflect

the CCV mechanism. Observe that CCV, by definition, does away with assumption 3.2e.
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Assumption 3.4. ζt ∈ [ζl, ζh] for all t where ζh > ζl > 0. We let ζh = 1 + ∆ζ and ζl =

1−∆ζ where ∆ζ < 1. Notice that 1
2
(ζl + ζh) = 1. ηi,1,t is distributed as log-normal whereby

ηi,1,t =

ηi,1,l for ζt = ζl

ηi,1,h for ζt = ζh.

and E ln ηi,1,l = E ln ηi,j,h = E ln ηi,j,t = E ln η and

σ2
ln η =

σ2
ln ηh

= σ2
ln η + ∆ for ζt = ζl

σ2
ln ηl

= σ2
ln η −∆ for ζt = ζh.

For simplicity, we focus only at the log-uility case, hence θ = 1. The RHS of equation (3.2.4)

then rewrites as

(1 + g)Et−1

[
ζt+1

%̃t+1

]
Et−1

[
1

ζt

]
Et−1

[
1

ηi,1,t

]
Under assumption 3.4, the expression rewrites as

(1 + g)Et−1

[
ζt+1

%̃t+1

]
1

2

(
1

ζl
Et−1

[
1

ηi,1,l

]
+

1

ζh
Et−1

[
1

ηi,1,h

])
(3.2.9)

and, without CCV, the corresponding expression is

(1 + g)Et−1

[
ζt+1

%̃t+1

]
1

2

(
1

ζl
+

1

ζh

)
Et−1

[
1

ηi,j,t

]
. (3.2.10)

We can then show the following:

Proposition 3.3. a) the LHS of eq. (3.2.9) is larger than the LHS of eq. (3.2.10).

b) the difference between the LHS of eq. (3.2.9) and the LHS of eq. (3.2.10) increases in

the variance of aggregate shocks.

We can therefore conclude that, on top of the previously illustrated mechanical interaction

between idiosyncratic and aggregate risk, the direct interaction via the CCV mechanism

will further increase the beneficial effects of social security. Importantly, finding 3.3b

establishes that the effect of CCV is larger when the variance of aggregate risk is higher.
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3.2.5 General Equilibrium Analysis

In general equilibrium, we relax assumption 3.1, thereby modeling utility from consumption

in the first period. To derive analytical solutions we have to restrict attention to log-

utility in both periods. Furthermore, again for analytical reasons, we assume absence of

idiosyncratic shocks:3

Assumption 3.5. a) v(·) = u(·) = ln(·).

b) ηi,1,t = Eηi,1,t = 1 for all i, t.

As a consequence of discarding idiosyncratic risk, our analysis in this subsection does not

contribute anything particularly new to the literature on social security so that the quick

reader may wish to proceed with section 3.3. We nevertheless regard the general equilibrium

extension as very useful to provide guidance for interpretation of our quantitative results

in section 3.5 where we will occasionally refer back to our analytical expressions.

Firms

To close the model in general equilibrium, we add a firm sector. We take a static opti-

mization problem. Firms maximize profits operating a neo-classical production function.

Let profits of the firm be

Π = ζtF (Kt,ΥtLt)− (δ̄ + rt)%
−1
t Kt − wtLt

where ζt is a technology shock with mean Eζt = 1. Υt is the technology level growing at

the exogenous rate g, hence Υt+1 = (1 + g)Υt. %t is an exogenous shock to the unit user

costs of capital with mean E%t = 1. We add this non-standard element in order to model

additional shocks to the rate of return to capital. These shocks are multiplicative in the

user costs to capital for analytical reasons. In our full-blown quantitative model, these

3Our proof of equilibrium dynamics requires that all households are ex-ante identical which is not
the case if idiosyncratic is present in the first period of life. We reintroduce idiosyncratic risk by slightly
altering our model in a separate appendix. In this appendix we also shed more light on the analytical
reasons for discarding idiosyncratic risk in the first place. Our extension features a subperiod structure
where households also work a constant fraction in the second period. This allows us to reintroduce
idiosyncratic risk in the second period while otherwise preserving the structure of the model. We briefly
summarize our findings from this extension once we complete the discussion of the simpler version.
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shocks will be replaced by shocks to the depreciation rate.4

Throughout we assume full depreciation and Cobb-Douglas production, hence δ̄ = 1 and

F (Kt,ΥtLt) = Kα
t (ΥtLt)

1−α ,

where α is the capital elasticity of production. The firm first-order conditions then give:

1 + rt = αkα−1
t ζt%t = R̄tζt%t (3.2.11a)

wt = (1− α)Υtk
α
t ζt = w̄tζt. (3.2.11b)

Hence, %t is a shock to the gross return on savings. We also define by R̄t ≡ αkα−1
t the

“ex-shock” component of the gross return and, correspondingly, by w̄t = (1− α)Υtk
α
t the

“ex-shock” component of per capita wages.

Stochastic Processes in General Equilibrium

Observe that, relative to the partial equilibrium model of subsection 3.2.4, instead of

shocks to wages and returns, shocks to productivity and the user costs of capital take over

as stochastic primitives of the model. This also implies an explicit linkage the deterministic

and stochastic components of wages and asset returns.5 Consequently, assumption 3.2d

is dropped. Also notice that assumptions 3.2e–f are irrelevant because of the absence of

idiosyncratic risk. Replacing %̃t by %t, assumptions 3.2a–c remain unaltered.

4Let shocks to the depreciation rate be δt. Our formulation with shocks to the user costs to capital
can be translated into shocks to the depreciation rate to capital. In our quantitative model, we have
that Rt = ζtR̄t − δt. Let ζt = 1. We then have δt = R̄t(1− %t).

5Notice that, in the notation of the partial equilibrium version of the model, %̃t = ζt%t.
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General Equilibrium Dynamics

Proposition 3.4. Equilibrium dynamics in the economy are given by

kt+1 =
1

1 + g
χ(1− τ)(1− α)ζtk

α
t (3.2.12a)

where the savings rate χ is given by

χ ≡ 1

1 +
(
βαĒ

)−1 (3.2.12b)

and

Ē ≡ Et

[
1

α + (1− α)%−1
t+1τ

]
. (3.2.12c)

Analyzing the system of equations in (3.2.12) we find that, for τ > 0, increasing the variance

of return shocks, %t, reduces Ē and therefore decreases the saving rate, χ if τ > 0. This is

the human capital wealth effect of discounted pension income.6 Notice that the discounted

value of pension income is given by bt+1

Rt+1
. An increase in the variance of Rt+1 hence increases

discounted pension income in expectation. This increase the (expected) human capital

wealth which, as in a standard deterministic model, increases first-period consumption

and thereby decreases the saving rate. Increasing τ decreases Ē and therefore decreases

the saving rate, χ. This is the crowding-out of private capital formation. Increasing α or β

increases the savings rate.

A useful concept are mean shock equilibria which we will refer to below to evaluate welfare.

Mean shock equilibria will also play an important role below in our computational analysis

of our more elaborate quantitative model.

Definition 3.1. In a mean shock equilibrium the realizations of all aggregate shocks are

at their respective unconditional means, hence ζt = Eζt = 1, %t = E%t = 1 for all t. The

corresponding equilibrium dynamics follow from (3.2.12a) as

kt+1,ms =
1

1 + g
χ(1− τ)(1− α)kαt,ms (3.2.13)

where χ is defined in (3.2.12b).

A stationary mean shock equilibrium is equivalent to a stochastic steady state:

6Since we assume log utility, income and substitution effects of stochastic interest rates cancel out.



3.2. A TWO-GENERATIONS MODEL 67

Definition 3.2. In a stationary mean shock equilibrium (=stochastic steady state) all

variables grow at constant rates. In particular, we have that kt,ms = kms for all t which is

given by

kms =

(
1

1 + g
χ(1− τ)(1− α)

) 1
1−α

. (3.2.14)

We then have:

Proposition 3.5. A no social security (τ = 0) stationary mean-shock equilibrium is dy-

namically efficient, i.e., R̄ms > 1 + g, iff α
1−α >

β
1+β

.

The proof is trivial and therefore omitted in the appendix. It immediately follows from

the definition of R̄ms which is given by

R̄ms = αkα−1
ms = (1 + g)

α

(1− α)

(1 + β)

β
. (3.2.15)

and the fact that the golden rule capital stock is k? =
(

α
1+g

) 1
1−α

.

In what follows, we assume a dynamically efficient economy. This implies that households

loose in terms of welfare from decreasing the capital stock. Discounting is sufficiently

strong such that induced gains from increasing returns (caused by decreasing the capital

stock) are offset by decreasing wages.

Welfare Analysis in General Equilibrium

To simplify the analysis, we compare two long-run mean shock equilibria and thereby

(again) ignore endogenous fluctuations of kt and all transitional dynamics:

Proposition 3.6. A marginal introduction of social security increases ex-ante expected

utility in the long-run mean shock stationary equilibrium if

β(1− α)

α
Et−1

[
1

ζt

]
Et−1

[
1

%t+1

]
− (1 + β)︸ ︷︷ ︸

=A

+ B︸︷︷︸
=0

+

− (α(1 + β)− β(1− α))
1

1− α

(
1 +

1

1 + β

1− α
α

Et

[
1

%t+1

])
︸ ︷︷ ︸

=C

> 0 (3.2.16)
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In equation (3.2.16), term A reflects the implicit rate of return condition. Combining

equation (3.6) with equation (3.2.15) we get that A > 0 iff

(1 + g)

(
Et−1

[
1

ζt

]
Et−1

[
1

%t+1

])
> R̄ms.

Observe that this condition immediately follows from condition (3.2.4) under assump-

tion 3.5, equation (3.2.15) and acknowledging that %̃t = ζt%t. It is therefore the general

equilibrium equivalent to the partial characterization we gave above. Term B, which is

equal to zero, encompasses two effects that exactly offset each other in the mean shock

equilibrium of our model with log utility. Introducing social security crowds out savings

and thereby increases period 1 consumption which is beneficial to the household. The off-

setting effect is that, by lowering capital income, it reduces period 2 consumption. Finally,

by the assumption of dynamic efficiency, term C is negative. The term reflects the welfare

losses incurred by crowding out of capital.

3.3 The Quantitative Model

Our quantitative model extends our simple model along several dimensions. First, rather

than considering a stylized setup with two generations we take a periodicity of one calen-

dar year and consider J overlapping generations. Second, we introduce one period ahead

risk-free bonds. The primary reason for this extension is to impose discipline on calibra-

tion. Having a bond in the model means that our model entails predictions about general

equilibrium asset prices. Any model on the welfare effects of social security should have

realistic asset pricing implications. By providing a bond, we give households an additional

asset to self-insure against idiosyncratic and aggregate risk. Ceteris paribus, this reduces

the beneficial effects of social security. However, the presence of the bond also reduces the

effect of decreasing savings on the crowding out of productive capital because part of the

reduced savings is absorbed by the bond market.

3.3.1 Risk and Time

Time is discrete and runs from t = 0, . . . ,∞. Risk is represented by an event tree. The

economy starts with some fixed event z0, and each node of the tree is a history of exoge-
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nous shocks zt = (z0, z1, ..., zt). The shocks are assumed to follow a Markov chain with

finite support Z and strictly positive transition matrix πz(z′ | z). Let Πz denote the in-

variant distribution associated with πz. In our notation, we will make all aggregate and

idiosyncratic shocks contingent on zt. For notational convenience, we will suppress the

dependency of all other variables on zt but history dependence of all choice variables is

understood.

3.3.2 Demographics

In each period t, the economy is populated by J overlapping generations of agents indexed

by j = 1, . . . , J , with a continuum of agents in each generation. Population grows at

the exogenous rate of n. Households face an idiosyncratic (conditional) probability to

survive from age j to age j + 1 which we denote by ςj+1, hence ς1 = 1 and ςJ+1 = 0.

Consequently, given an initial population distribution {N0,j}Jj=1 which is consistent with

constant population growth for all periods t = 0, 1, . . . and normalized such that N0 =∑J
j=1 Nt,j = 1, the exogenous law of motion of population in our model is given by

Nt+1,1 = (1 + n)Nt,1

Nt+1,j+1 = ςj+1 ·Nt,j for j = 1, . . . , J.

Households retire at the fixed age jr. Labor supply is exogenous in our model and during

the working period j = 1, . . . , jr − 1 each household supplies one unit of labor. Observe

that constant population growth implies that population shares, e.g., the working age to

population ratio, are constant.

3.3.3 Firms

Production of the final good takes place with a standard Cobb-Douglas production function

with total output at time t given by

Yt = F (ζ(zt), Kt, Lt) = ζ(zt)K
α
t (ΥtLt)

1−α (3.3.17)

where Kt is the aggregate stock of physical capital, Lt is labor, ζ(zt) is a stochastic shock

to productivity and Υt is a deterministic technology level growing at the exogenous rate g.
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The economy is closed. The consumption good can either be consumed in the period when

it is produced or can be used as an input into a production technology producing capital.

We ignore capital adjustment costs. Accordingly, the production technology for capital is

Kt+1 = It +Kt(1− δ(zt))
= Yt − Ct +Kt(1− δ(zt)) (3.3.18)

where δ(zt) is the stochastic depreciation rate of physical capital.

Firms maximize profits and operate in perfectly competitive markets. Accordingly, the

rate of return to capital and the wage rate are given by

wt = (1− α)Υtζ(zt)k
α
t (3.3.19a)

rt = αζ(zt)k
α−1
t − δ(zt) (3.3.19b)

where kt = Kt
ΥtLt

is the capital stock per unit of efficient labor which we refer to as “capital

intensity”.

3.3.4 Endowments

Agents are endowed with one unit of labor which is supplied inelastically for ages j =

1, . . . , jr−1. After retirement, labor supply is zero. Households have access to two savings

storage technologies. Either they save in the risky technology at rate of return rt or in a

one-period risk-free bond at return rft which is in zero net supply. Households are subject

to idiosyncratic shocks to their labor productivity. This shock induces heterogeneity by

household type which we denote by i. We denote total assets by Ai,j,t, and the share

invested in the risky asset by κi,j,t.

Additional elements of the dynamic budget constraint are income, Yi,j,t, to be specified

below and consumption, Ci,j,t. The dynamic budget constraint of a household at age j

then reads as

Ai,j+1,t+1 = Ai,j,t(1 + rft + κi,j−1,t−1(rt − rft )) + Yi,j,t − Ci,j,t (3.3.20)
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where κi,j−1,t−1 ∈ [−κ, κ], for all i, j, t. This restricts the leverage in stocks in our model.7

Income is given by

Yi,j,t =

(1− τ)εjwtηi,j,t for j < jr

Bi,j,t for j ≥ jr
(3.3.21)

where εj is age-specific productivity and ηi,j,t is an idiosyncratic stochastic component.

We assume that ηi,j,t follows a time and age-independent Markov chain whereby the states

of the Markov chain are contingent on aggregate states z. Accordingly, let the states be

denoted by Ez = {ηz1, . . . , ηzM} and the transition matrices be πη(η′ | η) > 0. Let Πη

denote the invariant distribution associated with πη.

As for pension income, we assume that pension payments are lump-sum, hence

Bi,j,t = btΥt (3.3.22)

where bt is some normalized pension benefit level which only depends on t. Accordingly,

the pension system fully redistributes across household types. This is an approximation to

the U.S. pension system.8

3.3.5 Preferences

We take Epstein-Zin preferences. Let θ be the coefficient of relative risk-aversion and ϕ

denote the inter-temporal elasticity of substitution. Then

Ui,j,t =

[
C

1−θ
γ

i,j,t + βςj+1

(
Ei,j,t

[
U1−θ
i,j+1,t+1

]) 1
γ

] γ
1−θ

(3.3.23)

where γ = 1−θ
1− 1

ϕ

, and β > 0 is the standard discount factor. For θ = 1
ϕ

we have γ = 1

and are back to CRRA preferences. Ei,j,t is the expectations operator and expectations,

7In a model without a constraint of the form κi,j−1,t−1 ∈ [−κ, κ] we have a singularity at Xi,j,t−Ci,j,t =
0 so that, for Xi,j,t − Ci,j,t → +0, κi,j,t → +∞ and for Xi,j,t − Ci,j,t → −0, κi,j,t → −∞. The presence
of the singularity has consequences for aggregation because the set for κ will not be compact. We set the
constraint in order to rule out this technicality, but we set the bounds so high that the constraint will
rarely be binding in equilibrium.

8The U.S. pension system links contributions to AIME, the average indexed monthly earnings and has
an additional distributional component by the so-called bend point formula. From an ex-ante perspective,
given this distributional component and provided that income shocks are non-permanent, an approximation
with lump-sum pension benefits is a good first-order approximation.
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conditional on information for household i, j, t, are taken with respect to idiosyncratic wage

shocks and aggregate productivity and depreciation shocks. As ςJ+1 = 0, equation (3.3.23)

implies that UJ = CJ .

3.3.6 The Government

The government organizes a PAYG financed social security system. We take the position

that social security payments are not subject to political risk. We assume that the budget

of the social security system is balanced in all periods. We describe various social security

scenarios below. We further assume that the government collects all accidental bequests

and uses them up for government consumption which is otherwise neutral.

3.3.7 Equilibrium

To define equilibrium we adopt a de-trended version of the household model. We there-

fore first describe transformations of the household problem and then proceed with the

equilibrium definition.

Transformations

Following Deaton (1991), define cash-on-hand by Xi,j,t = Ai,j,t(1+rft +κi,j−1,t−1(rt−rft ))+

Yi,j,t. The dynamic budget constraint (3.3.20) then rewrites as

Xi,j+1,t+1 = (Xi,j,t − Ci,j,t)(1 + rft+1 + κi,j,t(rt+1 − rft+1)) + Yi,j+1,t+1 (3.3.24)

We next transform the problem to de-trend the model and work with stationary variables

throughout. That is, we de-trend with the deterministic trend component induced by

technological progress. Along this line, define by xi,j,t =
Xi,j,t

Υt
transformed cash-on-hand

and all other variables accordingly. Using ωt = wt
Υt

to denote wages per efficiency unit we

have

yi,j,t =

(1− τ)εjωtηi,j,t for j < jr

bt for j ≥ jr.
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Now divide the dynamic budget constraint (3.3.24) by Υt and rewrite to get

xi,j+1,t+1 = (xi,j,t − ci,j,t)R̃i,j+1,t+1 + yi,j+1,t+1. (3.3.25)

where R̃i,j+1,t+1 =
(1+rft+1+κi,j,t(rt+1−rft+1))

1+g
.

Transform the per period utility function accordingly and take an additional monotone

transformation to get

ui,j,t =

[
c

1−θ
γ

i,j,t + β̃j+1

(
Ei,j,t

[
(ui,j+1,t+1)1−θ]) 1

γ

] γ
1−θ

(3.3.26)

where β̃j+1 = βςj+1 (1 + g)
1−θ
γ .

Definition of Equilibrium

Individual households, at the beginning of period t are indexed by their age j, their id-

iosyncratic productivity state η, their cash on hand holdings x, and a measure Φ(j, x, η)

which describes the beginning of period wealth distribution in the economy, i.e., the share

of agents at time t with characteristics (j, x, η). We normalize such that
∫
dΦ = 1. Ex-

istence of aggregate shocks implies that Φ evolves stochastically over time. We use H to

denote the law of motion of Φ which is given by

Φ′ = H(Φ, z, z′) (3.3.27)

Notice that z′ is a determinant of Φ′ because it determines R̃i,j+1,t+1 and therefore the

distribution over x′.
The de-trended version of the household problem writes as

u(j, x, η; z,Φ) = max
c,κ,x′

{[
c

1−θ
γ + β̃

(
E
[
(u(j + 1, x′, η′; z′,Φ′))

1−θ
]) 1

γ

] γ
1−θ
}

(3.3.28a)

s.t. x′ = (x− c)R̃′ + y′ (3.3.28b)

R̃′ =
(1 + rf

′
+ κ(r′ − rf ′))
1 + g

(3.3.28c)

Φ′ = H(Φ, z, z′). (3.3.28d)
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We therefore have the following definition of the recursive equilibrium of our economy:9

Definition 3.3. A recursive competitive equilibrium is a value function u, policy functions

for the household, x′(·), a′(·), c(·), κ(·), policy functions for the firm, K(·), L(·), pricing

functions r(·), q(·), w(·), policies, τ , b, aggregate measures Φ(·) and an aggregate law of

motion, Ht such that

1. u(·), x′(·), a′(·), c(·), κ(·) are measureable, u(·) satisfies the household’s recursive prob-

lem and x′(·), a′(·), c(·), κ(·) are the associated policy functions, given r, q, ω, τ and

b.

2. K,L satisfy, given r(Φ, z) and w(Φ, z),

ω(Φ, z) = (1− α)ζ(z)k(Φ, z)α (3.3.29a)

r(Φ, z) = αζ(z)k(Φ, z)α−1 − δ(z). (3.3.29b)

where k(Φ, z) = K(Φ,z)
ΥL

is the capital stock per efficiency unit (or “capital intensity”)

and Υ = (1 + g)Υ−1 is the technology level in period t.

3. neutral government consumption financed by bequests is given by

gc′ =

∫
(1− ςj+1)a′ (j, x, η; z,Φ)R′(κ(·))dΦ

`(1 + n)(1 + g)
(3.3.30)

where

R′(κ(·)) = (1 + rf
′
+ κ(j, x, η; z,Φ)(r′ − rf ′)).

4. the pension system budget constraint holds, i.e.

τ(Φ, z)ω(Φ, z) = b(Φ, z)p (3.3.31)

where p is the economic dependency ratio which is stationary in our model.10

9We use the integration operator
∫

as a short-cut notation for all sums and integrals involved but
discreteness of the characteristics (j, z) is understood. When integrating out with respect to all character-
istics of the distribution, we simply write dΦ, hence

∫
·dΦ =

∫
·Φ(dj × dx× dη). When we integrate only

with respect to a subset of characteristics, we make this explicit by, e.g., writing
∫
·Φ(j, dx× dη).

10It is given by p =
∑J
j=jr

(1+n)J−j ∏j−1
i=1 ςi∑jr−1

j=1 (1+n)J−jεj
∏j−1
i=1 ςi

.
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5. For all Φ and all z

k(H(Φ, z, z′), z′)(1 + g)(1 + n) =
1

`

∫
κ(j, x, η; z,Φ)a′(j, x, η; z,Φ)dΦ (3.3.32a)

0 =

∫
(1− κ(j, x, η; z,Φ))a′(j, x, η; z,Φ)dΦ (3.3.32b)

i(Φ, z) = f(k(Φ, z))− gc− 1

`

∫
c(j, x, η; z,Φ)dΦ (3.3.32c)

k(H(Φ, z, z′), z′)(1 + g)(1 + n) = k(Φ, z)(1− δ(z)) + i(Φ, z) (3.3.32d)

where ` is the working age to population ratio11, equation (3.3.32b) is the bond market

clearing condition and the bond price q is determined such that it clears the bond

market in each period t and i(·) = I(·)
ΥL

is investment per efficiency unit.

6. The aggregate law of motion H is generated by the exogenous population dynamics,

the exogenous stochastic processes and the endogenous asset accumulation decisions

as captured by the policy functions x′.

Definition 3.4. A stationary recursive competitive equilibrium is as described above but

with time constant individual policy functions x′(·), a′(·), c(·), κ(·) and a time constant

aggregate law of motion H.

3.3.8 Welfare Criteria

At this stage, we only compare two stationary equilibria and do not take into account

transitional dynamics. Our welfare concept is the consumption-equivalent variation for a

newborn before any shocks are realized. It is an ex-ante perspective where the agent does

not know the aggregate state nor the level of capital that he will be born into. A positive

number then states the amount an agent would be willing to give up in order to be born

into the second long-run equilibrium (i.e. into an economy with some social security).

Note that this comparison between the long-run equilibria provides a lower bound on the

expected welfare gains for the newborns along the transition, because they are spared some

of the negative effects of crowding out, and because they get to save less and consume more

as the level of capital moves toward its new, lower level.

11It is given by ` =
∑jr−1
j=1 (1+n)J−jεj

∏j−1
i=1 ςi∑J

j=1(1+n)
J−j ∏j−1

i=1 ςi
.
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3.3.9 Thought Experiment

At this stage, we only compare two stationary equilibria. In our initial equilibrium a

social security system does not exist. In the second equilibrium, the economy features

a social security system with a contribution rate of 2 percent. One can think of this as

the introduction of a ’marginal’ social security system as described in Krueger and Kubler

(2006). We use their proposition 1 to ensure that the initial economy is dynamically efficient

so as to rule out any welfare gains that would come from curing dynamic inefficiency.

We then use the exact same economy to conduct partial equilibrium (PE) experiments

that enable us to disentangle the welfare gains due to insurance from the welfare losses

due to crowding out and its associated price changes. In this partial equilibrium, we feed

in the sequence of shocks and prices {zt, rt, rft , wt}Tt=1 obtained from the associated general

equilibrium (GE). It is like a small open economy, where aggregate prices are determined

by the world and fluctuate over time and are not influenced by domestic policy changes. If

we do not change any other parameter, then the results are naturally exactly the same as

in the associated GE. To isolate the total insurance effects, we let agents optimize under

the new policy, i.e. τ = 0.2, but with the ’old’ approximate laws of motion that still hold

for the evolution of aggregate prices. Then we simulate by feeding in the old sequence of

shocks and prices, but with the new policy functions and the new social security system.

In a very similar fashion, we isolate the insurance against aggregate risk, idiosyncratic risk,

CCV, and survival risk.

In order to also isolate the interaction effect LCI, we proceed by relating back to equa-

tion (3.2.8) of our 2-generations model. Recall that gc(AR, IR)—the total welfare gains

with full aggregate and idiosyncratic risk at work, ignoring CCV and survival risk—can

be decomposed as gc(AR, IR) = gc(0, 0) + dgc(AR) + dgc(IR) + dgc(LCI) where gc(0, 0) is

the welfare gain—expressed in terms of CEV—in an economy with zero aggregate risk and

zero idiosyncratic risk and dg(X) is the additional gain attributed to component X, our

objects of interest. Also recall that welfare gains in an economy with zero aggregate risk

and full idiosyncratic risk, gc(0, IR), can be written as gc(0, IR) = gc(0, 0)+dgc(IR). With

the objects gc(0, 0) and gc(0, IR) at hand we can, with these definitions, determine dg(X)

for X = AR, IR, LCI.
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3.3.10 Computational Details

Following Gomes and Michaelides (2008) and Storesletten, Telmer, and Yaron (2007) we

compute an approximate equilibrium of our model by applying the Krusell and Smith

(1998) method. We approximate the solution by considering forecast functions of the

average capital stock in the economy and the ex-ante equity premium. In the general

equilibrium version of our model, we loop on the postulated laws of motion until conver-

gence. We do so by simulating the economy for T = 5000 periods and discard the first 500

initialization periods. In each period, we compute the market clearing bond price. The

goodness of fit of the approximate laws of motion is R2 = 0.99.

We compute solution to the household model by adopting Carroll’s endogenous grid method,

which reduces computational time strongly. Written in Fortran 2003, the model takes about

one hour to converge to a solution, given a decent initial guess for the laws of motion. A

more detailed description of our computational methods can be found in appendix 3.B.

3.4 Calibration

3.4.1 Overview

Part of our parameters are exogenously calibrated either by reference to other studies or

directly from the data. We refer to these parameters as first stage parameters. A second

set of parameters is calibrated by informally matching simulated moments to respective

moments in the data. Accordingly, we refer to those parameters as second stage parameters.

The theoretical discussion in section 3.2.4 emphasized that the correlation between TFP

and returns will play a crucial role when evaluating social security benefits. To address

this, we take two views with regard to the data generating process of observed TFP (or

wage) fluctuations. First, we detrend the data with a linear trend, thereby following

the approach of Krueger and Kubler (2006), and -like them- find that the correlation is

negative. Second, we assume a unit root process for (the log of) TFP and detrend by first

differences, which yields a highly significant positive correlation. We will argue that this is

a more appropriate approach. In our discussion of robustness in section 3.5.3 we show that

when a Hodrick-Prescott filter is used, the correlation is again positive and significant.

Table 3.1 summarizes the calibration. Table 3.2 contains the information on the stochas-
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tic processes of log TFP and the corresponding approximation according to our two ap-

proaches: NC stands for the negative correlation between TFP and returns which results

from the linear trend specification, while PC stands for the positive correlation which

results from the de-trending with first differences. Since all other targets in the calibra-

tion remain the same, we need to slightly adjust some endogenous parameters, which are

displayed in table 3.3 for both specifications. The next subsections contain a detailed

description of our methodology.

3.4.2 Production Sector

We set the value of the capital share parameter, a first stage parameter, to α = 0.32. This

is directly estimated from NIPA data (1960-2005) on total compensation as a fraction of

(adjusted) GDP. Our estimated value is in the range of values considered as reasonable

in the literature. It is close to the preferred value of 0.3 as used by Krueger and Kubler

(2006). To estimate α, we take data on total compensation of employees (NIPA Table 1.12)

and deflate it with the GDP inflator (NIPA Table 1.1.4). In the numerator, we adjust GDP

(NIPA Table 1.1.5), again deflated by the GDP deflator, by nonfarm proprietors’ income

and other factors that should not be directly related to wage. Without these adjustments,

our estimate of α would be considerably higher, i.e., at α = 0.43.

To determine the mean depreciation rate of capital, a first stage parameter in our model, we

proceed as follows. We first estimate the capital output ratio in the economy. To measure

capital, we take the stock of fixed assets (NIPA Table 1.1), appropriately deflated. We

relate this to total GDP. This gives an estimate of the capital output ratio of K/Y = 2.65,

in line with the estimates by, e.g., Fernández-Villaverde and Krueger (2011), or of the ratio

of output to capital of 0.38. This implies an average marginal product of capital E[mpk] =

αE[Y/K] = 0.12. Given this estimate for the marginal product of capital and our estimate

for the average risky return on capital of 0.079 based on data since 1950 provided by Rob

Shiller, we set E[δ] = E[mpk]− E[r] = 0.042.12

Our estimate of the deterministic trend growth rate, also a first stage parameter, is g =

0.018 which is in line with other studies. We determine it by estimating the Solow residual

from the production function, given our estimate of α, our measure for capital, and a

12The data was downloaded from Rob Shillers webpage and is available under the address
http://www.econ.yale.edu/∼shiller/data.htm.
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Table 3.2: Calibration: Estimates of aggregate risk

NC PC
Corr. (TFP, returns), cor(ζt, rt) -0.08 (0.57) 0.50 (0.00)
Corr. (wages, returns), cor(wt, rt) -0.33 (0.016) 0.306 (0.025)

Notes: NC: Negative correlation between TFP shocks and returns (linear trend esti-
mation), PC: Positive correlation between TFP shocks and returns (first differences
estimation). p-values are reported in brackets.

Table 3.3: Calibration: Endogenous parameters

NC PC
Preferences
Discount factor, β 0.96 0.97
Relative risk aversion, θ 12 8
Technology
Std. of depreciation δ̄ 0.10 0.11
Cond. prob. depr. shocks, πδ 0.435 0.86

Notes: NC: Negative correlation between TFP shocks and returns (linear trend esti-
mation), PC: Positive correlation between TFP shocks and returns (first differences
estimation).
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measure of labor supply determined by multiplying all full- and part-time employees in

domestic employment (NIPA Table 6.4A) with an index for aggregate hours (NIPA Table

6.4A).13 We then fit a linear trend specification to the Solow residual. Acknowledging the

labor augmenting technological progress specification chosen, this gives the aforementioned

point estimate.

3.4.3 Aggregate States and Shocks

We assume that aggregate risk is driven by a four state Markov chain with support Z =

{z1, . . . , z4} and transition matrix π = (πij). Each aggregate state maps into a combination

of low or high technology shocks and low or high physical capital depreciation. To be

concrete, we let

ζ(z) =

1− ζ̄ for z ∈ z1, z2

1 + ζ̄ for z ∈ z3, z4

and δ(z) =

δ0 + δ̄ for z ∈ z1, z3

δ0 − δ̄ for z ∈ z2, z4.
(3.4.33)

With this setup, z1 corresponds to a low wage and a low return, while z4 corresponds to a

high wage and a high return.

To calibrate the entries of the transition matrix, denote by πζ = π(ζ ′ = 1− ζ̄ | ζ = 1− ζ̄)

the transition probability of remaining in the low technology state. Assuming that the

transition of technology shocks is symmetric, we then also that π(ζ ′ = 1+ζ̄ | ζ = 1+ζ̄) = πζ

and, accordingly 1− πζ = π(ζ ′ = 1− ζ̄ | ζ = 1 + ζ̄) = π(ζ ′ = 1 + ζ̄ | ζ = 1− ζ̄).

To govern the correlation between technology and depreciation shocks, let the probability of

being in the high (low) depreciation state conditional on being in the low (high) technology

state, assuming symmetry, be πδ = π(δ′ = δ0 + δ̄ | ζ ′ = 1− ζ̄) = π(δ′ = δ0− δ̄ | ζ ′ = 1 + ζ̄).

We then have that the transition matrix of aggregate states follows from the corresponding

13Notice that we thereby ignore age-specific productivity which should augment our measure of em-
ployment.
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assignment of states in (3.4.33) as

πz =


πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ


In sum, the Markov chain process of aggregate shocks is characterized by four parameters,

(ζ̄ , δ̄, πζ , πδ). All of these parameters are second stage parameters which we calibrate jointly

to match the following targets: (i) an average variance of the cyclical component of TFP,

again estimated from NIPA data, (ii) the average fluctuation of the risky return which

features a standard deviation in the data of 0.16, (iii) the autocorrelation of the cyclical

component of TFP in the data and (iv) the estimated correlation of the cyclical component

of TFP with risky returns.

As to the latter targets we calibrate two versions which reflect different views on the nature

of the data generating process of observed TFP fluctuations.

First, we adopt the Krueger and Kubler (2006) approach to the data by assuming a lin-

ear trend as a filter to get the stochastic components in the data. Such a linear trend

specification can be justified on the grounds that the model features such a trend, and

that the underlying covariance structures should remain unaffected.14 The results are in

line with Krueger and Kubler (2006) and are shown in the first column (labeled NC) of

table 3.2.15 The correlation between wages and returns is estimated to be negative, while

the correlation between TFP and returns is negative but statistically not different from

zero.

In our second approach, we assume a unit root process for the log of TFP. Applying a

first difference filter to the data, we find that the correlation between TFP and returns as

well as wages and returns is positive, the former being larger in magnitude than the latter.

This finding coincides with our economic intuition as we would expect these variables to

14Rather than to TFP fluctuations, Krueger and Kubler (2006) refer to stochastic processes of ag-
gregate wages. By the static first order conditions of the firm problem, these two are highly related,
cf. equation (3.3.19).

15The differences between their and our estimates arise because they have to aggregate the data to
6-year intervals to match the period length of their model, whereas we use the yearly data since we have
1-year intervals.
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co-move over the cycle.

For sake of consistency, we then transform the numbers to an equivalent deterministic trend

specifications in the following way. We stick to the Krueger and Kubler (2006) calibration

and only adopt the new correlation structure between TFP innovations and returns. This

means that we implicitly compute the average horizon h in the unit root model such that

the unconditional variance over h periods coincides with the KK calibration. This gives

an average horizon of h = 19.2751 years.16

In order to check the robustness of our findings, we also adopt a standard RBC view of

the data and de-trend with the Hodrick-Prescott filter. This yields a highly significant,

positive correlation which is comparable in magnitude to our preferred PC (finite difference)

calibration. Details can be found in the robustness section 3.5.3.

3.4.4 Population Data

We assume that agents start working at the biological age of 21, which therefore corresponds

to j = 1. We set J = 70, implying that agents die with certainty at biological age 90, and

jr = 45, corresponding to a statutory retirement age of 65. Population grows at the rate

of 1.1% which reflects the current trend growth of the US population. The conditional

survival rates ςj are imputed from mortality data retrieved from the Human Mortality

Database (HMD).

3.4.5 Household Sector

The value of household’s raw time discount factor, β, and the coefficient of relative risk

aversion θ are calibrated endogenously (second stage parameters) such that our model

produces a capital output ratio of 2.65 and an average equity premium of 0.056.

We determine the intertemporal substitution elasticity as a second-stage parameter such

that our model generates a hump-shaped consumption profile. This is achieved via a

relatively high value of ϕ = 1.5. It is consistent with the range discussed in Bansal and

16Observe that the unit root estimates in fact imply even stronger aggregate fluctuations. Adjusting
the variance in the linear trend specification such that the average horizon equals the average horizon of
households in our model, appropriately adjusted to account for the correlation of TFP innovations, gives an
average horizon of 34.88 years. This implies a standard deviation of 0.039. Relative to the PC calibration
this means that the standard deviation of innovations increases by roughly 76 percent. However, the overall
effects of this additional increase in risk are small. Results are available upon request.
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Yaron (2004) and lower than their benchmark value of 2. We document the sensitivity of

our results with respect to this parameter in section 3.5.3.

The age-specific productivity profile εj is calibrated to match PSID data applying the

method of Huggett (2011).

Our calibration of states Ez and transition probabilities πη of the idiosyncratic Markov

chain income processes is based on estimates of Storesletten, Telmer, and Yaron (2004),

henceforth STY, for individual wage income processes. STY postulate that the permanent

shocks obey an AR(1) process given as

ln(η)i,j,t = ρ ln(η)i,j−1,t−1 + εi,j,t (3.4.34)

where

εi,j,t ∼ N (0, σ2
t ) (3.4.35)

Building on Constantinides and Duffie (1996), STY assume a countercyclical, cross-sectional

variance of the innovations (CCV). Their estimates are ρ = 0.952 and

σ2
t =

σ2
c = 0.0445 for z ∈ z1, z2

σ2
e = 0.0156 for z ∈ z3, z4

(3.4.36)

where e stands for expansion and c for contraction.

We approximate the above process by discrete two-state Markov process. Denoting state

contingency of the innovations by σ2(z), observe that σ(z)2
ln η = σ2(z)

1−ρ2 . We then approximate

the underlying η by the following symmetric Markov process:

Ez = [η1(z), η2(z)] = [η−(z), η+(z)] (3.4.37)

πη =

[
π̄η 1− π̄η

1− π̄η π̄η

]
(3.4.38)

Π = [0.5, 0.5]

so that the unconditional mean of the state vector is equal to 1.

Our approximation is different from standard approximations of log income processes in two

respects. First, standard approximations do not condition on aggregate states. Second,
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standard approximations ignore a bias term which gets large when the variance of the

estimates increases. We describe the details of our procedure in appendix 3.B. Resulting

estimates are

η1 = η− =

0.4225 for z = z1, z2

0.6196 for z = z3, z4

η2 = η+ =

1.5775 for z = z1, z2

1.3804 for z = z3, z4

and π̄η = 0.9741.

3.5 Results

In the discussion of the main results of our quantitative analysis we will refer to the insights

derived from the simple model of section 3.2. In particular, we will highlight the insurance

effects against idiosyncratic risk (IR), aggregate risk (AR), and their interaction (LCI) as

defined in equation (3.2.8), and oppose them with the costs of crowding out denoted by

term C in equation (3.2.16).

In order to expose the commonalities and differences to Krueger and Kubler (2006), we will

first analyze the results of the calibration with a negative correlation between TFP and

returns. Then we compare that to the calibration with a positive correlation. As argued

by KK, a negative correlation should increase the intergenerational insurance provided by

social security. However, our companion paper Harenberg and Ludwig (2011) exposes this

to be a fallacy resulting from the essentially atemporal structure of the simple toy model,

and shows that a positive correlation should increase the insurance effects of social security.

The next two subsections will give some quantitative answers on how much these effects

matter.

In the third subsection, we discuss the robustness of our results when we either conduct a

different thought experiment, or change the elasticity of intertemporal substitution ϕ, or

use a calibration with a nonlinear trend.
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3.5.1 Calibration with Negative Correlation between TFP and

Returns

This calibration matches the aggregate statistics in the column labeled NC in table 3.2.

The corresponding endogenous parameters are displayed in the first column of table 3.3. As

expected, the negative correlation between TFP and returns, cor(ζ, r), leads to a negative

correlation between wages and returns, cor(w, r), which is documented in table 3.4. While

we target cor(ζ, r), KK target a negative cor(w, r) directly. The table also shows that

the standard deviation of aggregate consumption growth, std(∆C/C), is counterfactually

high, which is a direct consequence of the depreciation shocks that we employ to match

the variance of risky returns.17

Table 3.4: Model-generated moments (NC)

cor(w, r) std(∆C/C)
-0.079 0.073

The effects of our social security experiment on welfare, capital, and prices are documented

in table 3.5. In the first column (labeled ’GE’ for general equilibrium), we compare the two

long-run equilibria without any transition. We see that the increase of the contribution

rate from τ = 0.0 to τ = 0.02 leads to welfare gains of +0.51%. This number represents the

percent of lifetime consumption the agent would be willing to give up to be born into the

economy with some social security. There is substantial crowding out of capital of -5.91%,

which leads to the displayed price changes, but this adverse effect is not strong enough to

overturn the benefits from insurance.

In order to isolate those insurance benefits, we conduct the partial equilibrium (PE) ex-

periment described in section 3.3.9. One can think of it as a small open economy, where

aggregate prices are determined in the world, and social security is introduced in the small

home country. As the second column in table 3.5 shows, the net welfare gains attributable

to the total insurance provided by social security amount to +5.10%. Aggregate prices in

this world do not change by construction, and that is why we can isolate the insurance ef-

fects. Therefore, the difference between the two welfare numbers 0.51%−5.10% = −4.61%

17We can reduce std(∆C/C) significantly by introducing a capital structure of the firm as described in
section 2.2.3.
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can be attributed to the crowding out of capital, which corresponds to term C in equa-

tion (3.2.16). Finally, the ∆K/K = −24.90% in PE should be interpreted as ’less capital

being invested abroad’: of course agents save much less for old-age retirement, and this

effect is much smaller in GE because of the mitigating price adjustments.

Table 3.5: The social security experiment (NC)

GE PE
∆Welf/Welf +0.51% +5.10%
∆K/K -5.91% -24.90%
∆E(r) +0.29% 0.00%
∆rf +0.59% 0.00%
∆w/w -3.88% 0.00%

But where do these +5.10% of total net insurance come from, how much can be attributed

to insurance against aggregate risk, how much to idiosyncratic wage risk, how much to

CCV, and to survival risk? That is answered in table 3.6, where we start with an economy

with only aggregate risk, then add idiosynratic wage risk on top, then add CVV, and

finally also include survival risk. For each economy, we look at the welfare gains from the

experiment in PE, so that in the last column, we end up with the same +5.10% that we

just saw. The first column looks at an economy with only aggregate risk, which therefore

is comparable to the partial equilibrium of KK. The welfare gains of +0.18% represent the

intergenerational insurance against aggregate risk. This number is close to zero, because

the additional insurance only just outweighs the cost of the higher contributions, which

are painful in particular for those agents that are close to the natural borrowing limit. So

the actual insurance itself is larger, and we will quantify it below.18

The second column of table 3.6 looks at an economy with both aggregate and idiosyncratic

risk. Introducing social security in this economy leads to substantially larger welfare gains

of +1.99%, which -since this is still PE- are attributable to the intergenerational insurance

against aggregate risk plus the intergenerational insurance against idiosyncratic risk. When

we add CCV risk, insurance gains go up by another 0.47% (calculated as 2.46%− 1.99%),

and looking at the last column we see that adding survival risk adds another 2.64%. Sum-

ming up, insurance against idiosyncratic wage risk and survival risk is very large, that

18Optimally, we would compute the welfare numbers in a model without aggregate risk, but this would
require such drastic recalibration that any comparison would very hard to interpret.
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against aggregate risk and CCV only moderate.

Table 3.6: Insurance against sources of risk (NC)

aggr. + idios. + CCV + surv.
risk wage risk risk

∆Welf/Welf +0.18% +1.99% + 2.46% +5.10%

Table 3.7: Identification of the direct interaction term LCI (NC)

aggr. + idios. IR + LCI ∆LCI
σζ, σδ risk (AR) wage risk
benchmark +0.18% +1.99% +1.81 -
−10% +0.09% +1.83% +1.74 -0.072

We next turn to the interaction effect IAR. To isolate it, we conduct the difference-

in-difference calculation described in section 3.3.9. The logic of this calculation becomes

transparent in table 3.7. The first row looks at our benchmark economy, and the second row

at the same economy with aggregate risk reduced by −10%.19 The first two columns simply

show the insurance against aggregate risk (AR) and against aggregate risk + idiosynratic

wage risk in the same way we just discussed. Indeed the two numbers in the first row are

simply copied from table 3.6.

By taking the difference between column two and column one we are left with IR+ LCI,

since AR drops out, and this number is displayed in the third column. We now take the

difference of the numbers in the third column and thereby get ∆LCI, because IR remains

constant by construction. So the term ∆LCI represents by how much LCI changes if

we reduce AR by −10%. Relating the change in insurance against LCI to the change in

insurance against AR, we get −0.072
0.09−0.18

= 0.8. In other words, LCI increases insurance by

80% of AR.

With these numbers at hand, we can now easily recoup the levels of insurance against

IR and LCI for the benchmark economy. We already know from the first number in

table 3.7 that insurance against AR is 0.18%. The other two numbers are calculated as

LCI ≈ 0.8 · 0.18% = 0.144% and IR = 1.81% − 0.144% = 1.036%. The total interaction

19Reducing aggregate risk by −10% is achieved by reducing the standard deviations of the TFP and
depreciation shocks by −10% each.
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between aggregate and idiosyncratic risk is the sum of CCV and LCI which is 0.47% +

0.144% = 0.61%.

3.5.2 Calibration with Positive Correlation between TFP and

Returns

The discussion of this calibration will be much more concise than the previous one, because

all components were already explained there, and the exposition is structured in exactly the

same way. The value of the targeted correlation cor(ζ, r) is shown in column two (labeled

PC) of table 3.2, and in contrast to before it is now positive. In order to match it, we now

need the conditional probability of depreciation shocks to be πδ = 0.86. In comparison to

the NC calibration, we need to adjust the discount factor β and the standard deviation of

depreciation δ̄ slightly, and considerably reduce the coefficient of relative risk aversion θ so

as to match all statistics, see table 3.3 column two. The large, positive cor(ζ, r) induces

a large, positive cor(w, r) = 0.236, and also drives up a bit the standard deviation of

consumption growth, cf. table 3.8.

Table 3.8: Model-generated moments (PC)

cor(w, r) std(∆C/C)
0.236 0.076

Introducing social security into this economy leads to welfare gains of +3.52% when com-

paring the long-run general equilibria (table 3.9). Since we are talking about consumption-

equivalent variations, this is a very large number. Note that it is much larger than in the

NC calibration although we reduced θ substantially. The crowding out of capital and its

associated price changes take virtually the same values as in the NC calibration. This

surprising similarity is probably due to the fact that we still have the same elasticity of

inter-temporal substitution, see section 3.5.3 for a sensitivity analysis with respect to this

parameter.

When we repeat the PE experiment by again keeping prices fixed, we see that the net

benefits attributable to the total insurance amount to +9.37%, so that the welfare costs

of crowding out can be calculated as 3.52%− 9.37% = −5.85%. As before, the ∆K/K =

−29.39% in this PE should be interpreted as ’less capital being invested abroad’.
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Table 3.9: The social security experiment (PC)

GE PE
∆Welf/Welf +3.52% +9.37%
∆K/K -5.90% -29.39%
∆E(r) +0.30% 0.00%
∆rf +0.67% 0.00%
∆w/w -3.87% 0.00%

Table 3.10: Insurance against sources of risk (PC)

aggr. + idios. + CCV + surv.
risk wage risk risk

∆Welf/Welf +1.26% +3.92% +5.69% +9.37%

Table 3.10 decomposes the total insurance into its four sources. Insurance against ag-

gregate risk is a lot higher than before. This suggests that the mechanism described in

our companion paper Harenberg and Ludwig (2011) obtains in our model. To put it in a

nutshell, a positive cor(ζ, r) (and correspondingly positive cor(w, r)) increases the value

of social security, because it increases the variance of lifetime income. This effect quanti-

tatively dominates the effect from a negative cor(ζ, r), which would increase the value of

social security as a hedge against volatile savings income at old age.

The additional insurance when idiosyncratic wage risk is included amounts to +3.92% −
1.26% = 2.66%, which is larger than in the NC calibration and which already indicates

that LCI will be larger than before, because IR remained the same. Similarly, including

CCV has a much larger impact at 5.69%− 3.92% = 1.77% as opposed to 0.47%.20 Finally,

the impact of survival risk is also larger.

Table 3.11: Identification of the direct interaction term LCI (PC)

aggr. + idios. IR + LCI ∆LCI
σζ, σδ risk (AR) wage risk
benchmark +1.26% +3.92% +2.66 -
−10% +0.83% +3.10% +2.27 -0.392

In order to isolate the interaction term LCI and the pure idiosyncratic risk term IR, we

again proceed with the difference-in-difference calculation that is explained both in the

20The impact of CCV on both the equity premium and insurance is larger, the larger cor(ζ, r).
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previous subsection and in section 3.3.9. The results in table 3.11 show that ∆LCI is

much larger than before. Also in relation to the change in AR it is larger than before:
∆LCI
∆AR

= −0.392%
0.83%−1.26%

≈ 0.91, i.e. LCI adds 90% on top of AR in terms of insurance.

From this, we can again compute the levels of insurance against IR and LCI in our

benchmark economy. Since insurance against AR is +1.26% in the table, we get that the

welfare gains from the other two sources amount to LCI ≈ 0.91 × 1.26% = 1.15% and

IR = 2.66%− 1.15% = 1.51%. The total interaction between aggregate and idiosyncratic

risk as the sum of CCV and LCI is hence 1.77% + 1.15% = 2.92%.

3.5.3 Robustness

This section discusses the sensitivity of our results with respect to the three most crucial

model elements. First, we show that when the thought experiment is not a marginal

introduction of a contribution rate, but instead a marginal increase from the current level

in the U.S., all results remain qualitatively unchanged. Next, we document the sensitivity

of the welfare and crowding out numbers when a much smaller elasticity of intertemporal

substitution is used. Finally, we show that using a standard Hodrick-Prescott filter yields

both empirical estimates as well as computational results that support the findings and

conclusions from our preferred PC calibration.

Robustness of the Thought Experiment

We chose to perform the thought experiment of a marginal introduction of social security

mainly because it conforms to both the approach taken in our theory section and the

approach taken by KK. However, it is crucial to understand that the positive welfare

results do not hinge on this specific example. Since it is beyond this paper to check all

possible experiments, we chose one that is sufficiently different and that still seems relevant

from an empirical perspective. For that, we take the current U.S. value of social security

contributions τ = 0.12 and increase it by 2% to keep it comparable to the previous results.

We perform this new experiment for both the NC and PC calibrations, and document all

findings in the same way as before. Here, we will summarize the key insights, and relegate

the tables to appendix 3.C.

Since now we start from a situation with substantial old age income, we need to adjust



92 CHAPTER 3. WELFARE EFFECTS OF SOCIAL SECURITY

the coefficient of relative risk aversion θ and the discount factor β considerably in order

to match the same aggregate statistics. Specifically, θ has to be increased by five in both

calibrations, because higher social security income puts downward pressure on the equity

premium, as agents have more safe income and thus demand more of the risky stock. At

the same time, β needs to be increased by approximately 0.02 in both calibrations in order

to match the same capital-output-ratio, because agents’ savings are of course reduced by

the higher social security income. The model-generated, not-targeted moments cor(w, r)

and std(∆C/C) remain basically unchanged.

Despite the fact that the changes in θ and β should, ceteris paribus, both increase the

welfare gains of social security, we find these to be substantially smaller throughout. Still,

welfare gains are positive in GE, with +0.17% for NC and +1.94% for PC, while at the same

time, the crowding out of capital is half as large as it was before. The relative ordering of

the various sources of insurance remains the same with the exception of survival risk, which

now is much less important than before. The most relevant difference is that LCI now

only adds approximately 0.3∗AR in terms of insurance in both cases, which -while being a

notable reduction to before - still is a substantial amount. Finally, for the NC calibration,

we find that insurance against aggregate risk is negative at −0.31%, meaning that the

intergenerational insurance in this case does not outweigh the utility costs of having to pay

the contributions, which is painful in particular for agents close to the natural borrowing

limit.

Sensitivity with Respect to the Elasticity of Intertemporal Substitution

This section discusses the effects of a reduction in the elasticity of intertemporal substitu-

tion ϕ from 1.5 to 0.5. The first value resulted from our calibration strategy as described

in section 3.4, where this parameter was set so as to get a more hump-shaped life-cycle

consumption profile.21 The value of 0.5 is substantially smaller and does not deliver a clear

hump in the life-cycle profile, but we use this value for the sensitivity analysis because it is

the value chosen by Krueger and Kubler (2006). Both values can be defended on empirical

grounds, as the recent estimates in the literature range from close to zero to a value of two.

21A higher IES implies that agents are more willing to accept higher growth rates of consumption in
return for higher mean consumption. In our model this generates an empirically plausible peak at the age
of 55.
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One word of caution before we present the results. With a high EIS, agents react to the

changes in interest rates to a stronger degree and thereby mitigate the crowding out of

capital, whereas with a low EIS, the crowding out will be larger.22 However, we only asses

the negative welfare impact of crowding out since we ignore the transition to the new long-

run equilibrium. If crowding out of capital between the long-run equilibria is larger, then

agents will save less and consume more along the transition, which would enhance their

welfare. So the welfare numbers we discuss now should be seen as a lower bound, and we

expect that once we include the transition, welfare will react less sensitively to changes in

this parameter.

The tables are shown in appendix 3.C. Note that due to the nature of the experiment,

they need to be compared the tables in appendix 3.C. As shown in the last section, that

experiment is much more unfavorable for social security, and welfare gains for our original

experiment should be larger. As before, we document the numbers for both the calibration

with the positive and the negative correlation between TFP and returns (PC and NC,

respectively).

The reduction in the EIS necessitates a recalibration, which can be effectuated by adjusting

only two parameters. The coefficient of relative risk aversion has to be reduced by two

(three for the PC calibration) so that the model generates the same equity premium.

The discount factor β needs to be reduced only very slightly. The endogenously generated

cor(w, r) is smaller than before, and more importantly, the standard deviation of aggregate

consumption growth diminishes substantially to std(∆C/C) = 0.043 (std(∆C/C) = 0.049

for PC), which is much closer to the data. The reason for this decrease is that agents now

prefer a smooth consumption path to high consumption growth.23

We find that the welfare numbers in general equilibrium are reduced by approximately

3.5%. This is a lot, and for the experiment conducted means that overall welfare gains

are clearly negative, as opposed to the positive numbers for ϕ = 1.5. When looking at the

GE, it seems that crowding out causes much of these losses, as the percentage of capital

lost more than doubles. However, the PE experiment reveals that also the insurance

22Higher social security contributions crowd out capital, which increases interest rates, which incen-
tivizes agents to save more, and agents will respond to this incentive more strongly when their EIS is
higher.

23Note that such small values for std(∆C/C) are achieved only with a capital structure of the firm, as
described in section 2.2.3.
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gains are reduced by approx. 2.5%, which means that the capital loss accounts only for

approximately 1% of the welfare losses. The fact that agents seem to value social security

less with a smaller EIS even when prices are kept fixed seems an interesting finding. Our

hypothesis is that agents still value the reduction in the variance of old-age consumption,

but they dislike that their consumption profile becomes somewhat steeper, even though

that means higher average consumption. On the contrary, when agents have a high EIS,

they like this second effect. To verify this, we will look at mean consumption and the

variance of consumption over the life-cycle for the GE and PE experiments.

Turning to the sources of risk, insurance effects drop for all of them. Insurance against

aggregate risk drops the most, insurance against survival risk the least. The interaction

term, on the other hand, is of about the same order of magnitude as before: it adds about

30% on top of aggregate risk, the same number as in the previous section.

Nonlinear Trend Calibration

We now take take a standard RBC or Hodrick and Prescott (1997) perspective according

to which, while the model is stationary, the data are rather non stationary and driven by

some deterministic trend component of unknown functional form. This view implies that

we merge a large proportion of observed fluctuations into the deterministic component

of the data. The autocorrelation of the cyclical component of log TFP is 0.43 with an

unconditional standard deviation of 0.0125, cf. table 3.12. We also find that the correlation

between stock returns and TFP is strongly positive and highly significant, whereas the

correlation between returns and wages is not significantly different from zero. This gives

strong support to our view that the PC calibration is the more relevant. While the value

of corr(ζt, Rt) lies between the NC and PC calibrations, it is clearly closer to the latter.

The results from the experiments confirm our findings. All welfare numbers are between

those found in the NC and PC calibrations, and slightly closer to the latter. Of course,

insurance against aggregate risk decreases substantially when compared to the PC calibra-

tion, but the interaction effect LCI still amounts to about 0.4 ∗ ·AR, our prediction from

the toy model. The tables are relegated to appendix 3.C.
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Table 3.12: Aggregate Risk, HP-filter

Point Estimates
Autocorrelation of TFP 0.43 (0.00)
Standard deviation of TFP 0.012
Corr. TFP, R, corr(ζt, Rt) 0.35 (0.01)
Corr. w, R, corr(wt, Rt) -0.03 (0.82)
Markov Approximation
Aggregate states, 1± ζ̄ [1.012, 0.988]
Transition probabilities, πζ 0.7152

Notes: p-values are reported in brackets.

Table 3.13: Endogenous Parameters, HP-filter

θ ϕ β δ̄ πδ

14 1.5 0.98 0.1 0.7

3.6 Conclusion

In a life-cycle model, idiosyncratic and aggregate risk interact despite the fact that they

are statistically independent. This interaction increases the value of social security. In our

general equilibrium analysis, the introduction of a PAYG system leads to strong welfare

gains. This stands in contrast to the related literature. The reason for this difference is

that in our model, social security provides partial insurance against both idiosyncratic and

aggregate risk, as well as their interactions. In fact, the interactions account for one third

of the total welfare gains.

In our analysis, we abstracted from endogenous labor supply. This biases the results in favor

of social security, because a higher contribution rate would distort the households’ labor

supply decision. In addition to the crowding out of capital, we would also see less labor

being supplied. While it would be interesting to see this extension, one would probably

have to restrict the model in some other way in order to clearly expose the mechanisms.

While our results do not depend on the calibration, we have seen that the covariance

between wages and risky returns plays a crucial role. Interestingly, a positive correlation

leads to substantially larger welfare gains. Previous analyses suggested that a negative

correlation should increase the welfare gains, because then social security income is a better

hedge against volatile asset income at old age. It became apparent that this mechanism
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is opposed by other forces. We elaborate on this in our companion paper (Harenberg and

Ludwig (2011)).

In our economy, the intergenerational sharing of aggregate risks is limited to those gener-

ations alive at the same point in time. From a social planner’s point of view, it would be

desirable to share the risk also with future, unborn generations. This could be achieved by

allowing the government to take up debt to smooth shocks over time. That would open

up an additional insurance channel, which would increase the welfare gains of introducing

social security.

Finally, we document in our robustness section that increasing the contribution rate from

the current level in the U.S. of 12 percent to 14 percent also leads to welfare gains. While the

welfare gains are still large, they are smaller than when the contribution rate is increased

from zero to two percent. It seems that the higher the current level of contributions, the

smaller the welfare gains are for a fixed percentage point increase in contributions. From

these results it seems that there is an optimal level of social security, and that it lies

somewhere above the current level observed in the U.S. today. We leave this and the other

extensions to future research.
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3.A Appendix: Proofs

Proof of proposition 3.1. Maximize

Et−1u(ci,2,t+1)=Et−1

(
w̄t
(
R̄ηi,1,tζt%̃t+1+τ

(
(1 + g)ζt+1−R̄ηi,1,tζt%̃t+1

)))1−θ
,

where we already removed the constant 1
1−θ . This is equivalent to maximizing

maxEt−1R
1−θ
p,t,t+1

where Rp,t,t+1 ≡ ηi,1,tζtR̄%̃t+1+τ
(
(1 + g)ζt+1 − R̄ηi,1,tζt%̃t+1

)
is a consumption (or portfolio)

return. Increasing ex-ante utility for a marginal introduction of social security requires the

first-order condition w.r.t. τ to exeed zero, hence:

Et−1

[
R−θp,t,t+1

∂Rp,t,t+1

∂τ

]
|τ=0> 0 (3.A.39)

Evaluated at τ = 0 we have

R−θp,t,t+1 |τ=0 =
(
ηi,1,tζtR̄%t+1

)−θ
∂Rp,t,t+1

∂τ
|τ=0 = (1 + g)ζt+1 − ηi,1,tζtR̄%t+1

Equation (3.A.39) therefore rewrites as

(1 + g)Et−1

[
(ηi,1,tζt%̃t+1)−θ ζt+1

]
> R̄Et−1

[
(ηi,1,tζt%̃t+1)1−θ

]
. (3.A.40)

Rewriting the above and imposing assumption 3.2 we get equation (3.2.4).

Proof of proposition 3.2. Define

Z1 ≡ (ηi,1,tζt%̃t+1)−θ ζt+1

Z2 ≡ (ηi,1,tζt%̃t+1)1−θ .
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By log-normality we have that EZi = exp(E lnZi + 1
2
σ2

lnZi
), i = 1, 2. Observe that

E lnZ1 = −θ (E ln ηi,1,t + E ln %̃) + (1− θ)E ln ζ

σ2
lnZ1

= θ2
(
σ2

ln η + σ2
ln %̃

)
+ (1 + θ2)σ2

ln ζ

Therefore

Et−1[Z1] = exp

(
−θ
(
E ln ηi,1,t +

σ2
ln η

2

))
· exp

(
−θ
(
E ln %̃+

σ2
ln %̃

2

))
·

· exp

(
(1− θ)

(
E ln ζ +

σ2
ln ζ

2

))
exp

(
1

2
θ(1 + θ)

(
σ2

ln η + σ2
ln %̃ + σ2

ln ζ

))
= (E[ηi,1,t])

−θ (E[%̃])−θ (E[ζ])1−θ · exp

(
1

2
θ(1 + θ)

(
σ2

ln η + σ2
ln %̃ + σ2

ln ζ

))
= exp

(
1

2
θ(1 + θ)

(
σ2

ln η + σ2
ln %̃ + σ2

ln ζ

))
whereby the last line follows from assumption 3.2b.

Next, observe that log-normality implies that

σ2
η = vart−1(ηi,1,t) = exp

(
2E ln ηi,1,t + σ2

ln η

) (
exp

(
σ2

ln η

)
− 1
)

= (Eηi,1,t)
2
(
exp

(
σ2

ln η

)
− 1
)

=
(
exp

(
σ2

ln η

)
− 1
)

whereby the last line again follows from assumption 3.2b. Hence:

σ2
ln η = ln

(
1 + σ2

η

)
with corresponding expressions for σ2

ln ζ and σ2
ln %̃. Therefore:

exp

(
1

2
θ(1 + θ)

(
σ2

ln η + σ2
ln %̃ + σ2

ln ζ

))
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%̃)
) 1

2
θ(1+θ)

We consequently have

Et−1[Z1] =
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%̃)
) 1

2
θ(1+θ)
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As to Et−1[Z2] observe that

E lnZ2 = (1− θ) (E ln ηi,1,t + E ln ζ + E ln %̃)

σ2
lnZ2

= (1− θ)2
(
σ2

ln η + σ2
ln ζ + σ2

ln %̃

)
Therefore

Et−1[Z2]=exp

(
(1−θ)

(
E ln ηi,1,t +

σ2
ln η

2

)(
E ln %̃+

σ2
ln %̃

2

)(
E ln ζ +

σ2
ln ζ

2

))
· exp

(
1

2
θ(θ − 1)

(
σ2

ln η + σ2
ln %̃ + σ2

ln ζ

))
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%̃)
) 1

2
θ(θ−1)

Hence

Et−1[Z1]

Et−1[Z2]
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%̃)
)θ

Illustration 1. Let us provide a simplified numerical illustration. Below, we calibrate our

model with an annual income processes given by ln(ηi,j,t) = ρ ln(ηi,j−1,t−1) + εi,j,t where j

is actual age of a working household, t is time, εi,j,t ∼ N (0, σ2
t ), hence ηi,j,t is distributed

as log-normal for all i, j, t and ρ is the autocorrelation coefficient. While we consider time

variation in variances below, let us assume constant variances for now. Our calibration

has an average variance of σ2 ≈ 0.03. We also calibrate ρ = 0.952. Consider the overall

variance of income risk at retirement, that is, after a period in the work force of about 45

years. For AR(1) processes with such a long horizon, the approximate infinite horizon24

formula to compute the variance of ln ηi,1,t at retirement is given by 1
1−ρ2σ

2
ε . Using our

numbers we accordingly have that the variance of ln ηi,1,t at retirement is given by 1
1−0.9522

·
0.03 = 10.67 · 0.03. By the formula for log-normal random variables, the variance of ηi,1,t

at retirement is therefore var(ηi,1,t) = (E[ηi,1,t])
2
(
exp

(
σ2

ln η

)
− 1
)

= exp (10.67 · 0.03)−1 =

0.37.25

24The exact formula is 1−ρ2(jr−1)

1−ρ2 where jr is the retirement age but the term ρ2(jr−1) is negligible.
25As we describe in our main text, our estimates are based on Storesletten, Telmer, and Yaron (2004)

who use after tax earnings data and control for aggregate fluctuations. Observe that these numbers are
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Derivation of equation 3.2.8. We want to evaluate CEV between two scenarios, i.e., com-

paring Et−1u(ci,2,t+1τ>0) with Et−1u(ci,2,t+1τ=0). To simplify, let us use that

Et−1u(ci,2,t+1τ>0) = Et−1u(ci,2,t+1τ=0) +
∂Et−1u(ci,2,t+1τ=0)

∂τ
dτ.

and evaluate this expression at τ = 0.

We have that, evaluated at τ = 0,

∂Et−1u(ci,2,t+1τ=0)

∂τ
= w̄1−θ

t Et−1

[(
R̄ηζt%̃t+1

)−θ · ((1 + g)ζt+1 − R̄ηζt%̃t+1

)]
= w̄1−θ

t

(
R̄−θ(1 + g)Et−1

[
(ηζt%̃t+1)−θ ζt+1

]
− R̄1−θEt−1

[
(ηζt%̃t+1)1−θ

])
= w̄1−θ

t R̄1−θ
(

1 + g

R̄
Et−1Z1 − Et−1Z2

)
where Z1, Z2 are defined in our proof to proposition 3.2.

We also have that

Et−1u(ci,2,t+1τ=0) =
1

1− θ w̄
1−θ
t R̄1−θEt−1 (ηi,1,tζt%̃t+1)1−θ

=
1

1− θ w̄
1−θ
t R̄1−θEt−1Z2.

Therefore:

Et−1u(ci,2,t+1τ>0) =
1

1− θ w̄
1−θ
t R̄1−θEt−1Z2

+ w̄1−θ
t R̄1−θ

(
1 + g

R̄
Et−1Z1 − Et−1Z2

)
dτ.

a conservative estimate of the overall dispersion of earnings inequalities at retirement because we ignore
the dispersion of skills and learning abilities at the beginning of the life-cycle. The more recent work
by Huggett (2011) attributes about 60 of the overall variation in life-time income to variations in initial
conditions. However, it is rather education policies than pension policies and social insurance that should
target such differences. Huggett (2011)’s specification for income shocks is a unit root process. Their
estimate of the standard deviation of the innovation of this process is 0.111. This would roughly double
the relevance of the interaction term at retirement to 0.74. However, the estimates of Huggett (2011) are
based on pre-tax earnings data and the authors do not control for the business cycle. This may explain
these substantial differences.
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The CEV, denoted by gc, is defined by the relationship:

Et−1u(ci,2,t+1τ=0(1 + gc)) = Et−1u(ci,2,t+1τ>0),

from which, using the above formulae, we get

(1 + gc)
1−θ 1

1− θ w̄
1−θ
t R̄1−θEt−1Z2 =

1

1− θ w̄
1−θ
t R̄1−θEt−1Z2

+ w̄1−θ
t R̄1−θ

(
1 + g

R̄
Et−1Z1 − Et−1Z2

)
dτ.

Hence:

(1 + gc)
1−θ = 1 +

w̄1−θ
t R̄1−θ (1+g

R̄
Et−1Z1 − Et−1Z2

)
1

1−θ w̄
1−θ
t R̄1−θEt−1Z2

dτ

= 1 + (1− θ)
(

1 + g

R̄

Et−1Z1

Et−1Z2

− 1

)
dτ

= 1 + (1− θ)
(

1 + g

R̄
(1 + V )θ − 1

)
dτ

where the last line again follows from the proof to proposition 3.2.

Hence,

gc =

(
1 + (1− θ)

(
1 + g

R̄
(1 + V )θ − 1

)
dτ

) 1
1−θ

− 1.

or, expressed in logs, i.e., gc ≈ ln(1 + gc), we get

gc ≈
1

1− θ · ln
(

1 + (1− θ)
(

1 + g

R̄
(1 + V )θ − 1

)
dτ

)
≈
(

1 + g

R̄
(1 + V )θ − 1

)
dτ

Taking a first-order Taylor series expansion of the above round V = 0 we get

gc ≈
(

1 + g

R̄
− 1 + θ

1 + g

R̄
V

)
· dτ

The first term in brackets is the deterministic part. The second term is the additional gain
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due to risk which is linear in V .

Proof of proposition 3.3. To establish proposition 3.3a we have to show that

1

ζl
Et−1

1

ηi,1,l
+

1

ζh
Et−1

1

ηi,1,h
>

(
1

ζl
+

1

ζh

)
Et−1

1

ηi,1,t

⇔ 1

ζl

(
Et−1

1

ηi,1,l
− Et−1

1

ηi,1,t

)
+

1

ζh

(
Et−1

1

ηi,1,h
− Et−1

1

ηi,1,t

)
> 0. (3.A.41)

Under assumption 3.4 we have that

Et−1
1

ηi,1,t
= exp

(
−
(
E ln η +

1

2
σ2

ln η

))
Et−1

1

ηi,1,l
= exp

(
−
(
E ln η +

1

2

(
σ2

ln η −∆
)))

Et−1
1

ηi,1,h
= exp

(
−
(
E ln η +

1

2

(
σ2

ln η + ∆
)))

.

Therefore

Et−1
1

ηi,1,l
− Et−1

1

ηi,1,t

= exp

(
−
(
E ln η +

1

2

(
σ2

ln η −∆
)))

− exp

(
−
(
E ln η +

1

2
σ2

ln η

))
= exp

(
−
(
E ln η +

1

2
σ2

ln η

))
exp

(
1

2
∆

)
− exp

(
−
(
E ln η +

1

2
σ2

ln η

))
= exp

(
−
(
E ln η +

1

2
σ2

ln η

))(
exp

(
1

2
∆

)
− 1

)
Et−1

1

ηi,1,h
− Et−1

1

ηi,1,t

= exp

(
−
(
E ln η +

1

2

(
σ2

ln η + ∆
)))

− exp

(
−
(
E ln η +

1

2
σ2

ln η

))
= exp

(
−
(
E ln η +

1

2
σ2

ln η

))
exp

(
−1

2
∆

)
− exp

(
−
(
E ln η +

1

2
σ2

ln η

))
= exp

(
−
(
E ln η +

1

2
σ2

ln η

))(
exp

(
−1

2
∆

)
− 1

)
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Equation (3.A.41) therefore rewrites as

1

ζl

(
exp

(
1

2
∆

)
− 1

)
+

1

ζh

(
exp

(
−1

2
∆

)
− 1

)
> 0. (3.A.42)

Observe that exp
(
−1

2
∆
)
− 1 < 0, exp

(
1
2
∆
)
− 1 > 0 and convexity of the exponential

function implies that

| exp

(
−1

2
∆

)
− 1| < | exp

(
1

2
∆

)
− 1|.

Therefore

1

ζl

(
exp

(
1

2
∆

)
− 1

)
+

1

ζh

(
exp

(
−1

2
∆

)
− 1

)
>

1

ζl

(
exp

(
1

2
∆

)
− 1

)
− 1

ζh

(
exp

(
1

2
∆

)
− 1

)
=

(
exp

(
1

2
∆

)
− 1

)(
1

ζl
− 1

ζh

)
=

(
exp

(
1

2
∆

)
− 1

)(
1

ζl
− 1

2− ζl

)
=

(
exp

(
1

2
∆

)
− 1

)
2(1− ζl)
ζl(2− ζl)

> 0.

To establish proposition 3.3b use assumption 3.4 to rewrite equation (3.A.42) as

f(∆ζ) ≡
1

1−∆ζ

(
exp

(
1

2
∆

)
− 1

)
+

1

1 + ∆ζ

(
exp

(
−1

2
∆

)
− 1

)
> 0.

Observe that

∂f(∆ζ)

∂∆ζ

=

(
1

1−∆ζ

)2(
exp

(
1

2
∆

)
− 1

)
−
(

1

1 + ∆ζ

)2(
exp

(
−1

2
∆

)
− 1

)
=

(
1

1−∆ζ

)2(
exp

(
1

2
∆

)
− 1

)
︸ ︷︷ ︸

>0

+

(
1

1 + ∆ζ

)2(
1− exp

(
−1

2
∆

))
︸ ︷︷ ︸

>0

> 0

Hence, a mean preserving spread of ζ increases the effect of CCV .
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Proof of Proposition 3.4. The proof is by guessing and verifying. We guess that

s1,t = χ(1− τ)wt

= χ(1− τ)(1− α)Υtζtk
α
t .

If this is correct, then the equilibrium dynamics are given by

Kt+1 = N1,ts1,t

= N1,tχ(1− τ)(1− α)Υtζtk
α
t

⇔ kt+1 =
N1,tχ(1− τ)(1− α)Υtζtk

α
t

Υt+1N1,t+1

=
1

1 + g
χ(1− τ)(1− α)ζtk

α
t

To verify this, notice that our assumptions on savings implies that

c1,t = (1− χ)(1− τ)(1− α)Υtζtk
α
t (3.A.43)

and, by the budget constraint, we have

c2,t+1 = χ(1− τ)(1− α)Υtζtk
α
t αζt+1%t+1k

α−1
t+1 + (1− α)Υt+1ζt+1k

α
t+1τ. (3.A.44)

Using (3.2.12a) in (3.A.44) we get

c2,t+1 = kt+1(1 + g)Υtαζt+1%t+1k
α−1
t+1 + (1− α)Υt+1ζt+1k

α
t+1τ

= Υt+1αζt+1%t+1k
α
t+1 + (1− α)Υt+1ζt+1k

α
t+1τ

= (α%t+1 + (1− α)τ) Υt+1ζt+1k
α
t+1

Next, notice that the first-order-condition of household maximization gives:

1 = βEt

[
c1,t(1 + rt+1)

c2,t+1

]
. (3.A.45)
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Using the above equations for consumption in the two periods, we can rewrite (3.A.45) as:

1 = βEt

[
c1,tαζt+1%t+1k

α−1
t+1

(α%t+1 + (1− α)τ) Υt+1ζt+1kαt+1

]
= βEt

[
c1,tα%t+1

(α%t+1 + (1− α)τ) Υt+1kt+1

]
= βEt

[
(1− χ)(1− τ)(1− α)Υtζtk

α
t α%t+1

(α%t+1 + (1− α)τ) Υt+1
1

1+g
χ(1− τ)(1− α)ζtkαt

]

= βEt

[
(1− χ)α%t+1

(α%t+1 + (1− α)τ)χ

]
=
β(1− χ)α

χ
Et

[
%t+1

α%t+1 + (1− α)τ

]
=
αβ(1− χ)

χ
Ē

where

Ē ≡ Et

[
1

α + (1− α)%−1
t+1τ

]
.

It follows that

χ =
1

1 +
(
αβĒ

)−1

Uniqueness is established by convexity of the problem. Given that the solution is unique

and given that we have characterized one solution, this is the solution to the problem.

Proof of proposition 3.6. Rewrite the above consumption equations to get

c1,t,ms = (1− χ)(1− τ)Υtζt(1− α)kαms

and

c2,t+1,ms =
(
χζt%t+1αk

α−1
ms + τ

(
(1 + g)− χζt%t+1αk

α−1
ms

))
Υtζt+1(1− α)kαms
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We now look at ex-ante utility:

Et−1ut =Et−1c + Et−1 [ln(1− χ) + ln(1− τ)] + α ln kms

+ βEt−1

[
ln
(
χζt%t+1αk

α−1
ms + τ

(
(1 + g)− χζt%t+1αk

α−1
ms

))]
+ βα ln kms

=Et−1c + Et−1 [ln(1− χ) + ln(1− τ)] + α(1 + β) ln kms (3.A.46)

+ βEt−1

[
ln
(
χζt%t+1αk

α−1
ms + τ

(
(1 + g)− χζt%t+1αk

α−1
ms

))]
where c encompasses all elements that are not affected by τ .

We evaluate the derivative of the above at τ = 0. To this end, we look separately at the

different terms. Let us define

B1 ≡ Et−1
∂ ln(1− χ)

∂τ
= −Et−1

1

1− χ
∂χ

∂τ
> 0 (3.A.47)

The sign of this term is due to the fact that an increase of the contribution rate crowds

out savings, hence ∂χ
∂τ
< 0. We return to this equation in more detail below.

The second term—which we define as A1—captures the effect of taxation on income (eval-

uated again at τ = 0):

A1 ≡ Et−1
∂ ln(1− τ)

∂τ
= − 1

1− τ = −1. (3.A.48)

We next investigate the implicit return equation for social security. We get, evaluated

at τ = 0, that:

∂ ln (χζt%t+1αk
α−1
ms + τ ((1 + g)− χζt%t+1αk

α−1
ms ))

∂τ

=
1

χζt%t+1αkα−1
ms

×

(1 + g)− χζt%t+1αk
α−1
ms︸ ︷︷ ︸

≡Ã2

+αζt%t+1

∂χ∂τ kα−1
ms︸ ︷︷ ︸

≡B̃2

+χ(α− 1)kα−2
ms

∂kms
∂τ︸ ︷︷ ︸

≡C̃


 .
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First, look at

1

χζt%t+1αkα−1
ms

Ã2 =
1 + g

χζt%t+1αkα−1
ms

− 1

=
1 + g

χζt%t+1α
1+g

χ(1−τ)(1−α)

− 1

=
1− α
αζt%t+1

− 1.

Multiplying the above term by β (cf. equation (3.A.46)), taking expectations and subtract-

ing −1 in order to acknowledge the effects of taxation on income (from equation (3.A.48)),

term A accordingly writes as

A ≡ β(1− α)

α
Et−1

[
1

ζt

]
Et−1

[
1

%t+1

]
− (1 + β)

Next, look at

1

χζt%t+1αkα−1
ms

αζt%t+1B̃2 =
1

χkα−1
ms

∂χ

∂τ
kα−1
ms =

∂χ

∂τ

1

χ

hence, this gives the percentage change in the saving rate. Multiplying the above by β (cf.

equation (3.A.46)) and combining the resulting term with equation (3.A.47), we get

B ≡ ∂χ

∂τ

(
β

1

χ
− 1

1− χ

)
.

To evaluate this expression observe that

χ =
αβĒ

1 + αβĒ

and Ē evaluated at τ = 0 gives

Ē =
1

α
.

Hence

χ =
β

1 + β
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and

1− χ =
1

1 + β

Therefore:

B ≡ ∂χ

∂τ

(
β

1

χ
− 1

1− χ

)
=
∂χ

∂τ

(
β

1 + β

β
− (1 + β)

)
= 0.

In our model with log utility (where income and substitution effects just cancel) and no

second period income (no human capital wealth effect), the beneficial effects of decreasing

savings in the first period and the offsetting effects of lower asset income and the second

just cancel each other out.

Finally, look at

1

χζt%t+1αkα−1
ms

αζt%t+1C̃ =
1

χζt%t+1αkα−1
ms

αζt%t+1χ(α− 1)kα−2
ms

∂kms
∂τ

= −(1− α)k−1
ms

∂kms
∂τ

= −(1− α)
∂ ln kms
∂τ

.

Multiplying the above by β, taking expectations and combining it with equation (3.A.46),

all terms incorporating ∂ ln kms
∂τ

are given by

C ≡ (α(1 + β)− β(1− α))
∂ ln kms
∂τ

(3.A.49)

Turning to ∂ ln kms
∂τ

we find that, at τ = 0, we have

∂ ln kms
∂τ

=
1

1− α

(
∂ lnχ

∂τ
+
∂ ln(1− τ)

∂τ

)
=

1

1− α

(
1

χ

∂χ

∂Ē

∂Ē

∂τ
− 1

)
. (3.A.50)

We have

∂χ

∂Ē
= αβ

(
1

1 + (αβĒ)−1

)2(
1

αβĒ

)2

.
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and, since

χ =
1

1 + (αβĒ)−1

⇔ αβĒ =
χ

1− χ

we get

∂χ

∂Ē
= αβ

(
1

1 + 1−χ
χ

)2(
1− χ
χ

)2

= αβχ2

(
1− χ
χ

)2

= αβ(1− χ)2

= αβ
1

(1 + β)2

Evaluated at τ = 0 we further get

∂Ē

∂τ
= −1− α

α2
Et
[
%−1
t+1

]
Therefore:

∂χ

∂τ
=
∂χ

∂Ē

∂Ē

∂τ

= −αβ 1

(1 + β)2

1− α
α2

Et
[
%−1
t+1

]
= − β(1− α)

α(1 + β)2
Et
[
%−1
t+1

]
< 0.

and, consequently,

1

χ

∂χ

∂τ
= −1 + β

β

β(1− α)

α(1 + β)2
Et
[
%−1
t+1

]
= − 1− α

α(1 + β)
Et
[
%−1
t+1

]
.
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Therefore, equation (3.A.50) rewrites as

∂ ln kms
∂τ

=
1

1− α

(
1

χ

∂χ

∂Ē

∂Ē

∂τ
− 1

)
=

1

1− α

(
− 1− α
α(1 + β)

Et
[
%−1
t+1

]
− 1

)
= − 1

1− α

(
1 +

1− α
α(1 + β)

Et

[
1

%t+1

])
< 0.

Combining the above with equation (3.A.49) gives term C as

C ≡ −α(1 + β)− β(1− α)

1− α

(
1 +

1− α
α(1 + β)

Et

[
1

%t+1

])
. (3.A.51)

3.B Appendix: Computational Solution

Aggregate Problem

In order to compute the stationary competitive equilibrium of our model, we apply the

Krusell and Smith (1997) method. Specifically, we follow Storesletten, Telmer, and Yaron

(2007) (STY) and approximate the aggregate law of motion as

(k′, µ′) = Ĥ(t; k, µ, z, z′) (3.B.52)

where k is the capital stock per efficiency unit and µ = Er′ − rf ′ is the equity premium.

That is, we approximate the distribution Φ by two “moments” where the equity premium

captures information about equity and bond holding moments. Our approach differs from

STY in three ways: (i) we plan to explicitly compute transitional dynamics between two

stationary competitive equilibria (which fluctuate in two ergodic sets), (ii) we do not use

simulation techniques to aggregate on the idiosyncratic states of the distribution and (iii)

we compute an approximate equilibrium, referred to as a “mean shock equilibrium”, which

serves three purposes: first, it enables us to initialize the cross-sectional distribution of

agents second, we use it in order to calibrate our model in the initial competitive equilibrium
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in all periods t ≤ 0 (for τt = τ0) and third, it determines the means of the aggregate grids

which we employ in the stochastic solution of our model. Computation of the “mean shock

equilibrium” is by standard methods to solve OLG models without any aggregate risk.

But in contrast to fully deterministic models, the mean shock equilibrium gives rise to an

equity premium.

Mean Shock Equilibrium

As an initialization step, we solve for a degenerate path of the economy where the realiza-

tions of all aggregate shocks are at their respective means. We accordingly set z = z̄ = Ez
and δ = δ̄ = Eδ. We assume that households accurately solve their forecasting problem

for each realization of the aggregate state. This means that we approximate the above

approximate law of motion as

(k′, µ′) =
ˆ̂
H(k, µ, z̄, z̄′) (3.B.53)

Observe that in the two stationary equilibria of our model, we have that fixed point relation

(k′, µ′) =
ˆ̂
H(k, µ, z̄, z̄′) = (k, µ) (3.B.54)

With these assumptions, we can solve the mean shock path by standard Gauss-Seidel

iterations as, e.g., described in Auerbach and Kotlikoff (1987). We adopt the modifications

described in Ludwig (2007). While the numerical methods are the same as in the solution

to a deterministic economy, the actual behavior of households fully takes into account the

stochastic nature of the model. This also means that we solve the household problem

using recursive methods and store the solutions to the household problem on grids of the

idiosyncratic state x. The fixed-point computed in this auxiliary equilibrium gives kms and

µms as aggregate moments and cross-sectional distributions of agents as induced by the

mean shock path. We denote these distributions by Φms.

Grids

To construct the grids for the the aggregate states k and µ, Gk, Gµ, define scaling factors

sk and sµ and the number of grid points, n. We set sk = 0.8 sµ = 0.6, and n = 7. Using
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these factors, we construct symmetric grids around kms, µms.

Stochastic Solution

In order to solve for the stochastic recursive equilibria of our model, we use simulation

methods. To this end, we specify the approximate law of motion in (3.B.52) as:

ln(kt+1) = ψk0(z) + ψk1(z) ln(kt) + ψk2(z) ln(µt) (3.B.55a)

ln(µt+1) = ψµ0 (z) + ψµ1 (z) ln(kt+1) + ψµ2 (z) ln(µt) (3.B.55b)

Like in Krusell and Smith (1997), the forecast for kt+1 is used to forecast µt+1. Intuitively,

kt+1 contains a lot of information on the savings choice of the agent and therefore on the

returns next period. Note that, in each period, µt is an “endogenous state”, the realization

of which has to be pinned down in that particular period (in contrast to kt which is given

in period t from decisions t− 1). As in the standard application of the Krusell and Smith

(1998) method, the coefficients also depend on the realization of the aggregate state, z.

Stationary Equilibria

Define a number M of stochastic simulations and a number of s < M of simulations to

be discarded. We follow GM and set M = 5500 and s = 500. Also define a tolerance ζ.

Further, draw a sequence for z for periods t = −M, . . . , 0 and denote these realizations

by z−M , . . . , z0. Notice that we thereby use the same sequence of aggregate shocks (as

given by a random number generator) in each iteration. Collecting coefficients as Ψ =

[ψk0 , ψ
k
1 , ψ

k
2 , ψ

µ
0 , ψ

µ
1 , ψ

µ
2 ]′, the iteration is as follows:

1. Initialization: Guess Ψ.

2. In each iteration i do the following:

(a) Solution of household problem. We store the solutions of the household problem

on the Ghh = GJ × Gx × Gz × Gk × Gµ. This gives us policy functions for all

households, e.g., c(j, x; z, k, µ), κ(j, x; z, k, µ), a′(j, x; z, k, µ).

(b) Simulation and aggregation. We simulate the model economy for the M realiza-

tions of aggregate shocks, z. To aggregate on the idiosyncratic states, we start



3.B. APPENDIX: COMPUTATIONAL SOLUTION 113

in period t = −M with the initial distribution generated by the mean shock

path, Φms. We then loop forward using the transition functions Q to update

distributions. Notice that, conditional on the realization of z, this aggrega-

tion is by standard methods that are used in OLG models with idiosyncratic

risk. Simulation and aggregation then gives us M realizations of kt and µt for

t = −M, . . . , 0. Observe that, in order to compute the realizations for µt, we

have to solve for the bond market clearing equilibrium in each t. We do so

by using a univariate function solver (Brent’s method). We are thereby more

accurate than Gomes and Michaelides (2008) who simply interpolate on Gµ.

(c) From the stochastic simulations, discard the first s observations and, for the

remaining periods t = s, . . . , 0 run regressions on:

ln(kt+1) = ψ̃k0(z) + ψ̃k1(z) ln(kt) + ψ̃k2(z) ln(µt) + ϑkt+1 (3.B.56a)

ln(µt+1) = ψ̃µ0 (z) + ψ̃µ1 (z) ln(kt) + ψ̃µ2 (z) ln(µt) + ϑµt+1 (3.B.56b)

and collect the resulting coefficient estimates in the vector Ψ̃.

(d) IF ‖Ψi − Ψ̃i‖ < ζ then STOP, ELSE define

g(Ψ) = Ψ− Ψ̃(Ψ) (3.B.57)

as the distance function (=root finding problem) and update Ψi+1 as

Ψi+1 = Ψi − sJ(Ψ)−1g(Ψ) (3.B.58)

where J(Ψ) is the Jacobi matrix of the system of equations in (3.B.57) and s

is a scaling factor. Continue with step 2a. We solve the root finding problem

using Broyden’s method, see Ludwig (2007).
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Household Problem

We iterate on the Euler equation, using ideas developed in Carroll (2006). As derived in

section 3.3.7, the transformed dynamic programming problem of the household reads as

u(t, j,x, η; z, k, µ)

= max
c,κ,a′

{[
c

1−θ
γ + β̃

(
E
[
u (t+ 1, j + 1, x′, η′; z′, k′, µ′)

1−θ
]) 1

γ

] γ
1−θ
}

s.t. x = a′ + c,

where x′ = a′R̃′ + y′, with R̃′ = (1+rf
′
+κ(r′−rf ′))
(1+g)

, and β̃ = βςj+1 ((1 + g))
1−θ
γ . Dropping the

time index to simplify notation and using the dynamic budget constraint in the continua-

tion value we get

u(j, ·) = max
c,κ

{[
c

1−θ
γ + β̃

(
E
[
u(j + 1, (x− c)R̃′ + y′, ·)1−θ

]) 1
γ

] γ
1−θ
}

(3.B.59)

The first-order conditions are given by:

c : c
1−θ−γ
γ − β̃

(
E
[
u(j + 1, ·)1−θ]) 1−γ

γ

· E
[
u(j + 1, ·)−θux′(j + 1, ·)R̃′

]
= 0 (3.B.60a)

κ : E
[
u(j + 1, ·)−θux′(j + 1, ·)

(
r′ − rf ′

)]
= 0 (3.B.60b)

and the envelope condition reads as:

ux =
(
c

1−θ
γ + β̃

(
E
[
u(j + 1, ·)1−θ]) 1

γ

) γ−1+θ
1−θ · . . .

· β̃
(
E
[
u(j + 1, ·)1−θ]) 1−γ

γ E
[
R̃′u(j + 1, ·)−θux′(j + 1, ·)

]
=u(j, ·)

γ−1+θ
γ β̃

(
E
[
u(j + 1, ·)1−θ]) 1−γ

γ · . . .

· E
[
R̃′u(j + 1, ·)−θux′(j + 1, ·)

]
=

(
c

u(j, ·)

) 1−θ−γ
γ

, (3.B.61)

where the last line follows from equation (3.B.60a) and is exactly the result one would get
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from direct application of the Benveniste/Scheinkman theorem to recursive preferences,

namely vx = u1(c, Ev) (see Weil (1989)). Plugging this into the FOCs we get

c : c
1−θ−γ
γ − β̃

(
E
[
u(j + 1, ·)1−θ]) 1−γ

γ . . .

· E
[
u(j + 1, ·)

(1−θ)(γ−1)
γ (c′)

1−θ−γ
γ R̃′

]
= 0 (3.B.62a)

κ : E
[
u(j + 1, ·)

(1−θ)(γ−1)
γ (c′)

1−θ−γ
γ

(
r′ − rf ′

)]
= 0 (3.B.62b)

With respect to our numerical solution, we will interpolate the functions u(j, ·) and c(j, ·).
Note that we can expect u(j, ·) to be approximately linear, since in period J it is simply

given by u(J) = cJ = xJ .

Next, notice that u(j+ 1, ·) and c′ are functions of (x− c) so that c shows up on both sides

of the equation in (3.B.62a). This would require calling a non-linear solver whenever we

solve optimal consumption and portfolio shares. To alleviate this computational burden

we employ the endogenous grid method of Carroll (2006). Accordingly, instead of working

with an exogenous grid for x (and thereby an endogenous grid for savings, s = x − c) we

revert the order and work with an exogenous grid for s = x − c and an endogenous grid

for x.

So, roughly speaking, for each age j and each grid point in the savings grid Gs, our

procedure is the following:

1. Solve equation (3.B.62b) for κ using a univariate equation solver (Brent’s method).

2. Given the solution to (3.B.62b) invert (3.B.62a) to compute

c =
(
β̃
(
E
[
u(j + 1, ·)1−θ]) 1−γ

γ E
[
v(j + 1, ·)−θR̃′

]) γ
1−θ−γ

. (3.B.63)

3. Update u, ux and v.

More precisely, our procedure is as follows:

1. Loop on the grids of the aggregate states, Gz, Gk, Gµ.

2. For each (z, k, µ) use (3.B.55) to compute the associated k′, µ′.

3. Initialize the loop on age for j = J by setting cJ = xJ and compute u(xJ) = cJ ,

ux(xJ) = 1 and v(xJ) = u(xJ) = cJ .
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4. Loop backwards in age from j = J − 1, . . . , 0 as follows:

(a) As k′ /∈ Gk, µ′ /∈ Gµ, interpolate on the aggregate states and store the in-

terpolated objects u(k′, µ′, x′, z′, j + 1), v(k′, µ′, x′, z′, j + 1) as a projection on

Gx. Do so for each z′ ∈ Gz. Denote the interpolated objects as ū(x′, z′, j + 1),

v̄(x′, z′, j + 1).

(b) For each s in Gs first solve (3.B.62b) for κ. To so, we have to loop on z′ ∈ Gz (as

well as the idiosyncratic shock) to evaluate the expectation taking into account

the Markov transition matrix π(z′|z). In this step, we also use the law of motion

of the idiosyncratic state x:

x′ = sR̃′ + y′ (3.B.64)

As, generally, x′ /∈ Gx we have to interpolate on ū(x′, z′, j+1) and v̄(x′, z′, j+1)

before evaluating the expectation.

(c) Taking the optimal κ as given, next compute c from (3.B.63). Again we inter-

polate on ū(x′, z′, j + 1) and v̄(x′, z′, j + 1) before evaluating the expectation.

Calibration of Income Process

We determine η∓(z) and π̄η such that we match the unconditional variance of the STY

estimates, i.e.,

E[(ln η′)2 | z′] = σ(z′)2
ln η (3.B.65)

and the unconditional autocorrelation, i.e.,

E[ln η′ ln η]

E[(ln η′)2]
= ρ. (3.B.66)

To match the variance we specify the states of the Markov process as

η∓(z) =
2 exp(1∓ σ̃(z))

exp(1− σ̃(z)) + exp(1 + σ̃(z))

so that the unconditional mean equals one.

We pick σ̃(z) such that the unconditional variance—which of course preserves its contin-
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gency on z—satisfies (3.B.65). To achieve this, observe that

ln η∓ = ln

(
2

exp(1− σ̃(z)) + exp(1 + σ̃(z))

)
+ 1∓ σ̃(z) ≡ φ(σ̃(z))∓ σ̃(z).

Hence

E[(ln η′)2 | η = η−, z
′] = π̄η(φ(σ̃(z′))− σ̃(z′))2+

(1− π̄η)(φ(σ̃(z′)) + σ̃(z′))2

E[(ln η′)2 | η = η+, z
′] = π̄η(φ(σ̃(z′)) + σ̃(z′))2+

(1− π̄η)(φ(σ̃(z′))− σ̃(z′))2.

The unconditional mean of the above—conditional on z′—is

E[(ln η′)2 | z′] = φ(σ̃(z′))2 + σ̃(z′)2.

To determine σ̃(z), we then numerically solve the distance function

f(σ̃(z)) = φ(σ̃(z))2 + σ̃(z)2 − σ(z)2
ln η = 0

for all z. Standard procedures ignore the bias term φ(σ̃(z))2.

To determine π̄η observe that, in the stationary invariant distribution, we have

E[ln η′ ln η | η = η−] =
∑
z

Πz(z)
{
π̄η(φ(σ̃(z))− σ̃(z))2+

(1− π̄η)(φ(σ̃(z))− σ̃(z))(φ(σ̃(z)) + σ̃(z))}
E[ln η′ ln η | η = η+] =

∑
z

Πz(z)
{
π̄η(φ(σ̃(z)) + σ̃(z))2+

(1− π̄η)(φ(σ̃(z)) + σ̃(z))(φ(σ̃(z))− σ̃(z))}

and

E[ln η′ ln η] =
∑
η

Πη(η)E[ln η′ ln η | η]
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as well as

E[(ln η′)2] =
∑
z′

Πz′E[(ln η′)2 | z′].

Noticing that

E[ln η′ ln η]

E[(ln η′)2]
= ρ

we use the above relationships to determine π̄η.

3.C Appendix: Robustness

The tables shown below are all discussed in section 3.5.3 of the main text.

Robustness of the Thought Experiment

Here we report the results of the experiment τ = 0.12→ τ = 0.14 (’HL experiment’). The

value τ = 0.12 is the average contribution rate in the U.S. today. As in the main text, we

first report the NC calibration (negative correlation between TFP and returns), then the

PC calibration (positive correlation between TFP and returns).

Calibration with Negative Correlation between TFP and Returns (NC)

Parameters Moments

θ ϕ β δ̄ πδ cor(r, w) std(∆C/C)

17 1.5 0.975 0.1 0.435 -8.27 E-2 6.84 E-2

GE PE

∆Welf/Welf +0.17% +2.62%

∆K/K -2.88% -21.27%

∆E(r) +0.16% 0.00%

∆rf +0.28% 0.00%

∆w/w -3.18% 0.00%
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aggr. + wage + CCV + surv.

risk risk risk

∆Welf/Welf -0.31% +1.01% + 1.26% +2.62%

Welfare gains

aggr. + wage ∆ IAR ÎAR

risk risk

orig -0.31% +1.01% +1.32 - -

−10% -0.39% +0.90% +1.28 -0.028 -0.031

Calibration with Positive Correlation between TFP and Returns (PC)

Parameters Moments

θ ϕ β δ̄ πδ cor(r, w) std(∆C/C)

13 1.5 0.99 0.11 0.86 25.1 E-2 7.40 E-2

GE PE

∆Welf/Welf +1.94% +4.18%

∆K/K -2.21% -17.41%

∆E(r) +0.12% 0.00%

∆rf +0.26% 0.00%

∆w/w -2.98% 0.00%

aggr. + wage + CCV + surv.

risk risk risk

∆Welf/Welf +0.87% +2.65% +3.33% +4.18%

Welfare gains

aggr. + wage ∆ IAR ÎAR

risk risk

orig +0.87% +2.65% +1.78 - -

−10% +0.35% +1.98% +1.63 -0.146 -0.207
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Sensitivity to the Elasticity of Intertemporal Substitution

We now set the value of the elasticity of intertemporal substitution to ϕ = 0.5, the value

used by Krueger and Kubler (2006). Of course we have to recalibrate the model, but the

changes are restricted to a few parameters, which we document. First we report the results

for the NC calibration, then for the PC calibration.

Calibration with Negative Correlation between TFP and Returns (NC)

Parameters Moments

θ ϕ β δ̄ πδ cor(r, w) std(∆C/C)

15 0.5 0.975 0.1 0.44 -10.27 E-2 4.32 E-2

GE PE

∆Welf/Welf -3.10% –

∆K/K -5.91% –

∆E(r) +0.44% 0.00%

∆rf +0.47% 0.00%

∆w/w -4.14% 0.00%

aggr. + wage + CCV + surv.

risk risk risk

∆Welf/Welf -0.89% +0.04% – –

Welfare gains

aggr. + wage ∆ IAR ÎAR

risk risk

orig -0.89% +0.04% +0.92 - -

+10% -0.80% +0.15% +0.96 +0.032 +0.034

Calibration with Positive Correlation between TFP and Returns (PC)

Parameters Moments

θ ϕ β δ̄ πδ cor(r, w) std(∆C/C)

10 0.5 0.98 0.11 0.86 19.1 E-2 4.85 E-2
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GE PE

∆Welf/Welf -2.51% +1.74%

∆K/K -5.87% -20.55%

∆E(r) +0.47% 0.00%

∆rf +0.48% 0.00%

∆w/w -4.14% 0.00%

aggr. + wage + CCV + surv.

risk risk risk

∆Welf/Welf -0.41% +0.60% + 1.07% +1.74%

Welfare gains

aggr. + wage ∆ IAR ÎAR

risk risk

orig -0.41% +0.60% +1.01 - -

−10% -0.35% +1.98% +0.94 -0.075 -0.142

Nonlinear Trend Calibration

Parameters Moments

θ ϕ β δ̄ πδ cor(r, w) std(∆C/C)

14 1.5 0.98 0.1 0.7 6.45 E-2 6.53 E-2

GE PE

∆Welf/Welf +0.8% +3.0%

∆K/K -2.7% -22.1%

∆E(r) +0.2% 0.0%

∆rf +0.3% 0.0%

∆w/w -3.2% 0.0%

aggr. + wage + CCV + surv.

risk risk risk

∆Welf/Welf -0.2% +1.4% + 1.7% +3.0%
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Welfare gains

aggr. + wage ∆ IAR ÎAR

risk risk

orig -0.21% +1.35% +1.56 - -

−10% -0.33% +1.18% +1.51 -0.054 -0.045



Chapter 4

Saving Policies When Consumers

Can Default on Unsecured Loans

4.1 Introduction

The rise in debt and default over the last two decades and the peak in the recent crisis have

sparked a renewed research activity in various economic areas. One important distinction in

the different strands of literature is the kind of debt and the default rules that are analyzed.

The present paper focuses on unsecured consumer loans that will be fully discharged when

the agent decides to default. Thus, the bankruptcy option is close in spirit to Chapter 7

of the US bankruptcy code.

The present paper follows the recent work in the dynamic macroeconomics literature on

unsecured consumer bankruptcy, which features equilibrium default. In that literature,

neither the applied nor the theoretical work makes use of the agent’s first-order condi-

tions to solve the model or derive results. This is of course due to the obvious diffi-

culties: the first-order conditions might not exist because the discrete choice introduces

non-differentiabilities, or, when they exist, they might not be sufficient or even necessary

due to the non-convexity of the choice set and the non-concavity of the objective function.

However, as I will show, the specific form of the repayment scheme under a Chapter 7-style

bankruptcy does impose enough structure so that we can make use of first-order conditions.

For this, we need to split up the agent’s problem into differentiable parts. What we get in

return is a precise characterization of the agent’s default and savings policies, which might

123
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be of interest for both theoretical and quantitative work.

Specifically, I look at a simple 3-period case with a quadratic utility function (although

all result obtain for log-utility with β = 1 and CARA), where the agent can default

only in the second period. As in most of the mentioned quantitative literature, filing for

bankruptcy entails a discharge of all debt, but also exclusion from asset markets in the

current period. This is usually not an overly strong assumption because consumers are not

allowed to accumulate assets while declaring bankruptcy, and they typically also find it

harder to take up more loans in the following periods. In the present three-period context

this punishment might seem strict because it implies that the agent lives in autarky for the

rest of his life. I show that there is a policy that we can find using the first-order conditions

with an additional condition. Furthermore, this policy typically has a unique discontinuity

despite the fact that both the asset choice and the income shock are continuous. This jump

does not occur at the point where for the first time the probability of default is greater

zero; instead it occurs at a point where the agent cannot be ’too poor to default’ anymore

- something that will become clear in the respective section.

In order to introduce the main ideas and to show how the shape of the policy depends

on the punishment regime, I start with a two-period model where default only entails a

pecuniary cost instead of exclusion. This might be more similar to a Chapter 13 filing,

where some of the agent’s income can be garnished, or to the situation in Germany prior

to 1999, where the consumer remained liable for the rest of his life. By comparing the two

regimes it will become clear why and when the discontinuity will occur.

Most of the directly related literature is quantitative in nature and tries to assess the

welfare effects of the option to default in different economic environments, like the recent

change in the US law (Bankruptcy Abuse Prevention and Consumer Protection Act of

2005), which is discussed for example in Chatterjee, Corbae, Nakajima, and Ŕıos-Rull

(2007), Athreya (2002), or Li and Sarte (2006). Athreya (2008) and Sánchez (2007) analyze

the consequences of different information structures, while Livshits, MacGee, and Tertilt

(2007) show that it matters how persistent we model the income process. Much less has

been done on the theory side due to the fact that the non-convexity introduced by a discrete

choice creates various difficulties. In the theoretical part of the paper, Chatterjee, Corbae,

Nakajima, and Ŕıos-Rull (2007) prove existence of the household solution and existence of

a steady state, whereas Chatterjee, Corbae, and Ŕıos-Rull (2008) is a purely theoretical
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analysis of signaling and endogenous punishment in a three-period economy.

This differs from the default option typically found in general equilibrium settings with

incomplete markets, as e. g. in Zame (1993) or Dubey, Geanakoplos, and Shubik (2005),

where default can be in any percentage of the promise of delivery. In the models by Zhang

(1997), Alvarez and Jermann (2000), or Ábrahám and Cárceles-Poveda (2010), among

others, agents face a participation constraint so that, in contrast to the present paper,

there will be no default in equilibrium.

The next section describes the asset markets and the financial intermediaries. Section three

presents the model and the subsections discuss the results for the different punishment

regimes. In section four I conclude.

4.2 Credit Markets

There is a single, risk-free asset in the economy. Agents can borrow and save by selling or

buying one-period discount bonds in this asset. Denote by at+1 ∈ A ⊂ R the amount the

agent wants to borrow (at+1 < 0) or save (at+1 ≥ 0). In contrast to most of the quantitative

macro literature, we assume that A is compact and convex. There is no obvious reason

why one should limit the set of loans to be discrete, as for example Chatterjee, Corbae,

Nakajima, and Rı́os-Rull (2007).1 If at+1 < 0, then the agent can decide in the following

period to default on his debt, i.e. to not pay back the principal.

There are many risk-neutral financial intermediaries (banks) each offering all possible at+1,

and entry and exit into this sector are completely free. As a consequence, banks charge a

price q(at+1) which takes into account the probability default P (d|at+1) in such a way that

in expectation, they make zero profits on each loan. They can refinance at the exogenous

interest rate 1 + r, so that the price scheme has to satisfy

q(at+1) =


1

1+r
if at+1 ≥ ãt+1

1−P (d|at+1)
1+r

else
(4.2.1)

where ãt ≤ 0 denotes the lowest asset position at which the agent will never default.

1There could be the issue that otherwise the market for a specific loan would become thin, since there
are infinitely many loan markets in the continuous case. In that case, one cannot invoke a law of large
numbers to ensure zero profits. However, it should be sufficient to have zero expected profits.
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In principle, banks could condition on more than just the loan size. However, the current

asset position at does not provide any additional information on the probability of default-

ing tomorrow, because we are looking at one-period bonds. If, say, q(at+1)at+1 < at < 0,

then the agent is effectively rolling over his debt and increasing his consumption only by

at − q(at+1)at+1. Another source of information on future default would be the current

income state, in particular because the stochastic income realization in t + 1 is the driver

for the default decision in t + 1. In the simple model described next, income is constant

in all periods but one, so that no information can be retrieved. For more general setups,

having an i.i.d. income process would again yield the same situation that conditioning

on current income doesn’t yield anything. But one could easily allow for a Markovian

income process, and let banks condition on it, without qualitatively changing any of the

results below. However, it is crucial that banks cannot write contracts contingent on the

realization of tomorrow’s income state, because then there would not be any default in

equilibrium. Thus I assume that insurance markets for idiosyncratic risk are closed, so

markets are incomplete.

4.3 A Model with Analytic Solutions

In this section, we will analyze a model that is simple enough to allow for analytic solutions,

and that nonetheless displays all the characteristics that are at the center of this paper. I

will first describe the details of the model without specifying the punishment for default.

In the two subsections that follow, we will look at two different, admittedly very special

forms of punishment, and see how they influence the shape of the savings policy.

The strongest assumption that we make is that utility is of a very simple quadratic form:

u(c) = −(c− γ)2 , 0 < c < γ. (4.3.2)

The reason for choosing a quadratic utility is just that no other common functional form

yields an analytic solution in the present setup. One disadvantage is that we need to

heed the additional restrictions guaranteeing that consumption will be positive and in the

increasing part of the function.

The agent is born into the economy at t = 1 with assets (a bequest) a1 ∈ A1 ⊂ R, which
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can be positive or negative. He then decides how much to borrow or save a2 ∈ A2 ⊂ R

and how much to consume. Both A1 and A2 are assumed to be convex and compact. As

mentioned in the last section, most of the literature (e.g. Chatterjee, Corbae, Nakajima,

and Rı́os-Rull (2007)) limits the choice set to be discrete. At the start of t = 2, he

receives a stochastic income y2, which, for the present section, we assume to be distributed

uniformly with U(y
2
, ȳ2) and y

2
> 0. A continuous income distribution is important to

introduce smoothness into value and policy functions, and it also avoids the multiplicity

of equilibria that can arise with discrete income shocks. Given this realization and the

assets he brought forward from the first period, the agent decides whether he wants to

repay his debt or default. In the case of default, the agent’s debt is discharged (similar to

Chapter 7 of the US bankruptcy code), but he faces a punishment. Denote by V nd(a2, y2)

the continuation value of not defaulting and by V d(y2) the continuation value of default.

The latter is independent of a2 because debt is discharged. Then we can write the agent’s

maximization problem as

max
a2
−(a1 − a2q(a2)− γ)2 + βE

[
max

{
V nd(a2, y2), V d(y2)

}]
, (4.3.3)

where the expectation is taken over the income shock y2. In the following two subsections,

we will look at different punishment rules, which of course entail different V nd(a2, y2) and

V d(y2). Of particular interest will be the cut-off income levels ỹ2 for which the agent is

indifferent between defaulting and not defaulting:

V nd(a2, ỹ2) = V d(ỹ2). (4.3.4)

4.3.1 Linear Monetary Punishment

We start with a simple punishment rule, because it allows to derive analytic results that

transfer to the more complicated cases. If the agent defaults, he has to pay a constant

fraction τ ∈ (0, 1) of his income, plus a fixed cost κ ∈ [0, ȳ2). After his default decision, he

consumes all he has and dies. Thus we have

V nd(a2, y2) = −(a2 + y2 − γ)2 (4.3.5)

V d(y2) = −((1− τ)y2 − κ− γ)2 (4.3.6)
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Economically, one could see this as an approximation to a bankruptcy filing under Chapter

13, where some of the income will be garnished to repay the loans. Even more closely, the

situation in Germany before 1999 was such that the agent had to repay the debt for the

rest of his life. Alternatively, one could argue that it is a simple way of subsuming the

utility cost of stigma, or worsened credit conditions in the future, and the pecuniary costs

of filing for bankruptcy. The advantages of this punishment are of technical nature, and

consist of the combination of three aspects: first, it makes the default choice contingent

on the income realization, which is non-contractable due to the assumption of incomplete

markets. If, for example, we had only a fixed pecuniary cost of default (shoeleather cost),

i.e. τ = 0 and κ > 0, then the agent would default for any a2 < κ, independent of y2.

This would result in an equilibrium without default, as banks would charge a price of

q(a2) = 0 for such loans. Second, it affects directly the budget constraint, which is what

a bankruptcy filing under Chapter 7 does, and in this regard is similar to exclusion from

asset (or credit) markets. This is an important element which is not present if one models

only a utility shock. And third, it allows us to limit the lifetime of the agent to T = 2,

which is not the case for many other punishments (like credit market exclusion, discussed

in the next subsection). This doesn’t seem so important at first glance, but it turns out

that for longer time-horizons, the model in its present form doesn’t have a closed-form

solution anymore, as discussed in section 4.3.3.2

Now that we have completed the description of the agent’s problem, we can solve back-

wards. First, let me mention that the requirement 0 < c < γ now translates into

κ

1− τ < y
2
< ȳ2 < γ (4.3.7)

− y
2
< a2 < γ − ȳ2. (4.3.8)

They ensure that consumption remains positive and in the increasing part of utility in

the default and the no-default case. The upper is a requirement on the primitives of the

economy, and is not very strict. Indeed, setting κ = 0 doesn’t change any of the results

qualitatively. The lower defines the bounds on the maximization problem, as we will see

below. Its left-hand part −y
2
< a2 is just the natural debt limit.

2If one gives up the additivity of assets and stochastic income in the bugdet constraint or works with
stigma as a penalty, the model might have closed-form solutions.
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In t = 2, the agent has to decide whether to default or not. Given his income realization

y2 and a2 < ã2, he will default iff

V d(y2) < V nd(a2, y2) ⇔ −((1− τ)y2 − κ− γ)2 < −(a2 + y2 − γ)2 (4.3.9)

⇔ y2 <
−a2

τ
− κ

τ
≡ ỹ2(a2) (4.3.10)

The cut-off income level ỹ2(a2) will play a crucial role in this and the following section. It

directly gives us the probability of default,

P (d|a2) = F (ỹ2(a2)) (4.3.11)

where F (·) denotes the cdf of y2. Also, the agent will never default on a2 iff

a2 ≥ −τy2
− κ ≡ ã2 (4.3.12)

That means that there are debt levels a2 < 0 for which the agent will always prefer to pay

back, even if κ = 0, because y
2
> 0 is implied by condition (4.3.7). Similarly, the agent

will always default on a2 iff

a2 ≤ −τy2 − κ. (4.3.13)

Putting this together, it is instructive to plot ỹ2(a2) as shown in figure 4.1. Note that it

is linear, strictly bounded away from the origin, and defined on an open interval. Also, we

can rewrite the pricing function (4.2.1) as

q(a2) =


1

1+r
if a2 ≥ −τy2

− κ
1−F (ỹ2(a2))

1+r
if − τy2 − κ < a2 < −τy2

− κ
0 if a2 ≤ −τy2 − κ

(4.3.14)

Obviously, the agent would never choose a2 ≤ −τy2−κ, because he gets effectively nothing

and has to repay something. In order to find the optimal a2, we will distinguish the two

cases ’no default’ (a2 ≥ −τy2
− κ) and ’some default’ (−τy2 − κ < a2 < −τy2

− κ) and

look at the maximization problems separately.
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a2−τy2 − κ−τy2 − κ

ȳ2

y2

0

ỹ2(a2)

Figure 4.1: The cut-off income level ỹ2(a2)

When the agent will never default, the problem is standard.

max
γ−ȳ2≥a2≥−τy2−κ

−
(
a1 −

1

1 + r
a2 − γ

)2

+ βE
[
−(a2 + y2 − γ)2

]
(4.3.15)

The lower bound we have just discussed (see eq. 4.3.12), the upper bound arises from the

quadratic utility, see eq. 4.3.8. An interior solution has to satisfy the following FOC, which

we write down because we will need it later:(
a1 −

1

1 + r
a2 − γ

)
1

1 + r
= β(a2 − γ) + β

ȳ2 + y
2

2
(4.3.16)

Since everything is concave, the FOC is also sufficient for an interior solution, which is

then linear and given by:

aND2 (a1) =
a1

1
1+r

+ (1 + r)β
+

((1 + r)β − 1)γ − (1 + r)βEy2

1
1+r

+ (1 + r)β
(4.3.17)
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and the full policy is

a∗,ND1 (a1) =


−τy

2
− κ for aND2 (a1) < −τy

2
− κ

aND2 (a1) for γ − ȳ2 ≥ aND2 (a1) ≥ −τy
2
− κ

γ − ȳ2 for aND2 (a1) > γ − ȳ2

(4.3.18)

Now let’s turn to the case with some default, that is, now the agent chooses asset levels

on which he will default in some states tomorrow. As discussed, the price q(a2) is now

adjusted by the default premium, and we will always have ỹ2(a2) ∈ (y
2
, ȳ2) due to the

bounds of the problem. The maximization problem can thus be written as

max− (a1 − q(a2)a2 − γ)2 + βE [max [u(a2 + y2), u((1− τ)y2 − κ)]] (4.3.19)

s. t.− τy2 − κ < a2 < −τy2
− κ

⇔
max− (a1 − q(a2)a2 − γ)2 +

β

∫ y2

ỹ2(a2)

−(a2 + y2 − γ)2f(y2)dy2 + β

∫ ỹ2(a2)

y
2

−((1− τ)y2 − γ)2f(y2)dy2 (4.3.20)

s. t.− τy2 − κ < a2 < −τy2
− κ

Transforming a problem with two maximizations into one with a cut-off rule is not new,

but it is still worth remembering that the original maximization involves a discrete choice,

which doesn’t directly appear in eq. (4.3.20). On the flipside, problem (4.3.20) is difficult

because the choice a2 enters both the bounds of the integral and the pricing function q(a2).

As a consequence, it is not clear that the objective function is concave in the choice. Indeed,

at least the expectations part is not, it is convex.

Let’s define effective debt as g(a2) = a2q(a2). This object will play a central role in many
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of the findings below. Marginal effective debt, which will enter the foc, is given by

∂g(a2)

∂a2

= q(a2) +
∂q(a2)

∂a2

a2

=

(
1

1 + r

(
1−
−a2

τ
− κ

τ
− y

2

ȳ2 − y2

))
+

a2

(ȳ2 − y2
)(1 + r)τ

(4.3.21)

=
τ ȳ2 + 2a2 + κ

τ(ȳ2 − y2
)(1 + r)

It is easily shown that g(a2) is strictly concave on the interval defined by the bounds of

the current maximization problem, and that it has a unique minimum at

a∗min2 = −1

2
κ− τ

2
y2 . (4.3.22)

This endogenous value is greater than the lower bound of the maximization problem −τy2−
κ. Nobody will want to borrow below a∗min2 because it becomes prohibitively expensive in

the sense that there is another debt level which dominates it, i. e. another a2 for which the

agent gets same effective debt, but pays back less. Thus only debt levels a2 > a∗min2 can

be a solution, we will call this the non-dominated region. In that region, g(a) is strictly

increasing, i.e. ∂g(a2)
∂a2

> 0.

Equipped with this, we can now turn to the FOC, which is given by

(a1 − q(a2)a2 − γ)

[
q(a2) + a2

∂q(a2)

∂a2

]
= (4.3.23)

β(a2 − γ)(1− F (ỹ2(a2))) + β
ȳ2

2 − ỹ2
2

2(ȳ2 − y2
)

On the one hand, this is simpler than one might have expected from inspection of the

maximization problem (4.3.20). The reasons are that the value of defaulting is independent

of a2, which is why the second integral drops out, and that the changes in the integral

bounds exactly offset each other. The detailed derivation can be found in appendix 4.A.

On the other hand, this FOC is still significantly more complicated than in the standard

quadratic utility case. In fact, it is a cubic function instead of a linear one as is typical for

quadratic utility. This happens because here, effective debt is a quadratic and is multiplied

with its own derivative. Nonetheless, we get the following result.
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Proposition 4.1. Assume that τ > κ−1
2

. Then, in the non-dominated region (a2 > a∗min2 ),

there is a unique solution to the FOC given in eq. (4.3.23).

Proof. See appendix 4.A.

This result means the FOC exists and together with the requirement a2 > a∗min2 is neces-

sary, which is not immediate since we have a discrete choice in the original model. The

condition τ > κ−1
2

doesn’t seem very strict, as it is always fulfilled for κ < 1. To show that

this solution is the unique policy function that solves the maximization problem (4.3.19),

we would need to prove sufficiency, so as to rule out minima. Appendix 4.A discusses the

difficulties of proving this.

Denote the solution to problem (4.3.19) by aD1 (a1). It is possible to calculate a closed-

form solution, but it is surprisingly convoluted - written down it down takes more than

four pages of space. I find that worth mentioning because it indicates how quickly the

complexity of an analytic solution in this model grows, and it helps to understand why

extensions or generalizations will usually not have a closed form solution, as discussed in

section 4.3.3. From the above proof we also get the following two corollaries.

Corollary 4.1. If aD1 (a1) exists, then it is nonlinear and monotonically increasing.

Corollary 4.2. The endogenous lower bound a∗min2 is greater than the lower bound in the

maximization problem and is never binding.

Now that we have found and characterized the solutions to the two separate maximization

problems, we want to combine them to get the policy for the original, unconstrained

maximization problem (4.3.3), which we denote a∗2(a1). For this, we need to know what

happens as we approach the common bound ã2 = −τy
2
− κ from the right and from the

left.

Lemma 4.1. There exists a nonempty interval [ã1
1 , ã

2
1], where neither of the two FOCs has

a solution. In that reqion the lower bound of the no-default maximization problem (4.3.15)

is binding.

Proof. Recall that the common bound of the two problems is given by ã2 = −τy
2
− κ.

Let ã2
1 be defined as the a1 that solves the no-default foc (4.3.16), given that the optimal
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choice is ã2: (
ã2

1 −
1

1 + r
ã2 − γ

)
1

1 + r
= β(ã2 − γ) + β

ȳ2 + y
2

2

Similarly, ã1
1 is defined as the a1 that solves the default foc (4.3.23), given that the optimal

choice is ã2. However, since the interval for which (4.3.23) is valid does not include its

bounds, we need to take the limit from the left first:

lim
a−2 →ã2

(
(a1 − q(a2)a2 − γ)

[
q(a2) + a2

∂q(a2)

∂a2

]
−β(a2 − γ)(1− F (ỹ2(a2)))− β ȳ2

2 − ỹ2
2

2(ȳ2 − y2
)

)

=

(
ã1

1 −
1

1 + r
ã2 − γ

)[
1

1 + r
+ ã2

∂q(a2)

∂a2

|ã2
]
− β(ã2 − γ)− β

ȳ2 − y2

2

This is so because lima−2 →ã2
ỹ2(a2) = y

2
, and lima−2 →ã2

q(a2) = 1
1+r

. Thus we see that the

two focs differ only by the term ã2
∂q(a2)
∂a2
|ã2 = ã2

(ȳ2−y2)(1+r)τ
< 0. Given that everything else

is equal, it must be that ã1
1 < ã2

1 (recall that (a1 − q(a2)a2 − γ) < 0 because of quadratic

utility, see condition (4.3.8)). By construction, no a1 ∈ [ã1
1 , ã

2
1] can satisfy either foc. The

lower bound to the no-default problem must bind.

I have not relegated this proof to the appendix, because we will use a very similar logic for

a crucial result in the next section. The following proposition basically just sums up our

findings so far.

Proposition 4.2. Consider the original maximization problem given by (4.3.3) and (4.3.5-

4.3.6). The savings policy a∗2(a1) that solves this problem is continuous and consists of three

parts: a nonlinearly increasing section, a flat section, and a linearly increasing section.

Proof. Follows from corollaries 4.1 and 4.2 and lemma 4.1.

Figure 4.2 graphically reproduces the statements in proposition 4.2, and as such is at the

core of the present section. It shows the policy a∗1(a1), which is the object we have been

looking for. Let me restate the interesting points. Although we have a discrete choice

in the model, the savings policy does not have one or more discontinuities. However, it

has a flat section, which hovers at the highest debt level the agent can take up without
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a1

a2

a∗2(a1)

ã2 = −τy2 − κ

a∗,min2

ã2
1ã1

1

Figure 4.2: Full savings policy a∗1(a1)

paying a default-premium. If the agent is born with a1 ∈ (ã1
1 , ã

2
1), he would like to take

up more debt at the risk-free rate, but given that he can only get it at a higher price,

he prefers to stay at ã2. It is kind of a ’borrowing constraint in the middle’, given that

there is a second, lower borrowing constraint that is never binding. Once the agent is

’poor enough’ (a1 < ã1
1), he will be willing to pay the default premium. In this part, the

policy is convex, because taking up more and more debt becomes more and more expensive

and thus unattractive. This property is better understood if we remember that we have

quadratic utility which usually leads to a linear policy, as in the part a1 > ã2
1, and that in

more standard models, we usually observe a weakly concave savings policy, independent

of the utility specification. Finally, the policy asymptotically approaches a∗,min2 , which

is not the level of debt at which the agent will always default and at which q(a2) = 0.

Instead, q(a∗,min2 ) > 0 and P (d|a∗,min2 ) < 1. To my knowledge, there is no discussion of

such features in the related literature. Taking a more applied perspective, it is clear that

simply interpolating this policy without further thought can easily lead to very misleading

results, whereas it becomes simple and accurate when one takes into account the results

presented here.
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4.3.2 Exclusion from Asset Markets

As argued above, the previous case was primarily meant to introduce the main ideas and to

have a simple benchmark. As we will see, much of the logic carries over to this section, and

the benchmark will help us to understand why some important differences arise. While the

pecuniary punishment rather resembled bankruptcy under Chapter 13, the present section

is meant to capture bankruptcy under Chapter 7, where pecuniary costs are negligible

and income cannot be garnished (see White (1998) for a concise description). While not

mentioned in the law, the literature often models the punishment as an exclusion from

asset markets, because the agent is not allowed to accumulate assets or incur more debt

during the filing period. In the present paper it means that if the agent defaults, all his

debt will again be discharged, but he will not be able to borrow or save in the current

period. For this punishment to have any bite, we need a third period, because otherwise,

the agent would not care and always default. With T = 3, default in t = 2 implies that the

agent has to live in autarky for the rest of his life, since it consists of only one more period.

To keep the model as simple as possible and comparable to the last one, we assume that

the agent receives a fixed income y3 > 0 in the third period, and can default only in the

second. Thus we have

V nd(a2, y2) = −(a2 + y2 −
1

1 + r
a∗3 − γ)2 + β

[
−(a∗3 + y3 − γ)2

]
(4.3.24)

V d(y2) = −(y2 − γ)2 + β
[
−(y3 − γ)2

]
(4.3.25)

where a∗3 is the solution to

max
a3>−ȳ3

−
(
a2 + y2 − a3

1

1 + r
− γ
)2

− β(a3 + ȳ3 − γ)2.

The maximization problem is as simple as it gets, and so is the policy a∗3. Note that in

equilibrium the agent will never hit the lower bound: he would rather default than choose

a3 = −ȳ3, so we will ignore this situation. Turning to the default decision, the agent will

again default on a2 < ã2 iff

V d(y2) > V nd(a2, y2) (4.3.26)
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In contrast to before, we now get two cut-off levels for income instead of one. This happens

because now, some agents prefer to keep their access to the credit market when they

get a bad income realization. This way, they can take up more debt and thereby shift

consumption from the future to the present, whereas if they defaulted, they could consume

only their small income. While this result has already been mentioned in Chatterjee,

Corbae, Nakajima, and Rı́os-Rull (2007), they do not discuss it in much detail. Denote

the two cut-off levels by ỹl(a2) and ỹu(a2) (for lower and upper, respectively). They are

plotted in figure 4.3, and their closed form solution is

ỹu(a2) = (a2(1 + r) + ȳ3 − γ) (1 + r)β +B + γ

ỹl(a2) = (a2(1 + r) + ȳ3 − γ) (1 + r)β −B + γ

where B =
√
a2(1 + r)β ((1 + r)2β + 1) (a2(1 + r) + 2ȳ3 − 2γ)

The range of income realizations for which the agent will choose to default on a given a2

a2
ãb2

ãc2

ȳ2

y2

0

ỹu2 (a2)

ỹl2(a2)

Figure 4.3: The two cut-off levels of income ỹl(a2) (blue) and ỹu(a2) (red)

is the line between the two curves, or ỹu(a2)− ỹl(a2). There are several interesting features

to note. First of all, ã = 0 whereas it was strictly smaller than zero before. That is, for

any level of debt, there is some probability of default. The next thing that catches the

eye is that, in contrast to before, the cut-off levels are nonlinear in a2: as the debt level
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falls, both the range of incomes which are so high that the agent doesn’t want to default as

well as those that are too small to default increase at an increasing rate. That is eqivalent

to saying that ỹu(a2) is falling and concave in a2 and ỹl(a2) is increasing and convex in

a2. Another striking feature is that lima2→0 ỹ
u(a2) = lima2→0 ỹ

l(a2), and that they both

have an infinite slope at this limit. This is why they look like a parabola turned by 90

degrees. The symmetry of the two functions, though not exact, will simplify most of the

expressions below. A more subtle point that will turn out to have significant impact is the

following. Analogously to the previous section, ỹl2(a2) is only defined for ỹl2(a2) > y
2

and

ỹu2 (a2) is only defined for ỹu2 (a2) < ȳ2. But typically, ỹl2(a2) will hit its bound first, so that

for some a2 < ãb2 there exists only ỹu2 (a2). While it could be the other way around, we will

concentrate on this case for the sake of exposition.3 Thus, for the pricing, we now need to

distinguish four cases:

q(a2) =



1
1+r

if a2 ≥ 0

1−(F(ỹu2 (a2))−F(ỹl2(a2)))

1+r
if ãb2 < a2 < 0

1−F(ỹu2 (a2))
1+r

if ãc2 < a2 ≤ ãb2

0 if a2 ≤ ãc2

(4.3.27)

That is, ỹl2(ãb2) = y
2

and ỹu2 (ãc2) = ȳ2, as shown in the figure. Note that q(a2) is continuous

on the whole domain, strictly increasing on ãc2 < a2 < 0, and convex on the two intervals

ãc2 < a2 ≤ ãb2 and ãb2 < a2 < 0. So now we have to distinguish one maximization problem

more than before. We can again drop the last case, because nobody would buy a one-period

bond at price zero. We will now look at the three problems in turn. The first is the one

with no default:

max
γ−y3>a2≥0

−(a1 −
1

1 + r
a2 − γ)2 + βEV nd

2 (a2, y2) (4.3.28)

where the expectations is taken over y2 and V nd
2 (a2, y2) is given in eq. (4.3.24). Since there

is no default, we are in the standard quadratic case and there is a unique, linear solution

3The reason why usually ỹl2(a2) will hit its bound first is twofold: for one, y
2
> 0 so that we cannot

decrease the lower bound arbitrarily, whereas we could increase ȳ2 as much as we want. And second,
∂ỹl2(a2)
∂a2

> −∂ỹ
u
2 (a2)
∂a2

due to the small asymmetry in the two formulae. This comes from the fact that the

agents at ỹl2(a2) have a higher curvature of utility because they are consuming little in any case.
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given by and2 (a1). As before, we will need the FOC

(a1 − a2q(a2)− γ)

(
q(a2) + a2

∂q(a2)

∂a2

)
(4.3.29)

= β

∫ ȳl

y
2

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

Now we turn to the problem where both ỹl(a2) and ỹl(a2) exist:

max
ãb2<a2<0

− (a1 − a2q(a2)− γ)2 + βE
[
max

{
V nd(a2, y2) , V d(y2)

}]
(4.3.30)

which can be rewritten as

max
ãb2<a2<0

−(a1 − a2q(a2)− γ)2

+ β

∫ ỹl(a2)

y
2

−
(
a2 + y2 −

a∗3(a2, y2)

1 + r
− γ
)2

− β(a∗3(a2, y2) + ȳ3 − γ)2f(y2)dy2

+ β

∫ ỹu(a2)

ỹl(a2)

−
(
y2 − γ)2 − β(ȳ3 − γ

)2
f(y2)dy2

+ β

∫ ȳ2

ỹu(a2)

−
(
a2 + y2 −

a∗3(a2, y2)

1 + r
− γ
)2

− β(a∗3(a2, y2) + ȳ3 − γ)2f(y2)dy2

Using the same tricks as in the previous section, plus the envelope theorem, we again get

a FOC that looks simple:

(a1 − a2q(a2)− γ)

(
q(a2) + a2

∂q(a2)

∂a2

)
(4.3.31)

= β

∫ ȳ2

y
2

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

− β
∫ ỹu2 (a2)

ỹl2(a2)

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

Let’s first highlight the differences, or rather the similarity, to the no-default FOC given

in eq. (4.3.29). The left-hand side only differs by marginal effective debt, something we

already observed in the last section. On the right-hand side, the first term is actually

identical, and the second term only does not appear in (4.3.29). Basically, the marginal
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expected value of the no-default situation is adjusted by subtracting the value of not

defaulting in the range where the agent does default. Even after integrating and plugging

in the formulae for a∗3(a2, y2), ỹu2 (a2), and ỹl2(a2), the FOC doesn’t look too bad, because a

lot cancels out due to the linearity of a∗3(a2, y2) and the symmetry of the two cut-off rules.

Yet, it turns out that the closed form is a polynomial of seventh degree, so that no general

analytic solution exists. For the second time, we see how quickly the complexity of this

model grows. Nevertheless, we can still analyze the critical points of the policy in the same

fashion as before. We start with the following proposition:

Proposition 4.3. In the non-dominated region (a2 > a∗min2 ), there is a unique solution to

the FOC given in eq. (4.3.31).

Proof. The proof goes along the lines of the proof to proposition 4.1. We again show

that the left-hand-side of the FOC is strictly decreasing and the right-hand-side is strictly

increasing. The details are in appendix 4.A.

Corollary 4.3. If there exists a policy function that solves the maximization problem in

eq. (4.3.30), then it is nonlinear and monotonically increasing.

In the remainder, I assume that such a policy, ad1
2 (a1), exists. We now look at its behavior

at the upper bound ã2 = 0.

Lemma 4.2. There exists ã1
1 where the two policy functions and2 (a1) and ad1

2 (a1) join, i.e.

and2 (ã1
1) = lima−1 →ã11

ad1
2 (a1) = 0. The joint function has a kink at this point.

Proof. The proof is very similar to the proof of lemma 4.1, which I discussed in detail for

that reason. The difference is that we now have lima2→0 a2
∂q(a2)
∂a2

= 0, which means that the

two first-order-conditions corresponding to problems 4.3.28 and 4.3.30 are identical at ã1
1.

This difference arises because ã2 = 0, whereas before ã2 < 0, and ∂q(a2)
∂a2

approaches infinity

at a less than linear rate. The proof requires multiple application of L’Hopital’s rule.

In stark contrast to the previous punishment, the policy does not display a flat section once

a default-premium is charged. Instead, it remains strictly increasing. Before looking at the

lower bound, we need to solve the third maximization problem, which is very similar to

the last, just that the bounds change. Since in this region ỹl(a2) doesn’t exist, the pricing
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is different, as shown in eq. (4.3.27).

max
ãc2<a2≤ãb2

− (a1 − a2q(a2)− γ)2 + βE
[
max

{
V nd(a2, y2) , V d(y2)

}]
(4.3.32)

max
ãc2<a2≤ãb2

−(a1 − a2q(a2)− γ)2

+ β

∫ ȳ2

ỹu(a2)

−
(
a2 + y2 −

a∗3(a2, y2)

1 + r
− γ
)2

− β(a∗3(a2, y2) + ȳ3 − γ)2f(y2)dy2

+ β

∫ ỹu(a2)

y
2

−
(
y2 − γ)2 − β(ȳ3 − γ

)2
f(y2)dy2

Note in particular how there are only two integral signs left as opposed to eq. (4.3.30).

Also, we limit attention to a2 > ãc2 because at debt levels below that, the agent will always

default. The debt that is dominated is given again by a2 < a∗min2 with

a∗min2 = −4τ

9
(ȳ2 − κ)2. (4.3.33)

We have that a∗min2 > ãc2, and from the following FOC we can show that again a∗min2 will

never bind. The FOC is

(a1 − a2q(a2)− γ)

(
q(a2) + a2

∂q(a2)

∂a2

)
(4.3.34)

= β

∫ ȳ2

ỹu2 (a2)

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

Conjecture 4.1. In the non-dominated region (a2 > a∗min2 ), there is a unique solution to

the FOC given in eq. (4.3.34). This solution is the unique policy function that solves the

maximization problem (4.3.32).

Surprisingly, this is more difficult to show than for the previous maximization problem

where we had two cut-off income levels. I did manage to prove this conjecture for log-

utility with β = 1. We now turn to the common bound of the two problems with default.

The next result is probably the most important so far.

Lemma 4.3. There exists a nonempty interval [ã4
1 , ã

3
1] where the two FOCs corresponding

to problems 4.3.30 and 4.3.32 each admit a different solution.
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Proof. Proof similar to proof of lemma 4.1. See appendix 4.A.

In other words, there is a range of bequests a1 for which there are two debt levels that

satisfy one of the two FOCs each. This happens because of the new effect that appears

when agents can be ’too poor to default’, i.e. when they have an income so low that they

want to keep their access to credit markets in order to take up more debt. In that range,

both the first problem with default (4.3.30) and the second problem with default (4.3.32)

have a valid solution given by the respective policy functions ad1
2 (a1) and ad2

2 (a1). The next

proposition shows how these two policies yield the policy that solves the original problem

(4.3.3) and (4.3.24-4.3.25)).

Proposition 4.4. Consider the original problem given by (4.3.3) and (4.3.24-4.3.25), and

call the policy function that solves it a∗(a1). a∗(a1) has the following characteristics: it is

linearly increasing for a1 > ã1
1, it has a kink at ã1

1, it is nonlinearly increasing ã4
1 > a1 > ã1

1

and has a discontinuity at ãj1 ∈ (ã4
1 , ã

3
1).

Proof. The kink follows from lemma 4.2. Non-linearity and monotonicity follow from the

application of the implicit function theorem to the FOC. The discontinuity follows from

lemma 4.3, for details see appendix 4.A.

a1

a2

a∗2(a1)

ãb2

a∗,min2

0

ã3
1ã4

1 ã1
1

Figure 4.4: The full policy a∗1(a1) with exclusion
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Figure 4.4 visualizes the findings that are described in proposition 4.4. Comparing it with

figure 4.2, which displayed the same policy under the monetary punishment, there are two

striking differences: first, there is a discontinuity, and second, there is no flat section. Let’s

focus on the discontinuity. Contrary to what one might at first expect, the jump does not

occur at a1
1 where default starts and the pricing starts to include a default premium. At

that point, there is only a kink and the policy is still continuous. Instead, the discontinuity

occurs at a higher level of debt, namely close to the point where the effect of being ’too

poor to default’ disappears. If the agent chose ãb2, then he would be exactly at that point

where this additional effect vanishes; however, this can’t be a solution because if it was,

both FOCs should yield the same solution, which they don’t (see proof). So the jump is

such that ãb2 is never chosen, and it must be at a point where both FOCs obtain. This

gives us the interval [ã4
1 , ã

3
1]; at the jump itself, the agent is indifferent between two courses

of action. So the crucial feature that causes this jump is the fact that we have the two

different cut-off income levels ỹu2 and ỹl2. Indeed we can copy this situation with a monetary

punishment that is quadratic and no exclusion, whereas we do not observe this jump in

the linear monetary punishment discussed earlier.

From an applied computational perspective, it is easy to see how knowledge of the jump

can be very helpful. Even the robust discrete value function iteration could lead to large

Euler equation errors in consumption close to the discontinuity (see e. g. Judd (1992)).

Refining a grid around this point is easy and will yield better solutions. But trying to use

interpolation schemes to interpolate the policy function without respecting the jump (and

the kink) might yield misleading results. Indeed, if we follow the method of this paper of

splitting up the original problem into subproblems, we can even use the FOCs to find a

solution, which is much more efficient that using a grid search and discrete value function

iteration.

From a theoretical perspective the question arises whether the discontinuity could affect

proofs of existence in general equilibrium. Since the agent is indifferent between two courses

of action, the aggregate demand function could be discontinuous as well. In the present

model this seems unlikely, because the indifference exists only at a point, not over an

interval, so that it would wash out in the aggregate.4 However, many papers only allow

4This would of course only happen if the distribution of agents over initial assets does not have point
mass at exactly this point.
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discrete asset choices, so it could be that the agent is indifferent between two debt levels

over an interval.

4.3.3 Discussion

It would be very interesting to show the same results for more periods and more general

utility specifications. First, let me point out which results will still go through: for log-

utility with β = 1 and for CARA utility, all results go through. Both for more periods and

for more general utility, all but the uniqueness of a solution to the FOC go through, i.e.

we could have optimal policy correspondences instead of a policy function. Note that the

discontinuity still obtains in the correspondence sense: the correspondence will be upper

hemi-continuous but not convex-valued at exactly the same spot. Similarly, the kink will

show up, and the flat line from the monetary punishment regime will still be a flat line.

The big obstacle in showing that the optimal policy is single-valued is that it is not clear

whether the value function resulting from the original maximization problem (4.3.3) is still

concave. This is so because the expectations part might be nonconcave, given that the

agent might default over an interval of income. As a matter of fact, in order to apply

to a maximum theorem it would suffice if the expected value function was concave in the

non-dominated region of the maximization problem one period prior. An even weaker

sufficient statement is that the objective functions of the various subproblems is strictly

quasiconcave in the non-dominated region. If any of this obtained, all results from above

would go through for both more periods and more general utility, which would make the

results much more interesting for applied work.

As a last point, note that other punishments (like utility costs of stigma) or other income

distributions can be analyzed in the same framework. The reason is that the above proofs

only require to check whether the lower cut-off level ỹl2(a2) exists, and what happens at

lima−2 →ã2
a2

∂q(a2)
∂a2

. These two questions can be answered either analytically or numerically

and are sufficient to establish whether there will be the discontinuity and the kink that we

discussed, as well as the flat section from the first figure.
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4.4 Conclusion

This paper addresses the question whether we can put enough structure on a model with

a discrete default choice so that we can derive the properties of the policy functions ana-

lytically. The problem is that a discrete default decision will in general introduce points at

which the value function is not differentiable. To overcome this, applied work frequently

uses stochastic shocks to smooth out any kinks. However, if the shock support is bounded

then additional kinks may appear at the bounds. These kinks translate into jumps of the

policy function. While the jumps were characterized in a very simple setting, it seems hard

to generalize this to richer settings.

It was shown that the punishment rules that are assumed determine whether the savings

policy will display jumps. There might be default punishments that preserve the differen-

tiability of the value function and at the same time are a good representation of the U. S.

laws. This would be an interesting way to solve large-scale computational default models

with continuous methods.

Since the non-differentiable points of the policy function are hard to characterize, applied

work has to resort to numerical methods to try to approximate them. A promising approach

seems to be to use endogenous grid points which are set close to the jumps of the policy

function, which Fella (2011) tries. However, since it is not known where the jumps occur,

the computational steps needed to find them might take more time than standard value

function iteration.

Another avenue is to apply suitable envelope theorems - like the one recently proposed by

Clausen and Strub (2012) - to a default model. This is left for future research.
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4.A Appendix: Proofs

Derivation of the FOC with Default

Here we derive in detail the FOC with default given in eq. (4.3.23).

max− (a1 − q(a2)a2 − γ)2 + βE [max [u(a2 + y2), u((1− τ)y2 − κ)]]

s. t.− τy2 − κ < a2 < −τy2
− κ

Rewrite the expectations

β

∫ y2

ỹ2(a2)

−(a2 + y2 − γ)2f(y2)dy2 + β

∫ ỹ2(a2)

y
2

−((1− τ)y2 − γ)2f(y2)dy2 (4.A.35)

Now differentiating the last equation w.r.t a2 using Leibnitz’ rule for differentiation

β

∫ y2

ỹ2(a2)

−2(a2 + y2 − γ)f(y2)dy2 − β
(
−(a2 + ỹ2(a2)− γ)2f(ỹ2(a2))

) ∂ỹ2(a2)

∂a2

+ β

∫ ỹ2(a2)

y
2

0 · f(y2)dy2 + β
(
−((1− τ)ỹ2(a2)− γ)2f(ỹ2(a2))

) ∂ỹ2(a2)

∂a2

⇔

− 2β(a2 − γ)(1− F (ỹ2(a2)))− 2β

∫ y2

ỹ2(a2)

y2f(y2)dy2

+
(
− ((1− τ)ỹ2(a2)− γ)2 −

(
−(a2 + ỹ2(a2)− γ)2

)
βf(ỹ2(a2))

) ∂ỹ2(a2)

∂a2

The term in the brackets in the last line is equal to zero, by definition of ỹ2(a2): the agent

is indifferent between defaulting and not, the utilities are equal. Then:

− 2β(a2 − γ)(1− F (ỹ2(a2)))− 2β
ȳ2

2 − ỹ2
2

2(ȳ2 − y2
)

(4.A.36)
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Thus, the FOC is

(a1 − q(a2)a2 − γ)

[
q(a2) + a2

∂q(a2)

∂a2

]
= β(a2 − γ)(1− F (ỹ2(a2))) + β

ȳ2
2 − ỹ2

2

2(ȳ2 − y2
)

For convenience, I restate here Leibniz’ rule for differentiation under integrals, which is

used for the derivation of the foc.

d

dz

b(z)∫
a(z)

f(x, z) dx =

b(z)∫
a(z)

∂f(x, z)

∂z
dx+ f(b(z), z)

∂b(z)

∂z
− f(a(z), z)

∂a(z)

∂z

Proof of Proposition 4.1

We begin by restating the FOC given in eq. 4.3.23 in the main text and making some

transformations.

(a1 − q(a2)a2 − γ)

[
q(a2) + a2

∂q(a2)

∂a2

]
(4.A.37)

= β(a2 − γ)(1− F (ỹ2(a2))) + β
ȳ2

2 − ỹ2
2

2(ȳ2 − y2
)

which can be rewritten as

β

(
y2 − ỹ2(a2)

ȳ2 − y2

)
(a2 − γ) + β

ȳ2
2 − ỹ2

2

2(ȳ2 − y2
)

=

(
a1 −

y2 − ỹ2(a2)

(ȳ2 − y2
)(1 + r)

a2 − γ
)(

1

y2 − y2

a2

τ(1 + r)
+

y2 − ỹ2(a2)

(ȳ2 − y2
)(1 + r)

)

which in turn can be written as

β(1 + r)

(
(y2 − ỹ2(a2))(a2 − γ) +

ȳ2
2 − ỹ2

2

2

)
=

(
a1 −

y2 − ỹ2(a2)

(ȳ2 − y2
)(1 + r)

a2 − γ
)(a2

τ
+ y2 − ỹ2(a2)

)
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The final step then yields

β(1 + r)
a2
τ

+ y2 − ỹ2(a2)

(
(y2 − ỹ2(a2))(a2 − γ) +

ȳ2
2 − ỹ2

2

2

)
= a1 −

y2 − ỹ2(a2)

(ȳ2 − y2
)(1 + r)

a2 − γ (4.A.38)

The last row is eq. 4.3.23 of the main text. We will now show that the LHS is strictly

increasing and the RHS strictly decreasing, which means that they have a unique intersec-

tion. The trick is to limit attention to the relevant regions, where positive consumption

holds and where effective debt is not dominated (as explained in the last paragraph). Of

course, this intersection can only constitute part of the solution if it lies within the bounds

of the maximization problem. Differentiate the LHS of (4.A.38) with respect to a2 and

examine under which conditions it is positive:

−

(
1
τ
− ∂ỹ(a2)

∂a2

)(
(ȳ2 − ỹ2(a2))(a2 − γ) +

ȳ22−ỹ(a2)2

2

)
(
a2
τ

+ ȳ2 − ỹ2(a2)
)2

+

(
−∂ỹ(a2)

∂a2
(a2 − γ) + (ȳ2 − ỹ(a2))− ỹ(a2)∂ỹ(a2)

∂a2

)
a2
τ

+ ȳ − ỹ(a2)
> 0

which can be rewritten as

− 2

τ

(
(ȳ2 − ỹ(a2))(a2 − γ) +

ȳ2
2 − ỹ(a2)2

2

)
+
(a2

τ
+ ȳ2 − (̃a2)

)(1

τ
(a2 − γ) + (ȳ2 − ỹ(a2)) +

1

τ
ỹ(a2)

)
> 0

which is equivalent to

− 2

τ
(ȳ2 − ỹ(a2))

(
a2 − γ +

ȳ2 + ỹ(a2)

2
+
a2 − γ
τ

+ (ȳ2 − ỹ(a2)) +
ỹ(a2)

τ

)
+
a2

τ

(
1

τ
(a2 − γ) + (ȳ2 − ỹ(a2)) +

1

τ
ỹ(a2)

)
> 0
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Lets look at the two terms in turn, beginning with the latter one:

a2

τ

(
1

τ
(a2 − γ) + (ȳ2 − ỹ(a2)) +

1

τ
ỹ(a2)

)
⇔a2

τ

(
(ȳ2 − ỹ(a2))− 1

τ
(γ − a2 − ỹ(a2))

)
,

which is greater zero, because 0 < τ < 1 by assumption, γ > ȳ2 by construction, a2 < 0

and ȳ2 > ỹ2(a2) by the bounds of the maximization problem. Now the first term:

−2

τ
(ȳ2 − ỹ(a2))

(
a2 − γ +

ȳ2 + ỹ(a2)

2
+
a2 − γ
τ

+ (ȳ2 − ỹ(a2)) +
ỹ(a2)

τ

)
Of course, − 2

τ
(ȳ2 − ỹ(a2)) < 0. Now note that

−
(

1

τ
γ − 1

τ
ỹ(a2) + ỹ(a2)− ȳ2

)
< 0 ,

because γ > ȳ2 and (ȳ − ỹ(a2))( 1
τ
− 1) > 0. This leaves us with −(γ − 1

2
ȳ2) + a2(1 + 1

τ
−

1
2τ
− κ

2τ
) < 0 if τ > κ−1

2
. That means that the whole term is positive.

Thus, for τ > κ−1
2

, the LHS of the foc is strictly increasing. This condition is assumed in

the proposition. It doesn’t seem very strict, as it is always fulfilled for κ < 1, and doesn’t

directly collide with the conditions above. Note that it is sufficient but not necessary.

We now turn to the RHS of eq. (4.A.38), which is just marginal utility. Differentiating we

get

− ȳ2 + 1
τ
(2a2 + κ)

(ȳ2 − y2
)(1 + r)

, (4.A.39)

which is negative for a2 >
τ
2
ȳ2 − κ

2
= a∗ min

2 . Again note how we need that effective debt is

not dominated.

Finally, to see that a solution always exists note that

lim
a+2→a∗min2

β(1 + r)
a2
τ

+ y2 − ỹ2(a2)

(
(y2 − ỹ2(a2))(a2 − γ) +

ȳ2
2 − ỹ2

2

2

)
= −∞ (4.A.40)
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because the denominator goes to zero and the numerator is negative:

(y2 − ỹ2(a2))(a2 − γ) +
ȳ2

2 − ỹ2
2

2
< 0

⇔(y2 − ỹ2(a2))(a2 − γ) +
1

2
(ȳ2 + ỹ2(a2))(ȳ2 − ỹ2(a2)) < 0

⇔a2 − γ +
1

2
(ȳ2 + ỹ2(a2)) < 0

⇔a2 − γ +
1

2
(ȳ2 + ỹ2(a2)) < 0

which is true because γ > ȳ2 > ỹ2(a2).

Second-Order Condition of the Simple Model

Here, I show that second-order-condition to problem 4.3.20 does not help us in any way.

In particular, we can’t show that the maximization problem is strictly concave for the

non-dominated region.

Recall from the main section that a∗min2 = −1
2
κ − τ

2
y2, which is greater than the lower

bound of the maximization problem −τy2 − κ. Nobody will want to borrow below a∗min2 ,

because it becomes prohibitively expensive in the sense that there is another debt level

which dominates it (i.e. get same effective debt, but pay back less). Thus only debt levels

a2 > a∗min2 can be a solution.

I first restate the SOC from the main text:

− [(qa(a2)a2 + q(a2))2 − 2qa(a2)(a1 − q(a2)a2 − γ)

+ β(1− F (ỹ2)(a2))− β∂ỹ2(a2)

∂a2

(
(a2 − γ)

f(ỹ2(a2))

1 + r
− ỹ2(a2)

ȳ2 − y2

)
] < 0

(qa(a2)a2 + q(a2))2 − 2qa(a2)(a1 − q(a2)a2 − γ)

+ β(1− F (ỹ2)(a2))− β∂ỹ2(a2)

∂a2

(
(a2 − γ)

f(ỹ2(a2))

1 + r
− ỹ2(a2)

ȳ2 − y2

)
> 0

The first term is obviously positive. By construction a1 − q(a2)a2 − γ < 0, but we haven’t

established conditions on the primitives for this to hold. In particular, we should show
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under which conditions it holds that a1 − q(a∗ min
2 )a∗ min

2 < γ. Since qa(a2) > 0, the second

term also evaluates to a positive summand. The third term is obvious (recall that in the

present maximization, we always have ȳ2 < ỹ2(a2) < y
2
). Since ∂ỹ2(a2)

∂a2
< 0, we only need

to show that

(a2 − γ)
f(ỹ2(a2))

1 + r
− ỹ2(a2)

ȳ2 − y2

> 0

⇔(a2 − γ)
1

ȳ2 − y2

1

1 + r
+
(a2

τ
+
κ

τ

) 1

ȳ2 − y2

> 0

⇔a2

(
1

1 + r
+

1

τ

)
>

γ

1 + r
− κ

τ

⇔a2 >

(
1

1+r
+ 1

τ

)
γ

1+r
− κ

τ

If the last inequality holds for a∗ min
2 , then it holds for all valid a2. Thus we only need to

show

− 1

2
κ− τ

2
y2 >

(
1

1+r
+ 1

τ

)
γ 1

1+r
− κ

τ

⇔
(
−1

2
κ− τ

2
y2

)(
γ

1

1 + r
− κ

τ

)
>

1

1 + r
+

1

τ

Maybe one could assume something about 1
1+r

(τ ȳ2 + κ), since it is weaker than condi-

tion (4.3.8). However, it seems there is no way to say something about negativity of the

second-order condition.

Convexity of Effective Debt

Here I show that effective debt is strictly convex in its subintervals for quadratic utility

with exclusion penalty. It suffices to focus on the interval ã2 < a2 < 0 ⇔ ∃ ỹl2(a2)∧ỹu2 (a2).
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Marginal effective debt is given by

∂g(a2)

∂a2

= q(a2) +
∂q(a2)

∂a2

a2

=
a2

√
a2(r + 1)β ((r + 1)2β + 1) (a2r + a2 + 2y3 − 2γ)

(y
2
− ȳ2)(a2r + a2 + 2y3 − 2γ)

+
3
√
a2(r + 1)β ((r + 1)2β + 1) (a2r + a2 + 2y3 − 2γ)

(r + 1)(y
2
− ȳ2)

+
1

r + 1

And the second derivative can be simplified to

∂2g(a2)

∂a2
2

=2
∂q(a2)

∂a2

+
∂2q(a2)

∂a2
2

a1

=− 2a2(r + 1)β2 ((r + 1)2β + 1)
2

(ȳ2 − y2
)

× (2a2
2(r + 1)2 + 6a2(r + 1)(y3 − γ) + 3(y3 − γ)2)

(a2(r + 1)β ((r + 1)2β + 1) (a2r + a2 + 2y3 − 2γ))3/2

which is strictly positive (numerator negative, denominator positive).

Proof of Proposition 4.3

The proof goes along the lines of the proof to proposition 4.1. We again show that the

lhs of the FOC is decreasing and the rhs is increasing. We start by restating the foc in

eq. 4.3.31:

(a1 − a2q(a2)− γ)

(
q(a2) + a2

∂q(a2)

∂a2

)
=

β

∫ ȳ2

y
2

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

− β
∫ ỹu2 (a2)

ỹl2(a2)

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

Differentiate the lhs with respect to a2:

−
(
q(a2) + a2

∂q(a2)

∂a2

)
+ (a1 − a2q(a2)− γ)

(
2
∂q(a2)

∂a2

+
∂2q(a2)

∂a2
2

a1

)
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2∂q(a2)
∂a2

+ ∂2q(a2)

∂a22
a1 > 0 because effective debt is strictly increasing and strictly convex in

this interval, as shown in appendix 4.A. Thus the whole expression is negative, and the

lhs is decreasing in a2.

As for the rhs, we plug in the analytical expressions for a∗3(a2, y2), ỹu2 (a2), ỹl2(a2), evaluate

the integrals, and simplify to get

(1 + r)β2 (1 + r)(a2 +
y
2
+ȳ2

2
− γ) + y3 − γ

(1 + r)2β + 1

+ (1 + r)β2 2(a2(1 + r) + y3 − γ)

(ȳ2 − y2
)

×
√
a2(1 + r)β ((1 + r)2β + 1) (a2(1 + r) + 2y3 − 2γ)

Differentiating this with restpect to a2 and simplifying yields

2(1 + r)
√
a2(1 + r)β ((1 + r)2β + 1) (a2(1 + r) + 2y3 − 2γ)

(ȳ2 − y2
)

+
a2(1 + r) + y3 − γ

ȳ2 − y2

×
(

(1 + r)β ((1 + r)2β + 1) (a2(1 + r) + 2y3 − 2γ)√
a2(1 + r)β ((1 + r)2β + 1) (a2(1 + r) + 2y3 − 2γ)

+
a2(1 + r)2β ((1 + r)2β + 1)√

a2(1 + r)β ((1 + r)2β + 1) (a2(1 + r) + 2y3 − 2γ)

)

+
(1 + r)

(1 + r)2β + 1

This is positive, thus the rhs is strictly increasing.

Proof of Lemma 4.3

The proof is similar to the proof of lemma 4.1 in the main text, in that we look at what the

solutions to the two FOCs are at the common boundary of the two respective problems.

For convenience, we first rewrite the FOCs. The one from the first default problem (4.3.30)
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is

(a1 − a2q(a2)− γ)

(
q(a2) + a2

∂q(a2)

∂a2

)
(4.A.41)

= β

∫ ȳ2

ỹu2 (a2)

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

+ β

∫ ỹl2(a2)

y
2

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

and the one from the second default problem (4.3.32) is

(a1 − a2q(a2)− γ)

(
q(a2) + a2

∂q(a2)

∂a2

)
(4.A.42)

= β

∫ ȳ2

ỹu2 (a2)

(
a2 + y2 − a∗3(a2, y2)

1

1 + r
− γ
)
f(y2)dy2

Taking the limit of (4.A.41) as a2 → ãb2 we see that the RHS becomes equal to that of

(4.A.42). The LHS differs only in the term ∂q(a2)
∂a2

which in the first case equals

− 1

1 + r

(
f(ỹu2 (a2))

∂ỹu2 (a2)

∂a2

− f(ỹl2(a2))
∂ỹl2(a2)

∂a2

)
, (4.A.43)

whereas in the second case it is − 1
1+r

f(ỹu2 (a2))
∂ỹu2 (a2)

∂a2
. Since f(ỹl2(a2))

∂ỹl2(a2)

∂a2
> 0, the ã3

1

that solves (4.A.42) at the bound is greater than the ã4
1 that solves (4.A.41). Since both

focs always have a solution on their respective interval, we have that for [ã4
1, ã

3
1] there are

two solutions, one corresponding to each foc.

Proof of Proposition 4.4

Here we show that while the two focs admit a solution each on the compact interval [ã4
1, ã

3
1],

the solution to the original maximization problem will be single-valued everywhere on this

interval but at one single point, which must lie on the interior.

First, there must be at least one point on the interval where the solution is multivalued.

If not, then the policy a∗2(a1) would not be upper hemi-continuous, which it must be by

the maximum theorem. Next, there can be at most one point on the interval where the

solution is multivalued. If not, then the two resulting value functions would have the same
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value and the same slope over an interval. But the slope must differ: we know that for a

given a′1 we have a∗,d1
2 (a′1) > a∗,d2

2 (a′1). The first derivative of the two value functions are

(by the envelope theorem)

∂V d1(a1)

∂a1

=uc

(
a1 − a∗,d1

2 (a1)q
(
a∗,d1

2 (a1)
))(
−q(a∗,d1

2 (a1))− ∂q(a2)

∂a2

|a∗,d12 (a1)

)
∂V d2(a1)

∂a1

=uc

(
a1 − a∗,d2

2 (a1)q
(
a∗,d2

2 (a1)
))(
−q(a∗,d2

2 (a1))− ∂q(a2)

∂a2

|a∗,d22 (a1)

)
We see that the two slopes will differ for any a′1, because a2q(a2) and q(a2) are monotonically

increasing in the non-dominated part, and because

∂q(a2)

∂a2

|a∗,d12 (a1) >
∂q(a2)

∂a2

|a∗,d22 (a1)

as was discussed in appendix 4.A. Thus, there will be only one element in [ã4
1, ã

3
1] with a

multivalued solution to the original problem. It remains to show that it must be strictly

in the interior. Assume the multivaluedness occured at the lower bound of the interval

ã4
1. Then by construction a∗,d1

2 (a′1) = ãb2. But at ãb2 the two value functions would attain

exactly the same value, so if it was the solution to one at a given a′1, it would have to be the

solution of the other as well. But the FOCs yield different values, so the multivaluedness

can’t occur at this point. The same argument goes through for the other bound.
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